WorldWideScience

Sample records for optimum motion track

  1. Markerless Motion Tracking

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis; Czarowicz, Alex

    2012-01-01

    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360 ...

  2. Markerless Motion Tracking

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis; Czarowicz, Alex

    2012-01-01

    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360 ...

  3. Fast and Simple Motion Tracking Unit with Motion Estimation

    Institute of Scientific and Technical Information of China (English)

    Hyeon-cheol YANG; Yoon-sup KIM; Seong-soo LEE; Sang-keun OH; Sung-hwa KIM; Doo-won CHOI

    2010-01-01

    Surveillance system using active tracking camera has no distance limitation of surveillance range compared to supersonic or sound sensors. However, complex motion tracking algorithm requires huge amount of computation, and it often requires expensive DSPs or embedded processors. This paper proposes a novel motion tracking unit based on different image for fast and simple motion tracking. It uses configuration factor to avoid noise and inaccuracy. It reduces the required computation significantly, so as to be implemented on Field Programmable Gate Array(FPGAs) instead of expensive Digital Signal Processing(DSPs). It also performs calculation for motion estimation in video compression, so it can be easily combined with surveillance system with video recording functionality based on video compression. The proposed motion tracking system implemented on Xilinx Vertex-4 FPGA can process 48 frames per second, and operating frequency of motion tracking unit is 100 MHz.

  4. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    Energy Technology Data Exchange (ETDEWEB)

    Marion, W. F.; Dobos, A. P.

    2013-07-01

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  5. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    Energy Technology Data Exchange (ETDEWEB)

    Marion, W. F.; Dobos, A. P.

    2013-07-01

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  6. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo;

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...... that resembles the body surface of an infant, where the model is based on simple geometric shapes and a hierarchical skeleton model....

  7. Motion Tracking with Fast Adaptive Background Subtraction

    Institute of Scientific and Technical Information of China (English)

    Xiao; De-Gui; Yu; Sheng-sheng; 等

    2003-01-01

    To extract and track moving objects is usually one of the most important tasks of intelligent video surveillance systems. This paper presents a fast and adaptive background subtraction algorithm and the motion tracking process using this algorithm. The algorithm uses only luminance components of sampled image sequence pixels and models every pixel in a statistical model.The algorithm is characterized by its ability of real time detecting sudden lighting changes, and extracting and tracking motion objects faster. It is shown that our algorithm can be realized with lower time and space complexity and adjustable object detection error rate with comparison to other background subtraction algorithms. Making use of the algorithm, an indoor monitoring system is also worked out and the motion tracking process is presented in this paper.Experimental results testify the algorithms' good performances when used in an indoor monitoring system.

  8. Optimum Design Of On Grid Pv System Using Tracking System

    Directory of Open Access Journals (Sweden)

    Saeed Mansour

    2015-05-01

    Full Text Available Abstract The fossil fuel is a main issue in the world due to the increase of fossil fuel cost and the depletion of the fossil fuel with continuous increasing demand on electricity. With continuous decrease of PV panels cost it is interesting to consider generation of electricity from PV system. To provide electric energy to a load in a remote area where electric grid utility is not available or connection with grid utility is available there are two approaches of photovoltaic system PV without tracking system Fixed System and PV with tracking systems. The result shows that the energy production by using PV with tracking system generates more energy in comparison with fixed panels system. However the cost per produced KWH is less in case of using fixed panels. This is the backbone in choice between two approaches of photovoltaic system. In this work a system design and cost analysis for two approaches of photovoltaic system are considered.

  9. The Research on Selecting the Optimum Coefficient of Inharmonious Motion for the Front Wheel Assist Tractor

    Institute of Scientific and Technical Information of China (English)

    HuangXinghua; LinWumin

    1995-01-01

    Based on dynamic analysis for the Front Wheel Assist(FWA) tractor,a calculating and analysing method on selecting the optimum coefficient of inharmonious motion for the FWA tractor is described in this paper and the mathematical odels are also established.The article first time dlefines the ratio of thrust of front wheels to that of rear wheels.Which is an important parameter affeeting the tractive performance of the FWA tractor and establishes the conditon of no power circulation of the FWA tractor.The optimum coefficient of inharmonious motion for a FWA tractor (UTB-445)is also given.

  10. Articulated Human Motion Tracking Using Sequential Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-01-01

    Full Text Available We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce immune genetic algorithm (IGA for pose optimization in latent space of human motion. Firstly, we perform human motion analysis in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization. Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking. And we propose a sequential IGA (S-IGA algorithm for motion tracking by incorporating the temporal continuity information into the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation method can be used for initialization of motion tracking. The S-IGA-based motion tracking method can achieve accurate and stable tracking of 3D human motion.

  11. Methods for abdominal respiratory motion tracking.

    Science.gov (United States)

    Spinczyk, Dominik; Karwan, Adam; Copik, Marcin

    2014-01-01

    Non-invasive surface registration methods have been developed to register and track breathing motions in a patient's abdomen and thorax. We evaluated several different registration methods, including marker tracking using a stereo camera, chessboard image projection, and abdominal point clouds. Our point cloud approach was based on a time-of-flight (ToF) sensor that tracked the abdominal surface. We tested different respiratory phases using additional markers as landmarks for the extension of the non-rigid Iterative Closest Point (ICP) algorithm to improve the matching of irregular meshes. Four variants for retrieving the correspondence data were implemented and compared. Our evaluation involved 9 healthy individuals (3 females and 6 males) with point clouds captured in opposite breathing phases (i.e., inhalation and exhalation). We measured three factors: surface distance, correspondence distance, and marker error. To evaluate different methods for computing the correspondence measurements, we defined the number of correspondences for every target point and the average correspondence assignment error of the points nearest the markers.

  12. Robust Optical User Motion Tracking Using a Kalman Filter

    OpenAIRE

    Dorfmüller-Ulhaas, Klaus

    2007-01-01

    Optical tracking has a great future in applications of virtual and augmented reality. It will assist to enhance the acceptance of virtual reality user interfaces, since optical tracking allows wireless interaction and precise tracking. Existing commercial motion capture systems are neither working reliably in real-time. Additionally, only few optical trackers can smooth and predict motion and include a motion estimator supplying similar results to the presented approach. A Kalman filter formu...

  13. Proton spin tracking with symplectic integration of orbit motion

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.

  14. Tracking magnetogram proper motions by multiscale regularization

    Science.gov (United States)

    Jones, Harrison P.

    1995-01-01

    Long uninterrupted sequences of solar magnetograms from the global oscillations network group (GONG) network and from the solar and heliospheric observatory (SOHO) satellite will provide the opportunity to study the proper motions of magnetic features. The possible use of multiscale regularization, a scale-recursive estimation technique which begins with a prior model of how state variables and their statistical properties propagate over scale. Short magnetogram sequences are analyzed with the multiscale regularization algorithm as applied to optical flow. This algorithm is found to be efficient, provides results for all the spatial scales spanned by the data and provides error estimates for the solutions. It is found that the algorithm is less sensitive to evolutionary changes than correlation tracking.

  15. Markerless motion tracking of awake animals in positron emission tomography.

    Science.gov (United States)

    Kyme, Andre; Se, Stephen; Meikle, Steven; Angelis, Georgios; Ryder, Will; Popovic, Kata; Yatigammana, Dylan; Fulton, Roger

    2014-11-01

    Noninvasive functional imaging of awake, unrestrained small animals using motion-compensation removes the need for anesthetics and enables an animal's behavioral response to stimuli or administered drugs to be studied concurrently with imaging. While the feasibility of motion-compensated radiotracer imaging of awake rodents using marker-based optical motion tracking has been shown, markerless motion tracking would avoid the risk of marker detachment, streamline the experimental workflow, and potentially provide more accurate pose estimates over a greater range of motion. We have developed a stereoscopic tracking system which relies on native features on the head to estimate motion. Features are detected and matched across multiple camera views to accumulate a database of head landmarks and pose is estimated based on 3D-2D registration of the landmarks to features in each image. Pose estimates of a taxidermal rat head phantom undergoing realistic rat head motion via robot control had a root mean square error of 0.15 and 1.8 mm using markerless and marker-based motion tracking, respectively. Markerless motion tracking also led to an appreciable reduction in motion artifacts in motion-compensated positron emission tomography imaging of a live, unanesthetized rat. The results suggest that further improvements in live subjects are likely if nonrigid features are discriminated robustly and excluded from the pose estimation process.

  16. Motion Tracking of Infants in Risk of Cerebral Palsy

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard

    much earlier. The goal with this thesis is to describe the development of a markerless motion tracking system for infants. Based on data recorded with a low-cost depth sensor, image analysis and mathematical modeling is used to model the infant’s body and its movements. Two methods are considered......, where the first method is able to do single frame pose estimation, based on simple assumptions on the infant’s body. The second method uses an articulated model that incorporates anatomical constraints. Combining the two methods results in a robust motion tracking system for infants. The results from...... the motion tracking are used to extract physical features such as velocity and acceleration of the individual body parts. A novel method for estimating scene ow in human motion data is presented, utilizing the results from the motion tracking. A number of examples are given for potential applications...

  17. LabVIEW application for motion tracking using USB camera

    Science.gov (United States)

    Rob, R.; Tirian, G. O.; Panoiu, M.

    2017-05-01

    The technical state of the contact line and also the additional equipment in electric rail transport is very important for realizing the repairing and maintenance of the contact line. During its functioning, the pantograph motion must stay in standard limits. Present paper proposes a LabVIEW application which is able to track in real time the motion of a laboratory pantograph and also to acquire the tracking images. An USB webcam connected to a computer acquires the desired images. The laboratory pantograph contains an automatic system which simulates the real motion. The tracking parameters are the horizontally motion (zigzag) and the vertically motion which can be studied in separate diagrams. The LabVIEW application requires appropriate tool-kits for vision development. Therefore the paper describes the subroutines that are especially programmed for real-time image acquisition and also for data processing.

  18. Visual Target Tracking in the Presence of Unknown Observer Motion

    Science.gov (United States)

    Williams, Stephen; Lu, Thomas

    2009-01-01

    Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.

  19. Assisting doctors on assessing movements in infants using motion tracking

    DEFF Research Database (Denmark)

    Olsen, Mikkel; Herskind, Anna; Nielsen, Jens Bo;

    2015-01-01

    In this work, we consider the possibilities of having an automatic computer-based system for tracking the movements of infants. An existing motion tracking system is used to process recorded video sequences containing both color and spatial information of the infant's body pose and movements. The...

  20. An efficient stochastic framework for 3D human motion tracking

    Science.gov (United States)

    Ni, Bingbing; Winkler, Stefan; Kassim, Ashraf Ali

    2008-02-01

    In this paper, we present a stochastic framework for articulated 3D human motion tracking. Tracking full body human motion is a challenging task, because the tracking performance normally suffers from several issues such as self-occlusion, foreground segmentation noise and high computational cost. In our work, we use explicit 3D reconstructions of the human body based on a visual hull algorithm as our system input, which effectively eliminates self-occlusion. To improve tracking efficiency as well as robustness, we use a Kalman particle filter framework based on an interacting multiple model (IMM). The posterior density is approximated by a set of weighted particles, which include both sample means and covariances. Therefore, tracking is equivalent to searching the maximum a posteriori (MAP) of the probability distribution. During Kalman filtering, several dynamical models of human motion (e.g., zero order, first order) are assumed which interact with each other for more robust tracking results. Our measurement step is performed by a local optimization method using simulated physical force/moment for 3D registration. The likelihood function is designed to be the fitting score between the reconstructed human body and our 3D human model, which is composed of a set of cylinders. This proposed tracking framework is tested on a real motion sequence. Our experimental results show that the proposed method improves the sampling efficiency compared with most particle filter based methods and achieves high tracking accuracy.

  1. Wireless realtime motion tracking system using localised orientation estimation

    OpenAIRE

    Young, Alexander D.

    2010-01-01

    A realtime wireless motion tracking system is developed. The system is capable of tracking the orientations of multiple wireless sensors, using a semi-distributed implementation to reduce network bandwidth and latency, to produce real-time animation of rigid body models, such as the human skeleton. The system has been demonstrated to be capable of full-body posture tracking of a human subject using fifteen devices communicating with a basestation over a single, low bandwidth, r...

  2. Quantification of intraocular surgery motions with an electromagnetic tracking system.

    Science.gov (United States)

    Son, Ji; Bourges, Jean-Louis; Culjat, Martin O; Nistor, Vasile; Dutson, Erik P; Carman, Gregory P; Hubschman, Jean Pierre

    2009-01-01

    Motion tracking was performed during a combined phacoemulsification (PKE) and pars plana vitrectomy (PPV) procedure on a pig eyeball. The UCLA Laparoscopic Training System (UCLA-LTS), which consists of electromagnetic sensors attached to the surgical tools to measure three-dimensional spatial vectors, was modified to enable quantification of intraocular surgery motions. The range of motion and time taken to complete the given task were successfully recorded.

  3. Landmark detection and coupled patch registration for cardiac motion tracking

    Science.gov (United States)

    Wang, Haiyan; Shi, Wenzhe; Zhuang, Xiahai; Wu, Xianliang; Tung, Kai-Pin; Ourselin, Sebastien; Edwards, Philip; Rueckert, Daniel

    2013-03-01

    Increasing attention has been focused on the estimation of the deformation of the endocardium to aid the diagnosis of cardiac malfunction. Landmark tracking can provide sparse, anatomically relevant constraints to help establish correspondences between images being tracked or registered. However, landmarks on the endocardium are often characterized by ambiguous appearance in cardiac MR images which makes the extraction and tracking of these landmarks problematic. In this paper we propose an automatic framework to select and track a sparse set of distinctive landmarks in the presence of relatively large deformations in order to capture the endocardial motion in cardiac MR sequences. To achieve this a sparse set of the landmarks is identified using an entropy-based approach. In particular we use singular value decomposition (SVD) to reduce the search space and localize the landmarks with relatively large deformation across the cardiac cycle. The tracking of the sparse set of landmarks is performed simultaneously by optimizing a two-stage Markov Random Field (MRF) model. The tracking result is further used to initialize registration based dense motion tracking. We have applied this framework to extract a set of landmarks at the endocardial border of the left ventricle in MR image sequences from 51 subjects. Although the left ventricle undergoes a number of different deformations, we show how the radial, longitudinal motion and twisting of the endocardial surface can be captured by the proposed approach. Our experiments demonstrate that motion tracking using sparse landmarks can outperform conventional motion tracking by a substantial amount, with improvements in terms of tracking accuracy of 20:8% and 19:4% respectively.

  4. Motion tracking in narrow spaces: a structured light approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus; Højgaard, Liselotte

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D...... the system to a standard optical motion tracker based on a rigid tracking tool. Our system achieves an angular RMSE of 0.11 degrees demonstrating its relevance for motion compensated 3D scan image reconstructions as well as its competitiveness against the standard optical system with an RMSE of 0.08 degrees...

  5. Characterisation of walking loads by 3D inertial motion tracking

    Science.gov (United States)

    Van Nimmen, K.; Lombaert, G.; Jonkers, I.; De Roeck, G.; Van den Broeck, P.

    2014-09-01

    The present contribution analyses the walking behaviour of pedestrians in situ by 3D inertial motion tracking. The technique is first tested in laboratory experiments with simultaneous registration of the ground reaction forces. The registered motion of the pedestrian allows for the identification of stride-to-stride variations, which is usually disregarded in the simulation of walking forces. Subsequently, motion tracking is used to register the walking behaviour of (groups of) pedestrians during in situ measurements on a footbridge. The calibrated numerical model of the structure and the information gathered using the motion tracking system enables detailed simulation of the step-by-step pedestrian induced vibrations. Accounting for the in situ identified walking variability of the test-subjects leads to a significantly improved agreement between the measured and the simulated structural response.

  6. On feature motion decorrelation in ultrasound speckle tracking.

    Science.gov (United States)

    Liang, Tianzhu; Yung, Lingsing; Yu, Weichuan

    2013-02-01

    Speckle tracking methods refer to motion tracking methods based on speckle patterns in ultrasound images. They are commonly used in ultrasound based elasticity imaging techniques to reveal mechanical properties of tissues for clinical diagnosis. In speckle tracking, feature motion decorrelation exists when speckle patterns are not identical before and after tissue motion and deformation. Feature motion decorrelation violates the underlying assumption of most speckle tracking methods. Consequently, the estimation accuracy of current methods is greatly limited. In this paper, two types of speckle pattern variations, the geometric transformation and the intensity change of speckle patterns, are studied. We show that a coupled filtering method is able to compensate for both types of variations. It provides accurate strain estimations even when tissue deformation or rotation is extremely large. We also show that in most cases, an affine warping method that only compensates for the geometric transformation is able to achieve a similar performance as the coupled filtering method. Feature motion decorrelation in B-mode images is also studied. Finally, we show that in typical elastography studies, speckle tracking methods without modeling local shearing or rotation will fail when tissue deformation is large.

  7. Image-guided tumor motion modeling and tracking

    Science.gov (United States)

    Zhang, J.; Wu, Y.; Liu, W.; Christensen, J.; Tai, A.; Li, A. X.

    2009-02-01

    Radiation therapy (RT) is an important procedure in the treatment of cancer in the thorax and abdomen. However, its efficacy can be severely limited by breathing induced tumor motion. Tumor motion causes uncertainty in the tumor's location and consequently limits the radiation dosage (for fear of damaging normal tissue). This paper describes a novel signal model for tumor motion tracking/prediction that can potentially improve RT results. Using CT and breathing sensor data, it provides a more accurate characterization of the breathing and tumor motion than previous work and is non-invasive. The efficacy of our model is demonstrated on patient data.

  8. Diaphragm motion characterization using chest motion data for biomechanics-based lung tumor tracking during EBRT

    Science.gov (United States)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2016-03-01

    Despite recent advances in image-guided interventions, lung cancer External Beam Radiation Therapy (EBRT) is still very challenging due to respiration induced tumor motion. Among various proposed methods of tumor motion compensation, real-time tumor tracking is known to be one of the most effective solutions as it allows for maximum normal tissue sparing, less overall radiation exposure and a shorter treatment session. As such, we propose a biomechanics-based real-time tumor tracking method for effective lung cancer radiotherapy. In the proposed algorithm, the required boundary conditions for the lung Finite Element model, including diaphragm motion, are obtained using the chest surface motion as a surrogate signal. The primary objective of this paper is to demonstrate the feasibility of developing a function which is capable of inputting the chest surface motion data and outputting the diaphragm motion in real-time. For this purpose, after quantifying the diaphragm motion with a Principal Component Analysis (PCA) model, correlation coefficient between the model parameters of diaphragm motion and chest motion data was obtained through Partial Least Squares Regression (PLSR). Preliminary results obtained in this study indicate that the PCA coefficients representing the diaphragm motion can be obtained through chest surface motion tracking with high accuracy.

  9. Ultrasonography-based motion tracking for MRgFUS

    Science.gov (United States)

    Jenne, Jürgen W.; Tretbar, Steffen H.; Hewener, Holger J.; Speicher, Daniel; Barthscherer, Tobias; Sarti, Cristina; Bongers, André; Schwaab, Julia; Günther, Matthias

    2017-03-01

    Non-invasive treatment of moving organs like liver and kidney with high intensity focused ultrasound (HIFU/FUS) is challenging. The highly precise HIFU ablation requires real-time knowledge of tumor position with mm precision. The aim of this work was to build up a magnetic resonance imaging compatible tracking device using diagnostic ultrasound imaging for MR guided FUS (MRgFUS). The hardware of the developed US-tracking system comprises the ultrasound beam former with a screen directly placed in front of the MR-magnet, a linear and a special ultrasound tracking probe. The tracking probe (2x64 element phased array) can acquire two perpendicularly oriented US-image planes for quasi 3D tracking. The US-data are sent to a workstation in the console room of the MRI scanner which controls the whole tracking device. The tracking software (Sonoplan II) analyzes the ultrasound image stream and calculates the actual position of pre-defined contours. Beside the 2D-translation, the tracking algorithm analyzes the rotation as well as the 2D scaling of the contour. The developed US-tracking system proved MR-compatibility in 1.5 and 3 T MR-systems and enabled simultaneous MR- and US-imaging and motion tracking. In the next step, the tracking system will be combined with an MRgFUS unit.

  10. Models and Algorithms for Tracking Target with Coordinated Turn Motion

    Directory of Open Access Journals (Sweden)

    Xianghui Yuan

    2014-01-01

    Full Text Available Tracking target with coordinated turn (CT motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT model with known turn rate, augmented coordinated turn (ACT model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM framework, the algorithm based on expectation maximization (EM algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM algorithm, the EM algorithm shows its effectiveness.

  11. An Embedded System for Tracking Human Motion and Humanoid Interfaces

    Directory of Open Access Journals (Sweden)

    Ming-June Tsai

    2012-12-01

    Full Text Available The aim of this research is using embedded CPU to develop a human motion tracking system and construct a motion replication interface for a humanoid robot. In the motion tracking system, we use a CPLD (Complex Programmable Logic Device which is built in a central control unit (CCU to generate synchronous signals for all the periphery devices and control the data flow from CCD boards to a PC via a USB chip. An embedded DSP on the CCD board is adopted to control the CCD exposure and conduct image processing. The peak position of exposure was computed by the on-board DSP within sub-pixel accuracy. In the construction of a motion replication interface, the same CCU is used to generate the PWM signals to drive the motors of the humanoid robot. All of the respective firmware coding methods are discussed in this article.

  12. Motion tracking in narrow spaces: a structured light approach.

    Science.gov (United States)

    Olesen, Oline Vinter; Paulsen, Rasmus R; Højgaar, Liselotte; Roed, Bjarne; Larsen, Rasmus

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D point clouds are matched to a reference surface using a robust iterative closest point algorithm. A main challenge is the narrow geometry requiring a compact structured light system and an oblique angle of observation. The system is validated using a mannequin head mounted on a rotary stage. We compare the system to a standard optical motion tracker based on a rigid tracking tool. Our system achieves an angular RMSE of 0.11 degrees demonstrating its relevance for motion compensated 3D scan image reconstructions as well as its competitiveness against the standard optical system with an RMSE of 0.08 degrees. Finally, we demonstrate qualitative result on real face motion estimation.

  13. Three-dimensional motion tracking by Kalman filtering

    Science.gov (United States)

    Gao, Jean; Kosaka, Akio; Kak, Avinash C.

    2000-10-01

    In this paper, a 3D semantic object motion tracking method based on Kalman filtering is proposed. First, we use a specially designed Color Image Segmentation Editor (CISE) to devise shapes that more accurately describe the object to be tracked. CISE is an integration of edge and region detection, which is based on edge-linking, split-and-merge and the energy minimization for active contour detection. An ROI is further segmented into single motion blobs by considering the constancy of the motion parameters in each blob. Over short time intervals, each blob can be tracked separately and, over longer times, the blobs can be allowed to fragment and coalesce into new blobs as motion evolves. The tracking of each blob is based on a Kalman filter derived from linearization of a constraint equation satisfied by the pinhole model of a camera. The Kalman filter allows the tracker to project the uncertainties associated with a blob center (or with the coordinates of any other features) into the next frame. This projected uncertainty region can then be searched rot eh pixels belonging to the blob. Future work includes investigation of the effects of illumination changes and simultaneous tracking of multiple targets.

  14. Aging affects postural tracking of complex visual motion cues.

    Science.gov (United States)

    Sotirakis, H; Kyvelidou, A; Mademli, L; Stergiou, N; Hatzitaki, V

    2016-09-01

    Postural tracking of visual motion cues improves perception-action coupling in aging, yet the nature of the visual cues to be tracked is critical for the efficacy of such a paradigm. We investigated how well healthy older (72.45 ± 4.72 years) and young (22.98 ± 2.9 years) adults can follow with their gaze and posture horizontally moving visual target cues of different degree of complexity. Participants tracked continuously for 120 s the motion of a visual target (dot) that oscillated in three different patterns: a simple periodic (simulated by a sine), a more complex (simulated by the Lorenz attractor that is deterministic displaying mathematical chaos) and an ultra-complex random (simulated by surrogating the Lorenz attractor) pattern. The degree of coupling between performance (posture and gaze) and the target motion was quantified in the spectral coherence, gain, phase and cross-approximate entropy (cross-ApEn) between signals. Sway-target coherence decreased as a function of target complexity and was lower for the older compared to the young participants when tracking the chaotic target. On the other hand, gaze-target coherence was not affected by either target complexity or age. Yet, a lower cross-ApEn value when tracking the chaotic stimulus motion revealed a more synchronous gaze-target relationship for both age groups. Results suggest limitations in online visuo-motor processing of complex motion cues and a less efficient exploitation of the body sway dynamics with age. Complex visual motion cues may provide a suitable training stimulus to improve visuo-motor integration and restore sway variability in older adults.

  15. Motion Tracking for Medical Imaging: A Non-Visible Structured Light Tracking Approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2012-01-01

    ) a customized version of this projector replacing a visible light LED with a 850 nm near infrared LED. The latter system does not provide additional discomfort by visible light projection into the patient’s eyes. The main advantage over existing head motion tracking devices, including the Polaris Vicra system......We present a system for head motion tracking in 3D brain imaging. The system is based on facial surface reconstruction and tracking using a structured light (SL) scanning principle. The system is designed to fit into narrow 3D medical scanner geometries limiting the field of view. It is tested...... in a clinical setting on the high resolution research tomograph (HRRT), Siemens PET scanner with a head phantom and volunteers. The SL system is compared to a commercial optical tracking system, the Polaris Vicra system, from NDI based on translatory and rotary ground truth motions of the head phantom...

  16. Motion tracking in narrow spaces: A structured light approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D...

  17. Apparatus and method for motion tracking in brain imaging

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is apparatus and method for motion tracking of a subject in medical brain imaging. The method comprises providing a light projector and a first camera; projecting a first pattern sequence (S1) onto a surface region of the subject with the light projector, wherein the subject is positioned...

  18. Motion tracking in narrow spaces: a structured light approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus; Højgaard, Liselotte;

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D...

  19. Motion tracking in narrow spaces: A structured light approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D...

  20. Improved motion information-based infrared dim target tracking algorithms

    Science.gov (United States)

    Lei, Liu; Zhijian, Huang

    2014-11-01

    Accurate and fast tracking of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. However, under complex backgrounds, such as clutter, varying illumination, and occlusion, the traditional tracking method often converges to a local maximum and loses the real infrared target. To cope with these problems, three improved tracking algorithm based on motion information are proposed in this paper, namely improved mean shift algorithm, improved Optical flow method and improved Particle Filter method. The basic principles and the implementing procedure of these modified algorithms for target tracking are described. Using these algorithms, the experiments on some real-life IR and color images are performed. The whole algorithm implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. The results prove that the proposed method has satisfying tracking effectiveness and robustness. Meanwhile, it has high tracking efficiency and can be used for real-time tracking.

  1. Modeling of miner track system during steering motion

    Institute of Scientific and Technical Information of China (English)

    刘少军; 韩庆珏

    2015-01-01

    Equipment for deep sea mining has risen from a position of virtual non-existence to a major industrial significance and in deep sea bed mining, the miner is the key equipment of the whole system that charges with the most complex and dangerous task. Evaluation of trafficability for tracked vehicles for deep sea mining is essential. Rare earth elements (REEs) are used in a wide range of modern applications. These applications are highly specific and substitutes are inferior or unknown. One possible source of the REE could be the poly-metallic nodule, at present explored in the tropical part of the Pacific Ocean. In developing miners of high performance, dynamic behaviour should be investigated under various traveling conditions. The mechanics of tracked vehicles is of continuing interest to organizations and agencies that specify design and operate tracked vehicles. Most works done are on the complete track vehicle system but in this work the research activity is aimed only at the track system with the basic aim of optimizing the track system design so that it can be manufactured by using the minimum resources. Equations and models are developed for the track system of a miner during steering motion. These equations and models could further be used for design optimization of the track system.

  2. H∞ control for path tracking of autonomous underwater vehicle motion

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-05-01

    Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.

  3. Learning-Based Tracking of Complex Non-Rigid Motion

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; Hai-Zhou Ai; Guang-You Xu

    2004-01-01

    This paper describes a novel method for tracking complex non-rigid motions by learning the intrinsic object structure.The approach builds on and extends the studies on non-linear dimensionality reduction for object representation,object dynamics modeling and particle filter style tracking.First,the dimensionality reduction and density estimation algorithm is derived for unsupervised learning of object intrinsic representation,and the obtained non-rigid part of object state reduces even to 2-3 dimensions.Secondly the dynamical model is derived and trained based on this intrinsic representation.Thirdly the learned intrinsic object structure is integrated into a particle filter style tracker.It is shown that this intrinsic object representation has some interesting properties and based on which the newly derived dynamical model makes particle filter style tracker more robust and reliable.Extensive experiments are done on the tracking of challenging non-rigid motions such as fish twisting with selfocclusion,large inter-frame lip motion and facial expressions with global head rotation.Quantitative results are given to make comparisons between the newly proposed tracker and the existing tracker.The proposed method also has the potential to solve other type of tracking problems.

  4. Motion-compensated speckle tracking via particle filtering

    Science.gov (United States)

    Liu, Lixin; Yagi, Shin-ichi; Bian, Hongyu

    2015-07-01

    Recently, an improved motion compensation method that uses the sum of absolute differences (SAD) has been applied to frame persistence utilized in conventional ultrasonic imaging because of its high accuracy and relative simplicity in implementation. However, high time consumption is still a significant drawback of this space-domain method. To seek for a more accelerated motion compensation method and verify if it is possible to eliminate conventional traversal correlation, motion-compensated speckle tracking between two temporally adjacent B-mode frames based on particle filtering is discussed. The optimal initial density of particles, the least number of iterations, and the optimal transition radius of the second iteration are analyzed from simulation results for the sake of evaluating the proposed method quantitatively. The speckle tracking results obtained using the optimized parameters indicate that the proposed method is capable of tracking the micromotion of speckle throughout the region of interest (ROI) that is superposed with global motion. The computational cost of the proposed method is reduced by 25% compared with that of the previous algorithm and further improvement is necessary.

  5. Motion tracking in infrared imaging for quantitative medical diagnostic applications

    Science.gov (United States)

    Cheng, Tze-Yuan; Herman, Cila

    2014-01-01

    In medical applications, infrared (IR) thermography is used to detect and examine the thermal signature of skin abnormalities by quantitatively analyzing skin temperature in steady state conditions or its evolution over time, captured in an image sequence. However, during the image acquisition period, the involuntary movements of the patient are unavoidable, and such movements will undermine the accuracy of temperature measurement for any particular location on the skin. In this study, a tracking approach using a template-based algorithm is proposed, to follow the involuntary motion of the subject in the IR image sequence. The motion tacking will allow to associate a temperature evolution to each spatial location on the body while the body moves relative to the image frame. The affine transformation model is adopted to estimate the motion parameters of the template image. The Lucas-Kanade algorithm is applied to search for the optimized parameters of the affine transformation. A weighting mask is incorporated into the algorithm to ensure its tracking robustness. To evaluate the feasibility of the tracking approach, two sets of IR image sequences with random in-plane motion were tested in our experiments. A steady-state (no heating or cooling) IR image sequence in which the skin temperature is in equilibrium with the environment was considered first. The thermal recovery IR image sequence, acquired when the skin is recovering from 60-s cooling, was the second case analyzed. By proper selection of the template image along with template update, satisfactory tracking results were obtained for both IR image sequences. The achieved tracking accuracies are promising in terms of satisfying the demands imposed by clinical applications of IR thermography.

  6. Inertial Motion-Tracking Technology for Virtual 3-D

    Science.gov (United States)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  7. Effectiveness of an Automatic Tracking Software in Underwater Motion Analysis

    Directory of Open Access Journals (Sweden)

    Fabrício A. Magalhaes

    2013-12-01

    Full Text Available Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP, based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers’ positions were manually tracked to determine the markers’ center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM. Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker’s coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4% than for COM (17.8%. Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis.

  8. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

    Science.gov (United States)

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  9. Real time markerless motion tracking using linked kinematic chains

    Science.gov (United States)

    Luck, Jason P.; Small, Daniel E.

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  10. Motion tracking for medical imaging: a nonvisible structured light tracking approach.

    Science.gov (United States)

    Olesen, Oline Vinter; Paulsen, Rasmus R; Højgaard, Liselotte; Roed, Bjarne; Larsen, Rasmus

    2012-01-01

    We present a system for head motion tracking in 3D brain imaging. The system is based on facial surface reconstruction and tracking using a structured light (SL) scanning principle. The system is designed to fit into narrow 3D medical scanner geometries limiting the field of view. It is tested in a clinical setting on the high resolution research tomograph (HRRT), Siemens PET scanner with a head phantom and volunteers. The SL system is compared to a commercial optical tracking system, the Polaris Vicra system, from NDI based on translatory and rotary ground truth motions of the head phantom. The accuracy of the systems was similar, with root mean square (rms) errors of 0.09 degrees for ±20 degrees axial rotations, and rms errors of 0.24 mm for ± 25 mm translations. Tests were made using (1) a light emitting diode (LED) based miniaturized video projector, the Pico projector from Texas Instruments, and (2) a customized version of this projector replacing a visible light LED with a 850 nm near infrared LED. The latter system does not provide additional discomfort by visible light projection into the patient's eyes. The main advantage over existing head motion tracking devices, including the Polaris Vicra system, is that it is not necessary to place markers on the patient. This provides a simpler workflow and eliminates uncertainties related to marker attachment and stability. We show proof of concept of a marker less tracking system especially designed for clinical use with promising results.

  11. A soft biomimetic tongue: model reconstruction and motion tracking

    Science.gov (United States)

    Lu, Xuanming; Xu, Weiliang; Li, Xiaoning

    2016-04-01

    A bioinspired robotic tongue which is actuated by a network of compressed air is proposed for the purpose of mimicking the movements of human tongue. It can be applied in the fields such as medical science and food engineering. The robotic tongue is made of two kinds of silicone rubber Ecoflex 0030 and PDMS with the shape simplified from real human tongue. In order to characterize the robotic tongue, a series of experiments were carried out. Laser scan was applied to reconstruct the static model of robotic tongue when it was under pressurization. After each scan, the robotic tongue was scattered into dense points in the same 3D coordinate system and the coordinates of each point were recorded. Motion tracking system (OptiTrack) was used to track and record the whole process of deformation dynamically during the loading and unloading phase. In the experiments, five types of deformation were achieved including roll-up, roll-down, elongation, groove and twist. Utilizing the discrete points generated by laser scan, the accurate parameterized outline of robotic tongue under different pressure was obtained, which could help demonstrate the static characteristic of robotic tongue. The precise deformation process under one pressure was acquired through the OptiTrack system which contains a series of digital cameras, markers on the robotic tongue and a set of hardware and software for data processing. By means of tracking and recording different process of deformation under different pressure, the dynamic characteristic of robotic tongue could be achieved.

  12. Tracking 'differential organ motion' with a 'breathing' multileaf collimator: magnitude of problem assessed using 4D CT data and a motion-compensation strategy.

    Science.gov (United States)

    McClelland, J R; Webb, S; McQuaid, D; Binnie, D M; Hawkes, D J

    2007-08-21

    Intrafraction tumour (e.g. lung) motion due to breathing can, in principle, be compensated for by applying identical breathing motions to the leaves of a multileaf collimator (MLC) as intensity-modulated radiation therapy is delivered by the dynamic MLC (DMLC) technique. A difficulty arising, however, is that irradiated voxels, which are in line with a bixel at one breathing phase (at which the treatment plan has been made), may move such that they cease to be in line with that breathing bixel at another phase. This is the phenomenon of differential voxel motion and existing tracking solutions have ignored this very real problem. There is absolutely no tracking solution to the problem of compensating for differential voxel motion. However, there is a strategy that can be applied in which the leaf breathing is determined to minimize the geometrical mismatch in a least-squares sense in irradiating differentially-moving voxels. A 1D formulation in very restricted circumstances is already in the literature and has been applied to some model breathing situations which can be studied analytically. These are, however, highly artificial. This paper presents the general 2D formulation of the problem including allowing different importance factors to be applied to planning target volume and organ at risk (or most generally) each voxel. The strategy also extends the literature strategy to the situation where the number of voxels connecting to a bixel is a variable. Additionally the phenomenon of 'cross-leaf-track/channel' voxel motion is formally addressed. The general equations are presented and analytic results are given for some 1D, artificially contrived, motions based on the Lujan equations of breathing motion. Further to this, 3D clinical voxel motion data have been extracted from 4D CT measurements to both assess the magnitude of the problem of 2D motion perpendicular to the beam-delivery axis in clinical practice and also to find the 2D optimum breathing-leaf strategy

  13. Large scale track analysis for wide area motion imagery surveillance

    Science.gov (United States)

    van Leeuwen, C. J.; van Huis, J. R.; Baan, J.

    2016-10-01

    Wide Area Motion Imagery (WAMI) enables image based surveillance of areas that can cover multiple square kilometers. Interpreting and analyzing information from such sources, becomes increasingly time consuming as more data is added from newly developed methods for information extraction. Captured from a moving Unmanned Aerial Vehicle (UAV), the high-resolution images allow detection and tracking of moving vehicles, but this is a highly challenging task. By using a chain of computer vision detectors and machine learning techniques, we are capable of producing high quality track information of more than 40 thousand vehicles per five minutes. When faced with such a vast number of vehicular tracks, it is useful for analysts to be able to quickly query information based on region of interest, color, maneuvers or other high-level types of information, to gain insight and find relevant activities in the flood of information. In this paper we propose a set of tools, combined in a graphical user interface, which allows data analysts to survey vehicles in a large observed area. In order to retrieve (parts of) images from the high-resolution data, we developed a multi-scale tile-based video file format that allows to quickly obtain only a part, or a sub-sampling of the original high resolution image. By storing tiles of a still image according to a predefined order, we can quickly retrieve a particular region of the image at any relevant scale, by skipping to the correct frames and reconstructing the image. Location based queries allow a user to select tracks around a particular region of interest such as landmark, building or street. By using an integrated search engine, users can quickly select tracks that are in the vicinity of locations of interest. Another time-reducing method when searching for a particular vehicle, is to filter on color or color intensity. Automatic maneuver detection adds information to the tracks that can be used to find vehicles based on their

  14. 2D Nano-Motion Actuator for Precise Track Following

    Science.gov (United States)

    Mori, Shigeki; Sato, Yuudai; Sakurada, Akira; Naganawa, Akihiro; Shibuya, Yotsugi; Obinata, Goro

    The authors proposed a new actuator for track following on a spin-stand that evaluated magnetic heads and media for high density magnetic recording with high speed. The new actuator was named “Nano-Motion Actuator (NMA)” by the authors. At the present time, effect of azimuth angle which causes between a center line of a head slider and a tangential direction of the track is increasingly actualized as a track pitch of the head becomes narrow. Therefore, if a discrete track media (DTM) will be put to practical use, the effect of the azimuth angle will be actualized more clearly. Because, DTM will have large RRO (Repeatable Run-Out) that is caused by eccentricity error between a medium and a hub of an air-spindle. Furthermore, NRRO (Non-Repeatable Run-Out) which is caused by mechanical vibration of the air-spindle, flutter of the medium, turbulence around a HGA (Head gimbals Assembly) and so on is overlapped with the RRO. Especially in case of the large NRRO, since the azimuth angle will rapidly change, compensations of the azimuth angle should be absolutely necessary. Therefore, precision positioning actuator with high speed on an X-Y plane which is coplanar will be required the evaluation of the high density magnetic recording. We proposed a new actuator which was consisted of a NMA mechanism and a translation mechanism. The translation mechanism was composed of a stacked piezoelectric that was supported by two elastic springs. The new actuator that was called “2D Nano-Motion Actuator (2D NMA)” could move within 10 square micrometer and be positioned by nanometer resolution with high speed.

  15. Using Motion Tracking to Detect Spontaneous Movements in Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo;

    2015-01-01

    We study the characteristics of infants’ spontaneous movements, based on data obtained from a markerless motion tracking system. From the pose data, the set of features are generated from the raw joint-angles of the infants and different classifiers are trained and evaluated using annotated data....... Furthermore, we look at the importance of different features and outline the most significant features for detecting spontaneous movements of infants. Using these findings for further analysis of infants’ movements, this might be used to identify infants in risk of cerebral palsy....

  16. Stabilization and trajectory tracking of autonomous airship's planar motion

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan; Qu Weidong; Xi Yugeng; Cai Zili

    2008-01-01

    The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied.By denning novel configuration error and velocity error,the dynamics of error systems are derived.By applying Lyapunov stability method,the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem.In particular,the controller does not need knowledge on system parameters in the case of set-point stabilization,which makes the controller robust with respect to parameter uncertainty.Numerical simulations illustrate the effectiveness of the controller designed.

  17. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    Science.gov (United States)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  18. A Two-Axis Goniometric Sensor for Tracking Finger Motion.

    Science.gov (United States)

    Wang, Lefan; Meydan, Turgut; Williams, Paul Ieuan

    2017-04-05

    The study of finger kinematics has developed into an important research area. Various hand tracking systems are currently available; however, they all have limited functionality. Generally, the most commonly adopted sensors are limited to measurements with one degree of freedom, i.e., flexion/extension of fingers. More advanced measurements including finger abduction, adduction, and circumduction are much more difficult to achieve. To overcome these limitations, we propose a two-axis 3D printed optical sensor with a compact configuration for tracking finger motion. Based on Malus' law, this sensor detects the angular changes by analyzing the attenuation of light transmitted through polarizing film. The sensor consists of two orthogonal axes each containing two pathways. The two readings from each axis are fused using a weighted average approach, enabling a measurement range up to 180 ∘ and an improvement in sensitivity. The sensor demonstrates high accuracy (±0.3 ∘ ), high repeatability, and low hysteresis error. Attaching the sensor to the index finger's metacarpophalangeal joint, real-time movements consisting of flexion/extension, abduction/adduction and circumduction have been successfully recorded. The proposed two-axis sensor has demonstrated its capability for measuring finger movements with two degrees of freedom and can be potentially used to monitor other types of body motion.

  19. A Single Unexpected Change in Target- but Not Distractor Motion Impairs Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Hauke S. Meyerhoff

    2013-02-01

    Full Text Available Recent research addresses the question whether motion information of multiple objects contributes to maintaining a selection of objects across a period of motion. Here, we investigate whether target and/or distractor motion information is used during attentive tracking. We asked participants to track four objects and changed either the motion direction of targets, the motion direction of distractors, neither, or both during a brief flash in the middle of a tracking interval. We observed that a single direction change of targets is sufficient to impair tracking performance. In contrast, changing the motion direction of distractors had no effect on performance. This indicates that target- but not distractor motion information is evaluated during tracking.

  20. Evaluation of the clinical efficacy of the PeTrack motion tracking system for respiratory gating in cardiac PET imaging

    Science.gov (United States)

    Manwell, Spencer; Chamberland, Marc J. P.; Klein, Ran; Xu, Tong; deKemp, Robert

    2017-03-01

    Respiratory gating is a common technique used to compensate for patient breathing motion and decrease the prevalence of image artifacts that can impact diagnoses. In this study a new data-driven respiratory gating method (PeTrack) was compared with a conventional optical tracking system. The performance of respiratory gating of the two systems was evaluated by comparing the number of respiratory triggers, patient breathing intervals and gross heart motion as measured in the respiratory-gated image reconstructions of rubidium-82 cardiac PET scans in test and control groups consisting of 15 and 8 scans, respectively. We found evidence suggesting that PeTrack is a robust patient motion tracking system that can be used to retrospectively assess patient motion in the event of failure of the conventional optical tracking system.

  1. A study on the nondestructive test optimum design for a ground tracked combat vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kim Byeong Ho; Seo, Jae Hyun; Gil, Hyeon Jun [Defence Agency for Technology and Quality, Seoul (Korea, Republic of); Kim, Seon Hyeong [Hanwha Techwin Co.,Ltd., Changwon (Korea, Republic of); Seo, Sang Chul [Changwon National University, Changwon (Korea, Republic of)

    2015-10-15

    In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

  2. Patient motion tracking in the presence of measurement errors.

    Science.gov (United States)

    Haidegger, Tamás; Benyó, Zoltán; Kazanzides, Peter

    2009-01-01

    The primary aim of computer-integrated surgical systems is to provide physicians with superior surgical tools for better patient outcome. Robotic technology is capable of both minimally invasive surgery and microsurgery, offering remarkable advantages for the surgeon and the patient. Current systems allow for sub-millimeter intraoperative spatial positioning, however certain limitations still remain. Measurement noise and unintended changes in the operating room environment can result in major errors. Positioning errors are a significant danger to patients in procedures involving robots and other automated devices. We have developed a new robotic system at the Johns Hopkins University to support cranial drilling in neurosurgery procedures. The robot provides advanced visualization and safety features. The generic algorithm described in this paper allows for automated compensation of patient motion through optical tracking and Kalman filtering. When applied to the neurosurgery setup, preliminary results show that it is possible to identify patient motion within 700 ms, and apply the appropriate compensation with an average of 1.24 mm positioning error after 2 s of setup time.

  3. Spatial perception of motion-tracked binaural sound

    Science.gov (United States)

    Melick, Joshua B.; Algazi, V. Ralph; Duda, Richard O.

    2005-04-01

    Motion-tracked binaural sound reproduction extends conventional headphone-based binaural techniques by providing the dynamic cues to sound localization produced by voluntary head motion [V. R. Algazi, R. O. Duda, and D. M. Thompson, J. Aud. Eng. Soc. 52, 1142-1156 (2004)]. It does this by using several microphones to sample the acoustic field around a dummy head, interpolating between the microphone signals in accordance with the dynamically measured orientation of the listener's head. Although the provision of dynamic cues reduces the sensitivity of the method to characteristics of the individual listener, differences between the scattered field produced by the dummy head and the scattered field that would be produced by a particular listener distorts the spatial perception. A common observation is that sound sources appear to rise in elevation when the listener turns to face them. We investigate this effect by comparing the perceived rise in elevation under three different conditions: recordings in which recordings are made using (a) the listener's own head, (b) a KEMAR mannequin, and (c) a cylindrical head with no torso. Quantitative results are presented showing the degree to which perceptual distortions are least for (a) and greatest for (c). [Work supported by NSF.

  4. Ultrasound motion tracking for radiation therapy; Ultraschallbewegungstracking fuer die Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, J. [Fraunhofer-Institut fuer Bildgestuetzte Medizin MEVIS, Bremen (Germany); Mediri GmbH, Heidelberg (Germany); Schwaab, J. [Mediri GmbH, Heidelberg (Germany)

    2015-11-15

    In modern radiotherapy the radiation dose can be applied with an accuracy in the range of 1-2 mm provided that the exact position of the target is known. If, however, the target (the tumor) is located in the lungs or the abdomen, respiration or peristalsis can cause substantial movement of the target. Various methods for intrafractional motion detection and compensation are currently under consideration or are already applied in clinical practice. Sonography is one promising option, which is now on the brink of clinical implementation. Ultrasound is particularly suited for this purpose due to the high soft tissue contrast, real-time capability, the absence of ionizing radiation and low acquisition costs. Ultrasound motion tracking is an image-based approach, i.e. the target volume or an adjacent structure is directly monitored and the motion is tracked automatically on the ultrasound image. Diverse algorithms are presently available that provide the real-time target coordinates from 2D as well as 3D images. Definition of a suitable sonographic window is not, however, trivial and a gold standard for positioning and mounting of the transducer has not yet been developed. Furthermore, processing of the coordinate information in the therapy unit and the dynamic adaptation of the radiation field are challenging tasks. It is not clear whether ultrasound motion tracking will become established in the clinical routine although all technical prerequisites can be considered as fulfilled, such that exciting progress in this field of research is still to be expected. (orig.) [German] In der modernen Strahlentherapie kann die Dosis mit einer Genauigkeit von 1-2 mm appliziert werden, sofern die Position der Zielstruktur genau bekannt ist. Liegt diese Zielstruktur (der Tumor) jedoch in der Lunge oder im Abdomen, koennen u. a. die Atmung oder die Peristaltik zu einer substanziellen Bewegung des Zielvolumens fuehren. Verschiedene Methoden zur intrafraktionellen Bewegungsdetektion

  5. Markerless PET motion correction: tracking in narrow gantries through optical fibers

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Olesen, Oline Vinter; Benjaminsen, Claus;

    2015-01-01

    In a time with increasing resolution and signal-to-noise ratio of medical 3D brain scanners, there is also an increased need for tracking and motion correction of patient movements during acquisition time. To successfully implement a system for motion tracking in the clinic, the system should be ...

  6. Optimum municipal solid waste collection using geographical information system (GIS) and vehicle tracking for Pallavapuram municipality.

    Science.gov (United States)

    Kanchanabhan, T E; Abbas Mohaideen, J; Srinivasan, S; Sundaram, V Lenin Kalyana

    2011-03-01

    Waste collection and transportation is the contact point between waste generators and waste management systems. A proposal for an innovative model for the collection and transportation of municipal solid waste (MSW) which is a part of a solid waste management system using a spatial geo database, integrated in a geographical information system (GIS) environment is presented. Pallavapuram is a fast-developing municipality of Chennai city in the southern suburbs about 20 km from Chennai, the state capital of Tamil Nadu in India. The disposal of MSW was previously occurring in an indiscriminate and irrational manner in the municipality. Hence in the present study an attempt was made to develop an engineered design of solid waste collection using GIS with a vehicle tracking system and final disposal by composting with investment costs. The GIS was used to analyse existing maps and data, to digitize the existing ward boundaries and to enter data about the wards and disposal sites. The proposed GIS model for solid waste disposal would give information on the planning of bins, vehicles and the optimal route. In the case of disposal, composting would be a successful strategy to accelerate the decomposition and stabilization of the biodegradable components of waste in MSW.

  7. Integrating optical finger motion tracking with surface touch events.

    Science.gov (United States)

    MacRitchie, Jennifer; McPherson, Andrew P

    2015-01-01

    This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction.

  8. Stable Transition of Quadruped Rhythmic Motion Using the Tracking Differentiator

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Wei Wang; Jianqiang Yi

    2015-01-01

    Since the quadruped robot possesses predominant environmental adaptability, it is expected to be employed in nature environments. In some situations, such as ice surface and tight space, the quadruped robot is required to lower the height of center of gravity ( COG) to enhance the stability and maneuverability. To properly handle these situations, a quadruped controller based on the central pattern generator ( CPG) model, the discrete tracking differentiator ( TD) and proportional⁃derivative ( PD) sub⁃controllers is presented. The CPG is used to generate basic rhythmic motion for the quadruped robot. The discrete TD is not only creatively employed to implement the transition between two different rhythmic medium values of the CPG which results in the adjustment of the height of COG of the quadruped robot, but also modified to control the transition duration which enables the quadruped robot to achieve the stable transition. Additionally, two specific PD sub⁃controllers are constructed to adjust the oscillation amplitude of the CPG, so as to avoid the severe deviation in the transverse direction during transition locomotion. Finally, the controller is validated on a quadruped model. A tunnel with variable height is built for the quadruped model to travel through. The simulation demonstrates the severe deviation without the PD sub⁃controllers, and the reduced deviation with the PD sub⁃controllers.

  9. Integrating optical finger motion tracking with surface touch events

    Directory of Open Access Journals (Sweden)

    Jennifer eMacRitchie

    2015-06-01

    Full Text Available This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterisation of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction.

