Optimal Control of Mechanical Systems
Directory of Open Access Journals (Sweden)
Vadim Azhmyakov
2007-01-01
Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.
Optimization and optimal control in automotive systems
Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi
2014-01-01
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier approaches, based on some degree of heuristics, to the use of more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...
Optimization and Optimal Control in Automotive Systems
Waschl, H.; Kolmanovsky, I.V.; Steinbuch, M.; Re, del L.
2014-01-01
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier approaches, based on some degree of heuristics, to the use of more and
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
The Optimization of power reactor control system
International Nuclear Information System (INIS)
Danupoyo, S.D.
1997-01-01
A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system
Optimal Control Development System for Electrical Drives
Directory of Open Access Journals (Sweden)
Marian GAICEANU
2008-08-01
Full Text Available In this paper the optimal electrical drive development system is presented. It consists of both electrical drive types: DC and AC. In order to implement the optimal control for AC drive system an Altivar 71 inverter, a Frato magnetic particle brake (as load, three-phase induction machine, and dSpace 1104 controller have been used. The on-line solution of the matrix Riccati differential equation (MRDE is computed by dSpace 1104 controller, based on the corresponding feedback signals, generating the optimal speed reference for the AC drive system. The optimal speed reference is tracked by Altivar 71 inverter, conducting to energy reduction in AC drive. The classical control (consisting of rotor field oriented control with PI controllers and the optimal one have been implemented by designing an adequate ControlDesk interface. The three-phase induction machine (IM is controlled at constant flux. Therefore, the linear dynamic mathematical model of the IM has been obtained. The optimal control law provides transient regimes with minimal energy consumption. The obtained solution by integration of the MRDE is orientated towards the numerical implementation-by using a zero order hold. The development system is very useful for researchers, doctoral students or experts training in electrical drive. The experimental results are shown.
Optimal control applications in electric power systems
Christensen, G S; Soliman, S A
1987-01-01
Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...
Optimal Control and Optimization of Stochastic Supply Chain Systems
Song, Dong-Ping
2013-01-01
Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject in the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies. In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of ...
Linear systems optimal and robust control
Sinha, Alok
2007-01-01
Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...
Optimal control systems in hydro power plants
International Nuclear Information System (INIS)
Babunski, Darko L.
2012-01-01
The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)
Time Optimal Control Laws for Bilinear Systems
Directory of Open Access Journals (Sweden)
Salim Bichiou
2018-01-01
Full Text Available The aim of this paper is to determine the feedforward and state feedback suboptimal time control for a subset of bilinear systems, namely, the control sequence and reaching time. This paper proposes a method that uses Block pulse functions as an orthogonal base. The bilinear system is projected along that base. The mathematical integration is transformed into a product of matrices. An algebraic system of equations is obtained. This system together with specified constraints is treated as an optimization problem. The parameters to determine are the final time, the control sequence, and the states trajectories. The obtained results via the newly proposed method are compared to known analytical solutions.
Optimally Controlled Flexible Fuel Powertrain System
Energy Technology Data Exchange (ETDEWEB)
Hakan Yilmaz; Mark Christie; Anna Stefanopoulou
2010-12-31
The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.
Optimal Investment Control of Macroeconomic Systems
Institute of Scientific and Technical Information of China (English)
ZHAO Ke-jie; LIU Chuan-zhe
2006-01-01
Economic growth is always accompanied by economic fluctuation. The target of macroeconomic control is to keep a basic balance of economic growth, accelerate the optimization of economic structures and to lead a rapid, sustainable and healthy development of national economies, in order to propel society forward. In order to realize the above goal, investment control must be regarded as the most important policy for economic stability. Readjustment and control of investment includes not only control of aggregate investment, but also structural control which depends on economic-technology relationships between various industries of a national economy. On the basis of the theory of a generalized system, an optimal investment control model for government has been developed. In order to provide a scientific basis for government to formulate a macroeconomic control policy, the model investigates the balance of total supply and aggregate demand through an adjustment in investment decisions realizes a sustainable and stable growth of the national economy. The optimal investment decision function proposed by this study has a unique and specific expression, high regulating precision and computable characteristics.
Distributed computer control system for reactor optimization
International Nuclear Information System (INIS)
Williams, A.H.
1983-01-01
At the Oldbury power station a prototype distributed computer control system has been installed. This system is designed to support research and development into improved reactor temperature control methods. This work will lead to the development and demonstration of new optimal control systems for improvement of plant efficiency and increase of generated output. The system can collect plant data from special test instrumentation connected to dedicated scanners and from the station's existing data processing system. The system can also, via distributed microprocessor-based interface units, make adjustments to the desired reactor channel gas exit temperatures. The existing control equipment will then adjust the height of control rods to maintain operation at these temperatures. The design of the distributed system is based on extensive experience with distributed systems for direct digital control, operator display and plant monitoring. The paper describes various aspects of this system, with particular emphasis on: (1) the hierarchal system structure; (2) the modular construction of the system to facilitate installation, commissioning and testing, and to reduce maintenance to module replacement; (3) the integration of the system into the station's existing data processing system; (4) distributed microprocessor-based interfaces to the reactor controls, with extensive security facilities implemented by hardware and software; (5) data transfer using point-to-point and bussed data links; (6) man-machine communication based on VDUs with computer input push-buttons and touch-sensitive screens; and (7) the use of a software system supporting a high-level engineer-orientated programming language, at all levels in the system, together with comprehensive data link management
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Optimal Control of Switching Linear Systems
Directory of Open Access Journals (Sweden)
Ali Benmerzouga
2004-06-01
Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k , i = 1,..., M ; k = 0, 1, ..., N -1} which transfer the system from a given initial state X0 to a specific target state XT (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.
Applied optimal control theory of distributed systems
Lurie, K A
1993-01-01
This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. ...
Optimal Control of Solar Heating System
Huang, Bin-Juine
2017-02-21
Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.
Factors influencing the profitability of optimizing control systems
International Nuclear Information System (INIS)
Broussaud, A.; Guyot, O.
1999-01-01
Optimizing control systems supplement conventional Distributed Control Systems and Programmable Logic Controllers. They continuously implement set points, which aim at maximizing the profitability of plant operation. They are becoming an integral part of modern mineral processing plants. This trend is justified by economic considerations, optimizing control being among the most cost-effective methods of improving metallurgical plant performance. The paper successively analyzes three sets of factors, which influence the profitability of optimizing control systems, and provides guidelines for analyzing the potential value of an optimizing control system at a given operation: external factors, such as economic factors and factors related to plant feed; features of the optimizing control system; and subsequent maintenance of the optimizing control system. It is shown that pay back times for optimization control projects are typically measured in days. The OCS software used by the authors for their applications is described briefly. (author)
Centralized Stochastic Optimal Control of Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Malikopoulos, Andreas [ORNL
2015-01-01
In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain using the long-run expected average cost per unit time criterion, and we show that the control policy yielding the Pareto optimal solution minimizes the average cost criterion online. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.
Optimization and Control of Electric Power Systems
Energy Technology Data Exchange (ETDEWEB)
Lesieutre, Bernard C. [Univ. of Wisconsin, Madison, WI (United States); Molzahn, Daniel K. [Univ. of Wisconsin, Madison, WI (United States)
2014-10-17
The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.
Neural Network for Optimization of Existing Control Systems
DEFF Research Database (Denmark)
Madsen, Per Printz
1995-01-01
The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....
Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, L.S; Thybo, C.; Stoustrup, Jakob
2003-01-01
The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives th...... the condenser pressure towards an optimal state. The objective of this is to present a feasible method that can be used for energy optimizing control. A simulation model of a simple refrigeration system will be used as basis for testing the control method....
Optimal dynamic control of resources in a distributed system
Shin, Kang G.; Krishna, C. M.; Lee, Yann-Hang
1989-01-01
The authors quantitatively formulate the problem of controlling resources in a distributed system so as to optimize a reward function and derive optimal control strategies using Markov decision theory. The control variables treated are quite general; they could be control decisions related to system configuration, repair, diagnostics, files, or data. Two algorithms for resource control in distributed systems are derived for time-invariant and periodic environments, respectively. A detailed example to demonstrate the power and usefulness of the approach is provided.
Optimal Control for a Class of Chaotic Systems
Directory of Open Access Journals (Sweden)
Jianxiong Zhang
2012-01-01
Full Text Available This paper proposes the optimal control methods for a class of chaotic systems via state feedback. By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal control method of piecewise linear systems, which is cast as an optimization problem under constraints of bilinear matrix inequalities (BMIs. In addition, the lower bound on cost function can be achieved by solving a semidefinite programming (SDP. Finally, numerical examples are given to illustrate the results.
Optimal control of operation efficiency of belt conveyor systems
International Nuclear Information System (INIS)
Zhang, Shirong; Xia, Xiaohua
2010-01-01
The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study.
Optimal control of operation efficiency of belt conveyor systems
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shirong [Department of Automation, Wuhan University, Wuhan 430072 (China); Xia, Xiaohua [Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002 (South Africa)
2010-06-15
The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study. (author)
Optimal control of switched systems arising in fermentation processes
Liu, Chongyang
2014-01-01
The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.
Optimal Vibration Control for Tracked Vehicle Suspension Systems
Directory of Open Access Journals (Sweden)
Yan-Jun Liang
2013-01-01
Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Hierarchical Control for Optimal and Distributed Operation of Microgrid Systems
DEFF Research Database (Denmark)
Meng, Lexuan
manages the power flow with external grids, while the economic and optimal operation of MGs is not guaranteed by applying the existing schemes. Accordingly, this project dedicates to the study of real-time optimization methods for MGs, including the review of optimization algorithms, system level...... mathematical modeling, and the implementation of real-time optimization into existing hierarchical control schemes. Efficiency enhancement in DC MGs and optimal unbalance compensation in AC MGs are taken as the optimization objectives in this project. Necessary system dynamic modeling and stability analysis......, a discrete-time domain modeling method is proposed to establish an accurate system level model. Taking into account the different sampling times of real world plant, digital controller and communication devices, the system is modeled with these three parts separately, and with full consideration...
Optimal Control and Forecasting of Complex Dynamical Systems
Grigorenko, Ilya
2006-01-01
This important book reviews applications of optimization and optimal control theory to modern problems in physics, nano-science and finance. The theory presented here can be efficiently applied to various problems, such as the determination of the optimal shape of a laser pulse to induce certain excitations in quantum systems, the optimal design of nanostructured materials and devices, or the control of chaotic systems and minimization of the forecast error for a given forecasting model (for example, artificial neural networks). Starting from a brief review of the history of variational calcul
Optimization and Control of Bilinear Systems Theory, Algorithms, and Applications
Pardalos, Panos M
2008-01-01
Covers developments in bilinear systems theory Focuses on the control of open physical processes functioning in a non-equilibrium mode Emphasis is on three primary disciplines: modern differential geometry, control of dynamical systems, and optimization theory Includes applications to the fields of quantum and molecular computing, control of physical processes, biophysics, superconducting magnetism, and physical information science
Optimal Model-Based Control in HVAC Systems
DEFF Research Database (Denmark)
Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik
2008-01-01
is developed. Then the optimal control structure is designed and implemented. The HVAC system is splitted into two subsystems. By selecting the right set-points and appropriate cost functions for each subsystem controller the optimal control strategy is respected to gaurantee the minimum thermal and electrical......This paper presents optimal model-based control of a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger (a rotary wheel heat recovery) and a water-to- air heat exchanger. First dynamic model of the HVAC system...... energy consumption. Finally, the controller is applied to control the mentioned HVAC system and the results show that the expected goals are fulfilled....
Optimal boundary control and boundary stabilization of hyperbolic systems
Gugat, Martin
2015-01-01
This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary. The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization. Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples. To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled. Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.
Optimized controllers for enhancing dynamic performance of PV interface system
Directory of Open Access Journals (Sweden)
Mahmoud A. Attia
2018-05-01
Full Text Available The dynamic performance of PV interface system can be improved by optimizing the gains of the Proportional–Integral (PI controller. In this work, gravitational search algorithm and harmony search algorithm are utilized to optimal tuning of PI controller gains. Performance comparison between the PV system with optimized PI gains utilizing different techniques are carried out. Finally, the dynamic behavior of the system is studied under hypothetical sudden variations in irradiance. The examination of the proposed techniques for optimal tuning of PI gains is conducted using MATLAB/SIMULINK software package. The main contribution of this work is investigating the dynamic performance of PV interfacing system with application of gravitational search algorithm and harmony search algorithm for optimal PI parameters tuning. Keywords: Photovoltaic power systems, Gravitational search algorithm, Harmony search algorithm, Genetic algorithm, Artificial intelligence
Optimal design of distributed control and embedded systems
Çela, Arben; Li, Xu-Guang; Niculescu, Silviu-Iulian
2014-01-01
Optimal Design of Distributed Control and Embedded Systems focuses on the design of special control and scheduling algorithms based on system structural properties as well as on analysis of the influence of induced time-delay on systems performances. It treats the optimal design of distributed and embedded control systems (DCESs) with respect to communication and calculation-resource constraints, quantization aspects, and potential time-delays induced by the associated communication and calculation model. Particular emphasis is put on optimal control signal scheduling based on the system state. In order to render this complex optimization problem feasible in real time, a time decomposition is based on periodicity induced by the static scheduling is operated. The authors present a co-design approach which subsumes the synthesis of the optimal control laws and the generation of an optimal schedule of control signals on real-time networks as well as the execution of control tasks on a single processor. The a...
Evolutionary Computing for Intelligent Power System Optimization and Control
DEFF Research Database (Denmark)
This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....
Aschepkov, Leonid T; Kim, Taekyun; Agarwal, Ravi P
2016-01-01
This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level. The main themes of the theory of linear and nonlinear systems are considered, including the basic problem of establishing the necessary and sufficient conditions of optimal processes. In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for prob...
Time-optimal feedback control for linear systems
International Nuclear Information System (INIS)
Mirica, S.
1976-01-01
The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)
Accelerator optimization using a network control and acquisition system
International Nuclear Information System (INIS)
Geddes, Cameron G.R.; Catravas, P.E.; Faure, Jerome; Toth, Csaba; Tilborg, J. van; Leemans, Wim P.
2002-01-01
Accelerator optimization requires detailed study of many parameters, indicating the need for remote control and automated data acquisition systems. A control and data acquisition system based on a network of commodity PCs and applications with standards based inter-application communication is being built for the l'OASIS accelerator facility. This system allows synchronous acquisition of data at high (> 1 Hz) rates and remote control of the accelerator at low cost, allowing detailed study of the acceleration process
Complex optimization of radiometric control and measurement systems
International Nuclear Information System (INIS)
Onishchenko, A.M.
1995-01-01
Fundamentals of a new approach to increase in the accuracy of radiometric systems of control and measurements are presented in succession. Block diagram of the new concept of radiometric system optimization is provided. The approach involving radical increase in accuracy and envisages ascertaining of controlled parameter by the totality of two intelligence signals closely correlated with each other. The new concept makes use of system analysis as a unified one-piece object, permitting euristic synthesis of the system. 4 refs., 3 figs
Optimal Control of Solar Heating System
Huang, Bin-Juine; Ton, Wei-Zhe; Wu, Chen-Chun; Ko, Hua-Wei; Chang, Hsien-Shun; Yen, Rue-Her
2017-01-01
was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.
Combined Optimal Control System for excavator electric drive
Kurochkin, N. S.; Kochetkov, V. P.; Platonova, E. V.; Glushkin, E. Y.; Dulesov, A. S.
2018-03-01
The article presents a synthesis of the combined optimal control algorithms of the AC drive rotation mechanism of the excavator. Synthesis of algorithms consists in the regulation of external coordinates - based on the theory of optimal systems and correction of the internal coordinates electric drive using the method "technical optimum". The research shows the advantage of optimal combined control systems for the electric rotary drive over classical systems of subordinate regulation. The paper presents a method for selecting the optimality criterion of coefficients to find the intersection of the range of permissible values of the coordinates of the control object. There is possibility of system settings by choosing the optimality criterion coefficients, which allows one to select the required characteristics of the drive: the dynamic moment (M) and the time of the transient process (tpp). Due to the use of combined optimal control systems, it was possible to significantly reduce the maximum value of the dynamic moment (M) and at the same time - reduce the transient time (tpp).
Optimizing data access in the LAMPF control system
International Nuclear Information System (INIS)
Schaller, S.C.; Corley, J.K.; Rose, P.A.
1985-01-01
The LAMPF control system data access software offers considerable power and flexibility to application programs through symbolic device naming and an emphasis on hardware independence. This paper discusses optimizations aimed at improving the performance of the data access software while retaining these capabilities. The only aspects of the optimizations visible to the application programs are ''vector devices'' and ''aggregate devices.'' A vector device accesses a set of hardware related data items through a single device name. Aggregate devices allow run-time optimization of references to groups of unrelated devices. Optimizations not visible on the application level include careful handling of: network message traffic; the sharing of global resources; and storage allocation
Optimal Control of Heterogeneous Systems with Endogenous Domain of Heterogeneity
International Nuclear Information System (INIS)
Belyakov, Anton O.; Tsachev, Tsvetomir; Veliov, Vladimir M.
2011-01-01
The paper deals with optimal control of heterogeneous systems, that is, families of controlled ODEs parameterized by a parameter running over a domain called domain of heterogeneity. The main novelty in the paper is that the domain of heterogeneity is endogenous: it may depend on the control and on the state of the system. This extension is crucial for several economic applications and turns out to rise interesting mathematical problems. A necessary optimality condition is derived, where one of the adjoint variables satisfies a differential inclusion (instead of equation) and the maximization of the Hamiltonian takes the form of “min-max”. As a consequence, a Pontryagin-type maximum principle is obtained under certain regularity conditions for the optimal control. A formula for the derivative of the objective function with respect to the control from L ∞ is presented together with a sufficient condition for its existence. A stylized economic example is investigated analytically and numerically.
Thermodynamic framework for discrete optimal control in multiphase flow systems
Sieniutycz, Stanislaw
1999-08-01
Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.
The Pealization of the Most Economical and optimized Control System
Institute of Scientific and Technical Information of China (English)
WUBin
2002-01-01
In order to plow an access to low cost automation,the method to set up the most economical and optimized control system is studied.Such a system is achieved by adopting the field bus technologies based on net connection to form the hierarchical architecture and employing genetic algorithm to intelliently optimize the parameters of the topology structure at the field execution level and the parameters of a local controller,Praxios has proved that this realization can shorten the system development cycle,improve the systtem's reliability,and achieve conspicuous social economic benefits.
Dynamics of underactuated multibody systems modeling, control and optimal design
Seifried, Robert
2014-01-01
Underactuated multibody systems are intriguing mechatronic systems, as they possess fewer control inputs than degrees of freedom. Some examples are modern light-weight flexible robots and articulated manipulators with passive joints. This book investigates such underactuated multibody systems from an integrated perspective. This includes all major steps from the modeling of rigid and flexible multibody systems, through nonlinear control theory, to optimal system design. The underlying theories and techniques from these different fields are presented using a self-contained and unified approach and notation system. Subsequently, the book focuses on applications to large multibody systems with multiple degrees of freedom, which require a combination of symbolical and numerical procedures. Finally, an integrated, optimization-based design procedure is proposed, whereby both structural and control design are considered concurrently. Each chapter is supplemented by illustrated examples.
Decentralized Optimization for a Novel Control Structure of HVAC System
Directory of Open Access Journals (Sweden)
Shiqiang Wang
2016-01-01
Full Text Available A decentralized control structure is introduced into the heating, ventilation, and air conditioning (HVAC system to solve the high maintenance and labor cost problem in actual engineering. Based on this new control system, a decentralized optimization method is presented for sensor fault repair and optimal group control of HVAC equipment. Convergence property of the novel method is theoretically analyzed considering both convex and nonconvex systems with constraints. In this decentralized control system, traditional device is fitted with a control chip such that it becomes a smart device. The smart device can communicate and operate collaboratively with the other devices to accomplish some designated tasks. The effectiveness of the presented method is verified by simulations and hardware tests.
Quasivelocities and Optimal Control for underactuated Mechanical Systems
International Nuclear Information System (INIS)
Colombo, L.; Martin de Diego, D.
2010-01-01
This paper is concerned with the application of the theory of quasivelocities for optimal control for underactuated mechanical systems. Using this theory, we convert the original problem in a variational second-order lagrangian system subjected to constraints. The equations of motion are geometrically derived using an adaptation of the classical Skinner and Rusk formalism.
Optimization and Control of Cyber-Physical Vehicle Systems
Directory of Open Access Journals (Sweden)
Justin M. Bradley
2015-09-01
Full Text Available A cyber-physical system (CPS is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.
Optimization and Control of Cyber-Physical Vehicle Systems.
Bradley, Justin M; Atkins, Ella M
2015-09-11
A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.
Optimal Acquisition and Inventory Control for a Remanufacturing System
Directory of Open Access Journals (Sweden)
Zhigang Jiang
2013-01-01
Full Text Available Optimal acquisition and inventory control can often make the difference between successful and unsuccessful remanufacturing. However, there is a greater degree of uncertainty and complexity in a remanufacturing system, which leads to a critical need for planning and control models designed to deal with this added uncertainty and complexity. In this paper, a method for optimal acquisition and inventory control of a remanufacturing system is presented. The method considers three inventories, one for returned item and the other for serviceable and recoverable items. Taking the holding cost for returns, recoverable and remanufactured products, remanufacturing cost, disposal cost, and the loss caused by backlog into account, the optimal inventory control model is established to minimize the total costs. Finally, a numerical example is provided to illustrate the proposed methods.
Efficient solution method for optimal control of nuclear systems
International Nuclear Information System (INIS)
Naser, J.A.; Chambre, P.L.
1981-01-01
To improve the utilization of existing fuel sources, the use of optimization techniques is becoming more important. A technique for solving systems of coupled ordinary differential equations with initial, boundary, and/or intermediate conditions is given. This method has a number of inherent advantages over existing techniques as well as being efficient in terms of computer time and space requirements. An example of computing the optimal control for a spatially dependent reactor model with and without temperature feedback is given. 10 refs
Optimal control of inverted pendulum system using PID controller, LQR and MPC
Varghese, Elisa Sara; Vincent, Anju K.; Bagyaveereswaran, V.
2017-11-01
Inverted pendulum is a highly nonlinear system. Here we propose an optimal control technique for the control of an inverted Pendulum - cart system. The system is modeled, linearized and controlled. Here, the control objective is to control the system such that when the cart reaches a desired position the inverted pendulum stabilizes in the upright position. Initially PID controller is used to control the system. Later, Linear Quadratic Regulator (LQR) a well-known optimal control technique which makes use of the states of the dynamical system and control input to frame the optimal control decision is used. Various combinations of both PID and LQR controllers are implemented. To validate the robustness of the controller, the system is simulated with and without disturbance. Finally the system is also controlled using Model Predictive controller (MPC). MPC has well predictive ability to calculate future events and implement necessary control actions. The performance of the system is compared and analyzed.
Optimal control for parabolic-hyperbolic system with time delay
International Nuclear Information System (INIS)
Kowalewski, A.
1985-07-01
In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)
Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing
2015-07-01
In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.
Optimal pole shifting controller for interconnected power system
International Nuclear Information System (INIS)
Yousef, Ali M.; Kassem, Ahmed M.
2011-01-01
Research highlights: → Mathematical model represents a power system which consists of synchronous machine connected to infinite bus through transmission line. → Power system stabilizer was designed based on optimal pole shifting controller. → The system performances was tested through load disturbances at different operating conditions. → The system performance with the proposed optimal pole shifting controller is compared with the conventional pole placement controller. → The digital simulation results indicated that the proposed controller has a superior performance. -- Abstract: Power system stabilizer based on optimal pole shifting is proposed. An approach for shifting the real parts of the open-loop poles to any desired positions while preserving the imaginary parts is presented. In each step of this approach, it is required to solve a first-order or a second-order linear matrix Lyapunov equation for shifting one real pole or two complex conjugate poles, respectively. This presented method yields a solution, which is optimal with respect to a quadratic performance index. The attractive feature of this method is that it enables solutions of the complex problem to be easily found without solving any non-linear algebraic Riccati equation. The present power system stabilizer is based on Riccati equation approach. The control law depends on finding the feedback gain matrix, and then the control signal is synthesized by multiplying the state variables of the power system with determined gain matrix. The gain matrix is calculated one time only, and it works over wide range of operating conditions. To validate the power of the proposed PSS, a linearized model of a simple power system consisted of a single synchronous machine connected to infinite bus bar through transmission line is simulated. The studied power system is subjected to various operating points and power system parameters changes.
Optimal pole shifting controller for interconnected power system
Energy Technology Data Exchange (ETDEWEB)
Yousef, Ali M., E-mail: drali_yousef@yahoo.co [Electrical Eng. Dept., Faculty of Engineering, Assiut University (Egypt); Kassem, Ahmed M., E-mail: kassem_ahmed53@hotmail.co [Control Technology Dep., Industrial Education College, Beni-Suef University (Egypt)
2011-05-15
Research highlights: {yields} Mathematical model represents a power system which consists of synchronous machine connected to infinite bus through transmission line. {yields} Power system stabilizer was designed based on optimal pole shifting controller. {yields} The system performances was tested through load disturbances at different operating conditions. {yields} The system performance with the proposed optimal pole shifting controller is compared with the conventional pole placement controller. {yields} The digital simulation results indicated that the proposed controller has a superior performance. -- Abstract: Power system stabilizer based on optimal pole shifting is proposed. An approach for shifting the real parts of the open-loop poles to any desired positions while preserving the imaginary parts is presented. In each step of this approach, it is required to solve a first-order or a second-order linear matrix Lyapunov equation for shifting one real pole or two complex conjugate poles, respectively. This presented method yields a solution, which is optimal with respect to a quadratic performance index. The attractive feature of this method is that it enables solutions of the complex problem to be easily found without solving any non-linear algebraic Riccati equation. The present power system stabilizer is based on Riccati equation approach. The control law depends on finding the feedback gain matrix, and then the control signal is synthesized by multiplying the state variables of the power system with determined gain matrix. The gain matrix is calculated one time only, and it works over wide range of operating conditions. To validate the power of the proposed PSS, a linearized model of a simple power system consisted of a single synchronous machine connected to infinite bus bar through transmission line is simulated. The studied power system is subjected to various operating points and power system parameters changes.
Optimal control of quantum systems: a projection approach
International Nuclear Information System (INIS)
Cheng, C.-J.; Hwang, C.-C.; Liao, T.-L.; Chou, G.-L.
2005-01-01
This paper considers the optimal control of quantum systems. The controlled quantum systems are described by the probability-density-matrix-based Liouville-von Neumann equation. Using projection operators, the states of the quantum system are decomposed into two sub-spaces, namely the 'main state' space and the 'remaining state' space. Since the control energy is limited, a solution for optimizing the external control force is proposed in which the main state is brought to the desired main state at a certain target time, while the population of the remaining state is simultaneously suppressed in order to diminish its effects on the final population of the main state. The optimization problem is formulated by maximizing a general cost functional of states and control force. An efficient algorithm is developed to solve the optimization problem. Finally, using the hydrogen fluoride (HF) molecular population transfer problem as an illustrative example, the effectiveness of the proposed scheme for a quantum system initially in a mixed state or in a pure state is investigated through numerical simulations
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Distributed Optimal Consensus Control for Multiagent Systems With Input Delay.
Zhang, Huaipin; Yue, Dong; Zhao, Wei; Hu, Songlin; Dou, Chunxia; Huaipin Zhang; Dong Yue; Wei Zhao; Songlin Hu; Chunxia Dou; Hu, Songlin; Zhang, Huaipin; Dou, Chunxia; Yue, Dong; Zhao, Wei
2018-06-01
This paper addresses the problem of distributed optimal consensus control for a continuous-time heterogeneous linear multiagent system subject to time varying input delays. First, by discretization and model transformation, the continuous-time input-delayed system is converted into a discrete-time delay-free system. Two delicate performance index functions are defined for these two systems. It is shown that the performance index functions are equivalent and the optimal consensus control problem of the input-delayed system can be cast into that of the delay-free system. Second, by virtue of the Hamilton-Jacobi-Bellman (HJB) equations, an optimal control policy for each agent is designed based on the delay-free system and a novel value iteration algorithm is proposed to learn the solutions to the HJB equations online. The proposed adaptive dynamic programming algorithm is implemented on the basis of a critic-action neural network (NN) structure. Third, it is proved that local consensus errors of the two systems and weight estimation errors of the critic-action NNs are uniformly ultimately bounded while the approximated control policies converge to their target values. Finally, two simulation examples are presented to illustrate the effectiveness of the developed method.
Optimal Control of Diesel Engines with Waste Heat Recovery System
Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.
2014-01-01
This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue
Optimal control of diesel engines with waste heat recovery systems
Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.; Waschl, H.; Kolmanovsky, I.; Steinbuch, M.; Del Re, L.
2014-01-01
This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO 2 - NO x trade-off by minimizing the operational costs associated with fuel and AdBlue
Optimal coherent control of dissipative N-level systems
International Nuclear Information System (INIS)
Jirari, H.; Poetz, W.
2005-01-01
General optimal coherent control of dissipative N-level systems in the Markovian time regime is formulated within Pointryagin's principle and the Lindblad equation. In the present paper, we study feasibility and limitations of steering of dissipative two-, three-, and four-level systems from a given initial pure or mixed state into a desired final state under the influence of an external electric field. The time evolution of the system is computed within the Lindblad equation and a conjugate gradient method is used to identify optimal control fields. The influence of both field-independent population and polarization decay on achieving the objective is investigated in systematic fashion. It is shown that, for realistic dephasing times, optimum control fields can be identified which drive the system into the target state with very high success rate and in economical fashion, even when starting from a poor initial guess. Furthermore, the optimal fields obtained give insight into the system dynamics. However, if decay rates of the system cannot be subjected to electromagnetic control, the dissipative system cannot be maintained in a specific pure or mixed state, in general
Optimal control of Formula One car energy recovery systems
Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.
2014-10-01
The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.
Price-based Optimal Control of Electrical Power Systems
Energy Technology Data Exchange (ETDEWEB)
Jokic, A.
2007-09-10
The research presented in this thesis is motivated by the following issue of concern for the operation of future power systems: Future power systems will be characterized by significantly increased uncertainties at all time scales and, consequently, their behavior in time will be difficult to predict. In Chapter 2 we will present a novel explicit, dynamic, distributed feedback control scheme that utilizes nodal-prices for real-time optimal power balance and network congestion control. The term explicit means that the controller is not based on solving an optimization problem on-line. Instead, the nodal prices updates are based on simple, explicitly defined and easily comprehensible rules. We prove that the developed control scheme, which acts on the measurements from the current state of the system, always provide the correct nodal prices. In Chapter 3 we will develop a novel, robust, hybrid MPC control (model predictive controller) scheme for power balance control with hard constraints on line power flows and network frequency deviations. The developed MPC controller acts in parallel with the explicit controller from Chapter 2, and its task is to enforce the constraints during the transient periods following suddenly occurring power imbalances in the system. In Chapter 4 the concept of autonomous power networks will be presented as a concise formulation to deal with economic, technical and reliability issues in power systems with a large penetration of distributed generating units. With autonomous power networks as new market entities, we propose a novel operational structure of ancillary service markets. In Chapter 5 we will consider the problem of controlling a general linear time-invariant dynamical system to an economically optimal operating point, which is defined by a multiparametric constrained convex optimization problem related with the steady-state operation of the system. The parameters in the optimization problem are values of the exogenous inputs to
Optimizing a mobile robot control system using GPU acceleration
Tuck, Nat; McGuinness, Michael; Martin, Fred
2012-01-01
This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.
Optimal Control of Hybrid Systems in Air Traffic Applications
Kamgarpour, Maryam
Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient
Optimal feedback control of the forced van der Pol system
International Nuclear Information System (INIS)
Chagas, T.P.; Toledo, B.A.; Rempel, E.L.; Chian, A.C.-L.; Valdivia, J.A.
2012-01-01
A simple feedback control strategy for chaotic systems is investigated using the forced van der Pol system as an example. The strategy regards chaos control as an optimization problem, where the maximum magnitude Floquet multiplier of a target unstable periodic orbit (UPO) is used as a cost function that needs to be minimized. Thus, the method obtains the optimal control gain in terms of the stability of the target UPO. This strategy was recently proposed for the proportional feedback control (PFC) method. Here, it is extended to the highly popular delayed feedback control (DFC) method. Since the DFC method treats the system as a delay-differential equation whose phase space is infinite-dimensional, the characteristic multipliers are found through a truncation in the number of delayed states. Control of a target UPO is achieved for several values of the forcing amplitude. We compare the DFC and PFC methods in terms of stability of the controlled orbit, steady state error and control effort.
Optimization Control of Bidirectional Cascaded DC-AC Converter Systems
DEFF Research Database (Denmark)
Tian, Yanjun
in bidirectional cascaded converter. This research work analyses the control strategies based on the topology of dual active bridges converter cascaded with a three phase inverter. It firstly proposed a dc link voltage and active power coordinative control method for this cascaded topology, and it can reduce dc....... The connections of the renewable energy sources to the power system are mostly through the power electronic converters. Moreover, for high controllability and flexibility, power electronic devices are gradually acting as the interface between different networks in power systems, promoting conventional power...... the bidirectional power flow in the distribution level of power systems. Therefore direct contact of converters introduces significant uncertainties to power system, especially for the stability and reliability. This dissertation studies the optimization control of the two stages directly connected converters...
On Optimal Feedback Control for Stationary Linear Systems
International Nuclear Information System (INIS)
Russell, David L.
2010-01-01
We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.
Optimization Controller for Mechatronic Sun Tracking System to Improve Performance
Directory of Open Access Journals (Sweden)
Mustafa Engin
2013-01-01
Full Text Available An embedded system that contains hardware and software was developed for two-axis solar tracking system to improve photovoltaic panel utilization. The hardware section of the embedded system consists of a 32-bit ARM core microcontroller, motor driver circuits, a motion control unit, pyranometer, GPS receiver, and an anemometer. The real-time control algorithm enables the solar tracker to operate automatically without external control as a stand-alone system, combining the advantages of the open-loop and the closed-loop control methods. The pyranometer is employed to continuously send radiation data to the controller if the measured radiation is above the lower radiation limit the photovoltaic panel can generate power, guaranteeing the solar tracking process to be highly efficient. The anemometer is utilized in the system to ensure that the solar tracking procedure halts under high wind speed conditions to protect the entire system. Latitude, longitude, altitude, date, and real-time clock data are provided by GPS receiver. The algorithm calculates solar time using astronomical equations with GPS data and converts it to pulse-width modulated motor control signal. The overall objective of this study is to develop a control algorithm that improves performance and reliability of the two-axis solar tracker, focusing on optimization of the controller board, drive hardware, and software.
Optimized hardware design for the divertor remote handling control system
Energy Technology Data Exchange (ETDEWEB)
Saarinen, Hannu [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland)], E-mail: hannu.saarinen@tut.fi; Tiitinen, Juha; Aha, Liisa; Muhammad, Ali; Mattila, Jouni; Siuko, Mikko; Vilenius, Matti [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Jaervenpaeae, Jorma [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland); Irving, Mike; Damiani, Carlo; Semeraro, Luigi [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)
2009-06-15
A key ITER maintenance activity is the exchange of the divertor cassettes. One of the major focuses of the EU Remote Handling (RH) programme has been the study and development of the remote handling equipment necessary for divertor exchange. The current major step in this programme involves the construction of a full scale physical test facility, namely DTP2 (Divertor Test Platform 2), in which to demonstrate and refine the RH equipment designs for ITER using prototypes. The major objective of the DTP2 project is the proof of concept studies of various RH devices, but is also important to define principles for standardizing control hardware and methods around the ITER maintenance equipment. This paper focuses on describing the control system hardware design optimization that is taking place at DTP2. Here there will be two RH movers, namely the Cassette Multifuctional Mover (CMM), Cassette Toroidal Mover (CTM) and assisting water hydraulic force feedback manipulators (WHMAN) located aboard each Mover. The idea here is to use common Real Time Operating Systems (RTOS), measurement and control IO-cards etc. for all maintenance devices and to standardize sensors and control components as much as possible. In this paper, new optimized DTP2 control system hardware design and some initial experimentation with the new DTP2 RH control system platform are presented. The proposed new approach is able to fulfil the functional requirements for both Mover and Manipulator control systems. Since the new control system hardware design has reduced architecture there are a number of benefits compared to the old approach. The simplified hardware solution enables the use of a single software development environment and a single communication protocol. This will result in easier maintainability of the software and hardware, less dependence on trained personnel, easier training of operators and hence reduced the development costs of ITER RH.
Optimization and Optimal Control
Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider
2010-01-01
During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou
Quasicanonical structure of optimal control in constrained discrete systems
Sieniutycz, S.
2003-06-01
This paper considers discrete processes governed by difference rather than differential equations for the state transformation. The basic question asked is if and when Hamiltonian canonical structures are possible in optimal discrete systems. Considering constrained discrete control, general optimization algorithms are derived that constitute suitable theoretical and computational tools when evaluating extremum properties of constrained physical models. The mathematical basis of the general theory is the Bellman method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage criterion which allows a variation of the terminal state that is otherwise fixed in the Bellman's method. Two relatively unknown, powerful optimization algorithms are obtained: an unconventional discrete formalism of optimization based on a Hamiltonian for multistage systems with unconstrained intervals of holdup time, and the time interval constrained extension of the formalism. These results are general; namely, one arrives at: the discrete canonical Hamilton equations, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory along with all basic results of variational calculus. Vast spectrum of applications of the theory is briefly discussed.
Quantum demolition filtering and optimal control of unstable systems.
Belavkin, V P
2012-11-28
A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.
Control and Optimization of Network in Networked Control System
Directory of Open Access Journals (Sweden)
Wang Zhiwen
2014-01-01
Full Text Available In order to avoid quality of performance (QoP degradation resulting from quality of service (QoS, the solution to network congestion from the point of control theory, which marks departure of our results from the existing methods, is proposed in this paper. The congestion and bandwidth are regarded as state and control variables, respectively; then, the linear time-invariant (LTI model between congestion state and bandwidth of network is established. Consequently, linear quadratic method is used to eliminate the network congestion by allocating bandwidth dynamically. At last, numerical simulation results are given to illustrate the effectiveness of this modeling approach.
Disturbance Error Reduction in Multivariable Optimal Control Systems
Directory of Open Access Journals (Sweden)
Ole A. Solheim
1983-01-01
Full Text Available The paper deals with the design of optimal multivariable controllers, using a modified LQR approach. All controllers discussed contain proportional feedback and, in addition, there may be feedforward, integral action or state estimation.
Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty
Nguyen, Nhan T.
2012-01-01
This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.
Advanced chemistry management system to optimize BWR chemistry control
International Nuclear Information System (INIS)
Maeda, K.; Nagasawa, K.
2002-01-01
BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)
Comments on `A discrete optimal control problem for descriptor systems'
DEFF Research Database (Denmark)
Ravn, Hans
1990-01-01
In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates that there ......In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates...
Particle swarm optimization based PID controller tuning for level control of two tank system
Vincent, Anju K.; Nersisson, Ruban
2017-11-01
Automatic control plays a vital role in industrial operation. In process industries, in order to have an improved and stable control system, we need a robust tuning method. In this paper Particle Swarm Optimization (PSO) based algorithm is proposed for the optimization of a PID controller for level control process. A two tank system is considered. Initially a PID controller is designed using an Internal Model Control (IMC). The results are compared with the PSO based controller setting. The performance of the controller is compared and analyzed by time domain specification. In order to validate the robustness of PID controller, disturbance is imposed. The system is simulated using MATLAB. The results show that the proposed method provides better controller performance.
Optimal control of multi-level quantum systems
Energy Technology Data Exchange (ETDEWEB)
Fisher, Robert M.
2010-12-02
This thesis is concerned with the control of quantum systems. Given a Hamiltonian model of a quantum system, we are interested in finding controls - typically shaped electromagnetic pulses - that steer the evolution of the system toward a desired target operation. For this we employ a numerical optimisation method known as the GRAPE algorithm. For particular experimental systems, we design control schemes that respect constraints of robustness and addressability, and are within the reach of the experimental hardware. A general procedure is given for specifying a Hamiltonian model of a driven N-level system and converting it to an appropriate rotating frame. This is then applied together with the numerical algorithm to design improved schemes for two different systems, where laser fields manipulate orbital and hyperfine states of Pr{sup 3+} and Rb. The generation of cluster states in Ising-coupled systems is also studied. We find that, in the ideal case, the solution of evolving only under the coupling Hamiltonian is not time-optimal. This surprising result is in contrast to the known cases for unitary gates. For a symmetrised three-qubit example, we provide a geometrical interpretation of this. Numerically optimised control schemes are then developed for a nonideal coupling topology, modelling an experimental configuration of trapped ions. Controls for the implementation of the two-qubit Deutsch and Grover algorithms are designed for a pair of {sup 13}C nuclear spins at a nitrogen vacancy center in diamond. These implementations are robust to experimental errors, and found to be reproduced with high accuracy on a VFG-150 pulse generator. We also consider two-qubit gate synthesis in a system of superconducting qubits coupled by microwave resonators known as the cavity grid. We find that the optimised schemes allow two-qubit operations to be performed between an arbitrary qubit pair on the grid with only a small time overhead, with speedups of 2-4 over the existing
Optimal control of multi-level quantum systems
International Nuclear Information System (INIS)
Fisher, Robert M.
2010-01-01
This thesis is concerned with the control of quantum systems. Given a Hamiltonian model of a quantum system, we are interested in finding controls - typically shaped electromagnetic pulses - that steer the evolution of the system toward a desired target operation. For this we employ a numerical optimisation method known as the GRAPE algorithm. For particular experimental systems, we design control schemes that respect constraints of robustness and addressability, and are within the reach of the experimental hardware. A general procedure is given for specifying a Hamiltonian model of a driven N-level system and converting it to an appropriate rotating frame. This is then applied together with the numerical algorithm to design improved schemes for two different systems, where laser fields manipulate orbital and hyperfine states of Pr 3+ and Rb. The generation of cluster states in Ising-coupled systems is also studied. We find that, in the ideal case, the solution of evolving only under the coupling Hamiltonian is not time-optimal. This surprising result is in contrast to the known cases for unitary gates. For a symmetrised three-qubit example, we provide a geometrical interpretation of this. Numerically optimised control schemes are then developed for a nonideal coupling topology, modelling an experimental configuration of trapped ions. Controls for the implementation of the two-qubit Deutsch and Grover algorithms are designed for a pair of 13 C nuclear spins at a nitrogen vacancy center in diamond. These implementations are robust to experimental errors, and found to be reproduced with high accuracy on a VFG-150 pulse generator. We also consider two-qubit gate synthesis in a system of superconducting qubits coupled by microwave resonators known as the cavity grid. We find that the optimised schemes allow two-qubit operations to be performed between an arbitrary qubit pair on the grid with only a small time overhead, with speedups of 2-4 over the existing schemes
On the diversity of multiple optimal controls for quantum systems
International Nuclear Information System (INIS)
Shir, O M; Baeck, Th; Beltrani, V; Rabitz, H; Vrakking, M J J
2008-01-01
This study presents simulations of optimal field-free molecular alignment and rotational population transfer (starting from the J = 0 rotational ground state of a diatomic molecule), optimized by means of laser pulse shaping guided by evolutionary algorithms. Qualitatively different solutions are obtained that optimize the alignment and population transfer efficiency to the maximum extent that is possible given the existing constraints on the optimization due to the finite bandwidth and energy of the laser pulse, the finite degrees of freedom in the laser pulse shaping and the evolutionary algorithm employed. The effect of these constraints on the optimization process is discussed at several levels, subject to theoretical as well as experimental considerations. We show that optimized alignment yields can reach extremely high values, even with severe constraints being present. The breadth of optimal controls is assessed, and a correlation is found between the diversity of solutions and the difficulty of the problem. In the pulse shapes that optimize dynamic alignment we observe a transition between pulse sequences that maximize the initial population transfer from J = 0 to J = 2 and pulse sequences that optimize the transfer to higher rotational levels
Optimal control of quantum systems: Origins of inherent robustness to control field fluctuations
International Nuclear Information System (INIS)
Rabitz, Herschel
2002-01-01
The impact of control field fluctuations on the optimal manipulation of quantum dynamics phenomena is investigated. The quantum system is driven by an optimal control field, with the physical focus on the evolving expectation value of an observable operator. A relationship is shown to exist between the system dynamics and the control field fluctuations, wherein the process of seeking optimal performance assures an inherent degree of system robustness to such fluctuations. The presence of significant field fluctuations breaks down the evolution of the observable expectation value into a sequence of partially coherent robust steps. Robustness occurs because the optimization process reduces sensitivity to noise-driven quantum system fluctuations by taking advantage of the observable expectation value being bilinear in the evolution operator and its adjoint. The consequences of this inherent robustness are discussed in the light of recent experiments and numerical simulations on the optimal control of quantum phenomena. The analysis in this paper bodes well for the future success of closed-loop quantum optimal control experiments, even in the presence of reasonable levels of field fluctuations
Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System
Directory of Open Access Journals (Sweden)
Qiang Gao
2013-01-01
Full Text Available Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.
Existence of optimal controls for systems governed by mean-field ...
African Journals Online (AJOL)
In this paper, we study the existence of an optimal control for systems, governed by stochastic dierential equations of mean-eld type. For non linear systems, we prove the existence of an optimal relaxed control, by using tightness techniques and Skorokhod selection theorem. The optimal control is a measure valued process ...
Optimal Input Strategy for Plug and Play Process Control Systems
DEFF Research Database (Denmark)
Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal
2010-01-01
This paper considers the problem of optimal operation of a plant, which goal is to maintain production at minimum cost. The system considered in this work consists of a joined plant and redundant input systems. It is assumed that each input system contributes to a flow of goods into the joined pa...... the performance of the plant. The results are applied to a coal fired power plant where an additional new fuel system, gas, becomes available....
Notions of local controllability and optimal feedforward control for quantum systems
International Nuclear Information System (INIS)
Chakrabarti, Raj
2011-01-01
Local controllability is an essential concept for regulation and control of time-varying nonlinear dynamical systems; in the classical control logic it is at the foundation of neighboring optimal feedback and feedforward control. We introduce notions of local controllability suited to feedforward control of classical input disturbances in bilinear quantum systems evolving on projective spaces and Lie groups. Tests for local controllability based on a Gramian matrix analogous to the nonlinear local controllability Gramian, which allow assessment of which trajectories can be regulated by perturbative feedforward in the presence of classical input noise, are presented. These notions explicitly incorporate system bilinearity and the geometry of quantum states into the definition of local controllability of quantum systems. Associated feedforward strategies are described.
Notions of local controllability and optimal feedforward control for quantum systems
Energy Technology Data Exchange (ETDEWEB)
Chakrabarti, Raj, E-mail: rchakra@purdue.edu [School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 (United States)
2011-05-06
Local controllability is an essential concept for regulation and control of time-varying nonlinear dynamical systems; in the classical control logic it is at the foundation of neighboring optimal feedback and feedforward control. We introduce notions of local controllability suited to feedforward control of classical input disturbances in bilinear quantum systems evolving on projective spaces and Lie groups. Tests for local controllability based on a Gramian matrix analogous to the nonlinear local controllability Gramian, which allow assessment of which trajectories can be regulated by perturbative feedforward in the presence of classical input noise, are presented. These notions explicitly incorporate system bilinearity and the geometry of quantum states into the definition of local controllability of quantum systems. Associated feedforward strategies are described.
A "Hybrid" Approach for Synthesizing Optimal Controllers of Hybrid Systems
DEFF Research Database (Denmark)
Zhao, Hengjun; Zhan, Naijun; Kapur, Deepak
2012-01-01
to discretization manageable and within bounds. A major advantage of our approach is not only that it avoids errors due to numerical computation, but it also gives a better optimal controller. In order to illustrate our approach, we use the real industrial example of an oil pump provided by the German company HYDAC...
International Nuclear Information System (INIS)
Berrazouane, S.; Mohammedi, K.
2014-01-01
Highlights: • Optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. • Comparison between optimized fuzzy logic controller based on cuckoo search and swarm intelligent. • Loss of power supply probability and levelized energy cost are introduced. - Abstract: This paper presents the development of an optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. The FLC inputs are batteries state of charge (SOC) and net power flow, FLC outputs are the power rate of batteries, photovoltaic and diesel generator. Data for weekly solar irradiation, ambient temperature and load profile are used to tune the proposed controller by using cuckoo search algorithm. The optimized FLC is able to minimize loss of power supply probability (LPSP), excess energy (EE) and levelized energy cost (LEC). Moreover, the results of CS optimization are better than of particle swarm optimization PSO for fuzzy system controller
Skinner-Rusk unified formalism for optimal control systems and applications
International Nuclear Information System (INIS)
Barbero-Linan, MarIa; EcheverrIa-EnrIquez, Arturo; Diego, David MartIn de; Munoz-Lecanda, Miguel C; Roman-Roy, Narciso
2007-01-01
A geometric approach to time-dependent optimal control problems is proposed. This formulation is based on the Skinner and Rusk formalism for Lagrangian and Hamiltonian systems. The corresponding unified formalism developed for optimal control systems allows us to formulate geometrically the necessary conditions given by a weak form of Pontryagin's maximum principle, provided that the differentiability with respect to controls is assumed and the space of controls is open. Furthermore, our method is also valid for implicit optimal control systems and, in particular, for the so-called descriptor systems (optimal control problems including both differential and algebraic equations)
Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification
Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)
2016-01-01
Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.
Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification
Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan
2018-01-01
This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.
Large-Scale Systems Control Design via LMI Optimization
Czech Academy of Sciences Publication Activity Database
Rehák, Branislav
2015-01-01
Roč. 44, č. 3 (2015), s. 247-253 ISSN 1392-124X Institutional support: RVO:67985556 Keywords : Combinatorial linear matrix inequalities * large-scale system * decentralized control Subject RIV: BC - Control Systems Theory Impact factor: 0.633, year: 2015
Optimization of control area ventilation systems for Japanese PWR plants
International Nuclear Information System (INIS)
Naitoh, T.; Nakahara, Y.
1987-01-01
The nuclear power plant has been required to reduce the cost for the purpose of making the low-cost energy since several years ago in Japan. The Heating, Ventilating and Air Conditioning system in the nuclear power plant has been also required to reduce its cost. On the other hand the ventilation system should add the improvable function according to the advanced plant design. In response to these different requirements, the ventilation criteria and the design of the ventilation system have been evaluated and optimized in Japanese PWR Plant design. This paper presents the findings of the authors' study
Chaos synchronization and chaotization of complex chaotic systems in series form by optimal control
International Nuclear Information System (INIS)
Ge Zhengming; Yang, C.-H.
2009-01-01
By the method of quadratic optimum control, a quadratic optimal regulator is used for synchronizing two complex chaotic systems in series form. By this method the least error with less control energy is achieved, and the optimization on both energy and error is realized synthetically. The simulation results of two Quantum-CNN chaos systems in series form prove the effectiveness of this method. Finally, chaotization of the system is given by optimal control.
Optimal control of a variable spin speed CMG system for space vehicles. [Control Moment Gyros
Liu, T. C.; Chubb, W. B.; Seltzer, S. M.; Thompson, Z.
1973-01-01
Many future NASA programs require very high accurate pointing stability. These pointing requirements are well beyond anything attempted to date. This paper suggests a control system which has the capability of meeting these requirements. An optimal control law for the suggested system is specified. However, since no direct method of solution is known for this complicated system, a computation technique using successive approximations is used to develop the required solution. The method of calculus of variations is applied for estimating the changes of index of performance as well as those constraints of inequality of state variables and terminal conditions. Thus, an algorithm is obtained by the steepest descent method and/or conjugate gradient method. Numerical examples are given to show the optimal controls.
International Nuclear Information System (INIS)
Severin, V.P.
2007-01-01
The mathematical modeling of automatic control systems of reactor facility WWER-1000 with various regulator types is considered. The linear and nonlinear models of neutron power control systems of nuclear reactor WWER-1000 with various group numbers of delayed neutrons are designed. The results of optimization of direct quality indexes of neutron power control systems of nuclear reactor WWER-1000 are designed. The identification and optimization of level control systems with various regulator types of steam generator are executed
Control and operation cost optimization of the HISS cryogenic system
International Nuclear Information System (INIS)
Porter, J.; Anderson, D.; Bieser, F.
1984-01-01
This chapter describes a control strategy for the Heavy Ion Spectrometer System (HISS), which relies upon superconducting coils of cryostable design to provide a particle bending field of 3 tesla. The control strategy has allowed full time unattended operation and significant operating cost reductions. Microprocessor control of flash boiling style LIN circuits has been successful. It is determined that the overall operating cost of most cryogenic systems using closed loop helium systems can be minimized by properly balancing the total heat load between the helium and nitrogen circuits to take advantage of the non-linearity which exists in the power input to 4K refrigeration characteristic. Variable throughput compressors have the advantage of turndown capability at steady state. It is concluded that a hybrid system using digital and analog input for control, data display and alarms enables full time unattended operation
Optimal adaptive control for a class of stochastic systems
Bagchi, Arunabha; Chen, Han-Fu
1995-01-01
We study linear-quadratic adaptive tracking problems for a special class of stochastic systems expressed in the state-space form. This is a long-standing problem in the control of aircraft flying through atmospheric turbulence. Using an ELS-based algorithm and introducing dither in the control law
Price-based optimal control of electrical power systems
Jokic, A.
2007-01-01
During the past decade, electrical power systems have been going through some major restructuring processes. From monopolistic, highly regulated and one utility controlled operation, a system is being restructured to include many parties competing for energy production and consumption, and for
International Nuclear Information System (INIS)
Asplund, Erik; Kluener, Thorsten
2012-01-01
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., (ℎ/2π)=m e =e=a 0 = 1, have been used unless otherwise stated.
Asplund, Erik; Klüner, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated.
Price-based optimal control of electrical power systems
Jokic, A.
2007-01-01
During the past decade, electrical power systems have been going through some major restructuring processes. From monopolistic, highly regulated and one utility controlled operation, a system is being restructured to include many parties competing for energy production and consumption, and for provision of many of the ancillary services necessary for system operation. With the emergence of competitive markets as central operational mechanisms, the prime operational objective has shifted from ...
Automatic design optimization tool for passive structural control systems
Mojolic, Cristian; Hulea, Radu; Parv, Bianca Roxana
2017-07-01
The present paper proposes an automatic dynamic process in order to find the parameters of the seismic isolation systems applied to large span structures. Three seismic isolation solutions are proposed for the model of the new Slatina Sport Hall. The first case uses friction pendulum system (FP), the second one uses High Damping Rubber Bearing (HDRB) and Lead Rubber Bearings, while (LRB) are used for the last case of isolation. The placement of the isolation level is at the top end of the roof supporting columns. The aim is to calculate the parameters of each isolation system so that the whole's structure first vibration periods is the one desired by the user. The model is computed with the use of SAP2000 software. In order to find the best solution for the optimization problem, an optimization process based on Genetic Algorithms (GA) has been developed in Matlab. With the use of the API (Application Programming Interface) libraries a two way link is created between the two programs in order to exchange results and link parameters. The main goal is to find the best seismic isolation method for each desired modal period so that the bending moment on the supporting columns should be minimum.
Optimal decoupling controllers revisited
Czech Academy of Sciences Publication Activity Database
Kučera, Vladimír
2013-01-01
Roč. 42, č. 1 (2013), s. 1-16 ISSN 0324-8569 R&D Projects: GA TA ČR(CZ) TE01020197 Institutional support: RVO:67985556 Keywords : linear systems * fractional representations * decoupling control lers * stabilizing control lers * optimal control lers Subject RIV: BC - Control Systems Theory
Directory of Open Access Journals (Sweden)
Thang Diep Thanh
2017-12-01
Full Text Available In environmental uncertainties, the power flow problem in islanded microgrid (MG becomes complex and non-trivial. The optimal power flow (OPL problem is described in this paper by using the energy balance between the power generation and load demand. The paper also presents the hierarchical control structure which consists of primary, secondary, tertiary, and emergency controls. Clearly, optimal power flow (OPL which implements a distributed tertiary control in hierarchical control. MG consists of diesel engine generator (DEG, wind turbine generator (WTG, and photovoltaic (PV power. In the control system considered, operation planning is realized based on profiles such that the MG, load, wind and photovoltaic power must be forecasted in short-period, meanwhile the dispatch source (i.e., DEG needs to be scheduled. The aim of the control problem is to find the dispatch output power by minimizing the total cost of energy that leads to the Hamilton-Jacobi-Bellman equation. Experimental results are presented, showing the effectiveness of optimal control such that the generation allows demand profile.
Optimized damper control of pressure and airflow in ventilation systems
DEFF Research Database (Denmark)
Koulani, Chrysanthi Sofia; Hviid, Christian Anker; Terkildsen, Søren
2014-01-01
Conventional control strategies in variable air volume (VAV) ventilation systems do not take fully into advantage the potential energy savings since the system operation is based on maintaining a constant static pressure (CSP) set point in the main duct irrespective of the actual pressure demand...... by using the Simulink programming tool which is addon software to MATLAB mathematical programming language. A model of a VAV ventilation system was created in Simulink based on the International Building Physics Toolbox (IBPT); the IBPT thermal zone was remodelled in order to calculate dynamically...... the airflow demand according to the zone air temperature. The performance of the Simulink model was evaluated based on the experimental setup of the ventilation system. The SPR control method established stable system operation and was proven efficient to maintain comfortable space conditions while reducing...
Directory of Open Access Journals (Sweden)
Musa Danjuma SHEHU
2008-06-01
Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.
Control and System Theory, Optimization, Inverse and Ill-Posed Problems
1988-09-14
Justlfleatlen Distribut ion/ Availability Codes # AFOSR-87-0350 Avat’ and/or1987-1988 Dist Special *CONTROL AND SYSTEM THEORY , ~ * OPTIMIZATION, * INVERSE...considerable va- riety of research investigations within the grant areas (Control and system theory , Optimization, and Ill-posed problems]. The
International Nuclear Information System (INIS)
Xunjing, L.
1981-12-01
The vector-valued measure defined by the well-posed linear boundary value problems is discussed. The maximum principle of the optimal control problem with non-convex constraint is proved by using the vector-valued measure. Especially, the necessary conditions of the optimal control of elliptic systems is derived without the convexity of the control domain and the cost function. (author)
Optimization of traffic light control system of an intersection using ...
African Journals Online (AJOL)
This paper considers an automated static road traffic control system of an intersection for the purpose of minimizing the effects of traffic jam and hence its attendant consequences such as prolonged waiting time, emission of toxic hydrocarbons from automobiles, etc. Using real-time road traffic data, a dynamic round-robin ...
Optimal strategy analysis based on robust predictive control for inventory system with random demand
Saputra, Aditya; Widowati, Sutrisno
2017-12-01
In this paper, the optimal strategy for a single product single supplier inventory system with random demand is analyzed by using robust predictive control with additive random parameter. We formulate the dynamical system of this system as a linear state space with additive random parameter. To determine and analyze the optimal strategy for the given inventory system, we use robust predictive control approach which gives the optimal strategy i.e. the optimal product volume that should be purchased from the supplier for each time period so that the expected cost is minimal. A numerical simulation is performed with some generated random inventory data. We simulate in MATLAB software where the inventory level must be controlled as close as possible to a set point decided by us. From the results, robust predictive control model provides the optimal strategy i.e. the optimal product volume that should be purchased and the inventory level was followed the given set point.
On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization
International Nuclear Information System (INIS)
Lu Zhao; Shieh Leangsan; Chen GuanRong
2003-01-01
This paper presents a novel Lyapunov-based control approach which utilizes a Lyapunov function of the nominal plant for robust tracking control of general multi-input uncertain nonlinear systems. The difficulty of constructing a control Lyapunov function is alleviated by means of predefining an optimal sliding mode. The conventional schemes for constructing sliding modes of nonlinear systems stipulate that the system of interest is canonical-transformable or feedback-linearizable. An innovative approach that exploits a chaotic optimizing algorithm is developed thereby obtaining the optimal sliding manifold for the control purpose. Simulations on the uncertain chaotic Chen's system illustrate the effectiveness of the proposed approach
International Nuclear Information System (INIS)
Gao, Jiajia; Huang, Gongsheng; Xu, Xinhua
2016-01-01
Highlights: • An optimization strategy for a small-scale air-conditioning system is developed. • The optimization strategy aims at optimizing the overall system energy consumption. • The strategy may guarantee the robust control of the space air temperature. • The performance of the optimization strategy was tested on a simulation platform. - Abstract: This paper studies the optimization of a small-scale central air-conditioning system, in which the cooling is provided by a ground source heat pump (GSHP) equipped with an on/off capacity control. The optimization strategy aims to optimize the overall system energy consumption and simultaneously guarantee the robustness of the space air temperature control without violating the allowed GSHP maximum start-ups number per hour specified by customers. The set-point of the chilled water return temperature and the width of the water temperature control band are used as the decision variables for the optimization. The performance of the proposed strategy was tested on a simulation platform. Results show that the optimization strategy can save the energy consumption by 9.59% in a typical spring day and 2.97% in a typical summer day. Meanwhile it is able to enhance the space air temperature control robustness when compared with a basic control strategy without optimization.
Development of Design Tools for the Optimization of Biologically Based Control Systems
National Aeronautics and Space Administration — I plan to develop software that aids in the design of biomimetic control systems by optimizing the properties of the system in order to produce the desired output....
Optimization criteria for control and instrumentation systems in nuclear power plants
International Nuclear Information System (INIS)
Gonzalez, A.J.
1978-01-01
The system of dose limitation recently recommended by the International Commission on Radiation Protection includes, as a base for deciding what is reasonably achievable in dose reduction, the optimization of radioprotection systems. This paper, after compiling relevant points in the new system, discusses the application of optimization to control and instrumentation of radioprotection systems in nuclear power plants. Furthermore, an extension of the optimization criterion to nuclear safety systems is also presented and its application to control and instrumentation is discussed; systems including majority logics are particularly scrutinized. Finally, eventual regulatory implications are described. (author)
A Study on the Analysis and Optimal Control of Nonlinear Systems via Walsh Function
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin Tae; Kim, Tai Hoon; Ahn, Doo Soo [Sungkyunkwan University (Korea); Lee, Myung Kyu [Kyungsung University (Korea)
2000-07-01
This paper presents the new adaptive optimal scheme for the nonlinear systems, which is based on the Picard's iterative approximation and fast Walsh transform. It is well known that the Walsh function approach method is very difficult to apply for the analysis and optimal control of nonlinear systems. However, these problems can be easily solved by the improvement of the previous adaptive optimal scheme. The proposes method is easily applicable to the analysis and optimal control of nonlinear systems. (author). 15 refs., 6 figs., 1 tab.
DEFF Research Database (Denmark)
Liu, Changjin; Chen, Wenjie; Blaabjerg, Frede
2012-01-01
This paper presents an analytical method to optimize the parameters of resonant controller which is used in a Doubly-Fed Induction Generator (DFIG). In the DFIG control system, the fundamental current loop is controlled by PI-controllers, and the stator harmonic current loop is controlled...
Optimal robust control strategy of a solid oxide fuel cell system
Wu, Xiaojuan; Gao, Danhui
2018-01-01
Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.
Time-optimal control of infinite order distributed parabolic systems involving time lags
Directory of Open Access Journals (Sweden)
G.M. Bahaa
2014-06-01
Full Text Available A time-optimal control problem for linear infinite order distributed parabolic systems involving constant time lags appear both in the state equation and in the boundary condition is presented. Some particular properties of the optimal control are discussed.
Optimal control of quantum systems by chirped pulses
DEFF Research Database (Denmark)
Amstrup, Bjarne; Doll, J. D.; Sauerbrey, R. A.
1993-01-01
treated are pulsed population inversion between electronic levels, and optimization of vibronic excitation in the presence of another electronic level. In the problem of population inversion effective potentials of displaced harmonic oscillators are used. For optimizing vibronic excitation the CsI model...
Optimization of Thermal Object Nonlinear Control Systems by Energy Efficiency Criterion.
Velichkin, Vladimir A.; Zavyalov, Vladimir A.
2018-03-01
This article presents the results of thermal object functioning control analysis (heat exchanger, dryer, heat treatment chamber, etc.). The results were used to determine a mathematical model of the generalized thermal control object. The appropriate optimality criterion was chosen to make the control more energy-efficient. The mathematical programming task was formulated based on the chosen optimality criterion, control object mathematical model and technological constraints. The “maximum energy efficiency” criterion helped avoid solving a system of nonlinear differential equations and solve the formulated problem of mathematical programming in an analytical way. It should be noted that in the case under review the search for optimal control and optimal trajectory reduces to solving an algebraic system of equations. In addition, it is shown that the optimal trajectory does not depend on the dynamic characteristics of the control object.
Power systems control complex optimization in the new market conditions
International Nuclear Information System (INIS)
Krumm, L.; Kurrel, U.; Tauts, A.; Terno, O.; Zeidmanis, I.; Krisans, Z.
2000-01-01
A generalization and development of the theory and methods for complex optimisation of the performance and development control of an interconnected system (IPS) under new market conditions (mainly multicriterial and game approaches) is given considering the specifics of IPS at the international level in post-socialist countries and in particular in the Baltic states. Thereby the kernel of the mathematical apparatus of this theory the Generalized Reduced Gradient Method (GRGM) is further generalised and developed with the application of multicriterial and game methods to meet various market conditions. (author)
Control and operation cost optimization of the HISS cryogenic system
International Nuclear Information System (INIS)
Porter, J.; Bieser, F.; Anderson, D.
1983-08-01
The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable design to provide a maximum particle bending field of 3 tesla. A previous paper describes the cryogenic facility including helium refrigeration and gas management. This paper discusses a control strategy which has allowed full time unattended operation, along with significant nitrogen and power cost reductions. Reduction of liquid nitrogen consumption has been accomplished by making use of the sensible heat available in the cold exhaust gas. Measured nitrogen throughput agrees with calculations for sensible heat utilization of zero to 70%. Calculated consumption saving over this range is 40 liters per hour for conductive losses to the supports only. The measured throughput differential for the total system is higher
Emergency strategy optimization for the environmental control system in manned spacecraft
Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin
2018-02-01
It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.
Ship Lock Control System Optimization using GA, PSO and ABC: A Comparative Review
Directory of Open Access Journals (Sweden)
Željko Kanović
2014-02-01
Full Text Available This paper presents the comparison of some well-known global optimization techniques in optimization of an expert system controlling a ship locking process. The purpose of the comparison is to find the best algorithm for optimization of membership function parameters of fuzzy expert system for the ship lock control. Optimization was conducted in order to achieve better results in local distribution of ship arrivals, i.e. shorter waiting times for ships and less empty lockages. Particle swarm optimization, artificial bee colony optimization and genetic algorithm were compared. The results shown in this paper confirmed that all these procedures show similar results and provide overall improvement of ship lock operation performance, which speaks in favour of their application in similar transportation problem optimization.
2016-01-01
This book provides essential background knowledge on the development of model-based real-world solutions in the field of control and decision making for water systems. It presents system engineering methods for modelling surface water and groundwater resources as well as water transportation systems (rivers, channels and pipelines). The models in turn provide information on both the water quantity (flow rates, water levels) of surface water and groundwater and on water quality. In addition, methods for modelling and predicting water demand are described. Sample applications of the models are presented, such as a water allocation decision support system for semi-arid regions, a multiple-criteria control model for run-of-river hydropower plants, and a supply network simulation for public services.
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.
Nonlinear optimal control theory
Berkovitz, Leonard David
2012-01-01
Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also dis
Directory of Open Access Journals (Sweden)
Mengjuan Cao
2014-01-01
Full Text Available The linear discrete-time descriptor noncausal multirate system is considered for the presentation of a new design approach for optimal preview control. First, according to the characteristics of causal controllability and causal observability, the descriptor noncausal system is constructed into a descriptor causal closed-loop system. Second, by using the characteristics of the causal system and elementary transformation, the descriptor causal closed-loop system is transformed into a normal system. Then, taking advantage of the discrete lifting technique, the normal multirate system is converted to a single-rate system. By making use of the standard preview control method, we construct the descriptor augmented error system. The quadratic performance index for the multirate system is given, which can be changed into one for the single-rate system. In addition, a new single-rate system is obtained, the optimal control law of which is given. Returning to the original system, the optimal preview controller for linear discrete-time descriptor noncausal multirate systems is derived. The stabilizability and detectability of the lifted single-rate system are discussed in detail. The optimal preview control design techniques are illustrated by simulation results for a simple example.
Energy evaluation of optimal control strategies for central VWV chiller systems
International Nuclear Information System (INIS)
Jin Xinqiao; Du Zhimin; Xiao Xiaokun
2007-01-01
Under various conditions, the actual load of the heating, ventilation and air conditioning (HVAC) systems is less than it is originally designed in most operation periods. To save energy and to optimize the controls for chilling systems, the performance of variable water volume (VWV) systems and characteristics of control systems are analyzed, and three strategies are presented and tested based on simulation in this paper. Energy evaluation for the three strategies shows that they can save energy to some extent, and there is potential remained. To minimize the energy consumption of chilling system, the setpoints of controls of supply chilled water temperature and supply head of secondary pump should be optimized simultaneously
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-06-08
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.
Mazandarani, Mehran; Pariz, Naser
2018-05-01
This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Chen, Wentao; Zhang, Weidong
2009-10-01
In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Optimization of the main control room habitability system in nuclear power plant
International Nuclear Information System (INIS)
Zheng Guanghui; Zhao Xinyan
2013-01-01
This article describes the optimization of main control room habitability system in nuclear power plant. It also describes the design shortage in terms of habitability in the main control room. Through modification and optimization, habitable conditions are met for personnel staying in the emergency area of the main control room for a period of time, with an aim to take accident intervention measures smoothly and reduce the accident loss and radioactive contamination as low as possible. (authors)
Design of an optimal preview controller for linear discrete-time descriptor systems with state delay
Cao, Mengjuan; Liao, Fucheng
2015-04-01
In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.
Pan, Indranil; Das, Saptarshi; Gupta, Amitava
2011-01-01
An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Larson, David B; Malarik, Remo J; Hall, Seth M; Podberesky, Daniel J
2013-10-01
To evaluate the effect of an automated computed tomography (CT) radiation dose optimization and process control system on the consistency of estimated image noise and size-specific dose estimates (SSDEs) of radiation in CT examinations of the chest, abdomen, and pelvis. This quality improvement project was determined not to constitute human subject research. An automated system was developed to analyze each examination immediately after completion, and to report individual axial-image-level and study-level summary data for patient size, image noise, and SSDE. The system acquired data for 4 months beginning October 1, 2011. Protocol changes were made by using parameters recommended by the prediction application, and 3 months of additional data were acquired. Preimplementation and postimplementation mean image noise and SSDE were compared by using unpaired t tests and F tests. Common-cause variation was differentiated from special-cause variation by using a statistical process control individual chart. A total of 817 CT examinations, 490 acquired before and 327 acquired after the initial protocol changes, were included in the study. Mean patient age and water-equivalent diameter were 12.0 years and 23.0 cm, respectively. The difference between actual and target noise increased from -1.4 to 0.3 HU (P process control chart identified several special causes of variation. Implementation of an automated CT radiation dose optimization system led to verifiable simultaneous decrease in image noise variation and SSDE. The automated nature of the system provides the opportunity for consistent CT radiation dose optimization on a broad scale. © RSNA, 2013.
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.
Weather and Climate Manipulation as an Optimal Control for Adaptive Dynamical Systems
Directory of Open Access Journals (Sweden)
Sergei A. Soldatenko
2017-01-01
Full Text Available The weather and climate manipulation is examined as an optimal control problem for the earth climate system, which is considered as a complex adaptive dynamical system. Weather and climate manipulations are actually amorphous operations. Since their objectives are usually formulated vaguely, the expected results are fairly unpredictable and uncertain. However, weather and climate modification is a purposeful process and, therefore, we can formulate operations to manipulate weather and climate as the optimization problem within the framework of the optimal control theory. The complexity of the earth’s climate system is discussed and illustrated using the simplified low-order coupled chaotic dynamical system. The necessary conditions of optimality are derived for the large-scale atmospheric dynamics. This confirms that even a relatively simplified control problem for the atmospheric dynamics requires significant efforts to obtain the solution.
Overlapping quadratic optimal control of linear time-varying commutative systems
Czech Academy of Sciences Publication Activity Database
Bakule, Lubomír; Rodellar, J.; Rossell, J. M.
2002-01-01
Roč. 40, č. 5 (2002), s. 1611-1627 ISSN 0363-0129 R&D Projects: GA AV ČR IAA2075802 Institutional research plan: CEZ:AV0Z1075907 Keywords : overlapping * optimal control * linear time-varying systems Subject RIV: BC - Control Systems Theory Impact factor: 1.441, year: 2002
ADEX optimized adaptive controllers and systems from research to industrial practice
Martín-Sánchez, Juan M
2015-01-01
This book is a didactic explanation of the developments of predictive, adaptive predictive and optimized adaptive control, including the latest methodology of adaptive predictive expert (ADEX) control, and their practical applications. It is focused on the stability perspective, used in the introduction of these methodologies, and is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. ADEX Optimized Adaptive Controllers and Systems begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guarantee achievement of desired control performance. The second and third parts are centered on the design of the driver block and adaptive mechanism, which verify these stability conditions. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control m...
Multilevel Control & Optimization of Future Air Traffic Systems via Managem
National Aeronautics and Space Administration — We investigate solutions to problems of air traffic control subject to real-world limitations on the computational/communication cost of finding that solution. The...