  10. Fast motion-including dose error reconstruction for VMAT with and without MLC tracking

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Keall, Paul J.; Grau, Cai

    2014-01-01

    of the algorithm for reconstruction of dose and motion-induced dose errors throughout the tracking and non-tracking beam deliveries was quantified. Doses were reconstructed with a mean dose difference relative to the measurements of -0.5% (5.5% standard deviation) for cumulative dose. More importantly, the root......-mean-square deviation between reconstructed and measured motion-induced 3%/3 mm γ failure rates (dose error) was 2.6%. The mean computation time for each calculation of dose and dose error was 295 ms. The motion-including dose reconstruction allows accurate temporal and spatial pinpointing of errors in absorbed dose...... validate a simple model for fast motion-including dose error reconstruction applicable to intrafractional QA of MLC tracking treatments of moving targets. MLC tracking experiments were performed on a standard linear accelerator with prototype MLC tracking software guided by an electromagnetic transponder...

  11. Tracking pedestrians using local spatio-temporal motion patterns in extremely crowded scenes.

    Science.gov (United States)

    Kratz, Louis; Nishino, Ko

    2012-05-01

    Tracking pedestrians is a vital component of many computer vision applications, including surveillance, scene understanding, and behavior analysis. Videos of crowded scenes present significant challenges to tracking due to the large number of pedestrians and the frequent partial occlusions that they produce. The movement of each pedestrian, however, contributes to the overall crowd motion (i.e., the collective motions of the scene's constituents over the entire video) that exhibits an underlying spatially and temporally varying structured pattern. In this paper, we present a novel Bayesian framework for tracking pedestrians in videos of crowded scenes using a space-time model of the crowd motion. We represent the crowd motion with a collection of hidden Markov models trained on local spatio-temporal motion patterns, i.e., the motion patterns exhibited by pedestrians as they move through local space-time regions of the video. Using this unique representation, we predict the next local spatio-temporal motion pattern a tracked pedestrian will exhibit based on the observed frames of the video. We then use this prediction as a prior for tracking the movement of an individual in videos of extremely crowded scenes. We show that our approach of leveraging the crowd motion enables tracking in videos of complex scenes that present unique difficulty to other approaches.

  12. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter

    images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution......This thesis concerns application specific 3D head tracking. The purpose is to improve motion correction in position emission tomography (PET) brain imaging through development of markerless tracking. Currently, motion correction strategies are based on either the PET data itself or tracking devices...... of a few millimeters. Stateof- the-art hardware and software solutions are integrated into an operational device. This novel system is tested against a commercial tracking system popular in PET brain imaging. Testing and demonstrations are carried out in clinical settings. A compact markerless tracking...

  13. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  14. Hand-Writing Motion Tracking with Vision-Inertial Sensor Fusion: Calibration and Error Correction

    Directory of Open Access Journals (Sweden)

    Shengli Zhou

    2014-08-01

    Full Text Available The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.

  15. Fast motion-including dose error reconstruction for VMAT with and without MLC tracking

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Keall, Paul J.; Grau, Cai

    2014-01-01

    validate a simple model for fast motion-including dose error reconstruction applicable to intrafractional QA of MLC tracking treatments of moving targets. MLC tracking experiments were performed on a standard linear accelerator with prototype MLC tracking software guided by an electromagnetic transponder...... system. A three-axis motion stage reproduced eight representative tumour trajectories; four lung and four prostate. Low and high modulation 6 MV single-arc volumetric modulated arc therapy treatment plans were delivered for each trajectory with and without MLC tracking, as well as without motion...... for reference. Temporally resolved doses were measured during all treatments using a biplanar dosimeter. Offline, the dose delivered to each of 1069 diodes in the dosimeter was reconstructed with 500 ms temporal resolution by a motion-including pencil beam convolution algorithm developed in-house. The accuracy...

  16. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    Science.gov (United States)

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects.

  17. Pupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography

    Science.gov (United States)

    Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Viehland, Christian; Keller, Brenton; Izatt, Joseph A.

    2016-01-01

    Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-vasculature maps of the anterior segment. Unfortunately, ASOCT structural and vasculature imaging systems do not capture volumes instantaneously and are subject to motion artifacts due to involuntary eye motion that may hinder their accuracy and repeatability. Several groups have demonstrated real-time tracking for motion-compensated in vivo OCT retinal imaging, but these techniques are not applicable in the anterior segment. In this work, we demonstrate a simple and low-cost pupil tracking system integrated into a custom swept-source OCT system for real-time motion-compensated anterior segment volumetric imaging. Pupil oculography hardware coaxial with the swept-source OCT system enabled fast detection and tracking of the pupil centroid. The pupil tracking ASOCT system with a field of view of 15 x 15 mm achieved diffraction-limited imaging over a lateral tracking range of +/- 2.5 mm and was able to correct eye motion at up to 22 Hz. Pupil tracking ASOCT offers a novel real-time motion compensation approach that may facilitate accurate and reproducible anterior segment imaging. PMID:27574800

  18. Tissue-Point Motion Tracking in the Tongue from Cine MRI and Tagged MRI

    Science.gov (United States)

    Woo, Jonghye; Stone, Maureen; Suo, Yuanming; Murano, Emi Z.; Prince, Jerry L.

    2014-01-01

    Purpose: Accurate tissue motion tracking within the tongue can help professionals diagnose and treat vocal tract--related disorders, evaluate speech quality before and after surgery, and conduct various scientific studies. The authors compared tissue tracking results from 4 widely used deformable registration (DR) methods applied to cine magnetic…

  19. Tissue-Point Motion Tracking in the Tongue from Cine MRI and Tagged MRI

    Science.gov (United States)

    Woo, Jonghye; Stone, Maureen; Suo, Yuanming; Murano, Emi Z.; Prince, Jerry L.

    2014-01-01

    Purpose: Accurate tissue motion tracking within the tongue can help professionals diagnose and treat vocal tract--related disorders, evaluate speech quality before and after surgery, and conduct various scientific studies. The authors compared tissue tracking results from 4 widely used deformable registration (DR) methods applied to cine magnetic…

  20. A Feedback-Based Algorithm for Motion Analysis with Application to Object Tracking

    Directory of Open Access Journals (Sweden)

    P. S. Sastry

    2007-01-01

    Full Text Available We present a motion detection algorithm which detects direction of motion at sufficient number of points and thus segregates the edge image into clusters of coherently moving points. Unlike most algorithms for motion analysis, we do not estimate magnitude of velocity vectors or obtain dense motion maps. The motivation is that motion direction information at a number of points seems to be sufficient to evoke perception of motion and hence should be useful in many image processing tasks requiring motion analysis. The algorithm essentially updates the motion at previous time using the current image frame as input in a dynamic fashion. One of the novel features of the algorithm is the use of some feedback mechanism for evidence segregation. This kind of motion analysis can identify regions in the image that are moving together coherently, and such information could be sufficient for many applications that utilize motion such as segmentation, compression, and tracking. We present an algorithm for tracking objects using our motion information to demonstrate the potential of this motion detection algorithm.

  1. A Feedback-Based Algorithm for Motion Analysis with Application to Object Tracking

    Directory of Open Access Journals (Sweden)

    Shah Shesha

    2007-01-01

    Full Text Available We present a motion detection algorithm which detects direction of motion at sufficient number of points and thus segregates the edge image into clusters of coherently moving points. Unlike most algorithms for motion analysis, we do not estimate magnitude of velocity vectors or obtain dense motion maps. The motivation is that motion direction information at a number of points seems to be sufficient to evoke perception of motion and hence should be useful in many image processing tasks requiring motion analysis. The algorithm essentially updates the motion at previous time using the current image frame as input in a dynamic fashion. One of the novel features of the algorithm is the use of some feedback mechanism for evidence segregation. This kind of motion analysis can identify regions in the image that are moving together coherently, and such information could be sufficient for many applications that utilize motion such as segmentation, compression, and tracking. We present an algorithm for tracking objects using our motion information to demonstrate the potential of this motion detection algorithm.

  2. Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound

    Science.gov (United States)

    Harris, Emma J.; Miller, Naomi R.; Bamber, Jeffrey C.; Symonds-Tayler, J. Richard N.; Evans, Philip M.

    2010-06-01

    We have evaluated a 4D ultrasound-based motion tracking system developed for tracking of abdominal organs during therapy. Tracking accuracy and precision were determined using a tissue-mimicking phantom, by comparing tracked motion with known 3D sinusoidal motion. The feasibility of tracking 3D liver motion in vivo was evaluated by acquiring 4D ultrasound data from four healthy volunteers. For two of these volunteers, data were also acquired whilst simultaneously measuring breath flow using a spirometer. Hepatic blood vessels, tracked off-line using manual tracking, were used as a reference to assess, in vivo, two types of automated tracking algorithm: incremental (from one volume to the next) and non-incremental (from the first volume to each subsequent volume). For phantom-based experiments, accuracy and precision (RMS error and SD) were found to be 0.78 mm and 0.54 mm, respectively. For in vivo measurements, mean absolute distance and standard deviation of the difference between automatically and manually tracked displacements were less than 1.7 mm and 1 mm respectively in all directions (left-right, anterior-posterior and superior-inferior). In vivo non-incremental tracking gave the best agreement. In both phantom and in vivo experiments, tracking performance was poorest for the elevational component of 3D motion. Good agreement between automatically and manually tracked displacements indicates that 4D ultrasound-based motion tracking has potential for image guidance applications in therapy.

  3. Optical Tracking With Two Markers for Robust Prospective Motion Correction for Brain Imaging

    Science.gov (United States)

    Singh, Aditya; Zahneisen, Benjamin; Keating, Brian; Herbst, Michael; Chang, Linda; Zaitsev, Maxim; Ernst, Thomas

    2017-01-01

    Object Prospective motion correction (PMC) during brain imaging using camera-based tracking of a skin-attached marker may suffer from problems including loss of marker visibility due to the coil and false correction due to non-rigid-body facial motion, such as frowning or squinting. A modified PMC system is introduced to mitigate these problems and increase the robustness of motion correction. Materials and Methods The method relies on simultaneously tracking two markers, each providing six degrees of freedom, that are placed on the forehead. This allows us to track head motion when one marker is obscured, and detect skin movements to prevent false corrections. Experiments were performed to compare the performance of the two-marker motion correction technique to the previous single-marker approach. Results Experiments validate the theory developed for adaptive marker tracking and skin movement detection, and demonstrate improved image quality during obstruction of the line-of-sight of one marker, when subjects squint, or when subjects squint and move simultaneously. Conclusion The proposed methods eliminate two common failure modes of PMC and substantially improve the robustness of PMC and can be applied to other optical tracking systems capable of tracking multiple markers. The methods presented can be adapted to the use of more than two markers. PMID:26121941

  4. Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal.

    Science.gov (United States)

    Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D; Hubbi, Basil; Liu, Xuan

    2015-11-01

    Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue.

  5. The Object Projection Feature Estimation Problem in Unsupervised Markerless 3D Motion Tracking

    CERN Document Server

    Quesada, Luis

    2011-01-01

    3D motion tracking is a critical task in many computer vision applications. Existing 3D motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on 3D motion tracking. 3D motion tracking systems that require no knowledge on the target object and run on a single low-budget camera require estimations of the object projection features (namely, area and position). In this paper, we define the object projection feature estimation problem and we present a novel 3D motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera, as installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a non-modeled unmarked object that may be non-rigid, non-convex, partially occluded, self occluded, or motion blurred, given that it is opaque, evenly colored, and enough contrasting with t...

  6. Automatic Data Normalization and Parameterization for Optical Motion Tracking

    Directory of Open Access Journals (Sweden)

    Leif Kobbelt

    2006-09-01

    Full Text Available Methods for optical motion capture often require time-consuming manual processing before the data can be used for subsequent tasks such as retargeting or character animation. These processing steps restrict the applicability of motion capturing especially for dynamic VR-environments with real time requirements. To solve these problems, we present two additional, fast and automatic processing stages based on our motion capture pipeline presented in [ HSK05 ]. A normalization step aligns the recorded coordinate systems with the skeleton structure to yield a common and intuitive data basis across different recording sessions. A second step computes a parameterization based on automatically extracted main movement axes to generate a compact motion description. Our method does not restrict the placement of marker bodies nor the recording setup, and only requires a short calibration phase.

  7. Compensation technique for the intrinsic error in ultrasound motion estimation using a speckle tracking method

    Science.gov (United States)

    Taki, Hirofumi; Yamakawa, Makoto; Shiina, Tsuyoshi; Sato, Toru

    2015-07-01

    High-accuracy ultrasound motion estimation has become an essential technique in blood flow imaging, elastography, and motion imaging of the heart wall. Speckle tracking has been one of the best motion estimators; however, conventional speckle-tracking methods neglect the effect of out-of-plane motion and deformation. Our proposed method assumes that the cross-correlation between a reference signal and a comparison signal depends on the spatio-temporal distance between the two signals. The proposed method uses the decrease in the cross-correlation value in a reference frame to compensate for the intrinsic error caused by out-of-plane motion and deformation without a priori information. The root-mean-square error of the estimated lateral tissue motion velocity calculated by the proposed method ranged from 6.4 to 34% of that using a conventional speckle-tracking method. This study demonstrates the high potential of the proposed method for improving the estimation of tissue motion using an ultrasound speckle-tracking method in medical diagnosis.

  8. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Fattori, G., E-mail: giovanni.fattori@psi.ch [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Seregni, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pella, A. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Riboldi, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Capasso, L. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Donetti, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Ciocca, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Giordanengo, S. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Pullia, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Baroni, G. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy)

    2016-08-11

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  9. Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tsap, L V; Duchaineau, M; Goldgof, D B

    2001-05-14

    This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations are presented in terms of both feature tracking and velocity analysis.

  10. Optimised motion tracking for positron emission tomography studies of brain function in awake rats.

    Directory of Open Access Journals (Sweden)

    Andre Z Kyme

    Full Text Available Positron emission tomography (PET is a non-invasive molecular imaging technique using positron-emitting radioisotopes to study functional processes within the body. High resolution PET scanners designed for imaging rodents and non-human primates are now commonplace in preclinical research. Brain imaging in this context, with motion compensation, can potentially enhance the usefulness of PET by avoiding confounds due to anaesthetic drugs and enabling freely moving animals to be imaged during normal and evoked behaviours. Due to the frequent and rapid motion exhibited by alert, awake animals, optimal motion correction requires frequently sampled pose information and precise synchronisation of these data with events in the PET coincidence data stream. Motion measurements should also be as accurate as possible to avoid degrading the excellent spatial resolution provided by state-of-the-art scanners. Here we describe and validate methods for optimised motion tracking suited to the correction of motion in awake rats. A hardware based synchronisation approach is used to achieve temporal alignment of tracker and scanner data to within 10 ms. We explored the impact of motion tracker synchronisation error, pose sampling rate, rate of motion, and marker size on motion correction accuracy. With accurate synchronisation (20 Hz, and a small head marker suitable for awake animal studies, excellent motion correction results were obtained in phantom studies with a variety of continuous motion patterns, including realistic rat motion (<5% bias in mean concentration. Feasibility of the approach was also demonstrated in an awake rat study. We conclude that motion tracking parameters needed for effective motion correction in preclinical brain imaging of awake rats are achievable in the laboratory setting. This could broaden the scope of animal experiments currently possible with PET.

  11. Kinematic property of target motion conditions gaze behavior and eye-hand synergy during manual tracking.

    Science.gov (United States)

    Huang, Chien-Ting; Hwang, Ing-Shiou

    2013-12-01

    This study investigated how frequency demand and motion feedback influenced composite ocular movements and eye-hand synergy during manual tracking. Fourteen volunteers conducted slow and fast force-tracking in which targets were displayed in either line-mode or wave-mode to guide manual tracking with target movement of direct position or velocity nature. The results showed that eye-hand synergy was a selective response of spatiotemporal coupling conditional on target rate and feedback mode. Slow and line-mode tracking exhibited stronger eye-hand coupling than fast and wave-mode tracking. Both eye movement and manual action led the target signal during fast-tracking, while the latency of ocular navigation during slow-tracking depended on the feedback mode. Slow-tracking resulted in more saccadic responses and larger pursuit gains than fast-tracking. Line-mode tracking led to larger pursuit gains but fewer and shorter gaze fixations than wave-mode tracking. During slow-tracking, incidences of saccade and gaze fixation fluctuated across a target cycle, peaking at velocity maximum and the maximal curvature of target displacement, respectively. For line-mode tracking, the incidence of smooth pursuit was phase-dependent, peaking at velocity maximum as well. Manual behavior of slow or line-mode tracking was better predicted by composite eye movements than that of fast or wave-mode tracking. In conclusion, manual tracking relied on versatile visual strategies to perceive target movements of different kinematic properties, which suggested a flexible coordinative control for the ocular and manual sensorimotor systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Modeling and adaptive motion/force tracking for ver tical wheel on rotating table

    Institute of Scientific and Technical Information of China (English)

    Zhongcai Zhang; Yuqiang Wu; Wei Sun

    2015-01-01

    This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dy-namic systems with affine constraints (NDSAC): a vertical wheel on a rotating table. Prior to the development of tracking control er, the dynamic model of the wheel in question is derived in a meticu-lous manner. A continuously differentiable friction model is also considered in the modeling. By exploiting the inherent cascade interconnected structure of the wheel dynamics, an adaptive mo-tion/force tracking control er is presented guaranteeing that the trajectory tracking errors asymptotical y converge to zero while the contact force tracking errors can be made smal enough by tuning design parameters. Simulation results are provided to validate the effectiveness of the proposed tracking methodology.

  13. Real-time eye motion compensation for OCT imaging with tracking SLO

    Science.gov (United States)

    Vienola, Kari V.; Braaf, Boy; Sheehy, Christy K.; Yang, Qiang; Tiruveedhula, Pavan; Arathorn, David W.; de Boer, Johannes F.; Roorda, Austin

    2012-01-01

    Fixational eye movements remain a major cause of artifacts in optical coherence tomography (OCT) images despite the increases in acquisition speeds. One approach to eliminate the eye motion is to stabilize the ophthalmic imaging system in real-time. This paper describes and quantifies the performance of a tracking OCT system, which combines a phase-stabilized optical frequency domain imaging (OFDI) system and an eye tracking scanning laser ophthalmoscope (TSLO). We show that active eye tracking minimizes artifacts caused by eye drift and micro saccades. The remaining tracking lock failures caused by blinks and large saccades generate a trigger signal which signals the OCT system to rescan corrupted B-scans. Residual motion artifacts in the OCT B-scans are reduced to 0.32 minutes of arc (~1.6 µm) in an in vivo human eye enabling acquisition of high quality images from the optic nerve head and lamina cribrosa pore structure. PMID:23162731

  14. DMLC motion tracking of moving targets for intensity modulated arc therapy treatment - a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jens; Korreman, Stine; Persson, Gitte (Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen, Copenhagen (Denmark)); Cattell, Herb; Svatos, Michelle (Varian Medical Systems, Palo Alto, CA (United States)); Sawant, Amit; Venkat, Raghu; Carlson, David; Keall, Paul (Stanford Univ., Stanford, CA (United States))

    2009-02-15

    Intensity modulated arc therapy offers great advantages with the capability of delivering a fast and highly conformal treatment. However, moving targets represent a major challenge. By monitoring a moving target it is possible to make the beam follow the motion, shaped by a Dynamic MLC (DMLC). The aim of this work was to evaluate the dose delivered to moving targets using the RapidArcTM (Varian Medical Systems, Inc.) technology with and without a DMLC tracking algorithm. Material and methods. A Varian Clinac iX was equipped with a preclinical RapidArcTM and a 3D DMLC tracking application. A motion platform was placed on the couch, with the detectors on top: a PTW seven29 and a Scandidos Delta4. One lung plan and one prostate plan were delivered. Motion was monitored using a Real-time Position Management (RPM) system. Reference measurements were performed for both plans with both detectors at state (0) 'static, no tracking'. Comparing measurements were made at state (1) 'motion, no tracking' and state (2) 'motion, tracking'. Results. Gamma analysis showed a significant improvement from measurements of state (1) to measurements of state (2) compared to the state (0) measurements: Lung plan; from 87 to 97% pass. Prostate plan; from 81 to 88% pass. Sub-beam information gave a much reduced pattern of periodically spatial deviating dose points for state (2) than for state (1). Iso-dose curve comparisons showed a slightly better agreement between state (0) and state (2) than between state (0) and state (1). Conclusions. DMLC tracking together with RapidArcTM make a feasible combination and is capable of improving the dose distribution delivered to a moving target. It seems to be of importance to minimize noise influencing the tracking, to gain the full benefit from the application.

  15. Variable structure multiple model for articulated human motion tracking from monocular video sequences

    Institute of Scientific and Technical Information of China (English)

    HAN Hong; TONG MingLei; CHEN ZhiChao; FAN YouJian

    2012-01-01

    A new model-based human body tracking framework with learning-based theory is introduced inthis paper.We propose a variable structure multiple model (VSMM) framework to address challenging problems such as uncertainty of motion styles,imprecise detection of feature points,and ambiguity of joint locations.Key human joint points are detected automatically and the undetected points are estimated with Kalman filters.Multiple motion models are learned from motion capture data using a ridge regression method.The model set that covers the total motion set is designed on the basis of topological and compatibility relationships,while the VSMM algorithm is used to estimate quaternion vectors of joint rotation.Experiments using real image sequences and simulation videos demonstrate the high efficiency of our proposed human tracking framework.

  16. Structured light 3D tracking system for measuring motions in PET brain imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Jørgensen, Morten Rudkjær; Paulsen, Rasmus Reinhold

    2010-01-01

    with a DLP projector and a CCD camera is set up on a model of the High Resolution Research Tomograph (HRRT). Methods to reconstruct 3D point clouds of simple surfaces based on phase-shifting interferometry (PSI) are demonstrated. The projector and camera are calibrated using a simple stereo vision procedure......Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light...

  17. A low cost real-time motion tracking approach using webcam technology.

    Science.gov (United States)

    Krishnan, Chandramouli; Washabaugh, Edward P; Seetharaman, Yogesh

    2015-02-01

    Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject's limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training.

  18. Tracking the motion trajectories of junction structures in 4D CT images of the lung

    Science.gov (United States)

    Xiong, Guanglei; Chen, Chuangzhen; Chen, Jianzhou; Xie, Yaoqin; Xing, Lei

    2012-08-01

    Respiratory motion poses a major challenge in lung radiotherapy. Based on 4D CT images, a variety of intensity-based deformable registration techniques have been proposed to study the pulmonary motion. However, the accuracy achievable with these approaches can be sub-optimal because the deformation is defined globally in space. Therefore, the accuracy of the alignment of local structures may be compromised. In this work, we propose a novel method to detect a large collection of natural junction structures in the lung and use them as the reliable markers to track the lung motion. Specifically, detection of the junction centers and sizes is achieved by analysis of local shape profiles on one segmented image. To track the temporal trajectory of a junction, the image intensities within a small region of interest surrounding the center are selected as its signature. Under the assumption of the cyclic motion, we describe the trajectory by a closed B-spline curve and search for the control points by maximizing a metric of combined correlation coefficients. Local extrema are suppressed by improving the initial conditions using random walks from pair-wise optimizations. Several descriptors are introduced to analyze the motion trajectories. Our method was applied to 13 real 4D CT images. More than 700 junctions in each case are detected with an average positive predictive value of greater than 90%. The average tracking error between automated and manual tracking is sub-voxel and smaller than the published results using the same set of data.

  19. External motion tracking for brain imaging: structured light tracking with invisible light

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte;

    2010-01-01

    The importance of motion correction in 3D medical imaging increases with increasing scanner resolution. It is necessary for scanners with long image acquisition and low contrast images to correct for patient motion in order to optimize image quality. We present a near infrared structured light st...

  20. Four-dimensional IMRT treatment planning using a DMLC motion-tracking algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yelin [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States); Sawant, Amit; Venkat, Raghu; Keall, Paul J [Department of Radiation Oncology, Stanford University, 875 Black Wilbur Drive, Stanford, CA 94305-5847 (United States)], E-mail: ysuh@stanford.edu

    2009-06-21

    The purpose of this study is to develop a four-dimensional (4D) intensity-modulated radiation therapy (IMRT) treatment-planning method by modifying and applying a dynamic multileaf collimator (DMLC) motion-tracking algorithm. The 4D radiotherapy treatment scenario investigated is to obtain a 4D treatment plan based on a 4D computed tomography (CT) planning scan and to have the delivery flexible enough to account for changes in tumor position during treatment delivery. For each of 4D CT planning scans from 12 lung cancer patients, a reference phase plan was created; with its MLC leaf positions and three-dimensional (3D) tumor motion, the DMLC motion-tracking algorithm generated MLC leaf sequences for the plans of other respiratory phases. Then, a deformable dose-summed 4D plan was created by merging the leaf sequences of individual phase plans. Individual phase plans, as well as the deformable dose-summed 4D plan, are similar for each patient, indicating that this method is dosimetrically robust to the variations of fractional time spent in respiratory phases on a given 4D CT planning scan. The 4D IMRT treatment-planning method utilizing the DMLC motion-tracking algorithm explicitly accounts for 3D tumor motion and thus hysteresis and nonlinear motion, and is deliverable on a linear accelerator.

  1. Decoupling directed and passive motion in dynamic systems: particle tracking microrheology of sputum.

    Science.gov (United States)

    Fong, Erika J; Sharma, Yasha; Fallica, Brian; Tierney, Dylan B; Fortune, Sarah M; Zaman, Muhammad H

    2013-04-01

    Probing the physical properties of heterogeneous materials is essential to understand the structure, function and dynamics of complex fluids including cells, mucus, and polymer solutions. Particle tracking microrheology is a useful method to passively probe viscoelastic properties on micron length scales by tracking the thermal motion of beads embedded in the sample. However, errors associated with active motion have limited the implementation to dynamic systems. We present a simple method to decouple active and Brownian motion, enabling particle tracking to be applied to fluctuating heterogeneous systems. We use the movement perpendicular to the major axis of motion in time to calculate rheological properties. Through simulated data we demonstrate that this method removes directed motion and performs equally well when there is no directed motion, with an average percent error of glycerol-water mixtures to show the capability to measure a range of materials. Finally, we use this technique to characterize the compliance of human sputum. We also investigate the effect of a liquefaction agent used to prepare sputum for diagnostic purposes. Our results suggest that the addition of high concentration sodium hydroxide increases sample heterogeneity by increasing the maximum observed creep compliance.

  2. DEVELOPMENT AND MOTION ANALYSIS OF MINIATURE WHEEL-TRACK-LEGGED MOBILE ROBOT

    Institute of Scientific and Technical Information of China (English)

    DUAN Xingguang; HUANG Qiang; XU Yan; RAHMAN N; ZHENG Change

    2007-01-01

    A miniature wheel-track-legged mobile robot to carry out military and civilian missions in both indoor and outdoor environments is presented. Firstly, the mechanical design is discussed, which consists of four wheeled and four independently controlled tracked arms, embedded control system and teleoperation. Then the locomotion modes of the mobile robot and motion analysis are analyzed.The mobile robot can move using wheeled, tracked and legged modes, and it has the characteristics of posture-recovering, high mobility, small size and light weight. Finally, the effectiveness of the developed mobile robot is confirmed by experiments such as posture recovering when tipped over, climbing stairs and traversing the high step.

  3. Tracking lung tumour motion using a dynamically weighted optical flow algorithm and electronic portal imaging device

    Science.gov (United States)

    Teo, P. T.; Crow, R.; Van Nest, S.; Sasaki, D.; Pistorius, S.

    2013-07-01

    This paper investigates the feasibility and accuracy of using a computer vision algorithm and electronic portal images to track the motion of a tumour-like target from a breathing phantom. A multi-resolution optical flow algorithm that incorporates weighting based on the differences between frames was used to obtain a set of vectors corresponding to the motion between two frames. A global value representing the average motion was obtained by computing the average weighted mean from the set of vectors. The tracking accuracy of the optical flow algorithm as a function of the breathing rate and target visibility was investigated. Synthetic images with different contrast-to-noise ratios (CNR) were created, and motions were tracked. The accuracy of the proposed algorithm was compared against potentiometer measurements giving average position errors of 0.6 ± 0.2 mm, 0.2 ± 0.2 mm and 0.1 ± 0.1 mm with average velocity errors of 0.2 ± 0.2 mm s-1, 0.4 ± 0.3 mm s-1 and 0.6 ± 0.5 mm s-1 for 6, 12 and 16 breaths min-1 motions, respectively. The cumulative average position error reduces more rapidly with the greater number of breathing cycles present in higher breathing rates. As the CNR increases from 4.27 to 5.6, the average relative error approaches zero and the errors are less dependent on the velocity. When tracking a tumour on a patient's digitally reconstructed radiograph images, a high correlation was obtained between the dynamically weighted optical flow algorithm, a manual delineation process and a centroid tracking algorithm. While the accuracy of our approach is similar to that of other methods, the benefits are that it does not require manual delineation of the target and can therefore provide accurate real-time motion estimation during treatment.

  4. Stability of the phase motion in race-track microtons

    CERN Document Server

    Kubyshin, Yu A; Ramírez-Ros, R; Seara, T M

    2016-01-01

    We model the phase oscillations of electrons in race-track microtrons by means of an area preserving map with a fixed point at the origin, which represents the synchronous trajectory of a reference particle in the beam. We study the nonlinear stability of the origin in terms of the synchronous phase -- the phase of the synchronous particle at the injection. We estimate the size and shape of the stability domain around the origin, whose main connected component is enclosed by the last rotational invariant curve. We describe the evolution of the stability domain as the synchronous phase varies. Besides, we approximate some rotational invariant curves by level sets of certain Hamiltonians. Finally, we clarify the role of the stable and unstable invariant curves of some hyperbolic (fixed or periodic) points.

  5. Prediction of 3D internal organ position from skin surface motion: results from electromagnetic tracking studies

    Science.gov (United States)

    Wong, Kenneth H.; Tang, Jonathan; Zhang, Hui J.; Varghese, Emmanuel; Cleary, Kevin R.

    2005-04-01

    An effective treatment method for organs that move with respiration (such as the lungs, pancreas, and liver) is a major goal of radiation medicine. In order to treat such tumors, we need (1) real-time knowledge of the current location of the tumor, and (2) the ability to adapt the radiation delivery system to follow this constantly changing location. In this study, we used electromagnetic tracking in a swine model to address the first challenge, and to determine if movement of a marker attached to the skin could accurately predict movement of an internal marker embedded in an organ. Under approved animal research protocols, an electromagnetically tracked needle was inserted into a swine liver and an electromagnetically tracked guidewire was taped to the abdominal skin of the animal. The Aurora (Northern Digital Inc., Waterloo, Canada) electromagnetic tracking system was then used to monitor the position of both of these sensors every 40 msec. Position readouts from the sensors were then tested to see if any of the movements showed correlation. The strongest correlations were observed between external anterior-posterior motion and internal inferior-superior motion, with many other axes exhibiting only weak correlation. We also used these data to build a predictive model of internal motion by taking segments from the data and using them to derive a general functional relationship between the internal needle and the external guidewire. For the axis with the strongest correlation, this model enabled us to predict internal organ motion to within 1 mm.

  6. Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation

    NARCIS (Netherlands)

    Schepers, H. Martin; Roetenberg, Daniel; Veltink, Peter H.

    2010-01-01

    Over the last years, inertial sensing has proven to be a suitable ambulatory alternative to traditional human motion tracking based on optical position measurement systems, which are generally restricted to a laboratory environment. Besides many advantages, a major drawback is the inherent drift cau

  7. Performances of motion tracking enhanced Tomo-PIV on turbulent shear flows

    NARCIS (Netherlands)

    Novara, M.; Scarano, F.

    2012-01-01

    The motion tracking enhancement technique (MTE) is a recently introduced method to improve the accuracy of tomographic PIV measurements at seeding density higher than currently practiced. The working principle is based on the fact that the particle field and its projections are correlated between th

  8. Organ motion tracking in USgFUS - A feasibility study using sonoelastography

    Science.gov (United States)

    Xiao, X.; Le, N.; Corner, G.; Nabi, G.; Melzer, A.; Huang, Z.

    2012-11-01

    This paper presents a study of near real-time ultrasound image guidance technique for motion tracking of the targets such as tumors during a focus ultrasound surgery. A 2D ultrasound based motion tracking system was designed and evaluated. A robot was used to control the position of the focused ultrasound device to be focused at the target. The target position was extracted from a real-time ultrasound video and tracked by the robot. The accuracy and precision of the tracking system were characterised using an egg-white gel phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. A further feasibility study using ultrasound strain elastography was conducted to assess the FUS (focused ultrasound surgery) sonication. Sonication experiments on tissue mimicking material, fresh sheep liver and Thiel sheep liver were conducted to evaluate the assessment performance of ultrasound strain elastography. This work provides a potential to combine the real time ultrasound image motion tracking and ultrasound strain elastography monitoring.

  9. Optimum differential terms for lateral motion control performance on the vehicle; Yokoundo seigyo seino ni oyobosu hisenkei bibunko no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Miyamori, A. [Japan Consumer Information Center, Tokyo (Japan); Nakaya, H. [Shibaura Institute of Technology, Tokyo (Japan)

    1997-10-01

    As general knowledge, the lateral control performance of vehicle improves as differential terms increases. But subjective rating has its limits of effect. The coefficient of differential terms and saturated steer angle velocity were set up using the experimental vehicle in several steps. Consequently, the optimum range, that subjective and objective rating were compatible, were made clear. 4 refs., 6 figs., 1 tab.

  10. Contour accuracy improvement of a flexure-based micro-motion stage for tracking repetitive trajectory

    Science.gov (United States)

    Jia, Shi; Jiang, Yao; Li, Tiemin; Du, Yunsong

    2017-01-01

    Flexure-based micro-motion mechanisms have been widely utilized in modern precision industry due to their inherent merits, while model uncertainty, uncertain nonlinearity, and cross-coupling effect will obviously deteriorate their contour accuracy, especially in the high-speed application. This paper aims at improving the contouring performance of a flexure-based micro-motion stage utilized for tracking repetitive trajectories. The dynamic characteristic of the micro-motion stage is first studied and modeled as a second-order system, which is identified through an open-loop sinusoidal sweeping test. Then the iterative learning control (ILC) scheme is utilized to improve the tracking performance of individual axis of the stage. A nonlinear cross-coupled iterative learning control (CCILC) scheme is proposed to reduce the coupling effect among each axis, and thus improves contour accuracy of the stage. The nonlinear gain function incorporated into the CCILC controller can effectively avoid amplifying the non-recurring disturbances and noises in the iterations, which can further improve the stage's contour accuracy in high-speed motion. Comparative experiments between traditional PID, ILC, ILC & CCILC, and the proposed ILC & nonlinear CCILC are carried out on the micro-motion stage to track circular and square trajectories. The results demonstrate that the proposed control scheme outperforms other control schemes much in improving the stage's contour accuracy in high-speed motion. The study in this paper provides a practically effective technique for the flexure-based micro-motion stage in high-speed contouring motion.

  11. Three-dimensional magnetic resonance myocardial motion tracking from a single image plane.

    Science.gov (United States)

    Abd-Elmoniem, Khaled Z; Osman, Nael F; Prince, Jerry L; Stuber, Matthias

    2007-07-01

    Three-dimensional imaging for the quantification of myocardial motion is a key step in the evaluation of cardiac disease. A tagged magnetic resonance imaging method that automatically tracks myocardial displacement in three dimensions is presented. Unlike other techniques, this method tracks both in-plane and through-plane motion from a single image plane without affecting the duration of image acquisition. A small z-encoding gradient is subsequently added to the refocusing lobe of the slice-selection gradient pulse in a slice following CSPAMM acquisition. An opposite polarity z-encoding gradient is added to the orthogonal tag direction. The additional z-gradients encode the instantaneous through plane position of the slice. The vertical and horizontal tags are used to resolve in-plane motion, while the added z-gradients is used to resolve through-plane motion. Postprocessing automatically decodes the acquired data and tracks the three-dimensional displacement of every material point within the image plane for each cine frame. Experiments include both a phantom and in vivo human validation. These studies demonstrate that the simultaneous extraction of both in-plane and through-plane displacements and pathlines from tagged images is achievable. This capability should open up new avenues for the automatic quantification of cardiac motion and strain for scientific and clinical purposes.

  12. Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET

    Science.gov (United States)

    Noonan, P. J.; Howard, J.; Hallett, W. A.; Gunn, R. N.

    2015-11-01

    Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting  ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown.

  13. A quantitative assessment of using the Kinect for Xbox 360 for respiratory surface motion tracking

    Science.gov (United States)

    Alnowami, M.; Alnwaimi, B.; Tahavori, F.; Copland, M.; Wells, K.

    2012-02-01

    This paper describes a quantitative assessment of the Microsoft Kinect for X-box360TM for potential application in tracking respiratory and body motion in diagnostic imaging and external beam radiotherapy. However, the results can also be used in many other biomedical applications. We consider the performance of the Kinect in controlled conditions and find mm precision at depths of 0.8-1.5m. We also demonstrate the use of the Kinect for monitoring respiratory motion of the anterior surface. To improve the performance of respiratory monitoring, we fit a spline model of the chest surface through the depth data as a method of a marker-less monitoring of a respiratory motion. In addition, a comparison between the Kinect camera with and without zoom lens and a marker-based system was used to evaluate the accuracy of using the Kinect camera as a respiratory tracking system.

  14. Atrioventricular junction (AVJ) motion tracking: a software tool with ITK/VTK/Qt.

    Science.gov (United States)

    Pengdong Xiao; Shuang Leng; Xiaodan Zhao; Hua Zou; Ru San Tan; Wong, Philip; Liang Zhong

    2016-08-01

    The quantitative measurement of the Atrioventricular Junction (AVJ) motion is an important index for ventricular functions of one cardiac cycle including systole and diastole. In this paper, a software tool that can conduct AVJ motion tracking from cardiovascular magnetic resonance (CMR) images is presented by using Insight Segmentation and Registration Toolkit (ITK), The Visualization Toolkit (VTK) and Qt. The software tool is written in C++ by using Visual Studio Community 2013 integrated development environment (IDE) containing both an editor and a Microsoft complier. The software package has been successfully implemented. From the software engineering practice, it is concluded that ITK, VTK, and Qt are very handy software systems to implement automatic image analysis functions for CMR images such as quantitative measure of motion by visual tracking.

  15. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    Science.gov (United States)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  16. 3D model-based catheter tracking for motion compensation in EP procedures

    Science.gov (United States)

    Brost, Alexander; Liao, Rui; Hornegger, Joachim; Strobel, Norbert

    2010-02-01

    Atrial fibrillation is the most common sustained heart arrhythmia and a leading cause of stroke. Its treatment by radio-frequency catheter ablation, performed using fluoroscopic image guidance, is gaining increasingly more importance. Two-dimensional fluoroscopic navigation can take advantage of overlay images derived from pre-operative 3-D data to add anatomical details otherwise not visible under X-ray. Unfortunately, respiratory motion may impair the utility of these static overlay images for catheter navigation. We developed an approach for image-based 3-D motion compensation as a solution to this problem. A bi-plane C-arm system is used to take X-ray images of a special circumferential mapping catheter from two directions. In the first step of the method, a 3-D model of the device is reconstructed. Three-dimensional respiratory motion at the site of ablation is then estimated by tracking the reconstructed catheter model in 3-D. This step involves bi-plane fluoroscopy and 2-D/3-D registration. Phantom data and clinical data were used to assess our model-based catheter tracking method. Experiments involving a moving heart phantom yielded an average 2-D tracking error of 1.4 mm and an average 3-D tracking error of 1.1 mm. Our evaluation of clinical data sets comprised 469 bi-plane fluoroscopy frames (938 monoplane fluoroscopy frames). We observed an average 2-D tracking error of 1.0 mm +/- 0.4 mm and an average 3-D tracking error of 0.8 mm +/- 0.5 mm. These results demonstrate that model-based motion-compensation based on 2-D/3-D registration is both feasible and accurate.

  17. Postural sway and gaze can track the complex motion of a visual target.

    Directory of Open Access Journals (Sweden)

    Vassilia Hatzitaki

    Full Text Available Variability is an inherent and important feature of human movement. This variability has form exhibiting a chaotic structure. Visual feedback training using regular predictive visual target motions does not take into account this essential characteristic of the human movement, and may result in task specific learning and loss of visuo-motor adaptability. In this study, we asked how well healthy young adults can track visual target cues of varying degree of complexity during whole-body swaying in the Anterior-Posterior (AP and Medio-Lateral (ML direction. Participants were asked to track three visual target motions: a complex (Lorenz attractor, a noise (brown and a periodic (sine moving target while receiving online visual feedback about their performance. Postural sway, gaze and target motion were synchronously recorded and the degree of force-target and gaze-target coupling was quantified using spectral coherence and Cross-Approximate entropy. Analysis revealed that both force-target and gaze-target coupling was sensitive to the complexity of the visual stimuli motions. Postural sway showed a higher degree of coherence with the Lorenz attractor than the brown noise or sinusoidal stimulus motion. Similarly, gaze was more synchronous with the Lorenz attractor than the brown noise and sinusoidal stimulus motion. These results were similar regardless of whether tracking was performed in the AP or ML direction. Based on the theoretical model of optimal movement variability tracking of a complex signal may provide a better stimulus to improve visuo-motor adaptation and learning in postural control.

  18. A new method for tracking organ motion on diagnostic ultrasound images

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Yoshiki, E-mail: y-kubota@gunma-u.ac.jp; Matsumura, Akihiko, E-mail: matchan.akihiko@gunma-u.ac.jp [Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Fukahori, Mai, E-mail: fukahori@nirs.go.jp [Research Center of Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Minohara, Shin-ichi, E-mail: minoharas@kcch.jp [Medical Physics Section, Kanagawa Cancer Center, 1-1-2 Nakao, Asahi-ku, Yokohama 241-8515 (Japan); Yasuda, Shigeo, E-mail: yasudash@nirs.go.jp [Research Center Hospital of Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nagahashi, Hiroshi, E-mail: longb@isl.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2014-09-15

    Purpose: Respiratory-gated irradiation is effective in reducing the margins of a target in the case of abdominal organs, such as the liver, that change their position as a result of respiratory motion. However, existing technologies are incapable of directly measuring organ motion in real-time during radiation beam delivery. Hence, the authors proposed a novel quantitative organ motion tracking method involving the use of diagnostic ultrasound images; it is noninvasive and does not entail radiation exposure. In the present study, the authors have prospectively evaluated this proposed method. Methods: The method involved real-time processing of clinical ultrasound imaging data rather than organ monitoring; it comprised a three-dimensional ultrasound device, a respiratory sensing system, and two PCs for data storage and analysis. The study was designed to evaluate the effectiveness of the proposed method by tracking the gallbladder in one subject and a liver vein in another subject. To track a moving target organ, the method involved the control of a region of interest (ROI) that delineated the target. A tracking algorithm was used to control the ROI, and a large number of feature points and an error correction algorithm were used to achieve long-term tracking of the target. Tracking accuracy was assessed in terms of how well the ROI matched the center of the target. Results: The effectiveness of using a large number of feature points and the error correction algorithm in the proposed method was verified by comparing it with two simple tracking methods. The ROI could capture the center of the target for about 5 min in a cross-sectional image with changing position. Indeed, using the proposed method, it was possible to accurately track a target with a center deviation of 1.54 ± 0.9 mm. The computing time for one frame image using our proposed method was 8 ms. It is expected that it would be possible to track any soft-tissue organ or tumor with large deformations and

  19. Tracking using motion estimation with physically motivated inter-region constraints

    KAUST Repository

    Arif, Omar

    2014-09-01

    We propose a method for tracking structures (e.g., ventricles and myocardium) in cardiac images (e.g., magnetic resonance) by propagating forward in time a previous estimate of the structures using a new physically motivated motion estimation scheme. Our method estimates motion by regularizing only within structures so that differing motions among different structures are not mixed. It simultaneously satisfies the physical constraints at the interface between a fluid and a medium that the normal component of the fluid\\'s motion must match the normal component of the medium\\'s motion and the No-Slip condition, which states that the tangential velocity approaches zero near the interface. We show that these conditions lead to partial differential equations with Robin boundary conditions at the interface, which couple the motion between structures. We show that propagating a segmentation across frames using our motion estimation scheme leads to more accurate segmentation than traditional motion estimation that does not use physical constraints. Our method is suited to interactive segmentation, prominently used in commercial applications for cardiac analysis, where segmentation propagation is used to predict a segmentation in the next frame. We show that our method leads to more accurate predictions than a popular and recent interactive method used in cardiac segmentation. © 2014 IEEE.

  20. Influence of ultrasound speckle tracking strategies for motion and strain estimation.

    Science.gov (United States)

    Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Aja-Fernández, Santiago

    2016-08-01

    Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion and function assessment. New proposals to improve the basic algorithm usually focus on one of these three steps: (1) the similarity measure between images and the speckle model; (2) the transformation model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use of different optimization techniques in the transformation step or the inclusion of structural information. While many contributions have shown their good performance independently, it is not always clear how they perform when integrated in a whole pipeline. Every step will have a degree of influence over the following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole when developing novel methods, since improvements in a particular step might be undermined by the choices taken in further steps. This work presents two main contributions: (1) We provide a complete analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems specifically designed to provide an easy and systematic way to include other strategies. We close the analysis with some conclusions and recommendations that can be used as an orientation of the degree of influence of the models for speckle, the transformation models, interpolation schemes and optimization strategies over the estimation of motion features. They can be further use to evaluate and design new strategy into a Speckle Tracking system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Robust object tracking techniques for vision-based 3D motion analysis applications

    Science.gov (United States)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  2. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul [Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, Korea 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Department of Radiation Oncology, Asan Medical Center, Seoul, 138-736 (Korea, Republic of); Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Radiation Physics Laboratory, Sydney Medical School, University of Sydney, 2006 (Australia)

    2011-07-15

    Purpose: In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. Methods: The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a {gamma}-test with a 3%/3 mm criterion. Results: The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the {gamma}-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation

  3. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk [Department of Procurement and Clinical Engineering, Region Midt, Olof Palmes Allé 15, 8200 Aarhus N, Denmark and MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Ringgaard, Steffen [MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Poulsen, Per Rugaard [Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark and Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark)

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  4. A robust optical/inertial data fusion system for motion tracking of the robot manipulator

    Institute of Scientific and Technical Information of China (English)

    Jie CHEN; Can-jun YANG; Jens HOFSCHULTE; Wan-li JIANG; Cha ZHANG

    2014-01-01

    We present an optical/inertial data fusion system for motion tracking of the robot manipulator, which is proved to be more robust and accurate than a normal optical tracking system (OTS). By data fusion with an inertial measurement unit (IMU), both robustness and accuracy of OTS are improved. The Kalman filter is used in data fusion. The error distribution of OTS pro-vides an important reference on the estimation of measurement noise using the Kalman filter. With a proper setup of the system and an effective method of coordinate frame synchronization, the results of experiments show a significant improvement in terms of robustness and position accuracy.

  5. A comparison of Lagrangian/Eulerian approaches for tracking the kinematics of high deformation solid motion.

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Thomas L.; Farnsworth, Grant V.; Ketcheson, David Isaac; Robinson, Allen Conrad

    2009-09-01

    The modeling of solids is most naturally placed within a Lagrangian framework because it requires constitutive models which depend on knowledge of the original material orientations and subsequent deformations. Detailed kinematic information is needed to ensure material frame indifference which is captured through the deformation gradient F. Such information can be tracked easily in a Lagrangian code. Unfortunately, not all problems can be easily modeled using Lagrangian concepts due to severe distortions in the underlying motion. Either a Lagrangian/Eulerian or a pure Eulerian modeling framework must be introduced. We discuss and contrast several Lagrangian/Eulerian approaches for keeping track of the details of material kinematics.

  6. MOTION OF TRACER PARTICLES IN A CENTRIFUGAL PUMP AND ITS TRACKING CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    LI Ya-lin; YUAN Shou-qi; TANG Yue; YUAN Jian-ping

    2012-01-01

    The Basset-Boussinesq-Oseen (BBO) equation can be used for most flows to trace the motion of a particle,but in a centrifugal pump,among the forces that act on the particles,one should also include those due to the impeller rotation,as additional effects.This paper firstly reviews various approximations of the BBO equation for the motion of dispersion particles in a viscous fluid.Then based on the motion equation for particles in low Reynolds number centrifugal pumps,a formula for calculating the tracking characteristics of tracer particles is deduced through the Fourier integral transformation.After that the deviations of the particle motion from the fluid motion,as predicted by the various approximations,are discussed and compared.At last,with an emphasis on the Particle Image Velocimetry (PIV) results,the tracking characteristics of particles are estimated.Also,advantages and disadvantages of different tracer particles are discussed and suitable tracer particles for application in PIV studies for flow fields in centrifugal pumps are suggested.

  7. A Virtual Reality System for Treatment of Phantom Limb Pain using Game Training and Motion Tracking

    DEFF Research Database (Denmark)

    Henriksen, Bartal; Nielsen, Ronni Nedergaard; Szabo, Laszlo

    2017-01-01

    This paper describes the implementation of a phantom limb pain (PLP) home-based system using virtual reality (VR) and a motion sensor to immerse the users in a virtual environment (VE). The work is inspired by mirror therapy (MT), which has been used to relieve PLP. The target patient group focuses...... on unilateral upper-limb amputees with phantom pain. Using a motion sensor, the system tracks the movement of a user’s hand and translates it onto the virtual hand. The system consists of exercises including opening and closing the hand, rotating the hand, and finer finger movements. These exercises...

  8. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  9. Tissue motion tracking at the edges of a radiation treatment field using local optical flow analysis

    Science.gov (United States)

    Teo, P. T.; Pistorius, S.

    2014-03-01

    This paper investigates the feasibility and accuracy of tracking the motion of an intruding organ-at-risk (OAR) at the edges of a treatment field using a local optical flow analysis of electronic portal images. An intruding OAR was simulated by modifying the portal images obtained by irradiating a programmable phantom's lung tumour. A rectangular treatment aperture was assumed and the edges of the beam's eye view (BEV) were partitioned into clusters/grids according to the width of the multi-leaf collimators (MLC). The optical flow velocities were calculated and the motion accuracy in these clusters was analysed. A velocity error of 0.4 ± 1.4 mm/s with a linearity of 1.04 for tracking an object intruding at 10mm/s (max) was obtained.