Optimal control of LQR for discrete time-varying systems with input delays
Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng
2018-04-01
In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.
Optimal control of a one product recovery system with backlogging
Kiesmüller, G.P.; Minner, S.; Kleber, R.
2000-01-01
In this paper a product recovery system for one product is investigated. The system contains one inventory for returned and recoverable items and one for serviceable items. Demands are satisfied from serviceable inventory where backlogging of demands is allowed. In addition, there is the possibility
International Nuclear Information System (INIS)
Hur, Woo Sung; Seong, Poong Hyun
1995-01-01
A great effort has been made to improve the nuclear plant control system by use of digital technologies and a long term schedule for the control system upgrade has been prepared with an aim to implementation in the next generation nuclear plants. In case of digital control system, it is important to decide the sampling period for analysis and design of the system, because the performance and the stability of a digital control system depend on the value of the sampling period of the digital control system. There is, however, currently no systematic method used universally for determining the sampling period of the digital control system. Generally, a traditional way to select the sampling frequency is to use 20 to 30 times the bandwidth of the analog control system which has the same system configuration and parameters as the digital one. In this paper, a new method to select the sampling period is suggested which takes into account of the performance as well as the stability of the digital control system. By use of the Irving's model steam generator, the optimal sampling period of an assumptive digital control system for steam generator level control is estimated and is actually verified in the digital control simulation system for Kori-2 nuclear power plant steam generator level control. Consequently, we conclude the optimal sampling period of the digital control system for Kori-2 nuclear power plant steam generator level control is 1 second for all power ranges. 7 figs., 3 tabs., 8 refs. (Author)
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.
Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System
Agarwal, Ruchi; Singh, Sanjeev
2017-12-01
The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.
Optimization of Traffic Light Control System of an Intersection Using
African Journals Online (AJOL)
Nwokem et al.
created for road transport system, they have far less capacity to contain the number of vehicles being .... (such as fuzzy logic, artificial neural networks, genetic/evolutionary computing, and swarm intelligence) have been found to be more cost ...
Directory of Open Access Journals (Sweden)
Irwin Yousept
2010-07-01
Full Text Available An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part of the paper deals with the analysis of the corresponding linearized equation. Some suffcient conditions are presented which guarantee thesolvability of the linearized system. The final part of the paper is concerned with the optimal control. The aim of the optimization is to find the optimal voltage such that a desired temperature can be achieved optimally. The corresponding first-order necessary optimality condition is presented.
Directory of Open Access Journals (Sweden)
Zhi-Jun Fu
2017-01-01
Full Text Available In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation for vehicle suspension systems, this paper proposes an adaptive optimal control method for quarter-car active suspension system by using the approximate dynamic programming approach (ADP. Online optimal control law is obtained by using a single adaptive critic NN to approximate the solution of the Hamilton-Jacobi-Bellman (HJB equation. Stability of the closed-loop system is proved by Lyapunov theory. Compared with the classic linear quadratic regulator (LQR approach, the proposed ADP-based adaptive optimal control method demonstrates improved performance in the presence of parametric uncertainties (e.g., sprung mass and unknown road displacement. Numerical simulation results of a sedan suspension system are presented to verify the effectiveness of the proposed control strategy.
Computational Biomathematics: Toward Optimal Control of Complex Biological Systems
2016-09-26
SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...neighbor or bi-linear interpolation). The following paper is in preparation: Scaling methods and heuristic algorithms for agent-based models. Matt...The actual method of control used is in the form of heuristic algorithms. In general, these algorithms search through a virtually infinite set of
International Nuclear Information System (INIS)
Safari, S.; Ardehali, M.M.; Sirizi, M.J.
2013-01-01
Highlights: ► Optimized fuzzy logic controller for a hybrid green power system is developed. ► PSO algorithm is used to optimize membership functions of controller. ► Optimized fuzzy logic controller results in lower O and M costs and LPSP. ► Optimization results in less variation of battery state of charge. - Abstract: The objective of this study is to develop an optimized fuzzy logic controller (FLC) for operating an autonomous hybrid green power system (HGPS) based on the particle swarm optimization (PSO) algorithm. An electrolyzer produces hydrogen from surplus energy generated by the wind turbine and photovoltaic array of HGPS for later use by a fuel cell. The PSO algorithm is used to optimize membership functions of the FLC. The FLC inputs are (a) net power flow and (b) batteries state of charge (SOC) and FLC output determines the time for hydrogen production or consumption. Actual data for weekly residential load, wind speed, ambient temperature, and solar irradiation are used for performance simulation and analysis of the HGPS examined. The weekly operation and maintenance (O and M) costs and the loss of power supply probability (LPSP) are considered in the optimization procedure. It is determined that FLC optimization results in (a) reduced fluctuations in batteries SOC which translates into longer life for batteries and the average SOC is increased by 6.18% and (b) less working hours for fuel cell, when the load is met by wind and PV. It is found that the optimized FLC results in lower O and M costs and LPSP by 57% and 33%, respectively, as compared to its un-optimized counterpart. In addition, a reduction of 18% in investment cost is achievable by optimal sizing and reducing the capacity of HGPS equipment.
International Nuclear Information System (INIS)
Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai; Kang, Yu
2017-01-01
Highlights: • Employed a dual-scale EKF based estimator for in-pack cells’ SOC values. • Proposed a two-stage hybrid state-feedback and output-feedback equalization algorithm. • A switchable balance current mode is designed in the equalization topology. • Verified the performance of proposed method under two conditions. - Abstract: Cell variations caused by the inevitable inconsistency during manufacture and use of battery cells have significant impacts on battery capacity, security and durability for battery energy storage systems. Thus, the battery equalization systems are essentially required to reduce variations of in-pack cells and increase battery pack capability. In order to protect all in-pack cells from damaging, estimate battery state and reduce variations, a system state estimation and energy optimal control framework for multicell lithium-ion battery system is proposed. The state-of-charge (SOC) values of all in-pack cells are firstly estimated using a dual-scale extended Kalman filtering (EKF) to improve estimation accuracy and reduce computation simultaneously. These estimated SOC values provide specific details of battery system, which cannot only be used to protect cells from over-charging/over-discharging, but also be employed to design state-feedback controller for battery equalization system. A two-stage hybrid state-feedback and output-feedback equalization algorithm is proposed. The state-feedback controller is firstly employed for coarse-grained adjustment to reduce equalization time cost with large current. However, due to the inevitable SOC estimation errors, the output-feedback controller is then used for fine-grained adjustment with trickle current. Experimental results show that the proposed framework can provide an effectively estimation and energy control for multicell battery systems. Finally, the implementation of the proposed method is further discussed for the real applications.
Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters
Directory of Open Access Journals (Sweden)
S. M. M. Shariatmadar
2017-08-01
Full Text Available In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.
Optimal fault-tolerant control strategy of a solid oxide fuel cell system
Wu, Xiaojuan; Gao, Danhui
2017-10-01
For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.
International Nuclear Information System (INIS)
Santos Coelho, Leandro dos
2009-01-01
Despite the popularity, the tuning aspect of proportional-integral-derivative (PID) controllers is a challenge for researchers and plant operators. Various controllers tuning methodologies have been proposed in the literature such as auto-tuning, self-tuning, pattern recognition, artificial intelligence, and optimization methods. Chaotic optimization algorithms as an emergent method of global optimization have attracted much attention in engineering applications. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool for engineering applications. In this paper, a tuning method for determining the parameters of PID control for an automatic regulator voltage (AVR) system using a chaotic optimization approach based on Lozi map is proposed. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Simulation results are promising and show the effectiveness of the proposed approach. Numerical simulations based on proposed PID control of an AVR system for nominal system parameters and step reference voltage input demonstrate the good performance of chaotic optimization.
Digital control system of a steam generator water level by LQG optimal method
International Nuclear Information System (INIS)
Lee, Yoon Joon
1993-01-01
A digital control system for the steam generator water level control is developed using LQG optimal design method. To describe the more realistic situaton, a feedwater valve actuator is assumed to be of the first order lagger and is included in the overall control system. By composing the digital control circuit in such a way that the overall control system consists of two sub-systems of feedwater station and feedback loop digital controller, the design procedure is divided into two independent steps. The feedwater station system is described in the error dynamics of an ordinary regulator system. The optimal gains are obtained by LQ method which imposes the constraints of the feedwater valve motion as well as on the output deviations. Developed also is a Kalman observer on account of the flow measurement uncertainty at low power. Then a digital controller on the feedback loop is designed so that the system maintains the same stability margins for all power ranges. The simulation results show thst the optimal digital system has a good control characteristics despite the adverse dynamics of a steam generator at low power. (Author)
Directory of Open Access Journals (Sweden)
Rabindra Kumar Sahu
2014-09-01
Full Text Available An attempt is made for the effective application of Gravitational Search Algorithm (GSA to optimize PI/PIDF controller parameters in Automatic Generation Control (AGC of interconnected power systems. Initially, comparison of several conventional objective functions reveals that ITAE yields better system performance. Then, the parameters of GSA technique are properly tuned and the GSA control parameters are proposed. The superiority of the proposed approach is demonstrated by comparing the results of some recently published techniques such as Differential Evolution (DE, Bacteria Foraging Optimization Algorithm (BFOA and Genetic Algorithm (GA. Additionally, sensitivity analysis is carried out that demonstrates the robustness of the optimized controller parameters to wide variations in operating loading condition and time constants of speed governor, turbine, tie-line power. Finally, the proposed approach is extended to a more realistic power system model by considering the physical constraints such as reheat turbine, Generation Rate Constraint (GRC and Governor Dead Band nonlinearity.
Directory of Open Access Journals (Sweden)
F. Hunaini
2015-03-01
Full Text Available Steer-by-wire is the electrical steering systems on vehicles that are expected with the development of an optimal control system can improve the dynamic performance of the vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control (FLC and the Proportional, Integral and Derivative (PID control on the vehicle steering system using Imperialist Competitive Algorithm (ICA. The control systems are built in a cascade, FLC to suppress errors in the lateral motion and the PID control to minimize the error in the yaw motion of the vehicle. FLC is built has two inputs (error and delta error and single output. Each input and output consists of three Membership Function (MF in the form of a triangular for language term "zero" and two trapezoidal for language term "negative" and "positive". In order to work optimally, each MF optimized using ICA to get the position and width of the most appropriate. Likewise, in the PID control, the constant at each Proportional, Integral and Derivative control also optimized using ICA, so there are six parameters of the control system are simultaneously optimized by ICA. Simulations performed on vehicle models with 10 Degree Of Freedom (DOF, the plant input using the variables of steering that expressed in the desired trajectory, and the plant outputs are lateral and yaw motion. The simulation results showed that the FLC-PID control system optimized by using ICA can maintain the movement of vehicle according to the desired trajectory with lower error and higher speed limits than optimized with Particle Swarm Optimization (PSO.
Optimal Design and Hybrid Control for the Electro-Hydraulic Dual-Shaking Table System
Directory of Open Access Journals (Sweden)
Lianpeng Zhang
2016-08-01
Full Text Available This paper is to develop an optimal electro-hydraulic dual-shaking table system with high waveform replication precision. The parameters of hydraulic cylinders, servo valves, hydraulic supply power and gravity balance system are designed and optimized in detail. To improve synchronization and tracking control precision, a hybrid control strategy is proposed. The cross-coupled control using a novel based on sliding mode control based on adaptive reaching law (ASMC, which can adaptively tune the parameters of sliding mode control (SMC, is proposed to reduce the synchronization error. To improve the tracking performance, the observer-based inverse control scheme combining the feed-forward inverse model controller and disturbance observer is proposed. The system model is identified applying the recursive least squares (RLS algorithm and then the feed-forward inverse controller is designed based on zero phase error tracking controller (ZPETC technique. To compensate disturbance and model errors, disturbance observer is used cooperating with the designed inverse controller. The combination of the novel ASMC cross-coupled controller and proposed observer-based inverse controller can improve the control precision noticeably. The dual-shaking table experiment system is built and various experiments are performed. The experimental results indicate that the developed system with the proposed hybrid control strategy is feasible and efficient and can reduce the tracking errors to 25% and synchronization error to 16% compared with traditional control schemes.
Energy Technology Data Exchange (ETDEWEB)
Gozde, Haluk; Taplamacioglu, M. Cengiz [Gazi University, Faculty of Engineering, Department of Electrical and Electronics Engineering, 06750 Maltepe, Ankara (Turkey)
2011-01-15
In this study, a novel gain scheduling Proportional-plus-Integral (PI) control strategy is suggested for automatic generation control (AGC) of the two area thermal power system with governor dead-band nonlinearity. In this strategy, the control is evaluated as an optimization problem, and two different cost functions with tuned weight coefficients are derived in order to increase the performance of convergence to the global optima. One of the cost functions is derived through the frequency deviations of the control areas and tie-line power changes. On the other hand, the other one includes the rate of changes which can be variable depends on the time in these deviations. These weight coefficients of the cost functions are also optimized as the controller gains have been done. The craziness based particle swarm optimization (CRAZYPSO) algorithm is preferred to optimize the parameters, because of convergence superiority. At the end of the study, the performance of the control system is compared with the performance which is obtained with classical integral of the squared error (ISE) and the integral of time weighted squared error (ITSE) cost functions through transient response analysis method. The results show that the obtained optimal PI-controller improves the dynamic performance of the power system as expected as mentioned in literature. (author)
Connection between optimal control theory and adiabatic-passage techniques in quantum systems
Assémat, E.; Sugny, D.
2012-08-01
This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.
Directory of Open Access Journals (Sweden)
Muhamad Zalani Daud
2014-01-01
Full Text Available This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV system with battery energy storage (BES. The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC. For the grid side VSC (G-VSC, two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
Hybrid systems, optimal control and hybrid vehicles theory, methods and applications
Böhme, Thomas J
2017-01-01
This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...
CALCULATION METHODS OF OPTIMAL ADJUSTMENT OF CONTROL SYSTEM THROUGH DISTURBANCE CHANNEL
Directory of Open Access Journals (Sweden)
I. M. Golinko
2014-01-01
Full Text Available In the process of automatic control system debugging the great attention is paid to determining formulas’ parameters of optimal dynamic adjustment of regulators, taking into account the dynamics of Objects control. In most cases the known formulas are oriented on design of automatic control system through channel “input-output definition”. But practically in all continuous processes the main task of all regulators is stabilization of output parameters. The Methods of parameters calculation for dynamic adjustment of regulations were developed. These methods allow to optimize the analog and digital regulators, taking into account minimization of regulated influences. There were suggested to use the fact of detuning and maximum value of regulated influence. As the automatic control system optimization with proportional plus reset controllers on disturbance channel is an unimodal task, the main algorithm of optimization is realized by Hooke – Jeeves method. For controllers optimization through channel external disturbance there were obtained functional dependences of parameters calculations of dynamic proportional plus reset controllers from dynamic characteristics of Object control. The obtained dependences allow to improve the work of controllers (regulators of automatic control on external disturbance channel and so it allows to improve the quality of regulation of transient processes. Calculation formulas provide high accuracy and convenience in usage. In suggested method there are no nomographs and this fact expels subjectivity of investigation in determination of parameters of dynamic adjustment of proportional plus reset controllers. Functional dependences can be used for calculation of adjustment of PR controllers in a great range of change of dynamic characteristics of Objects control.
Weerts, H.H.M.; Shafiei, S.E.; Stoustrup, J.; Izadi-Zamanabadi, R.; Boje, E.; Xia, X.
2014-01-01
A new formulation of model predictive control for supermarket refrigeration systems is proposed to facilitate the regulatory power services as well as energy cost optimization of such systems in the smart grid. Nonlinear dynamics existed in large-scale refrigeration plants challenges the predictive
Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.
1991-03-01
To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).
Hard and soft sub-time-optimal controllers for a mechanical system with uncertain mass
DEFF Research Database (Denmark)
Kulczycki, P.; Wisniewski, Rafal; Kowalski, P.
2004-01-01
An essential limitation in using the classical optimal control has been its limited robustness to modeling inadequacies and perturbations. This paper presents conceptions of two practical control structures based on the time-optimal approach: hard and soft ones. The hard structure is defined...... by parameters selected in accordance with the rules of the statistical decision theory; however, the soft structure allows additionally to eliminate rapid changes in control values. The object is a basic mechanical system, with uncertain (also non-stationary) mass treated as a stochastic process....... The methodology proposed here is of a universal nature and may easily be applied with respect to other elements of uncertainty of time-optimal controlled mechanical systems....
Hard and soft Sub-Time-Optimal Controllers for a Mechanical System with Uncertain Mass
DEFF Research Database (Denmark)
Kulczycki, P.; Wisniewski, Rafal; Kowalski, P.
2005-01-01
An essential limitation in using the classical optimal control has been its limited robustness to modeling inadequacies and perturbations. This paper presents conceptions of two practical control structures based on the time-optimal approach: hard and soft ones. The hard structure is defined...... by parameters selected in accordance with the rules of the statistical decision theory; however, the soft structure allows additionally to eliminate rapid changes in control values. The object is a basic mechanical system, with uncertain (also non-stationary) mass treated as a stochastic process....... The methodology proposed here is of a universal nature and may easily be applied with respect to other elements of uncertainty of time-optimal controlled mechanical systems....
Directory of Open Access Journals (Sweden)
Li Junyi
2015-01-01
Full Text Available A fractional order PID (FOPID controller, which is suitable for control system designing for being insensitive to the variation in system parameter, is proposed for hydroturbine governing system in the paper. The simultaneous optimization for several parameters of controller, that is, Ki, Kd, Kp, λ, and μ, is done by a recently developed metaheuristic nature-inspired algorithm, namely, the firefly algorithm (FA, for the first time, where the selecting, moving, attractiveness behavior between fireflies and updating of brightness, and decision range are studied in detail to simulate the optimization process. Investigation clearly reveals the advantages of the FOPID controller over the integer controllers in terms of reduced oscillations and settling time. The present work also explores the superiority of FA based optimization technique in finding optimal parameters of the controller. Further, convergence characteristics of the FA are compared with optimum integer order PID (IOPID controller to justify its efficiency. What is more, analysis confirms the robustness of FOPID controller under isolated load operation conditions.
Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.
Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping
2018-06-01
This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.
The Fundamental Solution and Its Role in the Optimal Control of Infinite Dimensional Neutral Systems
International Nuclear Information System (INIS)
Liu Kai
2009-01-01
In this work, we shall consider standard optimal control problems for a class of neutral functional differential equations in Banach spaces. As the basis of a systematic theory of neutral models, the fundamental solution is constructed and a variation of constants formula of mild solutions is established. We introduce a class of neutral resolvents and show that the Laplace transform of the fundamental solution is its neutral resolvent operator. Necessary conditions in terms of the solutions of neutral adjoint systems are established to deal with the fixed time integral convex cost problem of optimality. Based on optimality conditions, the maximum principle for time varying control domain is presented. Finally, the time optimal control problem to a target set is investigated
Energy Technology Data Exchange (ETDEWEB)
Reinl, Christian; Stryk, Oskar von [Technische Univ. Darmstadt (Germany). FB Informatik; Glocker, Markus [Trimble Terrasat GmbH, Hoehenkirchen (Germany)
2009-07-01
Nonlinear hybrid dynamical systems for modeling optimal cooperative control enable a tight and formal coupling of discrete and continuous state dynamics, i.e. of dynamic role and task assignment with switching dynamics of motions. In the resulting mixed-integer multi-phase optimal control problems constraints on the discrete and continuous state and control variables can be considered, e.g., formation or communication requirements. Two numerical methods are investigated: a decomposition approach using branch-and-bound and direct collocation methods as well as an approximation by large-scale, mixed-integer linear problems. Both methods are applied to example problems: the optimal simultaneous waypoint sequencing and trajectory planning of a team of aerial vehicles and the optimization of role distribution and trajectories in robot soccer. (orig.)
Adaptive Inverse Optimal Control for Rehabilitation Robot Systems Using Actor-Critic Algorithm
Directory of Open Access Journals (Sweden)
Fancheng Meng
2014-01-01
Full Text Available The higher goal of rehabilitation robot is to aid a person to achieve a desired functional task (e.g., tracking trajectory based on assisted-as-needed principle. To this goal, a new adaptive inverse optimal hybrid control (AHC combining inverse optimal control and actor-critic learning is proposed. Specifically, an uncertain nonlinear rehabilitation robot model is firstly developed that includes human motor behavior dynamics. Then, based on this model, an open-loop error system is formed; thereafter, an inverse optimal control input is designed to minimize the cost functional and a NN-based actor-critic feedforward signal is responsible for the nonlinear dynamic part contaminated by uncertainties. Finally, the AHC controller is proven (through a Lyapunov-based stability analysis to yield a global uniformly ultimately bounded stability result, and the resulting cost functional is meaningful. Simulation and experiment on rehabilitation robot demonstrate the effectiveness of the proposed control scheme.
Yang, Xiong; Liu, Derong; Wang, Ding
2014-03-01
In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.
Soft Computing Optimizer For Intelligent Control Systems Design: The Structure And Applications
Directory of Open Access Journals (Sweden)
Sergey A. Panfilov
2003-10-01
Full Text Available Soft Computing Optimizer (SCO as a new software tool for design of robust intelligent control systems is described. It is based on the hybrid methodology of soft computing and stochastic simulation. It uses as an input the measured or simulated data about the modeled system. SCO is used to design an optimal fuzzy inference system, which approximates a random behavior of control object with the certain accuracy. The task of the fuzzy inference system construction is reduced to the subtasks such as forming of the linguistic variables for each input and output variable, creation of rule data base, optimization of rule data base and refinement of the parameters of the membership functions. Each task by the corresponding genetic algorithm (with an appropriate fitness function is solved. The result of SCO application is the design of Knowledge Base of a Fuzzy Controller, which contains the value information about developed fuzzy inference system. Such value information can be downloaded into the actual fuzzy controller to perform online fuzzy control. Simulations results of robust fuzzy control of nonlinear dynamic systems and experimental results of application on automotive semi-active suspension control are demonstrated.
Impact of Thyristors Controlled Series Capacitor Devices and Optimal Power Flow on Power Systems
Directory of Open Access Journals (Sweden)
Fatiha LAKDJA
2010-12-01
Full Text Available This paper presents an algorithm, for solving the Optimal Power Flow problem with flexible AC transmission systems (FACTS. The type of FACTS devices is used: thyristor-controlled series capacitor (TCSC. A method to determine the optimal location of thyristor controlled series compensators has been suggested. The proposed approaches have been implemented on an adapted IEEE 26 bus system. The simulation results are discussed to show the performance of the proposed algorithm and our FACTS programmer simulator technique, which are compared with TCSC and without TCSC.
Optimization of accelerator control
International Nuclear Information System (INIS)
Vasiljev, N.D.; Mozin, I.V.; Shelekhov, V.A.; Efremov, D.V.
1992-01-01
Expensive exploitation of charged particle accelerators is inevitably concerned with requirements of effectively obtaining of the best characteristics of accelerated beams for physical experiments. One of these characteristics is intensity. Increase of intensity is hindered by a number of effects, concerned with the influence of the volume charge field on a particle motion dynamics in accelerator's chamber. However, ultimate intensity, determined by a volume charge, is almost not achieved for the most of the operating accelerators. This fact is caused by losses of particles during injection, at the initial stage of acceleration and during extraction. These losses are caused by deviations the optimal from real characteristics of the accelerating and magnetic system. This is due to a number of circumstances, including technological tolerances on structural elements of systems, influence of measuring and auxiliary equipment and beam consumers' installations, placed in the closed proximity to magnets, and instability in operation of technological systems of accelerator. Control task consists in compensation of deviations of characteristics of magnetic and electric fields by optimal selection of control actions. As for technical means, automatization of modern accelerators allows to solve optimal control problems in real time. Therefore, the report is devoted to optimal control methods and experimental results. (J.P.N.)
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai
2016-01-01
This paper presents the Distributed Model Predictive Control (D-MPC) of a wind farm equipped with fast and short-term Energy Storage System (ESS) for optimal active power control using the fast gradient method via dual decomposition. The primary objective of the D-MPC control of the wind farm...... is power reference tracking from system operators. Besides, by optimal distribution of the power references to individual wind turbines and the ESS unit, the wind turbine mechanical loads are alleviated. With the fast gradient method, the convergence rate of the DMPC is significantly improved which leads...
International Nuclear Information System (INIS)
Sklarz, Shlomo E.; Tannor, David J.; Khaneja, Navin
2004-01-01
We study the problem of optimal control of dissipative quantum dynamics. Although under most circumstances dissipation leads to an increase in entropy (or a decrease in purity) of the system, there is an important class of problems for which dissipation with external control can decrease the entropy (or increase the purity) of the system. An important example is laser cooling. In such systems, there is an interplay of the Hamiltonian part of the dynamics, which is controllable, and the dissipative part of the dynamics, which is uncontrollable. The strategy is to control the Hamiltonian portion of the evolution in such a way that the dissipation causes the purity of the system to increase rather than decrease. The goal of this paper is to find the strategy that leads to maximal purity at the final time. Under the assumption that Hamiltonian control is complete and arbitrarily fast, we provide a general framework by which to calculate optimal cooling strategies. These assumptions lead to a great simplification, in which the control problem can be reformulated in terms of the spectrum of eigenvalues of ρ, rather than ρ itself. By combining this formulation with the Hamilton-Jacobi-Bellman theorem we are able to obtain an equation for the globally optimal cooling strategy in terms of the spectrum of the density matrix. For the three-level Λ system, we provide a complete analytic solution for the optimal cooling strategy. For this system it is found that the optimal strategy does not exploit system coherences and is a 'greedy' strategy, in which the purity is increased maximally at each instant
Energy Center Structure Optimization by using Smart Technologies in Process Control System
Shilkina, Svetlana V.
2018-03-01
The article deals with practical application of fuzzy logic methods in process control systems. A control object - agroindustrial greenhouse complex, which includes its own energy center - is considered. The paper analyzes object power supply options taking into account connection to external power grids and/or installation of own power generating equipment with various layouts. The main problem of a greenhouse facility basic process is extremely uneven power consumption, which forces to purchase redundant generating equipment idling most of the time, which quite negatively affects project profitability. Energy center structure optimization is largely based on solving the object process control system construction issue. To cut investor’s costs it was proposed to optimize power consumption by building an energy-saving production control system based on a fuzzy logic controller. The developed algorithm of automated process control system functioning ensured more even electric and thermal energy consumption, allowed to propose construction of the object energy center with a smaller number of units due to their more even utilization. As a result, it is shown how practical use of microclimate parameters fuzzy control system during object functioning leads to optimization of agroindustrial complex energy facility structure, which contributes to a significant reduction in object construction and operation costs.
CLFs-based optimization control for a class of constrained visual servoing systems.
Song, Xiulan; Miaomiao, Fu
2017-03-01
In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Computational study of smoke flow control in garage fires and optimization of the ventilation system
Directory of Open Access Journals (Sweden)
Banjac Miloš J.
2009-01-01
Full Text Available With the aim of evaluating capabilities of a ventilation system to control the spread of smoke in the emergency operating mode, thereby providing conditions for safe evacuation of people from a fire-struck area, computational fluid dynamics simulation of a fire in a semi-bedded garage was conducted. Using the experimental results of combustion dynamics of a passenger car on fire, optimal positions of ventilation openings were determined. According to recommendations by DIN EN 12101 standard, the operating modes of a ventilation system were verified and optimal start time of the smoke extraction system was defined.
Optimization of motion control laws for tether crawler or elevator systems
Swenson, Frank R.; Von Tiesenhausen, Georg
1988-01-01
Based on the proposal of a motion control law by Lorenzini (1987), a method is developed for optimizing motion control laws for tether crawler or elevator systems in terms of the performance measures of travel time, the smoothness of acceleration and deceleration, and the maximum values of velocity and acceleration. The Lorenzini motion control law, based on powers of the hyperbolic tangent function, is modified by the addition of a constant-velocity section, and this modified function is then optimized by parameter selections to minimize the peak acceleration value for a selected travel time or to minimize travel time for the selected peak values of velocity and acceleration. It is shown that the addition of a constant-velocity segment permits further optimization of the motion control law performance.
International Nuclear Information System (INIS)
Kotarski, W.; Kowalewski, A.
1982-03-01
In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic type with Dirichlet's boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time T is fixed. The initial condition is not given by a known function but belongs to a certain set (incomplete information about the initial state). The problem formulated in this paper describes the process of optimal heating, of which we do not have exact information about the initial temperature on the heated object. We present an example in which the set of admissible controls and one of initial conditions are given by means of the norm constraints too. The application of the well-known projective gradient method in the Hilbert space allows us to obtain the numerical solution for our optimization problem. (author)
Optimal Stochastic Control Problem for General Linear Dynamical Systems in Neuroscience
Directory of Open Access Journals (Sweden)
Yan Chen
2017-01-01
Full Text Available This paper considers a d-dimensional stochastic optimization problem in neuroscience. Suppose the arm’s movement trajectory is modeled by high-order linear stochastic differential dynamic system in d-dimensional space, the optimal trajectory, velocity, and variance are explicitly obtained by using stochastic control method, which allows us to analytically establish exact relationships between various quantities. Moreover, the optimal trajectory is almost a straight line for a reaching movement; the optimal velocity bell-shaped and the optimal variance are consistent with the experimental Fitts law; that is, the longer the time of a reaching movement, the higher the accuracy of arriving at the target position, and the results can be directly applied to designing a reaching movement performed by a robotic arm in a more general environment.
Nguyen, Nhan
2013-01-01
This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.
Optimal Control of Complex Systems Based on Improved Dual Heuristic Dynamic Programming Algorithm
Directory of Open Access Journals (Sweden)
Hui Li
2017-01-01
Full Text Available When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic programming (DHP technique, which is based on the BP neural network algorithm (BP-DHP, has difficulty in prediction accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning Machine (ELM algorithm (ELM-DHP was proposed. Through constructing three kinds of network structures, the paper gives the detailed realization process of the DHP technique in the ELM. The controller designed upon the ELM-DHP algorithm controlled a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.
DEFF Research Database (Denmark)
Weerts, Hermanus H. M.; Shafiei, Seyed Ehsan; Stoustrup, Jakob
2014-01-01
A new formulation of model predictive control for supermarket refrigeration systems is proposed to facilitate the regulatory power services as well as energy cost optimization of such systems in the smart grid. Nonlinear dynamics existed in large-scale refrigeration plants challenges the predictive...... control design. It is however shown that taking into account the knowledge of different time scales in the dynamical subsystems makes possible a linear formulation of a centralized predictive controller. A realistic scenario of regulatory power services in the smart grid is considered and formulated...... in the same objective as of cost optimization one. A simulation benchmark validated against real data and including significant dynamics of the system are employed to show the effectiveness of the proposed control scheme....
Yang, Xiong; He, Haibo
2018-05-26
In this paper, we develop a novel optimal control strategy for a class of uncertain nonlinear systems with unmatched interconnections. To begin with, we present a stabilizing feedback controller for the interconnected nonlinear systems by modifying an array of optimal control laws of auxiliary subsystems. We also prove that this feedback controller ensures a specified cost function to achieve optimality. Then, under the framework of adaptive critic designs, we use critic networks to solve the Hamilton-Jacobi-Bellman equations associated with auxiliary subsystem optimal control laws. The critic network weights are tuned through the gradient descent method combined with an additional stabilizing term. By using the newly established weight tuning rules, we no longer need the initial admissible control condition. In addition, we demonstrate that all signals in the closed-loop auxiliary subsystems are stable in the sense of uniform ultimate boundedness by using classic Lyapunov techniques. Finally, we provide an interconnected nonlinear plant to validate the present control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
Control optimizations for heat recovery from CO2 refrigeration systems in supermarket
International Nuclear Information System (INIS)
Ge, Y.T.; Tassou, S.A.
2014-01-01
Highlights: • Application of supermarket energy control system model. • Heat recovery from CO 2 refrigeration system in supermarket space conditioning. • Effect of pressure controls of CO 2 refrigeration system on heat recovery potentials. • Control optimization of CO 2 refrigeration system for heat recovery in supermarket. - Abstract: A modern supermarket energy control system has a concurrent need for electricity, food refrigeration and space heating or cooling. Approximately 10% of this energy is for conventional gas-powered heating. In recent years, the use of CO 2 as a refrigerant in supermarket systems has received considerable attention due to its negligible contribution to direct greenhouse gas emissions and excellent thermophysical and heat transfer properties. CO 2 refrigeration systems also offer more compact component designs over a conventional HFC system and heat recovery potential from compressor discharge. In this paper, the heat recovery potential of an all-CO 2 cascade refrigeration system in a supermarket has been investigated using the supermarket simulation model “SuperSim” developed by the authors. It has been shown that at UK weather conditions, the heat recovery potential of CO 2 refrigeration systems can be increased by increasing the condenser/gas cooler pressure to the point where all the heat requirements are satisfied. However, the optimum level of heat recovery will vary during the year and the control system should be able to continuously optimize this level based on the relative cost of energy, i.e., gas and electricity
Directory of Open Access Journals (Sweden)
Saifullah Khalid
2016-09-01
Full Text Available Three conventional control constant instantaneous power control, sinusoidal current control, and synchronous reference frame techniques for extracting reference currents for shunt active power filters have been optimized using Fuzzy Logic control and Adaptive Tabu search Algorithm and their performances have been compared. Critical analysis of Comparison of the compensation ability of different control strategies based on THD and speed will be done, and suggestions will be given for the selection of technique to be used. The simulated results using MATLAB model are presented, and they will clearly prove the value of the proposed control method of aircraft shunt APF. The waveforms observed after the application of filter will be having the harmonics within the limits and the power quality will be improved.
Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities
International Nuclear Information System (INIS)
Hedrih, K
2008-01-01
This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of 'an open a spiral form' of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task
Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities
Stevanović Hedrih, K.
2008-02-01
This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task
DEFF Research Database (Denmark)
Larsen, Lars Finn Sloth; Thybo, Claus; Wisniewski, Rafal
2007-01-01
The objective of this study is to investigate the energy saving potential for refrigeration systems by refrigeration more at the colder night time than at the warmer day time. The potential is evaluated using an optimal control policy and illustrated on a simulation example. The results show...
A policy iteration approach to online optimal control of continuous-time constrained-input systems.
Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L
2013-09-01
This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.
Cooperative control of multi-agent systems optimal and adaptive design approaches
Lewis, Frank L; Hengster-Movric, Kristian; Das, Abhijit
2014-01-01
Task complexity, communication constraints, flexibility and energy-saving concerns are all factors that may require a group of autonomous agents to work together in a cooperative manner. Applications involving such complications include mobile robots, wireless sensor networks, unmanned aerial vehicles (UAVs), spacecraft, and so on. In such networked multi-agent scenarios, the restrictions imposed by the communication graph topology can pose severe problems in the design of cooperative feedback control systems. Cooperative control of multi-agent systems is a challenging topic for both control theorists and practitioners and has been the subject of significant recent research. Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs. It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design. B...
International Nuclear Information System (INIS)
Wei Qing-Lai; Song Rui-Zhuo; Xiao Wen-Dong; Sun Qiu-Ye
2015-01-01
This paper estimates an off-policy integral reinforcement learning (IRL) algorithm to obtain the optimal tracking control of unknown chaotic systems. Off-policy IRL can learn the solution of the HJB equation from the system data generated by an arbitrary control. Moreover, off-policy IRL can be regarded as a direct learning method, which avoids the identification of system dynamics. In this paper, the performance index function is first given based on the system tracking error and control error. For solving the Hamilton–Jacobi–Bellman (HJB) equation, an off-policy IRL algorithm is proposed. It is proven that the iterative control makes the tracking error system asymptotically stable, and the iterative performance index function is convergent. Simulation study demonstrates the effectiveness of the developed tracking control method. (paper)
The optimal operation of cooling tower systems with variable-frequency control
Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing
2018-02-01
This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.
Preparing Pseudo-Pure States in a Quadrupolar Spin System Using Optimal Control
International Nuclear Information System (INIS)
Tan Yi-Peng; Li Jun; Zhou Xian-Yi; Peng Xin-Hua; Du Jiang-Feng; Nie Xin-Fang; Chen Hong-Wei
2012-01-01
Pseudo-pure state (PPS) preparation is crucial in nuclear magnetic resonance quantum computation. There have been some methods in spin-1/2 systems and a few attempts in quadrupolar spin systems. As optimal control via gradient ascent pulses engineering (GRAPE) has been widely used in quantum information science, we apply this technique to PPS preparation in quadrupolar spin systems. This approach shows an effective and fast quantum control method for both the state preparation and the realization of quantum gates in quadrupolar systems
Optimal Control of a Wind Farm Group Using the WindEx System
Directory of Open Access Journals (Sweden)
Piotr Kacejko
2014-09-01
Full Text Available The aim of this paper is to present achievements obtained in implementing the framework project N R01 0021 06 in the Power System Department of Lublin University of Technology. The result of the work was “A system of optimal wind farm power control in the conditions of limited transmission capabilities of power networks”, which one of two main modules is a state estimator. The featured wind farm control system was integrated with a SCADA dispatcher system WindEx using the WebSVC service.