  10. Magnetic Resonance Imaging–Guided versus Surrogate-Based Motion Tracking in Liver Radiation Therapy: A Prospective Comparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara, E-mail: chiara.paganelli@polimi.it [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Seregni, Matteo; Fattori, Giovanni [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Summers, Paul [Division of Radiology, Istituto Europeo di Oncologia, Milano (Italy); Bellomi, Massimo [Division of Radiology, Istituto Europeo di Oncologia, Milano (Italy); Department of Health Sciences, Università degli Studi di Milano, Milano (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy)

    2015-03-15

    Purpose: This study applied automatic feature detection on cine–magnetic resonance imaging (MRI) liver images in order to provide a prospective comparison between MRI-guided and surrogate-based tracking methods for motion-compensated liver radiation therapy. Methods and Materials: In a population of 30 subjects (5 volunteers plus 25 patients), 2 oblique sagittal slices were acquired across the liver at high temporal resolution. An algorithm based on scale invariant feature transform (SIFT) was used to extract and track multiple features throughout the image sequence. The position of abdominal markers was also measured directly from the image series, and the internal motion of each feature was quantified through multiparametric analysis. Surrogate-based tumor tracking with a state-of-the-art external/internal correlation model was simulated. The geometrical tracking error was measured, and its correlation with external motion parameters was also investigated. Finally, the potential gain in tracking accuracy relying on MRI guidance was quantified as a function of the maximum allowed tracking error. Results: An average of 45 features was extracted for each subject across the whole liver. The multi-parametric motion analysis reported relevant inter- and intrasubject variability, highlighting the value of patient-specific and spatially-distributed measurements. Surrogate-based tracking errors (relative to the motion amplitude) were were in the range 7% to 23% (1.02-3.57mm) and were significantly influenced by external motion parameters. The gain of MRI guidance compared to surrogate-based motion tracking was larger than 30% in 50% of the subjects when considering a 1.5-mm tracking error tolerance. Conclusions: Automatic feature detection applied to cine-MRI allows detailed liver motion description to be obtained. Such information was used to quantify the performance of surrogate-based tracking methods and to provide a prospective comparison with respect to MRI

  11. Real-time tumor tracking: Automatic compensation of target motion using the Siemens 160 MLC

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Martin B.; Nill, Simeon; Krauss, Andreas; Oelfke, Uwe [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany)

    2010-02-15

    Purpose: Advanced high quality radiation therapy techniques such as IMRT require an accurate delivery of precisely modulated radiation fields to the target volume. Interfractional and intrafractional motion of the patient's anatomy, however, may considerably deteriorate the accuracy of the delivered dose to the planned dose distributions. In order to compensate for these potential errors, a dynamic real-time capable MLC control system was designed. Methods: The newly developed adaptive MLC control system contains specialized algorithms which are capable of continuous optimization and correction of the aperture of the MLC according to the motion of the target volume during the dose delivery. The algorithms calculate the new leaf positions based on target information provided online to the system. The algorithms were implemented in a dynamic target tracking control system designed for a Siemens 160 MLC. To assess the quality of the new target tracking system in terms of dosimetric accuracy, experiments with various types of motion patterns using different phantom setups were performed. The phantoms were equipped with radiochromic films placed between solid water slabs. Dosimetric results of exemplary deliveries to moving targets with and without dynamic MLC tracking applied were compared in terms of the gamma criterion to the reference dose delivered to a static phantom. Results: Our measurements indicated that dose errors for clinically relevant two-dimensional target motion can be compensated by the new control system during the dose delivery of open fields. For a clinical IMRT dose distribution, the gamma success rate was increased from 19% to 77% using the new tracking system. Similar improvements were achieved for the delivery of a complete IMRT treatment fraction to a moving lung phantom. However, dosimetric accuracy was limited by the system's latency of 400 ms and the finite leaf width of 5 mm in the isocenter plane. Conclusions: Different

  12. USING RUNNING DIFFERENCE IMAGES TO TRACK PROPER MOTIONS OF XUV CORONAL INTENSITY ON THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Sheeley, N. R. Jr.; Warren, H. P.; Lee, J., E-mail: neil.sheeley@nrl.navy.mil, E-mail: harry.warren@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chung, S.; Katz, J.; Namkung, M

    2014-12-20

    We have developed a procedure for observing and tracking proper motions of faint XUV coronal intensity on the Sun and have applied this procedure to study the collective motions of cellular plumes and the shorter-period waves in sunspots. Our space/time maps of cellular plumes show a series of tracks with the same 5-8 minute repetition times and ∼100 km s{sup –1} sky-plane speeds found previously in active-region fans and in coronal hole plumes. By synchronizing movies and space/time maps, we find that the tracks are produced by elongated ejections from the unipolar flux concentrations at the bases of the cellular plumes and that the phases of these ejections are uncorrelated from cell to cell. Thus, the large-scale motion is not a continuous flow, but is more like a system of independent conveyor belts all moving in the same direction along the magnetic field. In contrast, the proper motions in sunspots are clearly waves resulting from periodic disturbances in the sunspot umbras. The periods are ∼2.6 minutes, but the sky-plane speeds and wavelengths depend on the heights of the waves above the sunspot. In the chromosphere, the waves decelerate from 35-45 km s{sup –1} in the umbra to 7-8 km s{sup –1} toward the outer edge of the penumbra, but in the corona, the waves accelerate to ∼60-100 km s{sup –1}. Because chromospheric and coronal tracks originate from the same space/time locations, the coronal waves must emerge from the same umbral flashes that produce the chromospheric waves.

  13. Inertial Motion Tracking for Inserting Humans into a Networked Synthetic Environment

    Science.gov (United States)

    2007-08-31

    a Quaternion-Based Kalman Filter for Human Body Motion Tracking,” IEEE Transactions on Robotics , Vol. 22, Issue 6, December 2006. E. R. Bachmann and...Transactions On Neural Systems And Rehabilitation Engineering, Vol. 13, No. 3, September 2005. 1216 IEEE TRANSACTIONS ON ROBOTICS , VOL. 22, NO. 6...system. The use of an EKF pre- dictor resulted in errors 5–10 times lower than without predic- 1218 IEEE TRANSACTIONS ON ROBOTICS , VOL. 22, NO. 6

  14. Vehicle tracking in wide area motion imagery from an airborne platform

    Science.gov (United States)

    van Eekeren, Adam W. M.; van Huis, Jasper R.; Eendebak, Pieter T.; Baan, Jan

    2015-10-01

    Airborne platforms, such as UAV's, with Wide Area Motion Imagery (WAMI) sensors can cover multiple square kilometers and produce large amounts of video data. Analyzing all data for information need purposes becomes increasingly labor-intensive for an image analyst. Furthermore, the capacity of the datalink in operational areas may be inadequate to transfer all data to the ground station. Automatic detection and tracking of people and vehicles enables to send only the most relevant footage to the ground station and assists the image analysts in effective data searches. In this paper, we propose a method for detecting and tracking vehicles in high-resolution WAMI images from a moving airborne platform. For the vehicle detection we use a cascaded set of classifiers, using an Adaboost training algorithm on Haar features. This detector works on individual images and therefore does not depend on image motion stabilization. For the vehicle tracking we use a local template matching algorithm. This approach has two advantages. In the first place, it does not depend on image motion stabilization and it counters the inaccuracy of the GPS data that is embedded in the video data. In the second place, it can find matches when the vehicle detector would miss a certain detection. This results in long tracks even when the imagery is of low frame-rate. In order to minimize false detections, we also integrate height information from a 3D reconstruction that is created from the same images. By using the locations of buildings and roads, we are able to filter out false detections and increase the performance of the tracker. In this paper we show that the vehicle tracks can also be used to detect more complex events, such as traffic jams and fast moving vehicles. This enables the image analyst to do a faster and more effective search of the data.

  15. Acute myocarditis with normal wall motion detected with 2D speckle tracking echocardiography

    Directory of Open Access Journals (Sweden)

    Thomas Sturmberger

    2016-05-01

    Full Text Available We present the case of a 26-year-old male with acute tonsillitis who was referred for coronary angiography because of chest pain, elevated cardiac biomarkers, and biphasic T waves. The patient had no cardiovascular risk factors. Echocardiography showed no wall motion abnormalities and no pericardial effusion. 2D speckle tracking revealed distinct decreased regional peak longitudinal systolic strain in the lateral and posterior walls. Ischemic disease was extremely unlikely in view of his young age, negative family history regarding coronary artery disease, and lack of regional wall motion abnormalities on the conventional 2D echocardiogram. Coronary angiography was deferred as myocarditis was suspected. To confirm the diagnosis, cardiac magnetic resonance tomography (MRT was performed, showing subepicardial delayed hyperenhancement in the lateral and posterior walls correlating closely with the strain pattern obtained by 2D speckle tracking echocardiography. With a working diagnosis of acute myocarditis associated with acute tonsillitis, we prescribed antibiotics and nonsteroidal anti-inflammatory drugs. The patient’s clinical signs resolved along with normalization of serum creatine kinase (CK levels, and the patient was discharged on the third day after admission. Learning points: • Acute myocarditis can mimic acute coronary syndromes. • Conventional 2D echocardiography lacks specific features for detection of subtle regional wall motion abnormalities. • 2D speckle tracking expands the scope of echocardiography in identifying myocardial dysfunction derived from edema in acute myocarditis.

  16. Intra-operative prostate motion tracking using surface markers for robot-assisted laparoscopic radical prostatectomy

    Science.gov (United States)

    Esteghamatian, Mehdi; Sarkar, Kripasindhu; Pautler, Stephen E.; Chen, Elvis C. S.; Peters, Terry M.

    2012-02-01

    Radical prostatectomy surgery (RP) is the gold standard for treatment of localized prostate cancer (PCa). Recently, emergence of minimally invasive techniques such as Laparoscopic Radical Prostatectomy (LRP) and Robot-Assisted Laparoscopic Radical Prostatectomy (RARP) has improved the outcomes for prostatectomy. However, it remains difficult for the surgeons to make informed decisions regarding resection margins and nerve sparing since the location of the tumor within the organ is not usually visible in a laparoscopic view. While MRI enables visualization of the salient structures and cancer foci, its efficacy in LRP is reduced unless it is fused into a stereoscopic view such that homologous structures overlap. Registration of the MRI image and peri-operative ultrasound image using a tracked probe can potentially be exploited to bring the pre-operative information into alignment with the patient coordinate system during the procedure. While doing so, prostate motion needs to be compensated in real-time to synchronize the stereoscopic view with the pre-operative MRI during the prostatectomy procedure. In this study, a point-based stereoscopic tracking technique is investigated to compensate for rigid prostate motion so that the same motion can be applied to the pre-operative images. This method benefits from stereoscopic tracking of the surface markers implanted over the surface of the prostate phantom. The average target registration error using this approach was 3.25+/-1.43mm.

  17. Respiratory-Induced Prostate Motion Using Wavelet Decomposition of the Real-Time Electromagnetic Tracking Signal

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuting [Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, California (United States); Liu, Tian; Yang, Xiaofeng [Department of Radiation Oncology, Emory University Hospital, Winship Cancer Institute, Atlanta, Georgia (United States); Wang, Yuenan [Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland (United States); Khan, Mohammad K., E-mail: drkhurram2000@gmail.com [Department of Radiation Oncology, Emory University Hospital, Winship Cancer Institute, Atlanta, Georgia (United States)

    2013-10-01

    Purpose: The objective of this work is to characterize and quantify the impact of respiratory-induced prostate motion. Methods and Materials: Real-time intrafraction motion is observed with the Calypso 4-dimensional nonradioactive electromagnetic tracking system (Calypso Medical Technologies, Inc. Seattle, Washington). We report the results from a total of 1024 fractions from 31 prostate cancer patients. Wavelet transform was used to decompose the signal to extract and isolate the respiratory-induced prostate motion from the total prostate displacement. Results: Our results show that the average respiratory motion larger than 0.5 mm can be observed in 68% of the fractions. Fewer than 1% of the patients showed average respiratory motion of less than 0.2 mm, whereas 99% of the patients showed average respiratory-induced motion ranging between 0.2 and 2 mm. The maximum respiratory range of motion of 3 mm or greater was seen in only 25% of the fractions. In addition, about 2% patients showed anxiety, indicated by a breathing frequency above 24 times per minute. Conclusions: Prostate motion is influenced by respiration in most fractions. Real-time intrafraction data are sensitive enough to measure the impact of respiration by use of wavelet decomposition methods. Although the average respiratory amplitude observed in this study is small, this technique provides a tool that can be useful if one moves to smaller treatment margins (≤5 mm). This also opens ups the possibility of being able to develop patient specific margins, knowing that prostate motion is not unpredictable.

  18. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    CERN Document Server

    Dettmer, Simon L; Pagliara, Stefano

    2014-01-01

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local...

  19. High-precision, three-dimensional tracking of mouse whisker movements with optical motion capture technology

    Directory of Open Access Journals (Sweden)

    Snigdha eRoy

    2011-06-01

    Full Text Available The mystacial vibrissae or whiskers in rodents are sensitive tactile hairs emerging from both sides of the face. Rats and mice actively move these whiskers during exploration. The neuronal mechanisms controlling whisker movements and the sensory representation of whisker tactile information are widely studied as a model for sensorimotor processing in mammals. Studies of the natural whisker movement patterns during exploration and tactile examination are still in their early stages. Tracking the movements of whiskers is technically challenging as they move relatively fast and are very thin, particularly in mice. Existing systems detect light-beam interruptions by the whiskers or use high-speed video to track whisker movements in one or two dimensions. Here we describe a method for tracking the movements of mouse whiskers in 3 dimensions (3D using using optical motion capture technology. Optical motion capture technology tracks the movements of small retro-reflective markers attached to whiskers of a head-fixed mouse with a spatial resolution of <0.5mm in all three dimensions and a temporal resolution of 5msec (200 fps. The system stores the 3D coordinates of the marker’s trajectories onto hard disk allowing a detailed analysis of movement trajectories bilateral coordination.

  20. Intelligent Motion Compensation for Improving the Tracking Performance of Shipborne Phased Array Radar

    Directory of Open Access Journals (Sweden)

    J. Mar

    2013-01-01

    Full Text Available The shipborne phased array radar must be able to compensate the ship’s motion and track the maneuvering targets automatically. In this paper, the real-time beam pointing error compensation mechanism of a planar array antenna for ship’s motion is designed to combine with the Kalman filtering. The effect of beam pointing error on the tracking performance of shipborne phased array radar is examined. A compensation mechanism, which can automatically correct the beam pointing error of the planar antenna array, is proposed for shipborne phased array radar in order to achieve the required tracking accuracy over the long dwell time. The automatic beam pointing error compensation mechanism employs the parallel fuzzy basis function network (FBFN architecture to estimate the beam pointing error caused by roll and pitch of the ship. In the simulation, the models of roll and pitch are used to evaluate the performance of beam pointing error estimation mechanism based on the proposed parallel FBFN architecture. In addition, the effect of automatic beam pointing error compensation mechanism on the tracking performance of adaptive extended Kalman filter (AEKF implemented in ship borne phased array radar is also investigated. Simulations find out that the proposed algorithms are stable and accurate.

  1. Mobile Target Tracking Based on Hybrid Open-Loop Monocular Vision Motion Control Strategy

    Directory of Open Access Journals (Sweden)

    Cao Yuan

    2015-01-01

    Full Text Available This paper proposes a new real-time target tracking method based on the open-loop monocular vision motion control. It uses the particle filter technique to predict the moving target’s position in an image. Due to the properties of the particle filter, the method can effectively master the motion behaviors of the linear and nonlinear. In addition, the method uses the simple mathematical operation to transfer the image information in the mobile target to its real coordinate information. Therefore, it requires few operating resources. Moreover, the method adopts the monocular vision approach, which is a single camera, to achieve its objective by using few hardware resources. Firstly, the method evaluates the next time’s position and size of the target in an image. Later, the real position of the objective corresponding to the obtained information is predicted. At last, the mobile robot should be controlled in the center of the camera’s vision. The paper conducts the tracking test to the L-type and the S-type and compares with the Kalman filtering method. The experimental results show that the method achieves a better tracking effect in the L-shape experiment, and its effect is superior to the Kalman filter technique in the L-type or S-type tracking experiment.

  2. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Mark Ostyn

    2016-04-01

    Full Text Available One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF localization system designed to track intrafraction motion (target motion during the radiation treatment. This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.

  3. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    Science.gov (United States)

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  4. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    Directory of Open Access Journals (Sweden)

    Sanjay Saini

    Full Text Available The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO. However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO. The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF and Hierarchical Particle Swarm Optimization (HPSO. Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  5. Markerless rat head motion tracking using structured light for brain PET imaging of unrestrained awake small animals

    Science.gov (United States)

    Miranda, Alan; Staelens, Steven; Stroobants, Sigrid; Verhaeghe, Jeroen

    2017-03-01

    Preclinical positron emission tomography (PET) imaging in small animals is generally performed under anesthesia to immobilize the animal during scanning. More recently, for rat brain PET studies, methods to perform scans of unrestrained awake rats are being developed in order to avoid the unwanted effects of anesthesia on the brain response. Here, we investigate the use of a projected structure stereo camera to track the motion of the rat head during the PET scan. The motion information is then used to correct the PET data. The stereo camera calculates a 3D point cloud representation of the scene and the tracking is performed by point cloud matching using the iterative closest point algorithm. The main advantage of the proposed motion tracking is that no intervention, e.g. for marker attachment, is needed. A manually moved microDerenzo phantom experiment and 3 awake rat [18F]FDG experiments were performed to evaluate the proposed tracking method. The tracking accuracy was 0.33 mm rms. After motion correction image reconstruction, the microDerenzo phantom was recovered albeit with some loss of resolution. The reconstructed FWHM of the 2.5 and 3 mm rods increased with 0.94 and 0.51 mm respectively in comparison with the motion-free case. In the rat experiments, the average tracking success rate was 64.7%. The correlation of relative brain regional [18F]FDG uptake between the anesthesia and awake scan reconstructions was increased from on average 0.291 (not significant) before correction to 0.909 (p  <  0.0001) after motion correction. Markerless motion tracking using structured light can be successfully used for tracking of the rat head for motion correction in awake rat PET scans.

  6. Motion management during IMAT treatment of mobile lung tumors-A comparison of MLC tracking and gated delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Pommer, Tobias; Keall, Paul

    2014-01-01

    Purpose:To compare real-time dynamic multileaf collimator (MLC) tracking, respiratory amplitude and phase gating, and no compensation for intrafraction motion management during intensity modulated arc therapy (IMAT). Methods: Motion management with MLC tracking and gating was evaluated for four l...... longer delivery time. In a clinical setting, the optical monitoring of the patients breathing would have to be correlated to the internal movements of the tumor...

  7. Feasibility of intrafraction whole-body motion tracking for total marrow irradiation

    Science.gov (United States)

    Sharma, Manju; Santos, Troy Dos; Papanikolopoulos, Nikolaos P.; Hui, Susanta Kumar

    2011-05-01

    With image-guided tomotherapy, highly targeted total marrow irradiation (TMI) has become a feasible alternative to conventional total body irradiation. The uncertainties in patient localization and intrafraction motion of the whole body during hour-long TMI treatment may pose a risk to the safety and accuracy of targeted radiation treatment. The feasibility of near-infrared markers and optical tracking system (OTS) is accessed along with a megavoltage scanning system of tomotherapy. Three near-infrared markers placed on the face of a rando phantom are used to evaluate the capability of OTS in measuring changes in the markers' positions as the rando is moved in the translational direction. The OTS is also employed to determine breathing motion related changes in the position of 16 markers placed on the chest surface of human volunteers. The maximum uncertainty in locating marker position with the OTS is 1.5 mm. In the case of normal and deep breathing motion, the maximum marker position change is observed in anterior-posterior direction with the respective values of 4 and 12 mm. The OTS is able to measure surface changes due to breathing motion. The OTS may be optimized to monitor whole body motion during TMI to increase the accuracy of treatment delivery and reduce the radiation dose to the lungs.

  8. Preliminary evidence for altered motion tracking-based hyperactivity in ADHD siblings.

    Science.gov (United States)

    Reh, Verena; Schmidt, Martin; Rief, Winfried; Christiansen, Hanna

    2014-03-13

    It is well-established that ADHD children have deficits in executive functions such as performance variability and sustained attention. It has been suggested that these deficits are intermediate phenotypes. Hyperactivity, a core symptom of ADHD, has not yet been explored as a potential intermediate phenotype in ADHD. The computerized Quantified behavior Test (QbTest) is a combined continuous performance and activity test that assesses hyperactivity, inattention, and impulsivity separately. The aim of the present study was to (1) investigate the utility of objectively measured motor activity as a potential intermediate phenotype in ADHD, and (2) explore intermediate phenotypes for ADHD at the factor instead of single variable level. Forty-five ADHD children, 22 non-affected siblings, and 45 unrelated controls with no family history of ADHD performed the QbTest. Effects of familiality as well as influences of age and gender on QbTest symptom dimensions were tested. ADHD children showed the greatest impairments on all three QbTest factors, followed by their non-affected siblings, with control children showing the lowest scores. Group differences between the non-affected siblings and controls were only significant for the motion tracking-based Hyperactivity factor. Results were independent of age and gender. Hyperactivity assessed by a motion tracking system may be a useful intermediate phenotype in ADHD. Prospective research should use larger samples to further examine the QbTest factors, especially the motion tracking-based Hyperactivity factor which may be a candidate for an intermediate phenotype in ADHD.

  9. Respiration induced fiducial motion tracking in ultrasound using an extended SFA approach

    Science.gov (United States)

    Cao, Kunlin; Bednarz, Bryan; Smith, L. S.; Foo, Thomas K. F.; Patwardhan, Kedar A.

    2015-03-01

    Radiation therapy (RT) plays an essential role in the management of cancers. The precision of the treatment delivery process in chest and abdominal cancers is often impeded by respiration induced tumor positional variations, which are accounted for by using larger therapeutic margins around the tumor volume leading to sub-optimal treatment deliveries and risk to healthy tissue. Real-time tracking of tumor motion during RT will help reduce unnecessary margin area and benefit cancer patients by allowing the treatment volume to closely match the positional variation of the tumor volume over time. In this work, we propose a fast approach which enables transferring the pre-estimated target (e.g. tumor) motion extracted from ultrasound (US) image sequences in training stage (e.g. before RT) to online data in real-time (e.g. acquired during RT). The method is based on extracting feature points of the target object, exploiting low-dimensional description of the feature motion through slow feature analysis, and finding the most similar image frame from training data for estimating current/online object location. The approach is evaluated on two 2D + time and one 3D + time US acquisitions. The locations of six annotated fiducials are used for designing experiments and validating tracking accuracy. The average fiducial distance between expert's annotation and the location extracted from our indexed training frame is 1.9+/-0.5mm. Adding a fast template matching procedure within a small search range reduces the distance to 1.4+/-0.4mm. The tracking time per frame is on the order of millisecond, which is below the frame acquisition time.

  10. 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction

    CERN Document Server

    Verrier, Nicolas; Fournel, Thierry

    2015-01-01

    In-line digital holography is a valuable tool for sizing, locating and tracking micro- or nano-objects in a volume. When a parametric imaging model is available, Inverse Problems approaches provide a straightforward estimate of the object parameters by fitting data with the model, thereby allowing accurate reconstruction. As recently proposed and demonstrated, combining pixel super-resolution techniques with Inverse Problems approaches improves the estimation of particle size and 3D-position. Here we demonstrate the accurate tracking of colloidal particles in Brownian motion. Particle size and 3D-position are jointly optimized from video holograms acquired with a digital holographic microscopy set up based on a "low-end" microscope objective ($\\times 20$, $\\rm NA\\ 0.5$). Exploiting information redundancy makes it possible to characterize particles with a standard deviation of 15 nm in size and a theoretical resolution of 2 x 2 x 5 nm$^3$ for position under additive white Gaussian noise assumption.

  11. Geometric estimation of intestinal contraction for motion tracking of video capsule endoscope

    Science.gov (United States)

    Mi, Liang; Bao, Guanqun; Pahlavan, Kaveh

    2014-03-01

    Wireless video capsule endoscope (VCE) provides a noninvasive method to examine the entire gastrointestinal (GI) tract, especially small intestine, where other endoscopic instruments can barely reach. VCE is able to continuously provide clear pictures in short fixed intervals, and as such researchers have attempted to use image processing methods to track the video capsule in order to locate the abnormalities inside the GI tract. To correctly estimate the speed of the motion of the endoscope capsule, the radius of the intestinal track must be known a priori. Physiological factors such as intestinal contraction, however, dynamically change the radius of the small intestine, which could bring large errors in speed estimation. In this paper, we are aiming to estimate the radius of the contracted intestinal track. First a geometric model is presented for estimating the radius of small intestine based on the black hole on endoscopic images. To validate our proposed model, a 3-dimentional virtual testbed that emulates the intestinal contraction is then introduced in details. After measuring the size of the black holes on the test images, we used our model to esimate the radius of the contracted intestinal track. Comparision between analytical results and the emulation model parameters has verified that our proposed method could preciously estimate the radius of the contracted small intestine based on endoscopic images.

  12. Human motion tracking using mean shift clustering and discrete cosine transform

    Science.gov (United States)

    Islam, M. M.; Alam, M. S.

    2007-04-01

    Human motion tracking is an active area of research in computer vision and machine intelligence. It has many applications in video surveillance and human-computer interface. Most of the existing algorithms track multiple humans in a given image. This paper proposes a detection approach which can track a specific person from a crowded environment. Mean shift clustering algorithm is employed in the difference image to get the candidate cluster which is found to converge within few iterations. The number of clusters and the cluster centers are automatically derived by mode seeking with the mean shift procedure. Discrete cosine transform is applied to each cluster and to the known target to extract features of the clusters and the target. To get the target cluster from a given image, Mahalanobis distance is measured between each transformed candidate cluster and the target. The cluster with the minimum distance is taken as the desired target. Tracking is carried out by updating the cluster parameters over time using the mean shift procedure.

  13. Motion Predicting of Autonomous Tracked Vehicles with Online Slip Model Identification

    Directory of Open Access Journals (Sweden)

    Hao Lu

    2016-01-01

    Full Text Available Precise understanding of the mobility is essential for high performance autonomous tracked vehicles in challenging circumstances, though the complex track/terrain interaction is difficult to model. A slip model based on the instantaneous centers of rotation (ICRs of treads is presented and identified to predict the motion of the vehicle in a short term. Unlike many research studies estimating current ICRs locations using velocity measurements for feedback controllers, we focus on predicting the forward trajectories by estimating ICRs locations using position measurements. ICRs locations are parameterized over both tracks rolling speeds and the kinematic parameters are estimated in real time using an extended Kalman filter (EKF without requiring prior knowledge of terrain parameters. Simulation results verify that the proposed algorithm performs better than the traditional method when the pose measuring frequencies are low. Experiments are conducted on a tracked vehicle with a weight of 13.6 tons. Results demonstrate that the predicted position and heading errors are reduced by about 75% and the reduction of pose errors is over 24% in the absence of the real-time kinematic global positioning system (RTK GPS.

  14. A restraint-free small animal SPECT imaging system with motion tracking

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.; Kross, B.; Majewski, S.; Meikle, S.R.; Paulus, M.J.; Pomper, M.; Popov, V.; Smith, M.F.; Welch, B.L.; Wojcik, R.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels while retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.

  15. Three-dimensional motion tracking correlates with skill level in upper gastrointestinal endoscopy

    DEFF Research Database (Denmark)

    Arnold, Sif H.; Svendsen, Morten Bo Søndergaard; Konge, Lars

    2015-01-01

    Background and study aim: Feedback is an essential part of training in upper gastrointestinal endoscopy. Virtual reality simulators provide limited feedback, focusing only on visual recognition with no feedback on the procedural part of training. Motion tracking identifies patterns of movement...... untrained medical students) were tested using a virtual reality simulator. A motion sensor was used to collect data regarding the distance between the hands, and height and movement of the scope hand. Test characteristics between groups were explored using Kruskal-Wallis H and Man-Whitney U exact tests......, and this study aimed to explore the correlation between skill level and operator movement using an objective automated tool. Methods: In this medical education study, 37 operators (12 senior doctors who performed endoscopic retrograde cholangiopancreatography, 13 doctors with varying levels of experience, and 12...

  16. Time-lapse and slow-motion tracking of temperature changes: response time of a thermometer

    Science.gov (United States)

    Moggio, L.; Onorato, P.; Gratton, L. M.; Oss, S.

    2017-03-01

    We propose the use of a smartphone based time-lapse and slow-motion video techniques together with tracking analysis as valuable tools for investigating thermal processes such as the response time of a thermometer. The two simple experimental activities presented here, suitable also for high school and undergraduate students, allow one to measure in a simple yet rigorous way the response time of an alcohol thermometer and show its critical dependence on the properties of the surrounding environment giving insight into instrument characteristics, heat transfer and thermal equilibrium concepts.

  17. A Real-Time Model-Based Human Motion Tracking and Analysis for Human-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Chung-Lin Huang

    2004-09-01

    Full Text Available This paper introduces a real-time model-based human motion tracking and analysis method for human computer interface (HCI. This method tracks and analyzes the human motion from two orthogonal views without using any markers. The motion parameters are estimated by pattern matching between the extracted human silhouette and the human model. First, the human silhouette is extracted and then the body definition parameters (BDPs can be obtained. Second, the body animation parameters (BAPs are estimated by a hierarchical tritree overlapping searching algorithm. To verify the performance of our method, we demonstrate different human posture sequences and use hidden Markov model (HMM for posture recognition testing.

  18. Motion management during IMAT treatment of mobile lung tumors—A comparison of MLC tracking and gated delivery

    Science.gov (United States)

    Falk, Marianne; Pommer, Tobias; Keall, Paul; Korreman, Stine; Persson, Gitte; Poulsen, Per; Munck af Rosenschöld, Per

    2014-01-01

    Purpose: To compare real-time dynamic multileaf collimator (MLC) tracking, respiratory amplitude and phase gating, and no compensation for intrafraction motion management during intensity modulated arc therapy (IMAT). Methods: Motion management with MLC tracking and gating was evaluated for four lung cancer patients. The IMAT plans were delivered to a dosimetric phantom mounted onto a 3D motion phantom performing patient-specific lung tumor motion. The MLC tracking system was guided by an optical system that used stereoscopic infrared (IR) cameras and five spherical reflecting markers attached to the dosimetric phantom. The gated delivery used a duty cycle of 35% and collected position data using an IR camera and two reflecting markers attached to a marker block. Results: The average gamma index failure rate (2% and 2 mm criteria) was delivery time. In a clinical setting, the optical monitoring of the patients breathing would have to be correlated to the internal movements of the tumor. PMID:25281946

  19. Store-and-feedforward adaptive gaming system for hand-finger motion tracking in telerehabilitation.

    Science.gov (United States)

    Lockery, Daniel; Peters, James F; Ramanna, Sheela; Shay, Barbara L; Szturm, Tony

    2011-05-01

    This paper presents a telerehabilitation system that encompasses a webcam and store-and-feedforward adaptive gaming system for tracking finger-hand movement of patients during local and remote therapy sessions. Gaming-event signals and webcam images are recorded as part of a gaming session and then forwarded to an online healthcare content management system (CMS) that separates incoming information into individual patient records. The CMS makes it possible for clinicians to log in remotely and review gathered data using online reports that are provided to help with signal and image analysis using various numerical measures and plotting functions. Signals from a 6 degree-of-freedom magnetic motion tracking system provide a basis for video-game sprite control. The MMT provides a path for motion signals between common objects manipulated by a patient and a computer game. During a therapy session, a webcam that captures images of the hand together with a number of performance metrics provides insight into the quality, efficiency, and skill of a patient.

  20. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.

    Science.gov (United States)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-21

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  1. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    Science.gov (United States)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  2. List-mode PET motion correction using markerless head tracking: proof-of-concept with scans of human subject.

    Science.gov (United States)

    Olesen, Oline V; Sullivan, Jenna M; Mulnix, Tim; Paulsen, Rasmus R; Højgaard, Liselotte; Roed, Bjarne; Carson, Richard E; Morris, Evan D; Larsen, Rasmus

    2013-02-01

    A custom designed markerless tracking system was demonstrated to be applicable for positron emission tomography (PET) brain imaging. Precise head motion registration is crucial for accurate motion correction (MC) in PET imaging. State-of-the-art tracking systems applied with PET brain imaging rely on markers attached to the patient's head. The marker attachment is the main weakness of these systems. A healthy volunteer participating in a cigarette smoking study to image dopamine release was scanned twice for 2 h with (11)C-racolopride on the high resolution research tomograph (HRRT) PET scanner. Head motion was independently measured, with a commercial marker-based device and the proposed vision-based system. A list-mode event-by-event reconstruction algorithm using the detected motion was applied. A phantom study with hand-controlled continuous random motion was obtained. Motion was time-varying with long drift motions of up to 18 mm and regular step-wise motion of 1-6 mm. The evaluated measures were significantly better for motion-corrected images compared to no MC. The demonstrated system agreed with a commercial integrated system. Motion-corrected images were improved in contrast recovery of small structures.

  3. Respiratory motion tracking using Microsoft’s Kinect v2 camera

    Directory of Open Access Journals (Sweden)

    Ernst Floris

    2015-09-01

    Full Text Available In image-guided radiotherapy, monitoring and compensating for respiratory motion is of high importance. We have analysed the possibility to use Microsoft’s Kinect v2 sensor as a low-cost tracking camera. In our experiment, eleven circular markers were printed onto a Lycra shirt and were tracked in the camera’s color image using cross correlation-based template matching. The 3D position of the marker was determined using this information and the mean distance of all template pixels from the sensor. In an experiment with four volunteers (male and female we could demonstrate that real time position tracking is possible in 3D. By averaging over the depth values inside the template, it was possible to increase the Kinect’s depth resolution from 1 mm to 0.1 mm. The noise level was reduced to a standard deviation of 0.4 mm. Temperature sensitivity of the measured depth values was observed for about 10-15 minutes after system start.

  4. Human motion tracking by temporal-spatial local gaussian process experts.

    Science.gov (United States)

    Zhao, Xu; Fu, Yun; Liu, Yuncai

    2011-04-01

    Human pose estimation via motion tracking systems can be considered as a regression problem within a discriminative framework. It is always a challenging task to model the mapping from observation space to state space because of the high-dimensional characteristic in the multimodal conditional distribution. In order to build the mapping, existing techniques usually involve a large set of training samples in the learning process which are limited in their capability to deal with multimodality. We propose, in this work, a novel online sparse Gaussian Process (GP) regression model to recover 3-D human motion in monocular videos. Particularly, we investigate the fact that for a given test input, its output is mainly determined by the training samples potentially residing in its local neighborhood and defined in the unified input-output space. This leads to a local mixture GP experts system composed of different local GP experts, each of which dominates a mapping behavior with the specific covariance function adapting to a local region. To handle the multimodality, we combine both temporal and spatial information therefore to obtain two categories of local experts. The temporal and spatial experts are integrated into a seamless hybrid system, which is automatically self-initialized and robust for visual tracking of nonlinear human motion. Learning and inference are extremely efficient as all the local experts are defined online within very small neighborhoods. Extensive experiments on two real-world databases, HumanEva and PEAR, demonstrate the effectiveness of our proposed model, which significantly improve the performance of existing models.

  5. Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR

    Institute of Scientific and Technical Information of China (English)

    Hui ZHANG; Jun HONG; Xiao-lan QIU; Ji-chuan LI; Fang-fang LI; Feng MING

    2016-01-01

    Two approximations, center-beam approximation and reference digital elevation model (DEM) approximation, are used in synthetic aperture radar (SAR) motion compensation procedures. They usually introduce residual motion compensation errors for airborne single-antenna SAR imaging and SAR interferometry. In this paper, we investigate the effects of residual uncompensated motion errors, which are caused by the above two approximations, on the performance of airborne along-track interferometric SAR (ATI-SAR). The residual uncompensated errors caused by center-beam approximation in the absence and in the presence of elevation errors are derived, respectively. Airborne simulation parameters are used to verify the correctness of the analysis and to show the impacts of residual uncompensated errors on the interferometric phase errors for ATI-SAR. It is shown that the interferometric phase errors caused by the center-beam approximation with an accurate DEM could be neglected, while the interferometric phase errors caused by the center-beam approximation with an inaccurate DEM cannot be neglected when the elevation errors exceed a threshold. This research provides theoretical bases for the error source analysis and signal processing of airborne ATI-SAR.

  6. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy

    Science.gov (United States)

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-05-01

    Many real-time imaging techniques have been developed to localize a target in 3D space or in a 2D beam’s eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, the 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and to determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved  >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for the 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting in on average only  <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem

  7. Can low-cost motion-tracking systems substitute a Polhemus system when researching social motor coordination in children?

    Science.gov (United States)

    Romero, Veronica; Amaral, Joseph; Fitzpatrick, Paula; Schmidt, R C; Duncan, Amie W; Richardson, Michael J

    2017-04-01

    Functionally stable and robust interpersonal motor coordination has been found to play an integral role in the effectiveness of social interactions. However, the motion-tracking equipment required to record and objectively measure the dynamic limb and body movements during social interaction has been very costly, cumbersome, and impractical within a non-clinical or non-laboratory setting. Here we examined whether three low-cost motion-tracking options (Microsoft Kinect skeletal tracking of either one limb or whole body and a video-based pixel change method) can be employed to investigate social motor coordination. Of particular interest was the degree to which these low-cost methods of motion tracking could be used to capture and index the coordination dynamics that occurred between a child and an experimenter for three simple social motor coordination tasks in comparison to a more expensive, laboratory-grade motion-tracking system (i.e., a Polhemus Latus system). Overall, the results demonstrated that these low-cost systems cannot substitute the Polhemus system in some tasks. However, the lower-cost Microsoft Kinect skeletal tracking and video pixel change methods were successfully able to index differences in social motor coordination in tasks that involved larger-scale, naturalistic whole body movements, which can be cumbersome and expensive to record with a Polhemus. However, we found the Kinect to be particularly vulnerable to occlusion and the pixel change method to movements that cross the video frame midline. Therefore, particular care needs to be taken in choosing the motion-tracking system that is best suited for the particular research.

  8. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology.

    Science.gov (United States)

    Camino, Acner; Zhang, Miao; Gao, Simon S; Hwang, Thomas S; Sharma, Utkarsh; Wilson, David J; Huang, David; Jia, Yali

    2016-10-01

    Artifacts introduced by eye motion in optical coherence tomography angiography (OCTA) affect the interpretation of images and the quantification of parameters with clinical value. Eradication of such artifacts in OCTA remains a technical challenge. We developed an algorithm that recognizes five different types of motion artifacts and used it to evaluate the performance of three motion removal technologies. On en face maximum projection of flow images, the summed flow signal in each row and column and the correlation between neighboring rows and columns were calculated. Bright line artifacts were recognized by large summed flow signal. Drifts, distorted lines, and stretch artifacts exhibited abnormal correlation values. Residual lines were simultaneously a local maximum of summed flow and a local minimum of correlation. Tracking-assisted scanning integrated with motion correction technology (MCT) demonstrated higher performance than tracking or MCT alone in healthy and diabetic eyes.

  9. Research on Robot Surface Tracking Motion Based on Force Control of Six-Axis Wrist Force Sensor

    Directory of Open Access Journals (Sweden)

    Zhijun Wang

    2015-01-01

    Full Text Available In order to reduce the environmental contact force and make the operation task completed successfully, the robot is frequently required with force perception and active compliance control. Based on the six-axis wrist force sensor measuring, a robot model of surface tracking motion is proposed, and its force control algorithm and experiment are studied. The measurement principle of the six-axis wrist force sensor and the inadequacy of the sensor measuring the six-dimensional force online are introduced firstly. The surface tracking motion model and its coordinate system are established. On this basis, the relationship between the pose adjustment of surface tracking motion and the measuring results of the six-axis wrist force sensor is deduced. At last, the experimental study of the surface tracking robot system that applied the force control algorithm is conducted. The experiment shows that the robot can adjust the current position and orientation in real time according to the six-axis wrist force sensor measuring, which demonstrates the feasibility of the surface tracking motion model and the correctness of the force control algorithm.

  10. CASPER: computer-aided segmentation of imperceptible motion-a learning-based tracking of an invisible needle in ultrasound.

    Science.gov (United States)

    Beigi, Parmida; Rohling, Robert; Salcudean, Septimiu E; Ng, Gary C

    2017-06-24

    This paper presents a new micro-motion-based approach to track a needle in ultrasound images captured by a handheld transducer. We propose a novel learning-based framework to track a handheld needle by detecting microscale variations of motion dynamics over time. The current state of the art on using motion analysis for needle detection uses absolute motion and hence work well only when the transducer is static. We have introduced and evaluated novel spatiotemporal and spectral features, obtained from the phase image, in a self-supervised tracking framework to improve the detection accuracy in the subsequent frames using incremental training. Our proposed tracking method involves volumetric feature selection and differential flow analysis to incorporate the neighboring pixels and mitigate the effects of the subtle tremor motion of a handheld transducer. To evaluate the detection accuracy, the method is tested on porcine tissue in-vivo, during the needle insertion in the biceps femoris muscle. Experimental results show the mean, standard deviation and root-mean-square errors of [Formula: see text], [Formula: see text] and [Formula: see text] in the insertion angle, and 0.82, 1.21, 1.47 mm, in the needle tip, respectively. Compared to the appearance-based detection approaches, the proposed method is especially suitable for needles with ultrasonic characteristics that are imperceptible in the static image and to the naked eye.

  11. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  12. Structured light-based motion tracking in the limited view of an MR head coil

    Energy Technology Data Exchange (ETDEWEB)

    Erikshøj, M., E-mail: martin@erikshoj.dk [DTU-Informatics, Technical University of Denmark (Denmark); Department of Clinical Physiology, Nuclear Medicine and PET, Righospitalet, University of Copenhagen (Denmark); Olesen, O.V. [DTU-Informatics, Technical University of Denmark (Denmark); Department of Clinical Physiology, Nuclear Medicine and PET, Righospitalet, University of Copenhagen (Denmark); Conradsen, K. [DTU-Informatics, Technical University of Denmark (Denmark); Højgaard, L. [Department of Clinical Physiology, Nuclear Medicine and PET, Righospitalet, University of Copenhagen (Denmark); Larsen, R. [DTU-Informatics, Technical University of Denmark (Denmark)

    2013-02-21

    A markerless motion tracking (MT) system developed for use in PET brain imaging has been tested in the limited field of view (FOV) of the MR head coil from the Siemens Biograph mMR. The system is a 3D surface scanner that uses structured light (SL) to create point cloud reconstructions of the facial surface. The point clouds are continuously realigned to a reference scan to obtain pose estimates. The system has been tested on a mannequin head performing controlled rotational and translational axial movements within the head coil outside the range of the magnetic field. The RMS of the residual error of the rotation was 0.11° and the RMS difference in the translation with the control system was 0.17 mm, within the trackable range of movement.

  13. Evaluation of Real-Time Hand Motion Tracking Using a Range Camera and the Mean-Shift Algorithm

    Science.gov (United States)

    Lahamy, H.; Lichti, D.

    2011-09-01

    Several sensors have been tested for improving the interaction between humans and machines including traditional web cameras, special gloves, haptic devices, cameras providing stereo pairs of images and range cameras. Meanwhile, several methods are described in the literature for tracking hand motion: the Kalman filter, the mean-shift algorithm and the condensation algorithm. In this research, the combination of a range camera and the simple version of the mean-shift algorithm has been evaluated for its capability for hand motion tracking. The evaluation was assessed in terms of position accuracy of the tracking trajectory in x, y and z directions in the camera space and the time difference between image acquisition and image display. Three parameters have been analyzed regarding their influence on the tracking process: the speed of the hand movement, the distance between the camera and the hand and finally the integration time of the camera. Prior to the evaluation, the required warm-up time of the camera has been measured. This study has demonstrated the suitability of the range camera used in combination with the mean-shift algorithm for real-time hand motion tracking but for very high speed hand movement in the traverse plane with respect to the camera, the tracking accuracy is low and requires improvement.

  14. EVALUATION OF REAL-TIME HAND MOTION TRACKING USING A RANGE CAMERA AND THE MEAN-SHIFT ALGORITHM

    Directory of Open Access Journals (Sweden)

    H. Lahamy

    2012-09-01

    Full Text Available Several sensors have been tested for improving the interaction between humans and machines including traditional web cameras, special gloves, haptic devices, cameras providing stereo pairs of images and range cameras. Meanwhile, several methods are described in the literature for tracking hand motion: the Kalman filter, the mean-shift algorithm and the condensation algorithm. In this research, the combination of a range camera and the simple version of the mean-shift algorithm has been evaluated for its capability for hand motion tracking. The evaluation was assessed in terms of position accuracy of the tracking trajectory in x, y and z directions in the camera space and the time difference between image acquisition and image display. Three parameters have been analyzed regarding their influence on the tracking process: the speed of the hand movement, the distance between the camera and the hand and finally the integration time of the camera. Prior to the evaluation, the required warm-up time of the camera has been measured. This study has demonstrated the suitability of the range camera used in combination with the mean-shift algorithm for real-time hand motion tracking but for very high speed hand movement in the traverse plane with respect to the camera, the tracking accuracy is low and requires improvement.

  15. Feasibility and Reproducibility of Two-Dimensional Wall Motion Tracking (WMT) in Fetal Echocardiography

    Science.gov (United States)

    Enzensberger, Christian; Achterberg, Friederike; Degenhardt, Jan; Wolter, Aline; Graupner, Oliver; Herrmann, Johannes; Axt-Fliedner, Roland

    2017-01-01

    Objective The primary objective of this study was to determine the feasibility and reproducibility of 2-dimensional speckle tracking imaging based on the wall motion tracking (WMT) technique in fetal echocardiography. The secondary objective was to compare left and right ventricular global and segmental longitudinal peak strain values. Methods A prospective cross-sectional study was performed. Global and segmental longitudinal peak strain values of the left ventricle (LV) and right ventricle (RV) were assessed prospectively. Based on apical 4-chamber views, cine loops were acquired and digitally stored. Strain analysis was performed offline. Intra- and interobserver variabilities were analyzed. Results A total of 29 healthy fetuses with an echocardiogram performed between 19 and 37 weeks of gestation were included. Analysis was performed with a temporal resolution of 60 frames per second (fps). For both examiners, in all cases Cronbach’s alpha was>0.7. The interobserver variability showed a strong agreement in 50% of the segments (ICC 0.71–0.90). The global strain values for LV and RV were −16.34 and −14.65%, respectively. Segmental strain analysis revealed a basis to apex gradient with the lowest strain values in basal segments and the highest strain values in apical segments. Conclusion The assessment of fetal myocardial deformation parameters by 2D WMT is technically feasible with good reproducibility. PMID:28210715

  16. Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis

    Directory of Open Access Journals (Sweden)

    Damir Krstinić

    2014-10-01

    Full Text Available Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.

  17. Laser spot tracking based on modified circular Hough transform and motion pattern analysis.

    Science.gov (United States)

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-10-27

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.

  18. High Performance Motion Trajectory Tracking Control of Pneumatic Cylinders: A Comparison of Some Nonlinear Control Algorithms

    Directory of Open Access Journals (Sweden)

    Deyuan Meng

    2014-05-01

    Full Text Available The dynamics of pneumatic systems are highly nonlinear, and there normally exists a large extent of model uncertainties; the precision motion trajectory tracking control of pneumatic cylinders is still a challenge. In this paper, two typical nonlinear controllers—adaptive controller and deterministic robust controller—are constructed firstly. Considering that they have both benefits and limitations, an adaptive robust controller (ARC is further proposed. The ARC is a combination of the first two controllers; it employs online recursive least squares estimation (RLSE to reduce the extent of parametric uncertainties, and utilizes the robust control method to attenuate the effects of parameter estimation errors, unmodeled dynamics, and disturbances. In order to solve the conflicts between the robust control design and the parameter adaption law design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Theoretically, ARC possesses the advantages of the adaptive control and the deterministic robust control, and thus an even better tracking performance can be expected. Extensive comparative experimental results are presented to illustrate the achievable performance of the three proposed controllers and their performance robustness to the parameter variations and sudden disturbance.

  19. Tracking of the nuclear wavepacket motion in cyanine photoisomerization by ultrafast pump-dump-probe spectroscopy.

    Science.gov (United States)

    Wei, Zhengrong; Nakamura, Takumi; Takeuchi, Satoshi; Tahara, Tahei

    2011-06-01

    Understanding ultrafast reactions, which proceed on a time scale of nuclear motions, requires a quantitative characterization of the structural dynamics. To track such structural changes with time, we studied a nuclear wavepacket motion in photoisomerization of a prototype cyanine dye, 1,1'-diethyl-4,4'-cyanine, by ultrafast pump-dump-probe measurements in solution. The temporal evolution of wavepacket motion was examined by monitoring the efficiency of stimulated emission dumping, which was obtained from the recovery of a ground-state bleaching signal. The dump efficiency versus pump-dump delay exhibited a finite rise time, and it became longer (97 fs → 330 fs → 390 fs) as the dump pulse was tuned to longer wavelengths (690 nm → 950 nm → 1200 nm). This result demonstrates a continuous migration of the leading edge of the wavepacket on the excited-state potential from the Franck-Condon region toward the potential minimum. A slowly decaying feature of the dump efficiency indicated a considerable broadening of the wavepacket over a wide range of the potential, which results in the spread of a population distribution on the flat S(1) potential energy surface. The rapid migration as well as broadening of the wavepacket manifests a continuous nature of the structural dynamics and provides an intuitive visualization of this ultrafast reaction. We also discussed experimental strategies to evaluate reliable dump efficiencies separately from other ultrafast processes and showed a high capability and possibility of the pump-dump-probe method for spectroscopic investigation of unexplored potential regions such as conical intersections.

  20. OPTIMUM PROSESSENTRERING

    Directory of Open Access Journals (Sweden)

    K. Adendorff

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The paper derives an expression for optimum process centreing for a given design specification and spoilage and/or rework costs.

    AFRIKAANSE OPSOMMING: Die problem Van prosessentrering vir n gegewe ontwerpspesifikasie en herwerk- en/of skrootkoste word behandel.

  1. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  2. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.

    Science.gov (United States)

    Atrsaei, Arash; Salarieh, Hassan; Alasty, Aria

    2016-09-01

    Due to various applications of human motion capture techniques, developing low-cost methods that would be applicable in nonlaboratory environments is under consideration. MEMS inertial sensors and Kinect are two low-cost devices that can be utilized in home-based motion capture systems, e.g., home-based rehabilitation. In this work, an unscented Kalman filter approach was developed based on the complementary properties of Kinect and the inertial sensors to fuse the orientation data of these two devices for human arm motion tracking during both stationary shoulder joint position and human body movement. A new measurement model of the fusion algorithm was obtained that can compensate for the inertial sensors drift problem in high dynamic motions and also joints occlusion in Kinect. The efficiency of the proposed algorithm was evaluated by an optical motion tracker system. The errors were reduced by almost 50% compared to cases when either inertial sensor or Kinect measurements were utilized.

  3. Variation in the cervical range of motion over time measured by the "Flock of Birds" electromagnetic tracking system

    NARCIS (Netherlands)

    Bergman, GJD; Knoester, B; Assink, N; Dijkstra, PU; Winters, JC

    2005-01-01

    Study Design. Observational longitudinal study. Objective. To establish the normal variation over time for active and passive cervical range of motion ( ROM) measured with the Flock of Birds electromagnetic tracking system ( FOB). Summary of Background Data. Data about normal variation of cervical R

  4. Selective defects of visual tracking in progressive supranuclear palsy (PSP): implications for mechanisms of motion vision.

    Science.gov (United States)

    Joshi, Anand C; Riley, David E; Mustari, Michael J; Cohen, Mark L; Leigh, R John

    2010-04-07

    Smooth ocular tracking of a moving visual stimulus comprises a range of responses that encompass the ocular following response (OFR), a pre-attentive, short-latency mechanism, and smooth pursuit, which directs the retinal fovea at the moving stimulus. In order to determine how interdependent these two forms of ocular tracking are, we studied vertical OFR in progressive supranuclear palsy (PSP), a parkinsonian disorder in which vertical smooth pursuit is known to be impaired. We measured eye movements of 9 patients with PSP and 12 healthy control subjects. Subjects viewed vertically moving sine-wave gratings that had a temporal frequency of 16.7 Hz, contrast of 32%, and spatial frequencies of 0.17, 0.27 or 0.44 cycles/degree. We measured OFR amplitude as change in eye position in the 70-150 ms, open-loop interval following stimulus onset. Vertical smooth pursuit was studied as subjects attempted to track a 0.27 cycles/degree grating moving sinusoidally through several cycles at frequencies between 0.1 and 2.5 Hz. We found that OFR amplitude, and its dependence on spatial frequency, was similar in PSP patients (group mean 0.10 degree) and control subjects (0.11 degree), but the latency to onset of OFR was greater for PSP patients (group mean 99 ms) than control subjects (90 ms). When OFR amplitude was re-measured, taking into account the increased latency in PSP patients, there was still no difference from control subjects. We confirmed that smooth pursuit was consistently impaired in PSP; group mean tracking gain at 0.7 Hz was 0.29 for PSP patients and 0.63 for controls. Neither PSP patients nor control subjects showed any correlation between OFR amplitude and smooth-pursuit gain. We propose that OFR is spared because it is generated by low-level motion processing that is dependent on posterior cerebral cortex, which is less affected in PSP. Conversely, smooth pursuit depends more on projections from frontal cortex to the pontine nuclei, both of which are involved

  5. SU-E-T-562: Motion Tracking Optimization for Conformal Arc Radiotherapy Plans: A QUASAR Phantom Based Study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z; Wang, I; Yao, R; Podgorsak, M [Roswell Park Cancer Institute, Buffalo, NY (United States)

    2015-06-15

    Purpose: This study is to use plan parameters optimization (Dose rate, collimator angle, couch angle, initial starting phase) to improve the performance of conformal arc radiotherapy plans with motion tracking by increasing the plan performance score (PPS). Methods: Two types of 3D conformal arc plans were created based on QUASAR respiratory motion phantom with spherical and cylindrical targets. Sinusoidal model was applied to the MLC leaves to generate motion tracking plans. A MATLAB program was developed to calculate PPS of each plan (ranges from 0–1) and optimize plan parameters. We first selected the dose rate for motion tracking plans and then used simulated annealing algorithm to search for the combination of the other parameters that resulted in the plan of the maximal PPS. The optimized motion tracking plan was delivered by Varian Truebeam Linac. In-room cameras and stopwatch were used for starting phase selection and synchronization between phantom motion and plan delivery. Gaf-EBT2 dosimetry films were used to measure the dose delivered to the target in QUASAR phantom. Dose profiles and Truebeam trajectory log files were used for plan delivery performance evaluation. Results: For spherical target, the maximal PPS (PPSsph) of the optimized plan was 0.79: (Dose rate: 500MU/min, Collimator: 90°, Couch: +10°, starting phase: 0.83π). For cylindrical target, the maximal PPScyl was 0.75 (Dose rate: 300MU/min, Collimator: 87°, starting phase: 0.97π) with couch at 0°. Differences of dose profiles between motion tracking plans (with the maximal and the minimal PPS) and 3D conformal plans were as follows: PPSsph=0.79: %ΔFWHM: 8.9%, %Dmax: 3.1%; PPSsph=0.52: %ΔFWHM: 10.4%, %Dmax: 6.1%. PPScyl=0.75: %ΔFWHM: 4.7%, %Dmax: 3.6%; PPScyl=0.42: %ΔFWHM: 12.5%, %Dmax: 9.6%. Conclusion: By achieving high plan performance score through parameters optimization, we can improve target dose conformity of motion tracking plan by decreasing total MLC leaf travel distance

  6. Application of Motion Sensors for Beam-Tracking of Mobile Stations in mmWave Communication Systems

    Directory of Open Access Journals (Sweden)

    Duk-Sun Shim

    2014-10-01

    Full Text Available In a millimeter wave (mmWave communication system with transmit/receive (Tx/Rx beamforming antennas, small variation in device behavior or an environmental change can destroy beam alignment, resulting in power loss in the received signal. In this situation, the beam-tracking technique purely based on the received signal is not effective because both behavioral changes (rotation, displacement and environmental changes (blockage result in power loss in the received signal. In this paper, a motion sensor based on microelectromechanical systems (MEMS as well as an electrical signal is used for beam tracking to identify the cause of beam error, and an efficient beam-tracking technique is proposed. The motion sensors such as accelerometers, gyroscopes, and geo-magnetic sensor are composed of an attitude heading reference system (AHRS and a zero-velocity detector (ZVD. The AHRS estimates the rotation angle and the ZVD detects whether the device moves. The proposed technique tracks a beam by handling the specific situation depending on the cause of beam error, minimizing the tracking overhead. The performance of the proposed beam-tracking technique is evaluated by simulations in three typical scenarios.

  7. Time-resolved measurement of the three-dimensional motion of gold nanocrystals in water using diffracted electron tracking

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Naoki, E-mail: n-ogawa@cc.tuat.ac.jp [Department of Integrated Science in Physics and Biology, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan); Graduate School for Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Hirohata, Yasuhisa [Department of Integrated Science in Physics and Biology, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan); Sasaki, Yuji C. [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Ishikawa, Akira, E-mail: ishikawa@phys.chs.nihon-u.ac.jp [Department of Physics, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-01

    We introduce diffracted electron tracking (DET), which combines two electron microscopy techniques, electron backscatter diffraction and the use of an environmental cell in a scanning electron microscope to measure changes in nanocrystal-orientation. The accuracy of DET was verified by measuring the motion of a flat gold crystal caused by the rotation or tilting of the specimen stage. DET was applied to measure the motion of semi-fixed gold nanocrystals in various environments. In addition to large motions induced in water environment, DET could detect small differences in the three-dimensional (3D) motion amplitude between vacuum environment and an Ar gas environment. DET promises to be a useful method for measuring the motion of single nanocrystals in various environments. This measuring technique may be used in a wide range of scientific fields; for example, DET may be a prospective method to track the single molecule dynamics of molecules labeled with gold nanocrystals. - Highlights: • We developed DET for measuring single molecular dynamics. • DET can be run by a scanning electron microscope only attached with EBSD system. • DET was assured using a flat gold crystal corresponding to sample stage movements. • DET can measure the Brownian motion of gold nanocrystals in water environment.

  8. An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking.

    Science.gov (United States)

    Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka

    2014-01-01

    We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system.

  9. A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs*****

    Institute of Scientific and Technical Information of China (English)

    Ángel Gil-Agudo; Ana de los Reyes-Guzmn; Iris Dimbwadyo-Terrer; Benito Peasco-Martn; Alberto Bernal-Sahn; Patricia Lpez-Monteagudo; Antonio del Ama-Espinosa; Jos Luis Pons

    2013-01-01

    Upper limb function impairment is one of the most common sequelae of central nervous system in-jury, especial y in stroke patients and when spinal cord injury produces tetraplegia. Conventional assessment methods cannot provide objective evaluation of patient performance and the effec-tiveness of therapies. The most common assessment tools are based on rating scales, which are inefficient when measuring smal changes and can yield subjective bias. In this study, we designed an inertial sensor-based monitoring system composed of five sensors to measure and analyze the complex movements of the upper limbs, which are common in activities of daily living. We devel-oped a kinematic model with nine degrees of freedom to analyze upper limb and head movements in three dimensions. This system was then validated using a commercial optoelectronic system. These findings suggest that an inertial sensor-based motion tracking system can be used in patients who have upper limb impairment through data integration with a virtual reality-based neurorehabilitation system.

  10. Quantum dot single molecule tracking reveals a wide range of diffusive motions of membrane transport proteins

    Science.gov (United States)

    Crane, Jonathan M.; Haggie, Peter M.; Verkman, A. S.

    2009-02-01

    Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation.

  11. Real-time tracking using stereo and motion: Visual perception for space robotics

    Science.gov (United States)

    Nishihara, H. Keith; Thomas, Hans; Huber, Eric; Reid, C. Ann

    1994-01-01

    The state-of-the-art in computing technology is rapidly attaining the performance necessary to implement many early vision algorithms at real-time rates. This new capability is helping to accelerate progress in vision research by improving our ability to evaluate the performance of algorithms in dynamic environments. In particular, we are becoming much more aware of the relative stability of various visual measurements in the presence of camera motion and system noise. This new processing speed is also allowing us to raise our sights toward accomplishing much higher-level processing tasks, such as figure-ground separation and active object tracking, in real-time. This paper describes a methodology for using early visual measurements to accomplish higher-level tasks; it then presents an overview of the high-speed accelerators developed at Teleos to support early visual measurements. The final section describes the successful deployment of a real-time vision system to provide visual perception for the Extravehicular Activity Helper/Retriever robotic system in tests aboard NASA's KC135 reduced gravity aircraft.

  12. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zahnd, Guillaume, E-mail: g.zahnd@erasmusmc.nl [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam 3000 CA (Netherlands); Salles, Sébastien; Liebgott, Hervé; Vray, Didier [Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Lyon 69100 (France); Sérusclat, André [Department of Radiology, Louis Pradel Hospital, Lyon 69500 (France); Moulin, Philippe [Department of Endocrinology, Louis Pradel Hospital, Hospices Civils de Lyon, Université Lyon 1, Lyon 69100, France and INSERM UMR 1060, Lyon 69500 (France)

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time during image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.

  13. Integrating eye tracking and motion sensor on mobile phone for interactive 3D display

    Science.gov (United States)

    Sun, Yu-Wei; Chiang, Chen-Kuo; Lai, Shang-Hong

    2013-09-01

    In this paper, we propose an eye tracking and gaze estimation system for mobile phone. We integrate an eye detector, cornereye center and iso-center to improve pupil detection. The optical flow information is used for eye tracking. We develop a robust eye tracking system that integrates eye detection and optical-flow based image tracking. In addition, we further incorporate the orientation sensor information from the mobile phone to improve the eye tracking for accurate gaze estimation. We demonstrate the accuracy of the proposed eye tracking and gaze estimation system through experiments on some public video sequences as well as videos acquired directly from mobile phone.

  14. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  15. Combining 3D tracking and surgical instrumentation to determine the stiffness of spinal motion segments: a validation study.

    Science.gov (United States)

    Reutlinger, C; Gédet, P; Büchler, P; Kowal, J; Rudolph, T; Burger, J; Scheffler, K; Hasler, C

    2011-04-01

    The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.

  16. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  17. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik;

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...

  18. Performances of motion tracking enhanced Tomo-PIV on turbulent shear flows.

    Science.gov (United States)

    Novara, Matteo; Scarano, Fulvio

    The motion tracking enhancement technique (MTE) is a recently introduced method to improve the accuracy of tomographic PIV measurements at seeding density higher than currently practiced. The working principle is based on the fact that the particle field and its projections are correlated between the two exposures. Therefore, information from subsequent exposures can be shared within the tomographic reconstruction process of a single object, which largely reduces the energy lost into ghost particles. The study follows a previous work based on synthetic particle images, showing that the MTE technique has an effect similar to that of increasing the number of cameras. In the present analysis, MTE is applied to Tomographic PIV data from two time-resolved experiments on turbulent shear flows: a round jet at Re = 5,000 (facq = 1,000 Hz) and a turbulent boundary layer at the trailing edge of an airfoil (Rec = 370,000) measured at 12,000 Hz. The application of MTE is extended to the case of more than two recordings. The performance is assessed comparing the results from a lowered number of cameras with respect to the full tomographic imaging system. The analysis of the jet flow agrees with the findings of numerical simulations provided the results are scaled taking into account the concept of MTE efficiency based on the volume fraction where ghost-pairs (Elsinga et al. 2010a) are produced. When a large fraction of fluid has uniform motion (stagnant fluid surrounding the jet), only a moderate reduction in ghost intensity is expected by MTE. Nevertheless, a visible recovery of reconstruction quality is observed for the 3-cameras system when MTE is applied making use of 3 recordings. In the turbulent boundary layer, the objective is set to increase the seeding density beyond current practice, and the experiments are performed at approximately 200,000 particles/megapixel. The measurement robustness is monitored with the signal-to-noise ratio S/N for the cross

  19. Performances of motion tracking enhanced Tomo-PIV on turbulent shear flows

    Science.gov (United States)

    Novara, Matteo; Scarano, Fulvio

    2012-04-01

    The motion tracking enhancement technique (MTE) is a recently introduced method to improve the accuracy of tomographic PIV measurements at seeding density higher than currently practiced. The working principle is based on the fact that the particle field and its projections are correlated between the two exposures. Therefore, information from subsequent exposures can be shared within the tomographic reconstruction process of a single object, which largely reduces the energy lost into ghost particles. The study follows a previous work based on synthetic particle images, showing that the MTE technique has an effect similar to that of increasing the number of cameras. In the present analysis, MTE is applied to Tomographic PIV data from two time-resolved experiments on turbulent shear flows: a round jet at Re = 5,000 ( f acq = 1,000 Hz) and a turbulent boundary layer at the trailing edge of an airfoil ( Re c = 370,000) measured at 12,000 Hz. The application of MTE is extended to the case of more than two recordings. The performance is assessed comparing the results from a lowered number of cameras with respect to the full tomographic imaging system. The analysis of the jet flow agrees with the findings of numerical simulations provided the results are scaled taking into account the concept of MTE efficiency based on the volume fraction where ghost- pairs (Elsinga et al. 2010a) are produced. When a large fraction of fluid has uniform motion (stagnant fluid surrounding the jet), only a moderate reduction in ghost intensity is expected by MTE. Nevertheless, a visible recovery of reconstruction quality is observed for the 3-cameras system when MTE is applied making use of 3 recordings. In the turbulent boundary layer, the objective is set to increase the seeding density beyond current practice, and the experiments are performed at approximately 200,000 particles/megapixel. The measurement robustness is monitored with the signal-to-noise ratio S/N for the cross

  20. SU-E-J-156: Preclinical Inverstigation of Dynamic Tumor Tracking Using Vero SBRT Linear Accelerator: Motion Phantom Dosimetry Study

    Energy Technology Data Exchange (ETDEWEB)

    Mamalui-Hunter, M; Wu, J; Li, Z; Su, Z [University of Florida/Radiation Oncology, Jacksonville, FL (United States)

    2014-06-01

    Purpose: Following the ‘end-to-end testing’ paradigm of Dynamic Target Tracking option in our Image-Guided dedicated SBRT VeroTM linac, we verify the capability of the system to deliver planned dose to moving targets in the heterogeneous thorax phantom (CIRSTM). The system includes gimbaled C-band linac head, robotic 6 degree of freedom couch and a tumor tracking method based on predictive modeling of target position using fluoroscopically tracked implanted markers and optically tracked infrared reflecting external markers. Methods: 4DCT scan of the motion phantom with the VisicoilTM implanted marker in the close vicinity of the target was acquired, the ‘exhale’=most prevalent phase was used for planning (iPlan by BrainLabTM). Typical 3D conformal SBRT treatment plans aimed to deliver 6-8Gy/fx to two types of targets: a)solid water-equivalent target 3cm in diameter; b)single VisicoilTM marker inserted within lung equivalent material. The planning GTV/CTV-to-PTV margins were 2mm, the block margins were 3 mm. The dose calculated by MonteCarlo algorithm with 1% variance using option Dose-to-water was compared to the ion chamber (CC01 by IBA Dosimetry) measurements in case (a) and GafchromicTM EBT3 film measurements in case (b). During delivery, the target 6 motion patterns available as a standard on CIRSTM motion phantom were investigated: in case (a), the target was moving along the designated sine or cosine4 3D trajectory; in case (b), the inserted marker was moving sinusoidally in 1D. Results: The ion chamber measurements have shown the agreement with the planned dose within 1% under all the studied motion conditions. The film measurements show 98.1% agreement with the planar calculated dose (gamma criteria: 3%/3mm). Conclusion: We successfully verified the capability of the SBRT VeroTM linac to perform real-time tumor tracking and accurate dose delivery to the target, based on predictive modeling of the correlation between implanted marker motion and

  1. Kinematic Model-Based Pedestrian Dead Reckoning for Heading Correction and Lower Body Motion Tracking

    Directory of Open Access Journals (Sweden)

    Min Su Lee

    2015-11-01

    Full Text Available In this paper, we present a method for finding the enhanced heading and position of pedestrians by fusing the Zero velocity UPdaTe (ZUPT-based pedestrian dead reckoning (PDR and the kinematic constraints of the lower human body. ZUPT is a well known algorithm for PDR, and provides a sufficiently accurate position solution for short term periods, but it cannot guarantee a stable and reliable heading because it suffers from magnetic disturbance in determining heading angles, which degrades the overall position accuracy as time passes. The basic idea of the proposed algorithm is integrating the left and right foot positions obtained by ZUPTs with the heading and position information from an IMU mounted on the waist. To integrate this information, a kinematic model of the lower human body, which is calculated by using orientation sensors mounted on both thighs and calves, is adopted. We note that the position of the left and right feet cannot be apart because of the kinematic constraints of the body, so the kinematic model generates new measurements for the waist position. The Extended Kalman Filter (EKF on the waist data that estimates and corrects error states uses these measurements and magnetic heading measurements, which enhances the heading accuracy. The updated position information is fed into the foot mounted sensors, and reupdate processes are performed to correct the position error of each foot. The proposed update-reupdate technique consequently ensures improved observability of error states and position accuracy. Moreover, the proposed method provides all the information about the lower human body, so that it can be applied more effectively to motion tracking. The effectiveness of the proposed algorithm is verified via experimental results, which show that a 1.25% Return Position Error (RPE with respect to walking distance is achieved.

  2. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    Science.gov (United States)

    Cocker, Tyler L.; Peller, Dominik; Yu, Ping; Repp, Jascha; Huber, Rupert

    2016-11-01

    Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

  3. Avoidance moderates the association between mothers' and children's fears: findings from a novel motion-tracking behavioral assessment.

    Science.gov (United States)

    Lebowitz, Eli R; Shic, Fred; Campbell, Daniel; MacLeod, Jelena; Silverman, Wendy K

    2015-02-01

    Fear and anxiety in children are associated with similar symptoms in parents. Parental modeling of fearful or avoidant behavior is believed to contribute to this association. We employed a novel motion-tracking experimentation platform to test the hypothesis that mothers' behavioral avoidance of spiders moderates the association between fear of spiders in mothers and children. Participants were 86 children (aged 7-17) presenting with an anxiety disorder, and their mothers. Children and mothers completed the Spider Phobia Questionnaire. Mothers completed a motion-tracking assessment of behavioral avoidance of spiders. Fear of spiders in mothers was associated with fear of spiders in children (r85  = 0.48, 95%CI 0.30 - 0.63, P fear of spiders (r = -0.49, 95% CI 0.31-0.64, P fear of spiders in mothers and in children. When mothers' avoidance was intermediate or high the association was significant, and as mothers' behavioral avoidance increased the strength of the association increased. Fear of spiders in mothers with low behavioral avoidance was not associated with fear of spiders in their children. The study demonstrates that behavioral avoidance can be measured using the motion-tracking platform and can be useful in understanding the links between symptoms of anxiety in mothers and children. Reducing parents' overt expressions of avoidance may lower the risk of fears being transmitted to children. © 2014 Wiley Periodicals, Inc.

  4. Use of motion tracking in stereotactic body radiotherapy: Evaluation of uncertainty in off-target dose distribution and optimization strategies

    Energy Technology Data Exchange (ETDEWEB)

    Casamassima, F. [Univ. di Firenze, Florence (Italy). Dept. di Fisiopatologia Clinica; Cavedon, C.; Francescon, P.; Stancanello, J.; Avanzo, M.; Cora, S.; Scalchi, P. [Ospedale S.Bortolo, Vicenza (Italy). Servizio di Fisica Sanitaria

    2006-09-15

    Spatial accuracy in extracranial radiosurgery is affected by organ motion. Motion tracking systems may be able to avoid PTV enlargement while preserving treatment times, however special attention is needed when fiducial markers are used to identify the target can move with respect to organs at risk (OARs). Ten patients treated by means of the Synchrony system were taken into account. Sparing of irradiated volume and of complication probability were estimated by calculating treatment plans with a motion tracking system (Cyberknife Synchrony, Sunnyvale, CA (US). ) and a PTV-enlargement strategy for ten patients. Six patients were also evaluated for possible inaccuracy of estimation of dose to OARs due to relative movement between PTV and OAR during respiration. Dose volume histograms (DVH) and Equivalent Uniform Dose (EUD) were calculated for the organs at risk. In the cases for which the target moved closer to the OAR (three cases of six), a small but significant increase was detected in the DVH and EUD of the OAR. In three other cases no significant variation was detected. Mean reduction in PTV volume was 38% for liver cases, 44% for lung cases and 8.5% for pancreas cases. NTCP for liver reduced from 23.1 to 14.5% on average, for lung it reduced from 2.5 to 0.1% on average. Significant uncertainty may arise from the use of a motion-tracking device in determination of dose to organs at risk due to the relative motion between PTV and OAR. However, it is possible to limit this uncertainty. The breathing phase in which the OAR is closer to the PTV should be selected for planning. A full understanding of the dose distribution would only be possible by means of a complete 4D-CT representation.

  5. An Image Pattern Tracking Algorithm for Time-resolved Measurement of Mini- and Micro-scale Motion of Complex Object

    Directory of Open Access Journals (Sweden)

    John M. Seiner

    2009-03-01

    Full Text Available An image pattern tracking algorithm is described in this paper for time-resolved measurements of mini- and micro-scale movements of complex objects. This algorithm works with a high-speed digital imaging system, which records thousands of successive image frames in a short time period. The image pattern of the observed object is tracked among successively recorded image frames with a correlation-based algorithm, so that the time histories of the position and displacement of the investigated object in the camera focus plane are determined with high accuracy. The speed, acceleration and harmonic content of the investigated motion are obtained by post processing the position and displacement time histories. The described image pattern tracking algorithm is tested with synthetic image patterns and verified with tests on live insects.

  6. Simulator study of the effect of visual-motion time delays on pilot tracking performance with an audio side task

    Science.gov (United States)

    Riley, D. R.; Miller, G. K., Jr.

    1978-01-01

    The effect of time delay was determined in the visual and motion cues in a flight simulator on pilot performance in tracking a target aircraft that was oscillating sinusoidally in altitude only. An audio side task was used to assure the subject was fully occupied at all times. The results indicate that, within the test grid employed, about the same acceptable time delay (250 msec) was obtained for a single aircraft (fighter type) by each of two subjects for both fixed-base and motion-base conditions. Acceptable time delay is defined as the largest amount of delay that can be inserted simultaneously into the visual and motion cues before performance degradation occurs. A statistical analysis of the data was made to establish this value of time delay. Audio side task provided quantitative data that documented the subject's work level.

  7. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingyao [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Bharat, Shyam [Philips Research North America, Briarcliff Manor, New York (United States); Michalski, Jeff M.; Gay, Hiram A. [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Hou, Wei-Hsien [St Louis University School of Medicine, St Louis, Missouri (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States)

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  8. Adaptive Radiation Therapy for Post-Prostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiotherapy

    Science.gov (United States)

    Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M.; Gay, H; Hou, Wei-Hsien; Parikh, Parag J.

    2012-01-01

    Purpose Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso® 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in post-prostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials Tracking data recorded by Calypso EM transponders was analyzed for post-prostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (Dmin) with the planned Dmin to the CTV. Treatments were considered adequate if the delivered CTV Dmin is at least 95% of the planned CTV Dmin. Results Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: − 0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5 degrees, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion Target rotational motion could cause under-dosage to partial volume of the post-prostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery. PMID:23021439

  9. Adaptive radiation therapy for postprostatectomy patients using real-time electromagnetic target motion tracking during external beam radiation therapy.

    Science.gov (United States)

    Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M; Gay, Hiram A; Hou, Wei-Hsien; Parikh, Parag J

    2013-03-15

    Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (Dmin) with the planned Dmin to the CTV. Treatments were considered adequate if the delivered CTV Dmin is at least 95% of the planned CTV Dmin. Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: -0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Motion

    CERN Document Server

    Graybill, George

    2007-01-01

    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  11. Markerless motion capture systems for tracking of persons in forensic biomechanics

    DEFF Research Database (Denmark)

    Yang, Sylvia; Christiansen, Martin S.; Larsen, Peter Kastmand

    2014-01-01

    Markerless motion capture is a pronounced topic in computer vision. In forensic science, markerless motion capture can be an important tool for identification through gait analysis. Recent studies of gait analysis in forensic science have shown that individuals can be identified when analysing th...

  12. Comparison of external motion tracking systems for PET list-mode reconstruction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Keller, Sune H.

    2011-01-01

    attachment of markers to the subject introducing image artifacts on human scans. We have previously designed a camera-based structured light (SL) system for 3D head tracking used with the high resolution research tomograph (HRRT, Siemens, Knoxville, USA) [5]. The system was modified to use invisible light...... markerless tracking system is not trivial to provide and to our knowledge not presently existent. The Polaris Vicra optical tracking system (Northern Digital Inc.) is generally used with PET brain imaging and has been demonstrated to work very well on phantoms [4]. However, it suffers from the necessary...

  13. Technical Note: Motion-perturbation method applied to dosimetry of dynamic MLC target tracking--A proof-of-concept.

    Science.gov (United States)

    Feygelman, Vladimir; Tonner, Brian; Stambaugh, Cassandra; Hunt, Dylan; Zhang, Geoffrey; Moros, Eduardo; Nelms, Benjamin E

    2015-11-01

    Previous studies show that dose to a moving target can be estimated using 4D measurement-guided dose reconstruction based on a process called virtual motion simulation, or VMS. A potential extension of VMS is to estimate dose during dynamic multileaf collimator (MLC)-tracking treatments. The authors introduce a modified VMS method and quantify its performance as proof-of-concept for tracking applications. Direct measurements with a moving biplanar diode array were used to verify accuracy of the VMS dose estimates. A tracking environment for variably sized circular MLC apertures was simulated by sending preprogrammed control points to the MLC while simultaneously moving the accelerator treatment table. Sensitivity of the method to simulated tracking latency (0-700 ms) was also studied. Potential applicability of VMS to fast changing beam apertures was evaluated by modeling, based on the demonstrated dependence of the cumulative dose on the temporal dose gradient. When physical and virtual latencies were matched, the agreement rates (2% global/2 mm gamma) between the VMS and the biplanar dosimeter were above 96%. When compared to their own reference dose (0 induced latency), the agreement rates for VMS and biplanar array track closely up to 200 ms of induced latency with 10% low-dose cutoff threshold and 300 ms with 50% cutoff. Time-resolved measurements suggest that even in the modulated beams, the error in the cumulative dose introduced by the 200 ms VMS time resolution is not likely to exceed 0.5%. Based on current results and prior benchmarks of VMS accuracy, the authors postulate that this approach should be applicable to any MLC-tracking treatments where leaf speeds do not exceed those of the current Varian accelerators.

  14. Advanced algorithms for mobile robot motion planning and tracking in structured static environments using particle swarm optimization

    Directory of Open Access Journals (Sweden)

    Ćosić Aleksandar

    2012-01-01

    Full Text Available An approach to intelligent robot motion planning and tracking in known and static environments is presented in this paper. This complex problem is divided into several simpler problems. The first is generation of a collision free path from starting to destination point, which is solved using a particle swarm optimization (PSO algorithm. The second is interpolation of the obtained collision-free path, which is solved using a radial basis function neural network (RBFNN, and trajectory generation, based on the interpolated path. The last is a trajectory tracking problem, which is solved using a proportional-integral (PI controller. Due to uncertainties, obstacle avoidance is still not ensured, so an additional fuzzy controller is introduced, which corrects the control action of the PI controller. The proposed solution can be used even in dynamic environments, where obstacles change their position in time. Simulation studies were realized to validate and illustrate this approach.

  15. Full-field tracking and measuring of particle motion in capillary vessels by using time-varying laser speckle

    Science.gov (United States)

    Zhang, Luying; Wang, Bo; Wang, Yi

    2016-03-01

    We propose a random perturbation model to describe the variation of laser speckle patterns caused by moving particles in capillary vessels. When passing through probing volume, moving particles encode random perturbations into observed laser speckle patterns. We extract the perturbation envelopes of time-varying laser speckles for tracking the motion of single particle. And, the full-field transverse velocities of flowing particles are obtained by using cross-correlation between the perturbation envelopes. The proposed method is experimentally verified by the use of polymer-microsphere suspension in a glass capillary.

  16. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  17. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.

    Science.gov (United States)

    Touil, Basma; Basarab, Adrian; Delachartre, Philippe; Bernard, Olivier; Friboulet, Denis

    2010-03-01

    This paper focuses on motion tracking in echocardiographic ultrasound images. The difficulty of this task is related to the fact that echographic image formation induces decorrelation between the underlying motion of tissue and the observed speckle motion. Since Meunier's seminal work, this phenomenon has been investigated in many simulation studies as part of speckle tracking or optical flow-based motion estimation techniques. Most of these studies modeled image formation using a linear convolution approach, where the system point-spread function (PSF) was spatially invariant and the probe geometry was linear. While these assumptions are valid over a small spatial area, they constitute an oversimplification when a complete image is considered. Indeed, echocardiographic acquisition geometry relies on sectorial probes and the system PSF is not perfectly invariant, even if dynamic focusing is performed. This study investigated the influence of sectorial geometry and spatially varying PSF on speckle tracking. This was done by simulating a typical 64 elements, cardiac probe operating at 3.5 MHz frequency, using the simulation software Field II. This simulation first allowed quantification of the decorrelation induced by the system between two images when simple motion such as translation or incompressible deformation was applied. We then quantified the influence of decorrelation on speckle tracking accuracy using a conventional block matching (BM) algorithm and a bilinear deformable block matching (BDBM) algorithm. In echocardiography, motion estimation is usually performed on reconstructed images where the initial sectorial (i.e., polar) data are interpolated on a cartesian grid. We therefore studied the influence of sectorial acquisition geometry, by performing block matching on cartesian and polar data. Simulation results show that decorrelation is spatially variant and depends on the position of the region where motion takes place relative to the probe. Previous

  18. SU-E-T-570: New Quality Assurance Method Using Motion Tracking for 6D Robotic Couches

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, W; Cho, J [SungKyunKwan University, Seoul (Korea, Republic of); Ahn, S [Samsung Medical Center, Seoul (Korea, Republic of); Han, Y; Choi, D [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: To accommodate geometrically accurate patient positioning, a robotic couch that is capable of 6-degrees of freedom has been introduced. However, conventional couch QA methods are not sufficient to enable the necessary accuracy of tests. Therefore, we have developed a camera based motion detection and geometry calibration system for couch QA. Methods: Employing a Visual-Tracking System (VTS, BonitaB10, Vicon, UK) which tracks infrared reflective(IR) markers, camera calibration was conducted using a 5.7 × 5.7 × 5.7 cm{sup 3} cube attached with IR markers at each corner. After positioning a robotic-couch at the origin with the cube on the table top, 3D coordinates of the cube’s eight corners were acquired by VTS in the VTS coordinate system. Next, positions in reference coordinates (roomcoordinates) were assigned using the known relation between each point. Finally, camera calibration was completed by finding a transformation matrix between VTS and reference coordinate systems and by applying a pseudo inverse matrix method. After the calibration, the accuracy of linear and rotational motions as well as couch sagging could be measured by analyzing the continuously acquired data of the cube while the couch moves to a designated position. Accuracy of the developed software was verified through comparison with measurement data when using a Laser tracker (FARO, Lake Mary, USA) for a robotic-couch installed for proton therapy. Results: VTS system could track couch motion accurately and measured position in room-coordinates. The VTS measurements and Laser tracker data agreed within 1% of difference for linear and rotational motions. Also because the program analyzes motion in 3-Dimension, it can compute couch sagging. Conclusion: Developed QA system provides submillimeter/ degree accuracy which fulfills the high-end couch QA. This work was supported by the National Research Foundation of Korea funded by Ministry of Science, ICT & Future Planning. (2013M2A2A

  19. A wearable wireless ultrasonic sensor network for human arm motion tracking.

    Science.gov (United States)

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon

    2014-01-01

    This paper introduces a novel method for arm flexion/extension angles measurement using wireless ultrasonic sensor network. The approach uses unscented Kalman filter and D-H kinematical chain model to retrieve the joint angles. This method was experimentally validated by calculating the 2-dimensional wrist displacements from one mobile, placed on the point of subject's wrist, and four anchors. The performance of the proposed ultrasonic motion analysis system was bench-marked by commercial camera motion capture system. The experimental results demonstrate that a favorable performance of the proposed system in the estimation of upper limb motion. The proposed system is wireless, easy to wear, to use and much cheaper than current camera system. Thus, it has the potential to become a new and useful tool for routine clinical assessment of human motion.

  20. Motion Analyses and Optimum Design for Ackerman Steering%整体式转向梯形的运动分析及优化设计

    Institute of Scientific and Technical Information of China (English)

    李玉民; 过学迅; 王文家; 徐锐良

    2001-01-01

    提出了更接近于实际的弹性轮胎的理论转向特性,用空间梯形模型,分析了车辆上常用的整体式转向梯形所确定的实际转向特性。在此基础上,又提出了用实际梯形转向特性逼近理论转向特性的优化设计方法,并进行了验证。%The theoretical steering curves which are more close to the reality of elastic tyres is presented. By using space models, the practical layout of Ackerman steering normally used in vehicle is analysed. And based on it, an optimum design method to approximate the practical curve to the theoretical one is obtained and verified.

  1. Evaluation Of Patellar Tracking During Knee Range Of Motion In Patients With Patellar Lateralization And Normal Subjects

    Directory of Open Access Journals (Sweden)

    Goharpei S

    2004-08-01

    Full Text Available Background: Patellofemoral joint disorders are the most common cause of anterior knee pain in patients who referred to orthopedic clinics. Patellar lateralization cause anterior knee pain due to weakness of vastus medialis oblique muscle or tightness of lateral structures like lateral retinaculum or iliotibial band muscle. Materials and Methods: For evaluation of this abnormality, plane radiography, CT scan and MRI are useful. In plane radiography only one view in a single joint position can be obtained, because of that it is not a good method to detect abnormal tracking during knee range of motion. The purpose of this study was to evaluate patellar tracking by kinematics MRI during five serial degrees of knee range of motion (40, 30, 20, 10, 0 degrees in 30 patients with patellar lateralization and 10 normal subjects, aged 18-30 years. Results and Conclusion: tistical analysis showed that in patients group, patella had the most stability in 40 degree of knee flexion and this stability reduced when knee reached to full extension. At this point, patella moved laterally and the most instability was seen during 20 to 0 degree of knee extension.

  2. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy.

    Science.gov (United States)

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-07

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  3. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl

    2013-01-01

    We present a complete system for motion correction in high resolution brain positron emission tomography (PET) imaging. The system is based on a compact structured light scanner mounted above the patient tunnel of the Siemens High Resolution Research Tomograph (HRRT) PET brain scanner. The struct......We present a complete system for motion correction in high resolution brain positron emission tomography (PET) imaging. The system is based on a compact structured light scanner mounted above the patient tunnel of the Siemens High Resolution Research Tomograph (HRRT) PET brain scanner...

  4. On the motion of a reversible double simple pendulum with tracking force

    Science.gov (United States)

    Boruk, I. G.; Lobas, L. G.

    1999-07-01

    Stability domains of a pendulum in the presence of tracking force and viscoelastic elements are constructed. It is shown that the boundary of the stability domains consists of sections of two hyperbolas. The effect of the pendulum parameters on the configuration of the stability domains is considered.

  5. Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress.

    NARCIS (Netherlands)

    Schuster, A.; Kutty, S.; Padiyath, A.; Parish, V.; Gribben, P.; Danford, D.A.; Makowski, M.R.; Bigalke, B.; Beerbaum, P.B.J.; Nagel, E.

    2011-01-01

    BACKGROUND: Dobutamine stress cardiovascular magnetic resonance (DS-CMR) is an established tool to assess hibernating myocardium and ischemia. Analysis is typically based on visual assessment with considerable operator dependency. CMR myocardial feature tracking (CMR-FT) is a recently introduced tec

  6. The Use of Motion Tracking Technologies in Serious Games to Enhance Rehabilitation in Stroke Patients

    Science.gov (United States)

    Burton, Andrew M.; Liu, Hao; Battersby, Steven; Brown, David; Sherkat, Nasser; Standen, Penny; Walker, Marion

    2011-01-01

    Stroke is the main cause of long term disability worldwide. Of those surviving, more than half will fail to regain functional usage of their impaired upper limb. Typically stroke upper limb rehabilitation exercises consist of repeated movements, which when tracked can form the basis of inputs to games. This paper discusses two systems utilizing…

  7. The Use of Motion Tracking Technologies in Serious Games to Enhance Rehabilitation in Stroke Patients

    Science.gov (United States)

    Burton, Andrew M.; Liu, Hao; Battersby, Steven; Brown, David; Sherkat, Nasser; Standen, Penny; Walker, Marion

    2011-01-01

    Stroke is the main cause of long term disability worldwide. Of those surviving, more than half will fail to regain functional usage of their impaired upper limb. Typically stroke upper limb rehabilitation exercises consist of repeated movements, which when tracked can form the basis of inputs to games. This paper discusses two systems utilizing…

  8. VALIDATION OF A SINGLE CAMERA THREE-DIMENSIONAL MOTION TRACKING SYSTEM

    Science.gov (United States)

    Weinhandl, Joshua T.; Armstrong, Brian S. R.; Kusik, Todd P.; Barrows, Robb T.; O’Connor, Kristian M.

    2010-01-01

    The ability to analyze human movement is an essential tool of biomechanical analysis for both sport and clinical applications. Traditional 3D motion capture technology limits the feasibility of large scale data collections and therefore the ability to address clinical questions. Ideally, the measurement system/protocol should be non-invasive, mobile, generate nearly instantaneous feedback to the clinician and athlete, and be relatively inexpensive. The Retro-Grate Reflector (RGR) is a new technology that allows for three-dimensional motion capture using a single camera. Previous studies have shown that orientation and position information recorded by the RGR system has high measurement precision and is strongly correlated with a traditional multi-camera system across a series of static poses. The technology has since been refined to record moving pose information from multiple RGR targets at sampling rates adequate for assessment of athletic movements. The purpose of this study was to compare motion data for a standard athletic movement recorded simultaneously with the RGR and multi-camera (Motion Analysis Eagle) systems. Nine subjects performed three single-leg land-and-cut maneuvers. Thigh and shank three-dimensional kinematics were collected with the RGR and Eagle camera systems simultaneously at 100 Hz. Results showed a strong agreement between the two systems in all three planes, which demonstrates the ability of the RGR system to record moving pose information from multiple RGR targets at a sampling rate adequate for assessment of human movement and supports the ability to use the RGR technology as a valid 3D motion capture system. PMID:20207358

  9. Online model checking for monitoring surrogate-based respiratory motion tracking in radiation therapy.

    Science.gov (United States)

    Antoni, Sven-Thomas; Rinast, Jonas; Ma, Xintao; Schupp, Sibylle; Schlaefer, Alexander

    2016-11-01

    Correlation between internal and external motion is critical for respiratory motion compensation in radiosurgery. Artifacts like coughing, sneezing or yawning or changes in the breathing pattern can lead to misalignment between beam and tumor and need to be detected to interrupt the treatment. We propose online model checking (OMC), a model-based verification approach from the field of formal methods, to verify that the breathing motion is regular and the correlation holds. We demonstrate that OMC may be more suitable for artifact detection than the prediction error. We established a sinusoidal model to apply OMC to the verification of respiratory motion. The method was parameterized to detect deviations from typical breathing motion. We analyzed the performance on synthetic data and on clinical episodes showing large correlation error. In comparison, we considered the prediction error of different state-of-the-art methods based on least mean squares (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS), recursive least squares (RLSpred) and support vector regression (SVRpred). On synthetic data, OMC outperformed wLMS by at least 30 % and SVRpred by at least 141 %, detecting 70 % of transitions. No artifacts were detected by nLMS and RLSpred. On patient data, OMC detected 23-49 % of the episodes correctly, outperforming nLMS, wLMS, RLSpred and SVRpred by up to 544, 491, 408 and 258 %, respectively. On selected episodes, OMC detected up to 94 % of all events. OMC is able to detect changes in breathing as well as artifacts which previously would have gone undetected, outperforming prediction error-based detection. Synthetic data analysis supports the assumption that prediction is very insensitive to specific changes in breathing. We suggest using OMC as an additional safety measure ensuring reliable and fast stopping of irradiation.

  10. Experiments of two pupil lateral motion tracking algorithms using a Shack-Hartmann sensor

    Science.gov (United States)

    Dai, Xiaolin; Hippler, Stefan; Gendron, Eric

    2017-01-01

    Pupil stability is one of the factors which limit the performance and operational stability of adaptive optics (AO) systems. This paper analyses two pupil-tracking methods to measure the lateral pupil shift: the first one utilizes the fluxes in all outer edge sub-apertures of a Shack-Hartmann sensor and the second one utilizes the real-time interaction matrix used in an AO system. Experiments with 9×9 Shack-Hartmann sensor are conducted to verify both pupil-tracking algorithms. The results show that both algorithms are effective, after two correction steps, the residual pupil shift is reduced to less than 5% of a Shack-Hartmann sub-aperture.

  11. Creation of 3D digital anthropomorphic phantoms which model actual patient non-rigid body motion as determined from MRI and position tracking studies of volunteers

    Science.gov (United States)

    Connolly, C. M.; Konik, A.; Dasari, P. K. R.; Segars, P.; Zheng, S.; Johnson, K. L.; Dey, J.; King, M. A.

    2011-03-01

    Patient motion can cause artifacts, which can lead to difficulty in interpretation. The purpose of this study is to create 3D digital anthropomorphic phantoms which model the location of the structures of the chest and upper abdomen of human volunteers undergoing a series of clinically relevant motions. The 3D anatomy is modeled using the XCAT phantom and based on MRI studies. The NURBS surfaces of the XCAT are interactively adapted to fit the MRI studies. A detailed XCAT phantom is first developed from an EKG triggered Navigator acquisition composed of sagittal slices with a 3 x 3 x 3 mm voxel dimension. Rigid body motion states are then acquired at breath-hold as sagittal slices partially covering the thorax, centered on the heart, with 9 mm gaps between them. For non-rigid body motion requiring greater sampling, modified Navigator sequences covering the entire thorax with 3 mm gaps between slices are obtained. The structures of the initial XCAT are then adapted to fit these different motion states. Simultaneous to MRI imaging the positions of multiple reflective markers on stretchy bands about the volunteer's chest and abdomen are optically tracked in 3D via stereo imaging. These phantoms with combined position tracking will be used to investigate both imaging-data-driven and motion-tracking strategies to estimate and correct for patient motion. Our initial application will be to cardiacperfusion SPECT imaging where the XCAT phantoms will be used to create patient activity and attenuation distributions for each volunteer with corresponding motion tracking data from the markers on the body-surface. Monte Carlo methods will then be used to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies.

  12. Predicting respiratory motion for real-time tumour tracking in radiotherapy

    CERN Document Server

    Krilavicius, Tomas; Simonavicius, Henrikas; Jarusevicius, Laimonas

    2015-01-01

    Purpose. Radiation therapy is a local treatment aimed at cells in and around a tumor. The goal of this study is to develop an algorithmic solution for predicting the position of a target in 3D in real time, aiming for the short fixed calibration time for each patient at the beginning of the procedure. Accurate predictions of lung tumor motion are expected to improve the precision of radiation treatment by controlling the position of a couch or a beam in order to compensate for respiratory motion during radiation treatment. Methods. For developing the algorithmic solution, data mining techniques are used. A model form from the family of exponential smoothing is assumed, and the model parameters are fitted by minimizing the absolute disposition error, and the fluctuations of the prediction signal (jitter). The predictive performance is evaluated retrospectively on clinical datasets capturing different behavior (being quiet, talking, laughing), and validated in real-time on a prototype system with respiratory mo...

  13. DLP technology application: 3D head tracking and motion correction in medical brain imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Wilm, Jakob; Paulsen, Rasmus Reinhold

    2014-01-01

    In this paper we present a novel sensing system, robust Near-infrared Structured Light Scanning (NIRSL) for three-dimensional human model scanning application. Human model scanning due to its nature of various hair and dress appearance and body motion has long been a challenging task. Previous...... surfaces, such as hair, dark jeans and black shoes under visible illumination. Moreover, successful structured light scan relies on the assumption that the subject is static during scanning. Due to the nature of body motion, it is very time sensitive to keep this assumption in the case of human model scan...... structured light scanning methods typically emitted visible coded light patterns onto static and opaque objects to establish correspondence between a projector and a camera for triangulation. In the success of these methods rely on scanning objects with proper reflective surface for visible light...

  14. Human body motion tracking based on quantum-inspired immune cloning algorithm

    Science.gov (United States)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  15. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose

    Science.gov (United States)

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-01

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the

  16. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.

    Science.gov (United States)

    Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad

    2016-02-01

    Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.

  17. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy.

    Science.gov (United States)

    Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa

    2016-08-01

    For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28%  ±  1

  18. Vector modeling and track simulation in axial turn-milling motion

    Institute of Scientific and Technical Information of China (English)

    JIANG Zeng-hui; JIA Chun-de

    2005-01-01

    Through vector analysis the kinetic vector model is built in a machining cylinder surface through axial turn-milling. When building a kinetic vector model in the machining field, machining through axial turn-milling and using equilateral triangles and square prism surfaces, the kinetic vector model is given any equilateral polygon prismic surface. Kinetic tracks are simulated through these kinetic models respectively, thus it can be seen that the axial turn-milling is a very effective method in manufacturing any equilateral, polygon, prismic surface.

  19. Radical stereotactic radiosurgery with real-time tumor motion tracking in the treatment of small peripheral lung tumors

    Directory of Open Access Journals (Sweden)

    Chang Thomas

    2007-10-01

    Full Text Available Abstract Background Recent developments in radiotherapeutic technology have resulted in a new approach to treating patients with localized lung cancer. We report preliminary clinical outcomes using stereotactic radiosurgery with real-time tumor motion tracking to treat small peripheral lung tumors. Methods Eligible patients were treated over a 24-month period and followed for a minimum of 6 months. Fiducials (3–5 were placed in or near tumors under CT-guidance. Non-isocentric treatment plans with 5-mm margins were generated. Patients received 45–60 Gy in 3 equal fractions delivered in less than 2 weeks. CT imaging and routine pulmonary function tests were completed at 3, 6, 12, 18, 24 and 30 months. Results Twenty-four consecutive patients were treated, 15 with stage I lung cancer and 9 with single lung metastases. Pneumothorax was a complication of fiducial placement in 7 patients, requiring tube thoracostomy in 4. All patients completed radiation treatment with minimal discomfort, few acute side effects and no procedure-related mortalities. Following treatment transient chest wall discomfort, typically lasting several weeks, developed in 7 of 11 patients with lesions within 5 mm of the pleura. Grade III pneumonitis was seen in 2 patients, one with prior conventional thoracic irradiation and the other treated with concurrent Gefitinib. A small statistically significant decline in the mean % predicted DLCO was observed at 6 and 12 months. All tumors responded to treatment at 3 months and local failure was seen in only 2 single metastases. There have been no regional lymph node recurrences. At a median follow-up of 12 months, the crude survival rate is 83%, with 3 deaths due to co-morbidities and 1 secondary to metastatic disease. Conclusion Radical stereotactic radiosurgery with real-time tumor motion tracking is a promising well-tolerated treatment option for small peripheral lung tumors.

  20. Tracking and Counting Motion for Monitoring Food Intake Based-On Depth Sensor and UDOO Board: A Comprehensive Review

    Science.gov (United States)

    Kassim, Muhammad Fuad bin; Norzali Haji Mohd, Mohd

    2017-08-01

    Technology is all about helping people, which created a new opportunity to take serious action in managing their health care. Moreover, Obesity continues to be a serious public health concern in the Malaysia and continuing to rise. Obesity has been a serious health concern among people. Nearly half of Malaysian people overweight. Most of dietary approach is not tracking and detecting the right calorie intake for weight loss, but currently used tools such as food diaries require users to manually record and track the food calories, making them difficult for daily use. We will be developing a new tool that counts the food intake bite by monitoring hand gesture and face jaw motion movement of caloric intake. The Bite count method showed a good significant that can lead to a successful weight loss by simply monitoring the bite taken during eating. The device used was Kinect Xbox One which used a depth camera to detect the motion on person hand and face during food intake. Previous studies showed that most of the method used to count bite device is worn type. The recent trend is now going towards non-wearable devices due to the difficulty when wearing devices and it has high false alarm ratio. The proposed system gets data from the Kinect that will be monitoring the hand and face gesture of the user while eating. Then, the gesture of hand and face data is sent to the microcontroller board to recognize and start counting bite taken by the user. The system recognizes the patterns of bite taken from user by following the algorithm of basic eating type either using hand or chopstick. This system can help people who are trying to follow a proper way to reduce overweight or eating disorders by monitoring their meal intake and controlling eating rate.

  1. Autonomous underwater vehicle motion tracking using a Kalman filter for sensor fusion

    CSIR Research Space (South Africa)

    Holtzhausen, S

    2008-11-01

    Full Text Available to be discussed is the IMU. This sensor system consists of three accelerometers and three gyros. The accelerometers are positioned on the X, Y and Z axes and measure acceleration in their respective directions. 15th International conference on Mechatronics... of the vehicle. The accelerometer data can be used to determine linear motion by calculating the double integral of the accelerometer data over time. This will give the calculated movement of the vehicle in the given direction. The accelerometer data can also...

  2. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl

    2011-01-01

    We present a complete system for motion correction in high resolution brain positron emission tomography (PET) imaging. It is based on a compact structured light scanner mounted above the patient tunnel of the Siemens High Resolution Research Tomograph PET brain scanner. The structured light system...... is equipped with a near infrared diode and uses phase-shift interferometry to compute 3D representations of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface and thereby giving the head pose changes. The estimated pose changes are used to reposition a sequence...

  3. Inertial Sensor-Based Two Feet Motion Tracking for Gait Analysis

    Directory of Open Access Journals (Sweden)

    Tran Nhat Hung

    2013-04-01

    Full Text Available Two feet motion is estimated for gait analysis. An inertial sensor is attached on each shoe and an inertial navigation algorithm is used to estimate the movement of both feet. To correct inter-shoe position error, a camera is installed on the right shoe and infrared LEDs are installed on the left shoe. The proposed system gives key gait analysis parameters such as step length, stride length, foot angle and walking speed. Also it gives three dimensional trajectories of two feet for gait analysis.

  4. Inertial sensor-based two feet motion tracking for gait analysis.

    Science.gov (United States)

    Hung, Tran Nhat; Suh, Young Soo

    2013-04-29

    Two feet motion is estimated for gait analysis. An inertial sensor is attached on each shoe and an inertial navigation algorithm is used to estimate the movement of both feet. To correct inter-shoe position error, a camera is installed on the right shoe and infrared LEDs are installed on the left shoe. The proposed system gives key gait analysis parameters such as step length, stride length, foot angle and walking speed. Also it gives three dimensional trajectories of two feet for gait analysis.

  5. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl

    2011-01-01

    We present a complete system for motion correction in high resolution brain positron emission tomography (PET) imaging. It is based on a compact structured light scanner mounted above the patient tunnel of the Siemens High Resolution Research Tomograph PET brain scanner. The structured light system...... is equipped with a near infrared diode and uses phase-shift interferometry to compute 3D representations of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface and thereby giving the head pose changes. The estimated pose changes are used to reposition a sequence...

  6. Higher-Order Motion Inputs For Visual Figure Tracking: Control Algorithms and Neural Circuits

    Science.gov (United States)

    2015-05-30

    1.25°, and blurred by spatial convolution with a Gaussian kernel that has a half-maximum width of 1.4 times this value, in order to mimic the...demonstrated in humans, and now also in flies. It would appear that highly complex motion computations are conserved across species separated by hundreds...E F 3 4 I" FA9550-12-1-0034 Final Report 30 MAY 2014 9 Figure 3: (See prior page.) Convolution of complex figure stimuli with both STAFs

  7. Identifying and tracking pedestrians based on sensor fusion and motion stability predictions.

    Science.gov (United States)

    Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Maria; de la Escalera, Arturo

    2010-01-01

    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  8. Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions

    Directory of Open Access Journals (Sweden)

    Arturo de la Escalera

    2010-08-01

    Full Text Available The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem and dense disparity maps and u-v disparity (vision subsystem. Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  9. Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor

    Directory of Open Access Journals (Sweden)

    Lvwen Huang

    2017-08-01

    Full Text Available Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields.

  10. Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor.

    Science.gov (United States)

    Huang, Lvwen; Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing

    2017-08-23

    Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields.