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
Optimal control on hybrid ode systems with application to a tick disease model.
Ding, Wandi
2007-10-01
We are considering an optimal control problem for a type of hybrid system involving ordinary differential equations and a discrete time feature. One state variable has dynamics in only one season of the year and has a jump condition to obtain the initial condition for that corresponding season in the next year. The other state variable has continuous dynamics. Given a general objective functional, existence, necessary conditions and uniqueness for an optimal control are established. We apply our approach to a tick-transmitted disease model with age structure in which the tick dynamics changes seasonally while hosts have continuous dynamics. The goal is to maximize disease-free ticks and minimize infected ticks through an optimal control strategy of treatment with acaricide. Numerical examples are given to illustrate the results.
Directory of Open Access Journals (Sweden)
NAMMALVAR, P.
2018-02-01
Full Text Available This paper projects Parameter Improved Particle Swarm Optimization (PIPSO based direct current vector control technology for the integration of photovoltaic array in an AC micro-grid to enhance the system performance and stability. A photovoltaic system incorporated with AC micro-grid is taken as the pursuit of research study. The test system features two power converters namely, PV side converter which consists of DC-DC boost converter with Perturbation and Observe (P&O MPPT control to reap most extreme power from the PV array, and grid side converter which consists of Grid Side-Voltage Source Converter (GS-VSC with proposed direct current vector control strategy. The gain of the proposed controller is chosen from a set of three values obtained using apriori test and tuned through the PIPSO algorithm so that the Integral of Time multiplied Absolute Error (ITAE between the actual and the desired DC link capacitor voltage reaches a minimum and allows the system to extract maximum power from PV system, whereas the existing d-q control strategy is found to perform slowly to control the DC link voltage under varying solar insolation and load fluctuations. From simulation results, it is evident that the proposed optimal control technique provides robust control and improved efficiency.
PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems
Directory of Open Access Journals (Sweden)
Arturo Y. Jaen-Cuellar
2013-09-01
Full Text Available Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well-known beneficial features. In general, the whole system's performance strongly depends on the controller's efficiency and hence the tuning process plays a key role in the system's behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain-Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain-Phase Margin method with the Genetic Algorithms in which the micro-population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain-Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software.
Off-Policy Actor-Critic Structure for Optimal Control of Unknown Systems With Disturbances.
Song, Ruizhuo; Lewis, Frank L; Wei, Qinglai; Zhang, Huaguang
2016-05-01
An optimal control method is developed for unknown continuous-time systems with unknown disturbances in this paper. The integral reinforcement learning (IRL) algorithm is presented to obtain the iterative control. Off-policy learning is used to allow the dynamics to be completely unknown. Neural networks are used to construct critic and action networks. It is shown that if there are unknown disturbances, off-policy IRL may not converge or may be biased. For reducing the influence of unknown disturbances, a disturbances compensation controller is added. It is proven that the weight errors are uniformly ultimately bounded based on Lyapunov techniques. Convergence of the Hamiltonian function is also proven. The simulation study demonstrates the effectiveness of the proposed optimal control method for unknown systems with disturbances.
Energy Optimal Tracking Control with Discrete Fluid Power Systems using Model Predictive Control
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller
2017-01-01
For Discrete Displacement Cylinder (DDC) drives the control task lies in choosing force level. Hence, which force level to apply and thereby which pressure level each cylinder chambers shall be connected to. The DDC system is inherently a force system why often a force reference is generated...... and compared to a PID like tracking controller combined with a FSA. The results indicate that the energy efficiency of position tracking DDC systems may be improved significantly by using the MPC algorithm....
Nonfragile Guaranteed Cost Control and Optimization for Interconnected Systems of Neutral Type
Directory of Open Access Journals (Sweden)
Heli Hu
2013-01-01
Full Text Available The design and optimization problems of the nonfragile guaranteed cost control are investigated for a class of interconnected systems of neutral type. A novel scheme, viewing the interconnections with time-varying delays as effective information but not disturbances, is developed to decrease the conservatism. Many techniques on decomposing and magnifying the matrices are utilized to obtain the guaranteed cost of the considered system. Also, an algorithm is proposed to solve the nonlinear problem of the interconnected matrices. Based on this algorithm, the minimization of the guaranteed cost of the considered system is obtained by optimization. Further, the state feedback control is extended to the case in which the underlying system is dependent on uncertain parameters. Finally, two numerical examples are given to illustrate the proposed method, and some comparisons are made to show the advantages of the schemes of dealing with the interconnections.
Resonator reset in circuit QED by optimal control for large open quantum systems
Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Ferris, Andrew J.; Blais, Alexandre
2017-10-01
We study an implementation of the open GRAPE (gradient ascent pulse engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control algorithms for open quantum systems rely on explicit matrix exponential calculations, our implementation avoids these operations, leading to a polynomial speedup of the open GRAPE algorithm in cases of interest. This speedup, as well as the reduced memory requirements of our implementation, are illustrated by comparison to a standard implementation of open GRAPE. As a practical example, we apply this open-system optimization method to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized such as to empty the cavity from measurement photons as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes, leading to a reset time over 4 times faster than passive reset.
Simplex sliding mode control for nonlinear uncertain systems via chaos optimization
International Nuclear Information System (INIS)
Lu, Zhao; Shieh, Leang-San; Chen, Guanrong; Coleman, Norman P.
2005-01-01
As an emerging effective approach to nonlinear robust control, simplex sliding mode control demonstrates some attractive features not possessed by the conventional sliding mode control method, from both theoretical and practical points of view. However, no systematic approach is currently available for computing the simplex control vectors in nonlinear sliding mode control. In this paper, chaos-based optimization is exploited so as to develop a systematic approach to seeking the simplex control vectors; particularly, the flexibility of simplex control is enhanced by making the simplex control vectors dependent on the Euclidean norm of the sliding vector rather than being constant, which result in both reduction of the chattering and speedup of the convergence. Computer simulation on a nonlinear uncertain system is given to illustrate the effectiveness of the proposed control method
A novel optimal coordinated control strategy for the updated robot system for single port surgery.
Bai, Weibang; Cao, Qixin; Leng, Chuntao; Cao, Yang; Fujie, Masakatsu G; Pan, Tiewen
2017-09-01
Research into robotic systems for single port surgery (SPS) has become widespread around the world in recent years. A new robot arm system for SPS was developed, but its positioning platform and other hardware components were not efficient. Special features of the developed surgical robot system make good teleoperation with safety and efficiency difficult. A robot arm is combined and used as new positioning platform, and the remote center motion is realized by a new method using active motion control. A new mapping strategy based on kinematics computation and a novel optimal coordinated control strategy based on real-time approaching to a defined anthropopathic criterion configuration that is referred to the customary ease state of human arms and especially the configuration of boxers' habitual preparation posture are developed. The hardware components, control architecture, control system, and mapping strategy of the robotic system has been updated. A novel optimal coordinated control strategy is proposed and tested. The new robot system can be more dexterous, intelligent, convenient and safer for preoperative positioning and intraoperative adjustment. The mapping strategy can achieve good following and representation for the slave manipulator arms. And the proposed novel control strategy can enable them to complete tasks with higher maneuverability, lower possibility of self-interference and singularity free while teleoperating. Copyright © 2017 John Wiley & Sons, Ltd.
Li, Zhe; Yang, Guang-Hong
2017-09-01
In this paper, an integrated data-driven fault-tolerant control (FTC) design scheme is proposed under the configuration of the Youla parameterization for multiple-input multiple-output (MIMO) systems. With unknown system model parameters, the canonical form identification technique is first applied to design the residual observer in fault-free case. In faulty case, with online tuning of the Youla parameters based on the system data via the gradient-based algorithm, the fault influence is attenuated with system performance optimization. In addition, to improve the robustness of the residual generator to a class of system deviations, a novel adaptive scheme is proposed for the residual generator to prevent its over-activation. Simulation results of a two-tank flow system demonstrate the optimized performance and effect of the proposed FTC scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Saberi, A.; Sannuti, P.; Stoorvogel, A.A.
1994-01-01
For a general H2 optimal control problem, at first all Hz optimal measurement feedback controllers are characterized and parameterized, and then attention is focused on controllers with observer based architecture. Both full order as well as reduced order observer based H2 optimal controllers are
An optimal control method for fluid structure interaction systems via adjoint boundary pressure
Chirco, L.; Da Vià, R.; Manservisi, S.
2017-11-01
In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.
Junaidi, Agus; Hamid, K. Abdul
2018-03-01
This paper will discuss the use of optimal control and Power System Stabilizer (PSS) in improving the oscillation of electric power system. Oscillations in the electric power system can occur due to the sudden release of the load (Switcing-Off). The oscillation of an unstable system for a long time causes the equipment to work in an interruption. To overcome this problem, a control device is required that can work effectively in repairing the oscillation. The power system is modeled from the Single Machine Infinite Bus Model (SMIB). The state space equation is used to mathematically model SMIB. SMIB system which is a plant will be formed togetherness state variables (State-Space), using riccati equation then determined the optimal gain as controller plant. Plant is also controlled by Power Stabilizer System using phase compensation method. Using Matlab Software based simulation will be observed response of rotor speed change and rotor angle change for each of the two controlling methods. Simulation results using the Simulink-MATLAB 6.1 software will compare the analysis of the plant state in Open loop state and use the controller. The simulation response shows that the optimal control and PSS can improve the stability of the power system in terms of acceleration to achieve settling-time and Over Shoot improvement. From the results of both methods are able to improve system performance.
Optimal Force Control of Vibro-Impact Systems for Autonomous Drilling Applications
Aldrich, Jack B.; Okon, Avi B.
2012-01-01
The need to maintain optimal energy efficiency is critical during the drilling operations performed on future and current planetary rover missions (see figure). Specifically, this innovation seeks to solve the following problem. Given a spring-loaded percussive drill driven by a voice-coil motor, one needs to determine the optimal input voltage waveform (periodic function) and the optimal hammering period that minimizes the dissipated energy, while ensuring that the hammer-to-rock impacts are made with sufficient (user-defined) impact velocity (or impact energy). To solve this problem, it was first observed that when voice-coil-actuated percussive drills are driven at high power, it is of paramount importance to ensure that the electrical current of the device remains in phase with the velocity of the hammer. Otherwise, negative work is performed and the drill experiences a loss of performance (i.e., reduced impact energy) and an increase in Joule heating (i.e., reduction in energy efficiency). This observation has motivated many drilling products to incorporate the standard bang-bang control approach for driving their percussive drills. However, the bang-bang control approach is significantly less efficient than the optimal energy-efficient control approach solved herein. To obtain this solution, the standard tools of classical optimal control theory were applied. It is worth noting that these tools inherently require the solution of a two-point boundary value problem (TPBVP), i.e., a system of differential equations where half the equations have unknown boundary conditions. Typically, the TPBVP is impossible to solve analytically for high-dimensional dynamic systems. However, for the case of the spring-loaded vibro-impactor, this approach yields the exact optimal control solution as the sum of four analytic functions whose coefficients are determined using a simple, easy-to-implement algorithm. Once the optimal control waveform is determined, it can be used
Modified Newton-Raphson GRAPE methods for optimal control of spin systems
International Nuclear Information System (INIS)
Goodwin, D. L.; Kuprov, Ilya
2016-01-01
Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.
Modified Newton-Raphson GRAPE methods for optimal control of spin systems
Energy Technology Data Exchange (ETDEWEB)
Goodwin, D. L.; Kuprov, Ilya, E-mail: i.kuprov@soton.ac.uk [School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ (United Kingdom)
2016-05-28
Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.
State transformations and Hamiltonian structures for optimal control in discrete systems
Sieniutycz, S.
2006-04-01
Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.
Optimal Design of MPPT Controllers for Grid Connected Photovoltaic Array System
Ebrahim, M. A.; AbdelHadi, H. A.; Mahmoud, H. M.; Saied, E. M.; Salama, M. M.
2016-10-01
Integrating photovoltaic (PV) plants into electric power system exhibits challenges to power system dynamic performance. These challenges stem primarily from the natural characteristics of PV plants, which differ in some respects from the conventional plants. The most significant challenge is how to extract and regulate the maximum power from the sun. This paper presents the optimal design for the most commonly used Maximum Power Point Tracking (MPPT) techniques based on Proportional Integral tuned by Particle Swarm Optimization (PI-PSO). These suggested techniques are, (1) the incremental conductance, (2) perturb and observe, (3) fractional short circuit current and (4) fractional open circuit voltage techniques. This research work provides a comprehensive comparative study with the energy availability ratio from photovoltaic panels. The simulation results proved that the proposed controllers have an impressive tracking response. The system dynamic performance improved greatly using the proposed controllers.
Development of a parameter optimization technique for the design of automatic control systems
Whitaker, P. H.
1977-01-01
Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.
Optimized dispatch of wind farms with power control capability for power system restoration
DEFF Research Database (Denmark)
Xie, Yunyun; Liu, Changsheng; Wu, Qiuwei
2017-01-01
As the power control technology of wind farms develops, the output power of wind farms can be constant, which makes it possible for wind farms to participate in power system restoration. However, due to the uncertainty of wind energy, the actual output power can’t reach a constant dispatch power...... in all time intervals, resulting in uncertain power sags which may induce the frequency of the system being restored to go outside the security limits. Therefore, it is necessary to optimize the dispatch of wind farms participating in power system restoration. Considering that the probability...... distribution function (PDF) of transient power sags is hard to obtain, a robust optimization model is proposed in this paper, which can maximize the output power of wind farms participating in power system restoration. Simulation results demonstrate that the security constraints of the restored system can...
Optimal Exponential Synchronization of Chaotic Systems with Multiple Time Delays via Fuzzy Control
Directory of Open Access Journals (Sweden)
Feng-Hsiag Hsiao
2013-01-01
Full Text Available This study presents an effective approach to realize the optimal exponential synchronization of multiple time-delay chaotic (MTDC systems. First, a neural network (NN model is employed to approximate the MTDC system. Then, a linear differential inclusion (LDI state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov’s direct method to ensure that the trajectories of the slave system can approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI. Based on the LMI, a fuzzy controller is synthesized not only to realize the exponential synchronization but also to achieve the optimal performance by minimizing the disturbance attenuation level. Finally, a numerical example with simulations is provided to illustrate the concepts discussed throughout this work.
Esfandiari, Kasra; Abdollahi, Farzaneh; Talebi, Heidar Ali
2017-09-01
In this paper, an identifier-critic structure is introduced to find an online near-optimal controller for continuous-time nonaffine nonlinear systems having saturated control signal. By employing two Neural Networks (NNs), the solution of Hamilton-Jacobi-Bellman (HJB) equation associated with the cost function is derived without requiring a priori knowledge about system dynamics. Weights of the identifier and critic NNs are tuned online and simultaneously such that unknown terms are approximated accurately and the control signal is kept between the saturation bounds. The convergence of NNs' weights, identification error, and system states is guaranteed using Lyapunov's direct method. Finally, simulation results are performed on two nonlinear systems to confirm the effectiveness of the proposed control strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher
2013-10-01
This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example.
Optimal control of population and coherence in three-level Λ systems
Kumar, Praveen; Malinovskaya, Svetlana A.; Malinovsky, Vladimir S.
2011-08-01
Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.
Optimal control of population and coherence in three-level Λ systems
International Nuclear Information System (INIS)
Kumar, Praveen; Malinovskaya, Svetlana A; Malinovsky, Vladimir S
2011-01-01
Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.
Distributed Optimization System
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2004-11-30
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System
Directory of Open Access Journals (Sweden)
Juliang Cao
2015-12-01
Full Text Available The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01.
Information Support of Optimal Control of Modes of Electric Systems with Renewable Energy Sources
Directory of Open Access Journals (Sweden)
Michalina Gryniewicz-Jaworska
2017-12-01
Full Text Available To provide necessary quality of electric energy and reliable supply and reduce environmental contamination as a result of energy units operation, renewable sources of energy (RSE, in particular solar electric stations (SES, wind electric stations (WES and small hydropower stations (SHES are intensively developed. The paper considers the conditions of optimality of renewable sources of energy (RSE functioning in electric systems, controllability of which is limited by the impact of non-stable weather conditions. The influence of control system information support on the efficiency of RSE usage is shown.
Real-time simulation requirements for study and optimization of power system controls
Energy Technology Data Exchange (ETDEWEB)
Nakra, Harbans; McCallum, David; Gagnon, Charles [Institut de Recherche d` Hydro-Quebec, Quebec, PQ (Canada); Venne, Andre; Gagnon, Julien [Hydro-Quebec, Montreal, PQ (Canada)
1994-12-31
At the time of ordering for the multi-terminal dc system linking Hydro-Quebec with New England, Hydro-Quebec also ordered functionally duplicate controls of all the converters and installed these in its real time simulation laboratory. The Hydro-Quebec ac system was also simulated in detail and the testing of the controls as thus made possible in a realistic environment. Many field tests were duplicated and many additional tests were done for correction and optimization. This paper describes some of the features of the real-time simulation carried out for this purpose. (author) 3 figs.
Energy Technology Data Exchange (ETDEWEB)
Larbes, C.; Ait Cheikh, S.M.; Obeidi, T.; Zerguerras, A. [Laboratoire des Dispositifs de Communication et de Conversion Photovoltaique, Departement d' Electronique, Ecole Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger 16200 (Algeria)
2009-10-15
This paper presents an intelligent control method for the maximum power point tracking (MPPT) of a photovoltaic system under variable temperature and irradiance conditions. First, for the purpose of comparison and because of its proven and good performances, the perturbation and observation (P and O) technique is briefly introduced. A fuzzy logic controller based MPPT (FLC) is then proposed which has shown better performances compared to the P and O MPPT based approach. The proposed FLC has been also improved using genetic algorithms (GA) for optimisation. Different development stages are presented and the optimized fuzzy logic MPPT controller (OFLC) is then simulated and evaluated, which has shown better performances. (author)
Directory of Open Access Journals (Sweden)
Felix Ströer
2018-02-01
Full Text Available Stylus instruments are widely used in production metrology due to their robustness. Interchangeable cantilevers allow a wide range of measuring tasks to be covered with one measuring device. When approaching the sample, the positioning of the stylus instrument tip relative to the measurement object has to be accomplished in a controlled way in order to prevent damages to the specimen and the stylus cantilever. This is achieved by a closed-loop control. We present a method for the objective description of the stylus cantilever dynamics with system-theoretical techniques and show a simple iterative approach to optimize closed-loop control parameters with boundary conditions.
Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu
2016-01-01
An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.
Directory of Open Access Journals (Sweden)
S. Chaine
2015-09-01
Full Text Available This work presents a methodology to optimize the controller parameters of doubly fed induction generator modeled for frequency regulation in interconnected two-area wind power integrated thermal power system. The gains of integral controller of automatic generation control loop and the proportional and derivative controllers of doubly fed induction generator inertial control loop are optimized in a coordinated manner by employing the multi-objective non-dominated sorting genetic algorithm-II. To reduce the numbers of optimization parameters, a sensitivity analysis is done to determine that the above mentioned three controller parameters are the most sensitive among the rest others. Non-dominated sorting genetic algorithm-II has depicted better efficiency of optimization compared to the linear programming, genetic algorithm, particle swarm optimization, and cuckoo search algorithm. The performance of the designed optimal controller exhibits robust performance even with the variation in penetration levels of wind energy, disturbances, parameter and operating conditions in the system.
A problem of optimal control and observation for distributed homogeneous multi-agent system
Kruglikov, Sergey V.
2017-12-01
The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
GA-optimized feedforward-PID tracking control for a rugged electrohydraulic system design.
Sarkar, B K; Mandal, P; Saha, R; Mookherjee, S; Sanyal, D
2013-11-01
Rugged electrohydraulic systems are preferred for remote and harsh applications. Despite the low bandwidth, large deadband and flow nonlinearities in proportional valves valve and highly nonlinear friction in industry-grade cylinders that comprise rugged systems, their maintenance are much easier than very sophisticated and delicate servocontrol and servocylinder systems. With the target of making the easily maintainable system to perform comparably to a servosystem, a feedforward control has been designed here for compensating the nonlinearities. A PID feedback of the piston displacement has been employed in tandem for absorbing the unmodeled effects. All the controller parameters have been optimized by a real-coded genetic algorithm. The agreement between the achieved real-time responses for step and sinusoidal demands with those achieved by modern servosystems clearly establishes the acceptability of the controller design. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Consideration of Optimal Input on Semi-Active Shock Control System
Kawashima, Takeshi
In press working, unidirectional transmission of mechanical energy is expected in order to maximize the life of the dies. To realize this transmission, the author has developed a shock control system based on the sliding mode control technique. The controller makes a collision-receiving object effectively deform plastically by adjusting the force of the actuator inserted between the colliding objects, while the deformation of the colliding object is held at the necessity minimum. However, the actuator has to generate a large force corresponding to the impulsive force. Therefore, development of such an actuator is a formidable challenge. The author has proposed a semi-active shock control system in which the impulsive force is adjusted by a brake mechanism, although the system exhibits inferior performance. Thus, the author has also designed an actuator using a friction device for semi-active shock control, and proposed an active seatbelt system as an application. The effectiveness has been confirmed by a numerical simulation and model experiment. In this study, the optimal deformation change of the colliding object is theoretically examined in the case that the collision-receiving object has perfect plasticity and the colliding object has perfect elasticity. As a result, the optimal input condition is obtained so that the ratio of the maximum deformation of the collision-receiving object to the maximum deformation of the colliding object becomes the maximum. Additionally, the energy balance is examined.
Simplified model-based optimal control of VAV air-conditioning system
Energy Technology Data Exchange (ETDEWEB)
Nassif, N.; Kajl, S.; Sabourin, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Construction Engineering
2005-07-01
The improvement of Variable Air Volume (VAV) system performance is one of several attempts being made to minimize the high energy use associated with the operation of heating, ventilation and air conditioning (HVAC) systems. A Simplified Optimization Process (SOP) comprised of controller set point strategies and a simplified VAV model was presented in this paper. The aim of the SOP was to determine supply set points. The advantage of the SOP over previous methods was that it did not require a detailed VAV model and optimization program. In addition, the monitored data for representative local-loop control can be checked on-line, after which controller set points can be updated in order to ensure proper operation by opting for real situations with minimum energy use. The SOP was validated using existing monitoring data and a model of an existing VAV system. Energy use simulations were compared to that of the existing VAV system. At each simulation step, 3 controller set point values were proposed and studied using the VAV model in order to select a value for each point which corresponded to the best performance of the VAV system. Simplified VAV component models were presented. Strategies for controller set points were described, including zone air temperature, duct static pressure set points; chilled water supply set points and supply air temperature set points. Simplified optimization process calculations were presented. Results indicated that the SOP provided significant energy savings when applied to specific AHU systems. In a comparison with a Detailed Optimization Process (DOP), the SOP was capable of determining set points close to those obtained by the DOP. However, it was noted that the controller set points determined by the SOP need a certain amount of time to reach optimal values when outdoor conditions or thermal loads are significantly changed. It was suggested that this disadvantage could be overcome by the use of a dynamic incremental value, which
Directory of Open Access Journals (Sweden)
Jing Lei
2013-01-01
Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.
Urban Traffic Signal System Control Structural Optimization Based on Network Analysis
Directory of Open Access Journals (Sweden)
Li Wang
2013-01-01
Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.
International Nuclear Information System (INIS)
Yoo, Nam-sun; Jung, Ui-Jin; Park, Gyung-Jin; Kim, Tai-Kyung
2014-01-01
An optimization method is proposed for the simultaneous design of structural and control systems using the equivalent static loads. In the past researches, the control parameters of such feedback gains are obtained to improve some performance in the steady-state. However, the actuators which have position and velocity feedback gains should be designed to exhibit a good performance in the time domain. In other words, the system analysis should be conducted for the transient-state in dynamic manner. In this research, a new equivalent static loads method is presented to treat the control variables as the design variables. The equivalent static loads (ESLs) set is defined as a static load set which generates the same displacement field as that from dynamic loads at a certain time. The calculated sets of ESLs are applied as multiple loading conditions in the optimization process. Several examples are solved to validate the proposed method
A Frequency Control Approach for Hybrid Power System Using Multi-Objective Optimization
Directory of Open Access Journals (Sweden)
Mohammed Elsayed Lotfy
2017-01-01
Full Text Available A hybrid power system uses many wind turbine generators (WTG and solar photovoltaics (PV in isolated small areas. However, the output power of these renewable sources is not constant and can diverge quickly, which has a serious effect on system frequency and the continuity of demand supply. In order to solve this problem, this paper presents a new frequency control scheme for a hybrid power system to ensure supplying a high-quality power in isolated areas. The proposed power system consists of a WTG, PV, aqua-electrolyzer (AE, fuel cell (FC, battery energy storage system (BESS, flywheel (FW and diesel engine generator (DEG. Furthermore, plug-in hybrid electric vehicles (EVs are implemented at the customer side. A full-order observer is utilized to estimate the supply error. Then, the estimated supply error is considered in a frequency domain. The high-frequency component is reduced by BESS and FW; while the low-frequency component of supply error is mitigated using FC, EV and DEG. Two PI controllers are implemented in the proposed system to control the system frequency and reduce the supply error. The epsilon multi-objective genetic algorithm ( ε -MOGA is applied to optimize the controllers’ parameters. The performance of the proposed control scheme is compared with that of recent well-established techniques, such as a PID controller tuned by the quasi-oppositional harmony search algorithm (QOHSA. The effectiveness and robustness of the hybrid power system are investigated under various operating conditions.
Parametric optimal control of uncertain systems under an optimistic value criterion
Li, Bo; Zhu, Yuanguo
2018-01-01
It is well known that the optimal control of a linear quadratic model is characterized by the solution of a Riccati differential equation. In many cases, the corresponding Riccati differential equation cannot be solved exactly such that the optimal feedback control may be a complex time-oriented function. In this article, a parametric optimal control problem of an uncertain linear quadratic model under an optimistic value criterion is considered for simplifying the expression of optimal control. Based on the equation of optimality for the uncertain optimal control problem, an approximation method is presented to solve it. As an application, a two-spool turbofan engine optimal control problem is given to show the utility of the proposed model and the efficiency of the presented approximation method.
Mathematical Methods in Systems, Optimization, and Control Festschrift in Honor of J William Helton
Dym, Harry; Putinar, Mihai
2012-01-01
This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szego limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix co
Directory of Open Access Journals (Sweden)
Apurv Patel
2016-01-01
Full Text Available The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients.
Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System
DEFF Research Database (Denmark)
Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.
2013-01-01
implementing tertiary regulation. Moreover, system dynamic is affected when shifting VRs. Therefore, the stability is considered in optimization by constraining the eigenvalues arising from dynamic state space model of the system. Genetic algorithm is used in searching for global efficiency optimum while....... As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart from restoring the voltage deviation, secondary control plays an important role to stabilize dc bus voltage when...
Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting
2017-10-13
Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.
Energy Technology Data Exchange (ETDEWEB)
Talebi-Daryani, R. [Fachhochschule Koeln (Germany). Lehrgebiet und Lab. fuer Regelungs- und Gebaeudeleittechnik; Luther, C. [JCI Regelungstechnik GmbH, Koeln (Germany)
1998-05-01
The optimization potentials for the operation of chilling systems within the building supervisory control systems are limited to abilities of PLC functions with their binary logic. The aim of this project is to replace inefficient PLC-solutions for the operation of chilling system by a Fuzzy control system. Optimal operation means: reducing operation time and operation costs of the system, reducing cooling energy generation- and consumption costs. Analysis of the thermal behaviour of the building and the chilling system is necessary, in order to find the current efficient cooling potentials and cooling methods during the operation. Three different Fuzzy controller have been developed with a total rule number of just 70. This realized Fuzzy control system is able to forecast the maximum cooling power of the building, but also to determine the cooling potential of the out door air. This new Fuzzy control system has been successfully commissioned, and remarkable improvement of the system behaviour is reached. Comparison of the system behaviour before and after the implementation of Fuzzy control system proved the benefits of the Fuzzy logic based operation system realized here. The system described here is a joint project between the University of applied sciences Cologne, and Johnson Controls International Cologne. The Fuzzy software tool used here (SUCO soft Fuzzy TECH 4.0), was provided by Kloeckner Moeller Bonn. (orig.) [Deutsch] Die Betriebsoptimierung von Kaelteanlagen innerhalb von Gebaeudeleitsystemen ist auf die Faehigkeiten von logischen Steuerverknuepfungen der Digitaltechnik begrenzt. In diesem Zusammenhang kann nur ein geringer Anteil der Information ueber das thermische Speicherverhalten des jeweiligen Gebaeudes herangezogen werden. Ziel des vorliegenden Projektes war es, die unzureichenden logischen Steuerverknuepfungen durch ein Fuzzy-Control-System zu ersetzen, um die Arbeitsweise der Kaelteanlage zu optimieren. Die Optimierungskriterien dieses
DEFF Research Database (Denmark)
Maurico-Iglesias, Miguel; Castro, Ignacio Montero; Mollerup, Ane Loft
2015-01-01
. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current......The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems...
Powell, Keith B.; Vaitheeswaran, Vidhya
2010-07-01
The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.
Danilova, Olga; Semenova, Zinaida
2018-04-01
The objective of this study is a detailed analysis of physical protection systems development for information resources. The optimization theory and decision-making mathematical apparatus is used to formulate correctly and create an algorithm of selection procedure for security systems optimal configuration considering the location of the secured object’s access point and zones. The result of this study is a software implementation scheme of decision-making system for optimal placement of the physical access control system’s elements.
Distributed Optimal Consensus Control for Nonlinear Multiagent System With Unknown Dynamic.
Zhang, Jilie; Zhang, Huaguang; Feng, Tao
2017-08-01
This paper focuses on the distributed optimal cooperative control for continuous-time nonlinear multiagent systems (MASs) with completely unknown dynamics via adaptive dynamic programming (ADP) technology. By introducing predesigned extra compensators, the augmented neighborhood error systems are derived, which successfully circumvents the system knowledge requirement for ADP. It is revealed that the optimal consensus protocols actually work as the solutions of the MAS differential game. Policy iteration algorithm is adopted, and it is theoretically proved that the iterative value function sequence strictly converges to the solution of the coupled Hamilton-Jacobi-Bellman equation. Based on this point, a novel online iterative scheme is proposed, which runs based on the data sampled from the augmented system and the gradient of the value function. Neural networks are employed to implement the algorithm and the weights are updated, in the least-square sense, to the ideal value, which yields approximated optimal consensus protocols. Finally, a numerical example is given to illustrate the effectiveness of the proposed scheme.
Advanced experimental method for self-optimizing control system to a new energy converce plant
International Nuclear Information System (INIS)
Vasiliev, V.V.
1992-01-01
The progress in the development and studying of new methods of producing electric energy, based on direct conversion of heat, light, fuel or chemical energy into electric energy, raises the problem of more effective use of their power characteristics. In this paper, disclosure is made of a self-optimizing control system for an abject with a unimodal quality function. The system comprises an object, a divider, a band-pass filter, an averaging filter, a multiplier, a final control element, and adder and further includes a search signal generator. The fashion and the system are presented in the USSR No. 684510, in the USA No. 4179730, in France No. 2386854, in Germany No. 2814963, in Japan No. 1369882
Controller Parameter Optimization for Nonlinear Systems Using Enhanced Bacteria Foraging Algorithm
Directory of Open Access Journals (Sweden)
V. Rajinikanth
2012-01-01
Full Text Available An enhanced bacteria foraging optimization (EBFO algorithm-based Proportional + integral + derivative (PID controller tuning is proposed for a class of nonlinear process models. The EBFO algorithm is a modified form of standard BFO algorithm. A multiobjective performance index is considered to guide the EBFO algorithm for discovering the best possible value of controller parameters. The efficiency of the proposed scheme has been validated through a comparative study with classical BFO, adaptive BFO, PSO, and GA based controller tuning methods proposed in the literature. The proposed algorithm is tested in real time on a nonlinear spherical tank system. The real-time results show that, EBFO tuned PID controller gives a smooth response for setpoint tracking performance.
Directory of Open Access Journals (Sweden)
Xiangyong Chen
2014-01-01
hybrid dynamic systems is established based on Lanchester equation in a (n,1 battle, where a heterogeneous force of n different troop types faces a homogeneous force. This model can be characterized by the interaction of continuous-time models (governed by Lanchester equation, and discrete event systems (described by variable tactics. Furthermore, an expository discussion is presented on an optimal variable tactics control problem for warfare hybrid dynamic system. The optimal control strategies are designed based on dynamic programming and differential game theory. As an example of the consequences of this optimal control problem, we take the (2, 1 case and solve the optimal strategies in a (2, 1 case. Simulation results show the feasibility of warfare hybrid system model and the effectiveness of the optimal control strategies designed.
Luo, Biao; Liu, Derong; Wu, Huai-Ning
2018-06-01
Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.
International Nuclear Information System (INIS)
Romero, Alberto; Millar, Dean; Carvalho, Monica; Maestre, José M.; Camacho, Eduardo F.
2015-01-01
Mine dewatering can represent up to 5% of the total energy demand of a mine, and is one of the mine systems that aim to guarantee safe operating conditions. As mines go deeper, dewatering pumping heads become bigger, potentially involving several lift stages. Greater depth does not only mean greater dewatering cost, but more complex systems that require more sophisticated control systems, especially if mine operators wish to gain benefits from demand response incentives that are becoming a routine part of electricity tariffs. This work explores a two stage economic optimization procedure of an underground mine dewatering system, comprising two lifting stages, each one including a pump station and a water reservoir. First, the system design is optimized considering hourly characteristic dewatering demands for twelve days, one day representing each month of the year to account for seasonal dewatering demand variations. This design optimization minimizes the annualized cost of the system, and therefore includes the investment costs in underground reservoirs. Reservoir size, as well as an hourly pumping operation plan are calculated for specific operating environments, defined by characteristic hourly electricity prices and water inflows (seepage and water use from production activities), at best known through historical observations for the previous year. There is no guarantee that the system design will remain optimal when it faces the water inflows and market determined electricity prices of the year ahead, or subsequent years ahead, because these remain unknown at design time. Consequently, the dewatering optimized system design is adopted subsequently as part of a Model Predictive Control (MPC) strategy that adaptively maintains optimality during the operations phase. Centralized, distributed and non-centralized MPC strategies are explored. Results show that the system can be reliably controlled using any of these control strategies proposed. Under the operating
Optimal design of PID controller for second order plus time delay systems
International Nuclear Information System (INIS)
Srivastava, S.; Misra, A.; Kumar, Y.; Thakur, S.K.
2015-01-01
It is well known that the effect of time delay in the forward path of control loop deteriorates the system performance and at the same time makes it difficult to compute the optimum PID controller parameters of the feedback control systems. PI/PID controller is most popular and used more than 80% in industries as well as in accelerators lab due to its simple structure and appropriate robustness. At VECC we have planned to use a PID controller for the speed control of DC motor which will be used to adjust the solenoid coil position of the 2.45 GHz microwave ion source for optimum performance during the online operation. In this paper we present a comparison of the two methods which have been used to design the optimum PID controller parameters: one by optimizing different time domain performance indices such as lAE, ITSE etc. and other using analytical formulation based on Linear Quadratic Regulator (LQR). We have performed numerical simulations using MATLAB and compare the closed loop time response performance measures using the PID parameters obtained from above mentioned two methods on a second order transfer function of a DC motor with time delay. (author)
Optimization of stochastic discrete systems and control on complex networks computational networks
Lozovanu, Dmitrii
2014-01-01
This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...
Development of an Optimal Power Control Scheme for Wave-Offshore Hybrid Generation Systems
Directory of Open Access Journals (Sweden)
Seungmin Jung
2015-08-01
Full Text Available Integration technology of various distribution systems for improving renewable energy utilization has been receiving attention in the power system industry. The wave-offshore hybrid generation system (HGS, which has a capacity of over 10 MW, was recently developed by adopting several voltage source converters (VSC, while a control method for adopted power conversion systems has not yet been configured in spite of the unique system characteristics of the designated structure. This paper deals with a reactive power assignment method for the developed hybrid system to improve the power transfer efficiency of the entire system. Through the development and application processes for an optimization algorithm utilizing the real-time active power profiles of each generator, a feasibility confirmation of power transmission loss reduction was implemented. To find the practical effect of the proposed control scheme, the real system information regarding the demonstration process was applied from case studies. Also, an evaluation for the loss of the improvement rate was calculated.
ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (DEC VAX VERSION)
Frisch, H.
1994-01-01
This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following
ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)
Armstrong, E. S.