  11. Ground-Control Networks for Image Based Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry

    Directory of Open Access Journals (Sweden)

    Toby N. Tonkin

    2016-09-01

    Full Text Available The use of small UAV (Unmanned Aerial Vehicle and Structure-from-Motion (SfM with Multi-View Stereopsis (MVS for acquiring survey datasets is now commonplace, however, aspects of the SfM-MVS workflow require further validation. This work aims to provide guidance for scientists seeking to adopt this aerial survey method by investigating aerial survey data quality in relation to the application of ground control points (GCPs at a site of undulating topography (Ennerdale, Lake District, UK. Sixteen digital surface models (DSMs were produced from a UAV survey using a varying number of GCPs (3-101. These DSMs were compared to 530 dGPS spot heights to calculate vertical error. All DSMs produced reasonable surface reconstructions (vertical root-mean-square-error (RMSE of <0.2 m, however, an improvement in DSM quality was found where four or more GCPs (up to 101 GCPs were applied, with errors falling to within the suggested point quality range of the survey equipment used for GCP acquisition (e.g., vertical RMSE of <0.09 m. The influence of a poor GCP distribution was also investigated by producing a DSM using an evenly distributed network of GCPs, and comparing it to a DSM produced using a clustered network of GCPs. The results accord with existing findings, where vertical error was found to increase with distance from the GCP cluster. Specifically vertical error and distance to the nearest GCP followed a strong polynomial trend (R2 = 0.792. These findings contribute to our understanding of the sources of error when conducting a UAV-SfM survey and provide guidance on the collection of GCPs. Evidence-driven UAV-SfM survey designs are essential for practitioners seeking reproducible, high quality topographic datasets for detecting surface change.

  12. Tracking of Maneuvering Complex Extended Object with Coupled Motion Kinematics and Extension Dynamics Using Range Extent Measurements.

    Science.gov (United States)

    Sun, Lifan; Ji, Baofeng; Lan, Jian; He, Zishu; Pu, Jiexin

    2017-09-22

    The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects' extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches.

  13. Relative Vessel Motion Tracking using Sensor Fusion, Aruco Markers, and MRU Sensors

    Directory of Open Access Journals (Sweden)

    Sondre Sanden Tordal

    2017-04-01

    Full Text Available This paper presents a novel approach for estimating the relative motion between two moving offshore vessels. The method is based on a sensor fusion algorithm including a vision system and two motion reference units (MRUs. The vision system makes use of the open-source computer vision library OpenCV and a cube with Aruco markers placed onto each of the cube sides. The Extended Quaternion Kalman Filter (EQKF is used for bad pose rejection for the vision system. The presented sensor fusion algorithm is based on the Indirect Feedforward Kalman Filter for error estimation. The system is self-calibrating in the sense that the Aruco cube can be placed in an arbitrary location on the secondary vessel. Experimental 6-DOF results demonstrate the accuracy and efficiency of the proposed sensor fusion method compared with the internal joint sensors of two Stewart platforms and the industrial robot. The standard deviation error was found to be 31mm or better when the Arcuo cube was placed at three different locations.

  14. SU-E-J-142: Performance Study of Automatic Image-Segmentation Algorithms in Motion Tracking Via MR-IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y; Olsen, J.; Parikh, P.; Noel, C; Wooten, H; Du, D; Mutic, S; Hu, Y [Washington University, St. Louis, MO (United States); Kawrakow, I; Dempsey, J [Washington University, St. Louis, MO (United States); ViewRay Co., Oakwood Village, OH (United States)

    2014-06-01

    Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE), along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information

  15. Eye tracking reveals a crucial role for facial motion in recognition of faces by infants.

    Science.gov (United States)

    Xiao, Naiqi G; Quinn, Paul C; Liu, Shaoying; Ge, Liezhong; Pascalis, Olivier; Lee, Kang

    2015-06-01

    Current knowledge about face processing in infancy comes largely from studies using static face stimuli, but faces that infants see in the real world are mostly moving ones. To bridge this gap, 3-, 6-, and 9-month-old Asian infants (N = 118) were familiarized with either moving or static Asian female faces, and then their face recognition was tested with static face images. Eye-tracking methodology was used to record eye movements during the familiarization and test phases. The results showed a developmental change in eye movement patterns, but only for the moving faces. In addition, the more infants shifted their fixations across facial regions, the better their face recognition was, but only for the moving faces. The results suggest that facial movement influences the way faces are encoded from early in development.

  16. Feature-based respiratory motion tracking in native fluoroscopic sequences for dynamic roadmaps during minimally invasive procedures in the thorax and abdomen

    Science.gov (United States)

    Wagner, Martin G.; Laeseke, Paul F.; Schubert, Tilman; Slagowski, Jordan M.; Speidel, Michael A.; Mistretta, Charles A.

    2017-03-01

    Fluoroscopic image guidance for minimally invasive procedures in the thorax and abdomen suffers from respiratory and cardiac motion, which can cause severe subtraction artifacts and inaccurate image guidance. This work proposes novel techniques for respiratory motion tracking in native fluoroscopic images as well as a model based estimation of vessel deformation. This would allow compensation for respiratory motion during the procedure and therefore simplify the workflow for minimally invasive procedures such as liver embolization. The method first establishes dynamic motion models for both the contrast-enhanced vasculature and curvilinear background features based on a native (non-contrast) and a contrast-enhanced image sequence acquired prior to device manipulation, under free breathing conditions. The model of vascular motion is generated by applying the diffeomorphic demons algorithm to an automatic segmentation of the subtraction sequence. The model of curvilinear background features is based on feature tracking in the native sequence. The two models establish the relationship between the respiratory state, which is inferred from curvilinear background features, and the vascular morphology during that same respiratory state. During subsequent fluoroscopy, curvilinear feature detection is applied to determine the appropriate vessel mask to display. The result is a dynamic motioncompensated vessel mask superimposed on the fluoroscopic image. Quantitative evaluation of the proposed methods was performed using a digital 4D CT-phantom (XCAT), which provides realistic human anatomy including sophisticated respiratory and cardiac motion models. Four groups of datasets were generated, where different parameters (cycle length, maximum diaphragm motion and maximum chest expansion) were modified within each image sequence. Each group contains 4 datasets consisting of the initial native and contrast enhanced sequences as well as a sequence, where the respiratory motion is

  17. SU-D-207-05: Real-Time Intrafractional Motion Tracking During VMAT Delivery Using a Conventional Elekta CBCT System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Kyun; Sharp, Gregory C.; Gierga, David P.; Winey, Brian A. [Massachusetts General Hospital, Boston, MA (United States); Ye, Sung-Joon [Seoul National University, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: Real-time kV projection streaming capability has become recently available for Elekta XVI version 5.0. This study aims to investigate the feasibility and accuracy of real-time fiducial marker tracking during CBCT acquisition with or without simultaneous VMAT delivery using a conventional Elekta linear accelerator. Methods: A client computer was connected to an on-board kV imaging system computer, and receives and processes projection images immediately after image acquisition. In-house marker tracking software based on FFT normalized cross-correlation was developed and installed in the client computer. Three gold fiducial markers with 3 mm length were implanted in a pelvis-shaped phantom with 36 cm width. The phantom was placed on a programmable motion platform oscillating in anterior-posterior and superior-inferior directions simultaneously. The marker motion was tracked in real-time for (1) a kV-only CBCT scan with treatment beam off and (2) a kV CBCT scan during a 6-MV VMAT delivery. The exposure parameters per projection were 120 kVp and 1.6 mAs. Tracking accuracy was assessed by comparing superior-inferior positions between the programmed and tracked trajectories. Results: The projection images were successfully transferred to the client computer at a frequency of about 5 Hz. In the kV-only scan, highly accurate marker tracking was achieved over the entire range of cone-beam projection angles (detection rate / tracking error were 100.0% / 0.6±0.5 mm). In the kV-VMAT scan, MV-scatter degraded image quality, particularly for lateral projections passing through the thickest part of the phantom (kV source angle ranging 70°-110° and 250°-290°), resulting in a reduced detection rate (90.5%). If the lateral projections are excluded, tracking performance was comparable to the kV-only case (detection rate / tracking error were 100.0% / 0.8±0.5 mm). Conclusion: Our phantom study demonstrated a promising Result for real-time motion tracking using a

  18. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units

    Directory of Open Access Journals (Sweden)

    Kui Liu

    2017-02-01

    Full Text Available This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI. More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©. The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs. The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.

  19. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units.

    Science.gov (United States)

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-02-12

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.

  20. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units

    Science.gov (United States)

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-01-01

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684

  1. Atmospheric Motion Vectors from INSAT-3D: Initial quality assessment and its impact on track forecast of cyclonic storm NANAUK

    Science.gov (United States)

    Deb, S. K.; Kishtawal, C. M.; Kumar, Prashant; Kiran Kumar, A. S.; Pal, P. K.; Kaushik, Nitesh; Sangar, Ghansham

    2016-03-01

    The advanced Indian meteorological geostationary satellite INSAT-3D was launched on 26 July 2013 with an improved imager and an infrared sounder and is placed at 82°E over the Indian Ocean region. With the advancement in retrieval techniques of different atmospheric parameters and with improved imager data have enhanced the scope for better understanding of the different tropical atmospheric processes over this region. The retrieval techniques and accuracy of one such parameter, Atmospheric Motion Vectors (AMV) has improved significantly with the availability of improved spatial resolution data along with more options of spectral channels in the INSAT-3D imager. The present work is mainly focused on providing brief descriptions of INSAT-3D data and AMV derivation processes using these data. It also discussed the initial quality assessment of INSAT-3D AMVs for a period of six months starting from 01 February 2014 to 31 July 2014 with other independent observations: i) Meteosat-7 AMVs available over this region, ii) in-situ radiosonde wind measurements, iii) cloud tracked winds from Multi-angle Imaging Spectro-Radiometer (MISR) and iv) numerical model analysis. It is observed from this study that the qualities of newly derived INSAT-3D AMVs are comparable with existing two versions of Meteosat-7 AMVs over this region. To demonstrate its initial application, INSAT-3D AMVs are assimilated in the Weather Research and Forecasting (WRF) model and it is found that the assimilation of newly derived AMVs has helped in reduction of track forecast errors of the recent cyclonic storm NANAUK over the Arabian Sea. Though, the present study is limited to its application to one case study, however, it will provide some guidance to the operational agencies for implementation of this new AMV dataset for future applications in the Numerical Weather Prediction (NWP) over the south Asia region.

  2. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    Energy Technology Data Exchange (ETDEWEB)

    Chao, M; Yuan, Y; Rosenzweig, K; Lo, Y [The Mount Sinai Medical Center, New York, NY (United States); Brousmiche, S [Ion Beam Application, Louvain-la-neuve (Belgium)

    2015-06-15

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.

  3. Novel hand motion tracking system%一种新颖的手部运动跟踪系统

    Institute of Scientific and Technical Information of China (English)

    马英红; 杨家玮; 惠蕾放; 李烨; MAO Zhihong; SUN Mingui

    2012-01-01

    Most existing hand tracking systems have restrictions on human motion. This paper presents a wireless, wearable, and unobstructive wrist-finger tracking system, which uses a small magnet affixed on each fingernail as a position marker and a set of small magnetic sensors attached to an electronic wristband as a detector array. As the wrist and the finger move, the combined magnetic field from all magnets is detected by each sensor at a specific .wrist location. The detected data are fed into a hand posture estimator to inversely calculate the hand posture based on a mathematical system model. The measurability and trackability of hand movements in the system are validated, respectively, by measurement and hand tracking experiments.%目前已有的手部运动跟踪系统大多在一定程度上限制了人体运动自由.基于此,提出一种无线、可穿戴、无障碍的腕关节、指关节运动跟踪系统.在人体每个手指甲上粘贴一轻小永磁体,用以产生标示腕关节、指关节运动的信号;若干磁传感器置于手腕处的电子腕带上,作为标示信号(磁信号)检测器.当腕关节、指关节运动时,永磁体在各传感器所在位置处的合成磁场发生变化,传感器对该磁场信号进行测量,所检测到的磁场信号送入手部姿势估计器,估计器基于系统数学模型计算手部姿势,从而实现对手部运动的跟踪.

  4. Dual System for Enhancing Cognitive Abilities of Children with ADHD Using Leap Motion and eye-Tracking Technologies.

    Science.gov (United States)

    Garcia-Zapirain, Begoña; de la Torre Díez, Isabel; López-Coronado, Miguel

    2017-07-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a brain disorder marked by an ongoing pattern of inattention and/or hyperactivity-impulsivity that affects with development or functioning. It affects 3-5% of all American and European children. The objective of this paper is to develop and test a dual system for the rehabilitation of cognitive functions in children with ADHD. A technological platform has been developed using the ". NET framework", which makes use of two physiological sensors, -an eye-tracker and a hand gesture recognition sensor- in order to provide children with the opportunity to develop their learning and attention skills. The two physiological sensors we utilized for the development are the Tobii X1 Light Eye Tracker and the Leap Motion. SUS and QUIS questionnaires have been carried out. 19 users tested the system and the average age was 10.88 years (SD = 3.14). The results obtained after tests were performed were quite positive and hopeful. The learning of the users caused by the system and the interfaces item got a high punctuation with a mean of 7.34 (SD = 1.06) for SUS questionnaire and 7.73 (SD = 0.6) for QUIS questionnaire. We didn't find differences between boys and girls. The developed multimodal rehabilitation system can help to children with attention deficit and learning issues. Moreover, the teachers may utilize this system to track the progression of their students and see their behavior.

  5. The Seismic Response of High-Speed Railway Bridges Subjected to Near-Fault Forward Directivity Ground Motions Using a Vehicle-Track-Bridge Element

    Directory of Open Access Journals (Sweden)

    Chen Ling-kun

    2014-01-01

    Full Text Available Based on the Next Generation Attenuation (NGA project ground motion library, the finite element model of the high-speed railway vehicle-bridge system is established. The model was specifically developed for such system that is subjected to near-fault ground motions. In addition, it accounted for the influence of the rail irregularities. The vehicle-track-bridge (VTB element is presented to simulate the interaction between train and bridge, in which a train can be modeled as a series of sprung masses concentrated at the axle positions. For the short period railway bridge, the results from the case study demonstrate that directivity pulse effect tends to increase the seismic responses of the bridge compared with far-fault ground motions or nonpulse-like motions and the directivity pulse effect and high values of the vertical acceleration component can notably influence the hysteretic behaviour of piers.

  6. List-Mode PET Motion Correction Using Markerless Head Tracking: Proof-of-Concept With Scans of Human Subject

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sullivan, Jenna M.; Mulnix, Tim

    2013-01-01

    scanner. Head motion was independently measured, with a commercial marker-based device and the proposed vision-based system. A list-mode event-by-event reconstruction algorithm using the detected motion was applied. A phantom study with hand-controlled continuous random motion was obtained. Motion...

  7. WE-AB-303-05: Breathing Motion of Liver Segments From Fiducial Tracking During Robotic Radiosurgery and Comparison with 4D-CT-Derived Fiducial Motion

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J; Pantarotto, J; Nair, V; Cook, G; Plourde, M; Vandervoort, E [The Ottawa Hospital Cancer Centre, Ottawa, Ontario (Canada)

    2015-06-15

    Purpose: To quantify respiratory-induced motion of liver segments using the positions of implanted fiducials during robotic radiosurgery. This study also compared fiducial motion derived from four-dimensional computed tomography (4D-CT) maximum intensity projections (MIP) with motion derived from imaging during treatment. Methods: Forty-two consecutive liver patients treated with liver ablative radiotherapy were accrued to an ethics approved retrospective study. The liver segment in which each fiducial resided was identified. Fiducial positions throughout each treatment fraction were determined using orthogonal kilovoltage images. Any data due to patient repositioning or motion was removed. Mean fiducial positions were calculated. Fiducial positions beyond two standard deviations of the mean were discarded and remaining positions were fit to a line segment using least squares minimization (LSM). For eight patients, fiducial motion was derived from 4D-CT MIPs by calculating the CT number weighted mean position of the fiducial on each slice and fitting a line segment to these points using LSM. Treatment derived fiducial trajectories were corrected for patient rotation and compared to MIP derived trajectories. Results: The mean total magnitude of fiducial motion across all liver segments in left-right, anteroposterior, and superoinferior (SI) directions were 3.0 ± 0.2 mm, 9.3 ± 0.4 mm, and 20.5 ± 0.5 mm, respectively. Differences in per-segment mean fiducial motion were found with SI motion ranging from 12.6 ± 0.8 mm to 22.6 ± 0.9 mm for segments 3 and 8, respectively. Large, varied differences between treatment and MIP derived motion at simulation were found with the mean difference for SI motion being 2.6 mm (10.8 mm standard deviation). Conclusion: The magnitude of liver fiducial motion was found to differ by liver segment. MIP derived liver fiducial motion differed from motion observed during treatment, implying that 4D-CTs may not accurately capture the

  8. Sagittal range of motion of the thoracic spine using inertial tracking device and effect of measurement errors on model predictions.

    Science.gov (United States)

    Hajibozorgi, M; Arjmand, N

    2016-04-11

    Range of motion (ROM) of the thoracic spine has implications in patient discrimination for diagnostic purposes and in biomechanical models for predictions of spinal loads. Few previous studies have reported quite different thoracic ROMs. Total (T1-T12), lower (T5-T12) and upper (T1-T5) thoracic, lumbar (T12-S1), pelvis, and entire trunk (T1) ROMs were measured using an inertial tracking device as asymptomatic subjects flexed forward from their neutral upright position to full forward flexion. Correlations between body height and the ROMs were conducted. An effect of measurement errors of the trunk flexion (T1) on the model-predicted spinal loads was investigated. Mean of peak voluntary total flexion of trunk (T1) was 118.4 ± 13.9°, of which 20.5 ± 6.5° was generated by flexion of the T1 to T12 (thoracic ROM), and the remaining by flexion of the T12 to S1 (lumbar ROM) (50.2 ± 7.0°) and pelvis (47.8 ± 6.9°). Lower thoracic ROM was significantly larger than upper thoracic ROM (14.8 ± 5.4° versus 5.8 ± 3.1°). There were non-significant weak correlations between body height and the ROMs. Contribution of the pelvis to generate the total trunk flexion increased from ~20% to 40% and that of the lumbar decreased from ~60% to 42% as subjects flexed forward from upright to maximal flexion while that of the thoracic spine remained almost constant (~16% to 20%) during the entire movement. Small uncertainties (±5°) in the measurement of trunk flexion angle resulted in considerable errors (~27%) in the model-predicted spinal loads only in activities involving small trunk flexion.

  9. SU-E-J-197: Investigation of Microsoft Kinect 2.0 Depth Resolution for Patient Motion Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, E; Snyder, M [Wayne State University, Detroit, MI (United States)

    2015-06-15

    Purpose: Investigate the use of the Kinect 2.0 for patient motion tracking during radiotherapy by studying spatial and depth resolution capabilities. Methods: Using code written in C#, depth map data was abstracted from the Kinect to create an initial depth map template indicative of the initial position of an object to be compared to the depth map of the object over time. To test this process, simple setup was created in which two objects were imaged: a 40 cm × 40 cm board covered in non reflective material and a 15 cm × 26 cm textbook with a slightly reflective, glossy cover. Each object, imaged and measured separately, was placed on a movable platform with object to camera distance measured. The object was then moved a specified amount to ascertain whether the Kinect’s depth camera would visualize the difference in position of the object. Results: Initial investigations have shown the Kinect depth resolution is dependent on the object to camera distance. Measurements indicate that movements as small as 1 mm can be visualized for objects as close as 50 cm away. This depth resolution decreases linearly with object to camera distance. At 4 m, the depth resolution had decreased to observe a minimum movement of 1 cm. Conclusion: The improved resolution and advanced hardware of the Kinect 2.0 allows for increase of depth resolution over the Kinect 1.0. Although obvious that the depth resolution should decrease with increasing distance from an object given the decrease in number of pixels representing said object, the depth resolution at large distances indicates its usefulness in a clinical setting.

  10. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system.

    Science.gov (United States)

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth; Suzuki, Ryusuke; Matsuura, Taeko; Toramatsu, Chie; Takao, Seishin; Nihongi, Hideaki; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction.

  11. The Research on Detection and Tracking Algorithms of Motion Obj ects%运动目标检测与跟踪算法的研究

    Institute of Scientific and Technical Information of China (English)

    刘晓悦; 孟妍

    2015-01-01

    The detection and tracking algorithm of motion obj ects is one of hotspots in the field of computer vision.It’s also the key intelligent technology of video surveillance system.It con-cerns the research results of many fields such as image processing,pattern recognition and artificial intelli-gence,and so on.This thesis is mainly done some researches on the detection and tracking algorithm of video motion obj ects.In terms of motion obj ects detection,three common approaches in this field of mo-tion obj ect detecting are analyzed including background subtraction,temporal differencing and optical flow. Then their relative merits and main application range are pointed out.In the motion obj ects tracking as-pects,focuses on introducing the Mean Shift tracking algorithm,which belongs on tracking algorithm based on feature matching.%运动目标检测与跟踪的算法一直以来是计算机视觉领域中的核心课题,也是智能视频监控中的关键技术。它主要是包含了图像处理、模式识别、人工智能等领域内的成果。着重研究运动目标检测与跟踪的算法[13],并通过编程实现方法的有效性。在运动检测方面,主要应用的算法包括背景差分法、帧间差分法以及光流法,指出了这些算法的优缺点以及适用范围。在运动目标跟踪方面,主要研究了特征匹配跟踪算法中的Mean Shift算法[19]。

  12. Objective evaluation of methods to track motion from clinical cardiac-gated tagged MRI without the use of a gold standard

    Science.gov (United States)

    Parages, Felipe M.; Denney, Thomas S.; Brankov, Jovan G.

    2015-03-01

    Cardiac-gated MRI is widely used for the task of measuring parameters related to heart motion. More specifically, gated tagged MRI is the preferred modality to estimate local deformation (strain) and rotational motion (twist) of myocardial tissue. Many methods have been proposed to estimate cardiac motion from gated MRI sequences. However, when dealing with clinical data, evaluation of these methods is problematic due to the absence of gold-standards for cardiac motion. To overcome that, a linear regression scheme known as regression-without-truth (RWT) was proposed in the past. RWT uses priors to model the distribution of true values, thus enabling us to assess image-analysis algorithms without knowledge of the ground-truth. Furthermore, it allows one to rank methods by means of an objective figure-of-merit γ (i.e. precision). In this work we apply RWT to compare the performance of several gated MRI motion-tracking methods (e.g. non-rigid registration, feature based, harmonic phase) at the task of estimating myocardial strain and left-ventricle (LV) twist, from a population of 18 clinical human cardiac-gated tagged MRI studies.

  13. Three-dimensional intrafractional motion of breast during tangential breast irradiation monitored with high-sampling frequency using a real-time tumor-tracking radiotherapy system.

    Science.gov (United States)

    Kinoshita, Rumiko; Shimizu, Shinichi; Taguchi, Hiroshi; Katoh, Norio; Fujino, Masaharu; Onimaru, Rikiya; Aoyama, Hidefumi; Katoh, Fumi; Omatsu, Tokuhiko; Ishikawa, Masayori; Shirato, Hiroki

    2008-03-01

    To evaluate the three-dimensional intrafraction motion of the breast during tangential breast irradiation using a real-time tracking radiotherapy (RT) system with a high-sampling frequency. A total of 17 patients with breast cancer who had received breast conservation RT were included in this study. A 2.0-mm gold marker was placed on the skin near the nipple of the breast for RT. A fluoroscopic real-time tumor-tracking RT system was used to monitor the marker. The range of motion of each patient was calculated in three directions. The mean +/- standard deviation of the range of respiratory motion was 1.0 +/- 0.6 mm (median, 0.9; 95% confidence interval [CI] of the marker position, 0.4-2.6), 1.3 +/- 0.5 mm (median, 1.1; 95% CI, 0.5-2.5), and 2.6 +/- 1.4 (median, 2.3; 95% CI, 1.0-6.9) for the right-left, craniocaudal, and anteroposterior direction, respectively. No correlation was found between the range of motion and the body mass index or respiratory function. The mean +/- standard deviation of the absolute value of the baseline shift in the right-left, craniocaudal, and anteroposterior direction was 0.2 +/- 0.2 mm (range, 0.0-0.8 mm), 0.3 +/- 0.2 mm (range, 0.0-0.7 mm), and 0.8 +/- 0.7 mm (range, 0.1-1.8 mm), respectively. Both the range of motion and the baseline shift were within a few millimeters in each direction. As long as the conventional wedge-pair technique and the proper immobilization are used, the intrafraction three-dimensional change in the breast surface did not much influence the dose distribution.

  14. Speckle-Tracking Sonographic Assessment of Longitudinal Motion of the Flexor Tendon and Subsynovial Tissue in Carpal Tunnel Syndrome

    NARCIS (Netherlands)

    van Doesburg, Margriet H. M.; Yoshii, Yuichi; Henderson, Jacqueline; Villarraga, Hector R.; Moran, Steven L.; Amadio, Peter C.

    2012-01-01

    Objectives-The aim of this study was to image both tendon and subsynovial connective tissue movement in patients with carpal tunnel syndrome and healthy control volunteers, using sonography with speckle tracking. To estimate accuracy of this tracking method, we used in vivo measurements during surge

  15. Development of system using beam's eye view images to measure respiratory motion tracking errors in image-guided robotic radiosurgery system.

    Science.gov (United States)

    Inoue, Mitsuhiro; Shiomi, Hiroya; Iwata, Hiromitsu; Taguchi, Junichi; Okawa, Kohei; Kikuchi, Chie; Inada, Kosaku; Iwabuchi, Michio; Murai, Taro; Koike, Izumi; Tatewaki, Koshi; Ohta, Seiji; Inoue, Tomio

    2015-01-08

    The accuracy of the CyberKnife Synchrony Respiratory Tracking System (SRTS) is considered to be patient-dependent because the SRTS relies on an individual correlation between the internal tumor position (ITP) and the external marker position (EMP), as well as a prediction method to compensate for the delay incurred to adjust the position of the linear accelerator (linac). We aimed to develop a system for obtaining pretreatment statistical measurements of the SRTS tracking error by using beam's eye view (BEV) images, to enable the prediction of the patient-specific accuracy. The respiratory motion data for the ITP and the EMP were derived from cine MR images obtained from 23 patients. The dynamic motion phantom was used to reproduce both the ITP and EMP motions. The CyberKnife was subsequently operated with the SRTS, with a CCD camera mounted on the head of the linac. BEV images from the CCD camera were recorded during the tracking of a ball target by the linac. The tracking error was measured at 15 Hz using in-house software. To assess the precision of the position detection using an MR image, the positions of test tubes (determined from MR images) were compared with their actual positions. To assess the precision of the position detection of the ball, ball positions measured from BEV images were compared with values measured using a Vernier caliper. The SRTS accuracy was evaluated by determining the tracking error that could be identified with a probability of more than 95% (Ep95). The detection precision of the tumor position (determined from cine MR images) was < 0.2 mm. The detection precision of the tracking error when using the BEV images was < 0.2mm. These two detection precisions were derived from our measurement system and were not obtained from the SRTS. The median of Ep95 was found to be 1.5 (range, 1.0-3.5) mm. The difference between the minimum and maximum Ep95 was 2.5mm, indicating that this provides a better means of evaluating patient-specific SRTS

  16. Assessment of the cervical range of motion over time, differences between results of the Flock of Birds and the EDI-320 : A comparison between an electromagnetic tracking system and an electronic inclinometer

    NARCIS (Netherlands)

    Assink, Nienke; Bergman, Gert J. D.; Knoester, Bianca; Winters, Jan C.; Dijkstra, Pieter U.

    2008-01-01

    The objective of this study was to analyse cervical range of motion, assessed over time by means of a digital inclinometer (EDI-320) and a three-dimensional electromagnetic tracking device (Flock of Birds). The maximum active cervical range of motion was assessed with two measurement devices in thre

  17. SU-E-J-182: Reproducibility of Tumor Motion Probability Distribution Function in Stereotactic Body Radiation Therapy of Lung Using Real-Time Tumor-Tracking Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Shiinoki, T; Hanazawa, H; Park, S; Takahashi, T; Shibuya, K [Yamaguchi University, Ube, Yamaguchi (Japan); Kawamura, S; Uehara, T; Yuasa, Y; Koike, M [Yamaguchi University Hospital, Ube, Yamaguchi (Japan)

    2015-06-15

    Purpose: We aim to achieve new four-dimensional radiotherapy (4DRT) using the next generation real-time tumor-tracking (RTRT) system and flattening-filter-free techniques. To achieve new 4DRT, it is necessary to understand the respiratory motion of tumor. The purposes of this study were: 1.To develop the respiratory motion analysis tool using log files. 2.To evaluate the reproducibility of tumor motion probability distribution function (PDF) during stereotactic body RT (SBRT) of lung tumor. Methods: Seven patients having fiducial markers closely implanted to the lung tumor were enrolled in this study. The positions of fiducial markers were measured using the RTRT system (Mitsubishi Electronics Co., JP) and recorded as two types of log files during the course of SBRT. For each patients, tumor motion range and tumor motion PDFs in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) directions were calculated using log files of all beams per fraction (PDFn). Fractional PDF reproducibility (Rn) was calculated as Kullback-Leibler (KL) divergence between PDF1 and PDFn of tumor motion. The mean of Rn (Rm) was calculated for each patient and correlated to the patient’s mean tumor motion range (Am). The change of Rm during the course of SBRT was also evluated. These analyses were performed using in-house developed software. Results: The Rm were 0.19 (0.07–0.30), 0.14 (0.07–0.32) and 0.16 (0.09–0.28) in LR, AP and SI directions, respectively. The Am were 5.11 mm (2.58–9.99 mm), 7.81 mm (2.87–15.57 mm) and 11.26 mm (3.80–21.27 mm) in LR, AP and SI directions, respectively. The PDF reproducibility decreased as the tumor motion range increased in AP and SI direction. That decreased slightly through the course of RT in SI direction. Conclusion: We developed the respiratory motion analysis tool for 4DRT using log files and quantified the range and reproducibility of respiratory motion for lung tumors.

  18. Comparison between target margins derived from 4DCT scans and real-time tumor motion tracking: Insights from lung tumor patients treated with robotic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Descovich, Martina, E-mail: mdescovich@radonc.ucsf.edu; McGuinness, Christopher; Kannarunimit, Danita; Chen, Josephine; Pinnaduwage, Dilini; Pouliot, Jean; Kased, Norbert; Gottschalk, Alexander R.; Yom, Sue S. [UCSF Department of Radiation Oncology, San Francisco, California 94115 (United States)

    2015-03-15

    Purpose: A unique capability of the CyberKnife system is dynamic target tracking. However, not all patients are eligible for this approach. Rather, their tumors are tracked statically using the vertebral column for alignment. When using static tracking, the internal target volume (ITV) is delineated on the four-dimensional (4D) CT scan and an additional margin is added to account for setup uncertainty [planning target volume (PTV)]. Treatment margins are difficult to estimate due to unpredictable variations in tumor motion and respiratory pattern during the course of treatment. The inability to track the target and detect changes in respiratory characteristics might result in geographic misses and local tumor recurrences. The purpose of this study is to develop a method to evaluate the adequacy of ITV-to-PTV margins for patients treated in this manner. Methods: Data from 24 patients with lesions in the upper lobe (n = 12), middle lobe (n = 3), and lower lobe (n = 9) were included in this study. Each patient was treated with dynamic tracking and underwent 4DCT scanning at the time of simulation. Data including the 3D coordinates of the target over the course of treatment were extracted from the treatment log files and used to determine actual target motion in the superior–inferior (S–I), anterior–posterior (A–P), and left–right (L–R) directions. Different approaches were used to calculate anisotropic and isotropic margins, assuming that the tumor moves as a rigid body. Anisotropic margins were calculated by separating target motion in the three anatomical directions, and a uniform margin was calculated by shifting the gross tumor volume contours in the 3D space and by computing the percentage of overlap with the PTV. The analysis was validated by means of a theoretical formulation. Results: The three methods provided consistent results. A uniform margin of 4.5 mm around the ITV was necessary to assure 95% target coverage for 95% of the fractions included

  19. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  20. The birth of a dinosaur footprint: subsurface 3D motion reconstruction and discrete element simulation reveal track ontogeny.

    Science.gov (United States)

    Falkingham, Peter L; Gatesy, Stephen M

    2014-12-23

    Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal-substrate and substrate-substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air-substrate interface, subsurface displacements maintain a high level of organization owing to grain-grain support. Splitting the substrate volume along "virtual bedding planes" exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term "track ontogeny." This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation.

  1. SU-E-J-268: Is It Necessary to Account for Organs at Risk Respiratory Induced Motion Effects in Radiotherapy Planning with Tumor Tracking?

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, M; Boussion, N; Visvikis, D [INSERM UMR 1101 - LaTIM, Brest (France); Fayad, H [INSERM UMR 1101 - LaTIM, UBO, Brest (France); Pradier, O [CHRU Morvan, Radiotherapy, Brest (France)

    2014-06-01

    Purpose: The objective of this study was to evaluate the necessity to account for the organs at risk (OARs) respiratory induced motion in addition to the tumor displacement when planning a radiotherapy treatment that accounts for tumor motion. Methods: For 18 lung cancer patients, conformational radiotherapy treatment plans were generated using 3 different CT volumes: the two extreme respiratory phases corresponding to either the full inspiration (plan 1) or expiration (plan 3), as well as a manually deformed phase consisting in full inspiration combined with the full expiration tumor location (plan 2) simulating a tumor tracking plan without addressing OARs motion. Treatment plans were initially created on plan 1 and then transferred to plan 2 and 3 which represent respectively the tumor displacement only and the whole anatomic variations due to breathing. The dose coverage and the dose delivered to the OARs were compared using conformational indexes and generalized equivalent uniform dose. Results: The worst conformational indexes were obtained for plans with all anatomic deformations (Table 1) with an underestimation of the 95% isodose spreading on healthy tissue compared to plans considering the tumor displacement only. Furthermore, mean doses to the OARs when accounting for all the anatomic changes were always higher than those associated with the tumor displacement only: the mean difference between these two plans was 1±1.37 Gy (maximum of 3.8 Gy) for the heart and 1.4±1.42 Gy (maximum of 4.1 Gy) for the lung in which the tumor was located (Figure 1). Conclusion: OARs deformations due to breathing motion should be included in the treatment planning in order to avoid unnecessary OARs dose and/or allow for a tumor dose escalation. This is even more important for treatments like stereotactic radiation therapy which necessitates a high precision ballistic and dose control.

  2. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe [Deutsches Krebsforschungszentrum (DKFZ), Department of Medical Physics, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2007-11-21

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v{sub max} while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information. (note)

  3. A Simultaneous Facial Motion Tracking and Expression Recognition Algorithm%一种同步人脸运动跟踪与表情识别算法

    Institute of Scientific and Technical Information of China (English)

    於俊; 汪增福; 李睿

    2015-01-01

    In view of facial expression recognition from monocular video with dynamic background ,a real-time system was proposed based on the algorithm in which facial motion is tracked and facial expression is recognized simultaneously .Firstly ,online appearance model and cylinder head model were combined to track 3D facial motion from video in framework of particle filtering ;secondly ,the static knowledge of facial expression was extracted through facial expression anatomy ;thirdly ,the dynamic knowledge of facial expression was extracted through manifold learning ;fourthly ,facial expression was retrieved by fusing the static knowledge and dynamic knowledge during facial motion tracking process .The experiments results confirmed the advantage on facial expression recognition even in the presence of significant head pose and facial expression variations of this system .%针对单视频动态变化背景下的人脸表情识别问题,提出了一种同步人脸运动跟踪和表情识别算法,并在此基础上构建了一个实时系统。该系统达到了如下目标:首先在粒子滤波框架下结合在线外观模型和柱状几何模型进行人脸三维运动跟踪;接着基于生理知识来提取人脸表情的静态信息;然后基于流形学习来提取人脸表情的动态信息;最后在人脸运动跟踪过程中,结合人脸表情静态信息和动态信息来进行表情识别。实验结果表明,该系统在大姿态和丰富表情下具有较好的综合优势。

  4. SU-E-J-42: Evaluation of Fiducial Markers for Ultrasound and X-Ray Images Used for Motion Tracking in Pancreas SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Ng, SK; Armour, E; Su, L; Zhang, Y; Wong, J; Ding, K [Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD (United States); Iordachita, I [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD (United States); Sen, H Tutkun; Kazanzides, P; Bell, M Lediju [Department of Computer Science, Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose Ultrasound tracking of target motion relies on visibility of vascular and/or anatomical landmark. However this is challenging when the target is located far from vascular structures or in organs that lack ultrasound landmark structure, such as in the case of pancreas cancer. The purpose of this study is to evaluate visibility, artifacts and distortions of fusion coils and solid gold markers in ultrasound, CT, CBCT and kV images to identify markers suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment. Methods Two fusion coils (1mm × 5mm and 1mm × 10 mm) and a solid gold marker (0.8mm × 10mm) were embedded in a tissue–like ultrasound phantom. The phantom (5cm × 12cm × 20cm) was prepared using water, gelatin and psyllium-hydrophilic-mucilloid fiber. Psylliumhydrophilic mucilloid acts as scattering medium to produce echo texture that simulates sonographic appearance of human tissue in ultrasound images while maintaining electron density close to that of water in CT images. Ultrasound images were acquired using 3D-ultrasound system with markers embedded at 5, 10 and 15mm depth from phantom surface. CT images were acquired using Philips Big Bore CT while CBCT and kV images were acquired with XVI-system (Elexta). Visual analysis was performed to compare visibility of the markers and visibility score (1 to 3) were assigned. Results All markers embedded at various depths are clearly visible (score of 3) in ultrasound images. Good visibility of all markers is observed in CT, CBCT and kV images. The degree of artifact produced by the markers in CT and CBCT images are indistinguishable. No distortion is observed in images from any modalities. Conclusion All markers are visible in images across all modalities in this homogenous tissue-like phantom. Human subject data is necessary to confirm the marker type suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment.

  5. Tracking ultrafast excited-state bond-twisting motion in solution close to the Franck-Condon point.

    Science.gov (United States)

    Dietzek, Benjamin; Pascher, Torbjörn; Yartsev, Arkady

    2007-05-31

    Applying optimal control to photoinduced trans-cis isomerization in condensed phase, the dynamics of bond-twisting motion of 1,1'-diethyl-4,4'-cyanine in methanol and propanol is revealed. The shape of the optimized pulse resulting from minimization of the photoisomer formation can be directly related to the initial excited-state dynamics in close proximity to the Franck-Condon point. The solvent viscosity-dependent ultrafast wavepacket motion is reflected in the prominent down-chirp of the optimized pulses and reveals a detailed picture of the control mechanism: The reduction of the isomer production is achieved by most efficient dumping of excited population back to the trans ground state. In the higher-viscosity solvent, propanol, wavelength-dependent oscillatory features are superimposed to the overall chirp structure pointing to the importance of excited-state vibrational coherences for the dumping process.

  6. SU-E-J-150: Impact of Intrafractional Prostate Motion On the Accuracy and Efficiency of Prostate SBRT Delivery: A Retrospective Analysis of Prostate Tracking Log Files

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, H; Hirsch, A; Willins, J; Kachnic, J [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Boston Medical Center and Boston University School of Medicine, Boston, MA (United States); Qureshi, M; Katz, M; Nicholas, B; Keohan, S [Boston Medical Center and Boston University School of Medicine, Boston, MA (United States); De Armas, R [Massachusetts Institute of Technology, Cambridge, MA (United States); Lu, H; Efstathiou, J; Zietman, A [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2014-06-01

    Purpose: To measure intrafractional prostate motion by time-based stereotactic x-ray imaging and investigate the impact on the accuracy and efficiency of prostate SBRT delivery. Methods: Prostate tracking log files with 1,892 x-ray image registrations from 18 SBRT fractions for 6 patients were retrospectively analyzed. Patient setup and beam delivery sessions were reviewed to identify extended periods of large prostate motion that caused delays in setup or interruptions in beam delivery. The 6D prostate motions were compared to the clinically used PTV margin of 3–5 mm (3 mm posterior, 5 mm all other directions), a hypothetical PTV margin of 2–3 mm (2 mm posterior, 3 mm all other directions), and the rotation correction limits (roll ±2°, pitch ±5° and yaw ±3°) of CyberKnife to quantify beam delivery accuracy. Results: Significant incidents of treatment start delay and beam delivery interruption were observed, mostly related to large pitch rotations of ≥±5°. Optimal setup time of 5–15 minutes was recorded in 61% of the fractions, and optimal beam delivery time of 30–40 minutes in 67% of the fractions. At a default imaging interval of 15 seconds, the percentage of prostate motion beyond PTV margin of 3–5 mm varied among patients, with a mean at 12.8% (range 0.0%–31.1%); and the percentage beyond PTV margin of 2–3 mm was at a mean of 36.0% (range 3.3%–83.1%). These timely detected offsets were all corrected real-time by the robotic manipulator or by operator intervention at the time of treatment interruptions. Conclusion: The durations of patient setup and beam delivery were directly affected by the occurrence of large prostate motion. Frequent imaging of down to 15 second interval is necessary for certain patients. Techniques for reducing prostate motion, such as using endorectal balloon, can be considered to assure consistently higher accuracy and efficiency of prostate SBRT delivery.

  7. Benefits of Motion in Animated Storybooks for Children’s Visual Attention and Story Comprehension. An Eye-tracking Study.

    Directory of Open Access Journals (Sweden)

    Zsofia Katalin Takacs

    2016-10-01

    Full Text Available The present study provides experimental evidence regarding 4-6-year-old children’s visual processing of animated versus static illustrations in storybooks. 39 participants listened to an animated and a static book, both three times, while eye movements were registered with an eye-tracker. Outcomes corroborate the hypothesis that specifically motion is what attracts children’s attention while looking at illustrations. It is proposed that animated illustrations that are well matched to the text of the story guide children to those parts of the illustration that are important for understanding the story. This may explain why animated books resulted in better comprehension than static books.

  8. Research on Fast 3D Hand Motion Tracking System%快速的三维人手运动跟踪方法研究

    Institute of Scientific and Technical Information of China (English)

    吕治国; 李焱; 徐昕

    2012-01-01

    三维人手运动跟踪是人机交互领域的一个重要研究方向.提出了一种新的基于模型的三维人手运动跟踪方法,该方法将层次优化嵌入到基于粒子滤波器的跟踪框架中,通过在隐状态空间中对粒子采样来提高粒子滤波器采样效率.首先,提出了采用低维隐状态来描述人手的配置状态,并根据人手的生理运动约束建立人手动态模型;其次,为提高粒子在隐状态空间的采样效率,提出了采用层次遗传优化来快速地在局部寻找好的粒子,并以此作为重要度采样函数修正粒子滤波的采样算法.实验结果表明,该方法可以在人手自遮挡存在时的复杂背景下快速地对人手运动进行跟踪.%3D hand tracking is one of the major research topics in the field of human-computer interaction. We present a novel model-based hand tracking method in this paper, which embeds hierarchical optimization method into the particle-filter-based tracking frames to improve the efficiency of particles sampling from the hidden state space. Firstly, the low dimension hidden state space is introduced to approximately describe the hand configuration state in the original high dimension configuration space, and the dynamic hand model in the hidden state space is presented according to the physiological constraints of hand motion. Secondly, to obtain more efficient particles during tracking, hierarchical genetic optimization method is regarded as the importance sampling function to modify the sampling algorithm of particle-filter. Experiments demonstrate that our approach can have fast tracking performance even under the clutter background when hand part self-occlusion exists.

  9. Radar Tracking and Motion-Sensitive Cameras on Flowers Reveal the Development of Pollinator Multi-Destination Routes over Large Spatial Scales

    Science.gov (United States)

    Reynolds, Andrew M.; Stelzer, Ralph J.; Lim, Ka S.; Smith, Alan D.; Osborne, Juliet L.; Chittka, Lars

    2012-01-01

    Central place foragers, such as pollinating bees, typically develop circuits (traplines) to visit multiple foraging sites in a manner that minimizes overall travel distance. Despite being taxonomically widespread, these routing behaviours remain poorly understood due to the difficulty of tracking the foraging history of animals in the wild. Here we examine how bumblebees (Bombus terrestris) develop and optimise traplines over large spatial scales by setting up an array of five artificial flowers arranged in a regular pentagon (50 m side length) and fitted with motion-sensitive video cameras to determine the sequence of visitation. Stable traplines that linked together all the flowers in an optimal sequence were typically established after a bee made 26 foraging bouts, during which time only about 20 of the 120 possible routes were tried. Radar tracking of selected flights revealed a dramatic decrease by 80% (ca. 1500 m) of the total travel distance between the first and the last foraging bout. When a flower was removed and replaced by a more distant one, bees engaged in localised search flights, a strategy that can facilitate the discovery of a new flower and its integration into a novel optimal trapline. Based on these observations, we developed and tested an iterative improvement heuristic to capture how bees could learn and refine their routes each time a shorter route is found. Our findings suggest that complex dynamic routing problems can be solved by small-brained animals using simple learning heuristics, without the need for a cognitive map. PMID:23049479

  10. Radar tracking and motion-sensitive cameras on flowers reveal the development of pollinator multi-destination routes over large spatial scales.

    Directory of Open Access Journals (Sweden)

    Mathieu Lihoreau

    Full Text Available Central place foragers, such as pollinating bees, typically develop circuits (traplines to visit multiple foraging sites in a manner that minimizes overall travel distance. Despite being taxonomically widespread, these routing behaviours remain poorly understood due to the difficulty of tracking the foraging history of animals in the wild. Here we examine how bumblebees (Bombus terrestris develop and optimise traplines over large spatial scales by setting up an array of five artificial flowers arranged in a regular pentagon (50 m side length and fitted with motion-sensitive video cameras to determine the sequence of visitation. Stable traplines that linked together all the flowers in an optimal sequence were typically established after a bee made 26 foraging bouts, during which time only about 20 of the 120 possible routes were tried. Radar tracking of selected flights revealed a dramatic decrease by 80% (ca. 1500 m of the total travel distance between the first and the last foraging bout. When a flower was removed and replaced by a more distant one, bees engaged in localised search flights, a strategy that can facilitate the discovery of a new flower and its integration into a novel optimal trapline. Based on these observations, we developed and tested an iterative improvement heuristic to capture how bees could learn and refine their routes each time a shorter route is found. Our findings suggest that complex dynamic routing problems can be solved by small-brained animals using simple learning heuristics, without the need for a cognitive map.

  11. WE-AB-303-11: Verification of a Deformable 4DCT Motion Model for Lung Tumor Tracking Using Different Driving Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Woelfelschneider, J [University Hospital Erlangen, Erlangen, DE (Germany); Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE (Germany); Seregni, M; Fassi, A; Baroni, G; Riboldi, M [Politecnico di Milano, Milano (Italy); Bert, C [University Hospital Erlangen, Erlangen, DE (Germany); Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE (Germany); GSI - Helmholtz Centre for Heavy Ion Research, Darmstadt, DE (Germany)

    2015-06-15

    Purpose: Tumor tracking is an advanced technique to treat intra-fractionally moving tumors. The aim of this study is to validate a surrogate-driven model based on four-dimensional computed tomography (4DCT) that is able to predict CT volumes corresponding to arbitrary respiratory states. Further, the comparison of three different driving surrogates is evaluated. Methods: This study is based on multiple 4DCTs of two patients treated for bronchial carcinoma and metastasis. Analyses for 18 additional patients are currently ongoing. The motion model was estimated from the planning 4DCT through deformable image registration. To predict a certain phase of a follow-up 4DCT, the model considers for inter-fractional variations (baseline correction) and intra-fractional respiratory parameters (amplitude and phase) derived from surrogates. In this evaluation, three different approaches were used to extract the motion surrogate: for each 4DCT phase, the 3D thoraco-abdominal surface motion, the body volume and the anterior-posterior motion of a virtual single external marker defined on the sternum were investigated. The estimated volumes resulting from the model were compared to the ground-truth clinical 4DCTs using absolute HU differences in the lung volume and landmarks localized using the Scale Invariant Feature Transform (SIFT). Results: The results show absolute HU differences between estimated and ground-truth images with median values limited to 55 HU and inter-quartile ranges (IQR) lower than 100 HU. Median 3D distances between about 1500 matching landmarks are below 2 mm for 3D surface motion and body volume methods. The single marker surrogates Result in increased median distances up to 0.6 mm. Analyses for the extended database incl. 20 patients are currently in progress. Conclusion: The results depend mainly on the image quality of the initial 4DCTs and the deformable image registration. All investigated surrogates can be used to estimate follow-up 4DCT phases

  12. A semi-automated motion-tracking analysis of locomotion speed in the C. elegans transgenics overexpressing beta-amyloid in neurons

    Directory of Open Access Journals (Sweden)

    Kevin eMachino

    2014-07-01

    Full Text Available Multi-Worm Tracker (MWT is a real-time computer vision system that can simultaneously quantify motional patterns of multiple worms. MWT provides several behavioral parameters, including analysis of accurate real-time locomotion speed in the nematode, Caenorhabditis elegans. Here, we determined locomotion speed of the Alzheimer’s disease (AD transgenic strain that over-expresses human beta-amyloid1-42 (Aβ in the neurons. The MWT analysis showed that the AD strain logged a slower average speed than the wild type worms. The results may be consistent with the observation that the AD patients with dementia tend to show deficits in physical activities, including frequent falls. The AD strain showed reduced ability of the eggs to hatch and slowed hatching of the eggs. Thus, over-expression of Aβ in neurons causes negative effects on locomotion and hatchability. This study sheds light on new examples of detrimental effects that Aβ deposits can exhibit using C. elegans as a model system. The information gathered from this study indicates that the motion tracking analysis is a cost-effective, efficient way to assess the deficits of Aβ over-expression in the C. elegans system.

  13. The Optimum Replacement of Weapon

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao; ZHANG Jin-chun

    2002-01-01

    The theory of LCC (Life Cycle Cost) is applied in this paper. The relation between the economic life of weapon and the optimum replacement is analyzed. The method to define the optimum replacement time of weapon is discussed.

  14. Different but complementary roles of action and gaze in action observation priming: Insights from eye- and motion-tracking measures

    Directory of Open Access Journals (Sweden)

    Clement eLetesson

    2015-05-01

    Full Text Available Action priming following action observation is thought to be caused by the observed action kinematics being represented in the same brain areas as those used for action execution. But, action priming can also be explained by shared goal representations, with compatibility between observation of the agent’s gaze and the intended action of the observer. To assess the contribution of action kinematics and eye gaze cues in the prediction of an agent’s action goal and action priming, participants observed actions where the availability of both cues was manipulated. Action observation was followed by action execution, and the congruency between the target of the agent’s and observer’s actions, and the congruency between the observed and executed action spatial location were manipulated. Eye movements were recorded during the observation phase, and the action priming was assessed using motion analysis. The results showed that the observation of gaze information influenced the observer’s prediction speed to attend to the target, and that observation of action kinematic information influenced the accuracy of these predictions. Motion analysis results showed that observed action cues alone primed both spatial incongruent and object congruent actions, consistent with the idea that the prime effect was driven by similarity between goals and kinematics. The observation of action and eye gaze cues together induced a prime effect complementarily sensitive to object and spatial congruency. While observation of the agent’s action kinematics triggered an object-centered and kinematic-centered action representation, independently, the complementary observation of eye gaze triggered a more fine-grained representation illustrating a specification of action kinematics towards the selected goal. Even though both cues differentially contributed to action priming, their complementary integration led to a more refined pattern of action priming.

  15. Iceland hotspot track in southeast Greenland causes huge present-day vertical viscoelastic motion of the bedrock

    Science.gov (United States)

    Khan, Shfaqat Abbas; Sasgen, Ingo; Bevis, Michael; van Dam, Tonie; Wahr, John; Bamber, Jonathan; Wouters, Bert; Helm, Veit; Willis, Michael; Csatho, Beata; Knudsen, Per; Kuipers Munneke, Peter; Kjær, Kurt

    2016-04-01

    The process of Glacial Isostatic Adjustment (GIA) represents the ongoing response of the solid Earth to past ice mass loss that occurred following the Last Glacial Maximum (LGM, ~21 ka B.P.). The magnitude of the GIA uplift depends on the temporal history of the ice load and is highly sensitive to variations in upper mantle viscosity. Greenland GIA is thought to be well contained and due to relative high viscosity, influence of more recent changes e.g. since the Little Ice Age have minor present-day effect (GIA. We identify an unexpected GIA anomaly of ~12 mm/yr in southeast Greenland, which we interpret as linked to a zone of warmer upper mantle caused by the Iceland hotspot track that would reduce the viscosity and produce greater viscoelastic uplift due to recent ice mass changes. We reconsider the evolution of the Greenland ice sheet since LGM and estimate a total ice mass loss equivalent to sea level rise of 4.9 m since LGM. Our observations suggest southeast and northwest Greenland, subject to present-day major ice loss, also contributed by significantly more mass loss on millennia scale than previously estimated.

  16. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.

    Science.gov (United States)

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J; Jian, Yifan; Sarunic, Marinko V

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  17. Self-excited multi-scale skin vibrations probed by optical tracking micro-motions of tracers on arms

    Science.gov (United States)

    Chen, Wei-Chia; Chen, Hsiang-Ying; Chen, Yu-Sheng; Tian, Yong; I, Lin

    2017-07-01

    The self-excited multi-scale mechanical vibrations, their sources and their mutual coupling of different regions on the forearms of supine subjects, are experimentally investigated, using a simple noncontact method, optical video microscopy, which provides 1 μm and 25 ms spatiotemporal resolutions. It is found that, in proximal regions far from the radial artery, the vibrations are the global vibrations of the entire forearm excited by remote sources, propagating through the trunk and the limb. The spectrum is mainly composed of peaks of very low frequency motion (down to 0.05 Hz), low frequency respiration modes, and heartbeat induced modes (about 1 Hz and its harmonics), standing out of the spectrum floor exhibiting power law decay. The nonlinear mode-mode coupling leads to the cascaded modulations of higher frequency modes by lower frequency modes. The nearly identical waveforms without detectable phase delays for a pair of signals along or transverse to the meridian of regions far away from the artery rule out the detectable contribution from the propagation of Qi, some kind of collective excitation which more efficiently propagates along meridians, according to the Chinese medicine theory. Around the radial artery, in addition to the global vibration, the local vibration spectrum shows very slow breathing type vibration around 0.05 Hz, and the artery pulsation induced fundamental and higher harmonics with descending intensities up to the fifth harmonics, standing out of a flat spectrum floor. All the artery pulsation modes are also modulated by respiration and the very slow vibration.

  18. Abrupt motion tracking of plateau pika (Ochotona curzoniae) based on local texture and color model%基于纹理颜色模型的高原鼠兔突变运动跟踪

    Institute of Scientific and Technical Information of China (English)

    陈海燕; 张爱华; 胡世亚

    2016-01-01

    , made up for the deficiency of using single LTC. The LTDC operator discarded the structure information of local texture and retained the difference information of local texture, with low compute complexity. Aimed at the uncertainty and randomness of plateau pika motion, considering the prior knowledge that the position displacement between two adjacent frames was smaller in smooth movement and the position displacement between two adjacent frames was larger in abrupt motion, we extracted motion information between the adjacent frames using the frame difference method at first, then judged the movement mode of plateau pika by motion information, taking appropriate sampling tracking strategy to track plateau pika. If the mode was judged to be a smooth motion mode, we employed the Markov Chain Monte Carlo sampling tracking method based on the motion smoothness assumption. Else we adopted Wang-Landau Monte Carlo sampling tracking method used for abrupt motion tracking. Considering the fact of that object tracking method of motion-induction algorithm based on HSV color histogram usually had the deformation of inaccurate tracking or loss of target in the scenario where the color was similar between the background and the object, the LTDC operator was combined with RGB color information to characterize the object model, and the object model was embedded into the motion induction tracking framework for the plateau pika tracking. The test video collected the plateau pika activity behavior in the winter of 2014 in natural habitat environment, located in Qinghai-Tibet Plateau, eastern longitude 101°35′36″ -102°58′15″, northern latitude 33°58′21″ -34°48′48″. The video was totally 254 frames, with its size 320 pixels×240 pixels, and the fame rate 25 frames per second. The video feature was that the color was very similar between the plateau pika and background. Simultaneously, the plateau pika motion, being abrupt and occurring occasionally, was very stochastic

  19. An Optimum Currency Crisis

    Directory of Open Access Journals (Sweden)

    Paolo Pasimeni

    2014-12-01

    Full Text Available This paper presents an ex-post assessment of the current situation of the EMU in light of the conditions prescribed by the theory of Optimum Currency Areas (OCA. The analysis shows that some of those conditions were satisfied at the inception of the EMU, others were missing at the beginning, but improved over time as expected by the endogenous approach to the OCA theory. The common fiscal capacity was the main missing element of the initial construction of the Eurozone, and still is. The common budget is so exiguous that its effectiveness as shock absorption mechanism is negligible. The analysis then shows how some of the concerns raised on the eve of the euro did actually materialize, even if not immediately. First, in its first decade the Eurozone did not experience major turbulences, because growing financial integration was compensating the need for fiscal transfers, channelling the excess of saving from the ‘core’ to the ‘periphery’. Second, the mechanism generated record-high private indebtedness in the ‘periphery’ and exposure of the banks in the ‘core’, making the whole system more fragile as it relied upon financial markets’ stability. Third, once the long-feared shock hit, the mechanism proved weak and non-resilient. The inherent weaknesses of the EMU became evident. Fourth, as it had been foreseen, the cost of the adjustment after the shock fell mainly on labour, with much higher and longer unemployment in the Eurozone than both non-Eurozone EU and the US. Fifth, as the theory suggested, the lack of common mechanisms of adjustment dramatically increased the socio-economic divergences within the EMU. The paper finally presents a simulation for a common budget of the Eurozone, linked to the relative current account positions of the member states.

  20. Particle tracking velocimetry and particle image velocimetry study of the slow motion of rough and smooth solid spheres in a yield-stress fluid.

    Science.gov (United States)

    Holenberg, Yulia; Lavrenteva, Olga M; Shavit, Uri; Nir, Avinoam

    2012-12-01

    We report experimental evidence of an effect opposite to the "solidification" of small bubbles in liquid where the surface can become immobile. Namely, it is demonstrated that smooth solid spheres falling in a yield-stress fluid under the action of gravity can behave similar to drops. Particle tracking velocimetry was used to determine the shape of the yielded region around solid spherical particles undergoing slow stationary motion in 0.07% w/w Carbopol gel due to gravity under creeping flow conditions. The flow field inside the yielded region was determined by particle image velocimetry. It was found that the shape of the yielded region and the flow field around slow-moving rough particles is similar to the published results of numerical simulations, whereas those around smooth spheres resemble the experimental results obtained for viscous drops. The effect was explained by a slip of the gel on the smooth surface. Most likely, the slip originated from seepage of clean water from the gel, forming a thin lubricating layer near the solid surface.

  1. MR-guided PET motion correction in LOR space using generic projection data for image reconstruction with PRESTO

    Energy Technology Data Exchange (ETDEWEB)

    Scheins, J., E-mail: j.scheins@fz-juelich.de [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425 Jülich (Germany); Ullisch, M.; Tellmann, L.; Weirich, C.; Rota Kops, E.; Herzog, H.; Shah, N.J. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425 Jülich (Germany)

    2013-02-21

    The BrainPET scanner from Siemens, designed as hybrid MR/PET system for simultaneous acquisition of both modalities, provides high-resolution PET images with an optimum resolution of 3 mm. However, significant head motion often compromises the achievable image quality, e.g. in neuroreceptor studies of human brain. This limitation can be omitted when tracking the head motion and accurately correcting measured Lines-of-Response (LORs). For this purpose, we present a novel method, which advantageously combines MR-guided motion tracking with the capabilities of the reconstruction software PRESTO (PET Reconstruction Software Toolkit) to convert motion-corrected LORs into highly accurate generic projection data. In this way, the high-resolution PET images achievable with PRESTO can also be obtained in presence of severe head motion.

  2. Quantitative evaluation of 3D mouse behaviors and motor function in the open-field after spinal cord injury using markerless motion tracking.

    Directory of Open Access Journals (Sweden)

    Alison L Sheets

    Full Text Available Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI. Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study's goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz. Background subtraction was used in each video frame to identify the animal's silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal's front Center of Volume (CoV height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005 and rear CoV height (r = .65 p<.01 were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative

  3. Site survey for optimum location of Optical Communication Experimental Facility

    Science.gov (United States)

    1968-01-01

    Site survey was made to determine the optimum location for an Optical Communication Experimental Facility /OCEF/ and to recommend several sites, graded according to preference. A site was desired which could perform two-way laser communication with a spacecraft and laser tracking with a minimum of interruption by weather effects.

  4. Assessment of the cervical range of motion over time, differences between results of the Flock of Birds and the EDI-320: a comparison between an electromagnetic tracking system and an electronic inclinometer.

    Science.gov (United States)

    Assink, Nienke; Bergman, Gert J D; Knoester, Bianca; Winters, Jan C; Dijkstra, Pieter U

    2008-10-01

    The objective of this study was to analyse cervical range of motion, assessed over time by means of a digital inclinometer (EDI-320) and a three-dimensional electromagnetic tracking device (Flock of Birds). The maximum active cervical range of motion was assessed with two measurement devices in three sessions over time, with 6-week intervals. In total, 26 women and 24 men (mean age: 44.4, SD: 9.9) without known pathology of the cervical spine participated. Four movements were measured axial rotation with the cervical spine in a flexed and in an extended position, flexion-extension, and lateral bending. The results showed that the factor time was significant for rotation in extension and rotation in flexion. The factor device was significant for all movements measured, and the interaction term between time and device was significant for all movements except rotation in extension. The Flock of Birds measured significantly higher ranges of motion on all motions except for lateral bending. A substantial variation in cervical range of motion was observed over time (ranging from -5.6 to 8.1) as well as between devices (ranging from -13.1 to 29.9). Substantial and significant differences in cervical range of motion were found over time as well as differences between the Flock of Birds and the EDI-320.

  5. 基于视觉显著性的两阶段采样突变目标跟踪算法%Saliency Based Tracking Method for Abrupt Motions via Two-stage Sampling

    Institute of Scientific and Technical Information of China (English)

    江晓莲; 李翠华; 李雄宗

    2014-01-01

    In this paper, a saliency based tracking method via two-stage sampling is proposed for abrupt motions. Firstly, the visual salience is introduced as a prior knowledge into the Wang-Landau Monte Carlo (WLMC)-based tracking algorithm. By dividing the spatial space into disjoint sub-regions and assigning each sub-region a saliency value, a prior knowledge of the promising regions is obtained;then the saliency values of sub-regions are integrated into the Markov chain Monte Carlo (MCMC) acceptance mechanism to guide effective states sampling. Secondly, considering the abrupt motion sequence contains both abrupt and smooth motions, a two-stage sampling model is brought up into the algorithm. In the first stage, the model detects the motion type of the target. According to the result of the first stage, the model chooses either the saliency-based WLMC method to track abrupt motions or the double-chain MCMC method to track smooth motions of the target in the second stage. The algorithm effciently addresses tracking of abrupt motions while smooth motions are also accurately tracked. Experimental results demonstrate that this approach outperforms the state-of-the-art algorithms on abrupt motion sequence and public benchmark sequence in terms of accuracy and robustness.%针对运动突变目标视觉跟踪问题,提出一种基于视觉显著性的两阶段采样跟踪算法。首先,将视觉显著性信息引入到Wang-Landau 蒙特卡罗(Wang-Landau Monte Carlo, WLMC)跟踪算法中,设计了结合显著性先验的接受函数,利用子区域的显著性值来引导马尔可夫链的构造,通过增大目标出现区粒子的接受概率,提高采样效率;其次,针对运动序列中平滑与突变运动共存的特点,建立两阶段采样模型。其中第一阶段对目标当前运动类型进行判定,第二阶段则根据判定结果采用相应算法。突变运动采用基于视觉显著性的WLMC 算法,平滑运动采用双链

  6. 基于Beowulf机群中改进粒子滤波的3D人体运动跟踪%Three-dimension human motion tracking based improved particle filter on Beowulf cluster system

    Institute of Scientific and Technical Information of China (English)

    李敏; 宋曰聪; 吴斌; 彭保

    2015-01-01

    According to the problem that the standard particle filter tracking algorithm in video 3D human motion track-ing cannot meet tracking accuracy and real time tracking at the same time for its intensive computation and particle degen-eracy and tracking failure. A novel improvement particle filter algorithm is proposed based on Beowulf cluster system par-allel computing. The new algorithm can realize automatic recovery from tracking failure by automatic initialization of 3D human body model parameters and adjustment of particle amount and template. The migration particle filter parallel algo-rithm which based on task dynamic allocation and low consumption communication strategy in Beowulf cluster system can overcome particle degeneracy problem and improve computation speed. The experimental result shows that particle degeneracy and tracking failure problems have been alleviated effectively, the computing time has been reduced, the track-ing precision has been improved, and the new way can meet the need of tracking accuracy and real time tracking at the same time.%针对标准的粒子滤波算法在视频三维人体运动跟踪中存在的计算量巨大、粒子退化、跟踪失效而无法同时满足跟踪精度和跟踪实时性要求的问题,提出了基于Beowulf机群中改进的粒子滤波新算法。新算法通过三维人体模型参数的自动初始化、粒子数目和模板的调整来实现跟踪失效的自动恢复,基于任务动态分配策略、低开销通信策略设计的Beowulf机群中的迁移式粒子滤波并行算法克服了粒子退化问题和提高了计算速度。实验结果显示:新方法有效地减轻了粒子退化和跟踪失效问题,降低了计算时间,提高了跟踪精度,能够同时满足三维人体运动跟踪精度和实时性的要求。

  7. WE-G-BRD-04: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An Integrated Model-Based Intrafractional Organ Motion Tracking Approach with Dynamic MRI in Head and Neck Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Dolly, S; Anastasio, M; Li, H; Wooten, H; Gay, H; Mutic, S; Thorstad, W; Li, H [Washington University School of Medicine, Saint Louis, MO (United States); Victoria, J; Dempsey, J [ViewRay incorporated, Oakwood Village, Ohio (United States); Ruan, S [University of Rouen, QuantIF - EA 4108 LITIS, Rouen (France); Low, D [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)

    2015-06-15

    Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) was first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first

  8. WE-G-BRF-05: Feasibility of Markerless Motion Tracking Using Dual Energy Cone Beam Computed Tomography (DE-CBCT) Projections

    Energy Technology Data Exchange (ETDEWEB)

    Panfil, J; Patel, R; Surucu, M; Roeske, J [Loyola University Medical Center, Maywood, IL (United States)

    2014-06-15

    Purpose: To compare markerless template-based tracking of lung tumors using dual energy (DE) cone-beam computed tomography (CBCT) projections versus single energy (SE) CBCT projections. Methods: A RANDO chest phantom with a simulated tumor in the upper right lung was used to investigate the effectiveness of tumor tracking using DE and SE CBCT projections. Planar kV projections from CBCT acquisitions were captured at 60 kVp (4 mAs) and 120 kVp (1 mAs) using the Varian TrueBeam and non-commercial iTools Capture software. Projections were taken at approximately every 0.53° while the gantry rotated. Due to limitations of the phantom, angles for which the shoulders blocked the tumor were excluded from tracking analysis. DE images were constructed using a weighted logarithmic subtraction that removed bony anatomy while preserving soft tissue structures. The tumors were tracked separately on DE and SE (120 kVp) images using a template-based tracking algorithm. The tracking results were compared to ground truth coordinates designated by a physician. Matches with a distance of greater than 3 mm from ground truth were designated as failing to track. Results: 363 frames were analyzed. The algorithm successfully tracked the tumor on 89.8% (326/363) of DE frames compared to 54.3% (197/363) of SE frames (p<0.0001). Average distance between tracking and ground truth coordinates was 1.27 +/− 0.67 mm for DE versus 1.83+/−0.74 mm for SE (p<0.0001). Conclusion: This study demonstrates the effectiveness of markerless template-based tracking using DE CBCT. DE imaging resulted in better detectability with more accurate localization on average versus SE. Supported by a grant from Varian Medical Systems.

  9. Bewegingsvolgsysteem = Monitor tracking system

    NARCIS (Netherlands)

    Slycke, Per Johan; Veltink, Petrus Hermanus; Roetenberg, Daniel

    2006-01-01

    A motion tracking system for tracking an object composed of object parts in a three-dimensional space. The system comprises a number of magnetic field transmitters; a number of field receivers for receiving the magnetic fields of the field transmitters; a number of inertial measurement units for rec

  10. Bewegingsvolgsysteem = Monitor tracking system

    NARCIS (Netherlands)

    Slycke, Per Johan; Veltink, Petrus Hermanus; Roetenberg, Daniel

    2007-01-01

    A motion tracking system for tracking an object composed of object parts in a three-dimensional space. The system comprises a number of magnetic field transmitters; a number of field receivers for receiving the magnetic fields of the field transmitters; a number of inertial measurement units for rec

  11. Optimum Safety Levels for Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Sørensen, John Dalsgaard

    2005-01-01

    Optimum design safety levels for rock and cube armoured rubble mound breakwaters without superstructure are investigated by numerical simulations on the basis of minimization of the total costs over the service life of the structure, taking into account typical uncertainties related to wave stati...

  12. Hamiltonian Markov Chain Monte Carlo Method for Abrupt Motion Tracking%基于 Hamiltonian 马氏链蒙特卡罗方法的突变运动跟踪*

    Institute of Scientific and Technical Information of China (English)

    王法胜; 李绪成; 肖智博; 鲁明羽

    2014-01-01

    Tracking of abrupt motion is a challenging task in computer vision due to the large motion uncertainty induced by camera switching, sudden dynamic change, and rapid motion. This paper proposes an ordered over-relaxation Hamiltonian Markov chain Monte Carlo (MCMC) based tracking scheme for abrupt motion tracking within Bayesian filtering framework. In this tracking scheme, the object states are augmented by introducing a momentum item and the Hamiltonian dynamics (HD) is integrated into the traditional MCMC based tracking method. At the proposal step, the ordered over-relaxation method is adopted to draw the momentum item in order to suppress the random walk behavior induced by Gibbs sampling. In addition, the paper provides an adaptive step-size scheme to simulate the Hamiltonian dynamics in order to reduce the simulation error. The proposed tracking algorithm can avoid being trapped in local maxima with no additional computational burden, which is suffered by conventional MCMC based tracking algorithms. Experimental results reveal that the presented approach is efficient and effective in dealing with various types of abrupt motions compared with several alternatives.%在计算机视觉领域,由镜头切换、目标动力学突变、低帧率视频等引起的突变运动存在极大的不确定性,使得突变运动跟踪成为该领域的挑战性课题。以贝叶斯滤波框架为基础,提出一种基于有序超松弛 Hamiltonian 马氏链蒙特卡罗方法的突变运动跟踪算法。该算法将 Hamiltonian 动力学融入 MCMC(Markov chain Monte Carlo)算法,目标状态被扩张为原始目标状态变量与一个动量项的组合。在提议阶段,为抑制由 Gibbs 采样带来的随机游动行为,提出采用有序超松弛迭代方法来抽取目标动量项。同时,提出自适应步长的 Hamiltonian 动力学实现方法,在跟踪过程中自适应地调整步长,以减少模拟误差。提出的跟踪算法可以避免

  13. Optimum design of steel structures

    CERN Document Server

    Farkas, József

    2013-01-01

    This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads...

  14. Optimum thickness of Mossbauer absorber

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    If recoilless fraction fa is available, the optimum absorber thickness dopt can be calculated by maximizing the signal to noise ratio or Q factor. In this work,an approach presented is to get experimental Qexp as a function of the thickness, and then fitting Qexp by its theoretical expression gives fa value. At last the dopt value is deduced from a maximum on the fitted curve. In such a way, thicknesses of six specimens with quadrupole or magnetic hyperfine splitting were optimized.

  15. Tracking of deformable objects

    Science.gov (United States)

    Aswani, Parimal; Wong, K. K.; Chong, Man N.

    2000-12-01

    Tracking of moving-objects in image sequences is needed for several video processing applications such as content-based coding, object oriented compression, object recognition and more recently for video object plane extraction in MPEG-4 coding. Tracking is a natural follow-up of motion-based segmentation. It is a fast and efficient method to achieve coherent motion segments along the temporal axis. Segmenting out moving objects for each and every frame in a video sequence is a computationally expensive approach. Thus, for better performance, semi-automatic segmentation is an acceptable compromise as automatic segmentation approaches rely heavily on prior assumptions. In semi-automatic segmentation approaches, motion-segmentation is performed only on the initial frame and the moving object is tracked in subsequent frames using tracking algorithms. In this paper, a new model for object tracking is proposed, where the image features -- edges, intensity pattern, object motion and initial keyed-in contour (by the user) form the prior and likelihood model of a Markov Random Field (MRF) model. Iterated Conditional Mode (ICM) is used for the minimization of the global energy for the MRF model. The motion segment for each frame is initialized using the segment information from the previous frame. For the initial frame, the motion segment is obtained by manually keying in the object contour. The motion-segments obtained using the proposed model are coherent and accurate. Experimental results on tracking using the proposed algorithm for different sequences -- Bream, Alexis and Claire are presented in this paper. The results obtained are accurate and can be used for a variety of applications including MPEG-4 Video Object Plane (VOP) extraction.

  16. Tracking controller of D-PMSG chaos motion%直驱式永磁同步发电机混沌运动跟踪控制器设计

    Institute of Scientific and Technical Information of China (English)

    王磊; 李颖晖; 逯国亮; 朱喜华

    2011-01-01

    The parameter change under certain conditions may induce the D-PMSG(Directly driven Permanent Magnet Synchronous Generator) to operate in chaos motion condition,which threatens the stable operation of wind power generation system. A tracking controller is designed for it. A simplified mathematical model of D-PMSG is established and the chaos behaviors of D-PMSG are analyzed by the strange attractor and bifurcation diagram. The nonlinear D-PMSG chaotic system is modeled based on T-S fuzzy model. The local dynamic behavior of D-PMSG is presented by the fuzzy statement based on linear model and these linear models are integrated by the fuzzy membership function to form the global fuzzy model. A tracking controller is designed with the parallel distributed compensation method to stabilize the chaos motion. Simulative results demonstrate that the tracking controller effectively eliminates the chaos motion with quick response and excellent control effect.%在一定的工作环境下,参数的变化使直驱式永磁同步发电机(D-PMSG)处于混沌运动状态,这将危及整个风力发电系统的稳定运行.设计了一种跟踪控制器消除D-PMSG的混沌运动现象.推导了D-PMSG的简化数学模型,并分析了D-PMSG系统的混沌吸引子和分岔图,证明了D-PMSG混沌运动现象的存在.采用T-S模糊模型对D-PMSG非线性系统进行建模,用线性模型作为后件来表达每条模糊语句所表征D-PMSG的局部动态特性,通过模糊隶属函数将这些线性模型综合起来而构成全局模糊模型.利用并行分布补偿方法设计全局渐进稳定的跟踪控制器将混沌运动稳定于期望平衡状态.仿真结果表明所设计的跟踪控制器响应速度快,能够有效地消除D-PMSG的混沌运动现象,具有较好的控制效果.

  17. 基于多尺度贯序式卡尔曼滤波的运动声阵列跟踪算法%Tracking Algorithm of Motion Acoustic Array Based on Multi-scale Sequential Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    刘亚雷; 颐晓辉

    2011-01-01

    为了研究运动声阵列对二维目标在复杂环境中的实时跟踪性问题,根据运动声阵列及二维目标的运动特点建立了状态方程与测量方程,并将其描述为块的形式.根据不同的状态块,利用小波变换把状态块分解到不同尺度上,分别在时域和频域上建立相应尺度上的状态与观测信息之间的关系;采取卡尔曼滤波器递推思想来实现运动声阵列的多尺度贯序式卡尔曼滤波算法,根据最小二乘误差估计理论推导了运动声阵列跟踪系统在球坐标系和直角坐标系下的误差,为提高系统跟踪精度奠定了理论基础,并为工程应用提供了实际方法.与传统的卡尔曼滤波算法相比,Matlab仿真结果表明了本文算法的有效性和优越性.%In order to study the motion acoustic array's real-time tracking to two-dimensional target in complex environment, the state equation and measurement equation based on the motion characteristics of dynamic acoustic array and two-dimensional target are established and converted into block form. Then, the state blocks are assigned onto different scales by wavelet transform. The relationship between the state and the measurement information in corresponding scale is established in time domain and frequency domain. After that, the multi-scale sequential Kalman filter algorithm is obtained based on the Kalman filter recursive theory, and the errors of motion acoustic array tracking system in spherical coordinates and rectangular coordinates are deduced by least square error estimation, which lays the theoretical foundation for improving the system tracking precision and provides a practical method for application. Compared with the traditional Kalman filter algorithm, the presented algorithm shows its validity and superiority in Matlab simulation.

  18. Cone-beam computed tomography internal motion tracking should be used to validate 4-dimensional computed tomography for abdominal radiation therapy patients

    DEFF Research Database (Denmark)

    Rankine, Leith; Wan, Hanlin; Parikh, Parag;

    2016-01-01

    for 93% of fractions (superior-inferior), compared with 63% for the t > 7.5 minutes group, demonstrating the need for patient-specific intratreatment imaging. Conclusions Tumor motion determined from 4DCT simulation does not accurately predict the daily motion observed on CBCT or fluoroscopy. Cone......-beam CT could replace fluoroscopy for pretreatment verification of simulation IM4DCT, reducing patient setup time and imaging dose. Patients with treatment time t > 7.5 minutes could benefit from the addition of intratreatment imaging.......) was calculated for CBCT and fluoroscopy as the 5th-95th percentiles of displacement in each cardinal direction. The planning IM from simulation 4DCT (IM4DCT) was considered adequate when within ±1.2 mm (anterior-posterior, left-right) and ±3 mm (superior-inferior) of the daily measured IM. We validated CBCT...

  19. A Diffuse-Interface Tracking Method for the Numerical Simulation of Motions of a Two-Phase Fluid on a Solid Surface

    Directory of Open Access Journals (Sweden)

    Naoki Takada

    2014-09-01

    Full Text Available Applicability of two kinds of computational-fluid-dynamics method adopting Cahn-Hilliard (CH and Allen-Cahn (AC-type diffuse-interface advection equations based on a phase-field model (PFM is examined to simulation of motions of microscopic incompressible two-phase fluid on solid surface. A capillarity-driven gas-liquid motion in rectangular channel is simulated by use of a PFM method for solving Navier-Stokes (NS equations and a CH equation, whereas an immiscible liquid-liquid flow in a microchannel with T-junction and square cross section is simulated by use of another PFM method proposed in this study, which adopts a lattice-Boltzmann method based on fictitious particles kinematics as numerical scheme for solving NS equations and an AC equation that is modified to improve volume-of-fluid conservation. The major findings are as follows: (1 effect of capillary force on the dynamic two-phase fluid system with a high density ratio is well predicted for cross-sectional aspect ratio of the channel = 1 and 2; (2 mono-dispersed slug flow pattern transition is reproduced in good agreement with experimental observations in terms of variation in length and interval of droplets as increasing their volumetric flow rates at a constant flow rate ratio = 1. These results prove that the PFM methods can be used for analyzing two-phase fluid motions in various microfluidic devices and micro fabrication processes.

  20. Robust patella motion tracking using intensity-based 2D-3D registration on dynamic bi-plane fluoroscopy: towards quantitative assessment in MPFL reconstruction surgery

    Science.gov (United States)

    Otake, Yoshito; Esnault, Matthieu; Grupp, Robert; Kosugi, Shinichi; Sato, Yoshinobu

    2016-03-01

    The determination of in vivo motion of multiple-bones using dynamic fluoroscopic images and computed tomography (CT) is useful for post-operative assessment of orthopaedic surgeries such as medial patellofemoral ligament reconstruction. We propose a robust method to measure the 3D motion of multiple rigid objects with high accuracy using a series of bi-plane fluoroscopic images and a multi-resolution, intensity-based, 2D-3D registration. A Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimizer was used with a gradient correlation similarity metric. Four approaches to register three rigid objects (femur, tibia-fibula and patella) were implemented: 1) an individual bone approach registering one bone at a time, each with optimization of a six degrees of freedom (6DOF) parameter, 2) a sequential approach registering one bone at a time but using the previous bone results as the background in DRR generation, 3) a simultaneous approach registering all the bones together (18DOF) and 4) a combination of the sequential and the simultaneous approaches. These approaches were compared in experiments using simulated images generated from the CT of a healthy volunteer and measured fluoroscopic images. Over the 120 simulated frames of motion, the simultaneous approach showed improved registration accuracy compared to the individual approach: with less than 0.68mm root-mean-square error (RMSE) for translation and less than 1.12° RMSE for rotation. A robustness evaluation was conducted with 45 trials of a randomly perturbed initialization showed that the sequential approach improved robustness significantly (74% success rate) compared to the individual bone approach (34% success) for patella registration (femur and tibia-fibula registration had a 100% success rate with each approach).

  1. Feature tracking and aging

    Directory of Open Access Journals (Sweden)

    Rémy eAllard

    2013-07-01

    Full Text Available There are conflicting results regarding the effect of aging on second-order motion processing (i.e., motion defined by attributes other than luminance, such as contrast. Two studies (Habak & Faubert, 2000; Tang & Zhou, 2009 found that second-order motion processing was more vulnerable to aging than first-order motion processing. Conversely, Billino, Braun, Bremmer and Gegenfurtner (2011 recently found that aging affected first- and second-order motion processing by similar proportions. These three studies used contrast-defined motion as a second-order stimulus, but there can be at least two potential issues when using such a stimulus to evaluate age-related sensitivity losses. First, it has been shown that the motion system processing contrast-defined motion varies depending on the stimulus parameters. Thus, although all these three studies assumed that their contrast-defined motion was processed by a low-level second-order motion system, this was not necessarily the case. The second potential issue is that contrast-defined motion consists in a contrast modulation of a texture rich in high spatial frequencies and aging mainly affects contrast sensitivity at high spatial frequencies. Consequently, some age-related sensitivity loss to second-order motion could be due to a lower sensitivity to the texture rather than to motion processing per se. To avoid these two potential issues, we used a second-order motion stimulus void of high spatial frequencies and which has been shown to be processed by a high-level feature tracking motion system, namely fractal rotation (Lagacé-Nadon, Allard, & Faubert, 2009. We found an age-related deficit on second-order motion processing at all temporal frequencies including the ones for which no age-related effect on first-order motion processing was observed. We conclude that aging affects the ability to track features. Previous age-related results on second-order and global motion processing are discussed in light

  2. Person Tracking System by Fusing Multicues Based on Patches

    Directory of Open Access Journals (Sweden)

    Song Min Jia

    2015-01-01

    Full Text Available A person tracking algorithm by fusing multicues based on patches is proposed to solve the problem of distinguishing person, occlusion, and illumination variations. Kinect is mounted on the robot for providing color images and depth maps. A detector representing a person by using the fusion of multicues based on patches is proposed. The detector divides the person into many patches and then represents each patch by using depth-color histograms and depth-texture histograms. The appearance representation, considering depth, color, and texture information, has powerful discrimination ability to handle the problems of occlusion, illumination changes, and pose variations. Considering the motion of the robot and person, a tracker called motion extended Kalman filter (MEKF is presented to predict the person’s position. The result of the tracker is treated as a candidate sample of the detector, and then the result of the detector is the previous knowledge of the tracker. The detector and tracker supplement each other and improve the tracking performance. To drive the robot towards the given person precisely, a fuzzy based intelligent gear control strategy (FZ-IGS is implemented. Experiments demonstrate that the proposed approach can track a person in a complex environment and have an optimum performance.

  3. The cup safe-zone and optimum combination of the acetabular and femoral anteversions that fulfills the desired range of motion of the hip%满足日常生活活动范围的髋臼假体角度安全范围及杯颈前倾角组合

    Institute of Scientific and Technical Information of China (English)

    李永奖; 蔡春元; 张力成; 杨国敬; 周德彪; 彭茂秀; 陈文良; 赵章伟

    2011-01-01

    Objective:To investigate safe range of acetabular prosthesis angle and the optimum combination of cup and neck in the range of activities of daily living (ADL). Methods: A three-dimensional generic parametric and kinematic simulation module of THA was developed. Range of motion (ROM) of flexion 3≥110°, internal-rotation ≥30° at 90° flexion, extension ≥30° and external rotation ≥40° were defined as the normal criteria for desired ROM for activities of daily living(ADL) ,and ROM of flexion ≥120°, internal-rotation ≥45° at 90° flexion,extension ≥30° and external rotation ≥40° as the severe criteria. The range of the changes in the general head-neck ratios (GR), the femoral neck anteversion (FA), the operative antever-sion (OA) and operative inclination (OI) of the cup component were 2-2.92,0°-30° ,0°-70°, 10°-60°respectively. For the collodiaphyseal angle(CCD) of 135°,the corresponding OA related to the 01 which every 5° was calculated,and described using dots and lines in a coordinate system in which OI of acetabular cup was the horizontal ordinate and OA of acetabular cup was the vertical ordinate. All data was analyzed by SAS 6.12 software. Results:Large GR greatly increased the size of safe range and it was recommended that GR be more than 2.37 when the CCD-angle was 135° as it further increases the size of safe-zone. The size of cup safety range of the severe criteria was smaller than normal criteria. When the CCD-angle was 135°, the optimum relationship between OA of acetabular and FA of the normal criteria and the severe criteria can be estimated by the formula:Y1=-0.816x1+39.76 (R2=0.993),Y2=-0-873x2+47.04 (R2=0.999) respectively. Conclusion:Large GR greatly increases the size of safe-zone and it is recommended that GR be more than 2.37, so it extends the acceptable range of error that clinicians cannot avoid it completely. The larger range of the hip motion, the smaller size of the cup safe-zone, but can retrieve by

  4. Particle Filter Tracking without Dynamics

    Directory of Open Access Journals (Sweden)

    Jaime Ortegon-Aguilar

    2007-01-01

    Full Text Available People tracking is an interesting topic in computer vision. It has applications in industrial areas such as surveillance or human-machine interaction. Particle Filters is a common algorithm for people tracking; challenging situations occur when the target's motion is poorly modelled or with unexpected motions. In this paper, an alternative to address people tracking is presented. The proposed algorithm is based in particle filters, but instead of using a dynamical model, it uses background subtraction to predict future locations of particles. The algorithm is able to track people in omnidirectional sequences with a low frame rate (one or two frames per second. Our approach can tackle unexpected discontinuities and changes in the direction of the motion. The main goal of the paper is to track people from laboratories, but it has applications in surveillance, mainly in controlled environments.

  5. Abrupt Motion Tracking Via Saliency-based Wang-Landau Monte Carlo Sampling%基于视觉显著性的Wang-Landau蒙特卡罗采样突变目标跟踪算法

    Institute of Scientific and Technical Information of China (English)

    江晓莲; 李翠华; 刘锴; 刘薇

    2013-01-01

    突变运动目标的鲁捧跟踪是计算机视觉领域的一个具有挑战性的问题.提出了一种基于视觉显著性的Wang-Landau蒙特卡罗采样(WLMC)跟踪算法,用于解决复杂场景下目标发生运动突变的跟踪问题.该算法首先对全局场景进行分块获取子区域,然后使用WLMC方法进行目标状态采样来跟踪发生运动突变的目标.算法将视觉显著性作为先验引入跟踪框架,提出了结合显著性先验的接受函数,通过每个子区域的显著性计算来引导马尔可夫链的构造.和以往方法相比,该算法既保留了WLMC采样方法对全局状态空间的广度覆盖性,又以视觉显著性特性引导采样,避免了全局采样的盲目性,从而提高采样效率.实验结果表明,该算法对发生运动突变的目标进行跟踪,具有良好的鲁棒性.%Robust tracking of abrupt motion is a challenge problem in computer vision.In this paper,we proposed a saliency-based Wang Landau Monte Carlo (WLMC) tracking method for abrupt motion problem in real world scenarios.Firstly,the spatial space is divided into disjoint sub regions.Secondly,a sub-region is selected randomly by the WLMC sampling method.Visual saliency as prior is introduced into tracking framework where saliency of each sub-region is integrated into Markov Chain Monte Carlo acceptance mechanism to guide effective states sampling.Therefore the method can avoid overall sampling and improve sampling effectiveness.Experimental results demonstrate that our approach samples the states of target efficiently in whole state space and outperforms several state-of-the-arts algorithm.

  6. Motion control systems

    CERN Document Server

    Sabanovic, Asif

    2011-01-01

    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  7. The Optimum Growth Rate for Population Reconsidered

    OpenAIRE

    Jaeger, Klaus; Kuhle, Wolfgang

    2007-01-01

    This article gives exact general conditions for the existence of an interior optimum growth rate for population in the neoclassical two-generations-overlapping model. In an economy where high (low) growth rates of population lead to a growth path which is efficient (inefficient) there always exists an interior optimum growth rate for population. In all other cases there exists no interior optimum. The Serendipity Theorem, however, does in general not hold in an economy with government debt. M...

  8. Gesture Tracking and Motion Recognition Algorithm Based on Vision Technology%基于视觉技术的手势跟踪与动作识别算法

    Institute of Scientific and Technical Information of China (English)

    熊俊涛; 刘梓健; 孙宝霞; 俞守华; 陈建国

    2014-01-01

    对工业生产线上规程化操作动作进行手势跟踪与动作识别研究。首先选取YCbCr颜色模型进行手部区域识别,获得完整手部区域;然后利用Euclidean距离变换计算相邻2个手部运动轨迹点之间的距离和各帧图像的手部运动速度;再利用扩展有限状态机模型实现手部运动的分割,将分割的多个动作与建立的动作模板匹配,利用Hausdorff距离匹配法判断匹配结果的准确性,实现手部动作的识别。实验结果表明:该手部动作识别算法对背景干扰和摄像头轻微震动具有一定的抗噪能力,有较高的动作识别正确率,能够满足现实工作环境下的应用需求。%The gesture tracking and motion recognition of production line disciplined operational motion in industrial engineering was researched in this paper .Through the color analysis of hands skin , the YCbCr color model was used to recognize the hand ar-ea, the pretreatment so as threshold segmentation for video image was used in YCbCr color model to obtain the complete hand are -a;the Euclidean distance transform method was used to calculate the distance between the adjacent two hand trajectory points and speed of each frame image ’ s hand movements , then the extended finite state machine model was used to realize the segmentation of hand movements , matching the segmented motions and established motion templates , and the Hausdorff distance matching method was used to determine the accuracy of the matching results , the recognition of hand gesture was realized .Experimental re-sults show that the hand gesture recognition algorithm has certain anti-noise ability for background interference and camera vibra-tions, and has higher recognition accuracy , can satisfy the application requirements of real work environment .

  9. Bayesian Tracking of Visual Objects

    Science.gov (United States)

    Zheng, Nanning; Xue, Jianru

    Tracking objects in image sequences involves performing motion analysis at the object level, which is becoming an increasingly important technology in a wide range of computer video applications, including video teleconferencing, security and surveillance, video segmentation, and editing. In this chapter, we focus on sequential Bayesian estimation techniques for visual tracking. We first introduce the sequential Bayesian estimation framework, which acts as the theoretic basis for visual tracking. Then, we present approaches to constructing representation models for specific objects.

  10. Adaptive vehicle motion estimation and prediction

    Science.gov (United States)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  11. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each...... model being correct is computed through a likelihood function for each model.  The study presented a simple technique to introduce additional models into the system using deterministic acceleration which basically defines the dynamics of the system.  Therefore, based on this value more motion models can...... be employed to increase the coverage.  Finally, the combined estimate is obtained using posteriori probabilities from different filter models.   The implemented approach provides an adaptive scheme for selecting various number of motion models.  Motion model description is important as it defines the kind...

  12. Classifying Motion.

    Science.gov (United States)

    Duzen, Carl; And Others

    1992-01-01

    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  13. 联合LBS和Snake的3D人体外形和运动跟踪方法%3D Human Body Shape and Motion Tracking by LBS and Snake

    Institute of Scientific and Technical Information of China (English)

    陈加; 吴晓军

    2012-01-01

    A new framework combining Snake deformable model with LBS (Linear Blend Skinning) is proposed for both 3D human body shape and motion tracking. First, skinned mesh model of object is established. Then surface mesh with highly improved quality is obtained by using our new silhouette-based visual hull reconstruction method for each frame of multi-view videos. After that, articulated ICP registration method is used to capture the 3D human body shape and motion under Skelefal Subspace Deformation. Furthermore, the multi-view silhouettes are applied again for Snake external force computation, and then the vertices of surface mesh are moved to approach the target object under silhouette and internal forces. Synthetic data with ground-truth is used for quantitative comparison, and experimental results show that the tracking accuracy is improved since both 3D and 2D error constraints are used.%为了解决基于多目视频轮廓信息的3D人体外形和运动跟踪问题,提出一种联合线性混合蒙皮和Snake变形模型的算法框架.首先建立人物对象的蒙皮模型,以每一帧多目同步视频的轮廓作为输入,采用一种基于剪影轮廓的可视外壳重建算法,使得作为3D特征的可视外壳保持了局部细节且更加光滑;并使用关节型迭代最近点算法进行匹配以捕获出每一帧骨架子空间下的人物3D外形及运动;再一次使用当前帧的多目轮廓信息,让Snake内外力共同作用于人物网格模型上的顶点,使之自由地趋近于目标对象.使用带ground-truth的合成数据进行对比实验的结果表明,该方法因同时使用3D误差约束和2D误差约束,提高了跟踪精度.

  14. Track Processing Approach for Bearing-Only Target Tracking

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2009-10-01

    Full Text Available This paper mainly studies angle-measurement based track processing approach to overcome the existing problems in the applications of traditional approaches for bearing-only target locating and tracking system. First, this paper gives suited data association algorithms including track initiation and point-track association. Moreover, a new tracking filtering association gate method is presented through analysis of the target motion characteristics in polar coordinates for improving bearing-only measurement confirming efficiency of real target and limiting false track overextension with the dense clutter. Then, by analyzing the feasibility of using multi-model technology, the IMM is adopt as filtering algorithm to solve existing problem in bearing-only tracking for complicated target motion in two dimensional angle plane. As the results, the two dimensional bearing-only tracking accuracy of real target is improved and false tracking is greatly limited. Moreover, computation cost of IMM is analyzed in view of the real-time demand of bearing-only tracking. Finally, this paper gives some concrete summary of multi-model choosing principle. The application of the proposed approach in a simulation system proves its effectiveness and practicability.

  15. MAXIMUM INFORMATION AND OPTIMUM ESTIMATING FUNCTION

    Institute of Scientific and Technical Information of China (English)

    林路

    2003-01-01

    In order to construct estimating functions in some parametric models, this paper introducestwo classes of information matrices. Some necessary and sufficient conditions for the informationmatrices achieving their upper bounds are given. For the problem of estimating the median,some optimum estimating functions based on the information matrices are acquired. Undersome regularity conditions, an approach to carrying out the best basis function is introduced. Innonlinear regression models, an optimum estimating function based on the information matricesis obtained. Some examples are given to illustrate the results. Finally, the concept of optimumestimating function and the methods of constructing optimum estimating function are developedin more general statistical models.

  16. NOAA Optimum Interpolation (OI) SST V2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The optimum interpolation (OI) sea surface temperature (SST) analysis is produced weekly on a one-degree grid. The analysis uses in situ and satellite SST's plus...

  17. On Optimum Safety Levels of Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Sørensen, John Dalsgaard

    2006-01-01

    to resist geotechnical slip failures. Optimum safety levels formulated for use both in deterministic and probabilistic design procedures are given. Results obtained so far indicate that the optimum safety levels for caisson breakwaters are much higher than for rubble mound breakwaters.......The paper presents results from numerical simulations performed with the objective of identifying optimum design safety levels of conventional rubble mound and caisson breakwaters, corresponding to the lowest costs over the service life of the structures. The work is related to the PIANC Working...... Group 47 on "Selection of type of breakwater structures". The paper summaries results given in Burcharth and Sorensen (2005) related to outer rubble mound breakwaters but focus on optimum safety levels for outer caisson breakwaters on low and high rubble foundations placed on sea beds strong enough...

  18. Optimum Pipe Size Selection for Turbulent Flow

    Directory of Open Access Journals (Sweden)

    Timothy A. AKINTOLA

    2009-07-01

    Full Text Available Pipelines are normally designed to deliver fluid at the required head and flow rate in a cost effective manner. Increase in conduit diameter leads to increase in annual capital costs, and decrease in operating costs. Selection of an optimum conduit diameter for a particular fluid flow will therefore be a vital economic decision. This paper presents a computer aided optimisation technique for determination of optimum pipe diameter for a number of idealized turbulent flow. Relationships were formulated connecting theories of turbulent fluid flow with pipeline costing. These were developed into a computer program, written in Microsoft Visual C++ language, for a high-level precision estimate of the optimum pipe diameter, through the least total cost approach. The validity of the program was ascertained through case studies, representative of fluids with different densities and compressibility. The optimum conduit diameter was found to increase linearly with increase in compressibility.

  19. Optimum Wing Shape Determination of Highly Flexible Morphing Aircraft for Improved Flight Performance

    Science.gov (United States)

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2016-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  20. The effect of wavefront corrugations on fringe motion in an astronomical interferometer with spatial filters

    CERN Document Server

    Tubbs, R

    2005-01-01

    Numerical simulations of atmospheric turbulence and AO wavefront correction are performed to investigate the timescale for fringe motion in optical interferometers with spatial filters. These simulations focus especially on partial AO correction, where only a finite number of Zernike modes are compensated. The fringe motion is found to depend strongly on both the aperture diameter and the level of AO correction used. In all of the simulations the coherence timescale for interference fringes is found to decrease dramatically when the Strehl ratio provided by the AO correction is <~30%. For AO systems which give perfect compensation of a limited number of Zernike modes, the aperture size which gives the optimum signal for fringe phase tracking is calculated. For AO systems which provide noisy compensation of Zernike modes (but are perfectly piston-neutral), the noise properties of the AO system determine the coherence timescale of the fringes when the Strehl ratio is <~30%.

  1. Registration and Tracking Report

    Science.gov (United States)

    2006-02-01

    the layer ownership probabilities are maximized. Isard and MacCormick [71] propose joint modelling of the background and foreground regions for...gradients. Isard et. al [71] define the object state in terms of spline shape parameters and affine motion parameters. The measurements consist of image...Conference on Automatic Face and Gesture Recognition May 17 - 19, 2004 Seoul, Korea 86 [7] Michael Isard , Andrew Blake, ”Condensation Tracking By

  2. Body-Part Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo;

    2014-01-01

    Motion tracking is a widely used technique to analyze and measure adult human movement. However, these methods cannot be transferred directly to motion tracking of infants due to the big differences in the underlying human model. However, motion tracking of infants can be used for automatic...... analysis of infant development and might be able to tell something about possible motor disabilities such as cerebral palsy. In this paper, we address markerless 3D body part detection of infants using a widely available depth sensor and discuss some of the major challenges that arise. We present a method...

  3. Body-Part Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    analysis of infant development and might be able to tell something about possible motor disabilities such as cerebral palsy. In this paper, we address markerless 3D body part detection of infants using a widely available depth sensor and discuss some of the major challenges that arise. We present a method......Motion tracking is a widely used technique to analyze and measure adult human movement. However, these methods cannot be transferred directly to motion tracking of infants due to the big differences in the underlying human model. However, motion tracking of infants can be used for automatic...

  4. Energy Tracking Diagrams

    Science.gov (United States)

    Scherr, Rachel E.; Harrer, Benedikt W.; Close, Hunter G.; Daane, Abigail R.; DeWater, Lezlie S.; Robertson, Amy D.; Seeley, Lane; Vokos, Stamatis

    2016-02-01

    Energy is a crosscutting concept in science and features prominently in national science education documents. In the Next Generation Science Standards, the primary conceptual learning goal is for learners to conserve energy as they track the transfers and transformations of energy within, into, or out of the system of interest in complex physical processes. As part of tracking energy transfers among objects, learners should (i) distinguish energy from matter, including recognizing that energy flow does not uniformly align with the movement of matter, and should (ii) identify specific mechanisms by which energy is transferred among objects, such as mechanical work and thermal conduction. As part of tracking energy transformations within objects, learners should (iii) associate specific forms with specific models and indicators (e.g., kinetic energy with speed and/or coordinated motion of molecules, thermal energy with random molecular motion and/or temperature) and (iv) identify specific mechanisms by which energy is converted from one form to another, such as incandescence and metabolism. Eventually, we may hope for learners to be able to optimize systems to maximize some energy transfers and transformations and minimize others, subject to constraints based in both imputed mechanism (e.g., objects must have motion energy in order for gravitational energy to change) and the second law of thermodynamics (e.g., heating is irreversible). We hypothesize that a subsequent goal of energy learning—innovating to meet socially relevant needs—depends crucially on the extent to which these goals have been met.

  5. Method for Determining Optimum Injector Inlet Geometry

    Science.gov (United States)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  6. Optimum PN Guidance Law for Maneuvering Target

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-cai; QI Zai-kang

    2007-01-01

    An optimum PN guidance law for maneuvering target is developed using optimal control theory. By estimating the target position and setting the cost function, the guidance law can be deduced even without knowing the missile lateral acceleration. Since the quadratic cost function can make a compromise between the miss distance andthe control constraint, the optimum guidance law obtained is more general. Also, introduced line of sight rate as the input, a practical form of this guidance law is derived. The simulation results show the effectiveness of the guidance laws.

  7. ON OPTIMUM DESIGN OF THE SHEARER DRUM

    Institute of Scientific and Technical Information of China (English)

    TaoChidong; ChenChong

    1996-01-01

    On the basis of the model experiments, a software for optimum design of the shearer drum has been developed, and the main parameters of a shearer drum also have been optimized. The combination of the techniques of optimization with the model experiment makes the designing and theoretical systems of the shearer drum more perfect.

  8. Investigation of optimum wavelengths for oximetry

    Science.gov (United States)

    Huong, Audrey K. C.; Stockford, Ian M.; Crowe, John A.; Morgan, Stephen P.

    2009-07-01

    An evaluation of the optimum choice of wavelengths, when using the 'Modified Lambert-Beer law' to estimate blood oxygen saturation, that minimises the mean error across a range of oxygen saturation values is presented. The stability of this approach and its susceptibility to noise are also considered.

  9. Development of the optimum rotor theories

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær; van Kuik, Gijs A.M.

    The purpose of this study is the examination of optimum rotor theories with ideal load distributions along the blades, to analyze some of the underlying ideas and concepts, as well as to illuminate them. The book gives the historical background of the issue and presents the analysis of the proble...

  10. Belichting bromelia: het optimum verschilt per soort

    NARCIS (Netherlands)

    Garcia Victoria, N.; Warmenhoven, M.G.