1994-01-01
This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following
Management of redundancy in flight control systems using optimal decision theory
1981-01-01
The problem of using redundancy that exists between dissimilar systems in aircraft flight control is addressed. That is, using the redundancy that exists between a rate gyro and an accelerometer--devices that have dissimilar outputs which are related only through the dynamics of the aircraft motion. Management of this type of redundancy requires advanced logic so that the system can monitor failure status and can reconfigure itself in the event of one or more failures. An optimal decision theory was tutorially developed for the management of sensor redundancy and the theory is applied to two aircraft examples. The first example is the space shuttle and the second is a highly maneuvering high performance aircraft--the F8-C. The examples illustrate the redundancy management design process and the performance of the algorithms presented in failure detection and control law reconfiguration.
Institute of Scientific and Technical Information of China (English)
Li Shu; Zhuo Jiashou; Ren Qingwen
2000-01-01
In this paper, an optimal criterion is presented for adaptive Kalman filter in a control sys tem with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.
Optimal sizing and control strategy of isolated grid with wind power and energy storage system
International Nuclear Information System (INIS)
Luo, Yi; Shi, Lin; Tu, Guangyu
2014-01-01
Highlights: • An energy storage sizing scheme for wind powered isolated grid is developed. • A bi-level control strategy for wind-battery isolated grid is proposed. • The energy storage type selection method for Nan’ao island grid is presented. • The sizing method and the control strategy are verified based on the Nan’ao island. • The wind-battery demonstration system has great benefit for remote areas. - Abstract: Integrating renewable energy and energy storage system provides a prospective way for power supply of remote areas. Focused on the isolated grids comprising renewable energy generation and energy storage, an energy storage sizing method for taking account of the reliability requirement and a bi-level control strategy of the isolated grids are presented in this paper. Based on comparative analysis of current energy storage characteristics and practicability, Sodium–sulfur battery is recommended for power balance control in the isolated grids. The optimal size of the energy storage system is determined by genetic algorithm and sequential simulation. The annualized cost considering the compensation cost of curtailed wind power and load is minimized when the reliability requirement can be satisfied. The sizing method emphasizes the tradeoff between energy storage size and reliability of power supply. The bi-level control strategy is designed as upper level wide area power balance control in dispatch timescale and lower level battery energy storage system V/f control in real-time range for isolated operation. The mixed timescale simulation results of Nan’ao Island grid verify the effectiveness of the proposed sizing method and control strategy
Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.
Wei, Qinglai; Liu, Derong; Lin, Hanquan
2016-03-01
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
Optimal control for wind turbine system via state-space method
Shanoob, Mudhafar L.
Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on
Optimal design of emission control systems for a fossil power plants
International Nuclear Information System (INIS)
Sfez, D.; Muginstein, A.; Naeh, Y.
1998-01-01
The detrimental environmental effects of pulverized coal power stations are enforcing the installation of additional emission control equipment. Utilization of this equipment significantly increases the installation and operation costs of the power station, which raises the cost of the electricity generated by this power station. Focusing on the flue gas cleaning equipment can substantially reduce the electricity-generating rate. Improving the equipment design is the only available way to reduce the flue gas cleaning costs, without affecting the power station flexibility and availability. An optimal design is defined as the one achieving the least expensive cleaning system (capital and operating costs) while maintaining the original power station operation flexibility (coal variety and partial load performances). Two main changes in the conventional design need to be carried out in order to reach the above-mentioned optimized design. The first modification is to integrate the ESP and FGD at the design criteria stage while considering the influence of each piece of equipment on the other. The second stage is to set one common best efficiency design point to the ESP and the FGD together. Achieving this one common best efficiency point requires some equipment addition and modifications to the conventional ESP and FGD systems. The technology involved in this modification is available and is well proven in operation. Using this technology with the optimal design concept will lead to a significant reduction of the flue gas cleaning costs and will reduce, by this, the electricity production costs
Pareto-optimal multi-objective design of airplane control systems
Schy, A. A.; Johnson, K. G.; Giesy, D. P.
1980-01-01
A constrained minimization algorithm for the computer aided design of airplane control systems to meet many requirements over a set of flight conditions is generalized using the concept of Pareto-optimization. The new algorithm yields solutions on the boundary of the achievable domain in objective space in a single run, whereas the older method required a sequence of runs to approximate such a limiting solution. However, Pareto-optimality does not guarantee a satisfactory design, since such solutions may emphasize some objectives at the expense of others. The designer must still interact with the program to obtain a well-balanced set of objectives. Using the example of a fighter lateral stability augmentation system (SAS) design over five flight conditions, several effective techniques are developed for obtaining well-balanced Pareto-optimal solutions. For comparison, one of these techniques is also used in a recently developed algorithm of Kreisselmeier and Steinhauser, which replaces the hard constraints with soft constraints, using a special penalty function. It is shown that comparable results can be obtained.
Directory of Open Access Journals (Sweden)
Zhang Fengjiao
2015-03-01
Full Text Available Optimization of the control strategy plays an important role in improving the performance of electric vehicles. In order to improve the braking stability and recover the braking energy, a multi-objective genetic algorithm is applied to optimize the key parameters in the control strategy of electric vehicle electro-hydraulic composite braking system. Various limitations are considered in the optimization process, and the optimization results are verified by a software simulation platform of electric vehicle regenerative braking system in typical brake conditions. The results show that optimization objectives achieved a good astringency, and the optimized control strategy can increase the brake energy recovery effectively under the condition of ensuring the braking stability.
International Nuclear Information System (INIS)
Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing
2015-01-01
The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system
Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai
2014-05-01
We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.
Taha, Ahmad Fayez
Transportation networks, wearable devices, energy systems, and the book you are reading now are all ubiquitous cyber-physical systems (CPS). These inherently uncertain systems combine physical phenomena with communication, data processing, control and optimization. Many CPSs are controlled and monitored by real-time control systems that use communication networks to transmit and receive data from systems modeled by physical processes. Existing studies have addressed a breadth of challenges related to the design of CPSs. However, there is a lack of studies on uncertain CPSs subject to dynamic unknown inputs and cyber-attacks---an artifact of the insertion of communication networks and the growing complexity of CPSs. The objective of this dissertation is to create secure, computational foundations for uncertain CPSs by establishing a framework to control, estimate and optimize the operation of these systems. With major emphasis on power networks, the dissertation deals with the design of secure computational methods for uncertain CPSs, focusing on three crucial issues---(1) cyber-security and risk-mitigation, (2) network-induced time-delays and perturbations and (3) the encompassed extreme time-scales. The dissertation consists of four parts. In the first part, we investigate dynamic state estimation (DSE) methods and rigorously examine the strengths and weaknesses of the proposed routines under dynamic attack-vectors and unknown inputs. In the second part, and utilizing high-frequency measurements in smart grids and the developed DSE methods in the first part, we present a risk mitigation strategy that minimizes the encountered threat levels, while ensuring the continual observability of the system through available, safe measurements. The developed methods in the first two parts rely on the assumption that the uncertain CPS is not experiencing time-delays, an assumption that might fail under certain conditions. To overcome this challenge, networked unknown input
International Nuclear Information System (INIS)
Castellini, P; Cecchini, S; Stroppa, L; Paone, N
2015-01-01
The paper presents an adaptive illumination system for image quality enhancement in vision-based quality control systems. In particular, a spatial modulation of illumination intensity is proposed in order to improve image quality, thus compensating for different target scattering properties, local reflections and fluctuations of ambient light. The desired spatial modulation of illumination is obtained by a digital light projector, used to illuminate the scene with an arbitrary spatial distribution of light intensity, designed to improve feature extraction in the region of interest. The spatial distribution of illumination is optimized by running a genetic algorithm. An image quality estimator is used to close the feedback loop and to stop iterations once the desired image quality is reached. The technique proves particularly valuable for optimizing the spatial illumination distribution in the region of interest, with the remarkable capability of the genetic algorithm to adapt the light distribution to very different target reflectivity and ambient conditions. The final objective of the proposed technique is the improvement of the matching score in the recognition of parts through matching algorithms, hence of the diagnosis of machine vision-based quality inspections. The procedure has been validated both by a numerical model and by an experimental test, referring to a significant problem of quality control for the washing machine manufacturing industry: the recognition of a metallic clamp. Its applicability to other domains is also presented, specifically for the visual inspection of shoes with retro-reflective tape and T-shirts with paillettes. (paper)
Energy Technology Data Exchange (ETDEWEB)
Ulleberg, Oeystein
1999-12-31
This thesis gives a systematic review of the fundamentals of energy systems, the governing physical and chemical laws related to energy, inherent characteristics of energy system, and the availability of the earth`s energy. It shows clearly why solar-hydrogen systems are one of the most viable options for the future. The main subject discussed is the modelling of SAPS (Stand-Alone Power Systems), with focus on photovoltaic-hydrogen energy systems. Simulation models for a transient simulation program are developed for PV-H{sub 2} components, including models for photovoltaics, water electrolysis, hydrogen storage, fuel cells, and secondary batteries. A PV-H{sub 2} demonstration plant in Juelich, Germany, is studied as a reference plant and the models validated against data from this plant. Most of the models developed were found to be sufficiently accurate to perform short-term system simulations, while all were more than accurate enough to perform long-term simulations. Finally, the verified simulation models are used to find the optimal operation and control strategies of an existing PV-H{sub 2} system. The main conclusion is that the simulation methods can be successfully used to find optimal operation and control strategies for a system with fixed design, and similar methods could be used to find alternative system designs. 148 refs., 78 figs., 31 tabs.
Energy Technology Data Exchange (ETDEWEB)
Ulleberg, Oeystein
1998-12-31
This thesis gives a systematic review of the fundamentals of energy systems, the governing physical and chemical laws related to energy, inherent characteristics of energy system, and the availability of the earth`s energy. It shows clearly why solar-hydrogen systems are one of the most viable options for the future. The main subject discussed is the modelling of SAPS (Stand-Alone Power Systems), with focus on photovoltaic-hydrogen energy systems. Simulation models for a transient simulation program are developed for PV-H{sub 2} components, including models for photovoltaics, water electrolysis, hydrogen storage, fuel cells, and secondary batteries. A PV-H{sub 2} demonstration plant in Juelich, Germany, is studied as a reference plant and the models validated against data from this plant. Most of the models developed were found to be sufficiently accurate to perform short-term system simulations, while all were more than accurate enough to perform long-term simulations. Finally, the verified simulation models are used to find the optimal operation and control strategies of an existing PV-H{sub 2} system. The main conclusion is that the simulation methods can be successfully used to find optimal operation and control strategies for a system with fixed design, and similar methods could be used to find alternative system designs. 148 refs., 78 figs., 31 tabs.
Systematic design of an optimal control system for the SHARON-Anammox process
DEFF Research Database (Denmark)
Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan
2016-01-01
A systematic design of an optimal control structure for the SHARON-Anammox nitrogen removal process is studied. The methodology incorporates two novel features to assess the controllability of the design variables candidate for the regulatory control layer: (i) H- control method, which formulates...
Mauricio-Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane L; Sin, Gürkan
2015-05-15
The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nandi, Swapan Kumar; Jana, Soovoojeet; Mandal, Manotosh; Kar, T. K.
In this paper, we proposed and analyzed a susceptible-infected-recovered (SIR) type epidemic model to investigate the effect of transport-related infectious diseases namely tuberculosis, measles, rubella, influenza, sexually transmitted diseases, etc. The existence and stability criteria of both the diseases include free equilibrium point and endemic equilibrium point which are established and the threshold parametric condition for which the system passes through a transcritical bifurcation is also obtained. Optimal control strategy for control parameters is formulated and solved both theoretically and numerically. Lastly, we not only illustrate our theoretical results through graphical illustrations but also computer simulation is used to show that our model would be a good model to study the SARS epidemic in 2003.
Optimal control in thermal engineering
Badescu, Viorel
2017-01-01
This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.
Optimal control of photovoltaic systems by a new battery state-of-charge observer
Energy Technology Data Exchange (ETDEWEB)
Giglioli, R; Zini, G; Conte, M; Raugi, M
1988-06-01
In photovoltaic power plants, the ability to accurately determine battery state-of-charge at any given time can reduce the risk of curtailed energy and allow more precise and less costly battery sizing. In this paper, a new state-of-charge observer, based on an original equivalent electric network of the lead-acid battery, is shown and used to develop an optimal control of the system. Hence, a management plan for a complete photovoltaic system is studied. Finally, a comparison between a simulation of the proposed plan and experimental data from a monitored photovoltaic plant, with very simple management requirements, is made and discussed. The present work was carried out within the framework of the Italian Finalized Energy Project-2.
Optimal control design of turbo spin-echo sequences with applications to parallel-transmit systems
Sbrizzi, Alessandro; Hoogduin, Hans; Hajnal, Joseph V; van den Berg, CAT; Luijten, Peter R; Malik, Shaihan J
PURPOSE: The design of turbo spin-echo sequences is modeled as a dynamic optimization problem which includes the case of inhomogeneous transmit radiofrequency fields. This problem is efficiently solved by optimal control techniques making it possible to design patient-specific sequences online.
Real-time CO2 sensor for the optimal control of electronic EGR system
Kim, Gwang-jung; Choi, Byungchul; Choi, Inchul
2013-12-01
In modern diesel engines, EGR (Exhaust Gas Recirculation) is an important technique used in nitrogen oxide (NOx) emission reduction. This paper describes the development and experimental results of a fiber-optical sensor using a 2.7 μm wavelength absorption to quantify the simultaneous CO2 concentration which is the primary variable of EGR rate (CO2 in the exhaust gas versus CO2 in the intake gas, %). A real-time laser absorption method was developed using a DFB (distributed feedback) diode laser and waveguide to make optimal design and control of electronic EGR system required for `Euro-6' and `Tier 4 Final' NOx emission regulations. While EGR is effective to reduce NOx significantly, the amount of HC and CO is increased in the exhaust gas if EGR rate is not controlled based on driving conditions. Therefore, it is important to recirculate an appropriate amount of exhaust gas in the operation condition generating high volume of NOx. In this study, we evaluated basic characteristics and functions of our optical sensor and studied basically in order to find out optimal design condition. We demonstrated CO2 measurement speed, accuracy and linearity as making a condition similar to real engine through the bench-scale experiment.
The application of analytical methods to the study of Pareto - optimal control systems
Directory of Open Access Journals (Sweden)
I. K. Romanova
2014-01-01
Full Text Available The subject of research articles - - methods of multicriteria optimization and their application for parametric synthesis of double-circuit control systems in conditions of inconsistency of individual criteria. The basis for solving multicriteria problems is a fundamental principle of a multi-criteria choice - the principle of the Edgeworth - Pareto. Getting Pareto - optimal variants due to inconsistency of individual criteria does not mean reaching a final decision. Set these options only offers the designer (DM.An important issue when using traditional numerical methods is their computational cost. An example is the use of methods of sounding the parameter space, including with use of uniform grids and uniformly distributed sequences. Very complex computational task is the application of computer methods of approximation bounds of Pareto.The purpose of this work is the development of a fairly simple search methods of Pareto - optimal solutions for the case of the criteria set out in the analytical form.The proposed solution is based on the study of the properties of the analytical dependences of criteria. The case is not covered so far in the literature, namely, the topology of the task, in which no touch of indifference curves (lines level. It is shown that for such tasks may be earmarked for compromise solutions. Prepositional use of the angular position of antigradient to the indifference curves in the parameter space relative to the coordinate axes. Formulated propositions on the characteristics of comonotonicity and contramonotonicity and angular characteristics of antigradient to determine Pareto optimal solutions. Considers the General algorithm of calculation: determine the scope of permissible values of parameters; investigates properties comonotonicity and contraventanas; to build an equal level (indifference curves; determined touch type: single sided (task is not strictly multicriteria or bilateral (objective relates to the Pareto
Optimal control theory an introduction
Kirk, Donald E
2004-01-01
Optimal control theory is the science of maximizing the returns from and minimizing the costs of the operation of physical, social, and economic processes. Geared toward upper-level undergraduates, this text introduces three aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization.Chapters 1 and 2 focus on describing systems and evaluating their performances. Chapter 3 deals with dynamic programming. The calculus of variations and Pontryagin's minimum principle are the subjects of chapters 4 and 5, and chapter
Beinarts, I; Ļevčenkovs, A; Kuņicina, N
2007-01-01
In article interest is concentrated on the climate parameters optimization in passengers’ salon of public electric transportation vehicles. The article presents mathematical problem for using intelligent agents in mechatronics problems for climate parameters optimal control. Idea is to use fuzzy logic and intelligent algorithms to create coordination mechanism for climate parameters control to save electrical energy, and it increases the level of comfort for passengers. A special interest for...
International Nuclear Information System (INIS)
Holmberg, J.
1997-04-01
The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant
Energy Technology Data Exchange (ETDEWEB)
Holmberg, J [VTT Automation, Espoo (Finland)
1997-04-01
The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant. 62 refs. The thesis includes also five previous publications by author.
Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems
Ghaffari, Azad
Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty
International Nuclear Information System (INIS)
Tang Lijuan; Huang Shunxiang; Wang Xinming
2012-01-01
The issue of nuclear safety becomes the attention focus of international society after the nuclear accident happened in Fukushima. Aiming at the requirements of the prevention and controlling of Nuclear Accident establishment of Nuclear Accident Hazard Predicting, Warning and optimized Controlling System (NAPWS) is a imperative project that our country and army are desiderating, which includes multiple fields of subject as nuclear physics, atmospheric science, security science, computer science and geographical information technology, etc. Multiplatform, multi-system and multi-mode are integrated effectively based on GIS, accordingly the Predicting, Warning, and Optimized Controlling technology System of Nuclear Accident Hazard is established. (authors)
THE OPTIMIZATION OF THE ENTERPRISE FINANCIAL ANALYSIS TROUGH THE FINANCIAL SYSTEM OF CONTROL DU PONT
Directory of Open Access Journals (Sweden)
GÂDOIU MIHAELA
2016-06-01
Full Text Available The return on assets and the return on equity are essential indicators for the assessment of the company performance. They have a rich financial content, but there are many cases where the figure sometimes shows a “prettier” reality. In such cases it is necessary to treat and interpret financial rates with caution, taking into account, at the same time, other methods used in the financial analysis. The objective of this paper is to present a popular financial diagnosis optimization method - the Du Pont financial control system, that has an important role in the financial analysis of the company because it is related to the return on assets and the return on equity of the company as a result of the interaction of several factors synthesized through reports built based on information taken from the annual financial statements.
Directory of Open Access Journals (Sweden)
G. Kondrat'ev
1999-10-01
Full Text Available In this article some ideas of Hamilton mechanics and differential-algebraic Geometry are used to exact definition of the potential function (Bellman-Lyapunov function in the optimal stabilization problem of smooth finite-dimensional systems.
Directory of Open Access Journals (Sweden)
Fengyong Sun
2017-04-01
Full Text Available In order to solve the aero-propulsion system acceleration optimal problem, the necessity of inlet control is discussed, and a fully new aero-propulsion system acceleration process control design including the inlet, engine, and nozzle is proposed in this paper. In the proposed propulsion system control scheme, the inlet, engine, and nozzle are simultaneously adjusted through the FSQP method. In order to implement the control scheme design, an aero-propulsion system component-level model is built to simulate the inlet working performance and the matching problems between the inlet and engine. Meanwhile, a stabilizing inlet control scheme is designed to solve the inlet control problems. In optimal control of the aero-propulsion system acceleration process, the inlet is an emphasized control unit in the optimal acceleration control system. Two inlet control patterns are discussed in the simulation. The simulation results prove that by taking the inlet ramp angle as an active control variable instead of being modulated passively, acceleration performance could be obviously enhanced. Acceleration objectives could be obtained with a faster acceleration time by 5%.
Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System
Directory of Open Access Journals (Sweden)
Lei He
2016-01-01
Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.
Ishihara, Koji; Morimoto, Jun
2018-03-01
Humans use multiple muscles to generate such joint movements as an elbow motion. With multiple lightweight and compliant actuators, joint movements can also be efficiently generated. Similarly, robots can use multiple actuators to efficiently generate a one degree of freedom movement. For this movement, the desired joint torque must be properly distributed to each actuator. One approach to cope with this torque distribution problem is an optimal control method. However, solving the optimal control problem at each control time step has not been deemed a practical approach due to its large computational burden. In this paper, we propose a computationally efficient method to derive an optimal control strategy for a hybrid actuation system composed of multiple actuators, where each actuator has different dynamical properties. We investigated a singularly perturbed system of the hybrid actuator model that subdivided the original large-scale control problem into smaller subproblems so that the optimal control outputs for each actuator can be derived at each control time step and applied our proposed method to our pneumatic-electric hybrid actuator system. Our method derived a torque distribution strategy for the hybrid actuator by dealing with the difficulty of solving real-time optimal control problems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Office lighting systems: Optimization
Energy Technology Data Exchange (ETDEWEB)
Dagnino, U. (ENEL, Milan (Italy))
1990-09-01
Relative to office lighting systems, in particular, those making use of tubular fluorescent lamps, currently available on the international market, this paper tries to develop lighting system, design optimization criteria. The comparative assessment of the various design possibilities considers operating cost, energy consumption, and occupational comfort/safety aspects such as lighting level uniformity and equilibrium, reduction of glare and reflection, natural/artificial lighting balance, programmed switching, computerized control systems for multi-use requirements in large areas, programmed maintenance for greater efficiency and reliability.
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Directory of Open Access Journals (Sweden)
Francisco Palacios-Quiñonero
2014-01-01
Full Text Available We present a new design strategy that makes it possible to synthesize decentralized output-feedback controllers by solving two successive optimization problems with linear matrix inequality (LMI constraints. In the initial LMI optimization problem, two auxiliary elements are computed: a standard state-feedback controller, which can be taken as a reference in the performance assessment, and a matrix that facilitates a proper definition of the main LMI optimization problem. Next, by solving the second optimization problem, the output-feedback controller is obtained. The proposed strategy extends recent results in static output-feedback control and can be applied to design complex passive-damping systems for vibrational control of large structures. More precisely, by taking advantages of the existing link between fully decentralized velocity-feedback controllers and passive linear dampers, advanced active feedback control strategies can be used to design complex passive-damping systems, which combine the simplicity and robustness of passive control systems with the efficiency of active feedback control. To demonstrate the effectiveness of the proposed approach, a passive-damping system for the seismic protection of a five-story building is designed with excellent results.
DEFF Research Database (Denmark)
Gong, Hui; Olsen, Flemming Ove
CO2 lasers are increasingly being utilized for quality welding in production. Considering the high cost of equipment, the start-up time and the set-up time should be minimized. Ideally the parameters should be set up and optimized more or less automatically. In this paper a control system...... is designed and built to automatically optimize the focal point position, one of the most important parameters in CO2 laser welding, in order to perform a desired deep/full penetration welding. The control system mainly consists of a multi-axis motion controller - PMAC, a light sensor - Photo Diode, a data...
International Nuclear Information System (INIS)
Dai Jianyong; Meng Lingcong; Zou Shuliang
2015-01-01
According to the radioactive safety features such as radon and its progeny, combined with the theory of ventilation system, structure of multi-agent system for ventilation and radon reduction system is constructed with the application of multi agent technology. The function attribute of the key agent and the connection between the nodes in the multi-agent system are analyzed to establish the distributed autonomous logic structure and negotiation mechanism of multi agent system of ventilation and radon reduction system, and thus to implement the coordination optimization control of the multi-agent system. The example analysis shows that the system structure of the multi-agent system of ventilation and reducing radon system and its collaborative mechanism can improve and optimize the radioactive pollutants control, which provides a theoretical basis and important application prospect. (authors)
Prasitmeeboon, Pitcha
repetitive control FIR compensator. The aim is to reduce the final error level by using real time frequency response model updates to successively increase the cutoff frequency, each time creating the improved model needed to produce convergence zero error up to the higher cutoff. Non-minimum phase systems present a difficult design challenge to the sister field of Iterative Learning Control. The third topic investigates to what extent the same challenges appear in RC. One challenge is that the intrinsic non-minimum phase zero mapped from continuous time is close to the pole of repetitive controller at +1 creating behavior similar to pole-zero cancellation. The near pole-zero cancellation causes slow learning at DC and low frequencies. The Min-Max cost function over the learning rate is presented. The Min-Max can be reformulated as a Quadratically Constrained Linear Programming problem. This approach is shown to be an RC design approach that addresses the main challenge of non-minimum phase systems to have a reasonable learning rate at DC. Although it was illustrated that using the Min-Max objective improves learning at DC and low frequencies compared to other designs, the method requires model accuracy at high frequencies. In the real world, models usually have error at high frequencies. The fourth topic addresses how one can merge the quadratic penalty to the Min-Max cost function to increase robustness at high frequencies. The topic also considers limiting the Min-Max optimization to some frequencies interval and applying an FIR zero-phase low-pass filter to cutoff the learning for frequencies above that interval.
Energy Technology Data Exchange (ETDEWEB)
Reizina, G N [National Technical University, 65 Nezavisimosti Avenue, Minsk, 220013 (Belarus); Korobko, E V; Bilyk, V A [Luikov Heat and Mass Transfer Institute of NASB, 15 P Brovki Street, Minsk, 220072 (Belarus); Efremov, V L; Binshtok, A E [Minsk Wheel Tractor Plant, 150 Partizanskii Avenue, Minsk, 220021 (Belarus)], E-mail: eva@itmo.by
2009-02-01
The problem of optimal control of the oscillation of a driver's seat with ER shock absorber is discussed in application to vehicles based on the principle of maximum. Coordinates of a vector of the control parameter and vertical motions of a seat are obtained. Test experimental investigations on working regimes for the driver's seat model depending on the controlling impact of the electrical signal (the intensity of the electric field) were performed.
Musthofa, M.W.; Salmah, S.; Engwerda, Jacob; Suparwanto, A.
This paper studies the robust optimal control problem for descriptor systems. We applied differential game theory to solve the disturbance attenuation problem. The robust control problem was converted into a reduced ordinary zero-sum game. Within a linear quadratic setting, we solved the problem for
Directory of Open Access Journals (Sweden)
Rabindra Kumar Sahu
2016-03-01
Full Text Available This paper presents the design and analysis of Proportional-Integral-Double Derivative (PIDD controller for Automatic Generation Control (AGC of multi-area power systems with diverse energy sources using Teaching Learning Based Optimization (TLBO algorithm. At first, a two-area reheat thermal power system with appropriate Generation Rate Constraint (GRC is considered. The design problem is formulated as an optimization problem and TLBO is employed to optimize the parameters of the PIDD controller. The superiority of the proposed TLBO based PIDD controller has been demonstrated by comparing the results with recently published optimization technique such as hybrid Firefly Algorithm and Pattern Search (hFA-PS, Firefly Algorithm (FA, Bacteria Foraging Optimization Algorithm (BFOA, Genetic Algorithm (GA and conventional Ziegler Nichols (ZN for the same interconnected power system. Also, the proposed approach has been extended to two-area power system with diverse sources of generation like thermal, hydro, wind and diesel units. The system model includes boiler dynamics, GRC and Governor Dead Band (GDB non-linearity. It is observed from simulation results that the performance of the proposed approach provides better dynamic responses by comparing the results with recently published in the literature. Further, the study is extended to a three unequal-area thermal power system with different controllers in each area and the results are compared with published FA optimized PID controller for the same system under study. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions in the range of ±25% from their nominal values to test the robustness.
Optimal control of quantum measurement
Energy Technology Data Exchange (ETDEWEB)
Egger, Daniel; Wilhelm, Frank [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany)
2015-07-01
Pulses to steer the time evolution of quantum systems can be designed with optimal control theory. In most cases it is the coherent processes that can be controlled and one optimizes the time evolution towards a target unitary process, sometimes also in the presence of non-controllable incoherent processes. Here we show how to extend the GRAPE algorithm in the case where the incoherent processes are controllable and the target time evolution is a non-unitary quantum channel. We perform a gradient search on a fidelity measure based on Choi matrices. We illustrate our algorithm by optimizing a measurement pulse for superconducting phase qubits. We show how this technique can lead to large measurement contrast close to 99%. We also show, within the validity of our model, that this algorithm can produce short 1.4 ns pulses with 98.2% contrast.
Sutrisno; Widowati; Heru Tjahjana, R.
2017-01-01
In this paper, we propose a mathematical model in the form of dynamic/multi-stage optimization to solve an integrated supplier selection problem and tracking control problem of single product inventory system with product discount. The product discount will be stated as a piece-wise linear function. We use dynamic programming to solve this proposed optimization to determine the optimal supplier and the optimal product volume that will be purchased from the optimal supplier for each time period so that the inventory level tracks a reference trajectory given by decision maker with minimal total cost. We give a numerical experiment to evaluate the proposed model. From the result, the optimal supplier was determined for each time period and the inventory level follows the given reference well.
Application of Fuzzy Algorithm in Optimizing Hierarchical Sliding Mode Control for Pendubot System
Directory of Open Access Journals (Sweden)
Xuan Dung Huynh
2017-12-01
Full Text Available Pendubot is a classical under-actuated SIMO model for control algorithm testing in laboratory of universities. In this paper, authors design a fuzzy-sliding control for this system. The controller is designed from a new idea of application of fuzzy algorithm for optioning control parameters. The response of system on TOP position under fuzzysliding control algorithm is proved to be better than under sliding controller through Matlab/Simulink simulation.
Optimal design and control of solar driven air gap membrane distillation desalination systems
International Nuclear Information System (INIS)
Chen, Yih-Hang; Li, Yu-Wei; Chang, Hsuan
2012-01-01
Highlights: ► Air gap membrane distillation unit was used in the desalination plants. ► Aspen Custom Molder was used to simulate each unit of desalination plants. ► Design parameters were investigated to obtain the minimum total annual cost. ► The control structure was proposed to operate desalination plants all day long. -- Abstract: A solar heated membrane distillation desalination system is constructed of solar collectors and membrane distillation devices for increasing pure water productivity. This technically and economically feasible system is designed to use indirect solar heat to drive membrane distillation processes to overcome the unstable supply of solar radiation from sunrise to sunset. The solar heated membrane distillation desalination system in the present study consisted of hot water storage devices, heat exchangers, air gap membrane distillation units, and solar collectors. Aspen Custom Molder (ACM) software was used to model and simulate each unit and establish the cost function of a desalination plant. From Design degree of freedom (DOF) analysis, ten design parameters were investigated to obtain the minimum total annual cost (TAC) with fixed pure water production rate. For a given solar energy density profile of typical summer weather, the minimal TAC per 1 m 3 pure water production can be found at 500 W/m 2 by varying the solar energy intensity. Therefore, we proposed two modes for controlling the optimal design condition of the desalination plant; day and night. In order to widen the operability range of the plant, the sensitivity analysis was used to retrofit the original design point to lower the effluent temperature from the solar collector by increasing the hot water recycled stream. The simulation results show that the pure water production can be maintained at a very stable level whether in sunny or cloudy weather.
International Nuclear Information System (INIS)
Ngamroo, Issarachai
2011-01-01
Even the superconducting magnetic energy storage (SMES) is the smart stabilizing device in electric power systems, the installation cost of SMES is very high. Especially, the superconducting magnetic coil size which is the critical part of SMES, must be well designed. On the contrary, various system operating conditions result in system uncertainties. The power controller of SMES designed without taking such uncertainties into account, may fail to stabilize the system. By considering both coil size and system uncertainties, this paper copes with the optimization of robust SMES controller. No need of exact mathematic equations, the normalized coprime factorization is applied to model system uncertainties. Based on the normalized integral square error index of inter-area rotor angle difference and specified structured H ∞ loop shaping optimization, the robust SMES controller with the smallest coil size, can be achieved by the genetic algorithm. The robustness of the proposed SMES with the smallest coil size can be confirmed by simulation study.
Energy Technology Data Exchange (ETDEWEB)
Gruzdev, I.A.; Temirbulatov, R.A.; Ladvishchenko, B.G.; Zhenenko, G.N.
1980-09-01
The electric power system is considered as a system of matrices of transfer functions (frequency characteristics) describing non-controlled system and control devices of generator excitation and steam turbine torques. This mathematical model can be used for the study of static stability of complex electric power systems. 5 refs.
Oil Reservoir Production Optimization using Optimal Control
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan
2011-01-01
Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...
Zhu, Yuanheng; Zhao, Dongbin; Yang, Xiong; Zhang, Qichao
2018-02-01
Sum of squares (SOS) polynomials have provided a computationally tractable way to deal with inequality constraints appearing in many control problems. It can also act as an approximator in the framework of adaptive dynamic programming. In this paper, an approximate solution to the optimal control of polynomial nonlinear systems is proposed. Under a given attenuation coefficient, the Hamilton-Jacobi-Isaacs equation is relaxed to an optimization problem with a set of inequalities. After applying the policy iteration technique and constraining inequalities to SOS, the optimization problem is divided into a sequence of feasible semidefinite programming problems. With the converged solution, the attenuation coefficient is further minimized to a lower value. After iterations, approximate solutions to the smallest -gain and the associated optimal controller are obtained. Four examples are employed to verify the effectiveness of the proposed algorithm.
National Aeronautics and Space Administration — An optimal alarm system is simply an optimal level-crossing predictor that can be designed to elicit the fewest false alarms for a fixed detection probability. It...
Directory of Open Access Journals (Sweden)
Alrijadjis .
2014-12-01
Full Text Available The proportional integral derivative (PID controllers have been widely used in most process control systems for a long time. However, it is a very important problem how to choose PID parameters, because these parameters give a great influence on the control performance. Especially, it is difficult to tune these parameters for nonlinear systems. In this paper, a new modified particle swarm optimization (PSO is presented to search for optimal PID parameters for such system. The proposed algorithm is to modify constriction coefficient which is nonlinearly decreased time-varying for improving the final accuracy and the convergence speed of PSO. To validate the control performance of the proposed method, a typical nonlinear system control, a continuous stirred tank reactor (CSTR process, is illustrated. The results testify that a new modified PSO algorithm can perform well in the nonlinear PID control system design in term of lesser overshoot, rise-time, settling-time, IAE and ISE. Keywords: PID controller, Particle Swarm Optimization (PSO,constriction factor, nonlinear system.
Optimal control of ODE systems involving a rate independent variational inequality
Czech Academy of Sciences Publication Activity Database
Brokate, M.; Krejčí, Pavel
2013-01-01
Roč. 18, č. 2 (2013), s. 331-348 ISSN 1531-3492 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : evolution variational inequalities * hysteresis * optimal control Subject RIV: BA - General Mathematics Impact factor: 0.628, year: 2013 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=7971
Directory of Open Access Journals (Sweden)
Sabita Chaine
2015-05-01
Full Text Available This work presents a methodology adopted in order to tune the controller parameters of superconducting magnetic energy storage (SMES system in the automatic generation control (AGC of a two-area thermal power system. The gains of integral controllers of AGC loop, proportional controller of SMES loop and gains of the current feedback loop of the inductor in SMES are optimized simultaneously in order to achieve a desired performance. Recently proposed intelligent technique based algorithm known as Cuckoo search algorithm (CSA is applied for optimization. Sensitivity and robustness of the tuned gains tested at different operating conditions prove the effectiveness of fast acting energy storage devices like SMES in damping out oscillations in power system when their controllers are properly tuned.
Optimization and control of a continuous stirred tank fermenter using learning system
Energy Technology Data Exchange (ETDEWEB)
Thibault, J [Dept. of Chemical Engineering, Laval Univ., Quebec City, PQ (Canada); Najim, K [CNRS, URA 192, GRECO SARTA, Ecole Nationale Superieure d' Ingenieurs de Genie Chimique, 31 - Toulouse (France)
1993-05-01
A variable structure learning automaton is used as an optimization and control of a continuous stirred tank fermenter. The alogrithm requires no modelling of the process. The use of appropriate learning rules enables to locate the optimum dilution rate in order to maximize an objective cost function. It is shown that a hierarchical structure of automata can adapt to environmental changes and can also modify efficiently the domain of variation of the control variable in order to encompass the optimum value. (orig.)
International Nuclear Information System (INIS)
Castro, A; Gross, E K U
2014-01-01
We derive the fundamental equations of an optimal control theory for systems containing both quantum electrons and classical ions. The system is modeled with Ehrenfest dynamics, a non-adiabatic variant of molecular dynamics. The general formulation, that needs the fully correlated many-electron wavefunction, can be simplified by making use of time-dependent density-functional theory. In this case, the optimal control equations require some modifications that we will provide. The abstract general formulation is complemented with the simple example of the H 2 + molecule in the presence of a laser field. (paper)
Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu
2015-05-01
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Predicting the Motions and Forces of Wearable Robotic Systems Using Optimal Control
Directory of Open Access Journals (Sweden)
Matthew Millard
2017-08-01
Full Text Available Wearable robotic systems are being developed to prevent injury to the low back. Designing a wearable robotic system is challenging because it is difficult to predict how the exoskeleton will affect the movement of the wearer. To aid the design of exoskeletons, we formulate and numerically solve an optimal control problem (OCP to predict the movements and forces of a person as they lift a 15 kg box from the ground both without (human-only OCP and with (with-exo OCP the aid of an exoskeleton. We model the human body as a sagittal-plane multibody system that is actuated by agonist and antagonist pairs of muscle torque generators (MTGs at each joint. Using the literature as a guide, we have derived a set of MTGs that capture the active torque–angle, passive torque–angle, and torque–velocity characteristics of the flexor and extensor groups surrounding the hip, knee, ankle, lumbar spine, shoulder, elbow, and wrist. Uniquely, these MTGs are continuous to the second derivative and so are compatible with gradient-based optimization. The exoskeleton is modeled as a rigid-body mechanism that is actuated by a motor at the hip and the lumbar spine and is coupled to the wearer through kinematic constraints. We evaluate our results by comparing our predictions with experimental recordings of a human subject. Our results indicate that the predicted peak lumbar-flexion angles and extension torques of the human-only OCP are within the range reported in the literature. The results of the with-exo OCP indicate that the exoskeleton motors should provide relatively little support during the descent to the box but apply a substantial amount of support during the ascent phase. The support provided by the lumbar motor is similar in shape to the net moment generated at the L5/S1 joint by the body; however, the support of the hip motor is more complex because it is coupled to the passive forces that are being generated by the hip extensors of the human subject
Leonard, Michael W.