    2009-01-01

    Het afstemmen van de hoeveelheid assimilatiebelichting en bemesting in de teelt van bromelia's is vakwerk. Extra mest en licht is beter, maar er is een optimum; een plant kan ook te veel mest en licht ontvangen. Voor bepaling van een aangepast teeltrecept is vervolgonderzoek nodig

  11. Common Core: Teaching Optimum Topic Exploration (TOTE)

    Science.gov (United States)

    Karge, Belinda Dunnick; Moore, Roxane Kushner

    2015-01-01

    The Common Core has become a household term and yet many educators do not understand what it means. This article explains the historical perspectives of the Common Core and gives guidance to teachers in application of Teaching Optimum Topic Exploration (TOTE) necessary for full implementation of the Common Core State Standards. An effective…

  12. Minimal Exit Trajectories with Optimum Correctional Manoeuvres

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1980-10-01

    Full Text Available Minimal exit trajectories with optimum correctional manoeuvers to a rocket between two coplaner, noncoaxial elliptic orbits in an inverse square gravitational field have been investigated. Case of trajectories with no correctional manoeuvres has been analysed. In the end minimal exit trajectories through specified orbital terminals are discussed and problem of ref. (2 is derived as a particular case.

  13. Fractional motions

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo I., E-mail: eliazar@post.tau.ac.il [Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Shlesinger, Michael F., E-mail: mike.shlesinger@navy.mil [Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203 (United States)

    2013-06-10

    Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.

  14. Advancement of motion psychophysics: review 2001-2010.

    Science.gov (United States)

    Nishida, Shin'ya

    2011-12-05

    This is a survey of psychophysical studies of motion perception carried out mainly in the last 10 years. It covers a wide range of topics, including the detection and interactions of local motion signals, motion integration across various dimensions for vector computation and global motion perception, second-order motion and feature tracking, motion aftereffects, motion-induced mislocalizations, timing of motion processing, cross-attribute interactions for object motion, motion-induced blindness, and biological motion. While traditional motion research has benefited from the notion of the independent "motion processing module," recent research efforts have been also directed to aspects of motion processing in which interactions with other visual attributes play critical roles. This review tries to highlight the richness and diversity of this large research field and to clarify what has been done and what questions have been left unanswered.

  15. Luge Track Safety

    CERN Document Server

    Hubbard, Mont

    2012-01-01

    Simple geometric models of ice surface shape and equations of motion of objects on these surfaces can be used to explain ejection of sliders from ice tracks. Simulations using these can be used to explain why certain design features can be viewed as proximate causes of ejection from the track and hence design flaws. This paper studies the interaction of a particle model for the luge sled (or its right runner) with the ice fillet commonly connecting inside vertical walls and the flat track bottom. A numerical example analyzes the 2010 luge accident at the Vancouver Olympics. It shows that this runner-fillet interaction, and specifically the fillet's positive curvature up the inside wall, can cause a vertical velocity more than sufficient to clear the outside exit wall. In addition its negative curvature along the track, together with large vertical velocity, explains loss of fillet or wall contact and slider ejection. This exposes the fillet along inside walls as a track design flaw. A more transparent design ...

  16. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J

    2011-01-01

    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  17. Use of genetically encoded calcium indicators (GECIs combined with advanced motion tracking techniques to examine the behavior of neurons and glia in the enteric nervous system of the intact murine colon

    Directory of Open Access Journals (Sweden)

    Grant Willem Hennig

    2015-11-01

    Full Text Available Genetically encoded Ca2+ indicators (GECIs have been used extensively in many body systems to detect Ca2+ transients associated with neuronal activity. Their adoption in enteric neurobiology has been slower, although they offer many advantages in terms of selectivity, signal-to-noise and non-invasiveness. Our aims were to utilize a number of cell-specific promoters to express the Ca2+ indicator GCaMP3 in different classes of neurons and glia to determine their effectiveness in measuring activity in enteric neural networks during colonic motor behaviors. We developed several GCaMP3 mice: 1 Wnt1-GCaMP3, all enteric neurons and glia; 2 GFAP-GCaMP3, enteric glia; 3 nNOS-GaMP3, enteric nitrergic neurons, and 4 ChAT-GCaMP3, enteric cholinergic neurons. These mice allowed us to study the behavior of the enteric neurons in the intact colon maintained at a physiological temperature, especially during the colonic migrating motor complex (CMMC, using low power Ca2+ imaging. In this preliminary study, we observed neuronal and glial cell Ca2+ transients in specific cells in both the myenteric and submucous plexus in all of the transgenic mice variants. The number of cells that could be simultaneously imaged at low power (100-1000 active cells through the undissected gut required advanced motion tracking and analysis routines. The pattern of Ca2+ transients in myenteric neurons showed significant differences in response to spontaneous, oral or anal stimulation. Brief anal elongation or mucosal stimulation, which evokes a CMMC, were the most effective stimuli and elicited a powerful synchronized and prolonged burst of Ca2+ transients in many myenteric neurons, especially when compared with the same neurons during a spontaneous CMMC. In contrast, oral elongation, which normally inhibits CMMCs, appeared to suppress Ca2+ transients some of the neurons active during a spontaneous or an anally evoked CMMC. The activity in glial networks appeared to follow neural

  18. Design and construct optimum dosimeter to detect airborne radon and thoron gas: Experimental study

    Science.gov (United States)

    Ismail, Asaad H.; Jaafar, Mohamad S.

    2011-02-01

    Aim of this work is to design and select optimum dimension of a radon and thoron dosimeter within the measure optimum value of the calibration factor, using CR-39 Nuclear Track Detectors (NTDs). The results show that the best dimension to detect and measure real values of airborne radon and thoron concentrations is 6 cm and 7 cm for diameter and height, respectively. Calibration factors (K) for radon and thoron at this dimension were 2.68 ± 0.03 cm and 0.83 ± 0.01 cm, respectively, and these factors relatively depend on the detector efficiency. Therefore, the efficiency of CR-39NTDs to register alpha particles and their effects on the calibration factor estimated. It is found that the calibration factor increased exponentially with detector efficiency. Moreover, detector efficiency was equal to 80.3 ± 1.23% at the optimum dosimeter.

  19. Optimum design using VICONOPT, a buckling and strength constraint program for prismatic assemblies of anisotropic plates

    Science.gov (United States)

    Butler, R.; Williams, F. W.

    1992-01-01

    A computer program for obtaining the optimum (least mass) dimensions of the kind of prismatic assemblies of laminated, composite plates which occur in advanced aerospace construction is described. Rigorous buckling analysis (derived from exact member theory) and a tailored design procedure are used to produce designs which satisfy buckling and material strength constraints and configurational requirements. Analysis is two to three orders of magnitude quicker than FEM, keeps track of all the governing modes of failure and is efficiently adapted to give sensitivities and to maintain feasibility. Tailoring encourages convergence in fewer sizing cycles than competing programs and permits start designs which are a long way from feasible and/or optimum. Comparisons with its predecessor, PASCO, show that the program is more likely to produce an optimum, will do so more quickly in some cases, and remains accurate for a wider range of problems.

  20. A Laser Scanning Tracking Method

    Science.gov (United States)

    Xu, Gaoyue; Hu, Baoli; Wang, Jiangping

    1988-04-01

    In this paper, a new tracking approach, a laser scanning tracking method (LSTM) is proposed. The LSTM has been designed to track a cylindrical retroreflective target mounted on the object, which makes plane motion. The retroreflector pasted by scotchlite reflective sheeting (mad. in 3M ,0.) i s located by scanning a laser beam in holizontal. When the retroreflector is struck, its position that is azimuth is read by microcomputer and the aiming device is servocontrolled by microcomputer according to this azimuth immediately. This is a step-by-step tracking method. The time of servo-reponse is less than one millisecona in actual tests. The angular accuracy is less than 0.5 milliradian. The track angular velocity is greater than one radian/second.

  1. Binocular eye tracking with the Tracking Scanning Laser Ophthalmoscope.

    Science.gov (United States)

    Stevenson, S B; Sheehy, C K; Roorda, A

    2016-01-01

    The development of high magnification retinal imaging has brought with it the ability to track eye motion with a precision of less than an arc minute. Previously these systems have provided only monocular records. Here we describe a modification to the Tracking Scanning Laser Ophthalmoscope (Sheehy et al., 2012) that splits the optical path in a way that slows the left and right retinas to be scanned almost simultaneously by a single system. A mirror placed at a retinal conjugate point redirects half of each horizontal scan line to the fellow eye. The collected video is a split image with left and right retinas appearing side by side in each frame. Analysis of the retinal motion in the recorded video provides an eye movement trace with very high temporal and spatial resolution. Results are presented from scans of subjects with normal ocular motility that fixated steadily on a green laser dot. The retinas were scanned at 4° eccentricity with a 2° square field. Eye position was extracted offline from recorded videos with an FFT based image analysis program written in Matlab. The noise level of the tracking was estimated to range from 0.25 to 0.5arcmin SD for three subjects. In the binocular recordings, the left eye/right eye difference was 1-2arcmin SD for vertical motion and 10-15arcmin SD for horizontal motion, in agreement with published values from other tracking techniques.

  2. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  3. ROBUST OPTIMUM DESIGN OF LAMINATED COMPOSITE PLATES

    Institute of Scientific and Technical Information of China (English)

    WangXiangyang; ChenJianqiao

    2004-01-01

    A last-ply failure (LPF) analysis method for laminated composite plates is incorporated into the finite element code-ANSYS, and a robust optimum design method is presented. The composite structure is analyzed by considering both in-plane and out-of-plane loads. For a lamina,two major failure modes are considered: matrix failure and fiber breakage that axe characterized by the proper strength criteria in the literature. When a lamina has failed, the laminate stiffness is modified to reflect the damage, and stresses in the structure are re-analyzed. This procedure is repeatedly performed until the whole structure fails and thus the ultimate strength is determined.A structural optimization problem is solved with the fiber orientation and the lamina thickness as the design variables and the LPF load as the objective. Finally, the robust optimum design method for laminates is presented and discussed.

  4. OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    LIN-LIU,YR; STAMBAUGH,RD

    2002-11-01

    OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.

  5. Optimum annular focusing by a phase plate

    CERN Document Server

    Arrizón, Victor; Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel

    2015-01-01

    Conventional light focusing, i. e. concentration of an extended optical field within a small area around a point, is a frequently used process in Optics. An important extension to conventional focusing is the generation of the annular focal field of an optical beam. We discuss a simple optical setup that achieves this kind of focusing employing a phase plate as unique optical component. We first establish the class of beams that being transmitted through the phase plate can be focused into an annular field with topological charge of arbitrary integer order q. Then, for each beam in this class we determine the plate transmittance that generates the focal field with the maximum possible peak intensity. In particular, we discuss and implement experimentally the optimum annular focusing of a Gaussian beam. The attributes of optimum annular focal fields, namely the high peak intensity, intensity gradient and narrow annular section, are advantageous for different applications of such structured fields.

  6. Active magnetic bearings for optimum turbomachinery design

    Science.gov (United States)

    Hustak, J.; Kirk, R. G.; Schoeneck, K. A.

    1985-01-01

    The design and shop test results are given for a high speed eight stage centrifugal compressor supported by active magnetic bearings. A brief summary of the rotor dynamics analysis is presented with specific attention given to design considerations for optimum rotor stability. The concerns for retrofit of magnetic bearings in existing machinery are discussed with supporting analysis of a four stage centrifugal compressor. Recommendations are given on design and analysis requirements for successful machinery operation of either retrofit or new design turbomachinery.

  7. Boolean computation of optimum hitting sets

    Energy Technology Data Exchange (ETDEWEB)

    Hulme, B.L.; Baca, L.S.; Shiver, A.W.; Worrell, R.B.

    1984-04-01

    This report presents the results of computational experience in solving weighted hitting set problems by Boolean algebraic methods. The feasible solutions are obtained by Boolean formula manipulations, and the optimum solutions are obtained by comparing the weight sums of the feasible solutions. Both the algebra and the optimization can be accomplished using the SETS language. One application is to physical protection problems. 8 references, 2 tables.

  8. Optimum Arrangement of Taxi Drivers’ Working Hours

    OpenAIRE

    TANIZAKI, Takashi

    2014-01-01

    Part 2: Knowledge Discovery and Sharing; International audience; We propose optimum arrangement of taxi drivers’ working hours. In Japan, income of taxi vehicle is decreasing about 11 thousand yen in the past 15 years. Then some taxi companies are investing to gain more customers. But there are many small taxi companies that are difficult to invest with much money. Therefore we have been researching the other method to gain more customers by little investment for small companies. In this pape...

  9. Optimum design of cast iron finned radiator

    Institute of Scientific and Technical Information of China (English)

    赵立华; 张泓森; 董重成

    2003-01-01

    The height, thickness and spacing of fins have an impact on the thermal characteristics of a radiator.The calculation of heat output and metal thermal intensity for cast iron finned radiator are given by using heat transfer formula of vertical plate and parallel fins. Each factor having effect on the metal thermal intensity of a radiator is analyzed and the optimum structure parameters of a radiator are given in order to maximize metal thermal intensity.

  10. Techniques for evaluating optimum data center operation

    Science.gov (United States)

    Hamann, Hendrik F.; Rodriguez, Sergio Adolfo Bermudez; Wehle, Hans-Dieter

    2017-06-14

    Techniques for modeling a data center are provided. In one aspect, a method for determining data center efficiency is provided. The method includes the following steps. Target parameters for the data center are obtained. Technology pre-requisite parameters for the data center are obtained. An optimum data center efficiency is determined given the target parameters for the data center and the technology pre-requisite parameters for the data center.

  11. PENGENDALI POINTER DENGAN GAZE TRACKING MENGGUNAKAN METODE HAAR CLASSIFIER SEBAGAI ALAT BANTU PRESENTASI (EYE POINTER

    Directory of Open Access Journals (Sweden)

    Edi Satriyanto

    2013-03-01

    Full Text Available The application that builded in this research is a pointer controller using eye movement (eye pointer. This application is one of image processing applications, where the users just have to move their eye to control the computer pointer. This eye pointer is expected able to assist the usage of manual pointer during the presentation. Since the title of this research is using gaze tracking that follow the eye movement, so that is important to detect the center of the pupil. To track the gaze, it is necessary to detect the center of the pupil if the eye image is from the input camera. The gaze tracking is detected using the three-step hierarchy system. First, motion detection, object (eye detection, and then pupil detection. For motion detection, the used method is identify the movement by dynamic compare the pixel ago by current pixel at t time. The eye region is detected using the Haar-Like Feature Classifier, where the sistem must be trained first to get the cascade classifier that allow the sistem to detect the object in each frame that captured by camera. The center of pupil is detect using integral projection.The final step is mapping the position of center of pupil to the screen of monitor using comparison scale between eye resolution with screen resolution. When detecting the eye gaze on the screen, the information (the distance and angle between eyes and a screen is necessary to compute pointing coordinates on the screen. In this research, the accuracy of this application is equal to 80% at eye movement with speed 1-2 second. And the optimum mean value is between 5 and 10. The optimum distance of user and the webcam is 40 cm from webcam.

  12. Methods for tracking the motion and temperature history of fuel particles in grate furnaces and waste boilers; Metoder foer kartlaeggning av braenslepartiklars roerelse- och temperaturhistorik i rosterpannor och avfallsugnar - etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Blom, Elisabet; Oskarsson, Jan; Petersson, Mats [Swedish National Testing and Research Inst., Boraas (Sweden)

    2003-03-01

    The objective of this project has been to demonstrate and evaluate the feasibility of some proposed measuring methods for tracking the motion and temperature history of fuel particles in a grate furnace through full-scale trials. The methods use radioactive isotopes and are based on marking of single fuel particles. The methods have the following objectives: To continuously track the motion of a single fuel particle from the fuel feed to the burn-out; To determine when a fuel particle arrives at certain temperatures; To study the drying process for a fuel particle; To determine the density in different parts of the fuel bed. The method for continuous position determination is based on the construction of a mathematical model of the dimensions and materials of the furnace. Detectors are placed in a number of positions on the outside of the furnace, and the model is then calibrated with a radioactive source placed in a number of given positions inside the furnace. When using the method, fuel particles marked with the radioactive isotope Na is fed to the fuel inlet. From the detector signals the position of the source can be continuously determined. The full-scale trials showed that the uncertainty in the position determination was greater than expected. At the calibration, the mean error of the position determination was 0,62 m, and the error was less than 0,5 m for 80 % of the calibration positions. At the trials during boiler operation the results from the original calculation model were partly not reasonable, i.e. in that positions outside the possible volume were achieved during certain periods. However, some conclusions about the time scales could be drawn, e.g. about the residence times on different parts of the grate. A number of factors are thought to contribute to the low accuracy. The number of detectors influences the accuracy, and during the boiler operation trials one detector ceased to function. Further it was assumed in the model that the density of

  13. An optimized software framework for real-time, high-throughput tracking of spherical beads.

    Science.gov (United States)

    Cnossen, J P; Dulin, D; Dekker, N H

    2014-10-01

    Numerous biophysical techniques such as magnetic tweezers, flow stretching assays, or tethered particle motion assays rely on the tracking of spherical beads to obtain quantitative information about the individual biomolecules to which these beads are bound. The determination of these beads' coordinates from video-based images typically forms an essential component of these techniques. Recent advances in camera technology permit the simultaneous imaging of many beads, greatly increasing the information that can be captured in a single experiment. However, computational aspects such as frame capture rates or tracking algorithms often limit the rapid determination of such beads' coordinates. Here, we present a scalable and open source software framework to accelerate bead localization calculations based on the CUDA parallel computing framework. Within this framework, we implement the Quadrant Interpolation algorithm in order to accurately and simultaneously track hundreds of beads in real time using consumer hardware. In doing so, we show that the scatter derived from the bead tracking algorithms remains close to the theoretical optimum defined by the Cramer-Rao Lower Bound. We also explore the trade-offs between processing speed, size of the region-of-interests utilized, and tracking bias, highlighting in passing a bias in tracking along the optical axis that has previously gone unreported. To demonstrate the practical application of this software, we demonstrate how its implementation on magnetic tweezers can accurately track (with ∼1 nm standard deviation) 228 DNA-tethered beads at 58 Hz. These advances will facilitate the development and use of high-throughput single-molecule approaches.

  14. Detection and Tracking of Moving Object: A Survey

    Directory of Open Access Journals (Sweden)

    Hemangi R. Patil

    2015-11-01

    Full Text Available Object tracking is the process of locating moving object or multiple objects in sequence of frames. Object tracking is basically a challenging problem. Difficulties in tracking of an object may arise due to abrupt changes in environment, motion of object, noise etc. To overcome such problems different tracking algorithms have been proposed. This paper presents various techniques related to object detection and tracking..The goal of this paper is to present a survey of these techniques.

  15. Real-Time 3D Tracking and Reconstruction on Mobile Phones.

    Science.gov (United States)

    Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D

    2015-05-01

    We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.

  16. Unscented Kalman filtering for articulated human tracking

    DEFF Research Database (Denmark)

    Boesen Lindbo Larsen, Anders; Hauberg, Søren; Pedersen, Kim Steenstrup

    2011-01-01

    We present an articulated tracking system working with data from a single narrow baseline stereo camera. The use of stereo data allows for some depth disambiguation, a common issue in articulated tracking, which in turn yields likelihoods that are practically unimodal. While current state...... with superior results. Tracking quality is measured by comparing with ground truth data from a marker-based motion capture system....

  17. Motion analysis report

    Science.gov (United States)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  18. Robust global motion estimation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A global motion estimation method based on robust statistics is presented in this paper. By using tracked feature points instead of whole image pixels to estimate parameters the process speeds up. To further speed up the process and avoid numerical instability, an alterative description of the problem is given, and three types of solution to the problem are compared. By using a two step process, the robustness of the estimator is also improved. Automatic initial value selection is an advantage of this method. The proposed approach is illustrated by a set of examples, which shows good results with high speed.

  19. Thermal Comfort and Optimum Humidity Part 1

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  20. Thermal Comfort and Optimum Humidity Part 2

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  1. Optimum Route Selection for Vehicle Navigation

    Directory of Open Access Journals (Sweden)

    Dalip

    2016-02-01

    Full Text Available The objective of Optimum Route Selection for Vehicle Navigation System (ORSVNS article is to develop a system, which provides information about real time alternate routes to the drivers and also helps in selecting the optimal route among all the alternate routes from an origin to destination. Two types of query systems, special and general, are designed for drivers. Here, the criterion for route selection is introduced using primary and secondary road attributes. The presented methodology helps the drivers in better decision making to choose optimal route using fuzzy logic. For experimental results ORSVNS is tested over 220 km portion of Haryana state in India.

  2. Optimum Staging with Varying Thrust Attitude Angle

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1966-07-01

    Full Text Available Optimum staging programme for step rockets of arbitrary number of stages having different specific impulses and mass fractions with stages is derived, the optimization criterion being minimum take-off weight for a desired burntout velocity at an assigned altitude. Variation of thrust attitude angle from stage to stage and effects of gravity factor are taken into account. Analysis is performed for a degenerate problem obtained by relaxing the altitude constraint and it has been shown that problems of Weisbord, Subotowicz, Hall & Zambelli and Malina & Summerfield are the particular cases of the degenerate problem.

  3. CALCULATION OF BASIC ENVIRONMENTAL GEOSTROPHIC FLOW AND STATISTICAL STUDY ON TC TRACK AND ITS DEVIATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using the T63L16 analysis data with the resolution of 1.875╳1.875 degree of latitude and longitude obtained from National Meteorological Center (NMC) and the real central position information of tropical cyclone (referred to as TC hereafter) numbered by NMC, the basic environmental geostrophic flow at 126 time levels of 25 TCs in 1996 are calculated. The vertical distribution features of the flows are analyzed. Besides, the deviation of real TC tracks from the flows (referred as steering deviation hereafter, namely, the deviation between the real central position of TC and the position calculated according to the steering flow) is also investigated. The result shows that the steering deviation would be different if the domain used to calculate the steering flow is different. The present paper obtains the optimum domain size to calculate the steering flow. It is found that the steering deviation is related to the velocity of steering flow and the initial latitude and intensity of TC itself, and that TC motion has relationship with the vertical shear structure of environmental geostrophic flow. The result also shows that the optimum steering flow is the deep-layer averaged basic flow from 1000 hPa to 200 hPa. Having the knowledge of these principle and features would help make accurate forecast of TC motion.

  4. PLAN’S PARAMETERS OF ELEMENTS OPTIMIZATION IN CLASSIFICATION TRACKS

    Directory of Open Access Journals (Sweden)

    V. I. Bobrovskyi

    2010-12-01

    Full Text Available The method of determination of optimum parameters of connecting curves on marshalling tracks, which insure the minimum distance from the first bunch switch to the seating of park car retarders is developed. This method can be applied in designing the plan of marshalling tracks.

  5. Particle Tracking in Circular Accelerators Using the Exact Hamiltonian in SixTrack

    CERN Document Server

    Fjellstrom, Mattias; Hansson, Johan

    2013-12-13

    Particle motion in accelerators is in general complex. Tracking codes are developed to simulate beam dynamics in accelerators. SixTrack is a long lived particle tracking code maintained at CERN, the European Organization for Nuclear Research. A particle accelerator consists of a large number of magnets and other electromagnetic devices that guide the particle through the accelerator. Each device defines its own equation of motion, which often cannot be solved exactly. For this purpose, a number of approximations are introduced in order to facilitate the solution and to speed up the computation. In a high-energy accelerator, the particle has small transverse momentum components. This is exploited in the small-angle approximation. In this approximation the equations of motion are expanded to a low order in the transverse momentum components. In low-energy particle accelerators, or in tracking with large momentum deviations, this approximation is invalid. The equations of motion of a particle passing through a f...

  6. Fast and Practical Head Tracking in Brain Imaging with Time-of-Flight Camera

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Jensen, Rasmus Ramsbøl

    2013-01-01

    This paper investigates the potential use of Time-of-Flight cameras (TOF) for motion correction in medical brain scans. TOF cameras have previously been used for tracking purposes, but recent progress in TOF technology has made it relevant for high speed optical tracking in high resolution medica...... of expensive triangulation and surface reconstruction. Tracking experiments with a motion controlled head phantom were performed with a translational tracking error below 2mm and a rotational tracking error below 0.5°....

  7. The impact of the width of the tracking area on speckle tracking parameters-methodological aspects of deformation imaging.

    Science.gov (United States)

    Stoebe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-05-01

    The aim of this study was to analyze the impact of the tracking area width on myocardial wall motion and deformation parameters in 2D speckle tracking. Standardized apical views were acquired in 30 healthy subjects and 15 patients with left ventricular systolic dysfunction using 2D echocardiography. Longitudinal peak systolic strain (PSS), longitudinal peak systolic strain rate (PSSR), postsystolic index (PSI), peak longitudinal (PLD), and peak transverse displacement (PTD) were determined by 2D speckle tracking to analyze the impact of the tracking area width on global and regional myocardial wall motion and deformation parameters. The dimension of the tracking area has a significant impact on all parameters. With increasing width of the tracking area higher values of PSS, PSSR, PSI, and lower values of PLD and PTD were determined. With increasing width of the tracking area a significant number of segments were not tracked. In summary, especially global PSS is significantly influenced by the width of the tracking area. The strain values determined by 2D speckle tracking are significantly influenced by the tracking area width. The tracking of the subendocardial layers only results in lower global strain values than tracking the complete ventricular wall using the medium or wide tracking area widths. The tracking quality in the far field is worse if the tracking area is too wide. The present data show that standard and reference values of deformation imaging should include detailed information about the position and the width of the tracking area. © 2013, Wiley Periodicals, Inc.

  8. Hand in motion reveals mind in motion

    Directory of Open Access Journals (Sweden)

    Jonathan eFreeman

    2011-04-01

    Full Text Available Recently, researchers have measured hand movements en route to choices on a screen to understand the dynamics of a broad range of psychological processes. We review this growing body of research and explain how manual action exposes the real-time unfolding of underlying cognitive processing. We describe how simple hand motions may be used to continuously index participants’ tentative commitments to different choice alternatives during the evolution of a behavioral response. As such, hand-tracking can provide unusually high-fidelity, real-time motor traces of the mind. These motor traces cast novel theoretical and empirical light onto a wide range of phenomena and serve as a potential bridge between far-reaching areas of psychological science—from language, to high-level cognition and learning, to social cognitive processes.

  9. REGARDING "TRAGIC ECONOMIC OPTIMUM" FROM HOLISTIC+ PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Constantin Popescu

    2010-12-01

    Full Text Available Communication aims to discuss the new scientific vision of "the entire integrated" as it follows the recent achievements of quantum physics, psychology and biology. From this perspective, economy is seen as a living organism, part of the social organism and together with de bright ecology. The optimum of the economy as a living organism is based on dynamic compatibilities with all common living requirements. The evolution of economic life is organically linked to the unavoidable circumstances contained in the form of V. Frankl ‘s tragic triad consisting of: pain, guilt and death. In interaction with the holistic triad circumscribed by limitations, uncertainties and open interdependencies, the tragic economic optimum (TEO is formed. It can be understood as that state of economic life in which freedom of choice of scarce resources under uncertainty has in the compatibility of rationality and hope the development criteria of MEANING. TEO means to say YES to economic life even in conditions of resource limitations, bankruptcies and unemployment, negative externalities, stress, etc. By respiritualization of responsibility using scientific knowledge. TEO - involves multicriteria modeling of economic life by integrating human demands, community, environmental, spiritual and business development in the assessment predicting human GDP as a variable wave aggregate.

  10. Track score processing of multiple dissimilar sensors

    OpenAIRE

    Patsikas, Dimitrios

    2007-01-01

    In this thesis, a data fusion problem when a number of different types of sensors are deployed in the vicinity of a ballistic missile launch is studied. An objective of this thesis is to calculate a scoring function for each sensor track, and the track file with the best (optimum) track score can then be used for guiding an interceptor to the threat within the boost phase. Seven active ground-based radars, two space-based passive infrared sensors and two active light detection and rangin...

  11. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Wang, Hongjun [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Chang, Zheng; Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2014-11-15

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  12. Towards the Optimum Light Source Spectrum

    Directory of Open Access Journals (Sweden)

    Andrew Chalmers

    2010-01-01

    Full Text Available This paper is concerned with designing light source spectra for optimum luminous efficacy and colour rendering. We demonstrate that it is possible to design light sources that can provide both good colour rendering and high luminous efficacy by combining the outputs of a number of narrowband spectral constituents. Also, the achievable results depend on the numbers and wavelengths of the different spectral bands utilized in the mixture. Practical realization of these concepts has been demonstrated in this pilot study which combines a number of simulations with tests using real LEDs (light emitting diodes. Such sources are capable of providing highly efficient lighting systems with good energy conservation potential. Further research is underway to investigate the practicalities of our proposals in relation to large-scale light source production.

  13. Optimum Maintenance Strategies for Highway Bridges

    DEFF Research Database (Denmark)

    Frangopol, Dan M.; Thoft-Christensen, Palle; Das, Parag C.;

    As bridges become older and maintenance costs become higher, transportation agencies are facing challenges related to implementation of optimal bridge management programs based on life cycle cost considerations. A reliability-based approach is necessary to find optimal solutions based on minimum...... expected life-cycle costs or maximum life-cycle benefits. This is because many maintenance activities can be associated with significant costs, but their effects on bridge safety can be minor. In this paper, the program of an investigation on optimum maintenance strategies for different bridge types...... is described. The end result of this investigation will be a general reliability-based framework to be used by the UK Highways Agency in order to plan optimal strategies for the maintenance of its bridge network so as to optimize whole-life costs....

  14. Choosing an optimum sand control method

    Directory of Open Access Journals (Sweden)

    Ehsan Khamehchi

    2015-06-01

    Full Text Available Formation sand control is always one of the main concerns of production engineers. There are some different methods to prevent sand production. Choosing a method for preventing formation sand production depends on different reservoir parameters and politic and economic conditions. Sometimes, economic and politic conditions are more effective to choose an optimum than reservoir parameters. Often, simultaneous investigation of politic and economic conditions with reservoir parameters has different results with what is expected. So, choosing the best sand control method is the result of thorough study. Global oil price, duration of sand control project and costs of necessary equipment for each method as economic and politic conditions and well productivity index as reservoir parameter are the main parameters studied in this paper.

  15. Optimum viscous flow in pressure-swirl atomizers

    Science.gov (United States)

    Amini, Ghobad; Pereira, Aaron; Yun, Sangsig; Li, Xianguo

    2013-11-01

    Due to their simple configuration and reliable operation, pressure-swirl atomizers are widely used in applications such as combustion, painting, humidification, and sprinkling. The liquid is swirled by entering into the atomizer tangentially and its surface area is increased as discharges in a large spray angle. Understanding the effects of nozzle geometry and inlet flow condition on the discharge coefficient and spray angle is very important in nozzle design. To this end, the flow field inside a pressure-swirl atomizer has been studied theoretically. The main body of the liquid is taken to be moving in circles round the axis. Within the boundary layer, containing transverse and longitudinal velocity components, the retarded liquid is slowed down by viscosity and driven towards the exit orifice by pressure gradient. The swirling motion of liquid creates a low pressure zone near the nozzle axis and leads to the formation of a helical air-core. Through studying the growth of the boundary layer from nozzle entry to the orifice exit, the portions of the outflow exits the orifice from boundary layer current and also from the main body of the swirling liquid are specified. For a given range of pressure drop values, the optimum nozzle geometry and liquid flowrate are predicted. Additionally, the reason of increasing the flow by increasing liquid viscosity or decreasing orifice diameter is explained. A series of experiments and numerical modeling have also been carried out to support the theoretical results.

  16. Optimum conditions for microbial carbonate precipitation.

    Science.gov (United States)

    Okwadha, George D O; Li, Jin

    2010-11-01

    The type of bacteria, bacterial cell concentration, initial urea concentration, reaction temperature, the initial Ca(2+) concentration, ionic strength, and the pH of the media are some factors that control the activity of the urease enzyme, and may have a significant impact on microbial carbonate precipitation (MCP). Factorial experiments were designed based on these factors to determine the optimum conditions that take into consideration economic advantage while at the same time giving quality results. Sporosarcina pasteurii strain ATCC 11859 was used at constant temperature (25°C) and ionic strength with varying amounts of urea, Ca(2+), and bacterial cell concentration. The results indicate that the rate of ureolysis (k(urea)) increases with bacterial cell concentration, and the bacterial cell concentration had a greater influence on k(urea) than initial urea concentration. At 25 mM Ca(2+) concentration, increasing bacterial cell concentration from 10(6) to 10(8)cells mL⁻¹ increased the CaCO(3) precipitated and CO(2) sequestrated by over 30%. However, when the Ca(2+) concentration was increased 10-fold to 250 mM Ca(2+), the amount of CaCO(3) precipitated and CO(2) sequestrated increased by over 100% irrespective of initial urea concentration. Consequently, the optimum conditions for MCP under our experimental conditions were 666 mM urea and 250 mM Ca(2+) at 2.3×10⁸ cells mL⁻¹ bacterial cell concentration. However, a greater CaCO(3) deposition is achievable with higher concentrations of urea, Ca(2+), and bacterial cells so long as the respective quantities are within their economic advantage. X-ray Diffraction, Scanning Electron Microscopy and Energy Dispersive X-ray analyzes confirmed that the precipitate formed was CaCO(3) and composed of predominantly calcite crystals with little vaterite crystals.

  17. ANNOTATION SUPPORTED OCCLUDED OBJECT TRACKING

    Directory of Open Access Journals (Sweden)

    Devinder Kumar

    2012-08-01

    Full Text Available Tracking occluded objects at different depths has become as extremely important component of study for any video sequence having wide applications in object tracking, scene recognition, coding, editing the videos and mosaicking. The paper studies the ability of annotation to track the occluded object based on pyramids with variation in depth further establishing a threshold at which the ability of the system to track the occluded object fails. Image annotation is applied on 3 similar video sequences varying in depth. In the experiment, one bike occludes the other at a depth of 60cm, 80cm and 100cm respectively. Another experiment is performed on tracking humans with similar depth to authenticate the results. The paper also computes the frame by frame error incurred by the system, supported by detailed simulations. This system can be effectively used to analyze the error in motion tracking and further correcting the error leading to flawless tracking. This can be of great interest to computer scientists while designing surveillance systems etc.

  18. Context-aware visual tracking.

    Science.gov (United States)

    Yang, Ming; Wu, Ying; Hua, Gang

    2009-07-01

    Enormous uncertainties in unconstrained environments lead to a fundamental dilemma that many tracking algorithms have to face in practice: Tracking has to be computationally efficient, but verifying whether or not the tracker is following the true target tends to be demanding, especially when the background is cluttered and/or when occlusion occurs. Due to the lack of a good solution to this problem, many existing methods tend to be either effective but computationally intensive by using sophisticated image observation models or efficient but vulnerable to false alarms. This greatly challenges long-duration robust tracking. This paper presents a novel solution to this dilemma by considering the context of the tracking scene. Specifically, we integrate into the tracking process a set of auxiliary objects that are automatically discovered in the video on the fly by data mining. Auxiliary objects have three properties, at least in a short time interval: 1) persistent co-occurrence with the target, 2) consistent motion correlation to the target, and 3) easy to track. Regarding these auxiliary objects as the context of the target, the collaborative tracking of these auxiliary objects leads to efficient computation as well as strong verification. Our extensive experiments have exhibited exciting performance in very challenging real-world testing cases.

  19. Motion feature extraction scheme for content-based video retrieval

    Science.gov (United States)

    Wu, Chuan; He, Yuwen; Zhao, Li; Zhong, Yuzhuo

    2001-12-01

    This paper proposes the extraction scheme of global motion and object trajectory in a video shot for content-based video retrieval. Motion is the key feature representing temporal information of videos. And it is more objective and consistent compared to other features such as color, texture, etc. Efficient motion feature extraction is an important step for content-based video retrieval. Some approaches have been taken to extract camera motion and motion activity in video sequences. When dealing with the problem of object tracking, algorithms are always proposed on the basis of known object region in the frames. In this paper, a whole picture of the motion information in the video shot has been achieved through analyzing motion of background and foreground respectively and automatically. 6-parameter affine model is utilized as the motion model of background motion, and a fast and robust global motion estimation algorithm is developed to estimate the parameters of the motion model. The object region is obtained by means of global motion compensation between two consecutive frames. Then the center of object region is calculated and tracked to get the object motion trajectory in the video sequence. Global motion and object trajectory are described with MPEG-7 parametric motion and motion trajectory descriptors and valid similar measures are defined for the two descriptors. Experimental results indicate that our proposed scheme is reliable and efficient.

  20. ROBUST MOTION SEGMENTATION FOR HIGH DEFINITION VIDEO SEQUENCES USING A FAST MULTI-RESOLUTION MOTION ESTIMATION BASED ON SPATIO-TEMPORAL TUBES

    OpenAIRE

    Brouard, Olivier; Delannay, Fabrice; Ricordel, Vincent; Barba, Dominique

    2007-01-01

    4 pages; International audience; Motion segmentation methods are effective for tracking video objects. However, objects segmentation methods based on motion need to know the global motion of the video in order to back-compensate it before computing the segmentation. In this paper, we propose a method which estimates the global motion of a High Definition (HD) video shot and then segments it using the remaining motion information. First, we develop a fast method for multi-resolution motion est...

  1. Optimum Design of Structure Shape for Offshore Jacket Platforms

    Institute of Scientific and Technical Information of China (English)

    FENG Sheng; SONG Yupu; ZHANG Rixiang

    2000-01-01

    With the introduction of the design variables of nodal coordinates, which reflect the embedded depth of the pile and the jacket bed height, a shape optimum design model for offshore jacket platforms is established. A sequential two-level optimum algorithm is developed based on the design variable gradation. On the basis of the finite element method, the sensitivity of the objective function and nodal displacement is analyzed. As an example, the BZ281 oil storage offshore platform, which lies in the Bohai oil field, is designed with the shape optimum model The results are compared with the cross-section optimum design. The tendency of design variables and its reasons in the two methods are analyzed. In the shape optimum design, the value of objective function is obviously smaller than that of the initial design and the cross-section optimum design. Therefore, the advantage of structure shape optimum design for jacket platforms is remarkable.

  2. Cloth Simulation Based Motion Capture of Dressed Humans

    Science.gov (United States)

    Hasler, Nils; Rosenhahn, Bodo; Seidel, Hans-Peter

    Commonly, marker based as well as markerless motion capture systems assume that the tracked person is wearing tightly fitting clothes. Unfortunately, this restriction cannot be satisfied in many situations and most preexisting video data does not adhere to it either. In this work we propose a graphics based vision approach for tracking humans markerlessly without making this assumption. Instead, a physically based simulation of the clothing the tracked person is wearing is used to guide the tracking algorithm.

  3. Improving disturbance rejection of PID controllers by means of the magnitude optimum method.

    Science.gov (United States)

    Vrancić, Damir; Strmcnik, Stanko; Kocijan, Jus; de Moura Oliveira, P B

    2010-01-01

    The magnitude optimum (MO) method provides a relatively fast and non-oscillatory closed-loop tracking response for a large class of process models frequently encountered in the process and chemical industries. However, the deficiency of the method is poor disturbance rejection performance of some processes. In this paper, disturbance rejection performance of the PID controller is improved by applying the "disturbance rejection magnitude optimum" (DRMO) optimisation method, while the tracking performance has been improved by a set-point weighting and set-point filtering PID controller structure. The DRMO tuning method requires numerical optimisation for the calculation of PID controller parameters. The method was applied to two different 2-degrees-of-freedom PID controllers and has been tested on several different representatives of process models and one laboratory set-up. A comparison with some other tuning methods has shown that the proposed tuning method, with a set-point filtering PID controller, is quite efficient in improving disturbance rejection performance, while retaining tracking performance comparable with the original MO method.

  4. Semi-automatic object tracking in video sequences

    OpenAIRE

    Lecumberry, Federico; Pardo, Álvaro

    2005-01-01

    A method is presented for semi-automatic object tracking in video sequences using multiple features and a method for probabilistic relaxation to improve the tracking results producing smooth and accurate tracked borders. Starting from a given initial position of the object in the first frame the proposed method automatically tracks the object in the sequence modelling the a posteriori probabilities of a set of features such as color, position and motion, depth, etc. Facultad de Informática

  5. Radiation Reaction on Brownian Motions

    CERN Document Server

    Seto, Keita

    2016-01-01

    Tracking the real trajectory of a quantum particle is one of the interpretation problem and it is expressed by the Brownian (stochastic) motion suggested by E. Nelson. Especially the dynamics of a radiating electron, namely, radiation reaction which requires us to track its trajectory becomes important in the high-intensity physics by PW-class lasers at present. It has been normally treated by the Furry picture in non-linear QED, but it is difficult to draw the real trajectory of a quantum particle. For the improvement of this, I propose the representation of a stochastic particle interacting with fields and show the way to describe radiation reaction on its Brownian motion.

  6. Optimum harvest maturity for Leymus chinensis seed

    Directory of Open Access Journals (Sweden)

    Jixiang Lin

    2016-06-01

    Full Text Available Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT and accelerated ageing test (AAT. Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest.

  7. Optimum Energy Window In Liver Scintigraphy

    Directory of Open Access Journals (Sweden)

    Alireza Sadremomtaz

    2015-07-01

    Full Text Available Abstract In liver scintigraphy radioactive tracers in addition to liver are accumulated in other organs such as spleen. It leads to the presence of secondary source which affects image quality. Therefore knowing the influence of the noise arising from the secondary source and trying to reduce the additional data is necessary. In nuclear medicine imaging using of energy window is a useful way to reduce the noise. In this paper we try to find an optimum energy window to reduce the noise for two different low energy collimators. Liver scintigraphy images with and without activity in spleen were simulated by SIMIND software with different energy window percentages and with Low-Energy High-Resolution LEHR and Low-Energy General-Purpose LEGP collimators. We used with activity of 190 MBq. Spleen was outside of the camera field of view so that just its noise effects on the liver image is examined. Finally the images of liver with activity in spleen were compared with that without activity in spleen by MATLAB code.

  8. Optimum size of nanorods for heating application

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, G., E-mail: seshg@stanford.edu; Thaokar, Rochish; Mehra, Anurag

    2014-08-01

    Magnetic nanoparticles (MNP's) have become increasingly important in heating applications such as hyperthermia treatment of cancer due to their ability to release heat when a remote external alternating magnetic field is applied. It has been shown that the heating capability of such particles varies significantly with the size of particles used. In this paper, we theoretically evaluate the heating capability of rod-shaped MNP's and identify conditions under which these particles display highest efficiency. For optimally sized monodisperse particles, the power generated by rod-shaped particles is found to be equal to that generated by spherical particles. However, for particles which are not mono dispersed, rod-shaped particles are found to be more effective in heating as a result of the greater spread in the power density distribution curve. Additionally, for rod-shaped particles, a dispersion in the radius of the particle contributes more to the reduction in loss power when compared to a dispersion in the length. We further identify the optimum size, i.e the radius and length of nanorods, given a bi-variate log-normal distribution of particle size in two dimensions. - Highlights: • Theoretically estimated loss power of magnetic nanorods. • Compared the heat generation by nanorods and nano-spheres. • Incorporated size distribution of particles into calculations. • Nanorods are more efficient than nano-spheres for heating. • 2D heat maps for optimizing size of nanorods for heating.

  9. Optimum Currency Area Criteria in the Greece

    Directory of Open Access Journals (Sweden)

    Milovan Rankov

    2013-08-01

    Full Text Available Creation of a monetary union in any region, regardless of the structure and level of development among countries, carries along certain costs and benefits. This paper explains Mundell’s concept of Optimum Currency Area and criteria that are needed to achieve it. Viewed through the prism of these criteria the EMU is currently far from achieving the OCA confirming the current crisis in Greece and other PIIGS countries. The example of Greece and shortcomings that contributed to its current crisis represents the biggest cost and a break-even point for the future of the monetary union. However, it is encouraging that Greece is not alone in its problems, since various funds for help have been established in a relatively short period of time. The reason for this is certainly a huge cost if any country should leave the union and the spillover effect that it would cause. Certainly serious transformations can be expected and the result should be a stronger union with better control from supra-national level.

  10. Achieving optimum diffraction based overlay performance

    Science.gov (United States)

    Leray, Philippe; Laidler, David; Cheng, Shaunee; Coogans, Martyn; Fuchs, Andreas; Ponomarenko, Mariya; van der Schaar, Maurits; Vanoppen, Peter

    2010-03-01

    Diffraction Based Overlay (DBO) metrology has been shown to have significantly reduced Total Measurement Uncertainty (TMU) compared to Image Based Overlay (IBO), primarily due to having no measurable Tool Induced Shift (TIS). However, the advantages of having no measurable TIS can be outweighed by increased susceptibility to WIS (Wafer Induced Shift) caused by target damage, process non-uniformities and variations. The path to optimum DBO performance lies in having well characterized metrology targets, which are insensitive to process non-uniformities and variations, in combination with optimized recipes which take advantage of advanced DBO designs. In this work we examine the impact of different degrees of process non-uniformity and target damage on DBO measurement gratings and study their impact on overlay measurement accuracy and precision. Multiple wavelength and dual polarization scatterometry are used to characterize the DBO design performance over the range of process variation. In conclusion, we describe the robustness of DBO metrology to target damage and show how to exploit the measurement capability of a multiple wavelength, dual polarization scatterometry tool to ensure the required measurement accuracy for current and future technology nodes.

  11. On Optimum Causal Cognitive Spectrum Reutilization Strategy

    CERN Document Server

    Haghighi, Kasra; Agrell, Erik

    2011-01-01

    In this paper we study opportunistic transmission strategies for cognitive radios (CR) in which causal noisy observation from a primary user(s) (PU) state is available. PU is assumed to be operating in a slotted manner, according to a two-state Markov model. The objective is to maximize utilization ratio (UR), i.e., relative number of the PU-idle slots that are used by CR, subject to interference ratio (IR), i.e., relative number of the PU-active slots that are used by CR, below a certain level. We introduce an a-posteriori LLR-based cognitive transmission strategy and show that this strategy is optimum in the sense of maximizing UR given a certain maximum allowed IR. Two methods for calculating threshold for this strategy in practical situations are presented. One of them performs well in higher SNRs but might have too large IR at low SNRs and low PU activity levels, and the other is proven to never violate the allowed IR at the price of a reduced UR. In addition, an upper-bound for the UR of any CR strategy...

  12. Optimum harvest maturity for Leymus chinensis seed

    Science.gov (United States)

    Lin, Jixiang; Wang, Yingnan; Qi, Mingming; Li, Xiaoyu; Yang, Chunxue; Wang, Yongcui

    2016-01-01

    ABSTRACT Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest. PMID:27170257

  13. An Optimum Solution for Electric Power Theft

    Directory of Open Access Journals (Sweden)

    Aamir Hussain Memon

    2013-07-01

    Full Text Available Electric power theft is a problem that continues to plague power sector across the whole country. Every year, the electricity companies face the line losses at an average 20-30% and according to power ministry estimation WAPDA companies lose more than Rs. 125 billion. Significantly, it is enough to destroy the entire power sector of country. According to sources 20% losses means the masses would have to pay extra 20% in terms of electricity tariffs. In other words, the innocent consumers pay the bills of those who steal electricity. For all that, no any permanent solution for this major issue has ever been proposed. We propose an applicable and optimum solution for this impassable problem. In our research, we propose an Electric power theft solution based on three stages; Transmission stage, Distribution stage, and User stage. Without synchronization among all, the complete solution can not be achieved. The proposed solution is simulated on NI (National Instruments Circuit Design Suite Multisim v.10.0. Our research work is an implicit and a workable approach towards the Electric power theft, as for conditions in Pakistan, which is bearing the brunt of power crises already

  14. Tropical Cyclone Structure and Motion

    Science.gov (United States)

    2016-06-07

    rotational motion of the storm due to storm tilt that was identified in dry simulations is reduced in simulations that include parameterizations of convective...right of the zero-shear storm track. Currently, the model resolution is being increased to 5 km with a third inner mesh and all convective processes...that were previously parameterized on the 15- and 45-km meshes are calculated using an explicit physical representation of convection scheme. Because

  15. Hybrid bronchoscope tracking using a magnetic tracking sensor and image registration.

    Science.gov (United States)

    Mori, Kensaku; Deguchi, Daisuke; Akiyama, Kenta; Kitasaka, Takayuki; Maurer, Calvin R; Suenaga, Yasuhito; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2005-01-01

    In this paper, we propose a hybrid method for tracking a bronchoscope that uses a combination of magnetic sensor tracking and image registration. The position of a magnetic sensor placed in the working channel of the bronchoscope is provided by a magnetic tracking system. Because of respiratory motion, the magnetic sensor provides only the approximate position and orientation of the bronchoscope in the coordinate system of a CT image acquired before the examination. The sensor position and orientation is used as the starting point for an intensity-based registration between real bronchoscopic video images and virtual bronchoscopic images generated from the CT image. The output transformation of the image registration process is the position and orientation of the bronchoscope in the CT image. We tested the proposed method using a bronchial phantom model. Virtual breathing motion was generated to simulate respiratory motion. The proposed hybrid method successfully tracked the bronchoscope at a rate of approximately 1 Hz.

  16. IR image quality assessment and real-time optimum seeking method based on dynamic visual characteristics

    Science.gov (United States)

    Li, Bin; Liu, Gang; Gao, Yongmin; Lei, Hao; Wu, Haiying; Wang, Yu; Rong, Xiaolong

    2016-10-01

    Image quality is an important factor that influences the dynamic target information perception; it is the key factor of real-time target state analysis and judgment. In order to solve the multi-observation station comparison and video optimum seeking problem in the process of target information perception and recognition, an image quality assessment method based on visual characteristics is proposed for infrared target tracking. First, it analyses the basic infrared target image characteristics and application requirements, analyses the status and problems of the multi station optimum seeking technology. According to the expected research results, the processing flow of image processing is established. Then, the image quality objective assessment index is established, which reflects the basic characteristics of the target image, and the assessment index is integrated into the normalized assessment function. According to the quality assessment function, the infrared image quality assessment based on infrared target recognition and image analysis processing is realized, which is mainly characterized by the region of interest and dynamic visual characteristics. And on the basis of this technology, the real-time optimum seeking of multi station infrared target tracking image is completed. In order to verify the effectiveness of the method and the practical application effect, it designs the quality assessment and comparison of different station infrared images. Example shows that the method proposed in this paper can realize multi-observation station infrared image assessment comparison, image quality sorting, the optimum seeking of the infrared image based on the quality assessment. The results accord with the characteristics of infrared target image and dynamic visual characteristics.

  17. Application of VNIIRS for target tracking

    Science.gov (United States)

    Blasch, Erik; Kahler, Bart

    2015-05-01

    The Motion Imagery Standards Board (MISB) has created the Video National Imagery Interpretability Rating Scale (VNIIRS). VNIIRS extends NIIRS to scene characterization from streaming video to include object recognition of various targets for a given size. To apply VNIIRs for target tracking, there is a need to understand the operating conditions of the sensor type, environmental phenomenon, and target behavior (SET). In this paper, we explore VNIIRS for target tracking given the sensor resolution to support the relative tracking performance using track success. The relative assessment can be used in relation to the absolute target size associated with the VNIIRS. In a notional analysis, we determine the issues and capabilities of using VNIIRS video quality ratings to determine track success. The outcome of the trade study is an experiment to understand how to use VNIIRS can support target tracking evaluation.

  18. Global point tracking based panoramic image stabilization system

    Institute of Scientific and Technical Information of China (English)

    朱娟娟; 郭宝龙; 吴宪祥

    2009-01-01

    A novel image stabilization system is presented,which consists of a global feature point tracking based motion estimation,a Kalman filtering based motion smoothing and an image mosaic based panoramic compensation.The global motion is estimated using feature point matching and iteration with the least-square method.Then,the Kalman filter is applied to smooth the original motion vectors to effectively alleviate unwanted camera vibrations and follow the intentional camera scan.Lastly,the loss information of im...