2013-01-01
Integration of the Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) System into the control system of a Short Takeoff and Landing Mobility Concept Vehicle simulation presents a challenge because the CAPIO formulation requires that constrained optimization problems be solved at the controller operating frequency. We present a solution that utilizes a modified version of the well-known L-BFGS-B solver. Despite the iterative nature of the solver, the method is seen to converge in real time with sufficient reliability to support three weeks of piloted runs at the NASA Ames Vertical Motion Simulator (VMS) facility. The results of the optimization are seen to be excellent in the vast majority of real-time frames. Deficiencies in the quality of the results in some frames are shown to be improvable with simple termination criteria adjustments, though more real-time optimization iterations would be required.
International Nuclear Information System (INIS)
Attaran, Seyed Mohammad; Yusof, Rubiyah; Selamat, Hazlina
2016-01-01
Highlights: • Decoupling of a heating, ventilation, and air conditioning system is presented. • RBF models were identified by Epsilon constraint method for temperature and humidity. • Control settings derived from optimization of the decoupled model. • Epsilon constraint-RBF based on PID controller was implemented to keep thermal comfort and minimize energy. • Enhancements of controller parameters of the HVAC system are desired. - Abstract: The energy efficiency of a heating, ventilating and air conditioning (HVAC) system optimized using a radial basis function neural network (RBFNN) combined with the epsilon constraint (EC) method is reported. The new method adopts the advanced algorithm of RBFNN for the HVAC system to estimate the residual errors, increase the control signal and reduce the error results. The objective of this study is to develop and simulate the EC-RBFNN for a self tuning PID controller for a decoupled bilinear HVAC system to control the temperature and relative humidity (RH) produced by the system. A case study indicates that the EC-RBFNN algorithm has a much better accuracy than optimization PID itself and PID-RBFNN, respectively.
International Nuclear Information System (INIS)
Grace, Matthew; Brif, Constantin; Rabitz, Herschel; Walmsley, Ian A; Kosut, Robert L; Lidar, Daniel A
2007-01-01
Methods of optimal control are applied to a model system of interacting two-level particles (e.g., spin-half atomic nuclei or electrons or two-level atoms) to produce high-fidelity quantum gates while simultaneously negating the detrimental effect of decoherence. One set of particles functions as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one- and two-qubit unitary gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. The quantum-gate fidelity, expressed in terms of a novel state-independent distance measure, is maximized with respect to the control field using combined genetic and gradient algorithms. The resulting high-fidelity gates demonstrate the feasibility of precisely guiding the quantum evolution via optimal control, even when the system complexity is exacerbated by environmental coupling. It is found that the gate duration has an important effect on the control mechanism and resulting fidelity. An analysis of the sensitivity of the gate performance to random variations in the system parameters reveals a significant degree of robustness attained by the optimal control solutions
Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)
International Nuclear Information System (INIS)
Chiu, Chien-Chin; Tsai, Nan-Chyuan; Lin, Chun-Chi
2014-01-01
This work is aimed to investigate the regulation problem for thermal comfortableness and propose control strategies for cabin environment of EVs (electric vehicles) by constructing a reduced-scale A/C (air-conditioning) system which mainly consists of two modules: ECB (environmental control box) and AHU (air-handling unit). Temperature and humidity in the ECB can be regulated by AHU via cooling, heating, mixing air streams and adjusting speed of fans. To synthesize the near-optimal controllers, the mathematical model for the system thermodynamics is developed by employing the equivalent lumped heat capacity approach, energy/mass conservation principle and the heat transfer theories. In addition, from the clustering pattern of system eigenvalues, the thermodynamics of the interested system can evidently be characterized by two-time-scale property. That is, the studied system can be decoupled into two subsystems, slow mode and fast mode, by singular perturbation technique. As to the optimal control strategies for EVs, by taking thermal comfortableness, humidity and energy consumption all into account, a series of optimal controllers is synthesized on the base of the order-reduced thermodynamic model. The feedback control loop for the experimental test rig is examined and realized by the aid of the control system development kit dSPACE DS1104 and the commercial software MATLAB/Simulink. To sum up, the intensive computer simulations and experimental results verify that the performance of the near-optimal order-reduced control law is almost as superior as that of standard LQR (Linear-Quadratic Regulator). - Highlights: • A reduced-scale test rig for A/C (air-conditioning) system to imitate the temperature/humidity of cabin in EV (electric vehicle) is constructed. • The non-linear thermodynamic model of A/C system can be decoupled by singular perturbation technique. • The temperature/humidity in cabin is regulated to the desired values by proposed optimal
International Nuclear Information System (INIS)
Bogdan, Zeljko; Cehil, Mislav
2007-01-01
Long-term gas purchase contracts usually determine delivery and payment for gas on the regular hourly basis, independently of demand side consumption. In order to use fuel gas in an economically viable way, optimization of gas distribution for covering consumption must be introduced. In this paper, a mathematical model of the electric utility system which is used for optimization of gas distribution over electric generators is presented. The utility system comprises installed capacity of 1500 MW of thermal power plants, 400 MW of combined heat and power plants, 330 MW of a nuclear power plant and 1600 MW of hydro power plants. Based on known demand curve the optimization model selects plants according to the prescribed criteria. Firstly it engages run-of-river hydro plants, then the public cogeneration plants, the nuclear plant and thermal power plants. Storage hydro plants are used for covering peak load consumption. In case of shortage of installed capacity, the cross-border purchase is allowed. Usage of dual fuel equipment (gas-oil), which is available in some thermal plants, is also controlled by the optimization procedure. It is shown that by using such a model it is possible to properly plan the amount of fuel gas which will be contracted. The contracted amount can easily be distributed over generators efficiently and without losses (no breaks in delivery). The model helps in optimizing of fuel gas-oil ratio for plants with combined burners and enables planning of power plants overhauls over a year in a viable and efficient way. (author)
Pliatskas Stylianidis, A.
2016-01-01
This report contains the design of a model for the integration of a battery energy system in a household level and its use for primary frequency regulation and self-consumption optimization. The main goal of this project was to investigate what are the possible applications and the most suitable for
System performance optimization
International Nuclear Information System (INIS)
Bednarz, R.J.
1978-01-01
The System Performance Optimization has become an important and difficult field for large scientific computer centres. Important because the centres must satisfy increasing user demands at the lowest possible cost. Difficult because the System Performance Optimization requires a deep understanding of hardware, software and workload. The optimization is a dynamic process depending on the changes in hardware configuration, current level of the operating system and user generated workload. With the increasing complication of the computer system and software, the field for the optimization manoeuvres broadens. The hardware of two manufacturers IBM and CDC is discussed. Four IBM and two CDC operating systems are described. The description concentrates on the organization of the operating systems, the job scheduling and I/O handling. The performance definitions, workload specification and tools for the system stimulation are given. The measurement tools for the System Performance Optimization are described. The results of the measurement and various methods used for the operating system tuning are discussed. (Auth.)
Optimal control problem for the extended Fisher–Kolmogorov equation
Indian Academy of Sciences (India)
In this paper, the optimal control problem for the extended Fisher–Kolmogorov equation is studied. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.
Optimal control strategy for an impulsive stochastic competition system with time delays and jumps
Liu, Lidan; Meng, Xinzhu; Zhang, Tonghua
2017-07-01
Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.
Optimal design for slip deceleration control in anti-lock braking system
Mishra, Sheelam; Kumar, Pankaj; Rahman, Mohd. Saifur
2018-05-01
ABS (Anti-lock Braking System) is the most advanced braking system implemented in modern cars to avoid the slipping or skidding of the vehicle on the road. Moreover, it reduces the stopping distance of the vehicle because it avoids the locking of the wheel during braking. It enables the driver to steer the vehicle during braking. But every system has its downsides and likewise ABS too, it is not efficient during normal braking or snowy conditions. Our aim is to overcome these downsides and optimize Anti-lock Braking System to make it even better.
Directory of Open Access Journals (Sweden)
Mohsen Einan
2017-08-01
Full Text Available This paper presents a new control strategy for isolated micro-grids including wind turbines (WT, fuel cells (FC, photo-voltaic (PV and battery energy storage systems (BESS. FC have been used in parallel with BESSs in order to increase their lifetime and efficiency. The changes in some parameters such as wind speed, sunlight, and consumption, lead to improper performance of droop. To overcome this challenge, a new intelligent method using a combination of fuzzy controller and cuckoo optimization algorithm (COA techniques for active power controllers in isolated networks is proposed. In this paper, COA is compared with genetic algorithm (GA and particles swarm optimization algorithm (PSO. In order to show efficiency of the proposed controller, this optimal controller has been compared with droop, optimized droop, and conventional fuzzy methods, the dynamic analysis of the island is implemented to assess the behavior of isolated generations accurately and simulation results are reported.
Optimal control for chemical engineers
Upreti, Simant Ranjan
2013-01-01
Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de
Control and optimal control theories with applications
Burghes, D N
2004-01-01
This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer fun
DEFF Research Database (Denmark)
Ursem, Rasmus Kjær
population and many generations, which essentially turns the problem into a series of related static problems. To our surprise, the control problem could easily be solved when optimized like this. To further examine this, we compared the EA with a particle swarm and a local search approach, which we...... simulate an evolutionary process where the goal is to evolve solutions by means of crossover, mutation, and selection based on their quality (fitness) with respect to the optimization problem at hand. Evolutionary algorithms (EAs) are highly relevant for industrial applications, because they are capable...... of handling problems with non-linear constraints, multiple objectives, and dynamic components – properties that frequently appear in real-world problems. This thesis presents research in three fundamental areas of EC; fitness function design, methods for parameter control, and techniques for multimodal...
Energy Technology Data Exchange (ETDEWEB)
Nogaret, E.; Stavrakakis, G.; Kariniotakis, G. [Ecole de Mines de Paris, Centre d`Energetique, Sophia-Antipolis (France)] [and others
1997-10-01
An advanced control system for the optimal operation and management of autonomous wind-diesel systems is presented. This system minimises the production costs through an on-line optimal scheduling of the power units, which takes into account the technical constraints of the diesel units, as well as short-term forecasts of the load and renewable resources. The power system security is maximised through on-line security assessment modules, which enable the power system to withstand sudden changes in the production of the renewable sources. The control system was evaluated using data from the island of Lemnos, where it has been installed and operated since January 1995. (Author)
Power, control and optimization
Vasant, Pandian; Barsoum, Nader
2013-01-01
The book consists of chapters based on selected papers of international conference „Power, Control and Optimization 2012”, held in Las Vegas, USA. Readers can find interesting chapters discussing various topics from the field of power control, its distribution and related fields. Book discusses topics like energy consumption impacted by climate, mathematical modeling of the influence of thermal power plant on the aquatic environment, investigation of cost reduction in residential electricity bill using electric vehicle at peak times or allocation and size evaluation of distributed generation using ANN model and others. Chapter authors are to the best of our knowledge the originators or closely related to the originators of presented ideas and its applications. Hence, this book certainly is one of the few books discussing the benefit from intersection of those modern and fruitful scientific fields of research with very tight and deep impact on real life and industry. This book is devoted to the studies o...
International Nuclear Information System (INIS)
García-Triviño, Pablo; Gil-Mena, Antonio José; Llorens-Iborra, Francisco; García-Vázquez, Carlos Andrés; Fernández-Ramírez, Luis M.; Jurado, Francisco
2015-01-01
Highlights: • Three PSO-based PI controllers for a grid-connected inverter were presented. • Two online PSO-based PI controllers were compared with an offline PSO-tuned PI. • The HRES and the inverter were evaluated under power changes and grid voltage sags. • Online ITAE-based PSO reduced ITAE (current THD) by 15.24% (5.32%) versus offline one. - Abstract: This paper is focused on the study of particle swarm optimization (PSO)-based PI controllers for the power control of a grid-connected inverter supplied from a hybrid renewable energy system. It is composed of two renewable energy sources (wind turbine and photovoltaic – PV – solar panels) and two energy storage systems (battery and hydrogen system, integrated by fuel cell and electrolyzer). Three PSO-based PI controllers are implemented: (1) conventional PI controller with offline tuning by PSO algorithm based on the integral time absolute error (ITAE) index; (2) PI controllers with online self-tuning by PSO algorithm based on the error; and (3) PI controllers with online self-tuning by PSO algorithm based on the ITAE index. To evaluate and compare the three controllers, the hybrid renewable energy system and the grid-connected inverter are simulated under changes in the active and reactive power values, as well as under a grid voltage sag. The results show that the online PSO-based PI controllers that optimize the ITAE index achieves the best response
Enescu (Balaş, M. L.; Alexandru, C.
2016-08-01
The paper deals with the optimal design of the control system for a 6-DOF robot used in thin layers deposition. The optimization is based on parametric technique, by modelling the design objective as a numerical function, and then establishing the optimal values of the design variables so that to minimize the objective function. The robotic system is a mechatronic product, which integrates the mechanical device and the controlled operating device.The mechanical device of the robot was designed in the CAD (Computer Aided Design) software CATIA, the 3D-model being then transferred to the MBS (Multi-Body Systems) environment ADAMS/View. The control system was developed in the concurrent engineering concept, through the integration with the MBS mechanical model, by using the DFC (Design for Control) software solution EASY5. The necessary angular motions in the six joints of the robot, in order to obtain the imposed trajectory of the end-effector, have been established by performing the inverse kinematic analysis. The positioning error in each joint of the robot is used as design objective, the optimization goal being to minimize the root mean square during simulation, which is a measure of the magnitude of the positioning error varying quantity.
Phatak, A. V.; Kessler, K. M.
1975-01-01
The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.
International Nuclear Information System (INIS)
Chen, J.-D.
2007-01-01
In this paper, the robust control problem of output dynamic observer-based control for a class of uncertain neutral systems with discrete and distributed time delays is considered. Linear matrix inequality (LMI) optimization approach is used to design the new output dynamic observer-based controls. Three classes of observer-based controls are proposed and the maximal perturbed bound is given. Based on the results of this paper, the constraint of matrix equality is not necessary for designing the observer-based controls. Finally, a numerical example is given to illustrate the usefulness of the proposed method
Introduction to optimal control theory
International Nuclear Information System (INIS)
Agrachev, A.A.
2002-01-01
These are lecture notes of the introductory course in Optimal Control theory treated from the geometric point of view. Optimal Control Problem is reduced to the study of controls (and corresponding trajectories) leading to the boundary of attainable sets. We discuss Pontryagin Maximum Principle, basic existence results, and apply these tools to concrete simple optimal control problems. Special sections are devoted to the general theory of linear time-optimal problems and linear-quadratic problems. (author)
Optimal control strategy to reduce the temporal wavefront error in AO systems
Doelman, N.J.; Hinnen, K.J.G.; Stoffelen, F.J.G.; Verhaegen, M.H.
2004-01-01
An Adaptive Optics (AO) system for astronomy is analysed from a control point of view. The focus is put on the temporal error. The AO controller is identified as a feedback regulator system, operating in closed-loop with the aim of rejecting wavefront disturbances. Limitations on the performance of
Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan
2014-11-01
This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system.
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.
Lee, Chengming; Chen, Rongshun
2015-05-20
Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System
Directory of Open Access Journals (Sweden)
Chengming Lee
2015-05-01
Full Text Available Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID controller, combining a PID neural network (PIDNN with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server’s fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.
Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.
2018-04-01
Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.
WaveSAX device: design optimization through scale modelling and a PTO strategical control system
Peviani, Maximo; Danelli, Andrea; Dadone, Gianluca; Dalmasso, Alberto
2017-04-01
WaveSAX is an innovative OWC (Oscillating Water Column) device for the generation of electricity from wave power, conceived to be installed in coastal marine structures, such as ports and harbours. The device - especially designed for the typical wave climate of Mediterranean Sea - is characterized by two important aspects: flexibility to fit in different structural configurations and replication in a large number of units. A model of the WaveSAX device on a scale 1:5 has been built and tested in the ocean tank at Ecole Centrale de Nantes (France). The study aimed to analyse the behaviour of the device, including two Wells turbine configurations (with three and four blades), with regular and irregular wave conditions in the ocean wave tank. The model and the wave basin were equipped with a series of sensors which allowed to measure the following parameters during the tests: pressure in different points inside the device, the free water surface displacement inside and outside the device, the rotational velocity and the torque at the top of the axis. The tests had the objective to optimize the device design, especially as far as the characteristics of the rotor of the turbine is concern. Although the performance of the WaveSAX has been satisfactory for regular wave conditions, the behaviour of the Wells turbines for irregular wave climate has shown limitations in terms of maintaining the capacity to transform hydraulics energy into mechanical power. To optimize the efficiency of the turbine, an electronical system has been built on the basis of the ocean tank tests. It allows to continuously monitor and command the rotational speed and the torque of the rotor connected with the turbine, and to control in real time the electrical flow of a motor-generator, either absorbing energy as a generator, or providing power to the turbine working as an engine. Two strategies - based on the velocity and the torque control - have been investigate in the electronic test bench
Directory of Open Access Journals (Sweden)
Kuldeep CHAUDHARY
2012-07-01
Full Text Available In this paper, we discuss modular software system for Software Reliability GrowthModels using testing effort and study the optimal testing effort intensity for each module. The maingoal is to minimize the cost of software development when budget constraint on testing expenditureis given. We discuss the evolution of faults removal dynamics in incorporating the idea of leading/independent and dependent faults in modular software system under the assumption that testing ofeach of the modulus is done independently. The problem is formulated as an optimal controlproblem and the solution to the proposed problem has been obtained by using Pontryagin MaximumPrinciple.
DEFF Research Database (Denmark)
Qin, Nan; Bak, Claus Leth; Abildgaard, Hans
2017-01-01
This paper proposes an automatic voltage control (AVC) system for power systems with limited continuous voltage control capability. The objective is to minimize the operational cost over a period, which consists of the power loss in the grid, the shunt switching cost, the transformer tap change...... electricity control center, where study cases based on the western Danish power system demonstrate the superiority of the proposed AVC system in term of the cost minimization. Monte Carlo simulations are carried out to verify the proposed method on the robustness improvements....
Directory of Open Access Journals (Sweden)
Abdelhak Bouchakour
2017-06-01
Full Text Available This study investigates the performance of three different photovoltaic (PV water pumping systems driven by three types of motors, namely a separately excited DC motor (DCM, an asynchronous motor (ASM, and a permanent magnet synchronous motor (PMSM, via a DC/DC buck-boost converter coupled to a centrifugal pump. The purpose of this study is to implement a fast and robust control for this type of a nonlinear system, controlled by sliding mode (SM. This paper presents an SM control technique for controlling a DC/DC buck-boost converter to transfer the maximum power delivered by the PV generator. Each component is studied and analyzed to simulate the global system in MATLAB/SIMULINK. The three systems are then compared to determine the overall effectiveness of the proposed command. The study concludes that the ASM-driven PV system yields highly favorable results and requires less maintenance compared with other systems.
Directory of Open Access Journals (Sweden)
Bindeshwar Singh
2017-11-01
Full Text Available In the present scenario of all over the world like develops and undeveloped countries are fastly used Distributed Generations (DGs and Flexible Alternating Current Transmission Systems (FACTS controllers in power systems for reactive power supports so that the overall power system performances are improved such as minimization of real and reactive power losses, environmental pollutions and maximization of loadability of system, power system stability, the short circuit capacity of the line and also enhancement of voltage profile, available power transfer capacity of the system, reliability as well as security of the system and more flexible operations of the system. This survey paper presents a taxonomical review on impact assessment of DGs and FACTS controllers in power systems from different power system performance viewpoints and reveals the current status of research work in this field.
Nguyen, Gia Luong Huu
obtained experimental data, the research studied the control of airflow to regulate the temperature of reactors within the fuel processor. The dynamic model provided a platform to test the dynamic response for different control gains. With sufficient sensing and appropriate control, a rapid response to maintain the temperature of the reactor despite an increase in power was possible. The third part of the research studied the use of a fuel cell in conjunction with photovoltaic panels, and energy storage to provide electricity for buildings. This research developed an optimization framework to determine the size of each device in the hybrid energy system to satisfy the electrical demands of buildings and yield the lowest cost. The advantage of having the fuel cell with photovoltaic and energy storage was the ability to operate the fuel cell at baseload at night, thus reducing the need for large battery systems to shift the solar power produced in the day to the night. In addition, the dispatchability of the fuel cell provided an extra degree of freedom necessary for unforeseen disturbances. An operation framework based on model predictive control showed that the method is suitable for optimizing the dispatch of the hybrid energy system.
TAS: 89 0227: TAS Recovery Act - Optimization and Control of Electric Power Systems: ARRA
Energy Technology Data Exchange (ETDEWEB)
Chiang, Hsiao-Dong [Cornell Univ., Ithaca, NY (United States); Zimmerman, Ray D. [Cornell Univ., Ithaca, NY (United States); Thomas, Robert J. [Cornell Univ., Ithaca, NY (United States)
2014-02-01
The name SuperOPF is used to refer several projects, problem formulations and soft-ware tools intended to extend, improve and re-define some of the standard methods of optimizing electric power systems. Our work included applying primal-dual interior point methods to standard AC optimal power flow problems of large size, as well as extensions of this problem to include co-optimization of multiple scenarios. The original SuperOPF problem formulation was based on co-optimizing a base scenario along with multiple post-contingency scenarios, where all AC power flow models and constraints are enforced for each, to find optimal energy contracts, endogenously determined locational reserves and appropriate nodal energy prices for a single period optimal power flow problem with uncertainty. This led to example non-linear programming problems on the order of 1 million constraints and half a million variables. The second generation SuperOPF formulation extends this by adding multiple periods and multiple base scenarios per period. It also incorporates additional variables and constraints to model load following reserves, ramping costs, and storage resources. A third generation of the multi-period SuperOPF, adds both integer variables and a receding horizon framework in which the problem type is more challenging (mixed integer), the size is even larger, and it must be solved more frequently, pushing the limits of currently available algorithms and solvers. The consideration of transient stability constraints in optimal power flow (OPF) problems has become increasingly important in modern power systems. Transient stability constrained OPF (TSCOPF) is a nonlinear optimization problem subject to a set of algebraic and differential equations. Solving a TSCOPF problem can be challenging due to (i) the differential-equation constraints in an optimization problem, (ii) the lack of a true analytical expression for transient stability in OPF. To handle the dynamics in TSCOPF, the set
DEFF Research Database (Denmark)
Yang, Lihui; Yang, Guang-Ya; Xu, Zhao
2010-01-01
Multi-objective optimal controller design of a doubly-fed induction generator (DFIG) wind turbine system using differential evolution (DE) is presented. A detailed mathematical model of DFIG wind turbine with a closed-loop vector control system is developed. Based on this, objective functions...... and the constraint with DE, respectively. Eigenvalue analysis and time-domain simulations are performed on a single machine infinite bus system as well as a nine-bus multi-machine system with two DFIG wind turbines to illustrate the control performance of the DFIG wind turbine with the optimised controller...... addressing the steady-state stability and dynamic performance at different operating conditions are implemented to optimise the controller parameters of both the rotor and grid-side converters. A superior 1-constraint method and method of adaptive penalties are applied to handle the multi-objective problem...
International Nuclear Information System (INIS)
Hajiah, Ali; Krarti, Moncef
2012-01-01
Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.
Orr, Shlomo; Meystel, Alexander M.
2005-03-01
Despite remarkable new developments in stochastic hydrology and adaptations of advanced methods from operations research, stochastic control, and artificial intelligence, solutions of complex real-world problems in hydrogeology have been quite limited. The main reason is the ultimate reliance on first-principle models that lead to complex, distributed-parameter partial differential equations (PDE) on a given scale. While the addition of uncertainty, and hence, stochasticity or randomness has increased insight and highlighted important relationships between uncertainty, reliability, risk, and their effect on the cost function, it has also (a) introduced additional complexity that results in prohibitive computer power even for just a single uncertain/random parameter; and (b) led to the recognition in our inability to assess the full uncertainty even when including all uncertain parameters. A paradigm shift is introduced: an adaptation of new methods of intelligent control that will relax the dependency on rigid, computer-intensive, stochastic PDE, and will shift the emphasis to a goal-oriented, flexible, adaptive, multiresolutional decision support system (MRDS) with strong unsupervised learning (oriented towards anticipation rather than prediction) and highly efficient optimization capability, which could provide the needed solutions of real-world aquifer management problems. The article highlights the links between past developments and future optimization/planning/control of hydrogeologic systems. Malgré de remarquables nouveaux développements en hydrologie stochastique ainsi que de remarquables adaptations de méthodes avancées pour les opérations de recherche, le contrôle stochastique, et l'intelligence artificielle, solutions pour les problèmes complexes en hydrogéologie sont restées assez limitées. La principale raison est l'ultime confiance en les modèles qui conduisent à des équations partielles complexes aux paramètres distribués (PDE) à une
Real-Time Optimization of Organic Rankine Cycle Systems by Extremum-Seeking Control
Directory of Open Access Journals (Sweden)
Andres Hernandez
2016-05-01
Full Text Available In this paper, the optimal operation of a stationary sub-critical 11 kW el organic Rankine cycle (ORC unit for waste heat recovery (WHR applications is investigated, both in terms of energy production and safety conditions. Simulation results of a validated dynamic model of the ORC power unit are used to derive a correlation for the evaporating temperature, which maximizes the power generation for a range of operating conditions. This idea is further extended using a perturbation-based extremum seeking (ES algorithm to identify online the optimal evaporating temperature. Regarding safety conditions, we propose the use of the extended prediction self-adaptive control (EPSAC approach to constrained model predictive control (MPC. Since it uses input/output models for prediction, it avoids the need for state estimators, making it a suitable tool for industrial applications. The performance of the proposed control strategy is compared to PID-like schemes. Results show that EPSAC-MPC is a more effective control strategy, as it allows a safer and more efficient operation of the ORC unit, as it can handle constraints in a natural way, operating close to the boundary conditions where power generation is maximized.
Optimization of the central automatic control of a small Dutch sewer system
Kolechkina, A. G.; Hoes, O. A. C.
2012-04-01
A sewer control system was developed in the context of a subsidized project aiming at improvement of surface water quality by control of sewer systems and surface water systems. The project was coordinated by the local water board, "Waterschap Hollandse Delta". Other participants were Delft University of Technology, Deltares and the municipalities Strijen, Cromstrijen, Westmaas, Oud Beijerland and Piershil. As part of the project there were two pilot implementations where a central automatic controller was coupled to the existing SCADA system. For these two pilots the system is now operational. A Dutch urban area in the western part of the Netherlands is usually part of a polder, which is effectively an artificially drained catchment. The urban area itself is split into small subcatchments that manage runoff in different ways. In all cases a large fraction goes into the natural hydrological cycle, but, depending on the design of the local sewer system, a larger or smaller part finds its way into the sewer system. Proper control of this flow is necessary to control surface water quality and to avoid health risks from flow from the sewer into the streets. At each time step the controller switches pumps to distribute the remaining water in the system at the end of the time step over the different subcatchments. The distribution is created based on expert judgment of the relative vulnerability and subcatchment sewer system water quality. It is implemented in terms curves of total system stored volume versus subcatchment stored volume. We describe the process of the adaptation of a controller to two different sewer systems and the understanding of the artificial part of the catchment we gained during this process. In the process of adaptation the type of sewer system (combined foul water and storm water transport or separate foul water and storm water transport) played a major role.
Performance of a Nonlinear Real-Time Optimal Control System for HEVs/PHEVs during Car Following
Directory of Open Access Journals (Sweden)
Kaijiang Yu
2014-01-01
Full Text Available This paper presents a real-time optimal control approach for the energy management problem of hybrid electric vehicles (HEVs and plug-in hybrid electric vehicles (PHEVs with slope information during car following. The new features of this study are as follows. First, the proposed method can optimize the engine operating points and the driving profile simultaneously. Second, the proposed method gives the freedom of vehicle spacing between the preceding vehicle and the host vehicle. Third, using the HEV/PHEV property, the desired battery state of charge is designed according to the road slopes for better recuperation of free braking energy. Fourth, all of the vehicle operating modes engine charge, electric vehicle, motor assist and electric continuously variable transmission, and regenerative braking, can be realized using the proposed real-time optimal control approach. Computer simulation results are shown among the nonlinear real-time optimal control approach and the ADVISOR rule-based approach. The conclusion is that the nonlinear real-time optimal control approach is effective for the energy management problem of the HEV/PHEV system during car following.
Optimal service using Matlab - simulink controlled Queuing system at call centers
Balaji, N.; Siva, E. P.; Chandrasekaran, A. D.; Tamilazhagan, V.
2018-04-01
This paper presents graphical integrated model based academic research on telephone call centres. This paper introduces an important feature of impatient customers and abandonments in the queue system. However the modern call centre is a complex socio-technical system. Queuing theory has now become a suitable application in the telecom industry to provide better online services. Through this Matlab-simulink multi queuing structured models provide better solutions in complex situations at call centres. Service performance measures analyzed at optimal level through Simulink queuing model.
Euler's fluid equations: Optimal control vs optimization
International Nuclear Information System (INIS)
Holm, Darryl D.
2009-01-01
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Directory of Open Access Journals (Sweden)
Akanksha Mishra
2017-05-01
Full Text Available In a deregulated electricity market it may at times become difficult to dispatch all the required power that is scheduled to flow due to congestion in transmission lines. An Interline Power Flow Controller (IPFC can be used to reduce the system loss and power flow in the heavily loaded line, improve stability and loadability of the system. This paper proposes a Disparity Line Utilization Factor for the optimal placement and Gravitational Search algorithm based optimal tuning of IPFC to control the congestion in transmission lines. DLUF ranks the transmission lines in terms of relative line congestion. The IPFC is accordingly placed in the most congested and the least congested line connected to the same bus. Optimal sizing of IPFC is carried using Gravitational Search algorithm. A multi-objective function has been chosen for tuning the parameters of the IPFC. The proposed method is implemented on an IEEE-30 bus test system. Graphical representations have been included in the paper showing reduction in LUF of the transmission lines after the placement of an IPFC. A reduction in active power and reactive power loss of the system by about 6% is observed after an optimally tuned IPFC has been included in the power system. The effectiveness of the proposed tuning method has also been shown in the paper through the reduction in the values of the objective functions.
International Nuclear Information System (INIS)
Tapu, C.
1979-01-01
The reference control system automatically adjusted to the reactor state and the reliability analysis of the control systems which survive the first defect with given solution for detecting all kinds of defects in the system with parallel redundancy, supply additional data on the high performance and largely available solutions. The results of the paper have been applied in the following cases: The reference control system automatically adapted to the reactor state has been tested with the VVR-S reactor and was patented. The solutions advanced for period and reactivity monitoring by the numerical technique were worked up during the training in France-CEN-Saclay and have been applied on the Ulysse reactor at INSTN (CERN-Saclay). At the same time, the papers published on these subjects have been cited in ''Revue General d'Electricite (February 1976)'' and in ''MCH/MENT 10 - Materiel Electronique Nucleaire pour tableau de commande et de controle (1976)'' issued by CEA France, as marking a progress in the control of nuclear power plants. The reliability analysis of the control system with parallel redundancy was performed during a specialization in France and on the basis of this analysis, the control system for the high flux reactor in Grenoble was selected. (author)
Distributed optimization system and method
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2003-06-10
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Menshikh, V.; Samorokovskiy, A.; Avsentev, O.
2018-03-01
The mathematical model of optimizing the allocation of resources to reduce the time for management decisions and algorithms to solve the general problem of resource allocation. The optimization problem of choice of resources in organizational systems in order to reduce the total execution time of a job is solved. This problem is a complex three-level combinatorial problem, for the solving of which it is necessary to implement the solution to several specific problems: to estimate the duration of performing each action, depending on the number of performers within the group that performs this action; to estimate the total execution time of all actions depending on the quantitative composition of groups of performers; to find such a distribution of the existing resource of performers in groups to minimize the total execution time of all actions. In addition, algorithms to solve the general problem of resource allocation are proposed.
Energy-optimal speed control of fans and compressor in a refrigeration system
DEFF Research Database (Denmark)
Jakobsen, Arne; Rasmussen, Bjarne D.
1998-01-01
Use of variable speed compressors and variable speed fans for both the evaporator and the condenser makes the refrigeration system more flexible, adds to the degree of freedom of the control system and therefore makes it possible to (on-line) optimise the various speeds involved. Say, for example...... and therefore the achievement of the potential for energy saving. This control/optimisation problem is investigated using a steady-state simulation model....
Multi-Period Optimization for Voltage Control System in Transmission Grids
DEFF Research Database (Denmark)
Qin, Nan; Chen, Si; Liu, Chengxi
2015-01-01
Automatic Voltage Control (AVC) systems maintain the voltage in an acceptable range and minimize the power loss of the grid by coordinately regulating the controllable components. Switchable shunts and tap-able transformers are expected to be operated as few times as possible. This paper proposes...
Optimal control of hydroelectric facilities
Zhao, Guangzhi
This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-10-15
In this paper, a new approach based on the particle swarm optimization (PSO) technique is proposed to tune the parameters of the thyristor controlled series capacitor (TCSC) power oscillation damping controller. The design problem of the damping controller is converted to an optimization problem with the time-domain-based objective function which is solved by a PSO technique which has a strong ability to find the most optimistic results. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The performance of the newly designed controller is evaluated in a four-machine power system subjected to the different types of disturbances in comparison with the genetic algorithm based damping controller. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the tuned PSO based TCSC damping controller using the proposed fitness function has an excellent capability in damping power system inter-area oscillations and enhances greatly the dynamic stability of the power systems. Moreover, it is superior to the genetic algorithm based damping controller.
International Nuclear Information System (INIS)
Golpira, H.; Bevrani, H.; Golpira, H.
2011-01-01
Highlights: → A realistic model for automatic generation control (AGC) design is proposed. → The model considers GRC, Speed governor dead band, filters and time delay. → The model provides an accurate model for the digital simulations. -- Abstract: This paper addresses a realistic model for automatic generation control (AGC) design in an interconnected power system. The proposed scheme considers generation rate constraint (GRC), dead band, and time delay imposed to the power system by governor-turbine, filters, thermodynamic process, and communication channels. Simplicity of structure and acceptable response of the well-known integral controller make it attractive for the power system AGC design problem. The Genetic algorithm (GA) is used to compute the decentralized control parameters to achieve an optimum operating point. A 3-control area power system is considered as a test system, and the closed-loop performance is examined in the presence of various constraints scenarios. It is shown that neglecting above physical constraints simultaneously or in part, leads to impractical and invalid results and may affect the system security, reliability and integrity. Taking to account the advantages of GA besides considering a more complete dynamic model provides a flexible and more realistic AGC system in comparison of existing conventional schemes.
Energy Technology Data Exchange (ETDEWEB)
Golpira, H., E-mail: hemin.golpira@uok.ac.i [Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, PO Box 416, Kurdistan (Iran, Islamic Republic of); Bevrani, H. [Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, PO Box 416, Kurdistan (Iran, Islamic Republic of); Golpira, H. [Department of Industrial Engineering, Islamic Azad University, Sanandaj Branch, PO Box 618, Kurdistan (Iran, Islamic Republic of)
2011-05-15
Highlights: {yields} A realistic model for automatic generation control (AGC) design is proposed. {yields} The model considers GRC, Speed governor dead band, filters and time delay. {yields} The model provides an accurate model for the digital simulations. -- Abstract: This paper addresses a realistic model for automatic generation control (AGC) design in an interconnected power system. The proposed scheme considers generation rate constraint (GRC), dead band, and time delay imposed to the power system by governor-turbine, filters, thermodynamic process, and communication channels. Simplicity of structure and acceptable response of the well-known integral controller make it attractive for the power system AGC design problem. The Genetic algorithm (GA) is used to compute the decentralized control parameters to achieve an optimum operating point. A 3-control area power system is considered as a test system, and the closed-loop performance is examined in the presence of various constraints scenarios. It is shown that neglecting above physical constraints simultaneously or in part, leads to impractical and invalid results and may affect the system security, reliability and integrity. Taking to account the advantages of GA besides considering a more complete dynamic model provides a flexible and more realistic AGC system in comparison of existing conventional schemes.
The Structural Optimization System CAOS
DEFF Research Database (Denmark)
Rasmussen, John
1990-01-01
CAOS is a system for structural shape optimization. It is closely integrated in a Computer Aided Design environment and controlled entirely from the CAD-system AutoCAD. The mathematical foundation of the system is briefly presented and a description of the CAD-integration strategy is given together...
Directory of Open Access Journals (Sweden)
Shuai Su
2016-02-01
Full Text Available Increasing attention is being paid to the energy efficiency in metro systems to reduce the operational cost and to advocate the sustainability of railway systems. Classical research has studied the energy-efficient operational strategy and the energy-efficient system design separately to reduce the traction energy consumption. This paper aims to combine the operational strategies and the system design by analyzing how the infrastructure and vehicle parameters of metro systems influence the operational traction energy consumption. Firstly, a solution approach to the optimal train control model is introduced, which is used to design the Optimal Train Control Simulator(OTCS. Then, based on the OTCS, the performance of some important energy-efficient system design strategies is investigated to reduce the trains’ traction energy consumption, including reduction of the train mass, improvement of the kinematic resistance, the design of the energy-saving gradient, increasing the maximum traction and braking forces, introducing regenerative braking and timetable optimization. As for these energy-efficient strategies, the performances are finally evaluated using the OTCS with the practical operational data of the Beijing Yizhuang metro line. The proposed approach gives an example to quantitatively analyze the energy reduction of different strategies in the system design procedure, which may help the decision makers to have an overview of the energy-efficient performances and then to make decisions by balancing the costs and the benefits.
DEFF Research Database (Denmark)
Rahimi, Saaed; Marinelli, Mattia; Silvestro, Federico
2012-01-01
To meet the requirement from new visions within “smart grid” and to provide solutions for many challenges that DSOs (Distribution System Operators) are facing today, we need to develop advanced DMS (Distribution Management System) applications. A centralized Volt/Var Control (VVC) is one of the m...
International Nuclear Information System (INIS)
Huang, Yanjun; Khajepour, Amir; Ding, Haitao; Bagheri, Farshid; Bahrami, Majid
2017-01-01
Highlights: • A novel two-layer energy-saving controller for automotive A/C-R system is developed. • A set-point optimizer at the outer loop is designed based on the steady state model. • A sliding mode controller in the inner loop is built. • Extensively experiments studies show that about 9% energy can be saving by this controller. - Abstract: This paper presents an energy-saving controller for automotive air-conditioning/refrigeration (A/C-R) systems. With their extensive application in homes, industry, and vehicles, A/C-R systems are consuming considerable amounts of energy. The proposed controller consists of two different time-scale layers. The outer or the slow time-scale layer called a set-point optimizer is used to find the set points related to energy efficiency by using the steady state model; whereas, the inner or the fast time-scale layer is used to track the obtained set points. In the inner loop, thanks to its robustness, a sliding mode controller (SMC) is utilized to track the set point of the cargo temperature. The currently used on/off controller is presented and employed as a basis for comparison to the proposed controller. More importantly, the real experimental results under several disturbed scenarios are analysed to demonstrate how the proposed controller can improve performance while reducing the energy consumption by 9% comparing with the on/off controller. The controller is suitable for any type of A/C-R system even though it is applied to an automotive A/C-R system in this paper.
An optimal PID controller via LQR for standard second order plus time delay systems.
Srivastava, Saurabh; Misra, Anuraag; Thakur, S K; Pandit, V S
2016-01-01
An improved tuning methodology of PID controller for standard second order plus time delay systems (SOPTD) is developed using the approach of Linear Quadratic Regulator (LQR) and pole placement technique to obtain the desired performance measures. The pole placement method together with LQR is ingeniously used for SOPTD systems where the time delay part is handled in the controller output equation instead of characteristic equation. The effectiveness of the proposed methodology has been demonstrated via simulation of stable open loop oscillatory, over damped, critical damped and unstable open loop systems. Results show improved closed loop time response over the existing LQR based PI/PID tuning methods with less control effort. The effect of non-dominant pole on the stability and robustness of the controller has also been discussed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal control of raw timber production processes
Ivan Kolenka
1978-01-01
This paper demonstrates the possibility of optimal planning and control of timber harvesting activ-ities with mathematical optimization models. The separate phases of timber harvesting are represented by coordinated models which can be used to select the optimal decision for the execution of any given phase. The models form a system whose components are connected and...
Energy Technology Data Exchange (ETDEWEB)
Costa, Geraldo R.M. da [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia
1994-12-31
This paper discusses, partially, the advantages and the disadvantages of the optimal power flow. It shows some of the difficulties of implementation and proposes solutions. An analysis is made comparing the power flow, BIGPOWER/CESP, and the optimal power flow, FPO/SEL, developed by the author, when applied to the CEPEL-ELETRONORTE and CESP systems. (author) 8 refs., 5 tabs.
Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N
2006-12-01
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
Multi-Objective Motion Control Optimization for the Bridge Crane System
Directory of Open Access Journals (Sweden)
Renxin Xiao
2018-03-01
Full Text Available A novel control algorithm combining the linear quadratic regulator (LQR control and trajectory planning (TP is proposed for the control of an underactuated crane system, targeting position adjustment and swing suppression. The TP is employed to control the swing angle within certain constraints, and the LQR is applied to achieve anti-disturbance. In order to improve the accuracy of the position control, a differential-integral control loop is applied. The weighted LQR matrices representing priorities of the state variables for the bridge crane motion are searched by the multi-objective genetic algorithm (MOGA. The stability proof is provided in order to validate the effectiveness of the proposed algorithm. Numerous simulation and experimental validations justify the feasibility of the proposed method.
Directory of Open Access Journals (Sweden)
Ming Ji
2014-01-01
Full Text Available The vulnerability assessment model, composed by 11 vulnerability factors, is established with the introduction of the concept of “vulnerability” into the assessment of tunnel support system. Analytic hierarchy process is utilized to divide these 11 factors into human attributes and natural attributes, and define the weight of these factors for the model. The “vulnerability” applied io the assessment of the tunnel support system model is reached. The vulnerability assessment model was used for evaluating and modifying the haulage tunnel #3207 of Bo-fang mine panel #2. The results decreased the vulnerability of the tunnel support system and demonstrated acceptable effects. Furthermore, the results show that the impact of human attributes on tunnel support systems is dramatic under the condition that natural attributes are permanent, and the “vulnerability” is exactly a notable factor to manifest the transformation during this process. The results also indicate that optimizing human attributes can attenuate vulnerability in tunnel support systems. As a result, enhancement of stability of tunnel support systems can be achieved.
Time-optimal control with finite bandwidth
Hirose, M.; Cappellaro, P.
2018-04-01
Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.
International Nuclear Information System (INIS)
Hajiah, Ali; Krarti, Moncef
2012-01-01
Highlights: ► A detailed analysis is presented to assess the performance of thermal energy storage (TES) systems. ► Utility rates have been found to be significant in assessing the operation of TES systems. ► Optimal control strategies for TES systems can save up to 40% of total energy cost of office buildings. - Abstract: This paper presents the results of a series of parametric analysis to investigate the factors that affect the effectiveness of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs (including energy and demand costs) while maintaining adequate occupant comfort conditions in buildings. The analysis is based on a validated model-based simulation environment and includes several parameters including the optimization cost function, base chiller size, and ice storage tank capacity, and weather conditions. It found that the combined use of building thermal mass and active thermal energy storage system can save up to 40% of the total energy costs when integrated optimal control are considered to operate commercial buildings.
Development and Optimization of controlled drug release ...
African Journals Online (AJOL)
The aim of this study is to develop and optimize an osmotically controlled drug delivery system of diclofenac sodium. Osmotically controlled oral drug delivery systems utilize osmotic pressure for controlled delivery of active drugs. Drug delivery from these systems, to a large extent, is independent of the physiological factors ...
Energy Technology Data Exchange (ETDEWEB)
Benaouadj, M.; Aboubou, A.; Bahri, M.; Boucetta, A. [MSE Laboratory, Mohamed khiderBiskra University (Algeria); Ayad, M. Y., E-mail: ayadmy@gmail.com [R& D, Industrial Hybrid Vehicle Applications (France)
2016-07-25
In this work, an optimal control (under constraints) based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, Keep fuel cells working at optimal power delivery conditions, Maintain constant voltage across the common DC bus, Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.
Directory of Open Access Journals (Sweden)
Mahdi Benaouadj
2017-03-01
Full Text Available In this work, an optimal control (under constraints based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DCDC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithium-ion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.
International Nuclear Information System (INIS)
Sheng, Wenjuan; Guo, Aihuang; Liu, Yang; Azmi, Asrul Izam; Peng, Gang-Ding
2011-01-01
We present a novel technique that optimizes the real-time remote monitoring and control of dispersed civil infrastructures. The monitoring system is based on fiber Bragg gating (FBG) sensors, and transfers data via Ethernet. This technique combines parallel operation and self-adaptive sampling to increase the data acquisition rate in remote controllable structural monitoring systems. The compact parallel operation mode is highly efficient at achieving the highest possible data acquisition rate for the FBG sensor based local data acquisition system. Self-adaptive sampling is introduced to continuously coordinate local acquisition and remote control for data acquisition rate optimization. Key issues which impact the operation of the whole system, such as the real-time data acquisition rate, data processing capability, and buffer usage, are investigated. The results show that, by introducing parallel operation and self-adaptive sampling, the data acquisition rate can be increased by several times without affecting the system operating performance on both local data acquisition and remote process control
van Riel, N A; Giuseppin, M L; Verrips, C T
2000-01-01
The theory of dynamic optimal metabolic control (DOMC), as developed by Giuseppin and Van Riel (Metab. Eng., 2000), is applied to model the central nitrogen metabolism (CNM) in Saccharomyces cerevisiae. The CNM represents a typical system encountered in advanced metabolic engineering. The CNM is the source of the cellular amino acids and proteins, including flavors and potentially valuable biomolecules; therefore, it is also of industrial interest. In the DOMC approach the cell is regarded as an optimally controlled system. Given the metabolic genotype, the cell faces a control problem to maintain an optimal flux distribution in a changing environment. The regulation is based on strategies and balances feedback control of homeostasis and feedforward regulation for adaptation. The DOMC approach is an integrative, holistic approach, not based on mechanistic descriptions and (therefore) not biased by the variation present in biochemical and molecular biological data. It is an effective tool to structure the rapidly increasing amount of data on the function of genes and pathways. The DOMC model is used successfully to predict the responses of pulses of ammonia and glutamine to nitrogen-limited continuous cultures of a wild-type strain and a glutamine synthetase-negative mutant. The simulation results are validated with experimental data.
Liolios, A
2003-01-01
The paper presents a new numerical approach for a non-linear optimal control problem arising in earthquake civil engineering. This problem concerns the elastoplastic softening-fracturing unilateral contact between neighbouring buildings during earthquakes when Coulomb friction is taken into account under second-order instabilizing effects. So, the earthquake response of the adjacent structures can appear instabilities and chaotic behaviour. The problem formulation presented here leads to a set of equations and inequalities, which is equivalent to a dynamic hemivariational inequality in the way introduced by Panagiotopoulos [Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993]. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Wilson-theta method. The generally non-convex constitutive contact laws are piecewise linearized, and in each time-step a non-c...
Optimal coding-decoding for systems controlled via a communication channel
Yi-wei, Feng; Guo, Ge
2013-12-01
In this article, we study the problem of controlling plants over a signal-to-noise ratio (SNR) constrained communication channel. Different from previous research, this article emphasises the importance of the actual channel model and coder/decoder in the study of network performance. Our major objectives include coder/decoder design for an additive white Gaussian noise (AWGN) channel with both standard network configuration and Youla parameter network architecture. We find that the optimal coder and decoder can be realised for different network configuration. The results are useful in determining the minimum channel capacity needed in order to stabilise plants over communication channels. The coder/decoder obtained can be used to analyse the effect of uncertainty on the channel capacity. An illustrative example is provided to show the effectiveness of the results.
Optimizing the feedback control of Galvo scanners for laser manufacturing systems
Mirtchev, Theodore; Weeks, Robert; Minko, Sergey
2010-06-01
This paper summarizes the factors that limit the performance of moving-magnet galvo scanners driven by closed-loop digital servo amplifiers: torsional resonances, drifts, nonlinearities, feedback noise and friction. Then it describes a detailed Simulink® simulator that takes into account these factors and can be used to automatically tune the controller for best results with given galvo type and trajectory patterns. It allows for rapid testing of different control schemes, for instance combined position/velocity PID loops and displays the corresponding output in terms of torque, angular position and feedback sensor signal. The tool is configurable and can either use a dynamical state-space model of galvo's open-loop response, or can import the experimentally measured frequency domain transfer function. Next a drive signal digital pre-filtering technique is discussed. By performing a real-time Fourier analysis of the raw command signal it can be pre-warped to minimize all harmonics around the torsional resonances while boosting other non-resonant high frequencies. The optimized waveform results in much smaller overshoot and better settling time. Similar performance gain cannot be extracted from the servo controller alone.
Pouchol, Camille
2017-10-27
We consider a system of two coupled integro-differential equations modelling populations of healthy and cancer cells under chemotherapy. Both populations are structured by a phenotypic variable, representing their level of resistance to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering all possible infusion protocols and minimising the number of cancer cells over a prescribed time frame. We provide a quasi-optimal strategy and prove that it solves this problem for large final times. For this modelling framework, we illustrate our results with numerical simulations, and compare our optimal strategy with periodic treatment schedules.
Optimized Real-Time Control of Combined Sewerage Systems: Two Case Studies (Proceedings Paper)
The paper presents results of two case studies of Real-Time Control (RTC) alternatives evaluations that were conducted on portions of sewerage systems near Paris, France and in Quebec City, Canada, respectively. The studies were performed at real-scale demonstration sites. RTC al...
OPTIMIZED REAL-TIME CONTROL OF COMBINED SEWERAGE SYSTEMS: TWO CASE STUDIES
The paper presents results of two case studies of Real-Time Control (RTC) alternatives evaluations that were conducted on portions of sewerage systems near Paris, France and in Quebec City, Canada, respectively. The studies were performed at real-scale demonstration sites. RTC ...
International Nuclear Information System (INIS)
Lozano Cortes, E.; Somavilla Barros, R.
2014-01-01
The system Essential Service Water (SW) is a safety-related system whose function, which is to transfer heat from ESC until the last heat source, must be ensured. Therefore activities inspection in it are fundamental. In order to control those degradation mechanisms involving the loss of thickness of the pipes of this system, such as microbiological corrosion, a specific chapter in the Additional Inspection Manual (MIA) is made NC Almaraz containing the necessary to have an effective inspection program and an inspection procedure adapted to the type of defects detected bases. (Author)
Fuzzy Stochastic Optimal Guaranteed Cost Control of Bio-Economic Singular Markovian Jump Systems.
Li, Li; Zhang, Qingling; Zhu, Baoyan
2015-11-01
This paper establishes a bio-economic singular Markovian jump model by considering the price of the commodity as a Markov chain. The controller is designed for this system such that its biomass achieves the specified range with the least cost in a finite-time. Firstly, this system is described by Takagi-Sugeno fuzzy model. Secondly, a new design method of fuzzy state-feedback controllers is presented to ensure not only the regularity, nonimpulse, and stochastic singular finite-time boundedness of this kind of systems, but also an upper bound achieved for the cost function in the form of strict linear matrix inequalities. Finally, two examples including a practical example of eel seedling breeding are given to illustrate the merit and usability of the approach proposed in this paper.
HYBRID ALARM SYSTEMS: COMBINING SPATIAL ALARMS AND ALARM LISTS FOR OPTIMIZED CONTROL ROOM OPERATION
Energy Technology Data Exchange (ETDEWEB)
Ronald L. Boring; J.J. Persensky
2012-07-01
The US Department of Energy (DOE) is sponsoring research, development, and deployment on Light Water Reactor Sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current nuclear power plants. One of the main areas of focus is control room modernization. Within control room modernization, alarm system upgrades present opportunities to meet the broader goals of the LWRS project in demonstrating the use and safety of the advanced instrumentation and control (I&C) technologies and the short-term and longer term objectives of the plant. In this paper, we review approaches for and human factors issues behind upgrading alarms in the main control room of nuclear power plants.
Directory of Open Access Journals (Sweden)
Bajić Dragoljub
2014-01-01
Full Text Available A groundwater control system was designed to lower the water table and allow the pumping station “Bezdan 1” to be built. Based on a hydrodynamic analysis that suggested three alternative solutions, multicriteria optimization was applied to select the best alternative. The fuzzy analytic hierarchy process method was used, based on triangular fuzzy numbers. An assessment of the various factors that influenced the selection of the best alternative, as well as fuzzy optimization calculations, yielded the “weights” of the alternatives and the best alternative was selected for groundwater control at the site of the pumping station “Bezdan 1”. [Projekat Ministarstva nauke Republike Srbije, br. OI-176022, TR-33039 i br. III-43004
Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian
2017-08-01
In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.
Genetic algorithm-based optimal fuzzy control system for the MT 25 microtron
Czech Academy of Sciences Publication Activity Database
Krist, Pavel; Bíla, J.; Chvátil, David
2013-01-01
Roč. 8, MAY (2013), T05003 ISSN 1748-0221 R&D Projects: GA ČR GA13-27885S Institutional support: RVO:61389005 Keywords : hardware and accelerator control systems * accelerator modelling and simulations * multi- particle dynamics * single- particle dynamics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/05/T05003/pdf/1748-0221_8_05_T05003.pdf
Optimal Control of a Make-to-Stock System with Outsourced Production and Price-Sensitive Demand
Directory of Open Access Journals (Sweden)
Liuxin Chen
2014-01-01
and a choice of either high or low price, the system decides at any point in time whether to produce or even outsource for additional capacity as well as which price to sell the product at. We show in the paper that the optimal control policy is of dynamic threshold type: all decisions are based on the product inventory position which represents the state of the system; there is a state dependent base stock level to decide on production and a higher level on outsourcing; and there is a state dependent threshold which divides the choice of high and low prices.
System floorplanning optimization
Browning, David W.
2012-12-01
Notebook and Laptop Original Equipment Manufacturers (OEMs) place great emphasis on creating unique system designs to differentiate themselves in the mobile market. These systems are developed from the \\'outside in\\' with the focus on how the system is perceived by the end-user. As a consequence, very little consideration is given to the interconnections or power of the devices within the system with a mentality of \\'just make it fit\\'. In this paper we discuss the challenges of Notebook system design and the steps by which system floor-planning tools and algorithms can be used to provide an automated method to optimize this process to ensure all required components most optimally fit inside the Notebook system. © 2012 IEEE.
System floorplanning optimization
Browning, David W.
2013-01-10
Notebook and Laptop Original Equipment Manufacturers (OEMs) place great emphasis on creating unique system designs to differentiate themselves in the mobile market. These systems are developed from the \\'outside in\\' with the focus on how the system is perceived by the end-user. As a consequence, very little consideration is given to the interconnections or power of the devices within the system with a mentality of \\'just make it fit\\'. In this paper we discuss the challenges of Notebook system design and the steps by which system floor-planning tools and algorithms can be used to provide an automated method to optimize this process to ensure all required components most optimally fit inside the Notebook system.
Tiwari, Shivendra N.; Padhi, Radhakant
2018-01-01
Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.
Directory of Open Access Journals (Sweden)
Wang Liu
2018-05-01
Full Text Available Aim: Combined use of herbal medicines in patients underwent dual antiplatelet therapy (DAPT might cause bleeding or thrombosis because herbal medicines with anti-platelet activities may exhibit interactions with DAPT. In this study, we tried to use a feedback system control (FSC optimization technique to optimize dose strategy and clarify possible interactions in combined use of DAPT and herbal medicines.Methods: Herbal medicines with reported anti-platelet activities were selected by searching related references in Pubmed. Experimental anti-platelet activities of representative compounds originated from these herbal medicines were investigated using in vitro assay, namely ADP-induced aggregation of rat platelet-rich-plasma. FSC scheme hybridized artificial intelligence calculation and bench experiments to iteratively optimize 4-drug combination and 2-drug combination from these drug candidates.Results: Totally 68 herbal medicines were reported to have anti-platelet activities. In the present study, 7 representative compounds from these herbal medicines were selected to study combinatorial drug optimization together with DAPT, i.e., aspirin and ticagrelor. FSC technique first down-selected 9 drug candidates to the most significant 5 drugs. Then, FSC further secured 4 drugs in the optimal combination, including aspirin, ticagrelor, ferulic acid from DangGui, and forskolin from MaoHouQiaoRuiHua. Finally, FSC quantitatively estimated the possible interactions between aspirin:ticagrelor, aspirin:ferulic acid, ticagrelor:forskolin, and ferulic acid:forskolin. The estimation was further verified by experimentally determined Combination Index (CI values.Conclusion: Results of the present study suggested that FSC optimization technique could be used in optimization of anti-platelet drug combinations and might be helpful in designing personal anti-platelet therapy strategy. Furthermore, FSC analysis could also identify interactions between different
Energy Technology Data Exchange (ETDEWEB)
Sa, Andrea Nicolino de; Silva, Dayana Nunes e; Calderon, Agostinho [Petroleo Brasileiro S.A. (PETROBRAS), Rio de janeiro, RJ (Brazil)
2012-07-01
The need to reduce oil extraction costs by increasing the recovery factor in mature fields unconsolidated sandstone reservoirs motivated the development of drilling and completion techniques that integrate the various interfaces of engineering the well, resulting in a final well configuration that provides maximum oil production at a lower cost. Due to the continued growth of drilling and completion of new wells or deviation of old wells in the design of mesh density field with an advanced degree of exploitation, PETROBRAS took the challenge to seek options for projects well, in order to maintain productivity and reduce their construction time, with the optimization of drilling and sand control systems. To achieve these goals, PETROBRAS developed the SCARS - Simultaneous Sand Control and Liner Cementing System, a pioneer technique in the global oil industry, which consists of a one trip sequence of operations in which sand control screens and liner are installed followed by the open hole gravel pack operation performed with the alpha and beta waves deposition technique, using a non aqueous system as a carrier fluid. The sequence is completed by liner cementing in the same trip. The great success of this project was based on the definition of a specific application scenario and demands allowing optimization of the system. This project started with the development of a non aqueous system as a gravel pack carrier fluid in order to perform an open hole gravel pack with the alpha/beta wave deposition technique along with the development and optimization of SCARS procedures. This article details the planning and execution phases of this project and also presents a broad description of the technical aspects. (author)
Directory of Open Access Journals (Sweden)
Iordache Daniela-Monica
2017-01-01
Full Text Available The development and evolution of technological equipment for machining, assembly and control ensure the modernization of manufacturing processes. Devices as subsystems of technological system in the general context of the development and diversification of machinery, tools, workpiece and drives are made in a variety of sizes and constructive variants that create difficulties in their structure and improvement. Part of the research in recent years presented in this paper have as major objectives the increase of accuracy, productivity and flexibility of orientation and fixing devices for control operations. To this end there have been developed a mathematical model, a new method of working and an algorithm for optimizing the construction of the orientation and fixing system of a new type of control device.
International Nuclear Information System (INIS)
Liolios, A.A.; Boglou, A.K.
2003-01-01
The paper presents a new numerical approach for a non-linear optimal control problem arising in earthquake civil engineering. This problem concerns the elastoplastic softening-fracturing unilateral contact between neighbouring buildings during earthquakes when Coulomb friction is taken into account under second-order instabilizing effects. So, the earthquake response of the adjacent structures can appear instabilities and chaotic behaviour. The problem formulation presented here leads to a set of equations and inequalities, which is equivalent to a dynamic hemivariational inequality in the way introduced by Panagiotopoulos [Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993]. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Wilson-θ method. The generally non-convex constitutive contact laws are piecewise linearized, and in each time-step a non-convex linear complementarity problem is solved with a reduced number of unknowns
National Aeronautics and Space Administration — SynGenics Corporation proposes a program that unites mathematical and statistical processes, Response Surface Methodology, and multicriterial optimization methods to...
Optimal magnetic attitude control
DEFF Research Database (Denmark)
Wisniewski, Rafal; Markley, F.L.
1999-01-01
because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic...
Stable and optimal fuzzy control of a laboratory Antilock Braking System
DEFF Research Database (Denmark)
Precup, Radu-Emil; Spataru, Sergiu; Petriu, Emil M.
2010-01-01
of the rules using the domains of the input variables, and doing the local linearization of the plant model. The original T-S FCs are designed by parallel distributed compensation to obtain the state feedback gain matrices in the consequents of the rules. Two T-S FCs are tuned by imposing relaxed stability...... conditions to the fuzzy control systems (FCSs) and the other two T-S FCs are tuned by the linear-quadratic regulator approach applied to each rule. Linear matrix inequalities are solved to guarantee the global stability of the FCSs. Real-time experimental results validate the original T-S FCs and design...
Directory of Open Access Journals (Sweden)
Chih-Hong Lin
2015-01-01
Full Text Available Because the V-belt continuously variable transmission (CVT system driven by permanent magnet synchronous motor (PMSM has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming procedure. In order to overcome difficulties for design of the linear controllers, the hybrid recurrent Laguerre-orthogonal-polynomial neural network (NN control system which has online learning ability to respond to the system’s nonlinear and time-varying behaviors is proposed to control PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Laguerre-orthogonal-polynomial NN control system consists of an inspector control, a recurrent Laguerre-orthogonal-polynomial NN control with adaptive law, and a recouped control with estimated law. Moreover, the adaptive law of online parameters in the recurrent Laguerre-orthogonal-polynomial NN is derived using the Lyapunov stability theorem. Furthermore, the optimal learning rate of the parameters by means of modified particle swarm optimization (PSO is proposed to achieve fast convergence. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.
Becus, Georges A.; Chan, Alistair K.
1993-01-01
Three neural network processing approaches in a direct numerical optimization model reduction scheme are proposed and investigated. Large structural systems, such as large space structures, offer new challenges to both structural dynamicists and control engineers. One such challenge is that of dimensionality. Indeed these distributed parameter systems can be modeled either by infinite dimensional mathematical models (typically partial differential equations) or by high dimensional discrete models (typically finite element models) often exhibiting thousands of vibrational modes usually closely spaced and with little, if any, damping. Clearly, some form of model reduction is in order, especially for the control engineer who can actively control but a few of the modes using system identification based on a limited number of sensors. Inasmuch as the amount of 'control spillover' (in which the control inputs excite the neglected dynamics) and/or 'observation spillover' (where neglected dynamics affect system identification) is to a large extent determined by the choice of particular reduced model (RM), the way in which this model reduction is carried out is often critical.
Experience Replay for Optimal Control of Nonzero-Sum Game Systems With Unknown Dynamics.
Zhao, Dongbin; Zhang, Qichao; Wang, Ding; Zhu, Yuanheng
2016-03-01
In this paper, an approximate online equilibrium solution is developed for an N -player nonzero-sum (NZS) game systems with completely unknown dynamics. First, a model identifier based on a three-layer neural network (NN) is established to reconstruct the unknown NZS games systems. Moreover, the identifier weight vector is updated based on experience replay technique which can relax the traditional persistence of excitation condition to a simplified condition on recorded data. Then, the single-network adaptive dynamic programming (ADP) with experience replay algorithm is proposed for each player to solve the coupled nonlinear Hamilton- (HJ) equations, where only the critic NN weight vectors are required to tune for each player. The feedback Nash equilibrium is provided by the solution of the coupled HJ equations. Based on the experience replay technique, a novel critic NN weights tuning law is proposed to guarantee the stability of the closed-loop system and the convergence of the value functions. Furthermore, a Lyapunov-based stability analysis shows that the uniform ultimate boundedness of the closed-loop system is achieved. Finally, two simulation examples are given to verify the effectiveness of the proposed control scheme.
Ghenai, C.; Bettayeb, M.
2017-11-01
Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.
Linear quadratic optimization for positive LTI system
Muhafzan, Yenti, Syafrida Wirma; Zulakmal
2017-05-01
Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.
Optimizing pipeline transportation using a fuzzy controller
Energy Technology Data Exchange (ETDEWEB)
Aramaki, Thiago L.; Correa, Joao L. L.; Montalvoa, Antonio F. F. [National Control and Operation Center Tranpetro, Rio de Janeiro, (Brazil)
2010-07-01
The optimization of pipeline transportation is a big concern for the transporter companies. This paper is the third of a series of three articles which investigated the application of a system to simulate the human ability to operate a pipeline in an optimized way. The present paper presents the development of a proportional integral (PI) fuzzy controller, in order to optimize pipeline transportation capacity. The fuzzy adaptive PI controller system was developed and tested with a hydraulic simulator. On-field data were used from the OSBRA pipeline. The preliminary tests showed that the performance of the software simulation was satisfactory. It varied the set-point of the conventional controller within the limits of flow meters. The transport capacity of the pipe was maximize without compromising the integrity of the commodities transported. The system developed proved that it can be easily deployed as a specialist optimizing system to be added to SCADA systems.
Verta, Antonella; Schena, Emiliano; Silvestri, Sergio
2010-06-01
The control of thermo-hygrometric conditions of gas delivered in neonatal mechanical ventilation appears to be a particularly difficult task, mainly due to the vast number of parameters to be monitored and the control strategies of heated humidifiers to be adopted. In the present paper, we describe the heat and fluid exchange occurring in a heated humidifier in mathematical terms; we analyze the sensitivity of the relative humidity of outlet gas as a function of thermo-hygrometric and fluid-dynamic parameters of delivered gas; we propose a control strategy that will enable the stability of outlet gas thermo-hygrometric conditions. The mathematical model is represented by a hyper-surface containing the functional relations between the input variables, which must be measured, and the output variables, which have to remain constant. Model sensitivity analysis shows that heated humidifier efficacy and stability of outlet gas thermo-hygrometric conditions are principally influenced by four parameters: liquid surface temperature, gas flow rate, inlet gas temperature and inlet gas relative humidity. The theoretical model has been experimentally validated in typical working conditions of neonatal applications. The control strategy has been implemented by a minimal measurement system composed of three thermometers, a humidity sensor, and a flow rate sensor, and based on the theoretical model. Outlet relative humidity, contained in the range 90+/-4% and 94+/-4%, corresponding with temperature variations in the range 28+/-2 degrees C and 38+/-2 degrees C respectively, has been obtained in the whole flow rate range typical of neonatal ventilation from 1 to 10 L/min. We conclude that in order to obtain the stability of the thermo-hygrometric conditions of the delivered gas mixture: (a) a control strategy with a more complex measurement system must be implemented (i.e. providing more input variables); (b) and the gas may also need to be pre-warmed before entering the humidifying
Direct Optimal Control of Duffing Dynamics
Oz, Hayrani; Ramsey, John K.
2002-01-01
The "direct control method" is a novel concept that is an attractive alternative and competitor to the differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear, time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form control laws based on minimization of a quadratic control performance measure. We present an application of the direct method to the dynamics and optimal control of the Duffing system where the control performance measure is not restricted to a quadratic form and hence may include a quartic energy term. The results we present in this report also constitute further generalizations of our earlier work in "direct optimal control methodology." The approach is demonstrated for the optimal control of the Duffing equation with a softening nonlinear stiffness.
International Nuclear Information System (INIS)
Khaneja, Navin; Brockett, Roger; Glaser, Steffen J.
2002-01-01
Radio-frequency pulses are used in nuclear-magnetic-resonance spectroscopy to produce unitary transfer of states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation, and to optimize the sensitivity of the experiments. Many coherence-transfer experiments in NMR, involving a network of coupled spins, use temporary spin decoupling to produce desired effective Hamiltonians. In this paper, we demonstrate that significant time can be saved in producing an effective Hamiltonian if spin decoupling is avoided. We provide time-optimal pulse sequences for producing an important class of effective Hamiltonians in three-spin networks. These effective Hamiltonians are useful for coherence-transfer experiments in three-spin systems and implementation of indirect swap and Λ 2 (U) gates in the context of NMR quantum computing. It is shown that computing these time-optimal pulses can be reduced to geometric problems that involve computing sub-Riemannian geodesics. Using these geometric ideas, explicit expressions for the minimum time required for producing these effective Hamiltonians, transfer of coherence, and implementation of indirect swap gates, in a three-spin network are derived (Theorems 1 and 2). It is demonstrated that geometric control techniques provide a systematic way of finding time-optimal pulse sequences for transferring coherence and synthesizing unitary transformations in quantum networks, with considerable time savings (e.g., 42.3% for constructing indirect swap gates)
Directory of Open Access Journals (Sweden)
V. A. Baturin
2017-03-01
Full Text Available An optimal control problem for discrete systems is considered. A method of successive improvements along with its modernization based on the expansion of the main structures of the core algorithm about the parameter is suggested. The idea of the method is based on local approximation of attainability set, which is described by the zeros of the Bellman function in the special problem of optimal control. The essence of the problem is as follows: from the end point of the phase is required to find a path that minimizes functional deviations of the norm from the initial state. If the initial point belongs to the attainability set of the original controlled system, the value of the Bellman function equal to zero, otherwise the value of the Bellman function is greater than zero. For this special task Bellman equation is considered. The support approximation and Bellman equation are selected. The Bellman function is approximated by quadratic terms. Along the allowable trajectory, this approximation gives nothing, because Bellman function and its expansion coefficients are zero. We used a special trick: an additional variable is introduced, which characterizes the degree of deviation of the system from the initial state, thus it is obtained expanded original chain. For the new variable initial nonzero conditions is selected, thus obtained trajectory is lying outside attainability set and relevant Bellman function is greater than zero, which allows it to hold a non-trivial approximation. As a result of these procedures algorithms of successive improvements is designed. Conditions for relaxation algorithms and conditions for the necessary conditions of optimality are also obtained.
Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.
2013-01-01
The Integrated Vehicle Safety Department of TNO (Dutch Organization for Applied Scientific Research) investigates the application of modern control methods in the Integrated Vehicle Dynamics Control (IVDC) field, as a strategic research topic of the Beyond Safe framework. The aim of IVDC is to
Li, Jing; He, Li; Fan, Xing; Chen, Yizhong; Lu, Hongwei
2017-08-01
This study presents a synergic optimization of control for greenhouse gas (GHG) emissions and system cost in integrated municipal solid waste (MSW) management on a basis of bi-level programming. The bi-level programming is formulated by integrating minimizations of GHG emissions at the leader level and system cost at the follower level into a general MSW framework. Different from traditional single- or multi-objective approaches, the proposed bi-level programming is capable of not only addressing the tradeoffs but also dealing with the leader-follower relationship between different decision makers, who have dissimilar perspectives interests. GHG emission control is placed at the leader level could emphasize the significant environmental concern in MSW management. A bi-level decision-making process based on satisfactory degree is then suitable for solving highly nonlinear problems with computationally effectiveness. The capabilities and effectiveness of the proposed bi-level programming are illustrated by an application of a MSW management problem in Canada. Results show that the obtained optimal management strategy can bring considerable revenues, approximately from 76 to 97 million dollars. Considering control of GHG emissions, it would give priority to the development of the recycling facility throughout the whole period, especially in latter periods. In terms of capacity, the existing landfill is enough in the future 30 years without development of new landfills, while expansion to the composting and recycling facilities should be paid more attention.
Dynamic optimization and adaptive controller design
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Optimization and control of metal forming processes
Havinga, Gosse Tjipke
2016-01-01
Inevitable variations in process and material properties limit the accuracy of metal forming processes. Robust optimization methods or control systems can be used to improve the production accuracy. Robust optimization methods are used to design production processes with low sensitivity to the
Kim, Sung-Chul; Lee, Hae-Kag; Lee, Yang-Sub; Cho, Jae-Hwan
2015-01-01
We found a way to optimize the image quality and reduce the exposure dose of patients through the proper activity combination of the automatic exposure control system chamber for the dose optimization when examining the pelvic anteroposterior side using the phantom of the human body standard model. We set 7 combinations of the chamber of automatic exposure control system. The effective dose was yielded by measuring five times for each according to the activity combination of the chamber for the dose measurement. Five radiologists with more than five years of experience evaluated the image through picture archiving and communication system using double blind test while classifying the 6 anatomical sites into 3-point level (improper, proper, perfect). When only one central chamber was activated, the effective dose was found to be the highest level, 0.287 mSv; and lowest when only the top left chamber was used, 0.165 mSv. After the subjective evaluation by five panel members on the pelvic image was completed, there was no statistically meaningful difference between the 7 chamber combinations, and all had good image quality. When testing the pelvic anteroposterior side with digital radiography, we were able to reduce the exposure dose of patients using the combination of the top right side of or the top two of the chamber.
Optimal Control of Evolution Mixed Variational Inclusions
Energy Technology Data Exchange (ETDEWEB)
Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx [Universidad Nacional Autónoma de México, Departamento de Recursos Naturales, Instituto de Geofísica (Mexico)
2013-12-15
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.
Optimal Control of Evolution Mixed Variational Inclusions
International Nuclear Information System (INIS)
Alduncin, Gonzalo
2013-01-01
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory
Role of controllability in optimizing quantum dynamics
International Nuclear Information System (INIS)
Wu Rebing; Hsieh, Michael A.; Rabitz, Herschel
2011-01-01
This paper reveals an important role that controllability plays in the complexity of optimizing quantum control dynamics. We show that the loss of controllability generally leads to multiple locally suboptimal controls when gate fidelity in a quantum control system is maximized, which does not happen if the system is controllable. Such local suboptimal controls may attract an optimization algorithm into a local trap when a global optimal solution is sought, even if the target gate can be perfectly realized. This conclusion results from an analysis of the critical topology of the corresponding quantum control landscape, which refers to the gate fidelity objective as a functional of the control fields. For uncontrollable systems, due to SU(2) and SU(3) dynamical symmetries, the control landscape corresponding to an implementable target gate is proven to possess multiple locally optimal critical points, and its ruggedness can be further increased if the target gate is not realizable. These results imply that the optimization of quantum dynamics can be seriously impeded when operating with local search algorithms under these conditions, and thus full controllability is demanded.
Nekrylov, Ivan; Korotaev, Valery; Blokhina, Anastasia; Kleshchenok, Maksim
2017-06-01
In the world is the widespread adoption of measuring equipment of new generation, which is characterized by small size, high automation level, a multi-channel, digital filtering, satellite synchronization, wireless communication, digital record in long-term memory with great resource, powered by long-lived sources, etc. However, modern equipment base of the Russian institutions and the level of development of technical facilities and measuring technologies lag far behind developed countries. For this reason, the vacated niches are actively developed by foreign companies. For example, more than 70% instrumentation performing works on the territory of Russia, equipped with imported equipment (products of Sweden and Germany companies); the amount of work performed with German equipment is more than 70% of the total volume of these works; more than 80% of industrial measurements are performed using HEXAGON equipment (Sweden). These trends show that the Russian sector of measuring technology gradually become import-dependent, which poses a threat to the economic security of the country and consistent with national priorities. The results of the research will allow to develop the theory of formation of control systems of the displacement with high accuracy and unattainable for the existing analogue ergonomic and weight characteristics combined with a comparable or lower cost. These advantages will allow you to be successful competition, and eventually to supplant the existing system, which had no fundamental changes in the last 20 years and, therefore, retained all the drawbacks: large size and weight, high power consumption, the dependence on magnetic fields
Optimal control and performance test of solar-assisted cooling system
Huang, B.J.
2010-10-01
The solar-assisted cooling system (SACH) was developed in the present study. The ejector cooling system (ECS) is driven by solar heat and connected in parallel with an inverter-type air conditioner (A/C). The cooling load can be supplied by the ECS when solar energy is available and the input power of the A/C can be reduced. In variable weather, the ECS will probably operate at off-design condition of ejector and the cooling capability of the ECS can be lost completely. In order to make the ejector operate at critical or non-critical double-choking condition to obtain a better performance, an electronic expansion valve was installed in the suction line of the ejector to regulate the opening of the expansion valve to control the evaporator temperature. This will make the SACH always produce cooling effect even at lower solar radiation periods while the ejector performs at off-design conditions. The energy saving of A/C is experimentally shown 50-70% due to the cooling performance of ECS. The long-term performance test results show that the daily energy saving is around 30-70% as compared to the energy consumption of A/C alone (without solar-driven ECS). The total energy saving of A/C is 52% over the entire test period. © 2010 Elsevier Ltd. All rights reserved.
An example in linear quadratic optimal control
Weiss, George; Zwart, Heiko J.
1998-01-01
We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme
Symposium on Optimal Control Theory
1987-01-01
Control theory can be roughly classified as deterministic or stochastic. Each of these can further be subdivided into game theory and optimal control theory. The central problem of control theory is the so called constrained maximization (which- with slight modifications--is equivalent to minimization). One can then say, heuristically, that the major problem of control theory is to find the maximum of some performance criterion (or criteria), given a set of constraints. The starting point is, of course, a mathematical representation of the performance criterion (or criteria)- sometimes called the objective functional--along with the constraints. When the objective functional is single valued (Le. , when there is only one objective to be maximized), then one is dealing with optimal control theory. When more than one objective is involved, and the objectives are generally incompatible, then one is dealing with game theory. The first paper deals with stochastic optimal control, using the dynamic programming ...
An optimal multi-channel memory controller for real-time systems
Gomony, M.D.; Akesson, K.B.; Goossens, K.G.W.
2013-01-01
Optimal utilization of a multi-channel memory, such as Wide IO DRAM, as shared memory in multi-processor platforms depends on the mapping of memory clients to the memory channels, the granularity at which the memory requests are interleaved in each channel, and the bandwidth and memory capacity
Directory of Open Access Journals (Sweden)
Shuai Zeng
2013-01-01
Full Text Available With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of life. The social network of both fixed and mobile users can be seen as networked agent system. At present, kinds of devices and access network technology are widely used. Different users in this networked agent system may need different coding rates multimedia data due to their heterogeneous demand. This paper proposes a distributed flow rate control algorithm to optimize multimedia data transmission of the networked agent system with the coexisting various coding rates. In this proposed algorithm, transmission path and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed algorithm and compares the system that adopts the proposed algorithm with the existing system based on the simulation experiment and mathematical analysis. The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth utilization of user nodes and lower upload bandwidth consumption of source node.
Directory of Open Access Journals (Sweden)
Pratap Chandra Pradhan
2016-03-01
Full Text Available In this paper, a Firefly Algorithm (FA optimized fuzzy PID controller is proposed for Automatic Generation Control (AGC of multi-area multi-source power system. Initially, a two area six units power system is used and the gains of the fuzzy PID controller are optimized employing FA optimization technique using an ITAE criterion. The superiority of the proposed FA optimized fuzzy PID controller has been demonstrated by comparing the results with some recently published approaches such as optimal control and Differential Evolution (DE optimized PID controller for the identical interconnected power system. Then, physical constraints such as Time Delay (TD, reheat turbine and Generation Rate Constraint (GRC are included in the system model and the superiority of FA is demonstrated by comparing the results over DE, Gravitational Search Algorithm (GSA and Genetic Algorithm (GA optimization techniques for the same interconnected power system. Additionally, a Unified Power Flow Controller (UPFC is placed in the tie-line and Superconducting Magnetic Energy Storage (SMES units are considered in both areas. Simulation results show that the system performances are improved significantly with the proposed UPFC and SMES units. Sensitivity analysis of the system is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters. Finally, the effectiveness of the proposed controller design is verified by considering different types of load patterns.
Mulla, Ameer K.; Patil, Deepak U.; Chakraborty, Debraj
2018-02-01
N identical agents with bounded inputs aim to reach a common target state (consensus) in the minimum possible time. Algorithms for computing this time-optimal consensus point, the control law to be used by each agent and the time taken for the consensus to occur, are proposed. Two types of multi-agent systems are considered, namely (1) coupled single-integrator agents on a plane and, (2) double-integrator agents on a line. At the initial time instant, each agent is assumed to have access to the state information of all the other agents. An algorithm, using convexity of attainable sets and Helly's theorem, is proposed, to compute the final consensus target state and the minimum time to achieve this consensus. Further, parts of the computation are parallelised amongst the agents such that each agent has to perform computations of O(N2) run time complexity. Finally, local feedback time-optimal control laws are synthesised to drive each agent to the target point in minimum time. During this part of the operation, the controller for each agent uses measurements of only its own states and does not need to communicate with any neighbouring agents.
Fučík, Ivan
2015-01-01
This thesis is focused on CRM solutions in small and medium-sized organizations with respect to the quality of their customer relationship. The main goal of this work is to design an optimal CRM solution in the environment of real organization. To achieve this goal it is necessary to understand the theoretical basis of several topics, such as organizations and their relationship with customers, CRM systems, their features and trends. On the basis of these theoretical topics it is possible to ...
Directory of Open Access Journals (Sweden)
Hafiz Majid Hussain
2018-01-01
Full Text Available The traditional power grid is inadequate to overcome modern day challenges. As the modern era demands the traditional power grid to be more reliable, resilient, and cost-effective, the concept of smart grid evolves and various methods have been developed to overcome these demands which make the smart grid superior over the traditional power grid. One of the essential components of the smart grid, home energy management system (HEMS enhances the energy efficiency of electricity infrastructure in a residential area. In this aspect, we propose an efficient home energy management controller (EHEMC based on genetic harmony search algorithm (GHSA to reduce electricity expense, peak to average ratio (PAR, and maximize user comfort. We consider EHEMC for a single home and multiple homes with real-time electricity pricing (RTEP and critical peak pricing (CPP tariffs. In particular, for multiple homes, we classify modes of operation for the appliances according to their energy consumption with varying operation time slots. The constrained optimization problem is solved using heuristic algorithms: wind-driven optimization (WDO, harmony search algorithm (HSA, genetic algorithm (GA, and proposed algorithm GHSA. The proposed algorithm GHSA shows higher search efficiency and dynamic capability to attain optimal solutions as compared to existing algorithms. Simulation results also show that the proposed algorithm GHSA outperforms the existing algorithms in terms of reduction in electricity cost, PAR, and maximize user comfort.
Topology of the landscape of optimally controlled transitions in a multilevel system
CSIR Research Space (South Africa)
Madigoe, RJ
2012-10-01
Full Text Available that full control is not possible in a practical experiment and this study will investigate the influence of experimental and other limitations on the control landscape. Depending on the outcome of the investigation, the applicability of various optimisation...
Evaluation of Advanced Control for Li-ion Battery Balancing Systems using Convex Optimization
DEFF Research Database (Denmark)
Pinto, Claudio; Barreras, Jorge Varela; Schaltz, Erik
2016-01-01
Typically, the unique objective pursued in either active or passive balancing is equalization of single cell charge. However, a balancing circuit may offer more control features, like virtual equalization of single cell internal resistance or thermal balancing. Such control features for balancing...
Optimal design and real time control of the integrated urban run-off system
DEFF Research Database (Denmark)
Harremoës, Poul; Rauch, Wolfgang
1999-01-01
Traditional design of urban run-off systems is based on fixed rules with respect to the points of demarcation between the three systems involved: the sewer system, the treatment plant and the receiving water. An alternative to fixed rules is to model the total system. There is still uncertainty...... and evaluation of competing alternatives for design. However, the complexity of these systems is such that the parameters associated with pollution are hardly identifiable on the basis of reasonable monitoring programmes. The empirical-iterative approach: structures are built on simplified assumptions...
DEFF Research Database (Denmark)
Feng, Ju; Ying, Zu-Guang; Zhu, Wei-Qiu
2012-01-01
A minimax stochastic optimal semi-active control strategy for stochastically excited quasi-integrable Hamiltonian systems with parametric uncertainty by using magneto-rheological (MR) dampers is proposed. Firstly, the control problem is formulated as an n-degree-of-freedom (DOF) controlled, uncer...
Felix Ströer; Katharina Trinkaus; Indek Raid; Jörg Seewig
2018-01-01
Stylus instruments are widely used in production metrology due to their robustness. Interchangeable cantilevers allow a wide range of measuring tasks to be covered with one measuring device. When approaching the sample, the positioning of the stylus instrument tip relative to the measurement object has to be accomplished in a controlled way in order to prevent damages to the specimen and the stylus cantilever. This is achieved by a closed-loop control. We present a method for the objective de...
Optimal Wentzell Boundary Control of Parabolic Equations
International Nuclear Information System (INIS)
Luo, Yousong
2017-01-01
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Optimal Wentzell Boundary Control of Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)
2017-04-15
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Model and experiments to optimize co-adaptation in a simplified myoelectric control system.
Couraud, M; Cattaert, D; Paclet, F; Oudeyer, P Y; de Rugy, A
2018-04-01
To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional
Model and experiments to optimize co-adaptation in a simplified myoelectric control system
Couraud, M.; Cattaert, D.; Paclet, F.; Oudeyer, P. Y.; de Rugy, A.
2018-04-01
Objective. To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. Approach. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. Results. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. Significance. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this
Design of an optimized adaptive optics system with a photo-controlled deformable mirror
Czech Academy of Sciences Publication Activity Database
Pilař, Jan; Bonora, Stefano; Lucianetti, Antonio; Jelínková, H.; Mocek, Tomáš
2016-01-01
Roč. 28, č. 13 (2016), s. 1422-1425 ISSN 1041-1135 Institutional support: RVO:68378271 Keywords : adaptive optics * closed loop systems * deformable mirror Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.375, year: 2016
Optimal control of motorsport differentials
Tremlett, A. J.; Massaro, M.; Purdy, D. J.; Velenis, E.; Assadian, F.; Moore, A. P.; Halley, M.
2015-12-01
Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm.
Special Issue on Advances in Integrated Energy Systems Design, Control and Optimization
DEFF Research Database (Denmark)
Anvari-Moghaddam, Amjad; Guerrero, Josep M.
2017-01-01
and novel operation schemes, and new incentives and business models. This revolution is affecting the current paradigm and demanding that energy systems be integrated into multi-carrier energy hubs [1]. It is greatly increasing the interactions between today’s energy systems at various scales (ranging from...... energy costs to all consumers, increase reliability of service and mitigate carbon footprints. However, this plan of action necessitates regulatory frameworks, strategic incentives and business models for efficient deployment....
Chelcy R. Ford; Barbara C. Reynolds; James Vose
2010-01-01
The hemlock woolly adelgid (HWA, Adelges tsugae Annand) is causing widespread decline and mortality of eastern hemlock trees (Tsuga Canadensis (L.) Carr.). Stem injection of insecticide is widely used as a control measure, but its effectiveness depends on individual tree hydraulic characteristics. Recent work has shown that eastern...
International Nuclear Information System (INIS)
Kim, Kihyung; Spakovsky, Michael R. von; Wang, M.; Nelson, Douglas J.
2011-01-01
During system development, large-scale, complex energy systems require multi-disciplinary efforts to achieve system quality, cost, and performance goals. As systems become larger and more complex, the number of possible system configurations and technologies, which meet the designer's objectives optimally, increases greatly. In addition, both transient and environmental effects may need to be taken into account. Thus, the difficulty of developing the system via the formulation of a single optimization problem in which the optimal synthesis/design and operation/control of the system are achieved simultaneously is great and rather problematic. This difficulty is further heightened with the introduction of uncertainty analysis, which transforms the problem from a purely deterministic one into a probabilistic one. Uncertainties, system complexity and nonlinearity, and large numbers of decision variables quickly render the single optimization problem unsolvable by conventional, single-level, optimization strategies. To address these difficulties, the strategy adopted here combines a dynamic physical decomposition technique for large-scale optimization with a response sensitivity analysis method for quantifying system response uncertainties to given uncertainty sources. The feasibility of such a hybrid approach is established by applying it to the synthesis/design and operation/control of a 5 kW proton exchange membrane (PEM) fuel cell system.
Optimal Control Inventory Stochastic With Production Deteriorating
Affandi, Pardi
2018-01-01
In this paper, we are using optimal control approach to determine the optimal rate in production. Most of the inventory production models deal with a single item. First build the mathematical models inventory stochastic, in this model we also assume that the items are in the same store. The mathematical model of the problem inventory can be deterministic and stochastic models. In this research will be discussed how to model the stochastic as well as how to solve the inventory model using optimal control techniques. The main tool in the study problems for the necessary optimality conditions in the form of the Pontryagin maximum principle involves the Hamilton function. So we can have the optimal production rate in a production inventory system where items are subject deterioration.
Boland, J. S., III
1973-01-01
The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.
Optimal control of native predators
Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.
2010-01-01
We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.
International Nuclear Information System (INIS)
Biswas, Imran H.; Jakobsen, Espen R.; Karlsen, Kenneth H.
2010-01-01
We develop a viscosity solution theory for a system of nonlinear degenerate parabolic integro-partial differential equations (IPDEs) related to stochastic optimal switching and control problems or stochastic games. In the case of stochastic optimal switching and control, we prove via dynamic programming methods that the value function is a viscosity solution of the IPDEs. In our setting the value functions or the solutions of the IPDEs are not smooth, so classical verification theorems do not apply.
International Nuclear Information System (INIS)
Wu, Yuhu; Kumar, Madan; Shen, Tielong
2016-01-01
Highlights: • An in-cylinder pressure based measuring method for the RGF is derived. • A stochastic logical dynamical model is proposed to represent the transient behavior of the RGF. • The receding horizon controller is designed to reduce the variance of the RGF. • The effectiveness of the proposed model and control approach is validated by the experimental evidence. - Abstract: In four stroke internal combustion engines, residual gas from the previous cycle is an important factor influencing the combustion quality of the current cycle, and the residual gas fraction (RGF) is a popular index to monitor the influence of residual gas. This paper investigates the cycle-to-cycle transient behavior of the RGF in the view of systems theory and proposes a multi-valued logic-based control strategy for attenuation of RGF fluctuation. First, an in-cylinder pressure sensor-based method for measuring the RGF is provided by following the physics of the in-cylinder transient state of four-stroke internal combustion engines. Then, the stochastic property of the RGF is examined based on statistical data obtained by conducting experiments on a full-scale gasoline engine test bench. Based on the observation of the examination, a stochastic logical transient model is proposed to represent the cycle-to-cycle transient behavior of the RGF, and with the model an optimal feedback control law, which targets on rejection of the RGF fluctuation, is derived in the framework of stochastic logical system theory. Finally, experimental results are demonstrated to show the effectiveness of the proposed model and the control strategy.
Performance Optimization of the Water Cooling System for Resonance Frequency Control of the PEFP DTL
International Nuclear Information System (INIS)
Kim, K. Y.; Kim, H. K.; Kim, H. S.; Yoon, J. C.; Sohn, Y. K.; Kweon, S. J.; Park, J.; Kim, K. S.
2010-03-01
The objective of in this research project is prototype cooling water skid of separated closed loop in order to supply and withdraw low conductivity deionized water in drift tube of drift tube linac as core components of proton accelerates. This report is dealt with design specification of J-PARC 400 MeV Linac cooling water system, PEFP DTL cooling system, specification of RCCS21-24, RCCS101 with pump, loss coefficient for DTL2 modeling, pressure drop with flow rate of heat exchanger.
An Optimization of Manufacturing Systems using a Feedback Control Scheduling Model
Ikome, John M.; Kanakana, Grace M.
2018-03-01
In complex production system that involves multiple process, unplanned disruption often turn to make the entire production system vulnerable to a number of problems which leads to customer’s dissatisfaction. However, this problem has been an ongoing problem that requires a research and methods to streamline the entire process or develop a model that will address it, in contrast to this, we have developed a feedback scheduling model that can minimize some of this problem and after a number of experiment, it shows that some of this problems can be eliminated if the correct remedial actions are implemented on time.
Optimal control of a CSTR process
Directory of Open Access Journals (Sweden)
A. Soukkou
2008-12-01
Full Text Available Designing an effective criterion and learning algorithm for find the best structure is a major problem in the control design process. In this paper, the fuzzy optimal control methodology is applied to the design of the feedback loops of an Exothermic Continuous Stirred Tank Reactor system. The objective of design process is to find an optimal structure/gains of the Robust and Optimal Takagi Sugeno Fuzzy Controller (ROFLC. The control signal thus obtained will minimize a performance index, which is a function of the tracking/regulating errors, the quantity of the energy of the control signal applied to the system, and the number of fuzzy rules. The genetic learning is proposed for constructing the ROFLC. The chromosome genes are arranged into two parts, the binary-coded part contains the control genes and the real-coded part contains the genes parameters representing the fuzzy knowledge base. The effectiveness of this chromosome formulation enables the fuzzy sets and rules to be optimally reduced. The performances of the ROFLC are compared to these found by the traditional PD controller with Genetic Optimization (PD_GO. Simulations demonstrate that the proposed ROFLC and PD_GO has successfully met the design specifications.
Optimal Control of Water Systems Under Forecast Uncertainty : Robust, Proactive, and Integrated
Raso, L.
2013-01-01
Water systems consist of natural and man-made objects serving multiple essential purposes. They are affected by many types of meteorological disturbances. In order to deal with these disturbances and to serve the desired objectives, infrastructures have been built and managed by societies for
A comparative study and analysis of an optimized control strategy for the toyota hybrid system
Hofman, Theo; Purnot, Thijs
2009-01-01
The Toyota Prius equipped with the Toyota Hybrid System (THS) II vehicle uses a combination of a combustion engine and two electric machines in order to increase the efficiency and the fuel economy. The Energy Management Strategy (EMS) of the THS II is analyzed using measurement data collected with
Optimization of Urban Wastewater Systems using Model Based Design and Control
Velez Quintero, C.A.
2012-01-01
In this research a considerable amount of scientific evidence had been collected which leads to the conclusion that the urban wastewater components should be designed as one integrated system, if the protection of the receiving waters is to be achieved cost-effectively. Even more, there is a need
Optimization and control of feb-batch fermentation processes by using artificial neural systems
Valencia Peroni, Catalina
2002-01-01
Optimización y Control de Procesos de Fermentación Fed-batch a través de Sistemas Neuronales ArtificialesLos procesos de fermentación son ampliamente utilizados en la industria química, farmacéutica y alimentaria. La producción de comida para animales, yogures, quesos, cerveza, colorantes para comida, fertilizantes, medicinas terapéuticas y penicilina, entre otros, son algunos ejemplos de procesos biotecnológicos. En una búsqueda rápida en Internet, cerca de 113000 sitios fueron encontrados, ...
Study on the evolutionary optimization of the topology of network control systems
DEFF Research Database (Denmark)
Zhou, Z.; Chen, B.; Wang, H.
2010-01-01
Computer networks have been very popular in enterprise applications. However, optimisation of network designs that allows networks to be used more efficiently in industrial environment and enterprise applications remains an interesting research topic. This article mainly discusses the topology...... control network are considered in the optimisation process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative...
A Feedback Optimal Control Algorithm with Optimal Measurement Time Points
Directory of Open Access Journals (Sweden)
Felix Jost
2017-02-01
Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.
Directory of Open Access Journals (Sweden)
Xiangyang Zhou
2015-08-01
Full Text Available This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP applied in an unmanned airship (UA, by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS®; then, to analyze the system’s kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB® SIMULINK® controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance.
Optimal control with aerospace applications
Longuski, James M; Prussing, John E
2014-01-01
Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a...
Directory of Open Access Journals (Sweden)
Meng Xiong
2015-08-01
Full Text Available Energy storage devices are expected to be more frequently implemented in wind farms in near future. In this paper, both pumped hydro and fly wheel storage systems are used to assist a wind farm to smooth the power fluctuations. Due to the significant difference in the response speeds of the two storages types, the wind farm coordination with two types of energy storage is a problem. This paper presents two methods for the coordination problem: a two-level hierarchical model predictive control (MPC method and a single-level MPC method. In the single-level MPC method, only one MPC controller coordinates the wind farm and the two storage systems to follow the grid scheduling. Alternatively, in the two-level MPC method, two MPC controllers are used to coordinate the wind farm and the two storage systems. The structure of two level MPC consists of outer level and inner level MPC. They run alternatively to perform real-time scheduling and then stop, thus obtaining long-term scheduling results and sending some results to the inner level as input. The single-level MPC method performs both long- and short-term scheduling tasks in each interval. The simulation results show that the methods proposed can improve the utilization of wind power and reduce wind power spillage. In addition, the single-level MPC and the two-level MPC are not interchangeable. The single-level MPC has the advantage of following the grid schedule while the two-level MPC can reduce the optimization time by 60%.
Optimizing Multi-Product Multi-Constraint Inventory Control Systems with Stochastic Replenishments
Allah Taleizadeh, Ata; Aryanezhad, Mir-Bahador; Niaki, Seyed Taghi Akhavan
Multi-periodic inventory control problems are mainly studied employing two assumptions. The first is the continuous review, where depending on the inventory level orders can happen at any time and the other is the periodic review, where orders can only happen at the beginning of each period. In this study, we relax these assumptions and assume that the periodic replenishments are stochastic in nature. Furthermore, we assume that the periods between two replenishments are independent and identically random variables. For the problem at hand, the decision variables are of integer-type and there are two kinds of space and service level constraints for each product. We develop a model of the problem in which a combination of back-order and lost-sales are considered for the shortages. Then, we show that the model is of an integer-nonlinear-programming type and in order to solve it, a search algorithm can be utilized. We employ a simulated annealing approach and provide a numerical example to demonstrate the applicability of the proposed methodology.
Optimization-Based Approaches to Control of Probabilistic Boolean Networks
Directory of Open Access Journals (Sweden)
Koichi Kobayashi
2017-02-01
Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.
National Research Council Canada - National Science Library
Best, Brad; Lovett, Marsha
2005-01-01
.... Using an optimal model of task performance subject to human constraints may be a more efficient way to develop models of skilled human performance for use in training, especially since optimal models...
International Nuclear Information System (INIS)
Garon, Ariane
2014-01-01
Since the foundations of quantum physics have been laid, our knowledge of it never ceased to grow and this field of science naturally split into diverse specialized branches. The first part of this thesis focuses on a problem which concerns all branches of quantum physics, which is the visualization of quantum systems. The non-intuitive aspect of quantum physics justifies a shared desire to visualize quantum systems. In the present work, we develop a method to visualize any operators in these systems, including in particular state operators (density matrices), Hamiltonians and propagators. The method, referred to as DROPS (Discrete Representation of spin OPeratorS), is based on a generalization of Wigner representations, presented in this document. The resulting visualization of an operator A is called its DROPS representation or visualization. We demonstrate its intuitive character by illustrating a series of concepts in nuclear magnetic resonance (NMR) spectroscopy for systems consisting of two spin-1/2 particles. The second part of this thesis is concerned with a problem of optimal control which finds applications in the fields of NMR spectroscopy, medical imagery and quantum computing, to cite a few. The problem of creating a propagator in the shortest amount of time is considered, and the results are extended to solve the closely related problem of creating rotations in the smallest amount of time. The approach used here differs from the previous results on the subject by solving the problem using the Pontryagin's maximum principle and by its detailed consideration of singular controls and trajectories.
Wei, Qinglai; Song, Ruizhuo; Yan, Pengfei
2016-02-01
This paper is concerned with a new data-driven zero-sum neuro-optimal control problem for continuous-time unknown nonlinear systems with disturbance. According to the input-output data of the nonlinear system, an effective recurrent neural network is introduced to reconstruct the dynamics of the nonlinear system. Considering the system disturbance as a control input, a two-player zero-sum optimal control problem is established. Adaptive dynamic programming (ADP) is developed to obtain the optimal control under the worst case of the disturbance. Three single-layer neural networks, including one critic and two action networks, are employed to approximate the performance index function, the optimal control law, and the disturbance, respectively, for facilitating the implementation of the ADP method. Convergence properties of the ADP method are developed to show that the system state will converge to a finite neighborhood of the equilibrium. The weight matrices of the critic and the two action networks are also convergent to finite neighborhoods of their optimal ones. Finally, the simulation results will show the effectiveness of the developed data-driven ADP methods.
Electric power system applications of optimization
Momoh, James A
2008-01-01
Introduction Structure of a Generic Electric Power System Power System Models Power System Control Power System Security Assessment Power System Optimization as a Function of Time Review of Optimization Techniques Applicable to Power Systems Electric Power System Models Complex Power Concepts Three-Phase Systems Per Unit Representation Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems Automatic Gain Control Transmission Subsystems Y-Bus Incorporating the Transformer Effect Load Models Available Transfer Capability Illustrative Examples Power
Selecting Optimal Subset of Security Controls
Yevseyeva, I.; Basto-Fernandes, V.; Michael, Emmerich, T. M.; Moorsel, van, A.
2015-01-01
Open Access journal Choosing an optimal investment in information security is an issue most companies face these days. Which security controls to buy to protect the IT system of a company in the best way? Selecting a subset of security controls among many available ones can be seen as a resource allocation problem that should take into account conflicting objectives and constraints of the problem. In particular, the security of the system should be improved without hindering productivity, ...
Optimal control of hybrid vehicles
Jager, Bram; Kessels, John
2013-01-01
Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on Pontryagin’s maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Two case studies are included in the book: · a control strategy for a micro-hybrid power train; and · experimental results obtained with a real-time strategy implemented in...
A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems
International Nuclear Information System (INIS)
Jin, Guang-Yu; Cai, Wen-Jian; Lu Lu; Lee, Eng Lock; Chiang, Andrew
2007-01-01
This paper proposes a new, simple, yet accurate mechanical cooling tower model for the purpose of energy conservation and management. On the basis of Merkel's theory and effectiveness-NTU method, the model is developed by energy balance and heat, mass transfer analysis. Commissioning information is then used to identified, only three model parameters by Levenberg-Marquardt method. Compared with the existing models, the proposed model has simple characteristic parameters to be determined and without requiring iterative computation when the operating point changes. The model is validated by real operating data from the cooling towers of a heating, ventilating and air conditioning (HVAC) system of a commercial hotel. The testing results show that the performance of the cooling tower varies from time to time due to different operating conditions and the proposed model is able to reflect these changes by tuning its parameters. With this feature, the proposed model can be simply used and accurately predict the performance of the real-time operating cooling tower
Directory of Open Access Journals (Sweden)
Hamid Tikani
2016-11-01
Full Text Available In this paper, we study the problem of integrated capacitated hub location problem and seat inventory control considering concept and techniques of revenue management. We consider an airline company maximizes its revenue by utilizing the best network topology and providing proper booking limits for all itineraries and fare classes. The transportation system arises in the form of a star/star network and includes both hub-stop and non-stop flights. This problem is formulated as a two-stage stochastic integer program with mixed-integer recourse. We solve various instances carried out from the Turkish network data set. Due to the NP-hardness of the problem, we propose a hybrid optimization method, consisting of an evolutionary algorithm based on genetic algorithm and exact solution. The quality of the solutions found by the proposed meta-heuristic is compared with the original version of GA and the mathematical programming model. The results obtained by the proposed model imply that integrating hub location and seat inventory control problem would help to increase the total revenue of airline companies. Also, in the case of serving non-stop flights, the model can provide more profit by employing less number of hubs.
Lang, Annemarie; Neuhaus, Johannes; Pfeiffenberger, Moritz; Schröder, Erik; Ponomarev, Igor; Weber, Yvonne; Gaber, Timo; Schmidt, Michael F G
2014-01-01
Gene therapy appears to have the potential for achieving a long-term remedy for osteoarthritis (OA). However, there is a risk of adverse reactions, especially when using cytomegalovirus-controlled expression. To provide a safe application, we focused on the expression of therapeutic cytokines [e.g. interleukin (IL)-4] in a disease-responsive manner by use of the previously cloned Cox-2 promoter as 'genetic switch'. In the present study, we report the functionality of a controlled gene therapeutic system in an equine osteoarthritic cell model. Different nonviral transfection reagents were tested for their efficiency on equine chondrocytes stimulated with equine IL-1β or lipopolysaccharide to create an inflammatory environment. To optimize the transfection, we successfully redesigned the vector by excluding the internal ribosomal entry site (IRES). The functionality of our Cox-2 promoter construct with respect to expressing IL-4 was proven at the mRNA and protein levels and the anti-inflammatory potential of IL-4 was confirmed by analyzing the expression of IL-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3 and tumor necrosis factor (TNF)-α using a quantitative polymerase chain reaction. Nonviral transfection reagents yielded transfection rates from 21% to 44% with control vectors with and without IRES, respectively. Stimulation of equine chondrocytes resulted in a 20-fold increase of mRNA expression of IL-1β. Such exogenous stimulation of chondrocytes transfected with pNCox2-IL4 led to an increase of IL-4 mRNA expression, whereas expression of inflammatory mediators decreased. The timely link between these events confirms the anti-inflammatory potential of synthesized IL-4. We consider that this approach has significant potential for translation into a useful anti-inflammation therapy. Molecular tools such as the described therapeutic plasmid pave the way for a local-controlled, self-limiting gene therapy. Copyright © 2014 John Wiley & Sons, Ltd.
National Research Council Canada - National Science Library
Postma, Barry D
2005-01-01
...) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants...
Dependability of self-optimizing mechatronic systems
Rammig, Franz; Schäfer, Wilhelm; Sextro, Walter
2014-01-01
Intelligent technical systems, which combine mechanical, electrical and software engineering with control engineering and advanced mathematics, go far beyond the state of the art in mechatronics and open up fascinating perspectives. Among these systems are so-called self-optimizing systems, which are able to adapt their behavior autonomously and flexibly to changing operating conditions. Self-optimizing systems create high value for example in terms of energy and resource efficiency as well as reliability. The Collaborative Research Center 614 "Self-optimizing Concepts and Structures in Mechanical Engineering" pursued the long-term aim to open up the active paradigm of self-optimization for mechanical engineering and to enable others to develop self-optimizing systems. This book is directed to researchers and practitioners alike. It provides a design methodology for the development of self-optimizing systems consisting of a reference process, methods, and tools. The reference process is divided into two phase...
Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load
CSIR Research Space (South Africa)
Sichilalu, S
2016-10-01
Full Text Available This paper presents an optimal energy management strategy for a grid-tied photovoltaic–wind-fuel cell hybrid power supply system. The hybrid system meets the load demand consisting of an electrical load and a heat pump water heater supplying thermal...
Updyke, Katelyn Mariko; Urso, Brittany; Beg, Shazia; Solomon, James
2017-10-09
Systemic lupus erythematosus (SLE) is a multi-organ, autoimmune disease in which patients lose self-tolerance and develop immune complexes which deposit systemically causing multi-organ damage and inflammation. Patients often experience unpredictable flares of symptoms with poorly identified triggers. Literature suggests exogenous exposures may contribute to flares in symptoms. An online pilot survey was marketed globally through social media to self-reported SLE patients with the goal to identify specific subpopulations who are susceptible to disease state changes based on analyzed exogenous factors. The pilot survey was promoted for two weeks, 80 respondents fully completed the survey and were included in statistical analysis. Descriptive statistical analysis was performed on de-identified patient surveys and compared to previous literature studies reporting known or theorized triggers in the SLE disease state. The pilot survey identified similar exogenous triggers compared to previous literature, including antibiotics, increasing beef intake, and metal implants. The goal of the pilot survey is to utilize similar questions to develop a detailed internet-based patient interactive form that can be edited and time stamped as a method to promote continuous quality improvement assessments. The ultimate objective of the platform is to interact with SLE patients from across the globe longitudinally to optimize disease control and improve quality of care by allowing them to avoid harmful triggers.
Recent developments in cooperative control and optimization
Murphey, Robert; Pardalos, Panos
2004-01-01
Over the past several years, cooperative control and optimization has un questionably been established as one of the most important areas of research in the military sciences. Even so, cooperative control and optimization tran scends the military in its scope -having become quite relevant to a broad class of systems with many exciting, commercial, applications. One reason for all the excitement is that research has been so incredibly diverse -spanning many scientific and engineering disciplines. This latest volume in the Cooperative Systems book series clearly illustrates this trend towards diversity and creative thought. And no wonder, cooperative systems are among the hardest systems control science has endeavored to study, hence creative approaches to model ing, analysis, and synthesis are a must! The definition of cooperation itself is a slippery issue. As you will see in this and previous volumes, cooperation has been cast into many different roles and therefore has assumed many diverse meanings. P...
Control parameter optimization for AP1000 reactor using Particle Swarm Optimization
International Nuclear Information System (INIS)
Wang, Pengfei; Wan, Jiashuang; Luo, Run; Zhao, Fuyu; Wei, Xinyu
2016-01-01
Highlights: • The PSO algorithm is applied for control parameter optimization of AP1000 reactor. • Key parameters of the MSHIM control system are optimized. • Optimization results are evaluated though simulations and quantitative analysis. - Abstract: The advanced mechanical shim (MSHIM) core control strategy is implemented in the AP1000 reactor for core reactivity and axial power distribution control simultaneously. The MSHIM core control system can provide superior reactor control capabilities via automatic rod control only. This enables the AP1000 to perform power change operations automatically without the soluble boron concentration adjustments. In this paper, the Particle Swarm Optimization (PSO) algorithm has been applied for the parameter optimization of the MSHIM control system to acquire better reactor control performance for AP1000. System requirements such as power control performance, control bank movement and AO control constraints are reflected in the objective function. Dynamic simulations are performed based on an AP1000 reactor simulation platform in each iteration of the optimization process to calculate the fitness values of particles in the swarm. The simulation platform is developed in Matlab/Simulink environment with implementation of a nodal core model and the MSHIM control strategy. Based on the simulation platform, the typical 10% step load decrease transient from 100% to 90% full power is simulated and the objective function used for control parameter tuning is directly incorporated in the simulation results. With successful implementation of the PSO algorithm in the control parameter optimization of AP1000 reactor, four key parameters of the MSHIM control system are optimized. It has been demonstrated by the calculation results that the optimized MSHIM control system parameters can improve the reactor power control capability and reduce the control rod movement without compromising AO control. Therefore, the PSO based optimization