  19. Target tracking in infrared imagery using a novel particle filter

    Institute of Scientific and Technical Information of China (English)

    Fanglin Wang; Erqi Liu; Jie Yang; Shengyang Yu; Yue Zhou

    2009-01-01

    To address two challenging problems in infrared target tracking, target appearance changes and unpre-dictable abrupt motions, a novel particle filtering based tracking algorithm is introduced. In this method, a novel saliency model is proposed to distinguish the salient target from background, and the eigenspace model is invoked to adapt target appearance changes. To account for the abrupt motions efficiently, a two-step sampling method is proposed to combine the two observation models. The proposed tracking method is demonstrated through two real infrared image sequences, which include the changes of luminance and size, and the drastic abrupt motions of the target.

  20. Tracking Porters

    DEFF Research Database (Denmark)

    Bruun, Maja Hojer; Krause-Jensen, Jakob; Saltofte, Margit

    2015-01-01

    Anthropology attempts to gain insight into people's experiential life-worlds through long-term fieldwork. The quality of anthropological knowledge production, however, does not depend solely on the duration of the stay in the field, but also on a particular way of seeing social situations. The an...... the students followed the work of a group of porters. Drawing on anthropological concepts and research strategies the students gained crucial insights about the potential effects of using tracking technologies in the hospital....

  1. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  2. Implementation of optimum solar electricity generating system

    Science.gov (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  3. Optimum Design Of Grid Connected Photovoltaic System Using Concentrators

    Directory of Open Access Journals (Sweden)

    Eng. Mohammed Fawzy

    2015-08-01

    Full Text Available Abstract Due to the increasing demand of electrical energy in Egypt and also in many neighboring countries around the world the main problem facing electrical energy production using classical methods such steam power stations is the depletion of fossil fuels. The gap between the electrical energy demand and the continuous increase on the fossil fuel cost make the problem of electricity generation more sophisticated. With the continuous decrease of the photovoltaic PV technologies cost it doesnt make sense neglecting the importance of electricity production using solar photovoltaic PV especially that the annual average daily energy received is about 6 kamp12310whmamp123112day in Cairo Egypt 30N.In this work a detailed simulation model including photovoltaic PV module characteristics and climatic conditions of Cairo Egypt is developed. The model compares fixed PV systems electrical energy output with photovoltaic PV system using concentrators and double axis tracker systems. The comparison includes the energy generated area required as well as the cost per kwh generated. The optimality criterion is the cost per kwh generated. The system that gives the minimum cost per kwh is the optimum system. To verify the developed model the simulation results of fixed PV modules and CPV using tracking system obtained by the model are compared with practical measurements of 40KW peak station erected in Cairo Egypt 30N.Very good agreement between measured values and results obtained from detailed simulation model. For fixed PV system the detailed economic analysis showed that it gives minimum cost perkwh generated Comparisons among these systems are presented. For Cairo results showed that a cost of about 6 to 9 US centskwh is attainable.

  4. A novel strong tracking finite-difference extended Kalman filter for nonlinear eye tracking

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZuTao; ZHANG JiaShu

    2009-01-01

    Non-Intrusive methods for eye tracking are Important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust-ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty In modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and im-prove the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.

  5. Video Tracking dalam Digital Compositing untuk Paska Produksi Video

    Directory of Open Access Journals (Sweden)

    Ardiyan Ardiyan

    2012-04-01

    Full Text Available Video Tracking is one of the processes in video postproduction and motion picture digitally. The ability of video tracking method in the production is helpful to realize the concept of the visual. It is considered in the process of visual effects making. This paper presents how the tracking process and its benefits in visual needs, especially for video and motion picture production. Some of the things involved in the process of tracking such as failure to do so are made clear in this discussion. 

  6. Video Tracking dalam Digital Compositing untuk Paska Produksi Video

    OpenAIRE

    Ardiyan

    2012-01-01

    Video Tracking is one of the processes in video postproduction and motion picture digitally. The ability of video tracking method in the production is helpful to realize the concept of the visual. It is considered in the process of visual effects making. This paper presents how the tracking process and its benefits in visual needs, especially for video and motion picture production. Some of the things involved in the process of tracking such as failure to do so are made clear in this discussi...

  7. Speckle-tracking echocardiography: a new technique for assessing myocardial function

    National Research Council Canada - National Science Library

    Mondillo, Sergio; Galderisi, Maurizio; Mele, Donato; Cameli, Matteo; Lomoriello, Vincenzo Schiano; Zacà, Valerio; Ballo, Piercarlo; D'Andrea, Antonello; Muraru, Denisa; Losi, Mariangela; Agricola, Eustachio; D'Errico, Arcangelo; Buralli, Simona; Sciomer, Susanna; Nistri, Stefano; Badano, Luigi

    2011-01-01

    Speckle-tracking echocardiography has recently emerged as a quantitative ultrasound technique for accurately evaluating myocardial function by analyzing the motion of speckles identified on routine...

  8. Electronic image stabilization system based on global feature tracking

    Institute of Scientific and Technical Information of China (English)

    Zhu Juanjuan; Guo Baolong

    2008-01-01

    A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch,the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filter-ation. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational,and zooming jitter and robust to local motions.

  9. Why trains stay on tracks

    Science.gov (United States)

    Shayak, B.

    2017-03-01

    In this article, we give both qualitative and quantitative explanations of why a train stays on its track, in spite of perturbations that could cause it to derail. We show that train stability originates from the conical shape of the wheels, which gives rise to a restoring normal force in response to a lateral disturbance. We first demonstrate translational stabilization in a simple situation where the rails are assumed frictionless and the steering motion of the wheel is neglected. We then develop a more comprehensive model, taking friction and steering into account. We show that rolling friction couples the rotational motion to the translational motion, enhancing overall stability. Finally, we find approximate formulae for the parameters governing stability, and show good agreement with parameters of a real railway coach.

  10. Face Tracking in the Compressed Domain

    Directory of Open Access Journals (Sweden)

    Fonseca Pedro Miguel

    2006-01-01

    Full Text Available A compressed domain generic object tracking algorithm offers, in combination with a face detection algorithm, a low-compu-tational-cost solution to the problem of detecting and locating faces in frames of compressed video sequences (such as MPEG-1 or MPEG-2. Objects such as faces can thus be tracked through a compressed video stream using motion information provided by existing forward and backward motion vectors. The described solution requires only low computational resources on CE devices and offers at one and the same time sufficiently good location rates.

  11. Face Tracking in the Compressed Domain

    Science.gov (United States)

    Fonseca, Pedro Miguel; Nesvadba, Jan

    2006-12-01

    A compressed domain generic object tracking algorithm offers, in combination with a face detection algorithm, a low-compu-tational-cost solution to the problem of detecting and locating faces in frames of compressed video sequences (such as MPEG-1 or MPEG-2). Objects such as faces can thus be tracked through a compressed video stream using motion information provided by existing forward and backward motion vectors. The described solution requires only low computational resources on CE devices and offers at one and the same time sufficiently good location rates.

  12. Dynamic Track Management in MHT for Pedestrian Tracking Using Laser Range Finder

    Directory of Open Access Journals (Sweden)

    Abdul Hadi Abd Rahman

    2015-01-01

    Full Text Available Real time pedestrian tracking could be one of the important features for autonomous navigation. Laser Range Finder (LRF produces accurate pedestrian data but a problem occurs when a pedestrian is represented by multiple clusters which affect the overall tracking process. Multiple Hypothesis Tracking (MHT is a proven method to solve tracking problem but suffers a large computational cost. In this paper, a multilevel clustering of LRF data is proposed to improve the accuracy of a tracking system by adding another clustering level after the feature extraction process. A Dynamic Track Management (DTM is introduced in MHT with multiple motion models to perform a track creation, association, and deletion. The experimental results from real time implementation prove that the proposed multiclustering is capable of producing a better performance with less computational complexity for a track management process. The proposed Dynamic Track Management is able to solve the tracking problem with lower computation time when dealing with occlusion, crossed track, and track deletion.

  13. SPATIO-TEMPORAL SEGMENTATION AND REGIONS TRACKING OF HIGH DEFINITION VIDEO SEQUENCES USING A MARKOV RANDOM FIELD MODEL

    OpenAIRE

    Brouard, Olivier; Delannay, Fabrice; Ricordel, Vincent; Barba, Dominique

    2008-01-01

    International audience; In this paper, we proposed a Markov Random field sequence segmentation and regions tracking model, which aims at combining color, texture, and motion features. First a motion-based segmentation is realized. The global motion of the video sequence is estimated and compensated. From the remaining motion information, the motion segmentation is achieved. Then, we use a Markovian approach to update and track over time the video objects. By video object, we mean typically, a...

  14. Tracking telecommuting

    Energy Technology Data Exchange (ETDEWEB)

    Stastny, P.

    2007-03-15

    Many employees are now choosing to work from home using laptops and telephones. Employers in the oil and gas industry are now reaping a number of benefits from their telecommuting employees, including increased productivity; higher levels of employee satisfaction, and less absenteeism. Providing a telecommunication option can prove to be advantageous for employers wishing to hire or retain employees. Telecommuting may also help to reduce greenhouse gas (GHG) emissions. This article provided details of Teletrips Inc., a company that aids in the production of corporate social responsibility reports. Teletrips provides reports that document employee savings in time, vehicle depreciation maintenance, and gasoline costs. Teletrips currently tracks 12 companies in Calgary, and plans to grow through the development of key technology partnerships. The company is also working with the federal government to provide their clients with emission trading credits, and has forged a memorandum of understanding with the British Columbia government for tracking emissions. Calgary now openly supports telecommuting and is encouraging businesses in the city to adopt telecommuting on a larger scale. It was concluded that the expanding needs for road infrastructure and the energy used by cars to move workers in and out of the city are a massive burden to the city's tax base. 1 fig.

  15. INNER TRACKING

    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The Objective for 2006 was to complete all of the CMS Tracker sub-detectors and to start the integration of the sub-detectors into the Tracker Support Tube (TST). The Objective for 2007 is to deliver to CMS a completed, installed, commissioned and calibrated Tracking System (Silicon Strip and Pixels) aligned to < 100µ in April 2008 ready for the first physics collisions at LHC. In November 2006 all of the sub-detectors had been delivered to the Tracker Integration facility (TIF) at CERN and the tests and QA procedures to be carried out on each sub-detector before integration had been established. In December 2006, TIB/TID+ was integrated into TOB+, TIB/TID- was being prepared for integration, and TEC+ was undergoing tests at the final tracker operating temperature (-100 C) in the Lyon cold room. In February 2007, TIB/TID- has been integrated into TOB-, and the installation of the pixel support tube and the services for TI...

  16. Optimum operating regimes for the ideal wind turbine

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2007-01-01

    We here present new results on the classical work of the optimum rotor. The emphasis is put vortex theory for which we have developed a new analytical method to determine the loading on an optimum win turbine rotor. The introduction of the work is a repetition of results using momentum theory...

  17. The optimum decision rules for the oddity task

    NARCIS (Netherlands)

    Versfeld, N.J.; Dai, H.; Green, D.M.

    1996-01-01

    This paper presents the optimum decision rule for an m-interval oddity task in which m-1 intervals contain the same signal and one is different or odd. The optimum decision rule depends on the degree of correlation among observations. The present approach unifies the different strategies that occur

  18. Fuzzy Logic Control for Suspension Systems of Tracked Vehicles

    Institute of Scientific and Technical Information of China (English)

    YU Yang; WEI Xue-xia; ZHANG Yong-fa

    2009-01-01

    A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented.A mechanical model for the whole body of a tracked vehicle,which is totally a fifteen-degree-of-freedom system,is established.The model includes the vertical motion,the pitch motion as well as the roll motion of the tracked vehicle.In contrast to most previous studies,the coupling effect among the vertical,the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously.The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration,pitch angle and roll angle of suspension system can be efficiently controlled.

  19. Method of target tracking with Doppler blind zone constraint

    Institute of Scientific and Technical Information of China (English)

    Wei Han; Ziyue Tang; Zhenbo Zhu

    2013-01-01

    Doppler blind zone (DBZ) has a bad influence on the airborne early warning radar, although it has good detection per-formance for low altitude targets with pulse Doppler (PD) techno-logy. In target tracking, the blind zone can cause target tracking breakage easily. In order to solve this problem, a paral el parti-cle filter (PF) algorithm based on multi-hypothesis motion models (MHMMs) is proposed. The algorithm produces multiple possible target motion models according to the DBZ constraint. Particles are updated with the constraint in each motion model. Once the first measurement from the target which reappears from DBZ fal s into the particle cloud formed by any model, the measurement-track association succeeds and track breakage is avoided. The simulation results show that on the condition of different DBZ ranges, a high association ratio can be got for targets with different maneuverability levels, which accordingly improves the tracking quality.

  20. Motion Simulator

    Science.gov (United States)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  1. LCD motion blur: modeling, analysis, and algorithm.

    Science.gov (United States)

    Chan, Stanley H; Nguyen, Truong Q

    2011-08-01

    Liquid crystal display (LCD) devices are well known for their slow responses due to the physical limitations of liquid crystals. Therefore, fast moving objects in a scene are often perceived as blurred. This effect is known as the LCD motion blur. In order to reduce LCD motion blur, an accurate LCD model and an efficient deblurring algorithm are needed. However, existing LCD motion blur models are insufficient to reflect the limitation of human-eye-tracking system. Also, the spatiotemporal equivalence in LCD motion blur models has not been proven directly in the discrete 2-D spatial domain, although it is widely used. There are three main contributions of this paper: modeling, analysis, and algorithm. First, a comprehensive LCD motion blur model is presented, in which human-eye-tracking limits are taken into consideration. Second, a complete analysis of spatiotemporal equivalence is provided and verified using real video sequences. Third, an LCD motion blur reduction algorithm is proposed. The proposed algorithm solves an l(1)-norm regularized least-squares minimization problem using a subgradient projection method. Numerical results show that the proposed algorithm gives higher peak SNR, lower temporal error, and lower spatial error than motion-compensated inverse filtering and Lucy-Richardson deconvolution algorithm, which are two state-of-the-art LCD deblurring algorithms.

  2. LQR pitch control strategy of AUVs based on the optimum of sailing resistance

    Directory of Open Access Journals (Sweden)

    YAO Xuliang

    2017-05-01

    Full Text Available When an Autonomous Underwater Vehicle(AUV sails near the surface of the sea,it will inevitably be subjected to wave disturbance. The heave and pitch motion caused by wave disturbance not only affects the navigation attitude of the AUV,but also leads to an increase in sailing resistance. As such, its energy consumption is increased. In this paper,the six degrees of freedom model of AUVs is established and linearized in order to achieve the weighted optimization of the sailing attitude and the resistance of the AUVs. The drag force model of the AUV is derived using the theory of potential flow. The Q matrix and R matrix are determined in the controller based on research into the drag force model. The Linear Quadratic Regulator(LQRcontroller of the AUV is designed using the drag force model as the performance index. The simulation results show that after adding the LQR controller,the effects of reducing heave motion and pitch motion are 46.64% and 77.62% respectively, and the increased resistance caused by the pitch motion is reduced to 1/6 of its original value. The results show that the multiple optimum of attitude and sailing resistance is realized,the energy consumption is decreased and the endurance of the AUV is increased.

  3. Remo Dance Motion Estimation with Markerless Motion Capture Using The Optical Flow Method

    Directory of Open Access Journals (Sweden)

    Neny Kurniati

    2016-03-01

    Full Text Available Motion capture has been developed and applied in various fields, one of them is dancing. Remo dance is a dance from East Java that tells the struggle of a prince who fought on the battlefield. Remo dancer does not use body-tight costume. He wears a few costume pieces and accessories, so required a motion detection method that can detect limb motion which does not damage the beauty of the costumes and does not interfere motion of the dancer. The method is Markerless Motion Capture. Limbs motions are partial behavior. This means that all limbs do not move simultaneously, but alternately. It required motion tracking to detect parts of the body moving and where the direction of motion. Optical flow is a method that is suitable for the above conditions. Moving body parts will be detected by the bounding box. A bounding box differential value between frames can determine the direction of the motion and how far the object is moving. The optical flow method is simple and does not require a monochrome background. This method does not use complex feature extraction process so it can be applied to real-time motion capture. Performance of motion detection with optical flow method is determined by the value of the ratio between the area of the blob and the area of the bounding box. Estimate coordinates are not necessarily like original coordinates, but if the chart of estimate motion similar to the chart of the original motion, it means motion estimation it can be said to have the same motion with the original. Keywords: Motion Capture, Markerless, Remo Dance, Optical Flow

  4. Color and motion-based particle filter target tracking in a network of overlapping cameras with multi-threading and GPGPU Rastreo de objetivos por medio de filtros de partículas basados en color y movimiento en una red de cámaras con multi-hilo y GPGPU

    Directory of Open Access Journals (Sweden)

    Jorge Francisco Madrigal Díaz

    2013-03-01

    Full Text Available This paper describes an efficient implementation of multiple-target multiple-view tracking in video-surveillance sequences. It takes advantage of the capabilities of multiple core Central Processing Units (CPUs and of graphical processing units under the Compute Unifie Device Arquitecture (CUDA framework. The principle of our algorithm is 1 in each video sequence, to perform tracking on all persons to track by independent particle filters and 2 to fuse the tracking results of all sequences. Particle filters belong to the category of recursive Bayesian filters. They update a Monte-Carlo representation of the posterior distribution over the target position and velocity. For this purpose, they combine a probabilistic motion model, i.e. prior knowledge about how targets move (e.g. constant velocity and a likelihood model associated to the observations on targets. At this first level of single video sequences, the multi-threading library Threading Buildings Blocks (TBB has been used to parallelize the processing of the per-target independent particle filters. Afterwards at the higher level, we rely on General Purpose Programming on Graphical Processing Units (generally termed as GPGPU through CUDA in order to fuse target-tracking data collected on multiple video sequences, by solving the data association problem. Tracking results are presented on various challenging tracking datasets.Este artículo describe una implementación eficiente de un algoritmo de seguimiento de múlti­ples objetivos en múltiples vistas en secuencias de video vigilancia. Aprovecha las capacidades de las Unidades Centrales de Procesamiento (CPUs, por sus siglas en inglés de múltiples núcleos y de las unidades de procesamiento gráfico, bajo el entorno de desarrollo de Arquitec­tura Unificada de Dispositivos de Cómputo (CUDA, por sus siglas en inglés. El principio de nuestro algoritmo es: 1 aplicar el seguimiento visual en cada secuencia de video sobre todas las

  5. Embedding ensemble tracking in a stochastic framework for robust object tracking

    Institute of Scientific and Technical Information of China (English)

    Yu GU; Ping LI; Bo HAN

    2009-01-01

    We propose an algorithm of embedding ensemble tracking in a stochastic framework to achieve robust tracking performance under partial occlusion, illumination changes, and abrupt motion. It operates on likelihood images generated by the ensemble method, and combines mean shift and particle filtering in a principled way, where a better proposal distribution is designed by first propagating particles via a motion model, and then running mean shift to move towards their local peaks in the likelihood image. An observation model in the particle filter incorporates global and local information within a region, and an adaptive motion model is adopted to depict the evolution of the object state. The algorithm needs fewer particles to manage the tracking task compared with the general particle filter, and recaptures the object quickly after occlusion occurs. Experiments on two image sequences demonstrate the effectiveness and robustness of the proposed algorithm.

  6. Atlas Based Kinematic Optimum Design of the Stewart Parallel Manipulator

    Institute of Scientific and Technical Information of China (English)

    SHAO Zhufeng; TANG Xiaoqiang; WANG Liping; SUN Dengfeng

    2015-01-01

    Optimum design is a key approach to make full use of potential advantages of a parallel manipulator. The optimum design of multi-parameter parallel manipulators(more than three design parameters), such as Stewart manipulator, relies on analysis based and algorithm based optimum design methods, which fall to be accurate or intuitive. To solve this problem and achieve both accurate and intuition, atlas based optimum design of a general Stewart parallel manipulator is established, with rational selection of design parameters. Based on the defined spherical usable workspace(SUW), primary kinematic performance indices of the Stewart manipulator, involving workspace and condition number are introduced and analyzed. Then, corresponding performance atlases are drawn with the established non-dimensional design space, and impact of joint distribution angles on the manipulator performance is analyzed and illustrated. At last, an example on atlas based optimum design of the Stewart manipulator is accomplished to illustrate the optimum design process, considering the end-effector posture. Deduced atlases can be flexibly applied to both quantitative and qualitative analysis to get the desired optimal design for the Stewart manipulator with respect to related performance requirements. Besides, the established optimum design method can be further applied to other multi-parameter parallel manipulators.

  7. Real-Time Motion Management of Prostate Cancer Radiotherapy

    DEFF Research Database (Denmark)

    Pommer, Tobias

    of this thesis is to manage prostate motion in real-time by aligning the radiation beam to the prostate using the novel dynamic multileaf collimator (DMLC) tracking method. Specifically, the delivered dose with tracking was compared to the planned dose, and the impact of treatment plan complexity and limitations...

  8. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  9. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems.

  10. Optimum blade loading for a powered rotor in descent

    Institute of Scientific and Technical Information of China (English)

    Ramin Modarres; David A. Peters

    2016-01-01

    The optimum loading for rotors has previously been found for hover, climb and wind turbine conditions;but, up to now, no one has determined the optimum rotor loading in descent. This could be an important design consideration for rotary-wing parachutes and low-speed des-cents. In this paper, the optimal loading for a powered rotor in descent is found from momentum theory based on a variational principle. This loading is compared with the optimal loading for a rotor in hover or climb and with the Betz rotor loading (which is optimum for a lightly-loaded rotor). Wake contraction for each of the various loadings is also presented.

  11. Presence detection under optimum fusion in an ultrasonic sensor system.

    Science.gov (United States)

    Srinivasan, Sriram; Pandharipande, Ashish

    2012-04-01

    Reliable presence detection is a requirement in energy-efficient occupancy-adaptive indoor lighting systems. A system of multiple ultrasonic sensors is considered for presence detection, and the performance gain from optimum fusion is studied. Two cases are considered wherein an individual sensor determines presence based on (i) local detection by processing echoes at its receiver, and (ii) the optimum Chair-Varshney fusion rule using multiple sensor detection results. The performance gains of using optimum fusion over local detection are characterized under different sensor system configurations and it is shown that improved detection sensitivity is obtained over a larger detection coverage region.

  12. Covert tracking: a combined ERP and fixational eye movement study.

    Directory of Open Access Journals (Sweden)

    Alexis D J Makin

    Full Text Available Attention can be directed to particular spatial locations, or to objects that appear at anticipated points in time. While most work has focused on spatial or temporal attention in isolation, we investigated covert tracking of smoothly moving objects, which requires continuous coordination of both. We tested two propositions about the neural and cognitive basis of this operation: first that covert tracking is a right hemisphere function, and second that pre-motor components of the oculomotor system are responsible for driving covert spatial attention during tracking. We simultaneously recorded event related potentials (ERPs and eye position while participants covertly tracked dots that moved leftward or rightward at 12 or 20°/s. ERPs were sensitive to the direction of target motion. Topographic development in the leftward motion was a mirror image of the rightward motion, suggesting that both hemispheres contribute equally to covert tracking. Small shifts in eye position were also lateralized according to the direction of target motion, implying covert activation of the oculomotor system. The data addresses two outstanding questions about the nature of visuospatial tracking. First, covert tracking is reliant upon a symmetrical frontoparietal attentional system, rather than being right lateralized. Second, this same system controls both pursuit eye movements and covert tracking.

  13. Covert tracking: a combined ERP and fixational eye movement study.

    Science.gov (United States)

    Makin, Alexis D J; Poliakoff, Ellen; Ackerley, Rochelle; El-Deredy, Wael

    2012-01-01

    Attention can be directed to particular spatial locations, or to objects that appear at anticipated points in time. While most work has focused on spatial or temporal attention in isolation, we investigated covert tracking of smoothly moving objects, which requires continuous coordination of both. We tested two propositions about the neural and cognitive basis of this operation: first that covert tracking is a right hemisphere function, and second that pre-motor components of the oculomotor system are responsible for driving covert spatial attention during tracking. We simultaneously recorded event related potentials (ERPs) and eye position while participants covertly tracked dots that moved leftward or rightward at 12 or 20°/s. ERPs were sensitive to the direction of target motion. Topographic development in the leftward motion was a mirror image of the rightward motion, suggesting that both hemispheres contribute equally to covert tracking. Small shifts in eye position were also lateralized according to the direction of target motion, implying covert activation of the oculomotor system. The data addresses two outstanding questions about the nature of visuospatial tracking. First, covert tracking is reliant upon a symmetrical frontoparietal attentional system, rather than being right lateralized. Second, this same system controls both pursuit eye movements and covert tracking.

  14. Three dimensional tracking of gold nanoparticles using digital holographic microscopy

    CERN Document Server

    Verpillat, Frédéric; Desbiolles, Pierre; Gross, Michel; 10.1117/12.896523

    2012-01-01

    In this paper we present a digital holographic microscope to track gold colloids in three dimensions. We report observations of 100nm gold particles in motion in water. The expected signal and the chosen method of reconstruction are described. We also discuss about how to implement the numerical calculation to reach real-time 3D tracking.

  15. Multiple object tracking: Anticipatory attention doesn't "bounce

    NARCIS (Netherlands)

    Atsma, J.S.; Koning, A.R.; Lier, R.J. van

    2012-01-01

    We investigated motion extrapolation in object tracking in two experiments. In Experiment 1, we used a multiple-object-tracking task (MOT; three targets, three distractors) combined with a probe detection task to investigate the distribution of attention around a target object. We found anisotropic

  16. Track and Cut: Simultaneous Tracking and Segmentation of Multiple Objects with Graph Cuts

    Directory of Open Access Journals (Sweden)

    Patrick Pérez

    2008-06-01

    Full Text Available This paper presents a new method to both track and segment multiple objects in videos using min-cut/max-flow optimizations. We introduce objective functions that combine low-level pixel wise measures (color, motion, high-level observations obtained via an independent detection module, motion prediction, and contrast-sensitive contextual regularization. One novelty is that external observations are used without adding any association step. The observations are image regions (pixel sets that can be provided by any kind of detector. The minimization of appropriate cost functions simultaneously allows “detection-before-track” tracking (track-to-observation assignment and automatic initialization of new tracks and segmentation of tracked objects. When several tracked objects get mixed up by the detection module (e.g., a single foreground detection mask is obtained for several objects close to each other, a second stage of minimization allows the proper tracking and segmentation of these individual entities despite the confusion of the external detection module.

  17. Collective motion

    Science.gov (United States)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  18. Using Tracker to prove the simple harmonic motion equation

    Science.gov (United States)

    Kinchin, John

    2016-09-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; Tracker, we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  19. Using "Tracker" to Prove the Simple Harmonic Motion Equation

    Science.gov (United States)

    Kinchin, John

    2016-01-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  20. Cooperative distributed target tracking algorithm in mobile wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The paper proposes a cooperative distributed target tracking algorithm in mobile wireless sensor networks.There are two main components in the algorithm:distributed sensor-target assignment and sensor motion control.In the key idea of the sensor-target assignment,sensors are considered as autonomous agents and the defined objective function of each sensor concentrates on two fundamental factors:the tracking accuracy and the tracking cost.Compared with the centralized algorithm and the noncooperative distrib...

  1. INNER TRACKING

    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The successful commissioning of ~ 25% of the Silicon Strip Tracker was completed in the Tracker Integration Facility (TIF) at CERN in July 2007 and the Tracker has since been prepared for moving and installation into CMS at P5. The Tracker was ready to move on schedule in September 2007. The Installation of the Tracker cooling pipes and LV cables between Patch Panel 1 (PP1) on the inside the CMS magnet cryostat, and the cooling plants and power system racks on the balconies has been completed. The optical fibres from PP1 to the readout FEDs in the USC have been installed, together with the Tracker cable channels, in parallel with the installation of the EB/HB services. All of the Tracker Safety, Power, DCS and the VME Readout Systems have been installed at P5 and are being tested and commissioned with CMS. It is planned to install the Tracker into CMS before Christmas. The Tracker will then be connected to the pre-installed services on Y...

  2. INNER TRACKING

    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The successful commissioning of ~ 25% of the Silicon Strip Tracker was completed in the Tracker Integration Facility (TIF) at CERN on 18 July 2007 and the Tracker has since been prepared for moving and installation into CMS at P5. The Tracker will be ready to move on schedule in September 2007. The Installation of the Tracker cooling pipes and LV cables between Patch Panel 1 (PP1) on the inside the CMS magnet cryostat, and the cooling plants and power system racks on the balconies has been completed. The optical fibres from PP1 to the readout FEDs in the USC will be installed in parallel with the installation of the EB/HB services, and will be completed in October. It is planned to install the Tracker into CMS at the end of October, after the completion of the installation of the EB/HB services. The Tracker will then be connected to the pre-installed services on YB0 and commissioned with CMS in December. The FPix and BPix continue to make ...

  3. Fast particle tracking with wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Floettmann, K.; Henning, C.

    2012-01-15

    Tracking calculations of charged particles in electromagnetic fields require in principle the simultaneous solution of the equation of motion and of Maxwell's equations. In many tracking codes a simpler and more efficient approach is used: external fields like that of the accelerating structures are provided as field maps, generated in separate computations and for the calculation of self fields the model of a particle bunch in uniform motion is used. We describe how an externally computed wake function can be approximated by a table of Taylor coefficients and how the wake field kick can be calculated for the particle distribution in a tracking calculation. The integrated kick, representing the effect of a distributed structure, is applied at a discrete time. As an example, we use our approach to calculate the emittance growth of a bunch in an undulator beam pipe due to resistive wall wake field effects. (orig.)

  4. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  5. Patient Treatment Tracking Chart

    Science.gov (United States)

    ... ZIP code here Hepatitis C Treatment Tracking Chart Patient Treatment Tracking Chart Patient Treatment Tracking Chart Sample Chart This chart is ... this website Submit Share this page Related Resource Patient Treatment Tutorial return to top CONNECT Veterans Crisis ...

  6. Optimum Multiuser Detector for Multipath Slow Fading Asynchronous CDMA Channels

    Institute of Scientific and Technical Information of China (English)

    WangZhaocheng; YangZhixing; 等

    1995-01-01

    A structure of optimum multiuser detector for asynchronous CDMA in multipath slow fading channels is derived and the significant performance gain over the conventional RAKE receiv-er is shown by simulation.

  7. Optimum testing of multiple hypotheses in quantum detection theory

    Science.gov (United States)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  8. Optimum reliable operation of water distribution networks by ...

    African Journals Online (AJOL)

    Optimum reliable operation of water distribution networks by minimising energy cost and chlorine dosage. ... In this study, multi-objective optimisation of water distribution network performance in 3 different scenarios was ... Article Metrics.

  9. Stress Analysis and Optimum Design of Hot Extrusion Dies

    Institute of Scientific and Technical Information of China (English)

    帅词俊; 肖刚; 倪正顺

    2004-01-01

    A three-dimensional model of a hot extrusion die was developed by using ANSYS software and its second development language-ANSYS parametric design language.A finite element analysis and optimum design were carried out.The three-dimensional stress diagram shows that the stress concentration is rather severe in the bridge of the hot extrusion die, and that the stress distribution is very uneven.The optimum dimensions are obtained.The results show that the optimum height of the extrusion die is 89.596 mm.The optimum radii of diffluence holes are 65.048 mm and 80.065 mm.The stress concentration is reduced by 27%.

  10. Determination of Optimum Moisture Content of Palm Nut Cracking ...

    African Journals Online (AJOL)

    USER

    optimum moisture content of nuts for high yield of whole kernels during cracking. Thirteen .... moisture were determined from the weight lost (ASAE, 1983;. Ajibola et al. .... measurement-Grains and Seeds, American Society of. Agricultural ...

  11. Chaotic Motion in the Solar System and Beyond

    Science.gov (United States)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The motion of planetary bodies is the archetypal clockwork system. Indeed, clocks and calendars were developed to keep track of the relative motions of the Earth, the Sun and the Moon. However, studies over the past few decades imply that this predictable regularity does not extend to small bodies, nor does it apply to the precise trajectories of the planets themselves over long timescale.s. Various examples of chaotic motion within our Solar System and, extrasolar planetary systems will be discussed.

  12. ASSESSMENT OF LEVITATION MOVEMENT ELECTRODYNAMIC VEHICLES IN DIFFERENT POSITIONS OF THE CONTOURS OF THE FLAT TRACK CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    N. O. Radchenko

    2010-02-01

    Full Text Available The results of investigation of spatial oscillations and stability of motion of electrodynamically levitated vehicle are presented. Various shapes of the track contours and their arrangement on a plain track structure are considered

  13. Magnetic Launch Assist Experimental Track

    Science.gov (United States)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  14. Determining the Optimum Font Size for Braille on Capsule Paper

    OpenAIRE

    Watanabe, Tetsuya

    2014-01-01

    Braille fonts allow us to easily make braille labels on capsule paper. For legibility, fonts should be printed at optimum sizes. To find the optimum sizes for Japanese braille fonts, we conducted an experiment in which a Japanese braille font was printed at various sizes on capsule paper and read and rated by young braille users. The results show that braille printed at 17 and 18 point sizes were read faster and evaluated higher than those printed at smaller or bigger sizes.

  15. Optimum sizing of steam turbines for concentrated solar power plants

    OpenAIRE

    Andreas Poullikkas, Constantinos Rouvas, Ioannis Hadjipaschalis, George Kourtis

    2012-01-01

    In this work, a selection of the optimum steam turbine type and size for integration in concentrated solar power (CSP) plants is carried out. In particular, the optimum steam turbine input and output interfaces for a range of CSP plant capacity sizes are identified. Also, efficiency and electricity unit cost curves for various steam turbine capacities are estimated by using a combination of the Steam Pro software module of the Thermoflow Suite 18 package and the IPP v2.1 optimization software...

  16. The optimum grain size for minimizing energy losses in iron

    Energy Technology Data Exchange (ETDEWEB)

    Campos, M.F. de [Escola de Engenharia Industrial Metalurgica de Volta Redonda/Universidade Federal Fluminense Av. dos Trabalhadores 420, Vila Santa Cecilia, 27255-125, Volta Redonda, RJ (Brazil)]. E-mail: mcampos@metal.eeimvr.uff.br; Teixeira, J.C. [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo, Av. Prof. Almeida Prado 532, 05508-901, Sao Paulo, SP (Brazil); Landgraf, F.J.G. [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo, Av. Prof. Almeida Prado 532, 05508-901, Sao Paulo, SP (Brazil)]. E-mail: landgraf@ipt.br

    2006-06-15

    A model able to predict the optimum grain size for textured electrical steels used in motors or transformers is presented. The model is based on the Pry and Bean model for the anomalous losses. The validity of the model is restricted to the frequency range of 1-1000 Hz. The model predicts that the optimum grain size decreases as: resistivity decreases or frequency increases or thickness of steel sheet increases. The predictions of the model are compared with experimental results.

  17. OPTIMUM DESIGN BASED ON RELIABILITY IN STOCHASTIC STRUCTURE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The optimum design method based on the reliability is presented to the stochastic structure systems (i. e., the sectional area, length, elastic module and strength of the structural member are random variables) under the random loads. The sensitivity expression of system reliability index and the safety margins were presented in the stochastic structure systems. The optimum vector method was given. First, the expressions of the reliability index of the safety margins with the improved first-order second-moment and the stochastic finite element method were deduced, and then the expressions of the systemic failure probability by probabilistic network evaluation technique(PNET) method were obtained. After derivation calculus, the expressions of the sensitivity analysis for the system reliability were obtained. Moreover, the optimum design with the optimum vector algorithm was undertaken. In the optimum iterative procedure, the gradient step and the optimum vector step were adopted to calculate. At the last, a numerical example was provided to illustrate that the method is efficient in the calculation, stably converges and fits the application in engineering.

  18. Visual Tracking Using an Insect Vision Embedded Particle Filter

    OpenAIRE

    Wei Guo; Qingjie Zhao; Dongbing Gu

    2015-01-01

    Particle filtering (PF) based object tracking algorithms have drawn great attention from lots of scholars. The core of PF is to predict the possible location of the target via the state transition model. One commonly adopted approach is resorting to prior motion cues under the smooth motion assumption, which performs well when the target moves with a relatively stable velocity. However, it would possibly fail if the target is undergoing abrupt motion. To address this problem, inspired by inse...

  19. Learning adaptive metric for robust visual tracking.

    Science.gov (United States)

    Jiang, Nan; Liu, Wenyu; Wu, Ying

    2011-08-01

    Matching the visual appearances of the target over consecutive image frames is the most critical issue in video-based object tracking. Choosing an appropriate distance metric for matching determines its accuracy and robustness, and thus significantly influences the tracking performance. Most existing tracking methods employ fixed pre-specified distance metrics. However, this simple treatment is problematic and limited in practice, because a pre-specified metric does not likely to guarantee the closest match to be the true target of interest. This paper presents a new tracking approach that incorporates adaptive metric learning into the framework of visual object tracking. Collecting a set of supervised training samples on-the-fly in the observed video, this new approach automatically learns the optimal distance metric for more accurate matching. The design of the learned metric ensures that the closest match is very likely to be the true target of interest based on the supervised training. Such a learned metric is discriminative and adaptive. This paper substantializes this new approach in a solid case study of adaptive-metric differential tracking, and obtains a closed-form analytical solution to motion estimation and visual tracking. Moreover, this paper extends the basic linear distance metric learning method to a more powerful nonlinear kernel metric learning method. Extensive experiments validate the effectiveness of the proposed approach, and demonstrate the improved performance of the proposed new tracking method.

  20. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Amish P., E-mail: Amish.Shah@orlandohealth.com [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States); Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Mañon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L. [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States)

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still

  1. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    Science.gov (United States)

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  2. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope.

    Science.gov (United States)

    Sheehy, Christy K; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-07-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone.

  3. Multivariate respiratory motion prediction

    Science.gov (United States)

    Dürichen, R.; Wissel, T.; Ernst, F.; Schlaefer, A.; Schweikard, A.

    2014-10-01

    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation.

  4. Human Performance in Time-Shared Verbal and Tracking Tasks.

    Science.gov (United States)

    1979-04-01

    performance of both a one-dimensional compensatory tracking task and a continuous absoluzte difference digit- proceseing task. As mentioned above, the... parts : 1) What combination of input and output (I/O) channels for the discrete information processing task provides optimum information transmission

  5. Hybrid-mode Impedance Control for Position/force Tracking in Motor-system Rehabilitation

    Directory of Open Access Journals (Sweden)

    Youngwoo Kim

    2015-06-01

    Full Text Available This paper proposes a new robot controller for motor-system rehabilitation. The proposed controller simultaneously realizes rehabilitation motion tracking and force generation, as predefined through a musculoskeletal model-based optimization process. We introduce control parameters of weighted control action priorities for the motion-tracking and force generation tasks, based on the position-tracking error. With the weighted control action priorities, the robot accords higher priority to motion tracking at the robot end point when the position-tracking error is larger than a threshold value, and to force generation when the position-tracking error is smaller than a threshold value. Smooth motion trajectory has to be designed and applied in robot-based rehabilitation. Through simulations and experimental results, we show the usefulness of the proposed control method.

  6. Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion.

    Science.gov (United States)

    Zaal, Peter M T; Nieuwenhuizen, Frank M; van Paassen, Marinus M; Mulder, Max

    2013-04-01

    In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.

  7. Trajectory Tracking Control for the Motion Table Driven by Linear Motors Based on Sliding Mode Contour Tracking Controllers%基于滑模轮廓控制器的直线电机精密运动平台轨迹跟踪控制

    Institute of Scientific and Technical Information of China (English)

    武志涛; 朱连成

    2015-01-01

    针对直线电机驱动的精密数控X-Y平台在加工非线性曲线轨迹时,存在轮廓误差精度与稳定性差的问题,提出了基于超螺旋滑模的轮廓控制与基于二次型最优化的位置控制相结合的控制策略。轮廓控制器选用等效误差量为状态变量进行控制器设计,使轮廓误差精度问题转化为等效误差控制问题。位置控制器利用二次型最优化系统频域因子分解的设计方法,不仅满足了位置跟踪的抗干扰要求而且使控制器设计解析化。仿真与实验表明:在非线性周期扰动与负载变化扰动下,所提出的创新性方法对于高精度轮廓加工具有良好的可行性和有效性。%For the poor robustness of direct driveX-Y servo systems in the nonlinear track processing, a method combining the position controller based on frequency domain optimization and the ultra spiral sliding mode contour tracking controller was proposed to ensure the robustness of control system. By choosing the equivalence error as state variables to design the contour controller, the problem of outline error precision was transformed into the stabilization of equivalence errors. A position controller was designed by using the method of frequency domain factor decomposition in the quadratic optimization system. This method not only met the requirement of anti-interference and made the controller design analytical. The results of simulations and experiments show that the designed controller has high contour tracking accuracy for the nonlinear disturbances and parametric disturbances.

  8. Repurposing video recordings for structure motion estimations

    Science.gov (United States)

    Khaloo, Ali; Lattanzi, David

    2016-04-01

    Video monitoring of public spaces is becoming increasingly ubiquitous, particularly near essential structures and facilities. During any hazard event that dynamically excites a structure, such as an earthquake or hurricane, proximal video cameras may inadvertently capture the motion time-history of the structure during the event. If this dynamic time-history could be extracted from the repurposed video recording it would become a valuable forensic analysis tool for engineers performing post-disaster structural evaluations. The difficulty is that almost all potential video cameras are not installed to monitor structure motions, leading to camera perspective distortions and other associated challenges. This paper presents a method for extracting structure motions from videos using a combination of computer vision techniques. Images from a video recording are first reprojected into synthetic images that eliminate perspective distortion, using as-built knowledge of a structure for calibration. The motion of the camera itself during an event is also considered. Optical flow, a technique for tracking per-pixel motion, is then applied to these synthetic images to estimate the building motion. The developed method was validated using the experimental records of the NEESHub earthquake database. The results indicate that the technique is capable of estimating structural motions, particularly the frequency content of the response. Further work will evaluate variants and alternatives to the optical flow algorithm, as well as study the impact of video encoding artifacts on motion estimates.

  9. Modified diffusion with memory for cyclone track fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, Christopher C., E-mail: cbernido@mozcom.com [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Carpio-Bernido, M. Victoria [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Escobido, Matthew G.O. [W. Sycip Graduate School of Business, Asian Institute of Management, 123 Paseo de Roxas Ave., Makati City 1260 (Philippines)

    2014-06-13

    Fluctuations in a time series for tropical cyclone tracks are investigated based on an exponentially modified Brownian motion. The mean square displacement (MSD) is evaluated and compared to a recent work on cyclone tracks based on fractional Brownian motion (fBm). Unlike the work based on fBm, the present approach is found to capture the behavior of MSD versus time graphs for cyclones even for large values of time. - Highlights: • Cyclone track fluctuations are modeled as stochastic processes with memory. • Stochastic memory functions beyond fractional Brownian motion are introduced. • The model captures the behavior of cyclone track fluctuations for longer periods of time. • The approach can model time series for other fluctuating phenomena.

  10. ACCURACY AND PRECISION OF A METHOD TO STUDY KINEMATICS OF THE TEMPOROMANDIBULAR JOINT: COMBINATION OF MOTION DATA AND CT IMAGING

    OpenAIRE

    Baltali, Evre; Zhao, Kristin D.; Koff, Matthew F.; Keller, Eugene E.; An, Kai-Nan

    2008-01-01

    The purpose of the study was to test the precision and accuracy of a method used to track selected landmarks during motion of the temporomandibular joint (TMJ). A precision phantom device was constructed and relative motions between two rigid bodies on the phantom device were measured using optoelectronic (OE) and electromagnetic (EM) motion tracking devices. The motion recordings were also combined with a 3D CT image for each type of motion tracking system (EM+CT and OE+CT) to mimic methods ...

  11. Improved hand tracking algorithm in video sequences for intelligent rehabilitation

    Institute of Scientific and Technical Information of China (English)

    LI Ling; LUO Yuan; ZHANG Yi; ZHANG Bai-sheng

    2009-01-01

    Intelligent rehabilitation system is an active research topic. It is motivated by the increased number of limb disabled patients. Human motion tracking is the key technology of intelligent rehabilitation system, because the movement of limb disabled patients needs to be localized and learned so that any undesired motion behavior can be corrected in order to reach an expectation. This paper introduces a real-time tracking system of human hand motion, specifically intent to be used for home rehabilitation. Vision sensor (camera) is employed in this system to track the hand movement, and the improved Camshift algorithm and Kalman filter are used to implement dynamic hand tracking in the video. CAMSHIFT algorithm is able to track any kind of target colors by building a histogram distribution of the H channel in HSV color space from the region of interests selected by users at the initial stage. Kalman filter is able to predict hand location in one image frame based on its location data detected in the previous frame. The experimental results show that this system can track 2D hand motion and has acceptable accuracy by using the two algorithms properly. The new algorithm proposed in this paper can not only deal with the skin color interference problems, but also deal well with the track of complex background.

  12. Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator

    DEFF Research Database (Denmark)

    Hansen, Rune; Ravkilde, Thomas; Worm, Esben Schjødt

    2016-01-01

    of the couch or MLC as recorded by continuous MV portal imaging. The geometric and dosimetric tracking accuracies were measured in tracking experiments with motion phantoms that reproduced four prostate and four lung tumor trajectories. The geometric tracking error in beam's eye view was determined...

  13. Hotspot tracks and the early rifting of the Atlantic

    Science.gov (United States)

    Jason Morgan, W.

    1983-05-01

    Many hotspot tracks appear to become the locus of later rifting, as though the heat of the hotspot weakens the lithosphere and tens of millions of years later the continents are split along these weakened lines. Examples are the west coast of Greenland-east coast of Labrador (Madeira hotspot), the south coast of Mexico-north coast of Honduras (Guyana hotspot), and the south coast of West Africa-north coast of Brazil (St. Helena hotspot). A modern day analog of a possible future rift is the Snake River Plain, where the North American continent is being "pre-weakened" by the Yellowstone hotspot track. This conclusion is based on reconstructions of the motions of the continents over hotspots for the past 200 million years. The relative motions of the plates are determined from magnetic anomaly isochrons in the oceans and the motion of one plate is chosen ad hoc to best fit the motions of the plates over the hotspots. However, once the motion of this one plate is chosen, the motions of all the other plates are prescribed by the relative motion constraints. In addition to the correlation between the predicted tracks and sites of later continental breakup, exposed continental shields correlate with the tracks. Their exposure may be the result of hotspot induced uplift which has led to erosion of their former platform sediment cover.

  14. Solar tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  15. Optimum speech level to minimize listening difficulty in public spaces.

    Science.gov (United States)

    Kobayashi, Masaaki; Morimoto, Masayuki; Sato, Hiroshi; Sato, Hayato

    2007-01-01

    For ideal speech communication in public spaces, it is important to determine the optimum speech level for various background noise levels. However, speech intelligibility scores, which is conventionally used as the subjective listening test to measure the quality of speech communication, is near perfect in most everyday situations. For this reason, it is proposed to determine optimum speech levels for speech communication in public spaces by using listening difficulty ratings. Two kinds of listening test were carried out in this work. The results of the tests and our previous work [M. Morimoto, H. Sato, and M. Kobayashi, J. Acoust. Soc. Am. 116, 1607-1613 (2004)] are jointly discussed for suggesting the relation between the optimum speech level and background noise level. The results demonstrate that: (1) optimum speech level is constant when background noise level is lower than 40 dBA, (2) optimum speech level appears to be the level, which maintains around 15 dBA of SN ratio when the background noise level is more than 40 dBA, and (3) listening difficulty increases as speech level increases under the condition where SN ratio is good enough to keep intelligibility near perfect.

  16. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls

    Directory of Open Access Journals (Sweden)

    Omer Kaynakli

    2011-06-01

    Full Text Available Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs, the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focused on the investigation of these parameters that affect the optimum thermal insulation thickness for building walls. To determine the optimum thickness and payback period, an economic model based on life-cycle cost analysis was used. As a result, the optimum thermal insulation thickness increased with increasing the heating and cooling energy requirements, the lifetime of the building, the inflation rate, energy costs and thermal conductivity of insulation. However, the thickness decreased with increasing the discount rate, the insulation material cost, the total wall resistance, the coefficient of performance (COP of the cooling system and the solar radiation incident on a wall. In addition, the effects of these parameters on the total life-cycle cost, payback periods and energy savings were also investigated.

  17. Motion tracing system for ultrasound guided HIFU

    Science.gov (United States)

    Xiao, Xu; Jiang, Tingyi; Corner, George; Huang, Zhihong

    2017-03-01

    One main limitation in HIFU treatment is the abdominal movement in liver and kidney caused by respiration. The study has set up a tracking model which mainly compromises of a target carrying box and a motion driving balloon. A real-time B-mode ultrasound guidance method suitable for tracking of the abdominal organ motion in 2D was established and tested. For the setup, the phantoms mimicking moving organs are carefully prepared with agar surrounding round-shaped egg-white as the target of focused ultrasound ablation. Physiological phantoms and animal tissues are driven moving reciprocally along the main axial direction of the ultrasound image probe with slightly motion perpendicular to the axial direction. The moving speed and range could be adjusted by controlling the inflation and deflation speed and amount of the balloon driven by a medical ventilator. A 6-DOF robotic arm was used to position the focused ultrasound transducer. The overall system was trying to estimate to simulate the actual movement caused by human respiration. HIFU ablation experiments using phantoms and animal organs were conducted to test the tracking effect. Ultrasound strain elastography was used to post estimate the efficiency of the tracking algorithms and system. In moving state, the axial size of the lesion (perpendicular to the movement direction) are averagely 4mm, which is one third larger than the lesion got when the target was not moving. This presents the possibility of developing a low-cost real-time method of tracking organ motion during HIFU treatment in liver or kidney.

  18. Theoretical calculation on CR-39 response for radon measurements and optimum diffusion chambers dimensions

    Science.gov (United States)

    Askari, H. R.; Ghandi, Kh.; Rahimi, M.; Negarestani, A.

    2008-11-01

    One method to measure radon gas concentration in the air with a long time of radiation is trace chemical etching technique. There is a direct proportion between the number of traces on solid-state nuclear track detectors (SSNTDs) and activity concentration of radon. In this paper, calibration constant for a cylindrical chamber with CR-39 detector has been measured analytically. Using this measurement, trace curves on the base of concentration for chambers with different heights and radii have been drawn. The results show that to measure radon gas concentration, the optimum chamber should have a height between 3.5 and 4 cm and a radius between 2.5 and 3.2 cm.

  19. Theoretical calculation on CR-39 response for radon measurements and optimum diffusion chambers dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Askari, H.R.; Ghandi, Kh. [Department of Physics, Faculty of Science, Vali-e-Asr University, Rafsanjan 7713936417 (Iran, Islamic Republic of); Rahimi, M. [Department of Physics, Faculty of Science, Vali-e-Asr University, Rafsanjan 7713936417 (Iran, Islamic Republic of)], E-mail: rahimi_bam@yahoo.com; Negarestani, A. [International Center for Science and High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of)

    2008-11-11

    One method to measure radon gas concentration in the air with a long time of radiation is trace chemical etching technique. There is a direct proportion between the number of traces on solid-state nuclear track detectors (SSNTDs) and activity concentration of radon. In this paper, calibration constant for a cylindrical chamber with CR-39 detector has been measured analytically. Using this measurement, trace curves on the base of concentration for chambers with different heights and radii have been drawn. The results show that to measure radon gas concentration, the optimum chamber should have a height between 3.5 and 4 cm and a radius between 2.5 and 3.2 cm.

  20. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPET...