WorldWideScience

Sample records for optimizing biogeochemical reduction

  1. Surrogate-Based Optimization of Biogeochemical Transport Models

    Science.gov (United States)

    Prieß, Malte; Slawig, Thomas

    2010-09-01

    First approaches towards a surrogate-based optimization method for a one-dimensional marine biogeochemical model of NPZD type are presented. The model, developed by Oschlies and Garcon [1], simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean circulation data. A key issue is to minimize the misfit between the model output and given observational data. Our aim is to reduce the overall optimization cost avoiding expensive function and derivative evaluations by using a surrogate model replacing the high-fidelity model in focus. This in particular becomes important for more complex three-dimensional models. We analyse a coarsening in the discretization of the model equations as one way to create such a surrogate. Here the numerical stability crucially depends upon the discrete stepsize in time and space and the biochemical terms. We show that for given model parameters the level of grid coarsening can be choosen accordingly yielding a stable and satisfactory surrogate. As one example of a surrogate-based optimization method we present results of the Aggressive Space Mapping technique (developed by John W. Bandler [2, 3]) applied to the optimization of this one-dimensional biogeochemical transport model.

  2. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    International Nuclear Information System (INIS)

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-01-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions

  3. Aqueous complexation reactions governing the rate and extent of biogeochemical U(VI) reduction

    International Nuclear Information System (INIS)

    Kemner, K.M.; Kelly, S.D.; Brooks, Scott C.; Dong, Wenming; Carroll, Sue; Fredrickson, James K.

    2006-01-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments

  4. Biogeochemical Processes Controlling Microbial Reductive Precipitation of Radionuclides

    International Nuclear Information System (INIS)

    Fredrickson, James K.; Brooks, Scott C.

    2004-01-01

    This project is focused on elucidating the principal biogeochemical reactions that govern the concentrations, chemical speciation, and distribution of the redox sensitive contaminants uranium (U) and technetium (Tc) between the aqueous and solid phases. The research is designed to provide new insights into the under-explored areas of competing geochemical and microbiological oxidation-reduction reactions that govern the fate and transport of redox sensitive contaminants and to generate fundamental scientific understanding of the identity and stoichiometry of competing microbial reduction and geochemical oxidation reactions. These goals and objectives are met through a series of hypothesis-driven tasks that focus on (1) the use of well-characterized microorganisms and synthetic and natural mineral oxidants, (2) advanced spectroscopic and microscopic techniques to monitor redox transformations of U and Tc, and (3) the use of flow-through experiments to more closely approximate groundwater environments. The results are providing an improved understanding and predictive capability of the mechanisms that govern the redox dynamics of radionuclides in subsurface environments. For purposes of this poster, the results are divided into three sections: (1) influence of Ca on U(VI) bioreduction; (2) localization of biogenic UO 2 and TcO 2 ; and (3) reactivity of Mn(III/IV) oxides.

  5. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    Directory of Open Access Journals (Sweden)

    Dong Jiang

    2014-01-01

    Full Text Available The main purpose for developing biofuel is to reduce GHG (greenhouse gas emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA, as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed.

  6. Linking Chaotic Advection with Subsurface Biogeochemical Processes

    Science.gov (United States)

    Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.

    2017-12-01

    This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.

  7. Biogeochemical Controls on Technetium Mobility in Biogeochemical Controls on Technetium Mobility in FRC Sediments

    International Nuclear Information System (INIS)

    Lloyd, J.R.; McBeth, J.M.; Livens, F.R.; Bryan, N.D.; Ellis, B.; Sharma, H.; Burke, I.T.; Morris, K.

    2004-01-01

    Technetium-99 is a priority pollutant at numerous DOE sites, due to its long half-life (2.1 x 10 5 years), high mobility as Tc(VII) in oxic waters, and bioavailability as a sulfate analog. 99 Tc is far less mobile under anaerobic conditions, forming insoluble Tc(IV) precipitates. As anaerobic microorganisms can reduce soluble Tc(VII) to insoluble Tc(IV), microbial metabolism may have the potential to treat sediments and waters contaminated with Tc. Baseline studies of fundamental mechanisms of Tc(VII) bioreduction and precipitation (reviewed by Lloyd et al, 2002) have generally used pure cultures of metal-reducing bacteria, in order to develop conceptual models for the biogeochemical cycling of Tc. There is, however, comparatively little known about interactions of metal-reducing bacteria with environmentally relevant trace concentrations of Tc, against a more complex biogeochemical background provided by mixed microbial communities in the subsurface. The objective of this new NABIR project is to probe the site specific biogeochemical conditions that control the mobility of Tc at the FRC (Oak Ridge, TN). This information is required for the rational design of in situ bioremediation strategies for technetium-contaminated subsurface environments. We will use a combination of geochemical, mineralogical, microbiological and spectroscopic techniques to determine the solubility and phase associations of Tc in FRC sediments, and characterize the underpinning biogeochemical controls. A key strength of this project is that many of the techniques we are using have already been optimized by our research team, who are also studying the biogeochemical controls on Tc mobility in marine and freshwater sediments in the UK in a NERC funded companion study.

  8. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.

  9. Volume reduction outweighs biogeochemical processes in controlling phosphorus treatment in aged detention systems

    Science.gov (United States)

    Shukla, Asmita; Shukla, Sanjay; Annable, Michael D.; Hodges, Alan W.

    2017-08-01

    Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497 kg) and 95% (205 kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1 = 368.3 μg L- 1, Y2 = 230.4 μg L- 1) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304 kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240 kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be 341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both

  10. Optimal reduction of flexible dynamic system

    International Nuclear Information System (INIS)

    Jankovic, J.

    1994-01-01

    Dynamic system reduction is basic procedure in various problems of active control synthesis of flexible structures. In this paper is presented direct method for system reduction by explicit extraction of modes included in reduced model form. Criterion for optimal system discrete approximation in synthesis reduced dynamic model is also presented. Subjected method of system decomposition is discussed in relation to the Schur method of solving matrix algebraic Riccati equation as condition for system reduction. By using exposed method procedure of flexible system reduction in addition with corresponding example is presented. Shown procedure is powerful in problems of active control synthesis of flexible system vibrations

  11. Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0

    Directory of Open Access Journals (Sweden)

    V. Sauerland

    2018-03-01

    Full Text Available Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate, which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative. We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.

  12. Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)

    Science.gov (United States)

    Sauerland, Volkmar; Löptien, Ulrike; Leonhard, Claudine; Oschlies, Andreas; Srivastav, Anand

    2018-03-01

    Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.

  13. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin.

    Science.gov (United States)

    O'Reilly, Andrew M; Chang, Ni-Bin; Wanielista, Martin P

    2012-05-15

    A stormwater infiltration basin in north-central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O(2) and NO(3)(-) showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O(2) and NO(3)(-) reduction concluded, Mn, Fe and SO(4)(2-) reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO(3)(-)-N less than 0.016 mg L(-1), excess N(2) up to 3 mg L(-1) progressively enriched in δ(15)N during prolonged basin flooding, and isotopically heavy δ(15)N and δ(18)O of NO(3)(-) (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO(3)(-) leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO(3)(-) leaching to groundwater by replicating the biogeochemical

  14. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

    Science.gov (United States)

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.

    2012-01-01

    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.

  15. Investigation of In-situ Biogeochemical Reduction of Chlorinated Solvents in Groundwater by Reduced Iron Minerals

    Science.gov (United States)

    Biogeochemical transformation is a process in which chlorinated solvents are degraded abiotically by reactive minerals formed by, at least in part or indirectly from, anaerobic biological processes. Five mulch biowall and/or vegetable oil-based bioremediation applications for tr...

  16. Optimal Risk Reduction in the Railway Industry by Using Dynamic Programming

    OpenAIRE

    Michael Todinov; Eberechi Weli

    2013-01-01

    The paper suggests for the first time the use of dynamic programming techniques for optimal risk reduction in the railway industry. It is shown that by using the concept ‘amount of removed risk by a risk reduction option’, the problem related to optimal allocation of a fixed budget to achieve a maximum risk reduction in the railway industry can be reduced to an optimisation problem from dynamic programming. For n risk reduction options and size of the available risk reduction budget B (expres...

  17. Identifying biogeochemical processes beneath stormwater infiltration ponds in support of a new best management practice for groundwater protection

    Science.gov (United States)

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias

    2011-01-01

     When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.

  18. Optimal Hankel Norm Model Reduction by Truncation of Trajectories

    NARCIS (Netherlands)

    Roorda, B.; Weiland, S.

    2000-01-01

    We show how optimal Hankel-norm approximations of dynamical systems allow for a straightforward interpretation in terms of system trajectories. It is shown that for discrete time single-input systems optimal reductions are obtained by cutting 'balanced trajectories', i.e., by disconnecting the past

  19. Biogeochemical Reactions Under Simulated Europa Ocean Conditions

    Science.gov (United States)

    Amashukeli, X.; Connon, S. A.; Gleeson, D. F.; Kowalczyk, R. S.; Pappalardo, R. T.

    2007-12-01

    reduction capability will be later selected and used to facilitate biogeochemical reduction of iron under simulated temperature and pressure of Europa's ocean. The results of this work will enable us to ascertain whether Europa's cold, high-pressure ocean is capable of supporting life. In addition, the data from this study will help in generating a list of organic and inorganic target molecules for future remote sensing and in situ exploration missions.

  20. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates

    Science.gov (United States)

    Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan; Bailey, Vanessa L.

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  1. Extracellular Electron Transport Coupling Biogeochemical Processes Centimeters

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo

    2010-01-01

    of the oxygen uptake in laboratory incubations of initially homogenized and stabilized sediment. Using microsensors and process rate measurements we further investigated the effect of the electric currents on sediment biogeochemistry. Dissolved sulfide readily donated electrons to the networks and could...... confirmed the depth range of the electric communication and indicated donation of electrons directly from organotrophic bacteria. The separation of oxidation and reduction processes created steep pH gradients eventually causing carbonate precipitation at the surface. The results indicate that electron...... exchanging organisms have major biogeochemical importance as they allow widely separated electron donors and acceptors to react with one another....

  2. Hyporheic zone as a bioreactor: sediment heterogeneity influencing biogeochemical processes

    Science.gov (United States)

    Perujo, Nuria; Romani, Anna M.; Sanchez-Vila, Xavier

    2017-04-01

    Mediterranean fluvial systems are characterized by frequent periods of low flow or even drought. During low flow periods, water from wastewater treatment plants (WWTPs) is proportionally large in fluvial systems. River water might be vertically transported through the hyporheic zone, and then porous medium acts as a complementary treatment system since, as water infiltrates, a suite of biogeochemical processes occurs. Subsurface sediment heterogeneity plays an important role since it influences the interstitial fluxes of the medium and drives biomass growing, determining biogeochemical reactions. In this study, WWTP water was continuously infiltrated for 3 months through two porous medium tanks: one consisting of 40 cm of fine sediment (homogeneous); and another comprised of two layers of different grain size sediments (heterogeneous), 20 cm of coarse sediment in the upper part and 20 cm of fine one in the bottom. Several hydrological, physicochemical and biological parameters were measured periodically (weekly at the start of the experiment and biweekly at the end). Analysed parameters include dissolved nitrogen, phosphorus, organic carbon, and oxygen all measured at the surface, and at 5, 20 and 40 cm depth. Variations in hydraulic conductivity with time were evaluated. Sediment samples were also analysed at three depths (surface, 20 and 40 cm) to determine bacterial density, chlorophyll content, extracellular polymeric substances, and biofilm function (extracellular enzyme activities and carbon substrate utilization profiles). Preliminary results suggest hydraulic conductivity to be the main driver of the differences in the biogeochemical processes occurring in the subsurface. At the heterogeneous tank, a low nutrient reduction throughout the whole medium is measured. In this medium, high hydraulic conductivity allows for a large amount of infiltrating water, but with a small residence time. Since some biological processes are largely time-dependent, small water

  3. Optimal taxation and public provision for poverty reduction

    OpenAIRE

    Kanbur, Ravi; Paukkeri, Tuuli; Pirttilä, Jukka; Tuomala, Matti

    2018-01-01

    The existing literature on optimal taxation typically assumes there exists a capacity to implement complex tax schemes, which is not necessarily the case for many developing countries. We examine the determinants of optimal redistributive policies in the context of a developing country that can only implement linear tax policies due to administrative reasons. Further, the reduction of poverty is typically the expressed goal of such countries, and this feature is also taken into account in our...

  4. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  5. Environmental Optimization Using the WAste Reduction Algorithm (WAR)

    Science.gov (United States)

    Traditionally chemical process designs were optimized using purely economic measures such as rate of return. EPA scientists developed the WAste Reduction algorithm (WAR) so that environmental impacts of designs could easily be evaluated. The goal of WAR is to reduce environme...

  6. Dose reduction and optimization studies (ALARA) at nuclear power facilities

    International Nuclear Information System (INIS)

    Baum, J.W.; Meinhold, C.B.

    1983-01-01

    Brookhaven National Laboratory (BNL) has been commissioned by the Nuclear Regulatory Commission (NRC) to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at LWR plants. These studies have the following objectives: identify high-dose maintenance tasks; identify dose-reduction techniques; examine incentives for dose reduction; evaluate cost-effectiveness and optimization of dose-reduction techniques; and compile an ALARA handbook on data, engineering modifications, cost-effectiveness calculations, and other information of interest to ALARA practioners

  7. Optimal angle reduction - a behavioral approach to linear system appromixation

    NARCIS (Netherlands)

    Roorda, B.; Weiland, S.

    2001-01-01

    We investigate the problem of optimal state reduction under minimization of the angle between system behaviors. The angle is defined in a worst-case sense, as the largest angle that can occur between a system trajectory and its optimal approximation in the reduced-order model. This problem is

  8. Optimal reduction of humus in demineralization

    International Nuclear Information System (INIS)

    Persson, F.

    1989-04-01

    To have an optimal reduction of organic substance and colloids in a demineralization plant the following ought to be observed. * At least two anion exchangers should be in series. The firs one being either a weak macroporous polystyrene anion exchanger or a weak polyacrylic anion exchanger. A third anion exchanger in series improves the reduction only marginally. * The leakage of organic substance and colloids increases rapidly at the same time or before the leakage of anions. The anion exchangers in a plant should therefore have a higher capacity than the cation exchangers. If the anion exchangers do not have a higher capacity than the cation exchangers only 90-95 % of the capacity shall be used. * The filtration rates have normally no influence of the reduction organic of substance. Sometime a low filtration rate gives a better reduction of colloids. * The content of organic substance in the water to the plants has a great effect on the capacity for ions. At high content of organic substance (20 mg KMnO 4 ) the capacity for ions can be reduced with 30-40 %. * Different technics for regenerations does not seem to have any influence on the reduction of organic substances and colloids. Neither age of the anion exchangers nor washing with solutions of sodium chloride seems to have any influence on the reduction. Age and organic contamination have mainly an influence on the capacity per regeneration. At all demineralization plants some organic substances and colloids leak through the plant, the quantities depending on the colloids. To remove this organic substances and colloids the ion exchangers must be completed with for instance flocculation or reverse osmosis. (L.E.)

  9. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia

    International Nuclear Information System (INIS)

    Guo Huaming; Zhang Bo; Li Yuan; Berner, Zsolt; Tang Xiaohui; Norra, Stefan; Stueben, Doris

    2011-01-01

    Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO 4 2- concentrations and δ 34 S values indicates that bacterial reduction of SO 4 2- occurs in reducing aquifers. Due to high concentrations of Fe (>0.5 mg L -1 ), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels. - Research highlights: → Low As groundwaters occur in alluvial fans. → We find low As groundwaters near irrigation and drainage channels. → Both hydrogeologic conditions and biogeochemical processes control As distribution. - Both hydrogeologic conditions and biogeochemical processes control As distribution of shallow groundwaters, which results in the occurrence of low As groundwater in alluvial fans and near irrigation channels and drainage channels.

  10. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    Science.gov (United States)

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  11. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    Science.gov (United States)

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  12. A state-space Bayesian framework for estimating biogeochemical transformations using time-lapse geophysical data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Hubbard, S.; Williams, K.; Pride, S.; Li, L.; Steefel, C.; Slater, L.

    2009-04-15

    We develop a state-space Bayesian framework to combine time-lapse geophysical data with other types of information for quantitative estimation of biogeochemical parameters during bioremediation. We consider characteristics of end-products of biogeochemical transformations as state vectors, which evolve under constraints of local environments through evolution equations, and consider time-lapse geophysical data as available observations, which could be linked to the state vectors through petrophysical models. We estimate the state vectors and their associated unknown parameters over time using Markov chain Monte Carlo sampling methods. To demonstrate the use of the state-space approach, we apply it to complex resistivity data collected during laboratory column biostimulation experiments that were poised to precipitate iron and zinc sulfides during sulfate reduction. We develop a petrophysical model based on sphere-shaped cells to link the sulfide precipitate properties to the time-lapse geophysical attributes and estimate volume fraction of the sulfide precipitates, fraction of the dispersed, sulfide-encrusted cells, mean radius of the aggregated clusters, and permeability over the course of the experiments. Results of the case study suggest that the developed state-space approach permits the use of geophysical datasets for providing quantitative estimates of end-product characteristics and hydrological feedbacks associated with biogeochemical transformations. Although tested here on laboratory column experiment datasets, the developed framework provides the foundation needed for quantitative field-scale estimation of biogeochemical parameters over space and time using direct, but often sparse wellbore data with indirect, but more spatially extensive geophysical datasets.

  13. Design and performance of subgrade biogeochemical reactors.

    Science.gov (United States)

    Gamlin, Jeff; Downey, Doug; Shearer, Brad; Favara, Paul

    2017-12-15

    Subgrade biogeochemical reactors (SBGRs), also commonly referred to as in situ bioreactors, are a unique technology for treatment of contaminant source areas and groundwater plume hot spots. SBGRs have most commonly been configured for enhanced reductive dechlorination (ERD) applications for chlorinated solvent treatment. However, they have also been designed for other contaminant classes using alternative treatment media. The SBGR technology typically consists of removal of contaminated soil via excavation or large-diameter augers, and backfill of the soil void with gravel and treatment amendments tailored to the target contaminant(s). In most cases SBGRs include installation of infiltration piping and a low-flow pumping system (typically solar-powered) to recirculate contaminated groundwater through the SBGR for treatment. SBGRs have been constructed in multiple configurations, including designs capable of meeting limited access restrictions at heavily industrialized sites, and at sites with restrictions on surface disturbance due to sensitive species or habitat issues. Typical performance results for ERD applications include 85 to 90 percent total molar reduction of chlorinated volatile organic compounds (CVOCs) near the SBGR and rapid clean-up of adjacent dissolved contaminant source areas. Based on a review of the literature and CH2M's field-scale results from over a dozen SBGRs with a least one year of performance data, important site-specific design considerations include: 1) hydraulic residence time should be long enough for sufficient treatment but not too long to create depressed pH and stagnant conditions (e.g., typically between 10 and 60 days), 2) reactor material should balance appropriate organic mulch as optimal bacterial growth media along with other organic additives that provide bioavailable organic carbon, 3) a variety of native bacteria are important to the treatment process, and 4) biologically mediated generation of iron sulfides along with

  14. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone

    Science.gov (United States)

    Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.

    2013-01-01

    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578

  15. Stream biogeochemical resilience in the age of Anthropocene

    Science.gov (United States)

    Dong, H.; Creed, I. F.

    2017-12-01

    Recent evidence indicates that biogeochemical cycles are being pushed beyond the tolerance limits of the earth system in the age of the Anthropocene placing terrestrial and aquatic ecosystems at risk. Here, we explored the question: Is there empirical evidence of global atmospheric changes driving losses in stream biogeochemical resilience towards a new normal? Stream biogeochemical resilience is the process of returning to equilibrium conditions after a disturbance and can be measured using three metrics: reactivity (the highest initial response after a disturbance), return rate (the rate of return to equilibrium condition after reactive changes), and variance of the stationary distribution (the signal to noise ratio). Multivariate autoregressive models were used to derive the three metrics for streams along a disturbance gradient - from natural systems where global drivers would dominate, to relatively managed or modified systems where global and local drivers would interact. We observed a loss of biogeochemical resilience in all streams. The key biogeochemical constituent(s) that may be driving loss of biogeochemical resilience were identified from the time series of the stream biogeochemical constituents. Non-stationary trends (detected by Mann-Kendall analysis) and stationary cycles (revealed through Morlet wavelet analysis) were removed, and the standard deviation (SD) of the remaining residuals were analyzed to determine if there was an increase in SD over time that would indicate a pending shift towards a new normal. We observed that nitrate-N and total phosphorus showed behaviours indicative of a pending shift in natural and managed forest systems, but not in agricultural systems. This study provides empirical support that stream ecosystems are showing signs of exceeding planetary boundary tolerance levels and shifting towards a "new normal" in response to global changes, which can be exacerbated by local management activities. Future work will consider

  16. Acoustic performance design and optimal allocation of sound package in ship cabin noise reduction

    Directory of Open Access Journals (Sweden)

    YANG Deqing

    2017-08-01

    Full Text Available The sound package in noise reduction design of ship cabins has become the main approach for the future. The sound package is a specially designed acoustic component consisting of damping materials, absorption materials, sound isolation materials and base structural materials which can achieve the prescribed performance of noise reduction. Based on the Statistical Energy Analysis(SEAmethod, quick evaluation and design methods, and the optimal allocation theory of sound packages are investigated. The standard numerical acoustic performance evaluation model, sound package optimization design model and sound package optimal allocation model are presented. A genetic algorithm is applied to solve the presented optimization problems. Design examples demonstrate the validity and efficiency of the proposed models and solutions. The presented theory and methods benefit the standardization and programming of sound package design, and decrease noise reduction costs.

  17. Biogeochemical and Ecomorphological Niche Segregation of Mediterranean Woody Species along a Local Gradient

    OpenAIRE

    Enrique G. de la Riva; Enrique G. de la Riva; Teodoro Marañón; Cyrille Violle; Rafael Villar; Ignacio M. Pérez-Ramos

    2017-01-01

    According with niche theory the species are specialized in different ecological niches, being able to coexist as result of a differential use of resources. In this context, the biogeochemical niche hypothesis proposes that species have an optimal elemental composition which results from the link between the chemical and morphological traits for the optimum plant functioning. Thus, and attending to the limiting similarity concept, different elemental composition and plant structure among co-oc...

  18. Slot opening optimization of surface mounted permanent magnet motor for cogging torque reduction

    International Nuclear Information System (INIS)

    Abbaszadeh, K.; Rezaee Alam, F.; Teshnehlab, M.

    2012-01-01

    Highlights: ► The slot opening shift method is an efficient method for cogging torque reduction. ► Using slot opening skew method, the trapezoidal waveform of back-emf is maintained. ► Using the conventional slot skewing, the wave shape of back-emf is sinusoidal. ► The novelty of paper is using of air–gap permeance harmonics as objective function. ► Other novelty of this paper is using the different optimization algorithms. - Abstract: In this paper, slot opening skew method is used for cogging torque reduction. A three layer stator model is considered for a six-pole PM-BLDC motor (a PM-BLDC motor with 18-slots, six-poles and length of 5 cm) and then a 2D dual model is extracted for this 3D slot opening skew model. The angular shifts of slot opening position in the first and third layers than middle layer are considered as optimization parameters. Slot opening shape is optimized by using different optimization algorithms, such as, the response surface methodology (RSM), the genetic algorithm (GA) and the particle swarm optimization (PSO). In order to using of GA and PSO, the analytical relationship is derived for the air–gap permeance function. The optimization results of these algorithms are being consistent with each other and are verified with FEA results. The results show the significant reduction of cogging torque about 77%.

  19. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates: BIOFILM DISTRIBUTION AND RATE SCALING

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [Institute of Surface-Earth System Science, Tianjin University, Tianjin China; Pacific Northwest National Laboratory, Richland WA USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland WA USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen China; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland WA USA; School of Earth Science and Engineering, Nanjing University, Nanjing China; Bailey, Vanessa L. [Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  20. Research on numerical method for multiple pollution source discharge and optimal reduction program

    Science.gov (United States)

    Li, Mingchang; Dai, Mingxin; Zhou, Bin; Zou, Bin

    2018-03-01

    In this paper, the optimal method for reduction program is proposed by the nonlinear optimal algorithms named that genetic algorithm. The four main rivers in Jiangsu province, China are selected for reducing the environmental pollution in nearshore district. Dissolved inorganic nitrogen (DIN) is studied as the only pollutant. The environmental status and standard in the nearshore district is used to reduce the discharge of multiple river pollutant. The research results of reduction program are the basis of marine environmental management.

  1. Reliability-oriented multi-objective optimal decision-making approach for uncertainty-based watershed load reduction

    International Nuclear Information System (INIS)

    Dong, Feifei; Liu, Yong; Su, Han; Zou, Rui; Guo, Huaicheng

    2015-01-01

    Water quality management and load reduction are subject to inherent uncertainties in watershed systems and competing decision objectives. Therefore, optimal decision-making modeling in watershed load reduction is suffering due to the following challenges: (a) it is difficult to obtain absolutely “optimal” solutions, and (b) decision schemes may be vulnerable to failure. The probability that solutions are feasible under uncertainties is defined as reliability. A reliability-oriented multi-objective (ROMO) decision-making approach was proposed in this study for optimal decision making with stochastic parameters and multiple decision reliability objectives. Lake Dianchi, one of the three most eutrophic lakes in China, was examined as a case study for optimal watershed nutrient load reduction to restore lake water quality. This study aimed to maximize reliability levels from considerations of cost and load reductions. The Pareto solutions of the ROMO optimization model were generated with the multi-objective evolutionary algorithm, demonstrating schemes representing different biases towards reliability. The Pareto fronts of six maximum allowable emission (MAE) scenarios were obtained, which indicated that decisions may be unreliable under unpractical load reduction requirements. A decision scheme identification process was conducted using the back propagation neural network (BPNN) method to provide a shortcut for identifying schemes at specific reliability levels for decision makers. The model results indicated that the ROMO approach can offer decision makers great insights into reliability tradeoffs and can thus help them to avoid ineffective decisions. - Highlights: • Reliability-oriented multi-objective (ROMO) optimal decision approach was proposed. • The approach can avoid specifying reliability levels prior to optimization modeling. • Multiple reliability objectives can be systematically balanced using Pareto fronts. • Neural network model was used to

  2. Reliability-oriented multi-objective optimal decision-making approach for uncertainty-based watershed load reduction

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Feifei [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Liu, Yong, E-mail: yongliu@pku.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Institute of Water Sciences, Peking University, Beijing 100871 (China); Su, Han [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Zou, Rui [Tetra Tech, Inc., 10306 Eaton Place, Ste 340, Fairfax, VA 22030 (United States); Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034 (China); Guo, Huaicheng [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China)

    2015-05-15

    Water quality management and load reduction are subject to inherent uncertainties in watershed systems and competing decision objectives. Therefore, optimal decision-making modeling in watershed load reduction is suffering due to the following challenges: (a) it is difficult to obtain absolutely “optimal” solutions, and (b) decision schemes may be vulnerable to failure. The probability that solutions are feasible under uncertainties is defined as reliability. A reliability-oriented multi-objective (ROMO) decision-making approach was proposed in this study for optimal decision making with stochastic parameters and multiple decision reliability objectives. Lake Dianchi, one of the three most eutrophic lakes in China, was examined as a case study for optimal watershed nutrient load reduction to restore lake water quality. This study aimed to maximize reliability levels from considerations of cost and load reductions. The Pareto solutions of the ROMO optimization model were generated with the multi-objective evolutionary algorithm, demonstrating schemes representing different biases towards reliability. The Pareto fronts of six maximum allowable emission (MAE) scenarios were obtained, which indicated that decisions may be unreliable under unpractical load reduction requirements. A decision scheme identification process was conducted using the back propagation neural network (BPNN) method to provide a shortcut for identifying schemes at specific reliability levels for decision makers. The model results indicated that the ROMO approach can offer decision makers great insights into reliability tradeoffs and can thus help them to avoid ineffective decisions. - Highlights: • Reliability-oriented multi-objective (ROMO) optimal decision approach was proposed. • The approach can avoid specifying reliability levels prior to optimization modeling. • Multiple reliability objectives can be systematically balanced using Pareto fronts. • Neural network model was used to

  3. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    International Nuclear Information System (INIS)

    Schlautman, Mark A.

    2013-01-01

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  4. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Schlautman, Mark A. [Clemson University, Clemson, SC (United States)

    2013-07-14

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  5. Ecotoxicological, ecophysiological and biogeochemical fundamentals of risk assessment

    International Nuclear Information System (INIS)

    Bashkin, V.; Evstafjeva, E.

    1995-01-01

    A quantitative risk assessment (RA) for complex influence of different factors in heavy polluted regions is possible to carry out only on a basis of determination of various links of biogeochemical trophical chains and analysis of the whole biogeochemical structure of the region under study. As an integrative assessment, the human adaptability should be chosen because the majority of trophical chains are closed by man. The given integrative criteria includes biogeochemical, ecophysiological and ecotoxicological assessment of risk factors. Consequently, ecological-biogeochemical regionalization, ecophysiological and ecotoxicological monitoring of human population health are the important approaches to RA. These criteria should be conjugated with LCA of various industrial and agricultural products. At the ultimate degree, the given approaches are needed for areas where traditional pollutants (heavy metals, POPS, pesticides, fertilizers) are enforced sharply by radioactive pollution. Due to the complex influence of pollutants, it is impossible to use individual guidelines. For RA of these complex pollutants, the methods of human adaptability assessment to a polluted environment have to be carried out. These methods include biogeochemical, ecotoxicological and ecophysiological analysis of risk factors as well as quantitative uncertainty analysis. Furthermore, the modern statistical methods such as correlative graphs etc., have to be used for quantitative assessment of human adaptability to complex influence of pollutants. The results obtained in the Chernobyl region have shown the acceptability of suggested methods

  6. Disturbance decouples biogeochemical cycles across forests of the southeastern US

    Science.gov (United States)

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2016-01-01

    Biogeochemical cycles are inherently linked through the stoichiometric demands of the organisms that cycle the elements. Landscape disturbance can alter element availability and thus the rates of biogeochemical cycling. Nitrification is a fundamental biogeochemical process positively related to plant productivity and nitrogen loss from soils to aquatic systems, and the...

  7. Solving conic optimization problems via self-dual embedding and facial reduction: A unified approach

    DEFF Research Database (Denmark)

    Permenter, Frank; Friberg, Henrik A.; Andersen, Erling D.

    2017-01-01

    it fails to return a primal-dual optimal solution or a certificate of infeasibility. Using this observation, we give an algorithm based on facial reduction for solving the primal problem that, in principle, always succeeds. (An analogous algorithm is easily stated for the dual problem.) This algorithm has...... the appealing property that it only performs facial reduction when it is required, not when it is possible; e.g., if a primal-dual optimal solution exists, it will be found in lieu of a facial reduction certificate even if Slater's condition fails. For the case of linear, second-order, and semidefinite...

  8. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Liu, Zhanfei; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Yu, Chendi; Wang, Rong; Jiang, Xiaofen

    2016-01-01

    Intertidal marshes are alternately exposed and submerged due to periodic ebb and flood tides. The tidal cycle is important in controlling the biogeochemical processes of these ecosystems. Intertidal sediments are important hotspots of dissimilatory nitrate reduction and interacting nitrogen cycling microorganisms, but the effect of tides on dissimilatory nitrate reduction, including denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium, remains unexplored in these habitats. Here, we use isotope-tracing and molecular approaches simultaneously to show that both nitrate-reduction activities and associated functional bacterial abundances are enhanced at the sediment-tidal water interface and at the tide-induced groundwater fluctuating layer. This pattern suggests that tidal pumping may sustain dissimilatory nitrate reduction in intertidal zones. The tidal effect is supported further by nutrient profiles, fluctuations in nitrogen components over flood-ebb tidal cycles, and tidal simulation experiments. This study demonstrates the importance of tides in regulating the dynamics of dissimilatory nitrate-reducing pathways and thus provides new insights into the biogeochemical cycles of nitrogen and other elements in intertidal marshes. PMID:26883983

  9. Biogeochemical stability and reactions of iron-organic carbon complexes

    Science.gov (United States)

    Yang, Y.; Adhikari, D.; Zhao, Q.; Dunham-Cheatham, S.; Das, K.; Mejia, J.; Huang, R.; Wang, X.; Poulson, S.; Tang, Y.; Obrist, D.; Roden, E. E.

    2017-12-01

    Our core hypothesis is that the degradation rate of soil organic carbon (OC) is governed by the amount of iron (Fe)-bound OC, and the ability of microbial communities to utilize OC as an energy source and electron shuttle for Fe reduction that in turn stimulates reductive release of Fe-bound labile dissolved OC. This hypothesis is being systematically evaluated using model Fe-OC complexes, natural soils, and microcosm system. We found that hematite-bound aliphatic C was more resistant to reduction release, although hematite preferred to sorb more aromatic C. Resistance to reductive release represents a new mechanism that aliphatic soil OC was stabilized by association with Fe oxide. In other studies, pyrogenic OC was found to facilitate the reduction of hematite, by enhancing extracellular electron transport and sorbing Fe(II). For ferrihydrite-OC co-precipitates, the reduction of Fe and release of OC was closely governed by the C/Fe ratio in the system. Based on the XPS, XANES and XAFS analysis, the transformation of Fe speciation was heterogeneous, depending on the conformation and composition of Fe-OC complexes. For natural soils, we investigated the quantity, characteristics, and reactivity of Fe-bound OC in soils collected from 14 forests in the United States. Fe-bound OC contributed up to 57.8% of total OC in the forest soils. Under the anaerobic conditions, the reduction of Fe was positively correlated to the electron accepting capacity of OC. Our findings highlight the closely coupled dynamics of Fe and OC, with broad implications on the turnover of OC and biogeochemical cycles of Fe.

  10. Biogeochemical reactive-diffusive transport of heavy metals in Lake Coeur d'Alene sediments

    International Nuclear Information System (INIS)

    Sevinc Sengoer, S.; Spycher, Nicolas F.; Ginn, Timothy R.; Sani, Rajesh K.; Peyton, Brent

    2007-01-01

    Decades of runoff from precious-metal mining operations in the Lake Coeur d'Alene Basin, Idaho, have left the sediments in this lake heavily enriched with toxic metals, most notably Zn, Pb and Cu, together with As. The bioavailability, fate and transport of these metals in the sediments are governed by complex biogeochemical processes. In particular, indigenous microbes are capable of catalyzing reactions that detoxify their environments, and thus constitute an important driving component in the biogeochemical cycling of these metals. Here, the development of a quantitative model to evaluate the transport and fate of Zn, Pb and Cu in Lake Coeur d'Alene sediments is reported. The current focus is on the investigation and understanding of local-scale processes, rather than the larger-scale dynamics of sedimentation and diagenesis, with particular emphasis on metal transport through reductive dissolution of Fe hydroxides. The model includes 1-D inorganic diffusive transport coupled to a biotic reaction network including consortium biodegradation kinetics with multiple terminal electron acceptors and syntrophic consortium biotransformation dynamics of redox front. The model captures the mobilization of metals initially sorbed onto hydrous ferric oxides, through bacterial reduction of Fe(III) near the top of the sediment column, coupled with the precipitation of metal sulfides at depth due to biogenic sulfide production. Key chemical reactions involve the dissolution of ferrihydrite and precipitation of siderite and Fe sulfide. The relative rates of these reactions play an important role in the evolution of the sediment pore-water chemistry, notably pH, and directly depend on the relative activity of Fe and SO 4 reducers. The model captures fairly well the observed trends of increased alkalinity, sulfide, Fe and heavy metal concentrations below the sediment-water interface, together with decreasing terminal electron acceptor concentrations with depth, including the

  11. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  12. A supply chain optimization framework for CO2 emission reduction: Case of the Netherlands

    OpenAIRE

    Kalyanarengan Ravi, N.; Zondervan, E.; van Sint Annaland, M.; Fransoo, J.C.; Grievink, J.; Claus, T.; Herrmann, F.; Manitz, M.; Rose, O.

    2016-01-01

    A major challenge for the industrial deployment of a CO2 emission reduction methodology is to reduce the overall cost and the integration of all the nodes in the supply chain for CO2 emission reduction. In this work, we develop a mixed integer linear optimization model that selects appropriate sources, capture process, transportation network and CO2 storage sites and optimize for a minimum overall cost. Initially, we screen the sources and storage options available in the Netherlands at diffe...

  13. Assessing the utility of frequency dependent nudging for reducing biases in biogeochemical models

    Science.gov (United States)

    Lagman, Karl B.; Fennel, Katja; Thompson, Keith R.; Bianucci, Laura

    2014-09-01

    Bias errors, resulting from inaccurate boundary and forcing conditions, incorrect model parameterization, etc. are a common problem in environmental models including biogeochemical ocean models. While it is important to correct bias errors wherever possible, it is unlikely that any environmental model will ever be entirely free of such errors. Hence, methods for bias reduction are necessary. A widely used technique for online bias reduction is nudging, where simulated fields are continuously forced toward observations or a climatology. Nudging is robust and easy to implement, but suppresses high-frequency variability and introduces artificial phase shifts. As a solution to this problem Thompson et al. (2006) introduced frequency dependent nudging where nudging occurs only in prescribed frequency bands, typically centered on the mean and the annual cycle. They showed this method to be effective for eddy resolving ocean circulation models. Here we add a stability term to the previous form of frequency dependent nudging which makes the method more robust for non-linear biological models. Then we assess the utility of frequency dependent nudging for biological models by first applying the method to a simple predator-prey model and then to a 1D ocean biogeochemical model. In both cases we only nudge in two frequency bands centered on the mean and the annual cycle, and then assess how well the variability in higher frequency bands is recovered. We evaluate the effectiveness of frequency dependent nudging in comparison to conventional nudging and find significant improvements with the former.

  14. SVM-based glioma grading. Optimization by feature reduction analysis

    International Nuclear Information System (INIS)

    Zoellner, Frank G.; Schad, Lothar R.; Emblem, Kyrre E.; Harvard Medical School, Boston, MA; Oslo Univ. Hospital

    2012-01-01

    We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation coefficients (PCC), (ii) principal component analysis (PCA) and (iii) independent component analysis (ICA). Tumor grading was performed using a previously reported SVM approach including whole-tumor cerebral blood volume (CBV) histograms and patient age. Best classification accuracy was found using PCA at 85% (sensitivity = 89%, specificity = 84%) when reducing the feature vector from 101 (100-bins rCBV histogram + age) to 3 principal components. In comparison, classification accuracy by PCC was 82% (89%, 77%, 2 dimensions) and 79% by ICA (87%, 75%, 9 dimensions). For improved speed (up to 30%) and simplicity, feature reduction by all three methods provided similar classification accuracy to literature values (∝87%) while reducing the number of features by up to 98%. (orig.)

  15. SVM-based glioma grading. Optimization by feature reduction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, Frank G.; Schad, Lothar R. [University Medical Center Mannheim, Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Emblem, Kyrre E. [Massachusetts General Hospital, Charlestown, A.A. Martinos Center for Biomedical Imaging, Boston MA (United States). Dept. of Radiology; Harvard Medical School, Boston, MA (United States); Oslo Univ. Hospital (Norway). The Intervention Center

    2012-11-01

    We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation coefficients (PCC), (ii) principal component analysis (PCA) and (iii) independent component analysis (ICA). Tumor grading was performed using a previously reported SVM approach including whole-tumor cerebral blood volume (CBV) histograms and patient age. Best classification accuracy was found using PCA at 85% (sensitivity = 89%, specificity = 84%) when reducing the feature vector from 101 (100-bins rCBV histogram + age) to 3 principal components. In comparison, classification accuracy by PCC was 82% (89%, 77%, 2 dimensions) and 79% by ICA (87%, 75%, 9 dimensions). For improved speed (up to 30%) and simplicity, feature reduction by all three methods provided similar classification accuracy to literature values ({proportional_to}87%) while reducing the number of features by up to 98%. (orig.)

  16. What sea-ice biogeochemical modellers need from observers

    OpenAIRE

    Steiner, Nadja; Deal, Clara; Lannuzel, Delphine; Lavoie, Diane; Massonnet, François; Miller, Lisa A.; Moreau, Sebastien; Popova, Ekaterina; Stefels, Jacqueline; Tedesco, Letizia

    2016-01-01

    Abstract Numerical models can be a powerful tool helping to understand the role biogeochemical processes play in local and global systems and how this role may be altered in a changing climate. With respect to sea-ice biogeochemical models, our knowledge is severely limited by our poor confidence in numerical model parameterisations representing those processes. Improving model parameterisations requires communication between observers and modellers to guide model development and improve the ...

  17. Multimillennium changes in dissolved oxygen under global warming: results from an AOGCM and offline ocean biogeochemical model

    Science.gov (United States)

    Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.

    2016-12-01

    Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.

  18. Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors

    OpenAIRE

    Fujii, Hidemichi; Managi, Shunsuke

    2015-01-01

    To mitigate the effects of climate change, countries worldwide are advancing technologies to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal production resource reallocation on CO2 emissions reduction, focusing on regional and industrial characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 countries from...

  19. Biogeochemical and Ecomorphological Niche Segregation of Mediterranean Woody Species along a Local Gradient

    Directory of Open Access Journals (Sweden)

    Enrique G. de la Riva

    2017-07-01

    Full Text Available According with niche theory the species are specialized in different ecological niches, being able to coexist as result of a differential use of resources. In this context, the biogeochemical niche hypothesis proposes that species have an optimal elemental composition which results from the link between the chemical and morphological traits for the optimum plant functioning. Thus, and attending to the limiting similarity concept, different elemental composition and plant structure among co-occurring species may reduce competition, promoting different functional niches. Different functional habits associated with leaf life-span or growth forms are associated with different strategies for resource uptake, which could promote niche partitioning. In the present study, based on the biogeochemical niche concept and the use of resources in different proportions, we have focused on leaf traits (morphological and chemical associated with resource uptake, and explored the niche partitioning among functional habits: leaf life-span (deciduous, evergreen, and semideciduous and growth (tree, shrub, and arborescent-shrub. To this end, we have quantified the hypervolume of the leaf functional trait space (both structure and chemical composition in a sample of 45 Mediterranean woody species from Sierra Morena Mountains (Spain growing along a local soil resource gradient. Our results show consistent variation in functional space for woody communities distributed along the environmental gradient. Thus, communities dominated by deciduous trees with faster growth and a predominant acquisitive strategy were characteristic of bottom forests and showed highest leaf biogeochemical space. While semideciduous shrubs and evergreen (arborescent, trees species, characterized by a conservative strategy, dominated ridge forests and showed smaller functional space. In addition, within each topographical zone or environment type, the foliar biogeochemical niche partitioning

  20. Biogeochemical and Ecomorphological Niche Segregation of Mediterranean Woody Species along a Local Gradient.

    Science.gov (United States)

    de la Riva, Enrique G; Marañón, Teodoro; Violle, Cyrille; Villar, Rafael; Pérez-Ramos, Ignacio M

    2017-01-01

    According with niche theory the species are specialized in different ecological niches, being able to coexist as result of a differential use of resources. In this context, the biogeochemical niche hypothesis proposes that species have an optimal elemental composition which results from the link between the chemical and morphological traits for the optimum plant functioning. Thus, and attending to the limiting similarity concept, different elemental composition and plant structure among co-occurring species may reduce competition, promoting different functional niches. Different functional habits associated with leaf life-span or growth forms are associated with different strategies for resource uptake, which could promote niche partitioning. In the present study, based on the biogeochemical niche concept and the use of resources in different proportions, we have focused on leaf traits (morphological and chemical) associated with resource uptake, and explored the niche partitioning among functional habits: leaf life-span (deciduous, evergreen, and semideciduous) and growth (tree, shrub, and arborescent-shrub). To this end, we have quantified the hypervolume of the leaf functional trait space (both structure and chemical composition) in a sample of 45 Mediterranean woody species from Sierra Morena Mountains (Spain) growing along a local soil resource gradient. Our results show consistent variation in functional space for woody communities distributed along the environmental gradient. Thus, communities dominated by deciduous trees with faster growth and a predominant acquisitive strategy were characteristic of bottom forests and showed highest leaf biogeochemical space. While semideciduous shrubs and evergreen (arborescent, trees) species, characterized by a conservative strategy, dominated ridge forests and showed smaller functional space. In addition, within each topographical zone or environment type, the foliar biogeochemical niche partitioning would underlie the

  1. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts

  2. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, Travis; Cutler, Dylan; Hirsch, Brian; Olis, Dan; Anderson, Kate

    2015-10-28

    There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies, the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.

  3. Ecotoxicological, ecophysiological, and biogeochemical fundamentals of risk assessment

    International Nuclear Information System (INIS)

    Bashkin, V.N.; Kozlov, M.Ya.; Evstafjeva, E.V.

    1993-01-01

    Risk assessment (RA) influenced by different factors in radionuclide polluted regions is carried out by determining the biogeochemical structure of a region. Consequently, ecological-biogeochemical regionalization, ecotoxicological and ecophysiological monitoring of human population health are the important approach to RA. These criteria should conjugate with LCA of various industrial and agricultural products. Given fundamentals and approaches are needed for areas where traditional pollutants (heavy metals, pesticides, fertilizers, POPs etc) are enforced sharply by radioactive pollution. For RA of these complex pollutants, the methods of human adaptability to a polluted environment have been carried out. These techniques include biogeochemical, ecotoxicological, and ecophysiological analyses of risk factors as well as quantitative analysis of uncertainties using expert-modeling systems. Furthermore, the modern statistical methods are used for quantitative assessment of human adaptability to radioactive and nonradioactive pollutants. The results obtained in Chernobyl regions show the acceptability of these methods for risk assessment

  4. Biogeochemical provinces in the global ocean based on phytoplankton growth limitation

    Science.gov (United States)

    Hashioka, T.; Hirata, T.; Aita, M. N.; Chiba, S.

    2016-02-01

    The biogeochemical province is one of the useful concepts for the comprehensive understanding of regional differences of the marine ecosystem. Various biogeochemical provinces for lower-trophic level ecosystem have been proposed using a similarity-based classification of seasonal variations of chl-a concentration typified by Longhurst 1995 and 2006. Such categorizations well capture the regional differences of seasonality as "total phytoplankton". However, background biogeochemical mechanism to characterize the province boundary is not clear. Namely, the dominant phytoplankton group is different among regions and seasons, and their physiological characteristics are significantly different among groups. Recently some pieces of new biogeochemical information are available. One is an estimation of phytoplankton community structure from satellite observation, and it makes clear the key phytoplankton type in each region. Another is an estimation of limitation factors for phytoplankton growth (e.g., nutrients, temperature, light) in each region from modeling studies. In this study, we propose new biogeochemical provinces as a combination between the dominance of phytoplankton (i.e., diatoms, nano-, pico-phytoplankton or coexistence of two/three types) and their growth limitation factors (particularly we focused on nutrient limitation; N, P, Si or Fe). In this combination, we classified the global ocean into 23 biogeochemical provinces. The result suggests that even if the same type of phytoplankton dominates, the background mechanism could be different among regions. On the contrary, even if the regions geographically separate, the background mechanism could be similar among regions. This is important to understand that region/boundary does respond to environmental change. This biogeochemical province is useful for identification of key areas for future observation.

  5. Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2015-01-01

    Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.

  6. Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers

    Science.gov (United States)

    Kvale, Karin F.; Khatiwala, Samar; Dietze, Heiner; Kriest, Iris; Oschlies, Andreas

    2017-06-01

    Conventional integration of Earth system and ocean models can accrue considerable computational expenses, particularly for marine biogeochemical applications. Offline numerical schemes in which only the biogeochemical tracers are time stepped and transported using a pre-computed circulation field can substantially reduce the burden and are thus an attractive alternative. One such scheme is the transport matrix method (TMM), which represents tracer transport as a sequence of sparse matrix-vector products that can be performed efficiently on distributed-memory computers. While the TMM has been used for a variety of geochemical and biogeochemical studies, to date the resulting solutions have not been comprehensively assessed against their online counterparts. Here, we present a detailed comparison of the two. It is based on simulations of the state-of-the-art biogeochemical sub-model embedded within the widely used coarse-resolution University of Victoria Earth System Climate Model (UVic ESCM). The default, non-linear advection scheme was first replaced with a linear, third-order upwind-biased advection scheme to satisfy the linearity requirement of the TMM. Transport matrices were extracted from an equilibrium run of the physical model and subsequently used to integrate the biogeochemical model offline to equilibrium. The identical biogeochemical model was also run online. Our simulations show that offline integration introduces some bias to biogeochemical quantities through the omission of the polar filtering used in UVic ESCM and in the offline application of time-dependent forcing fields, with high latitudes showing the largest differences with respect to the online model. Differences in other regions and in the seasonality of nutrients and phytoplankton distributions are found to be relatively minor, giving confidence that the TMM is a reliable tool for offline integration of complex biogeochemical models. Moreover, while UVic ESCM is a serial code, the TMM can

  7. Structure Optimal Design of Electromagnetic Levitation Load Reduction Device for Hydroturbine Generator Set

    Directory of Open Access Journals (Sweden)

    Qingyan Wang

    2015-01-01

    Full Text Available Thrust bearing is one part with the highest failure rate in hydroturbine generator set, which is primarily due to heavy axial load. Such heavy load often makes oil film destruction, bearing friction, and even burning. It is necessary to study the load and the reduction method. The dynamic thrust is an important factor to influence the axial load and reduction design of electromagnetic device. Therefore, in the paper, combined with the structure features of vertical turbine, the hydraulic thrust is analyzed accurately. Then, take the turbine model HL-220-LT-550, for instance; the electromagnetic levitation load reduction device is designed, and its mathematical model is built, whose purpose is to minimize excitation loss and total quality under the constraints of installation space, connection layout, and heat dissipation. Particle swarm optimization (PSO is employed to search for the optimum solution; finally, the result is verified by finite element method (FEM, which demonstrates that the optimized structure is more effective.

  8. A supply chain optimization framework for CO2 emission reduction : Case of the Netherlands

    NARCIS (Netherlands)

    Kalyanarengan Ravi, N.; Zondervan, E.; van Sint Annaland, M.; Fransoo, J.C.; Grievink, J.; Claus, T.; Herrmann, F.; Manitz, M.; Rose, O.

    2016-01-01

    A major challenge for the industrial deployment of a CO2 emission reduction methodology is to reduce the overall cost and the integration of all the nodes in the supply chain for CO2 emission reduction. In this work, we develop a mixed integer linear optimization model that selects appropriate

  9. Tax solutions for optimal reduction of tobacco use in West Africa ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Tax solutions for optimal reduction of tobacco use in West Africa. During the first phase of this project, numerous decision-makers were engaged and involved in discussions with the goal of establishing a new taxation system to reduce tobacco use in West Africa. Although regional economic authorities (ECOWAS and ...

  10. Galerkin v. discrete-optimal projection in nonlinear model reduction

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Kevin Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antil, Harbir [George Mason Univ., Fairfax, VA (United States)

    2015-04-01

    Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes. We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.

  11. Biogeochemical cycling in the Taiwan Strait

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, H.; Chen, C-T.A.

    Based on repeat observations made during 2001-2003 along two transects in the Taiwan Strait this study aims at understanding factors controlling primary productivity with an emphasis on biogeochemical cycling of nitrogen, the major bio...

  12. Introduction of Bootstrap Current Reduction in the Stellarator Optimization Using the Algorithm DAB

    International Nuclear Information System (INIS)

    Castejón, F.; Gómez-Iglesias, A.; Velasco, J. L.

    2015-01-01

    This work is devoted to introduce new optimization criterion in the DAB (Distributed Asynchronous Bees) code. With this new criterion, we have now in DAB the equilibrium and Mercier stability criteria, the minimization of Bxgrad(B) criterion, which ensures the reduction of neoclassical transport and the improvement of the confinement of fast particles, and the reduction of bootstrap current. We have started from a neoclassically optimised configuration of the helias type and imposed the reduction of bootstrap current. The obtained configuration only presents a modest reduction of total bootstrap current, but the local current density is reduced along the minor radii. Further investigations are developed to understand the reason of this modest improvement.

  13. A supply chain optimization framework for CO2 emission reduction: Case of the Netherlands

    OpenAIRE

    Kalyanarengan Ravi, Narayen; Zondervan, Edwin; Van Sint Annaland, Martin; Fransoo, Jan C.; Grievink, J.

    2016-01-01

    A major challenge for the industrial deployment of a CO2 emission reduction methodology is to reduce the overall cost and the integration of all the nodes in the supply chain for CO2 emission reduction. In this work, we develop a mixed integer linear optimization model that selects appropriate sources, capture process, transportation network and CO2 storage sites and optimize for a minimum overall cost. Initially, we screen the sources and storage options available in the Netherlands at diffe...

  14. Preface to: Indian Ocean biogeochemical processes and ecological variability

    Digital Repository Service at National Institute of Oceanography (India)

    Hood, R.R.; Naqvi, S.W.A.; Wiggert, J.D.

    monsoonal in fluence. The biogeochemical and ecological impacts of this complex physical forcing are not yet fully understood. The Indian Ocean is truly one of the last great frontiers of ocea- nographic research. In addition, it appears... to be particularly vulnerable to climate change and anthropogenic impacts, yet it has been more than a decade since the last coordinated international study of biogeochemical and ecological proc esses was undertaken in this region. To obtain a better un...

  15. Study and optimization of the carbothermic reduction process for obtaining boron carbide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de.

    1989-01-01

    Boron carbide - B sub(4)C - is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Moreover, its high neutron capture cross section makes it suitable for application as neutron absorber in nuclear technology. The process for obtaining carbothermally derived boron carbide has been studied in two steps: firstly, the parameters of the boric acid → boron oxide dehydration reaction have been defined; secondly, the optimization of the carbothermal reduction reaction using boron oxide has been undertaken looking for boron carbide having low level of free carbon. The starting materials as well as the main products have been studied by chemical and spectrographic analyses, X-ray diffractometry, granulometric classification and scanning electron microscopy. The optimization of the carbothermic reduction process allowed for the development and set up of a fabrication procedure yielding high quality B sub(4) C powders, starting from low cost and easily available (in the Brazilian market) raw materials. (author)

  16. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils.

    Science.gov (United States)

    Jung, Jaejoon; Yeom, Jinki; Kim, Jisun; Han, Jiwon; Lim, Hyoun Soo; Park, Hyun; Hyun, Seunghun; Park, Woojun

    2011-12-01

    The microbial community (bacterial, archaeal, and fungi) and eight genes involved in the nitrogen biogeochemical cycle (nifH, nitrogen fixation; bacterial and archaeal amoA, ammonia oxidation; narG, nitrate reduction; nirS, nirK, nitrite reduction; norB, nitric oxide reduction; and nosZ, nitrous oxide reduction) were quantitatively assessed in this study, via real-time PCR with DNA extracted from three Antarctic soils. Interestingly, AOB amoA was found to be more abundant than AOA amoA in Antarctic soils. The results of microcosm studies revealed that the fungal and archaeal communities were diminished in response to warming temperatures (10 °C) and that the archaeal community was less sensitive to nitrogen addition, which suggests that those two communities are well-adapted to colder temperatures. AOA amoA and norB genes were reduced with warming temperatures. The abundance of only the nifH and nirK genes increased with both warming and the addition of nitrogen. NirS-type denitrifying bacteria outnumbered NirK-type denitrifiers regardless of the treatment used. Interestingly, dramatic increases in both NirS and NirK-types denitrifiers were observed with nitrogen addition. NirK types increase with warming, but NirS-type denitrifiers tend to be less sensitive to warming. Our findings indicated that the Antarctic microbial nitrogen cycle could be dramatically altered by temperature and nitrogen, and that warming may be detrimental to the ammonia-oxidizing archaeal community. To the best of our knowledge, this is the first report to investigate genes associated with each process of the nitrogen biogeochemical cycle in an Antarctic terrestrial soil environment. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Reanalysis of biogeochemical properties in the Mediterranean Sea

    Science.gov (United States)

    Cossarini, Gianpiero; Teruzzi, Anna; Salon, Stefano; Solidoro, Cosimo

    2014-05-01

    In the 3D variational (3DVAR) assimilation approach the error covariance matrix can be decomposed in a series of operators. The decomposition makes the 3DVAR particularly suitable for marine biogeochemistry data assimilation, because of the reduced computational costs of the method and its modularity, which allows to define the covariance among the biogeochemical variables in a specific operator. In the present work, the results of 3DVAR assimilation of surface chlorophyll concentration in a multi-annual simulation of the Mediterranean Sea biogeochemistry are presented. The assimilated chlorophyll concentrations are obtained from satellite observations (Volpe et al. 2012). The multi-annual simulation is carried out using the OPATM-BFM model (Lazzari et al. 2012), which describes the low trophic web dynamics and is offline coupled with the MFS physical model (Oddo et al. 2009). In the OPATM-BFM four types of phytoplankton are simulated in terms of their content in carbon, nitrogen, phosphorous, silicon and chlorophyll. In the 3DVAR the error covariance matrix has been decomposed in three different operators, which account for the vertical, the horizontal and the biogeochemical covariance (Teruzzi et al. 2014). The biogeochemical operator propagates the result of the assimilation to the OPATM-BFM variables, providing innovation for the components of the four phytoplankton types. The biogeochemical covariance has been designed supposing that the assimilation preserves the physiological status and the relative abundances of phytoplankton types. Practically, the assimilation preserves the internal quotas of the components for each phytoplankton as long as the optimal growth rate condition are maintained. The quotas preservation is not applied when the phytoplankton is in severe declining growth phase, and the correction provided by the assimilation is set equal to zero. Moreover, the relative abundances among the phytoplankton functional types are preserved. The 3DVAR

  18. Reduction of construction periods of PWRs by optimization of detailed sequence planning

    International Nuclear Information System (INIS)

    Stocker, W.; Leverenz, R.

    1991-01-01

    The construction of PWR's is an enterprise with high investment costs, in total up to three billion US$ and with long construction periods of five years and more. Besides the results reached by the intensive standardization, a further reduction of the construction period is possible by optimization of detailed sequence planning and interfaces of work units. During the execution of the three German Convoy plants ISAR 2, EMSLAND and NECKARWESTHEIM 2, the contractual construction periods were shortened between 4 and 8 months. These reductions were reached after individual investigations by measures like advanced finishing work activities; erection of an increased amount of prefabricated pipings; rearrangement of erection sequences; overlapping of piping erection and electrical installation; reduction of plant commissioning period. All these measures support directly the reduction of the total investment cost of a plant, as already demonstrated by the Convoy plants. (author). 8 figs

  19. Active vibration reduction by optimally placed sensors and actuators with application to stiffened plates by beams

    International Nuclear Information System (INIS)

    Daraji, A H; Hale, J M

    2014-01-01

    This study concerns new investigation of active vibration reduction of a stiffened plate bonded with discrete sensor/actuator pairs located optimally using genetic algorithms based on a developed finite element modeling. An isotropic plate element stiffened by a number of beam elements on its edges and having a piezoelectric sensor and actuator pair bonded to its surfaces is modeled using the finite element method and Hamilton’s principle, taking into account the effects of piezoelectric mass, stiffness and electromechanical coupling. The modeling is based on the first order shear deformation theory taking into account the effects of bending, membrane and shear deformation for the plate, the stiffening beam and the piezoelectric patches. A Matlab finite element program has been built for the stiffened plate model and verified with ANSYS and also experimentally. Optimal placement of ten piezoelectric sensor/actuator pairs and optimal feedback gain for active vibration reduction are investigated for a plate stiffened by two beams arranged in the form of a cross. The genetic algorithm was set up for optimization of sensor/actuator placement and feedback gain based on the minimization of the optimal linear quadratic index as an objective function to suppress the first six modes of vibration. Comparison study is presented for active vibration reduction of a square cantilever plate stiffened by crossed beams with two sensor/actuator configurations: firstly, ten piezoelectric sensor/actuator pairs are located in optimal positions; secondly, a piezoelectric layer of single sensor/actuator pair covering the whole of the stiffened plate as a SISO system. (paper)

  20. A Wideband and Polarization-Independent Metasurface Based on Phase Optimization for Monostatic and Bistatic Radar Cross Section Reduction

    Directory of Open Access Journals (Sweden)

    Jianxun Su

    2016-01-01

    Full Text Available A broadband and polarization-independent metasurface is analyzed and designed for both monostatic and bistatic radar cross section (RCS reduction in this paper. Metasurfaces are composed of two types of electromagnetic band-gap (EBG lattice, which is a subarray with “0” or “π” phase responses, arranged in periodic and aperiodic fashions. A new mechanism is proposed for manipulating electromagnetic (EM scattering and realizing the best reduction of monostatic and bistatic RCS by redirecting EM energy to more directions through controlling the wavefront of EM wave reflected from the metasurface. Scattering characteristics of two kinds of metasurfaces, periodic arrangement and optimized phase layout, are studied in detail. Optimizing phase layout through particle swarm optimization (PSO together with far field pattern prediction can produce a lot of scattering lobes, leading to a great reduction of bistatic RCS. For the designed metasurface based on optimal phase layout, a bandwidth of more than 80% is achieved at the normal incidence for the −9.5 dB RCS reduction for both monostatic and bistatic. Bistatic RCS reduction at frequency points with exactly 180° phase difference reaches 17.6 dB. Both TE and TM polarizations for oblique incidence are considered. The measured results are in good agreement with the corresponding simulations.

  1. Nutrient removal using biosorption activated media: Preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    International Nuclear Information System (INIS)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO 3 − /Cl − ) ratios for the shallow groundwater indicates that prior to using BAM, NO 3 − concentrations were substantially influenced by nitrification or variations in NO 3 − input. In contrast, for the new basin utilizing BAM, NO 3 − /Cl − ratios indicate minor nitrification and NO 3 − losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest that NO 3 − losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by the increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO 4 3− ) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO 4 3− /Cl − ratios for shallow

  2. Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard; Christensen, Thomas Højlund

    2002-01-01

    A biogeochemical transport code is used to simulate leachate attenuation. biogeochemical processes. and development of redox zones in a pollution plume downstream of the Vejen landfill in Denmark. Calibration of the degradation parameters resulted in a good agreement with the observed distribution...

  3. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  4. Optimal placement of trailing-edge flaps for helicopter vibration reduction using response surface methods

    Science.gov (United States)

    Viswamurthy, S. R.; Ganguli, Ranjan

    2007-03-01

    This study aims to determine optimal locations of dual trailing-edge flaps to achieve minimum hub vibration levels in a helicopter, while incurring low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. The reduced hub vibration levels and required flap control power (due to flap motion) are the two objectives considered in this study and the flap locations along the blade are the design variables. It is found that second order polynomial response surfaces based on the central composite design of the theory of design of experiments describe both objectives adequately. Numerical studies for a four-bladed hingeless rotor show that both objectives are more sensitive to outboard flap location compared to the inboard flap location by an order of magnitude. Optimization results show a disjoint Pareto surface between the two objectives. Two interesting design points are obtained. The first design gives 77 percent vibration reduction from baseline conditions (no flap motion) with a 7 percent increase in flap power compared to the initial design. The second design yields 70 percent reduction in hub vibration with a 27 percent reduction in flap power from the initial design.

  5. Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples

    International Nuclear Information System (INIS)

    Williamson, Aimee Lynn; Caron, François; Spiers, Graeme

    2014-01-01

    Biogeochemical mineral dissolution is a promising method for the released of metals in low-grade host mineralization that contain sulphidic minerals. The application of biogeochemical mineral dissolution to engineered leach heap piles in the Elliot Lake region may be considered as a promising passive technology for the economic recovery of low grade Uranium-bearing ores. In the current investigation, the decrease of radiological activity of uraniferous mineral material after biogeochemical mineral dissolution is quantified by gamma spectroscopy and compared to the results from digestion/ICP-MS analysis of the ore materials to determine if gamma spectroscopy is a simple, viable alternative quantification method for heavy nuclides. The potential release of Uranium (U) and Radium-226 ( 226 Ra) to the aqueous environment from samples that have been treated to represent various stages of leaching and passive closure processes are assessed. Dissolution of U from the solid phase has occurred during biogeochemical mineral dissolution in the presence of Acidithiobacillus ferrooxidans, with gamma spectroscopy indicating an 84% decrease in Uranium-235 ( 235 U) content, a value in accordance with the data obtained by dissolution chemistry. Gamma spectroscopy data indicate that only 30% of the 226 Ra was removed during the biogeochemical mineral dissolution. Chemical inhibition and passivation treatments of waste materials following the biogeochemical mineral dissolution offer greater protection against residual U and 226 Ra leaching. Pacified samples resist the release of 226 Ra contained in the mineral phase and may offer more protection to the aqueous environment for the long term, compared to untreated or inhibited residues, and should be taken into account for future decommissioning. - Highlights: • Gamma counting showed an 84% decrease in 235 U after biogeochemical mineral leaching. • Chemical digestion/ICP-MS analysis also showed an 84% decrease in total U. • Over

  6. A Hybrid Optimization Framework with POD-based Order Reduction and Design-Space Evolution Scheme

    Science.gov (United States)

    Ghoman, Satyajit S.

    The main objective of this research is to develop an innovative multi-fidelity multi-disciplinary design, analysis and optimization suite that integrates certain solution generation codes and newly developed innovative tools to improve the overall optimization process. The research performed herein is divided into two parts: (1) the development of an MDAO framework by integration of variable fidelity physics-based computational codes, and (2) enhancements to such a framework by incorporating innovative features extending its robustness. The first part of this dissertation describes the development of a conceptual Multi-Fidelity Multi-Strategy and Multi-Disciplinary Design Optimization Environment (M3 DOE), in context of aircraft wing optimization. M 3 DOE provides the user a capability to optimize configurations with a choice of (i) the level of fidelity desired, (ii) the use of a single-step or multi-step optimization strategy, and (iii) combination of a series of structural and aerodynamic analyses. The modularity of M3 DOE allows it to be a part of other inclusive optimization frameworks. The M 3 DOE is demonstrated within the context of shape and sizing optimization of the wing of a Generic Business Jet aircraft. Two different optimization objectives, viz. dry weight minimization, and cruise range maximization are studied by conducting one low-fidelity and two high-fidelity optimization runs to demonstrate the application scope of M3 DOE. The second part of this dissertation describes the development of an innovative hybrid optimization framework that extends the robustness of M 3 DOE by employing a proper orthogonal decomposition-based design-space order reduction scheme combined with the evolutionary algorithm technique. The POD method of extracting dominant modes from an ensemble of candidate configurations is used for the design-space order reduction. The snapshot of candidate population is updated iteratively using evolutionary algorithm technique of

  7. Turboprop Engine Nacelle Optimization for Flight Increased Safety and Pollution Reduction

    Directory of Open Access Journals (Sweden)

    Cristian DOROBAT

    2018-03-01

    Full Text Available Commuter airplanes defined in CS-23 as being propeller driven, twin-engine, nineteen seats and maximum certified take-off weight of 8618 Kg had lately a special development due to advantages of turboprop engine compared with piston or jet engines. Nacelle optimization implies a sound and vibrations proof engine frame, engine fuel consumption reduction (through smaller nacelle drag and weight, better lift, better pressure recovery in air induction system, smaller drag of exhaust nozzles, engine cooling and nacelle ventilation more efficient, composite nacelle fairings with noise reduction properties, etc.. Nacelle aerodynamic experimental model, air induction experimental model and other nacelle experimental systems tested independently allow construction efficiency due to minimizing modifications on nacelle assembly and more safety in operation [1].

  8. Optimization Solutions for Improving the Performance of the Parallel Reduction Algorithm Using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2012-01-01

    Full Text Available In this paper, we research, analyze and develop optimization solutions for the parallel reduction function using graphics processing units (GPUs that implement the Compute Unified Device Architecture (CUDA, a modern and novel approach for improving the software performance of data processing applications and algorithms. Many of these applications and algorithms make use of the reduction function in their computational steps. After having designed the function and its algorithmic steps in CUDA, we have progressively developed and implemented optimization solutions for the reduction function. In order to confirm, test and evaluate the solutions' efficiency, we have developed a custom tailored benchmark suite. We have analyzed the obtained experimental results regarding: the comparison of the execution time and bandwidth when using graphic processing units covering the main CUDA architectures (Tesla GT200, Fermi GF100, Kepler GK104 and a central processing unit; the data type influence; the binary operator's influence.

  9. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  10. Biogeochemical aspects of aquifer thermal energy storage

    NARCIS (Netherlands)

    Brons, H.J.

    1992-01-01

    During the process of aquifer thermal energy storage the in situ temperature of the groundwater- sediment system may fluctuate significantly. As a result the groundwater characteristics can be considerably affected by a variety of chemical, biogeochemical and microbiological

  11. Structure of peat soils and implications for biogeochemical processes and hydrological flow

    Science.gov (United States)

    Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.

    2017-12-01

    Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.

  12. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    Science.gov (United States)

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Searching for Biogeochemical Cycles on Mars

    Science.gov (United States)

    DesMarais, David J.

    1997-01-01

    The search for life on Mars clearly benefits from a rigorous, yet broad, definition of life that compels us to consider all possible lines of evidence for a martian biosphere. Recent studies in microbial ecology illustrate that the classic definition of life should be expanded beyond the traditional definition of a living cell. The traditional defining characteristics of life are threefold. First, life is capable of metabolism, that is, it performs chemical reactions that utilize energy and also synthesize its cellular constituents. Second, life is capable of self-replication. Third, life can evolve in order to adapt to environmental changes. An expanded, ecological definition of life also recognizes that life is a community of organisms that must interact with their nonliving environment through processes called biogeochemical cycles. This regenerative processing maintains, in an aqueous conditions, a dependable supply of nutrients and energy for growth. In turn, life can significantly affect those processes that control the exchange of materials between the atmosphere, ocean, and upper crust. Because metabolic processes interact directly with the environment, they can alter their surroundings and thus leave behind evidence of life. For example, organic matter is produced from single-carbon-atom precursors for the biosynthesis of cellular constituents. This leads to a reservoir of reduced carbon in sediments that, in turn, can affect the oxidation state of the atmosphere. The harvesting of chemical energy for metabolism often employs oxidation-reduction reactions that can alter the chemistry and oxidation state of the redox-sensitive elements carbon, sulfur, nitrogen, iron, and manganese. Have there ever been biogeochemical cycles on Mars? Certain key planetary processes can offer clues. Active volcanism provides reduced chemical species that biota can use for organic synthesis. Volcanic carbon dioxide and methane can serve as greenhouse gases. Thus the

  14. Experimental demonstration of wind turbine noise reduction through optimized airfoil shape and trailing-edge serrations

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S. [National Aerospace Laboratory NLR, Emmeloord (Netherlands); Schepers, J.G. [Unit Wind Energy, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Guidati, G.; Wagner, S. [Institut fuer Aerodynamik und Gasdynamik IAG, Universitaet Stuttgart (Germany)

    2001-07-15

    The objective of the European project DATA (Design and Testing of Acoustically Optimized Airfoils for Wind Turbines) is a reduction of trailing-edge (TE) noise by modifying the airfoil shape and/or the application of trailing-edge serrations. This paper describes validation measurements that were performed in the DNW-LLF wind tunnel, on a model scale wind turbine with a two-bladed 4.5 m diameter rotor which was designed in the project. Measurements were done for one reference- and two acoustically optimized rotors, for varying flow conditions. The aerodynamic performance of the rotors was measured using a torque meter in the hub, and further aerodynamic information was obtained from flow visualization on the blades. The acoustic measurements were done with a 136 microphone out-of-flow acoustic array. Besides the location of the noise sources in the (stationary) rotor plane, a new acoustic processing method enabled identification of dominant noise source regions on the rotating blades. The results show dominant noise sources at the trailing-edge of the blade, close to the tip. The optimized airfoil shapes result in a significant reduction of TE noise levels with respect to the reference rotor, without loss in power production. A further reduction can be achieved by the application of trailing-edge serrations. The aerodynamic measurements are generally in good agreement with the aerodynamic predictions made during the design of the model turbine.

  15. Incorporating nitrogen fixing cyanobacteria in the global biogeochemical model HAMOCC

    Science.gov (United States)

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina

    2015-04-01

    Nitrogen fixation by marine diazotrophs plays a fundamental role in the oceanic nitrogen and carbon cycle as it provides a major source of 'new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Since most global biogeochemical models include nitrogen fixation only diagnostically, they are not able to capture its spatial pattern sufficiently. Here we present the incorporation of an explicit, dynamic representation of diazotrophic cyanobacteria and the corresponding nitrogen fixation in the global ocean biogeochemical model HAMOCC (Hamburg Ocean Carbon Cycle model), which is part of the Max Planck Institute for Meteorology Earth system model (MPI-ESM). The parameterization of the diazotrophic growth is thereby based on available knowledge about the cyanobacterium Trichodesmium spp., which is considered as the most significant pelagic nitrogen fixer. Evaluation against observations shows that the model successfully reproduces the main spatial distribution of cyanobacteria and nitrogen fixation, covering large parts of the tropical and subtropical oceans. Besides the role of cyanobacteria in marine biogeochemical cycles, their capacity to form extensive surface blooms induces a number of bio-physical feedback mechanisms in the Earth system. The processes driving these interactions, which are related to the alteration of heat absorption, surface albedo and momentum input by wind, are incorporated in the biogeochemical and physical model of the MPI-ESM in order to investigate their impacts on a global scale. First preliminary results will be shown.

  16. Biogeochemical speciation of Fe in ocean water

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.

    2006-01-01

    The biogeochemical speciation of Fe in seawater has been evaluated using the consistent Non-Ideal Competitive Adsorption model (NICA¿Donnan model). Two types of data sets were used, i.e. Fe-hydroxide solubility data and competitive ligand equilibration/cathodic stripping voltammetry (CLE/CSV) Fe

  17. Optimization of filtration for reduction of lung dose from Rn decay products: Part I--Theoretical

    International Nuclear Information System (INIS)

    Curling, C.A.; Rudnick, S.N.; Ryan, P.B.; Moeller, D.W.

    1990-01-01

    A theoretical model was developed for the optimization of filter characteristics that would minimize the dose from the inhalation of Rn decay products. Modified forms of the Jacobi-Porstendorfer room model and the Jacobi-Eisfeld lung dose model were chosen for use in the mathematical simulation. Optimized parameters of the filter were the thickness, solidity, and fiber diameter. For purposes of the calculations, the room dimensions, air exchange rate, particle-size distribution and concentration, and the Rn concentration were specified. The resulting computer-aided optimal design was a thin filter (the minimum thickness used in the computer model was 0.1 mm) having low solidity (the minimum solidity used was 0.5%) and large diameter fibers (the maximum diameter used was 100 microns). The simulation implies that a significant reduction in the dose rate can be achieved using a well-designed recirculating filter system. The theoretical model, using the assumption of ideal mixing, predicts an 80% reduction in the dose rate, although inherent in this assumption is the movement of 230 room volumes per hour through the fan

  18. Molecular biogeochemical provinces in the Atlantic Surface Ocean

    Science.gov (United States)

    Koch, B. P.; Flerus, R.; Schmitt-Kopplin, P.; Lechtenfeld, O. J.; Bracher, A.; Cooper, W.; Frka, S.; Gašparović, B.; Gonsior, M.; Hertkorn, N.; Jaffe, R.; Jenkins, A.; Kuss, J.; Lara, R. J.; Lucio, M.; McCallister, S. L.; Neogi, S. B.; Pohl, C.; Roettgers, R.; Rohardt, G.; Schmitt, B. B.; Stuart, A.; Theis, A.; Ying, W.; Witt, M.; Xie, Z.; Yamashita, Y.; Zhang, L.; Zhu, Z. Y.; Kattner, G.

    2010-12-01

    One of the most important aspects to understand marine organic carbon fluxes is to resolve the molecular mechanisms which convert fresh, labile biomolecules into semi-labile and refractory dissolved and particulate organic compounds in the ocean. In this interdisciplinary project, which was performed on a cruise with RV Polarstern, we carried out a detailed molecular characterisation of dissolved organic matter (DOM) on a North-South transect in the Atlantic surface ocean in order to relate the data to different biological, climatic, oceanographic, and meteorological regimes as well as to terrestrial input from riverine and atmospheric sources. Our goal was to achieve a high resolution data set for the biogeochemical characterisation of the sources and reactivity of DOM. We applied ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), nutrient, trace element, amino acid, and lipid analyses and other biogeochemical measurements for 220 samples from the upper water column (0-200m) and eight deep profiles. Various spectroscopic techniques were applied continuously in a constant sample water flow supplied by a fish system and the moon pool. Radiocarbon dating enabled assessing DOC residence time. Bacterial abundance and production provided a metabolic context for the DOM characterization work and pCO2 concentrations. Combining molecular organic techniques and inductively coupled plasma mass spectrometry (ICP-MS) established an important link between organic and inorganic biogeochemical studies. Multivariate statistics, primarily based on FT-ICR-MS data for 220 samples, allowed identifying geographical clusters which matched ecological provinces proposed previously by Longhurst (2007). Our study demonstrated that marine DOM carries molecular information reflecting the “history” of ocean water masses. This information can be used to define molecular biogeochemical provinces and to improve our understanding of element fluxes in

  19. Optimal deployment schedule of an active twist rotor for performance enhancement and vibration reduction in high-speed flights

    Directory of Open Access Journals (Sweden)

    Young H. YOU

    2017-08-01

    Full Text Available The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm (PSGA is employed for the optimizer. A rotorcraft Computational Structural Dynamics (CSD code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics (CFD code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.

  20. Physical/biogeochemical coupled model : impact of an offline vs online strategy

    Science.gov (United States)

    Hameau, Angélique; Perruche, Coralie; Bricaud, Clément; Gutknecht, Elodie; Reffray, Guillaume

    2014-05-01

    Mercator-Ocean, the French ocean forecasting center, has been developing several operational forecasting systems and reanalysis of the physical and biogeochemical 3D-Ocean. Here we study the impact of an offline vs online strategy to couple the physical (OPA) and biogeochemical (PISCES) modules included in the NEMO platform. For this purpose, we perform global one-year long simulations at 1° resolution. The model was initialized with global climatologies. The spin-up involved 10 years of biogeochemical off-line simulation forced by a climatology of ocean physics. The online mode consists in running physical and biogeochemical models simultaneously whereas in the offline mode, the biogeochemical model is launched alone, forced by averaged physical forcing (1 day, 7 days,… ). The Mercator operational biogeochemical system is currently using the offline mode with a weekly physical forcing. A special treatment is applied to the vertical diffusivity coefficient (Kz): as it varies of several orders of magnitude, we compute the mean of the LOG10 of Kz. Moreover, a threshold value is applied to remove the highest values corresponding to enhanced convection. To improve this system, 2 directions are explored. First, 3 physical forcing frequencies are compared to quantify errors due to the offline mode: 1 hour (online mode), 1 day and 1 week (offline modes). Secondly, sensitivity tests to the threshold value applied to Kz are performed. The simulations are evaluated by systematically comparing model fields to observations (Globcolour product and World Ocean Atlas 2005) at global and regional scales. We show first that offline simulations are in good agreement with online simulation. As expected, the lower the physical forcing frequency is, the closer to the online solution is the offline simulation. The threshold value on the vertical diffusivity coefficient manages the mixing strength within the mixed layer. A value of 1 m2.s-1 appears to be a good compromise to approach

  1. Optimized phase mask to realize retro-reflection reduction for optical systems

    Science.gov (United States)

    He, Sifeng; Gong, Mali

    2017-10-01

    Aiming at the threats to the active laser detection systems of electro-optical devices due to the cat-eye effect, a novel solution is put forward to realize retro-reflection reduction in this paper. According to the demands of both cat-eye effect reduction and the image quality maintenance of electro-optical devices, a symmetric phase mask is achieved from a stationary phase method and a fast Fourier transform algorithm. Then, based on a comparison of peak normalized cross-correlation (PNCC) between the different defocus parameters, the optimal imaging position can be obtained. After modification with the designed phase mask, the cat-eye effect peak intensity can be reduced by two orders of magnitude while maintaining good image quality and high modulation transfer function (MTF). Furthermore, a practical design example is introduced to demonstrate the feasibility of our proposed approach.

  2. Consequences of climate change for biogeochemical cycling in forests of northeastern North America

    Science.gov (United States)

    John L. Campbell; Lindsey E. Rustad; Elizabeth W. Boyer; Sheila F. Christopher; Charles T. Driscoll; Ivan .J. Fernandez; Peter M. Groffman; Daniel Houle; Jana Kiekbusch; Alison H. Magill; Myron J. Mitchell; Scott V. Ollinger

    2009-01-01

    A critical component of assessing the impacts of climate change on forest ecosystems involves understanding associated changes in biogeochemical cycling of elements. Evidence from research on northeastern North American forests shows that direct effects of climate change will evoke changes in biogeochemical cycling by altering plant physiology forest productivity, and...

  3. Short-term effects of salinity reduction and drainage on salt-marsh biogeochemical cycling and Spartina (Cordgrass) production

    Science.gov (United States)

    Portnoy, J.W.; Valiela, I.

    1997-01-01

    To assess the biogeochemical effects of tidal restrictions on salt-marsh sulfur cycling and plant growth, cores of short-form Spartina alterniflora peat were desalinated and kept either waterlogged or drained in greenhouse microcosms. Changes in net Spartina production, and porewater and solid phase chemistry of treated cores were compared to natural conditions in the field collection site over a 21-mo period. Net production among treatments increased significantly in drained and waterlogged peat compared to field conditions during the first growing season. Constantly high sulfide in waterlogged cores accompanied reduced plant growth. Aeration invigorated growth in drained cores but led to oxidization of sulfide minerals and to lowered pH. During the second growing season, growth declined in the drained treatment, probably because of acidification and decreased dissolved inorganic nitrogen. Results are pertinent to the success of current wetland protection and restoration activities in the coastal zone.

  4. Biogeochemical cycling of radionuclides in the environment

    International Nuclear Information System (INIS)

    Livens, F.R.

    1990-01-01

    The biogeochemical cycling of radionuclides with other components such as nutrients around ecosystems is discussed. In particular the behaviour of cesium in freshwater ecosystems since the Chernobyl accident and the behaviour of technetium in the form of pertechnetate anions, TcO 4 , in marine ecosystems is considered. (UK)

  5. A Joint Optimal Decision on Shipment Size and Carbon Reduction under Direct Shipment and Peddling Distribution Strategies

    Directory of Open Access Journals (Sweden)

    Daiki Min

    2017-11-01

    Full Text Available Recently, much research has focused on lowering carbon emissions in logistics. This paper attempts to contribute to the literature on the joint shipment size and carbon reduction decisions by developing novel models for distribution systems under direct shipment and peddling distribution strategies. Unlike the literature that has simply investigated the effects of carbon costs on operational decisions, we address how to reduce carbon emissions and logistics costs by adjusting shipment size and making an optimal decision on carbon reduction investment. An optimal decision is made by analyzing the distribution cost including not only logistics and carbon trading costs but also the cost for adjusting carbon emission factors. No research has explicitly considered the two sources of carbon emissions, but we develop a model covering the difference in managing carbon emissions from transportation and storage. Structural analysis guides how to determine an optimal shipment size and emission factors in a closed form. Moreover, we analytically prove the possibility of reducing the distribution cost and carbon emissions at the same time. Numerical analysis follows validation of the results and demonstrates some interesting findings on carbon and distribution cost reduction.

  6. The origin of the coercivity reduction of Nd–Fe–B sintered magnet annealed below an optimal temperature

    International Nuclear Information System (INIS)

    Akiya, T.; Sasaki, T.T.; Ohkubo, T.; Une, Y.; Sagawa, M.; Kato, H.; Hono, K.

    2013-01-01

    In order to understand the origin of the coercivity reduction in a sintered Nd–Fe–B magnet that is annealed below an optimal annealing temperature, we performed focused ion beam/scanning electron microscopy tomography of post-sinter annealed magnets. A number of grain boundary cracks were observed between Nd 2 Fe 14 B grains and Nd-rich phases in the sample annealed below the optimal temperature. We deduced micromagnetic parameters α and N eff by fitting the temperature dependence of the coercivity. While α was constant regardless of the annealing conditions, N eff increased in the sample annealed below the optimal temperature with the reduced coercivity. This indicates that the reduction of the coercivity is due to the local stray field at the cracks. - Highlights: • We performed FIB/SEM tomography of post-sinter annealed magnets. • A number of grain boundary cracks were observed in the low-coercivity sample. • Parameters α and N eff were deduced from the temperature dependence of coercivity. • While α was constant, N eff increased in the low-coercivity sample. • The reduction of the coercivity is due to the local stray field at the cracks

  7. Biogeochemical and engineered barriers for preventing spread of contaminants.

    Science.gov (United States)

    Baltrėnaitė, Edita; Lietuvninkas, Arvydas; Baltrėnas, Pranas

    2018-02-01

    The intensive industrial development and urbanization, as well as the negligible return of hazardous components to the deeper layers of the Earth, increases the contamination load on the noosphere (i.e., the new status of the biosphere, the development of which is mainly controlled by the conscious activity of a human being). The need for reducing the spread and mobility of contaminants is growing. The insights into the role of the tree in the reduction of contaminant mobility through its life cycle are presented to show an important function performed by the living matter and its products in reducing contamination. For maintaining the sustainable development, natural materials are often used as the media in the environmental protection technologies. However, due to increasing contamination intensity, the capacity of natural materials is not sufficiently high. Therefore, the popularity of engineered materials, such as biochar which is the thermochemically modified lignocellulosic product, is growing. The new approaches, based on using the contaminant footprint, as well as natural (biogeochemical) and engineered barriers for reducing contaminant migration and their application, are described in the paper.

  8. Reduction of cancer risk by optimization of Computed Tomography head protocols: far eastern Cuban experience

    International Nuclear Information System (INIS)

    Miller Clemente, R.; Adame Brooks, D.; Lores Guevara, M.; Perez Diaz, M.; Arias Garlobo, M. L.; Ortega Rodriguez, O.; Nepite Haber, R.; Grinnan Hernandez, O.; Guillama Llosas, A.

    2015-01-01

    The cancer risk estimation constitutes one way for the evaluation of the public health, regarding computed tomography (CT) exposures. Starting from the hypothesis that the optimization of CT protocols would reduce significantly the added cancer risk, the purpose of this research was the application of optimization strategies regarding head CT protocols, in order to reduce the factors affecting the risk of induced cancer. The applied systemic approach included technological and human components, represented by quantitative physical factors. the volumetric kerma indexes, compared with respect to standard, optimized and reference values, were evaluated with multiple means comparison method. The added cancer risk resulted from the application of the methodology for biological effects evaluation, at low doses with low Linear Energy Transfer. Human observers in all scenarios evaluated the image quality. the reduced dose was significantly lower than for standard head protocols and reference levels, where: (1) for pediatric patients, by using an Automatic Exposure Control system, a reduction of 31% compared with standard protocol and ages range of 10-14, and (2) adults, using a Bilateral Filter for images obtained at low doses of 62% from those of standard head protocol. The risk reduction was higher than 25%. The systemic approach used allows the effective identification of factors involved on cancer risk related with exposures to CT. The combination of dose modulation and image restoration with Bilateral Filter, provide a significantly reduction of cancer risk, with acceptable diagnostic image quality. (Author)

  9. Biogeochemical hotspots following a simulated tree mortality event of southern pine beetle

    Science.gov (United States)

    Siegert, C. M.; Renninger, H. J.; Karunarathna, S.; Hornslein, N.; Riggins, J. J.; Clay, N. A.; Tang, J. D.; Chaney, B.; Drotar, N.

    2017-12-01

    Disturbances in forest ecosystems can alter functions like productivity, respiration, and nutrient cycling through the creation of biogeochemical hotspots. These events occur sporadically across the landscape, leading to uncertainty in terrestrial biosphere carbon models, which have yet to capture the full complexity of biotic and abiotic factors driving ecological processes in the terrestrial environment. Given the widespread impact of southern pine beetle on forest ecosystems throughout the southeastern United States, it is critical to management and planning activities to understand the role of these disturbances. As such, we hypothesize that bark beetle killed trees create biogeochemical hotspots in the soils surrounding their trunk as they undergo mortality due to (1) increased soil moisture from reductions in plant water uptake and increased stemflow production, (2) enhanced canopy-derived inputs of carbon and nitrogen, and (3) increased microbial activity and root mortality. In 2015, a field experiment to mimic a southern pine beetle attack was established by girdling loblolly pine trees. Subsequent measurements of throughfall and stemflow for water quantity and quality, transpiration, stem respiration, soil respiration, and soil chemistry were used to quantify the extent of spatial and temporal impacts of tree mortality on carbon budgets. Compared to control trees, girdled trees exhibited reduced water uptake within the first 6 months of the study and succumbed to mortality within 18 months. Over two years, the girdled trees generated 33% more stemflow than control trees (7836 vs. 5882 L m-2). Preliminary analysis of carbon and nitrogen concentrations and dissolved organic matter quality are still pending. In the surrounding soils, C:N ratios were greater under control trees (12.8) than under girdled trees (12.1), which was driven by an increase in carbon around control trees (+0.13 mg C mg-1 soil) and not a decrease around girdled trees (-0.01 mg C mg-1

  10. Maximizing neotissue growth kinetics in a perfusion bioreactor: An in silico strategy using model reduction and Bayesian optimization.

    Science.gov (United States)

    Mehrian, Mohammad; Guyot, Yann; Papantoniou, Ioannis; Olofsson, Simon; Sonnaert, Maarten; Misener, Ruth; Geris, Liesbet

    2018-03-01

    In regenerative medicine, computer models describing bioreactor processes can assist in designing optimal process conditions leading to robust and economically viable products. In this study, we started from a (3D) mechanistic model describing the growth of neotissue, comprised of cells, and extracellular matrix, in a perfusion bioreactor set-up influenced by the scaffold geometry, flow-induced shear stress, and a number of metabolic factors. Subsequently, we applied model reduction by reformulating the problem from a set of partial differential equations into a set of ordinary differential equations. Comparing the reduced model results to the mechanistic model results and to dedicated experimental results assesses the reduction step quality. The obtained homogenized model is 10 5 fold faster than the 3D version, allowing the application of rigorous optimization techniques. Bayesian optimization was applied to find the medium refreshment regime in terms of frequency and percentage of medium replaced that would maximize neotissue growth kinetics during 21 days of culture. The simulation results indicated that maximum neotissue growth will occur for a high frequency and medium replacement percentage, a finding that is corroborated by reports in the literature. This study demonstrates an in silico strategy for bioprocess optimization paying particular attention to the reduction of the associated computational cost. © 2017 Wiley Periodicals, Inc.

  11. High-Resolution Biogeochemical Simulation Identifies Practical Opportunities for Bioenergy Landscape Intensification Across Diverse US Agricultural Regions

    Science.gov (United States)

    Field, J.; Adler, P. R.; Evans, S.; Paustian, K.; Marx, E.; Easter, M.

    2015-12-01

    The sustainability of biofuel expansion is strongly dependent on the environmental footprint of feedstock production, including both direct impacts within feedstock-producing areas and potential leakage effects due to disruption of existing food, feed, or fiber production. Assessing and minimizing these impacts requires novel methods compared to traditional supply chain lifecycle assessment. When properly validated and applied at appropriate spatial resolutions, biogeochemical process models are useful for simulating how the productivity and soil greenhouse gas fluxes of cultivating both conventional crops and advanced feedstock crops respond across gradients of land quality and management intensity. In this work we use the DayCent model to assess the biogeochemical impacts of agricultural residue collection, establishment of perennial grasses on marginal cropland or conservation easements, and intensification of existing cropping at high spatial resolution across several real-world case study landscapes in diverse US agricultural regions. We integrate the resulting estimates of productivity, soil carbon changes, and nitrous oxide emissions with crop production budgets and lifecycle inventories, and perform a basic optimization to generate landscape cost/GHG frontiers and determine the most practical opportunities for low-impact feedstock provisioning. The optimization is constrained to assess the minimum combined impacts of residue collection, land use change, and intensification of existing agriculture necessary for the landscape to supply a commercial-scale biorefinery while maintaining exiting food, feed, and fiber production levels. These techniques can be used to assess how different feedstock provisioning strategies perform on both economic and environmental criteria, and sensitivity of performance to environmental and land use factors. The included figure shows an example feedstock cost-GHG mitigation tradeoff frontier for a commercial-scale cellulosic

  12. A Suboptimal PTS Algorithm Based on Particle Swarm Optimization Technique for PAPR Reduction in OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ho-Lung Hung

    2008-08-01

    Full Text Available A suboptimal partial transmit sequence (PTS based on particle swarm optimization (PSO algorithm is presented for the low computation complexity and the reduction of the peak-to-average power ratio (PAPR of an orthogonal frequency division multiplexing (OFDM system. In general, PTS technique can improve the PAPR statistics of an OFDM system. However, it will come with an exhaustive search over all combinations of allowed phase weighting factors and the search complexity increasing exponentially with the number of subblocks. In this paper, we work around potentially computational intractability; the proposed PSO scheme exploits heuristics to search the optimal combination of phase factors with low complexity. Simulation results show that the new technique can effectively reduce the computation complexity and PAPR reduction.

  13. A Suboptimal PTS Algorithm Based on Particle Swarm Optimization Technique for PAPR Reduction in OFDM Systems

    Directory of Open Access Journals (Sweden)

    Lee Shu-Hong

    2008-01-01

    Full Text Available Abstract A suboptimal partial transmit sequence (PTS based on particle swarm optimization (PSO algorithm is presented for the low computation complexity and the reduction of the peak-to-average power ratio (PAPR of an orthogonal frequency division multiplexing (OFDM system. In general, PTS technique can improve the PAPR statistics of an OFDM system. However, it will come with an exhaustive search over all combinations of allowed phase weighting factors and the search complexity increasing exponentially with the number of subblocks. In this paper, we work around potentially computational intractability; the proposed PSO scheme exploits heuristics to search the optimal combination of phase factors with low complexity. Simulation results show that the new technique can effectively reduce the computation complexity and PAPR reduction.

  14. Tidal Pumping-Induced Nutrients Dynamics and Biogeochemical Implications in an Intertidal Aquifer

    Science.gov (United States)

    Liu, Yi; Jiao, Jiu Jimmy; Liang, Wenzhao; Luo, Xin

    2017-12-01

    Tidal pumping is a major driving force affecting water exchange between land and sea, biogeochemical reactions in the intertidal aquifer, and nutrient loading to the sea. At a sandy beach of Tolo Harbour, Hong Kong, the nutrient (NH4+, NO2-, NO3-, and PO43-) dynamic in coastal groundwater mixing zone (CGMZ) is found to be fluctuated with tidal oscillation. Nutrient dynamic is mainly controlled by tidal pumping-induced organic matter that serves as a reagent of remineralization in the aquifer. NH4+, NO2-, and PO43- are positively correlated with salinity. Both NH4+ and PO43- have negative correlations with oxidation/reduction potential. NH4+ is the major dissolved inorganic nitrogen species in CGMZ. The adsorption of PO43- onto iron oxides occurs at the deep transition zone with a salinity of 5-10 practical salinity unit (psu), and intensive N-loss occurs in near-surface area with a salinity of 10-25 psu. The biogeochemical reactions, producing PO43- and consuming NH4+, are synergistic effect of remineralization-nitrification-denitrification. In CGMZ, the annual NH4+ loss is estimated to be 4.32 × 105 mol, while the minimum annual PO43- production is estimated to be 2.55 × 104 mol. Applying these rates to the entire Tolo Harbour, the annual NH4+ input to the harbor through the remineralization of organic matters is estimated to be 1.02 × 107 mol. The annual NH4+ loss via nitrification is 1.32 × 107 mol, and the annual PO43- production is 7.76 × 105 mol.

  15. Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol

    NARCIS (Netherlands)

    Atashgahi, Siavash; Lu, Yue; Zheng, Ying; Saccenti, Edoardo; Suarez-Diez, Maria; Ramiro-Garcia, Javier; Eisenmann, Heinrich; Elsner, Martin; J.M. Stams, Alfons; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2017-01-01

    Biostimulation is widely used to enhance reductive dechlorination of chlorinated ethenes in contaminated aquifers. However, the knowledge on corresponding biogeochemical responses is limited. In this study, glycerol was injected in an aquifer contaminated with cis-dichloroethene (cDCE), and

  16. Damping layout optimization for ship's cabin noise reduction based on statistical energy analysis

    Directory of Open Access Journals (Sweden)

    WU Weiguo

    2017-08-01

    Full Text Available An optimization analysis study concerning the damping control of ship's cabin noise was carried out in order to improve the effect and reduce the weight of damping. Based on the Statistical Energy Analysis (SEA method, a theoretical deduction and numerical analysis of the first-order sensitivity analysis of the A-weighted sound pressure level concerning the damping loss factor of the subsystem were carried out. On this basis, a mathematical optimization model was proposed and an optimization program developed. Next, the secondary development of VA One software was implemented through the use of MATLAB, while the cabin noise damping control layout optimization system was established. Finally, the optimization model of the ship was constructed and numerical experiments of damping control optimization conducted. The damping installation region was divided into five parts with different damping thicknesses. The total weight of damping was set as an objective function and the A-weighted sound pressure level of the target cabin was set as a constraint condition. The best damping thickness was obtained through the optimization program, and the total damping weight was reduced by 60.4%. The results show that the damping noise reduction effect of unit weight is significantly improved through the optimization method. This research successfully solves the installation position and thickness selection problems in the acoustic design of damping control, providing a reliable analysis method and guidance for the design.

  17. Optimal reconfiguration-based dynamic tariff for congestion management and line loss reduction in distribution networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Cheng, Lin

    2016-01-01

    This paper presents an optimal reconfiguration-based dynamic tariff (DT) method for congestion management and line loss reduction in distribution networks with high penetration of electric vehicles. In the proposed DT concept, feeder reconfiguration (FR) is employed through mixed integer programm...

  18. Biogeochemical Coupling of Fe and Tc Speciation in Subsurface Sediments: Implications to Long-Term Tc Immobilization

    International Nuclear Information System (INIS)

    Jim K. Fredrickson; C. I. Steefel; R. K. Kukkadapu; S. M. Heald

    2006-01-01

    The project has been focused on biochemical processes in subsurface sediments involving Fe that control the valence state, solubility, and effective mobility of 99Tc. Our goal has been to understand the Tc biogeochemistry as it may occur in suboxic and biostimulated subsurface environments. Two objectives have been pursued: (1) To determine the relative reaction rates of 99Tc(VII)O2(aq) with metal reducing bacteria and biogenic Fe(II); and to characterize the identity, structure, and molecular speciation of Tc(IV) products formed through reaction with both biotic and abiotic reductants. (2) To quantify the biogeochemical factors controlling the reaction rate of O2 with Tc(IV)O2?nH2O in sediment resulting from the direct enzymatic reduction of Tc(VII) by DIRB and/or the reaction of Tc(VII) with the various types of biogenic Fe(II) produced by DIRB

  19. Effects of increased solar ultraviolet radiation on biogeochemical cycles

    International Nuclear Information System (INIS)

    Zepp, R.G.; Callaghan, T.V.; Erickson, D.J.

    1995-01-01

    Increases in solar UV radiation could affect terrestrial and aquatic biogeochemical cycles thus altering both sources and sinks of greenhouse and chemically important trace gases (e.g., carbon dioxide (CO2), carbon monoxide (CO), carbonyl sulfide (COS). In terrestrial ecosystems, increased UV-B could modify both the production and decomposition of plant matter with concomitant changes in the uptake and release of atmospherically important trace gases. Decomposition processes can be accelerated when UV-B photodegrades surface litter, or retarded when the dominant effect involves changes in the chemical composition of living tissues that reduce the biodegradability of buried litter. These changes in decomposition can affect microbial production of CO2 and other trace gases and also may affect the availability of nutrients essential for plant growth. Primary production can be reduced by enhanced UV-B, but the effect is variable between species and even cultivars of some crops. Likewise, the effects of enhanced UV-B on photoproduction of CO from plant matter is species-dependent and occurs more efficiently from dead than from living matter. Aquatic ecosystems studies in several different locations have shown that reductions in current levels of solar UV-B result in enhanced primary production, and Antarctic experiments under the ozone hole demonstrated that primary production is inhibited by enhanced UV-B. In addition to its effects on primary production, solar UV radiation can reduce bacterioplankton growth in the upper ocean with potentially important effects on marine biogeochemical cycles. Decomposition processes can be retarded when bacterial activity is suppressed by enhanced UV-B radiation or stimulated when solar UV radiation photodegrades aquatic dissolved organic matter. Photodegradation of DOM results in loss of UV absorption and formation of dissolved inorganic carbon, CO, and organic substrates that are readily mineralized or taken up by aquatic

  20. An Augmented Lagrangian Method for the Optimal H∞ Model Order Reduction Problem

    Directory of Open Access Journals (Sweden)

    Hongli Yang

    2017-01-01

    Full Text Available This paper treats the computational method of the optimal H∞ model order reduction (MOR problem of linear time-invariant (LTI systems. Optimal solution of MOR problem of LTI systems can be obtained by solving the LMIs feasibility coupling with a rank inequality constraint, which makes the solutions much harder to be obtained. In this paper, we show that the rank inequality constraint can be formulated as a linear rank function equality constraint. Properties of the linear rank function are discussed. We present an iterative algorithm based on augmented Lagrangian method by replacing the rank inequality with the linear rank function. Convergence analysis of the algorithm is given, which is distinct to the now available heuristic methods. Numerical experiments for the MOR problems of continuous LTI system illustrate the practicality of our method.

  1. Biogeochemical Modeling of In Situ U(VI) Reduction and Immobilization with Emulsified Vegetable Oil as the Electron Donor at a Field Site in Oak Ridge, Tennessee

    Science.gov (United States)

    Tang, G.; Parker, J.; Wu, W.; Schadt, C. W.; Watson, D. B.; Brooks, S. C.; Orifrc Team

    2011-12-01

    A comprehensive biogeochemical model was developed to quantitatively describe the coupled hydrologic, geochemical and microbiological processes that occurred following injection of emulsified vegetable oil (EVO) as the electron donor to immobilize U(VI) at the Oak Ridge Integrated Field Research Challenge site (ORIFRC) in Tennessee. The model couples the degradation of EVO, production and oxidation of long-chain fatty acids (LCFA), glycerol, hydrogen and acetate, reduction of nitrate, manganese, ferrous iron, sulfate and uranium, and methanoganesis with growth of multiple microbial groups. The model describes the evolution of geochemistry and microbial populations not only in the aqueous phase as typically observed, but also in the mineral phase and therefore enables us to evaluate the applicability of rates from the literature for field scale assessment, estimate the retention and degradation rates of EVO and LCFA, and assess the influence of the coupled processes on fate and transport of U(VI). Our results suggested that syntrophic bacteria or metal reducers might catalyze LCFA oxidation in the downstream locations when sulfate was consumed, and competition between methanogens and others for electron donors and slow growth of methanogen might contribute to the sustained reducing condition. Among the large amount of hydrologic, geochemical and microbiological parameter values, the initial biomass, and the interactions (e.g., inhibition) of the microbial functional groups, and the rate and extent of Mn and Fe oxide reduction appear as the major sources of uncertainty. Our model provides a platform to conduct numerical experiments to study these interactions, and could be useful for further iterative experimental and modeling investigations into the bioreductive immobiliztion of radionuclide and metal contaminants in the subsurface.

  2. Biogeochemical Processes Regulating the Mobility of Uranium in Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Belli, Keaton M.; Taillefert, Martial

    2016-07-01

    This book chapters reviews the latest knowledge on the biogeochemical processes regulating the mobility of uranium in sediments. It contains both data from the literature and new data from the authors.

  3. Error reduction and parameter optimization of the TAPIR method for fast T1 mapping.

    Science.gov (United States)

    Zaitsev, M; Steinhoff, S; Shah, N J

    2003-06-01

    A methodology is presented for the reduction of both systematic and random errors in T(1) determination using TAPIR, a Look-Locker-based fast T(1) mapping technique. The relations between various sequence parameters were carefully investigated in order to develop recipes for choosing optimal sequence parameters. Theoretical predictions for the optimal flip angle were verified experimentally. Inversion pulse imperfections were identified as the main source of systematic errors in T(1) determination with TAPIR. An effective remedy is demonstrated which includes extension of the measurement protocol to include a special sequence for mapping the inversion efficiency itself. Copyright 2003 Wiley-Liss, Inc.

  4. Engineering Pseudomonas stutzeri as a biogeochemical biosensor

    Science.gov (United States)

    Boynton, L.; Cheng, H. Y.; Del Valle, I.; Masiello, C. A.; Silberg, J. J.

    2016-12-01

    Biogeochemical cycles are being drastically altered as a result of anthropogenic activities, such as the burning of fossil fuels and the industrial production of ammonia. We know microbes play a major part in these cycles, but the extent of their biogeochemical roles remains largely uncharacterized due to inadequacies with culturing and measurement. While metagenomics and other -omics methods offer ways to reconstruct microbial communities, these approaches can only give an indication of the functional roles of microbes in a community. These -omics approaches are rapidly being expanded to the point of outpacing our knowledge of functional genes, which highlights an inherent need for analytical methods that non-invasively monitor Earth's processes in real time. Here we aim to exploit synthetic biology methods in order to engineer a ubiquitous denitrifying microbe, Pseudomonas stutzeri that can act as a biosensor in soil and marine environments. By using an easily cultivated microbe that is also common in many environments, we hope to develop a tool that allows us to zoom in on specific aspects of the nitrogen cycle. In order to monitor processes occurring at the genetic level in environments that cannot be resolved with fluorescence-based methods, such as soils, we have developed a system that instead relies on gas production by engineered microbial biosensors. P. stutzeri has been successfully engineered to release a gas, methyl bromide, which can continuously and non-invasively be measured by GC-MS. Similar to using Green Fluorescent Protein, GFP, in the biological sciences, the gene controlling gas production can be linked to those involved in denitrification, thereby creating a quantifiable gas signal that is correlated with microbial activity in the soil. Synthetically engineered microbial biosensors could reveal key aspects of metabolism in soil systems and offer a tool for characterizing the scope and degree of microbial impact on major biogeochemical cycles.

  5. Study on collaborative optimization control of ventilation and radon reduction system based on multi-agent technology

    International Nuclear Information System (INIS)

    Dai Jianyong; Meng Lingcong; Zou Shuliang

    2015-01-01

    According to the radioactive safety features such as radon and its progeny, combined with the theory of ventilation system, structure of multi-agent system for ventilation and radon reduction system is constructed with the application of multi agent technology. The function attribute of the key agent and the connection between the nodes in the multi-agent system are analyzed to establish the distributed autonomous logic structure and negotiation mechanism of multi agent system of ventilation and radon reduction system, and thus to implement the coordination optimization control of the multi-agent system. The example analysis shows that the system structure of the multi-agent system of ventilation and reducing radon system and its collaborative mechanism can improve and optimize the radioactive pollutants control, which provides a theoretical basis and important application prospect. (authors)

  6. Iron oxide reduction in methane-rich deep Baltic Sea sediments

    DEFF Research Database (Denmark)

    Egger, Matthias; Hagens, Mathilde; Sapart, Celia J.

    2017-01-01

    /L transition. Our results reveal a complex interplay between production, oxidation and transport of methane showing that besides organoclastic Fe reduction, oxidation of downward migrating methane with Fe oxides may also explain the elevated concentrations of dissolved ferrous Fe in deep Baltic Sea sediments...... profiles and numerical modeling, we propose that a potential coupling between Fe oxide reduction and methane oxidation likely affects deep Fe cycling and related biogeochemical processes, such as burial of phosphorus, in systems subject to changes in organic matter loading or bottom water salinity....

  7. Use of a channelized Hotelling observer to assess CT image quality and optimize dose reduction for iteratively reconstructed images.

    Science.gov (United States)

    Favazza, Christopher P; Ferrero, Andrea; Yu, Lifeng; Leng, Shuai; McMillan, Kyle L; McCollough, Cynthia H

    2017-07-01

    The use of iterative reconstruction (IR) algorithms in CT generally decreases image noise and enables dose reduction. However, the amount of dose reduction possible using IR without sacrificing diagnostic performance is difficult to assess with conventional image quality metrics. Through this investigation, achievable dose reduction using a commercially available IR algorithm without loss of low contrast spatial resolution was determined with a channelized Hotelling observer (CHO) model and used to optimize a clinical abdomen/pelvis exam protocol. A phantom containing 21 low contrast disks-three different contrast levels and seven different diameters-was imaged at different dose levels. Images were created with filtered backprojection (FBP) and IR. The CHO was tasked with detecting the low contrast disks. CHO performance indicated dose could be reduced by 22% to 25% without compromising low contrast detectability (as compared to full-dose FBP images) whereas 50% or more dose reduction significantly reduced detection performance. Importantly, default settings for the scanner and protocol investigated reduced dose by upward of 75%. Subsequently, CHO-based protocol changes to the default protocol yielded images of higher quality and doses more consistent with values from a larger, dose-optimized scanner fleet. CHO assessment provided objective data to successfully optimize a clinical CT acquisition protocol.

  8. The Microbial Engines That Drive Earth’s Biogeochemical Cycles

    Science.gov (United States)

    Falkowski, Paul G.; Fenchel, Tom; Delong, Edward F.

    2008-05-01

    Virtually all nonequilibrium electron transfers on Earth are driven by a set of nanobiological machines composed largely of multimeric protein complexes associated with a small number of prosthetic groups. These machines evolved exclusively in microbes early in our planet’s history yet, despite their antiquity, are highly conserved. Hence, although there is enormous genetic diversity in nature, there remains a relatively stable set of core genes coding for the major redox reactions essential for life and biogeochemical cycles. These genes created and coevolved with biogeochemical cycles and were passed from microbe to microbe primarily by horizontal gene transfer. A major challenge in the coming decades is to understand how these machines evolved, how they work, and the processes that control their activity on both molecular and planetary scales.

  9. Optimal treatment scheduling of ionizing radiation and sunitinib improves the antitumor activity and allows dose reduction

    International Nuclear Information System (INIS)

    Kleibeuker, Esther A; Hooven, Matthijs A ten; Castricum, Kitty C; Honeywell, Richard; Griffioen, Arjan W; Verheul, Henk M; Slotman, Ben J; Thijssen, Victor L

    2015-01-01

    The combination of radiotherapy with sunitinib is clinically hampered by rare but severe side effects and varying results with respect to clinical benefit. We studied different scheduling regimes and dose reduction in sunitinib and radiotherapy in preclinical tumor models to improve potential outcome of this combination treatment strategy. The chicken chorioallantoic membrane (CAM) was used as an angiogenesis in vivo model and as a xenograft model with human tumor cells (HT29 colorectal adenocarcinoma, OE19 esophageal adenocarcinoma). Treatment consisted of ionizing radiation (IR) and sunitinib as single therapy or in combination, using different dose-scheduling regimes. Sunitinib potentiated the inhibitory effect of IR (4 Gy) on angiogenesis. In addition, IR (4 Gy) and sunitinib (4 days of 32.5 mg/kg per day) inhibited tumor growth. Ionizing radiation induced tumor cell apoptosis and reduced proliferation, whereas sunitinib decreased tumor angiogenesis and reduced tumor cell proliferation. When IR was applied before sunitinib, this almost completely inhibited tumor growth, whereas concurrent IR was less effective and IR after sunitinib had no additional effect on tumor growth. Moreover, optimal scheduling allowed a 50% dose reduction in sunitinib while maintaining comparable antitumor effects. This study shows that the therapeutic efficacy of combination therapy improves when proper dose-scheduling is applied. More importantly, optimal treatment regimes permit dose reductions in the angiogenesis inhibitor, which will likely reduce the side effects of combination therapy in the clinical setting. Our study provides important leads to optimize combination treatment in the clinical setting

  10. The role of biogenic structures on the biogeochemical functioning of mangrove constructed wetlands sediments - A mesocosm approach

    International Nuclear Information System (INIS)

    Penha-Lopes, Gil; Kristensen, Erik; Flindt, Mogens; Mangion, Perrine; Bouillon, Steven; Paula, Jose

    2010-01-01

    Benthic metabolism (measured as CO 2 production) and carbon oxidation pathways were evaluated in 4 mangrove mesocosms subjected daily to seawater or 60% sewage in the absence or presence of mangrove trees and biogenic structures (pneumatophores and crab burrows). Total CO 2 emission from darkened sediments devoid of biogenic structures at pristine conditions was comparable during inundation (immersion) and air exposure (emersion), although increased 2-7 times in sewage contaminated mesocosms. Biogenic structures increased low tide carbon gas emissions at contaminated (30%) and particularly pristine conditions (60%). When sewage was loaded into the mesocosms under unvegetated and planted conditions, iron reduction was substituted by sulfate reduction and contribution of aerobic respiration to total metabolism remained above 50%. Our results clearly show impacts of sewage on the partitioning of electron acceptors in mangrove sediment and confirm the importance of biogenic structures for biogeochemical functioning but also on greenhouse gases emission.

  11. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    Science.gov (United States)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  12. Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization

    International Nuclear Information System (INIS)

    Zhang Xiaomeng; Wang Jing; Xing Lei

    2011-01-01

    Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of ''metal shadows'' in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general ''missing data'' image reconstruction problems.

  13. PAPR reduction in FBMC using an ACE-based linear programming optimization

    Science.gov (United States)

    van der Neut, Nuan; Maharaj, Bodhaswar TJ; de Lange, Frederick; González, Gustavo J.; Gregorio, Fernando; Cousseau, Juan

    2014-12-01

    This paper presents four novel techniques for peak-to-average power ratio (PAPR) reduction in filter bank multicarrier (FBMC) modulation systems. The approach extends on current PAPR reduction active constellation extension (ACE) methods, as used in orthogonal frequency division multiplexing (OFDM), to an FBMC implementation as the main contribution. The four techniques introduced can be split up into two: linear programming optimization ACE-based techniques and smart gradient-project (SGP) ACE techniques. The linear programming (LP)-based techniques compensate for the symbol overlaps by utilizing a frame-based approach and provide a theoretical upper bound on achievable performance for the overlapping ACE techniques. The overlapping ACE techniques on the other hand can handle symbol by symbol processing. Furthermore, as a result of FBMC properties, the proposed techniques do not require side information transmission. The PAPR performance of the techniques is shown to match, or in some cases improve, on current PAPR techniques for FBMC. Initial analysis of the computational complexity of the SGP techniques indicates that the complexity issues with PAPR reduction in FBMC implementations can be addressed. The out-of-band interference introduced by the techniques is investigated. As a result, it is shown that the interference can be compensated for, whilst still maintaining decent PAPR performance. Additional results are also provided by means of a study of the PAPR reduction of the proposed techniques at a fixed clipping probability. The bit error rate (BER) degradation is investigated to ensure that the trade-off in terms of BER degradation is not too severe. As illustrated by exhaustive simulations, the SGP ACE-based technique proposed are ideal candidates for practical implementation in systems employing the low-complexity polyphase implementation of FBMC modulators. The methods are shown to offer significant PAPR reduction and increase the feasibility of FBMC as

  14. Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction.

    Science.gov (United States)

    Chong, Tze Pei; Dubois, Elisa

    2016-08-01

    This paper reports an aeroacoustic investigation of a NACA0012 airfoil with a number of poro-serrated trailing edge devices that contain porous materials of various air flow resistances at the gaps between adjacent members of the serrated-sawtooth trailing edge. The main objective of this work is to determine whether multiple-mechanisms on the broadband noise reduction can co-exist on a poro-serrated trailing edge. When the sawtooth gaps are filled with porous material of low-flow resistivity, the vortex shedding tone at low-frequency could not be completely suppressed at high-velocity, but a reasonably good broadband noise reduction can be achieved at high-frequency. When the sawtooth gaps are filled with porous material of very high-flow resistivity, no vortex shedding tone is present, but the serration effect on the broadband noise reduction becomes less effective. An optimal choice of the flow resistivity for a poro-serrated configuration has been identified, where it can surpass the conventional serrated trailing edge of the same geometry by achieving a further 1.5 dB reduction in the broadband noise while completely suppressing the vortex shedding tone. A weakened turbulent boundary layer noise scattering at the poro-serrated trailing edge is reflected by the lower-turbulence intensity at the near wake centreline across the whole spanwise wavelength of the sawtooth.

  15. The effect of biogeochemical processes on pH

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Hofmann, A.F.; Middelburg, J.J.; Meysman, F.J.R.; Greenwood, J.E.

    2007-01-01

    The impact of biogeochemical and physical processes on aquatic chemistry is usually expressed in terms of alkalinity. Here we show how to directly calculate the effect of single processes on pH. Under the assumptions of equilibrium and electroneutrality, the rate of change of pH can be calculated as

  16. Pharmacodynamically optimized erythropoietin treatment combined with phlebotomy reduction predicted to eliminate blood transfusions in selected preterm infants.

    Science.gov (United States)

    Rosebraugh, Matthew R; Widness, John A; Nalbant, Demet; Cress, Gretchen; Veng-Pedersen, Peter

    2014-02-01

    Preterm very-low-birth-weight (VLBW) infants weighing eliminated by reducing laboratory blood loss in combination with pharmacodynamically optimized erythropoietin (Epo) treatment. Twenty-six VLBW ventilated infants receiving RBCTx were studied during the first month of life. RBCTx simulations were based on previously published RBCTx criteria and data-driven Epo pharmacodynamic optimization of literature-derived RBC life span and blood volume data corrected for phlebotomy loss. Simulated pharmacodynamic optimization of Epo administration and reduction in phlebotomy by ≥ 55% predicted a complete elimination of RBCTx in 1.0-1.5 kg infants. In infants 1.0 kg.

  17. [Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: a review].

    Science.gov (United States)

    Liu, Jing-Jing; Wu, Wei-Xiang; Ding, Ying; Shi, De-Zhi; Chen, Ying-Xu

    2010-08-01

    As the first step of nitrification, ammonia oxidation is the key process in global nitrogen biogeochemical cycling. So far, the autotrophic ammonia-oxidizing bacteria (AOB) in the beta- and gamma-subgroups of proteobacteria have been considered as the most important contributors to ammonia oxidation, but the recent researches indicated that ammonia-oxidizing archaea (AOA) are widely distributed in various kinds of ecosystems and quantitatively predominant, playing important roles in the global nitrogen biogeochemical cycling. This paper reviewed the morphological, physiological, and ecological characteristics and the molecular phylogenies of AOA, and compared and analyzed the differences and similarities of the ammonia monooxygenase (AMO) and its encoding genes between AOA and AOB. In addition, the potential significant roles of AOA in nitrogen biogeochemical cycling in aquatic and terrestrial ecosystems were summarized, and the future research directions of AOA in applied ecology and environmental protection were put forward.

  18. Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0 for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1

    Directory of Open Access Journals (Sweden)

    J. C. P. Hemmings

    2015-03-01

    Full Text Available Biogeochemical ocean circulation models used to investigate the role of plankton ecosystems in global change rely on adjustable parameters to capture the dominant biogeochemical dynamics of a complex biological system. In principle, optimal parameter values can be estimated by fitting models to observational data, including satellite ocean colour products such as chlorophyll that achieve good spatial and temporal coverage of the surface ocean. However, comprehensive parametric analyses require large ensemble experiments that are computationally infeasible with global 3-D simulations. Site-based simulations provide an efficient alternative but can only be used to make reliable inferences about global model performance if robust quantitative descriptions of their relationships with the corresponding 3-D simulations can be established. The feasibility of establishing such a relationship is investigated for an intermediate complexity biogeochemistry model (MEDUSA coupled with a widely used global ocean model (NEMO. A site-based mechanistic emulator is constructed for surface chlorophyll output from this target model as a function of model parameters. The emulator comprises an array of 1-D simulators and a statistical quantification of the uncertainty in their predictions. The unknown parameter-dependent biogeochemical environment, in terms of initial tracer concentrations and lateral flux information required by the simulators, is a significant source of uncertainty. It is approximated by a mean environment derived from a small ensemble of 3-D simulations representing variability of the target model behaviour over the parameter space of interest. The performance of two alternative uncertainty quantification schemes is examined: a direct method based on comparisons between simulator output and a sample of known target model "truths" and an indirect method that is only partially reliant on knowledge of the target model output. In general, chlorophyll

  19. Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling

    Science.gov (United States)

    Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor

    2016-04-01

    Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale laboratory microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces

  20. Mangrove forests: a potent nexus of coastal biogeochemical cycling

    Science.gov (United States)

    Barr, J. G.; Fuentes, J. D.; Shoemaker, B.; O'Halloran, T. L.; Lin, G., Sr.; Engel, V. C.

    2014-12-01

    Mangrove forests cover just 0.1% of the Earth's terrestrial surface, yet they provide a disproportionate source (~10 % globally) of terrestrially derived, refractory dissolved organic carbon to the oceans. Mangrove forests are biogeochemical reactors that convert biomass into dissolved organic and inorganic carbon at unusually high rates, and many studies recognize the value of mangrove ecosystems for the substantial amounts of soil carbon storage they produce. However, questions remain as to how mangrove forest ecosystem services should be valuated and quantified. Therefore, this study addresses several objectives. First, we demonstrate that seasonal and annual net ecosystem carbon exchange in three selected mangrove forests, derived from long-term eddy covariance measurements, represent key quantities in defining the magnitude of biogeochemical cycling and together with other information on carbon cycle parameters serves as a proxy to estimate ecosystem services. Second, we model ecosystem productivity across the mangrove forests of Everglades National Park and southern China by relating net ecosystem exchange values to remote sensing data. Finally, we develop a carbon budget for the mangrove forests in the Everglades National Park for the purposes of demonstrating that these forests and adjacent estuaries are sites of intense biogeochemical cycling. One conclusion from this study is that much of the carbon entering from the atmosphere as net ecosystem exchange (~1000 g C m-2 yr-1) is not retained in the net ecosystem carbon balance. Instead, a substantial fraction of the carbon entering the system as net ecosystem exchange is ultimately exported to the oceans or outgassed as reaction products within the adjacent estuary.

  1. Optimalization studies concerning volume reduction and conditioning of radioactive waste in view of storage and disposal (geological disposal into clay)

    International Nuclear Information System (INIS)

    Dejonghe, P.; Van De Voorde, N.; Bonne, A.

    1984-01-01

    Volume reduction of low-level and medium-level wastes, and simultaneous optimization of the quality of the conditioned end-product is a major challenge in the management of radioactive wastes. Comments will be given on recent achievements in treatment of non-high-level liquid and solid wastes from power reactors and low-level plutonium contaminated wastes. The latter results can contribute to an overall optimization of a radioactive waste management scheme, including the final disposal of the conditioned materials. Some detailed results will be given concerning volume reduction, decontamination factors, degree of immobilization of the contained radioelements, and cost considerations

  2. Biogeochemical response to widespread anoxia in the past ocean

    NARCIS (Netherlands)

    Ruvalcaba Baroni, I.

    2015-01-01

    Oxygen is a key element for life on earth. Oxygen concentrations in the ocean vary greatly in space and time. These changes are regulated by various physical and biogeochemical processes, such as primary productivity, sea surface temperatures and ocean circulation. In the geological past, several

  3. Vehicular Traffic Optimization in VANETs: a Proposal for Nodes Re-routing and Congestion Reduction

    Directory of Open Access Journals (Sweden)

    Mauro Tropea

    2015-01-01

    Full Text Available Recently, vehicular networking has grown up in terms of interest and transmission capability, due to the possibility of exploiting the distributed communication paradigm in a mobile scenario, where moving nodes are represented by vehicles. In this paper, we focus our attention on the optimization of traffic flowing in a vehicular environment with vehicle-roadside capability. As shown in the next sections, the proposed idea exploits the information that is gathered by road-side units with the main aim of redirecting traffic flows (in terms of vehicles to less congested roads, with an overall system optimization, also in terms of Carbon Dioxide emissions reduction. A deep campaign of simulations has been carried out to give more effectiveness to our proposal.

  4. Characterization of Predominant Reductants in an Anaerobic Leachate-Contaminated Aquifer by Nitroaromatic Probe Compounds

    DEFF Research Database (Denmark)

    Rügge, Kirsten; Hofstetter, Thomas B.; Haderlein, Stefan B.

    1998-01-01

    The biogeochemical processes controlling the reductive transformation of contaminants in an anaerobic aquifer were inferred from the relative reactivity patterns of redox-sensitive probe compounds. The fate of five nitroaromatic compounds (NACs) was monitored under different redox conditions in a...... results suggest that Fe(ll) associated with ferric iron minerals is a highly reactive reductant in anaerobic aquifers, which may also determine the fate of other classes of reducible contaminants such as halogenated solvents, azo compounds, sulfoxides, chromate, or arsenate....

  5. Deep-Sea Microbes: Linking Biogeochemical Rates to -Omics Approaches

    Science.gov (United States)

    Herndl, G. J.; Sintes, E.; Bayer, B.; Bergauer, K.; Amano, C.; Hansman, R.; Garcia, J.; Reinthaler, T.

    2016-02-01

    Over the past decade substantial progress has been made in determining deep ocean microbial activity and resolving some of the enigmas in understanding the deep ocean carbon flux. Also, metagenomics approaches have shed light onto the dark ocean's microbes but linking -omics approaches to biogeochemical rate measurements are generally rare in microbial oceanography and even more so for the deep ocean. In this presentation, we will show by combining metagenomics, -proteomics and biogeochemical rate measurements on the bulk and single-cell level that deep-sea microbes exhibit characteristics of generalists with a large genome repertoire, versatile in utilizing substrate as revealed by metaproteomics. This is in striking contrast with the apparently rather uniform dissolved organic matter pool in the deep ocean. Combining the different -omics approaches with metabolic rate measurements, we will highlight some major inconsistencies and enigmas in our understanding of the carbon cycling and microbial food web structure in the dark ocean.

  6. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia.

    Science.gov (United States)

    Guo, Huaming; Zhang, Bo; Li, Yuan; Berner, Zsolt; Tang, Xiaohui; Norra, Stefan; Stüben, Doris

    2011-04-01

    Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO₄²⁻ concentrations and δ³⁴S values indicates that bacterial reduction of SO₄²⁻ occurs in reducing aquifers. Due to high concentrations of Fe (> 0.5 mg L⁻¹), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Green Infrastructure Increases Biogeochemical Responsiveness, Vegetation Growth and Decreases Runoff in a Semi-Arid City, Tucson, AZ, USA

    Science.gov (United States)

    Meixner, T.; Papuga, S. A.; Luketich, A. M.; Rockhill, T.; Gallo, E. L.; Anderson, J.; Salgado, L.; Pope, K.; Gupta, N.; Korgaonkar, Y.; Guertin, D. P.

    2017-12-01

    Green Infrastructure (GI) is often viewed as a mechanism to minimize the effects of urbanization on hydrology, water quality, and other ecosystem services (including the urban heat island). Quantifying the effects of GI requires field measurements of the dimensions of biogeochemical, ecosystem, and hydrologic function that we expect GI to impact. Here we investigated the effect of GI features in Tucson, Arizona which has a low intensity winter precipitation regime and a high intensity summer regime. We focused on understanding the effect of GI on soil hydraulic and biogeochemical properties as well as the effect on vegetation and canopy temperature. Our results demonstrate profound changes in biogeochemical and hydrologic properties and vegetation growth between GI systems and nearby control sites. In terms of hydrologic properties GI soils had increased water holding capacity and hydraulic conductivity. GI soils also have higher total carbon, total nitrogen, and organic matter in general than control soils. Furthermore, we tested the sampled soils (control and GI) for differences in biogeochemical response upon wetting. GI soils had larger respiration responses indicating greater biogeochemical activity overall. Long-term Lidar surveys were used to investigate the differential canopy growth of GI systems versus control sites. The results of this analysis indicate that while a significant amount of time is needed to observe differences in canopy growth GI features due increase tree size and thus likely impact street scale ambient temperatures. Additionally monitoring of transpiration, soil moisture, and canopy temperature demonstrates that GI features increase vegetation growth and transpiration and reduce canopy temperatures. These biogeochemical and ecohydrologic results indicate that GI can increase the biogeochemical processing of soils and increase tree growth and thus reduce urban ambient temperatures.

  8. Greenland's glacial fjords and their role in regional biogeochemical dynamics.

    Science.gov (United States)

    Crosby, J.; Arndt, S.

    2017-12-01

    Greenland's coastal fjords serve as important pathways that connect the Greenland Ice Sheet (GrIS) and the surrounding oceans. They export seasonal glacial meltwater whilst being significant sites of primary production. These fjords are home to some of the most productive ecosystems in the world and possess high socio-economic value via fisheries. A growing number of studies have proposed the GrIS as an underappreciated yet significant source of nutrients to surrounding oceans. Acting as both transfer routes and sinks for glacial nutrient export, fjords have the potential to act as significant biogeochemical processors, yet remain underexplored. Critically, an understanding of the quantitative contribution of fjords to carbon and nutrient budgets is lacking, with large uncertainties associated with limited availability of field data and the lack of robust upscaling approaches. To close this knowledge gap we developed a coupled 2D physical-biogeochemical model of the Godthåbsfjord system, a sub-Arctic sill fjord in southwest Greenland, to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Glacial meltwater is found to be a key driver of fjord-scale circulation patterns, whilst tracer simulations reveal the relative nutrient contributions from meltwater-driven upwelling and meltwater export from the GrIS. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum, demonstrating the complex pattern of carbon and nutrient cycling at this critical land-ocean interface.

  9. Optimal design of minimum mean-square error noise reduction algorithms using the simulated annealing technique.

    Science.gov (United States)

    Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan

    2009-02-01

    The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.

  10. Numerical study and ex vivo assessment of HIFU treatment time reduction through optimization of focal point trajectory

    Science.gov (United States)

    Grisey, A.; Yon, S.; Pechoux, T.; Letort, V.; Lafitte, P.

    2017-03-01

    Treatment time reduction is a key issue to expand the use of high intensity focused ultrasound (HIFU) surgery, especially for benign pathologies. This study aims at quantitatively assessing the potential reduction of the treatment time arising from moving the focal point during long pulses. In this context, the optimization of the focal point trajectory is crucial to achieve a uniform thermal dose repartition and avoid boiling. At first, a numerical optimization algorithm was used to generate efficient trajectories. Thermal conduction was simulated in 3D with a finite difference code and damages to the tissue were modeled using the thermal dose formula. Given an initial trajectory, the thermal dose field was first computed, then, making use of Pontryagin's maximum principle, the trajectory was iteratively refined. Several initial trajectories were tested. Then, an ex vivo study was conducted in order to validate the efficicency of the resulting optimized strategies. Single pulses were performed at 3MHz on fresh veal liver samples with an Echopulse and the size of each unitary lesion was assessed by cutting each sample along three orthogonal planes and measuring the dimension of the whitened area based on photographs. We propose a promising approach to significantly shorten HIFU treatment time: the numerical optimization algorithm was shown to provide a reliable insight on trajectories that can improve treatment strategies. The model must now be improved in order to take in vivo conditions into account and extensively validated.

  11. Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm

    Science.gov (United States)

    Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.

    2011-01-01

    Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.

  12. A two-domain real-time algorithm for optimal data reduction: A case study on accelerator magnet measurements

    CERN Document Server

    Arpaia, P; Inglese, V

    2010-01-01

    A real-time algorithm of data reduction, based on the combination a two lossy techniques specifically optimized for high-rate magnetic measurements in two domains (e.g. time and space), is proposed. The first technique exploits an adaptive sampling rule based on the power estimation of the flux increments in order to optimize the information to be gathered for magnetic field analysis in real time. The tracking condition is defined by the target noise level in the Nyquist band required by post-processing procedure of magnetic analysis. The second technique uses a data reduction algorithm in order to improve the compression ratio while preserving the consistency of the measured signal. The allowed loss is set equal to the random noise level in the signal in order to force the loss and the noise to cancel rather than to add, by improving the signal-to-noise ratio. Numerical analysis and experimental results of on-field performance characterization and validation for two case studies of magnetic measurement syste...

  13. Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine overburden

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Satarupa, E-mail: dey1919@gmail.com [Microbiology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019 (India); Paul, A.K., E-mail: amalk_paul@yahoo.co.in [Microbiology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019 (India)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Isolation of a potent Cr(VI) resistant and reducing Arthrobacter SUK 1201 from chromite mine overburdens of Orissa, India. Black-Right-Pointing-Pointer Phylogenetically (16S rDNA analysis), Arthrobacter SUK 1201 showed 99% nucleotide base pair similarity with Arthrobacter GZK-1. Black-Right-Pointing-Pointer Production of insoluble chromium precipitates during chromate reduction under batch culture by the isolate SUK 1201. Black-Right-Pointing-Pointer Confirmation of formation of insoluble chromium precipitate during reduction studies by EDX analysis. Black-Right-Pointing-Pointer Optimization of cultural conditions for Cr(VI) reduction under batch culture leading to complete reduction of 2 mM of Cr(VI). - Abstract: Arthrobacter sp. SUK 1201, a chromium resistant and reducing bacterium having 99% sequence homology of 16S rDNA with Arthrobacter sp. GZK-1 was isolated from chromite mine overburden dumps of Orissa, India. The objective of the present study was to optimize the cultural conditions for chromate reduction by Arthrobacter sp. SUK 1201. The strain showed 67% reduction of 2 mM chromate in 7 days and was associated with the formation of green insoluble precipitate, which showed characteristic peak of chromium in to energy dispersive X-ray analysis. However, Fourier transform infrared spectra have failed to detect any complexation of end products of Cr(VI) reduction with the cell mass. Reduction of chromate increased with increased cell density and was maximum at 10{sup 10} cells/ml, but the reduction potential decreased with increase in Cr(VI) concentration. Chromate reducing efficiency was promoted when glycerol and glucose was used as electron donors. Optimum pH and temperature of Cr(VI) reduction was 7.0 and 35 Degree-Sign C respectively. The reduction process was inhibited by several metal ions and metabolic inhibitors but not by Cu(II) and DNP. These findings suggest that Arthrobacter sp. SUK 1201 has great promise

  14. Diel biogeochemical processes in terrestrial waters

    Science.gov (United States)

    Nimick, David A.; Gammons, Christopher H.

    2011-01-01

    Many biogeochemical processes in rivers and lakes respond to the solar photocycle and produce persistent patterns of measureable phenomena that exhibit a day–night, or 24-h, cycle. Despite a large body of recent literature, the mechanisms responsible for these diel fluctuations are widely debated, with a growing consensus that combinations of physical, chemical, and biological processes are involved. These processes include streamflow variation, photosynthesis and respiration, plant assimilation, and reactions involving photochemistry, adsorption and desorption, and mineral precipitation and dissolution. Diel changes in streamflow and water properties such as temperature, pH, and dissolved oxygen concentration have been widely recognized, and recently, diel studies have focused more widely by considering other constituents such as dissolved and particulate trace metals, metalloids, rare earth elements, mercury, organic matter, dissolved inorganic carbon (DIC), and nutrients. The details of many diel processes are being studied using stable isotopes, which also can exhibit diel cycles in response to microbial metabolism, photosynthesis and respiration, or changes in phase, speciation, or redox state. In addition, secondary effects that diel cycles might have, for example, on biota or in the hyporheic zone are beginning to be considered.This special issue is composed primarily of papers presented at the topical session “Diurnal Biogeochemical Processes in Rivers, Lakes, and Shallow Groundwater” held at the annual meeting of the Geological Society of America in October 2009 in Portland, Oregon. This session was organized because many of the growing number of diel studies have addressed just a small part of the full range of diel cycling phenomena found in rivers and lakes. This limited focus is understandable because (1) fundamental aspects of many diel processes are poorly understood and require detailed study, (2) the interests and expertise of individual

  15. Predictive Understanding of Mountainous Watershed Hydro-Biogeochemical Function and Response to Perturbations

    Science.gov (United States)

    Hubbard, S. S.; Williams, K. H.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Bouskill, N.; Brodie, E.; Maxwell, R. M.; Nico, P. S.; Steefel, C. I.; Steltzer, H.; Tokunaga, T. K.; Wainwright, H. M.; Dwivedi, D.; Newcomer, M. E.

    2017-12-01

    Recognizing the societal importance, vulnerability and complexity of mountainous watersheds, the `Watershed Function' project is developing a predictive understanding of how mountainous watersheds retain and release downgradient water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, floods and other disturbances will influence mountainous watershed dynamics at seasonal to decadal timescales. Located in the 300km2 East River headwater catchment of the Upper Colorado River Basin, the project is guided by several constructs. First, the project considers the integrated role of surface and subsurface flow and biogeochemical reactions - from bedrock to the top of the vegetative canopy, from terrestrial through aquatic compartments, and from summit to receiving waters. The project takes a system-of-systems perspective, focused on developing new methods to quantify the cumulative watershed hydrobiogeochemical response to perturbations based on information from select subsystems within the watershed, each having distinct vegetation-subsurface biogeochemical-hydrological characteristics. A `scale-adaptive' modeling capability, in development using adaptive mesh refinement methods, serves as the organizing framework for the SFA. The scale-adaptive approach is intended to permit simulation of system-within-systems behavior - and aggregation of that behavior - from genome through watershed scales. This presentation will describe several early project discoveries and advances made using experimental, observational and numerical approaches. Among others, examples may include:quantiying how seasonal hydrological perturbations drive biogeochemical responses across critical zone compartments, with a focus on N and C transformations; metagenomic documentation of the spatial variability in floodplain meander microbial ecology; 3D reactive transport simulations of couped hydrological-biogeochemical behavior in the hyporheic zone; and

  16. High resolution modelling of the biogeochemical processes in the eutrophic Loire River (France)

    Science.gov (United States)

    Minaudo, Camille; Moatar, Florentina; Curie, Florence; Gassama, Nathalie; Billen, Gilles

    2016-04-01

    A biogeochemical model was developed, coupling a physically based water temperature model (T-NET) with a semi-mechanistic biogeochemical model (RIVE, used in ProSe and Riverstrahler models) in order to assess at a fine temporal and spatial resolution the biogeochemical processes in the eutrophic Middle Loire hydrosystem (≈10 000 km², 3361 river segments). The code itself allows parallelized computing, which decreased greatly the calculation time (5 hours for simulating 3 years hourly). We conducted a daily survey during the period 2012-2014 at 2 sampling stations located in the Middle Loire of nutrients, chlorophyll pigments, phytoplankton and physic-chemical variables. This database was used as both input data (upstream Loire boundary) and validation data of the model (basin outlet). Diffuse and non-point sources were assessed based on a land cover analysis and WWTP datasets. The results appeared very sensible to the coefficients governing the dynamic of suspended solids and of phosphorus (sorption/desorption processes) within the model and some parameters needed to be estimated numerically. Both the Lagrangian point of view and fluxes budgets at the seasonal and event-based scale evidenced the biogeochemical functioning of the Loire River. Low discharge levels set up favorable physical conditions for phytoplankton growth (long water travel time, limited water depth, suspended particles sedimentation). Conversely, higher discharge levels highly limited the phytoplankton biomass (dilution of the colony, washing-out, limited travel time, remobilization of suspended sediments increasing turbidity), and most biogeochemical species were basically transferred downstream. When hydrological conditions remained favorable for phytoplankton development, P-availability was the critical factor. However, the model evidenced that most of the P in summer was recycled within the water body: on one hand it was assimilated by the algae biomass, and on the other hand it was

  17. The Effect of Carbonaceous Reductant Selection on Chromite Pre-reduction

    Science.gov (United States)

    Kleynhans, E. L. J.; Beukes, J. P.; Van Zyl, P. G.; Bunt, J. R.; Nkosi, N. S. B.; Venter, M.

    2017-04-01

    Ferrochrome (FeCr) production is an energy-intensive process. Currently, the pelletized chromite pre-reduction process, also referred to as solid-state reduction of chromite, is most likely the FeCr production process with the lowest specific electricity consumption, i.e., MWh/t FeCr produced. In this study, the effects of carbonaceous reductant selection on chromite pre-reduction and cured pellet strength were investigated. Multiple linear regression analysis was employed to evaluate the effect of reductant characteristics on the aforementioned two parameters. This yielded mathematical solutions that can be used by FeCr producers to select reductants more optimally in future. Additionally, the results indicated that hydrogen (H)- (24 pct) and volatile content (45.8 pct) were the most significant contributors for predicting variance in pre-reduction and compressive strength, respectively. The role of H within this context is postulated to be linked to the ability of a reductant to release H that can induce reduction. Therefore, contrary to the current operational selection criteria, the authors believe that thermally untreated reductants ( e.g., anthracite, as opposed to coke or char), with volatile contents close to the currently applied specification (to ensure pellet strength), would be optimal, since it would maximize H content that would enhance pre-reduction.

  18. Final Report DE-SC0006997; PI Sharp; Coupled Biological and Micro-XAS/XRF Analysis of In Situ Uranium Biogeochemical Processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Jonathan O. [Colorado School of Mines, Golden, CO (United States)

    2016-03-30

    Project Overview: The impact of the original seed award was substantially increased by leveraging a postdoctoral fellowship (Marie Curie Postdoctoral Fellowship) and parallel funds from (A) synergistic project supported by NSF and (B) with DOE collaborators (PI’s Ranville and Williams) as well as no-cost extension that greatly increased the impact and publications associated with the project. In aligning with SBR priorities, the project’s focus was extended more broadly to explore coupled biogeochemical analysis of metal (im)mobilization processes beyond uranium with a foundation in integrating microbial ecology with geochemical analyses. This included investigations of arsenic and zinc during sulfate reducing conditions in addition to direct microbial reduction of metals. Complimentary work with NSF funding and collaborative DOE interactions further increased the project scope to investigate metal (im)mobilization coupled to biogeochemical perturbations in forest ecosystems with an emphasis on coupled carbon and metal biogeochemistry. In total, the project was highly impactful and resulted in 9 publications and directly supported salary/tuition for 3 graduate students at various stages of their academic careers as well as my promotion to Associate Professor. In going forward, findings provided inspiration for a two subsequent proposals with collaborators at Lawrence Berkeley Laboratory and others that are currently in review (as of March 2016).

  19. Optimization of palm oil physical refining process for reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation.

    Science.gov (United States)

    Zulkurnain, Musfirah; Lai, Oi Ming; Tan, Soo Choon; Abdul Latip, Razam; Tan, Chin Ping

    2013-04-03

    The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively.

  20. Biogeochemical and hydrological controls on fate and distribution of trace metals in oiled Gulf salt marshes

    Science.gov (United States)

    Keevan, J.; Natter, M.; Lee, M.; Keimowitz, A.; Okeke, B.; Savrda, C.; Saunders, J.

    2011-12-01

    carbon source for stimulating sulfate-reducing bacteria. The high sulfur levels, coupled with the low levels of iron, indicate that iron-reducing bacteria are outcompeted by sulfate reducers in oiled salt marshes. Moreover, pore-water pH values show a general increasing trend (ranging from 6.6 to 8.0) with depth, possibly reflecting the combined effects of bacterial sulfate reduction and saltwater intrusion at depth. Despite high levels of trace metals in bulk sediments, concentrations of trace metals dissolved in pore-waters are generally low. It is very likely that high organic matter content and bacterially-mediated sulfate reduction promote metal retention through the formation of sulfide solids. Framboidal pyrites, as well as other sulfides, have been identified, and are currently undergoing XRD, SEM, and EDAX analyses. Continued research is needed to monitor possible re-mobilization of trace metals in changing redox and biogeochemical conditions.

  1. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions

    Directory of Open Access Journals (Sweden)

    O. Roger Anderson

    2016-08-01

    Full Text Available Marine and estuarine microbial biofilms are ubiquitously distributed worldwide and are increasingly of interest in basic and applied sciences because of their unique structural and functional features that make them remarkably different from the biota in the plankton. This is a review of some current scientific knowledge of naturally occurring microbial marine and estuarine biofilms including prokaryotic and microeukaryotic biota, but excluding research specifically on engineering and applied aspects of biofilms such as biofouling. Because the microbial communities including bacteria and protists are integral to the fundamental ecological and biogeochemical processes that support biofilm communities, particular attention is given to the structural and ecological aspects of microbial biofilm formation, succession, and maturation, as well as the dynamics of the interactions of the microbiota in biofilms. The intent is to highlight current state of scientific knowledge and possible avenues of future productive research, especially focusing on the ecological and biogeochemical dimensions.

  2. Projecting the long-term biogeochemical impacts of a diverse agroforestry system in the Midwest

    Science.gov (United States)

    Wolz, K. J.; DeLucia, E. H.; Paul, R. F.

    2014-12-01

    Annual, monoculture cropping systems have become the standard agricultural model in the Midwestern US. Unintended consequences of these systems include surface and groundwater pollution, greenhouse gas emissions, loss of biodiversity, and soil erosion. Diverse agroforestry (DA) systems dominated by fruit and nut trees/shrubs have been proposed as an agricultural model for the Midwestern US that can restore ecosystem services while simultaneously providing economically viable and industrially relevant staple food crops. A DA system including six species of fruit and nut crops was established on long-time conventional agricultural land at the University of Illinois at Urbana-Champaign in 2012, with the conventional corn-soybean rotation (CSR) as a control. Initial field measurements of the nitrogen and water cycles during the first two years of transition have indicated a significant decrease in N losses and modification of the seasonal evapotranspiration (ET) pattern. While these early results suggest that the land use transition from CSR to DA can have positive biogeochemical consequences, models must be utilized to make long-term biogeochemical projections in agroforestry systems. Initial field measurements of plant phenology, net N2O flux, nitrate leaching, soil respiration, and soil moisture were used to parameterize the DA system within the DayCENT biogeochemical model as the "savanna" ecosystem type. The model was validated with an independent subset of field measurements and then run to project biogeochemical cycling in the DA system for 25 years past establishment. Model results show that N losses via N2O emission or nitrate leaching reach a minimum within the first 5 years and then maintain this tight cycle into the future. While early ET field measurements revealed similar magnitudes between the DA and CSR systems, modeled ET continued to increase for the DA system throughout the projected time since the trees would continue to grow larger. These modeling

  3. Soil Biogeochemical and Microbial Feedbacks along a Snowmelt-Dominated Hillslope-to-Floodplain Transect in Colorado.

    Science.gov (United States)

    Sorensen, P.; Beller, H. R.; Bill, M.; Bouskill, N.; Brodie, E.; Chakraborty, R.; Conrad, M. E.; Karaoz, U.; Polussa, A.; Steltzer, H.; Wang, S.; Williams, K. H.; Wilmer, C.; Wu, Y.

    2017-12-01

    Nitrogen export from mountainous watersheds is a product of multiple interactions among hydrological processes and soil-microbial-plant feedbacks along the continuum from terrestrial to aquatic environments. In snow-dominated systems, like the East River Watershed (CO), seasonal processes such as snowmelt exert significant influence on the annual hydrologic cycle and may also link spatially distinct catchment subsystems, such as hillslope and adjoining riparian floodplains. Further, snowmelt is occurring earlier each year and this is predicted to result in a temporal asynchrony between historically coupled microbial nutrient release and plant nutrient demand in spring, with the potential to increase N export from the East River Watershed. Here we summarize biogeochemical data collected along a hillslope-to-riparian floodplain transect at the East River site. Starting in Fall 2016, we sampled soils at 3 depths and measured dissolved pools of soil nutrients (e.g., NH4+, NO3-, DOC, P), microbial biomass CN, and microbial community composition over a seasonal time course, through periods of snow accumulation, snowmelt, and plant senescence. Soil moisture content in the top 5 cm of floodplain soils was nearly 4X greater across sampling dates, coinciding with 2X greater microbial biomass C, larger extractable pools of NH4+, and smaller pools of NO3- in floodplain vs. hillslope soils. These results suggest that microbially mediated redox processes played an important role in N cycling along the transect. Hillslope vs. floodplain location also appeared to be a key factor that differentiated soil microbial communities (e.g., a more important factor than seasonality or soil depth or type). Snow accumulation and snowmelt exerted substantial influence on soil biogeochemistry. For example, microbial biomass accumulation increased about 2X beneath the winter snowpack. Snowmelt resulted in a precipitous crash in the microbial population, with 2.5X reductions in floodplain and 2X

  4. Green Infrastructure Simulation and Optimization to Achieve Combined Sewer Overflow Reductions in Philadelphia's Mill Creek Sewershed

    Science.gov (United States)

    Cohen, J. S.; McGarity, A. E.

    2017-12-01

    The ability for mass deployment of green stormwater infrastructure (GSI) to intercept significant amounts of urban runoff has the potential to reduce the frequency of a city's combined sewer overflows (CSOs). This study was performed to aid in the Overbrook Environmental Education Center's vision of applying this concept to create a Green Commercial Corridor in Philadelphia's Overbrook Neighborhood, which lies in the Mill Creek Sewershed. In an attempt to further implement physical and social reality into previous work using simulation-optimization techniques to produce GSI deployment strategies (McGarity, et al., 2016), this study's models incorporated land use types and a specific neighborhood in the sewershed. The low impact development (LID) feature in EPA's Storm Water Management Model (SWMM) was used to simulate various geographic configurations of GSI in Overbrook. The results from these simulations were used to obtain formulas describing the annual CSO reduction in the sewershed based on the deployed GSI practices. These non-linear hydrologic response formulas were then implemented into the Storm Water Investment Strategy Evaluation (StormWISE) model (McGarity, 2012), a constrained optimization model used to develop optimal stormwater management practices on the watershed scale. By saturating the avenue with GSI, not only will CSOs from the sewershed into the Schuylkill River be reduced, but ancillary social and economic benefits of GSI will also be achieved. The effectiveness of these ancillary benefits changes based on the type of GSI practice and the type of land use in which the GSI is implemented. Thus, the simulation and optimization processes were repeated while delimiting GSI deployment by land use (residential, commercial, industrial, and transportation). The results give a GSI deployment strategy that achieves desired annual CSO reductions at a minimum cost based on the locations of tree trenches, rain gardens, and rain barrels in specified land

  5. The significance of GW-SW interactions for biogeochemical processes in sandy streambeds

    Science.gov (United States)

    Arnon, Shai; De Falco, Natalie; Fox, Aryeh; Laube, Gerrit; Schmidt, Christian; Fleckenstein, Jan; Boano, Fulvio

    2015-04-01

    Stream-groundwater interactions have a major impact on hyporheic exchange fluxes in sandy streambeds. However, the physical complexity of natural streams has limited our ability to study these types of interactions systematically, and to evaluate their importance to biogeochemical processes and nutrient cycling. In this work we were able to quantify the effect of losing and gaining fluxes on hyporheic exchange and nutrient cycling in homogeneous and heterogeneous streambeds by combining experiments in laboratory flumes and modeling. Tracer experiments for measuring hyporheic exchange were done using dyes and NaCl under various combinations of overlying water velocity and losing or gaining fluxes. Nutrient cycling experiments were conducted after growing a benthic biofilm by spiking with Sodium Benzoate (as a source of labile dissolved organic carbon, DOC) and measuring DOC and oxygen dynamics. The combination of experimental observations and modeling revealed that interfacial transport increases with the streambed hydraulic conductivity and proportional to the square of the overlying water velocity. Hyporheic exchange fluxes under losing and gaining flow conditions were similar, and became smaller when the losing or gaining flux increases. Increasing in streambed hydraulic conductivity led to higher hyporheic fluxes and reduction in the effects of losing and gaining flow conditions to constrain exchange. Despite the evident effect of flow conditions on hyporheic exchange, labile DOC uptake was positively linked to increasing overlying water velocity but was not affected by losing and gaining fluxes. This is because microbial aerobic activity was taking place at the upper few millimeters of the streambed as shown by local oxygen consumption rates, which was measured using microelectrodes. Based on modeling work, it is expected that GW-SW interaction will be more significant for less labile DOC and anaerobic processes. Our results enable us to study systematically

  6. Thermodynamics at work - on the limits and potentials of biogeochemical processes

    Science.gov (United States)

    Peiffer, Stefan

    2017-04-01

    The preferential use of high potential electron acceptors by microorganisms has lead to the classical concept of a redox sequence with a sequential use of O2 nitrate, Fe(III), sulfate, and finally CO2 as electron acceptors for respiration (Stumm & Morgan, 1996). Christian Blodau has rigourously applied this concept to constrain the thermodynamical limits at which specific aquatic systems operate. In sediments from acidic mining lakes his analysis revealed that sulfate reducers are not competitive as long as low-crystallinity ferric oxides are available for organic matter decomposition (Blodau et al, 1998). This analysis opened up the possibility to generalize the linkage between the iron and sulphur cycle in such systems and to constrain the biogeochemical limits for remediation (e. g. Peine et al, 2000). In a similar approach, Beer & Blodau (2007) were able to demonstrate that constraints on the removal of products from acetoclastic methanogenesis in deeper peat layers are inhibiting organic matter decomposition and provide a thermodynamic argument for peat accumulation. In this contribution I will review such ideas and further refine the limits and potentials of biogeochemical reactions in terms of redox-active metastable phases (RAMPS) that are typically mixed-valent carbon-, iron-, and sulfur-containing compounds and which allow for the occurrence of a number of enigmatic reactions, e. g. limited greenhouse gas emission (CH4) under dynamic redox conditions. It is proposed that redox equivalents are generated, stored and recycled during oxidation and reduction cycles thus suppressing methanogenesis (Blodau, 2002). Such RAMPS will preferentially occur at dynamic interfaces being exposed to frequent redox cycles. The concept of RAMPS will be illustrated along the interaction between ferric (hydr)oxides and dissolved sulphide. Recent studies using modern analytical tools revealed the formation of a number of amorphous products within a short time scale (days) both

  7. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  8. Optimization of metal artefact reduction (MAR) sequences for MRI of total hip prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Toms, A.P., E-mail: andoni.toms@nnuh.nhs.u [Department of Radiology, Norfolk and Norwich University Hospital Trust, Norwich, Norfolk NR4 7UY (United Kingdom); Smith-Bateman, C.; Malcolm, P.N.; Cahir, J. [Department of Radiology, Norfolk and Norwich University Hospital Trust, Norwich, Norfolk NR4 7UY (United Kingdom); Graves, M. [University Department of Radiology, Addenbrooke' s Hospital, Cambridge (United Kingdom)

    2010-06-15

    Aim: To describe the relative contribution of matrix size and bandwidth to artefact reduction in order to define optimal sequence parameters for metal artefact reduction (MAR) sequences for MRI of total hip prostheses. Methods and materials: A phantom was created using a Charnley total hip replacement. Mid-coronal T1-weighted (echo time 12 ms, repetition time 400 ms) images through the prosthesis were acquired with increasing bandwidths (150, 300, 454, 592, and 781 Hz/pixel) and increasing matrixes of 128, 256, 384, 512, 640, and 768 pixels square. Signal loss from the prosthesis and susceptibility artefact was segmented using an automated tool. Results: Over 90% of the achievable reduction in artefacts was obtained with matrixes of 256 x 256 or greater and a receiver bandwidth of approximately 400 Hz/pixel or greater. Thereafter increasing the receiver bandwidth or matrix had little impact on reducing susceptibility artefacts. Increasing the bandwidth produced a relative fall in the signal-to-noise ratio (SNR) of between 49 and 56% for a given matrix, but, in practice, the image quality was still satisfactory even with the highest bandwidth and largest matrix sizes. The acquisition time increased linearly with increasing matrix parameters. Conclusion: Over 90% of the achievable metal artefact reduction can be realized with mid-range matrices and receiver bandwidths on a clinical 1.5 T system. The loss of SNR from increasing receiver bandwidth, is preferable to long acquisition times, and therefore, should be the main tool for reducing metal artefact.

  9. Application of a hybrid multiscale approach to simulate hydrologic and biogeochemical processes in the river-groundwater interaction zone.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang; Song, Hyun-Seob; Hou, Zhangshuan; Chen, Xingyuan; Liu, Yuanyuan; Scheibe, Tim

    2017-03-01

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scales of interest.

  10. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark)

    DEFF Research Database (Denmark)

    Zopfi, J.; Ferdelman, TG; Jørgensen, BB

    2001-01-01

    Major electron donors (H2S, NH4+, Mn2+, Fe2+) and accepters (O-2, NO3-, Mn(IV), Fe(III)), process rates ((SO42-)-S-35 reduction, dark (CO2)-C-14 fixation) and vertical fluxes were investigated to quantify the dominant biogeochemical processes at the chemocline of a shallow brackish fjord. Under...... steady-stare conditions, the upward fluxes of reductants and downward fluxes of oxidants in the water column were balanced. However, changes in the hydrographical conditions caused a transient nonsteady-state at the chemocline and had a great impact on process rates and the distribution of chemical...... species. Maxima of S-0 (17.8 mu mol l(-1)), thiosulfate (5.2 mu mol l(-1)) and sulfite (1.1 mu mol l(-1)) occurred at the chemocline, but were hardly detectable in the sulfidic deep water. The distribution of S-0 suggested that the high concentration of S-0 was (a) more likely due to a low turnover than...

  11. Ecosystem services and biogeochemical cycles on a global scale: valuation of water, carbon and nitrogen processes

    International Nuclear Information System (INIS)

    Watanabe, Marcos D.B.; Ortega, Enrique

    2011-01-01

    Ecosystem services (ES) are provided by healthy ecosystems and are fundamental to support human life. However, natural systems have been degraded all over the world and the process of degradation is partially attributed to the lack of knowledge regarding the economic benefits associated with ES, which usually are not captured in the market. To valuate ES without using conventional approaches, such as the human's willingness-to-pay for ecosystem goods and services, this paper uses a different method based on Energy Systems Theory to estimate prices for biogeochemical flows that affect ecosystem services by considering their emergy content converted to equivalent monetary terms. Ecosystem services related to water, carbon and nitrogen biogeochemical flows were assessed since they are connected to a range of final ecosystem services including climate regulation, hydrological regulation, food production, soil formation and others. Results in this paper indicate that aquifer recharge, groundwater flow, carbon dioxide sequestration, methane emission, biological nitrogen fixation, nitrous oxide emission and nitrogen leaching/runoff are the most critical biogeochemical flows in terrestrial systems. Moreover, monetary values related to biogeochemical flows on a global scale could provide important information for policymakers concerned with payment mechanisms for ecosystem services and costs of greenhouse gas emissions.

  12. CMS: Simulated Physical-Biogeochemical Data, SABGOM Model, Gulf of Mexico, 2005-2010

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains monthly mean ocean surface physical and biogeochemical data for the Gulf of Mexico simulated by the South Atlantic Bight and Gulf of Mexico...

  13. Skill assessment of the coupled physical-biogeochemical operational Mediterranean Forecasting System

    Science.gov (United States)

    Cossarini, Gianpiero; Clementi, Emanuela; Salon, Stefano; Grandi, Alessandro; Bolzon, Giorgio; Solidoro, Cosimo

    2016-04-01

    The Mediterranean Monitoring and Forecasting Centre (Med-MFC) is one of the regional production centres of the European Marine Environment Monitoring Service (CMEMS-Copernicus). Med-MFC operatively manages a suite of numerical model systems (3DVAR-NEMO-WW3 and 3DVAR-OGSTM-BFM) that provides gridded datasets of physical and biogeochemical variables for the Mediterranean marine environment with a horizontal resolution of about 6.5 km. At the present stage, the operational Med-MFC produces ten-day forecast: daily for physical parameters and bi-weekly for biogeochemical variables. The validation of the coupled model system and the estimate of the accuracy of model products are key issues to ensure reliable information to the users and the downstream services. Product quality activities at Med-MFC consist of two levels of validation and skill analysis procedures. Pre-operational qualification activities focus on testing the improvement of the quality of a new release of the model system and relays on past simulation and historical data. Then, near real time (NRT) validation activities aim at the routinely and on-line skill assessment of the model forecast and relays on the NRT available observations. Med-MFC validation framework uses both independent (i.e. Bio-Argo float data, in-situ mooring and vessel data of oxygen, nutrients and chlorophyll, moored buoys, tide-gauges and ADCP of temperature, salinity, sea level and velocity) and semi-independent data (i.e. data already used for assimilation, such as satellite chlorophyll, Satellite SLA and SST and in situ vertical profiles of temperature and salinity from XBT, Argo and Gliders) We give evidence that different variables (e.g. CMEMS-products) can be validated at different levels (i.e. at the forecast level or at the level of model consistency) and at different spatial and temporal scales. The fundamental physical parameters temperature, salinity and sea level are routinely validated on daily, weekly and quarterly base

  14. Subsurface Biogeochemical Research FY11 Second Quarter Performance Measure

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D.

    2011-03-31

    The Subsurface Biogeochemical Research (SBR) Long Term Measure for 2011 under the Performance Assessment Rating Tool (PART) measure is to "Refine subsurface transport models by developing computational methods to link important processes impacting contaminant transport at smaller scales to the field scale." The second quarter performance measure is to "Provide a report on computational methods linking genome-enabled understanding of microbial metabolism with reactive transport models to describe processes impacting contaminant transport in the subsurface." Microorganisms such as bacteria are by definition small (typically on the order of a micron in size), and their behavior is controlled by their local biogeochemical environment (typically within a single pore or a biofilm on a grain surface, on the order of tens of microns in size). However, their metabolic activity exerts strong influence on the transport and fate of groundwater contaminants of significant concern at DOE sites, in contaminant plumes with spatial extents of meters to kilometers. This report describes progress and key findings from research aimed at integrating models of microbial metabolism based on genomic information (small scale) with models of contaminant fate and transport in aquifers (field scale).

  15. Using geochemical indicators to distinguish high biogeochemical activity in floodplain soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kenwell, Amy [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Navarre-Sitchler, Alexis, E-mail: asitchle@mines.edu [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Prugue, Rodrigo [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Spear, John R. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Hering, Amanda S. [Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Maxwell, Reed M. [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Carroll, Rosemary W.H. [Desert Research Institute, Division of Hydrologic Sciences, 2215 Raggio Parkway, Reno, NV 89512 (United States); Williams, Kenneth H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-09-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict potential elevated rates of biogeochemical activity (microbial “hotspots”) in subsurface environments by correlating microbial DNA and aspects of the community structure with the spatial distribution of geochemical indicators in subsurface sediments. Multiple linear regression models of simulated precipitation leachate, HCl and hydroxylamine extractable iron and manganese, total organic carbon (TOC), and microbial community structure were used to identify sample characteristics indicative of biogeochemical hotspots within fluvially-derived aquifer sediments and overlying soils. The method has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 16 alluvial samples were taken from 8 sediment cores, and at the East River, 46 soil/sediment samples were collected across and perpendicular to 3 active meanders and an oxbow meander. Regression models using TOC and TOC combined with extractable iron and manganese results were determined to be the best fitting statistical models of microbial DNA (via 16S rRNA gene analysis). Fitting these models to observations in both contaminated and natural floodplain deposits, and their associated alluvial aquifers, demonstrates the broad applicability of the geochemical indicator based approach. - Highlights: • Biogeochemical characterization of alluvial floodplain soils and sediments was performed to investigate parameters that may indicate microbial hot spot formation. • A correlation between geochemical parameters (total organic carbon and

  16. Using geochemical indicators to distinguish high biogeochemical activity in floodplain soils and sediments

    International Nuclear Information System (INIS)

    Kenwell, Amy; Navarre-Sitchler, Alexis; Prugue, Rodrigo; Spear, John R.; Hering, Amanda S.; Maxwell, Reed M.; Carroll, Rosemary W.H.; Williams, Kenneth H.

    2016-01-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict potential elevated rates of biogeochemical activity (microbial “hotspots”) in subsurface environments by correlating microbial DNA and aspects of the community structure with the spatial distribution of geochemical indicators in subsurface sediments. Multiple linear regression models of simulated precipitation leachate, HCl and hydroxylamine extractable iron and manganese, total organic carbon (TOC), and microbial community structure were used to identify sample characteristics indicative of biogeochemical hotspots within fluvially-derived aquifer sediments and overlying soils. The method has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 16 alluvial samples were taken from 8 sediment cores, and at the East River, 46 soil/sediment samples were collected across and perpendicular to 3 active meanders and an oxbow meander. Regression models using TOC and TOC combined with extractable iron and manganese results were determined to be the best fitting statistical models of microbial DNA (via 16S rRNA gene analysis). Fitting these models to observations in both contaminated and natural floodplain deposits, and their associated alluvial aquifers, demonstrates the broad applicability of the geochemical indicator based approach. - Highlights: • Biogeochemical characterization of alluvial floodplain soils and sediments was performed to investigate parameters that may indicate microbial hot spot formation. • A correlation between geochemical parameters (total organic carbon and

  17. Correlating phospholipid fatty acids (PLFA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods

    DEFF Research Database (Denmark)

    Ludvigsen, Liselotte; Albrechtsen, Hans-Jørgen; Rootzén, Helle

    1997-01-01

    Different multivariate statistical analyses were applied to phospholipid fatty acids representing the biomass composition and to different biogeochemical parameters measured in 37 samples from a landfill contaminated aquifer at Grindsted Landfill (Denmark). Principal component analysis...... and correspondence analysis were used to identify groups of samples showing similar patterns with respect to biogeochemical variables and phospholipid fatty acid composition. The principal component analysis revealed that for the biogeochemical parameters the first principal component was linked to the pollution...... was used to allocate samples of phospholipid fatty acids into predefined classes. A large percentages of samples were classified correctly when discriminating samples into groups of dissolved organic carbon and specific conductivity, indicating that the biomass is highly influenced by the pollution...

  18. Partial Transmit Sequence Optimization Using Improved Harmony Search Algorithm for PAPR Reduction in OFDM

    Directory of Open Access Journals (Sweden)

    Mangal Singh

    2017-12-01

    Full Text Available This paper considers the use of the Partial Transmit Sequence (PTS technique to reduce the Peak‐to‐Average Power Ratio (PAPR of an Orthogonal Frequency Division Multiplexing signal in wireless communication systems. Search complexity is very high in the traditional PTS scheme because it involves an extensive random search over all combinations of allowed phase vectors, and it increases exponentially with the number of phase vectors. In this paper, a suboptimal metaheuristic algorithm for phase optimization based on an improved harmony search (IHS is applied to explore the optimal combination of phase vectors that provides improved performance compared with existing evolutionary algorithms such as the harmony search algorithm and firefly algorithm. IHS enhances the accuracy and convergence rate of the conventional algorithms with very few parameters to adjust. Simulation results show that an improved harmony search‐based PTS algorithm can achieve a significant reduction in PAPR using a simple network structure compared with conventional algorithms.

  19. Biogeochemical cycles and continental ecosystems - Report on Science and Technology no. 27

    International Nuclear Information System (INIS)

    Pedro, Georges; Blanzat, Bernard; Albrecht, Pierre; Berthelin, Jacques; Boudot, Jean-Pierre; Munier-Lamy, Colette; Cossa, Daniel; Feix, Isabelle; Guillaumont, Robert; HUC, Alain Yves; Lavelle, Patrick; Lebrun, Michel; Lucas, Yves; Metivier, Henri; Ourisson, Guy; Raimbault, Patrick; Ranger, Jacques; Gerard, Frederic; Schmidt-Laine, Claudine; Dercourt, Jean; Gaillardet, Jerome; Bourrie, Guilhem; Trolard, Fabienne; Gerard, Frederic; Dambrine, Etienne; Meunier, Jean Dominique; Benoit, Marc; Breda, Nathalie; Dupouey, Jean-Luc; Granier, Andre; Franc, Alain; GARBAYE, Jean; Martin, Francis; Landmann, Guy; Loustau, Denis; Martinez, Jose; Crochon, Philippe; Gay, Jean-Didier; Peres, Jean-Marc; Tamponnet, Christian; Andreux, Francis; Tusseauvuillemin, Marie-Helene; Barker, Evelyne; Bouisset, Patrick; Germain, Pierre; Masson, Olivier; Boust, Dominique; Bailly du Bois, Pascal; Abdelouas, Abdesselam; Grambow, Bernd; Ansoborlo, Erich; Chiappini, Remo; Lobinski, Ryzsard; Montavon, Gilles; Moulin, Christophe; Moulin, Valerie; Ollivier, Bernard; Haeseler, Franck; Prieur, Daniel; Magot, Michel; Charmasson, Sabine; Poss, Roland; Grimaldi, Catherine; Grimaldi, Michel; Malet, Caroline

    2007-11-01

    The aim of this report is to demonstrate that the biogeochemical approach provides a uniting framework for managing the environment of our planet and in particular the environment of a planet reshaped by Man in the best possible way. This framework is based on the study of the biogeochemical cycles that characterize the biosphere (i.e. the place where life is present) and that are naturally linked to the Earth's overall geochemical cycles. The goal of this report is not to describe the biogeochemical cycles of all the chemical elements, but to show why and how these cycles have a significant role in the evolution of a planet shaped by man. In order to do so, the report is divided into two units and four parts: In the first unit, all the information that is directly linked to understanding geochemical cycles is brought together. It is divided in two parts. The first part concerns the description of the biogeochemical cycle of some of the elements that play a major role in the bio-geosphere. We have focused on: - carbon, because it is involved in all of the cycles, i.e. the atmospheric, ecological and geological cycles (chapter 1); - nitrogen, phosphorus and sulfur because they are specific to the living world and because their role is likely to be primordial in the environment (chapter 2); - silicon, aluminum and iron because they allow us to make a bridge between the ecological and the geological systems (chapter 3); - finally, radionuclides (natural and artificial), due to their impact on the biological environment (chapter 4); The second part concerns the biogeochemical study of a number of representative environments of the natural and man-shaped planet. Regarding natural ecosystems, we have focused on: - forest ecosystems, which are highly characteristic of terrestrial environments and which are the site of often very efficient biogeochemical recycling (chapter 5.1); - oceanic environments. Although not part of our topic, the biogeochemistry of these

  20. Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico

    Science.gov (United States)

    Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.

    2012-12-01

    A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed

  1. Analysis and optimization of flocculation activity and turbidity reduction in kaolin suspension using pectin as a biopolymer flocculant.

    Science.gov (United States)

    Ho, Y C; Norli, I; Alkarkhi, Abbas F M; Morad, N

    2009-01-01

    The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.

  2. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    Science.gov (United States)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  3. A two-domain real-time algorithm for optimal data reduction: a case study on accelerator magnet measurements

    International Nuclear Information System (INIS)

    Arpaia, Pasquale; Buzio, Marco; Inglese, Vitaliano

    2010-01-01

    A real-time algorithm of data reduction, based on the combination of two lossy techniques specifically optimized for high-rate magnetic measurements in two domains (e.g. time and space), is proposed. The first technique exploits an adaptive sampling rule based on the power estimation of the flux increments in order to optimize the information to be gathered for magnetic field analysis in real time. The tracking condition is defined by the target noise level in the Nyquist band required by the post-processing procedure of magnetic analysis. The second technique uses a data reduction algorithm in order to improve the compression ratio while preserving the consistency of the measured signal. The allowed loss is set equal to the random noise level in the signal in order to force the loss and the noise to cancel rather than to add, by improving the signal-to-noise ratio. Numerical analysis and experimental results of on-field performance characterization and validation for two case studies of magnetic measurement systems for testing magnets of the Large Hadron Collider at the European Organization for Nuclear Research (CERN) are reported

  4. Dust in the Earth system: the biogeochemical linking of land, air and sea.

    Science.gov (United States)

    Ridgwell, Andy J

    2002-12-15

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  5. Geophysical Monitoring of Hydrological and Biogeochemical Transformations associated with Cr(VI) Bioremediation

    International Nuclear Information System (INIS)

    Hubbard, Susan; Williams, Kenneth H.; Conrad, Mark E.; Faybishenko, Boris; Peterson, John; Chen, Jinsong; Long, Philip E.; Hazen, Terry C.

    2008-01-01

    Understanding how hydrological and biogeochemical properties change over space and time in response to remedial treatments is hindered by our ability to monitor these processes with sufficient resolution and over field relevant scales. Here, we explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI)bioremediation experiment performed at Hanford, WA. We first integrated hydrological wellbore and geophysical tomographic datasets to estimate hydrological zonation at the study site. Using results from laboratory biogeophysical experiments and constraints provided by field geochemical datasets, we then interpreted time-lapse seismic and radar tomographic datasets, collected during thirteen acquisition campaigns over a three year experimental period, in terms of hydrological and biogeochemical transformations. The geophysical monitoring datasets were used to infer: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total dissolved solids (nitrate and sulfate) as a function of pumping activity; the formation of precipitates and dissolution of calcites; and concomitant changes in porosity. Although qualitative in nature, the integrated interpretation illustrates how geophysical techniques have the potential to provide a wealth of information about coupled hydrobiogeochemical responses to remedial treatments in high spatial resolution and in a minimally invasive manner. Particularly novel aspects of our study include the use of multiple lines of evidence to constrain the interpretation of a long-term, field-scale geophysical monitoring dataset and the interpretation of the transformations as a function of hydrological heterogeneity and pumping activity

  6. A decade of physical and biogeochemical measurements in the Northern Indian Ocean.

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Sardesai, S.; Ramaiah, N.

    at understanding the seasonal variability of physical and biogeochemical parameters. The results showed strongest seasonal cycle in the Arabian Sea with blooms during summer and winter. Upwelling, advection and wind-mixing drive the summer bloom, while the winter...

  7. Spatial-temporal noise reduction method optimized for real-time implementation

    Science.gov (United States)

    Romanenko, I. V.; Edirisinghe, E. A.; Larkin, D.

    2013-02-01

    Image de-noising in the spatial-temporal domain has been a problem studied in-depth in the field of digital image processing. However complexity of algorithms often leads to high hardware resource usage, or computational complexity and memory bandwidth issues, making their practical use impossible. In our research we attempt to solve these issues with an optimized implementation of a practical spatial-temporal de-noising algorithm. Spatial-temporal filtering was performed in Bayer RAW data space, which allowed us to benefit from predictable sensor noise characteristics and reduce memory bandwidth requirements. The proposed algorithm efficiently removes different kinds of noise in a wide range of signal to noise ratios. In our algorithm the local motion compensation is performed in Bayer RAW data space, while preserving the resolution and effectively improving the signal to noise ratios of moving objects. The main challenge for the use of spatial-temporal noise reduction algorithms in video applications is the compromise between the quality of the motion prediction and the complexity of the algorithm and required memory bandwidth. In photo and video applications it is very important that moving objects should stay sharp, while the noise is efficiently removed in both the static background and moving objects. Another important use case is the case when background is also non-static as well as the foreground where objects are also moving. Taking into account the achievable improvement in PSNR (on the level of the best known noise reduction techniques, like VBM3D) and low algorithmic complexity, enabling its practical use in commercial video applications, the results of our research can be very valuable.

  8. NATO Advanced Research Workshop on The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere

    CERN Document Server

    Charlson, Robert; Andreae, Meinrat; Rodhe, Henning

    1985-01-01

    Viewed from space, the Earth appears as a globe without a beginning or an end. Encompassing the globe is the atmosphere with its three phases-­ gaseous, liquid, and solid--moving in directions influenced by sunlight, gravity, and rotation. The chemical compositions of these phases are determined by biogeochemical cycles. Over the past hundred years, the processes governing the rates and reactions in the atmospheric biogeochemical cycles have typically been studied in regions where scientists lived. Hence, as time has gone by, the advances in our knowledge of atmospheric chemical cycles in remote areas have lagged substantially behind those for more populated areas. Not only are the data less abundant, they are also scattered. Therefore, we felt a workshop would be an excellent mechanism to assess the state­ of-knowledge of the atmospheric cycles of sulfur and nitrogen in remote areas and to make recommendations for future research. Thus, a NATO Advanced Research Workshop '~he Biogeochemical Cycling of Sulfu...

  9. Biogeochemical control points in a water-limited critical zone

    Science.gov (United States)

    Chorover, J.; Brooks, P. D.; Gallery, R. E.; McIntosh, J. C.; Olshansky, Y.; Rasmussen, C.

    2017-12-01

    The routing of water and carbon through complex terrain is postulated to control structure evolution in the sub-humid critical zone of the southwestern US. By combining measurements of land-atmosphere exchange, ecohydrologic partitioning, and subsurface biogeochemistry, we seek to quantify how a heterogeneous (in time and space) distribution of "reactants" impacts both short-term (sub-)catchment response (e.g., pore and surface water chemical dynamics) and long-term landscape evolution (e.g., soil geochemistry/morphology and regolith weathering depth) in watersheds underlain by rhyolite and schist. Instrumented pedons in convergent, planar, and divergent landscape positions show distinct depth-dependent responses to precipitation events. Wetting front propagation, dissolved carbon flux and associated biogeochemical responses (e.g., pulses of CO2 production, O2 depletion, solute release) vary with topography, revealing the influence of lateral subsidies of water and carbon. The impacts of these episodes on the evolution of porous media heterogeneity is being investigated by statistical analysis of pore water chemistry, chemical/spectroscopic studies of solid phase organo-mineral products, sensor-derived water characteristic curves, and quantification of co-located microbial community activity/composition. Our results highlight the interacting effects of critical zone structure and convergent hydrologic flows in the evolution of biogeochemical control points.

  10. Winter flooding in Dutch stream valley floodplains: biogeochemical effects and vegetation consequences

    NARCIS (Netherlands)

    Beumer, V.

    2009-01-01

    Winter flooding in Dutch stream valley floodplains: biogeochemical effects and vegetation consequences Victor Beumer Climatic change has great impacts on stream catchments and their ecology. Expectations are that more extreme climate events will result in undesired flooding in stream catchments. In

  11. Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs.

    Science.gov (United States)

    Hu, Ping; Tom, Lauren; Singh, Andrea; Thomas, Brian C; Baker, Brett J; Piceno, Yvette M; Andersen, Gary L; Banfield, Jillian F

    2016-01-19

    Oil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128 m (24 to 27°C) and 2,743 m (80 to 83°C) below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate- and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of the Acetothermia (OP1), was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylum Parcubacteria (OD1) that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, including Microgenomates (OP11), Atribacteria (OP9), candidate phyla TA06 and WS6, and Marinimicrobia (SAR406). The results presented here elucidate potential roles of organisms in oil reservoir biological processes. The activities of microorganisms in oil reservoirs impact petroleum resource quality and the global carbon cycle. We show that bacteria

  12. Wetland biogeochemical processes and simulation modeling

    Science.gov (United States)

    Bai, Junhong; Huang, Laibin; Gao, Haifeng; Jia, Jia; Wang, Xin

    2018-02-01

    As the important landscape with rich biodiversity and high productivity, wetlands can provide numerous ecological services including playing an important role in regulating global biogeochemical cycles, filteringpollutants from terrestrial runoff and atmospheric deposition, protecting and improving water quality, providing living habitats for plants and animals, controlling floodwaters, and retaining surface water flow during dry periods (Reddy and DeLaune, 2008; Qin and Mitsch, 2009; Zhao et al., 2016). However, more than 50% of the world's wetlands had been altered, degraded or lost through a wide range of human activities in the past 150 years, and only a small percentage of the original wetlands remained around the world after over two centuries of intensive development and urbanization (O'connell, 2003; Zhao et al., 2016).

  13. Evaluation of heavy metal pollution in bogs of Tomsk region on change in biogeochemical activity of ericaceous shrubs

    Science.gov (United States)

    Gaskova, L. P.

    2018-01-01

    The article discusses the change in biogeochemical activity of plant species in bogs under the influence of various types of human impact (roads, cities, drainage of mires, fire). It has been established that ericaceous shrubs, depending on the species, react with varying degrees of intensity to anthropogenic influences. The biogeochemical activity of species increased by 2.5 to 4.8 times in polluted sites.

  14. Natural environment and the biogeochemical cycle s. Pt. A

    Energy Technology Data Exchange (ETDEWEB)

    Hutzinger, O [ed.

    1980-01-01

    At the moment three volumes of the handbook are planned. Volume 1 deals with the natural environment and the biogeochemical cycles therein, including some background information such as energetics and ecology. The individual chapters are dealing with the atmosphere, the hydrosphere, chemical oceanography, chemical aspects of soil, the cycle of oxygen, sulfur, and phosphorus, metal cycles and biological methylation, and natural organohalogen compounds. Separate abstracts are prepared for 5 chapters of this book.

  15. Effect of Staged Dissolved Oxygen Optimization on In-situ sludge Reduction and Enhanced Nutrient Removal in an A2MMBR-M System

    Science.gov (United States)

    Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi

    2018-03-01

    Redundant excess sludge production and considerable non-standard wastewater discharge from existing activated sludge processes are facing more and more challenges. The investigations on lower sludge production and higher sewage treatment efficiency are urgently needed. In this study, an anaerobic/anoxic/micro-aerobic/oxic-MBR combining a micro-aerobic starvation sludge holding tank (A2MMBR-M) system is developed. Batch tests on the optimization of the staged dissolved oxygen (DO) in the micro-aerobic, the first oxic, and the second oxic tanks were carried out by a 3-factor and 3-level Box-Behnken design (BBD). The optimal actual values of X1 , X2 , and X3 were DO1 of 0.3-0.5 mg/L, DO2 of 3.5-4.5 mg/L, and DO3 of 3-4 mg/L. After the optimization tests, continuous-flow experiments of anaerobic/anoxic/oxic (AAO) and A2MMBR-M systems were further conducted. Compared to AAO system, a 37.45% reduction in discharged excess sludge in A2MMBR-M system was achieved. The COD, TN, and TP removal efficiencies in A2MMBR-M system were respective 4.06%, 2.68%, and 4.04% higher than AAO system. The A2MMBR-M system is proved a promising wastewater treatment technology possessing enhanced in-situ sludge reduction and improved effluent quality. The staged optimized DO concentrations are the key controlling parameters for the realization of simultaneous in-situ sludge reduction and nutrient removal.

  16. Reduction of initial stress stiffening by topology optimization

    DEFF Research Database (Denmark)

    Philippine, M. A.; Sigmund, Ole; Rebeiz, G. M.

    2012-01-01

    Topology optimization is a rigorous method of obtaining non-intuitive designs. We use it to obtain a capacitive RF switch that stiffens little in response to an increase of the in-plane biaxial stresses that typically develop during MEMS fabrication. The actuation voltage is closely related...... level. We include a volume constraint and a compliance constraint. Topology optimized designs are compared to an intuitively-designed RF switch. The switches contain similar features. The compliance constraint is varied such that the topology optimized switch performance approaches the intuitively......-designed one. Finally, the importance of the compliance constraint and of the robust formulation are discussed....

  17. Aquifer/aquitard interfaces: mixing zones that enhance biogeochemical reactions

    Science.gov (United States)

    McMahon, P. B.

    2001-01-01

    Several important biogeochemical reactions are known to occur near the interface between aquifer and aquitard sediments. These reactions include O2 reduction; denitrification; and Fe3+, SO42-, and CO2 (methanogenesis) reduction. In some settings, these reactions occur on the aquitard side of the interface as electron acceptors move from the aquifer into the electron-donor-enriched aquitard. In other settings, these reactions occur on the aquifer side of the interface as electron donors move from the aquitard into the electron-acceptor-enriched, or microorganism-enriched, aquifer. Thus, the aquifer/aquitard interface represents a mixing zone capable of supporting greater microbial activity than either hydrogeologic unit alone. The extent to which biogeochemical reactions proceed in the mixing zone and the width of the mixing zone depend on several factors, including the abundance and solubility of electron acceptors and donors on either side of the interface and the rate at which electron acceptors and donors react and move across the interface. Biogeochemical reactions near the aquifer/aquitard interface can have a substantial influence on the chemistry of water in aquifers and on the chemistry of sediments near the interface. Résumé. Il se produit au voisinage de l'interface entre les aquifères et les imperméables plusieurs réactions biogéochimiques importantes. Il s'agit des réactions de réduction de l'oxygène, de la dénitrification et de la réduction de Fe3+, SO42- et CO2 (méthanogenèse). Dans certaines situations, ces réactions se produisent du côté imperméable de l'interface, avec des accepteurs d'électrons qui vont de l'aquifère vers l'imperméable riche en donneurs d'électrons. Dans d'autres situations, ces réactions se produisent du côté aquifère de l'interface, avec des donneurs d'électrons qui se déplacent de l'imperméable vers l'aquifère riche en accepteurs d'électrons ou en microorganismes. Ainsi, l'interface aquif

  18. Nitrous Oxide Emissions from Biofuel Crops and Parameterization in the EPIC Biogeochemical Model

    Science.gov (United States)

    This presentation describes year 1 field measurements of N2O fluxes and crop yields which are used to parameterize the EPIC biogeochemical model for the corresponding field site. Initial model simulations are also presented.

  19. Intra- versus inter-site macroscale variation in biogeochemical properties along a paddy soil chronosequence

    Directory of Open Access Journals (Sweden)

    C. Mueller-Niggemann

    2012-03-01

    Full Text Available In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation, one flooded paddy nursery, one tidal wetland (TW, and one freshwater site (FW from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes and (ii one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC. The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric. Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV values of conservative parameters varied in a low range (10% to 20%, decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20–40% observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 yr paddy chronosequence under wetland rice cultivation

  20. Comparison of Algorithms for the Optimal Location of Control Valves for Leakage Reduction in WDNs

    Directory of Open Access Journals (Sweden)

    Enrico Creaco

    2018-04-01

    Full Text Available The paper presents the comparison of two different algorithms for the optimal location of control valves for leakage reduction in water distribution networks (WDNs. The former is based on the sequential addition (SA of control valves. At the generic step Nval of SA, the search for the optimal combination of Nval valves is carried out, while containing the optimal combination of Nval − 1 valves found at the previous step. Therefore, only one new valve location is searched for at each step of SA, among all the remaining available locations. The latter algorithm consists of a multi-objective genetic algorithm (GA, in which valve locations are encoded inside individual genes. For the sake of consistency, the same embedded algorithm, based on iterated linear programming (LP, was used inside SA and GA, to search for the optimal valve settings at various time slots in the day. The results of applications to two WDNs show that SA and GA yield identical results for small values of Nval. When this number grows, the limitations of SA, related to its reduced exploration of the research space, emerge. In fact, for higher values of Nval, SA tends to produce less beneficial valve locations in terms of leakage abatement. However, the smaller computation time of SA may make this algorithm preferable in the case of large WDNs, for which the application of GA would be overly burdensome.

  1. Relative Linkages of Chlorophyll-a with the Hydroclimatic and Biogeochemical Variables across the Continental U.S. (CONUS)

    Science.gov (United States)

    Ahmed, M. H.; Abdul-Aziz, O. I.

    2017-12-01

    Chlorophyll-a (Chl-a) is a key indicator for stream water quality and ecological health. The characterization of interplay between Chl-a and its numerous hydroclimatic and biogeochemical drivers is complex, and often involves multicollinear datasets. A systematic data analytics methodology was employed to determine the relative linkages of stream Chl-a with its dynamic environmental drivers at 50 stream water quality monitoring stations across the continental U.S. Multivariate statistical techniques of principal component analysis (PCA) and factor analysis (FA), in concert with Pearson correlation analysis, were applied to evaluate interrelationships among hydroclimatic, biogeochemical, and biological variables. Power-law based partial least square regression (PLSR) models were developed with a bootstrap Monte Carlo procedure (1000 iterations) to reliably estimate the comparative linkages of Chl-a by resolving multicollinearity in the data matrices (Nash-Sutcliff efficiency = 0.50-87). The data analytics suggested four environmental regimes of stream Chl-a, as dominated by nutrient, climate, redox, and hydro-atmospheric contributions, respectively. Total phosphorous (TP) was the most dominant driver of stream Chl-a in the nutrient controlled regime. Water temperature demonstrated the strongest control of Chl-a in the climate-dominated regime. Furthermore, pH and stream flow were found to be the most important drivers of Chl-a in the redox and hydro-atmospheric component dominated regimes, respectively. The research led to a significant reduction of dimensionality in the large data matrices, providing quantitative and qualitative insights on the dynamics of stream Chl-a. The findings would be useful to manage stream water quality and ecosystem health in the continental U.S. and around the world under a changing climate and environment.

  2. Possible impacts of global warming on tundra and boreal forest ecosystems - comparison of some biogeochemical models

    Energy Technology Data Exchange (ETDEWEB)

    Ploechl, M.; Cramer, W.

    1995-06-01

    Global warming affects the magnitude of carbon, water and nitrogen fluxes between biosphere and atmosphere as well as the distribution of vegetation types. Biogeochemical models, global as well as patch models, can be used to estimate the differences between the mean values of annual net primary production (NPP) for the present and for future climate scenarios. Both approaches rely on the prescribed pattern of vegetation types. Structural, rule based models can predict such patterns, provided that vegetation and climate are in equilibrium. The coupling of biogeochemical and structural models gives the opportunity to test the sensitivity of biogeochemical processes not only to climatic change but also to biome shifts. Whether the annual mean NPP of a vegetation type increses or decreases depends strongly on the assumptions about a CO{sub 2} fertilization effect and nitrogen cycling. Results from our coupled model show that, given that direct CO{sub 2} effects are uncertain, (i) average NPP of these northern biomes might decrease under global warming, but (ii) total NPP of the region would increase, due to the northward shift of the taiga biome. (orig.)

  3. Influence of plants on the reduction of hexavalent chromium in wetland sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zazo, Juan A. [Department of Chemical Engineering, Universidad Autonoma de Madrid, Madrid, 28049 (Spain)], E-mail: juan.zazo@uam.es; Paull, Jeffery S.; Jaffe, Peter R. [Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2008-11-15

    This work addresses the effect that plants (Typha latifolia and Carex lurida) have on the reduction of Cr(VI) in wetland sediments. Experiments were carried out using tubular microcosms, where chemical species were monitored along the longitudinal flow axis. Cr(VI) removal was enhanced by the presence of plants. This is explained by a decrease in the redox potential promoted by organic root exudates released by plants. Under these conditions sulfate reduction is enhanced, increasing the concentration of sulfide species in the sediment pore water, which reduce Cr(VI). Evapotranspiration induced by plants also contributed to enhance the reduction of Cr(VI) by concentrating all chemical species in the sediment pore water. Both exudates release and evapotranspiration have a diurnal component that affects Cr(VI) reduction. Concentration profiles were fitted to a kinetic model linking sulfide and Cr(VI) concentrations corrected for evapotranspiration. This expression captures both the longitudinal as well as the diurnal Cr(VI) concentration profiles. - The presence of plants enhances the reduction of Cr(VI) in wetland sediments by modifying the governing biogeochemical cycle.

  4. How do persistent organic pollutants be coupled with biogeochemical cycles of carbon and nutrients in terrestrial ecosystems under global climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ying [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Xu, Zhihong; Reverchon, Frederique [Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation

    2012-03-15

    Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil-air exchange. Soil-air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further

  5. A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    Science.gov (United States)

    Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.

  6. Novel imaging techniques, integrated with mineralogical, geochemical and microbiological characterizations to determine the biogeochemical controls on technetium mobility in FRC sediments

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan R. Lloyd

    2009-02-03

    The objective of this research program was to take a highly multidisciplinary approach to define the biogeochemical factors that control technetium (Tc) mobility in FRC sediments. The aim was to use batch and column studies to probe the biogeochemical conditions that control the mobility of Tc at the FRC. Background sediment samples from Area 2 (pH 6.5, low nitrate, low {sup 99}Tc) and Area 3 (pH 3.5, high nitrate, relatively high {sup 99}Tc) of the FRC were selected (http://www.esd.ornl.gov/nabirfrc). For the batch experiments, sediments were mixed with simulated groundwater, modeled on chemical constituents of FRC waters and supplemented with {sup 99}Tc(VII), both with and without added electron donor (acetate). The solubility of the Tc was monitored, alongside other biogeochemical markers (nitrate, nitrite, Fe(II), sulfate, acetate, pH, Eh) as the 'microcosms' aged. At key points, the microbial communities were also profiled using both cultivation-dependent and molecular techniques, and results correlated with the geochemical conditions in the sediments. The mineral phases present in the sediments were also characterized, and the solid phase associations of the Tc determined using sequential extraction and synchrotron techniques. In addition to the batch sediment experiments, where discrete microbial communities with the potential to reduce and precipitate {sup 99}Tc will be separated in time, we also developed column experiments where biogeochemical processes were spatially separated. Experiments were conducted both with and without amendments proposed to stimulate radionuclide immobilization (e.g. the addition of acetate as an electron donor for metal reduction), and were also planned with and without competing anions at high concentration (e.g. nitrate, with columns containing Area 3 sediments). When the columns had stabilized, as determined by chemical analysis of the effluents, we used a spike of the short-lived gamma emitter {sup 99m}Tc (50

  7. Biogeochemical impacts of aquifer thermal energy storage at 5, 12, 25 and 60°C investigated with anoxic column experiments

    Science.gov (United States)

    Bonte, M.; van Breukelen, B. M.; Van Der Wielen, P. W. J. J.; Stuyfzand, P. J.

    2012-04-01

    Aquifer thermal energy storage (ATES) uses groundwater to store energy for heating or cooling purposes in the built environment. ATES systems are often located in the same aquifers used for public drinking water supply, leading to urgent questions on its environmental impacts. This contribution presents the results of research on the biogeochemical impacts of ATES in anoxic column experiments at 5, 12, 25, and 60° C. In- and effluents are analyzed for major ions, trace elements, heavy metals, dissolved organic carbon (DOC) and UV extinction. Terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes and analysis of adenosine triphosphate (ATP) were used to detect changes in the microbiological population and activity. Results from the column experiments at 5, 25, and 60° C compared to the reference column at 12° C showed a number of changes in biogeochemical conditions: At 5° C, only changes were observed in alkalinity and calcium concentrations, resulting from calcite dissolution. The 25° C and 60° C column effluents from a sediment containing Fe-(hydr)oxides showed an increase in arsenic concentrations, well above the drinking water limit. This is due to either (reductive) dissolution of, or desorption from, iron(hydro)xides containing arsenic. In addition, at these two temperatures sulfate reduction occurred while this was undetectable at 5 and 12° C within the given timeframe (25 days) and analytical accuracy. The carbon source for sulfate reduction is inferred to be sedimentary organic carbon. Increasing DOC with residence time in the 60° C effluent suggests that at 60° C the terminal sulfate reduction step is rate limiting, while at 25° C the enzymatic hydrolization step in sulfate reducing bacteria is overall rate limiting. Specific ultraviolet absorption (SUVA, the ratio of UV extinction and DOC) however shows a clear decrease in reactivity of the humic acid fraction in DOC. This means that the DOC accumulation at 60° C could

  8. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    DEFF Research Database (Denmark)

    Le Quéré, Corinne; Buitenhuis, Erik T.; Moriarty, Róisín

    2016-01-01

    zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean....

  9. CO2 leakage alters biogeochemical and ecological functions of submarine sands

    Science.gov (United States)

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-01-01

    Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m−2 hour−1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (−80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (−90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2. PMID:29441359

  10. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-01-01

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after ∼30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been

  11. Biogeochemical migration of heavy metals, Ti, V, Mo, Ta, W, and U, in the profile of a low-laid peatbog in the country between the Ob and Tom rivers

    International Nuclear Information System (INIS)

    Efremova, T.T.; Efremov, S.P.; Koutsenogii, K.P.; Peresedov, V.F.

    2003-01-01

    Biogeochemical migration of heavy metals in the course of marsh formation is mainly determined by physical-chemical processes, such as the oxidation-reduction zonality of the peatbog thickness and the state of humous substances (the quality of humus adsorptive barriers). In the process of peatbog formation V, U, Ta are the weakly captured elements while Mo is captured to a relatively higher extent. Elements as Ti and W are found in separate layers. No technogenic degradation of the marsh ecosystem in the Ob and Tom has been observed. (author)

  12. Developing an optimal energy supply strategy for Syria in view of GHG reduction with least-cost climate protection

    International Nuclear Information System (INIS)

    Hainoun, A.; Omar, H.; Almoustafa, A.; Seif Al-din, M.Kh.

    2010-12-01

    This report presents the outcomes of a two years CRP project entitled (Developing an optimal energy supply strategy for Syria in view of GHG reduction with least-cost climate protection). The main activity deals with a case study concerning the assessment of optimal Syrian energy supply strategy taking into account the impact of environmental constraints related to GHG reduction on the cost and prospects of energy sources and technologies with special emphasis on renewable and nuclear options. In a previous activity the future long-term development of Syrian energy and electricity demand has been analyzed according to various scenarios of socio-economic and technological development of the country. The results indicate that energy demand will grow rapidly in the next decades as consequent of many socio-economic and technological factors given by Syria's high population growth, its current economic transition, and its expected economic and technological development, particularly in the industry sector. To meet the projected future energy demand up to 2030, an optimal reference energy supply strategy with minimal supply cost has been developed taking into account, in particular, the availability of national energy resources and diversity of supply options. The analysis has been performed using the IAEA's optimization tool MESSAGE. MESSAGE is suitable to formulate and evaluate alternative energy supply strategies consistent with pre-defined constraints including limits on new investment, fuel availability and trade, environmental regulations, and market penetration rates for new technologies. To evaluate the potential of GHG reduction in the Syrian power sector an alternative energy supply scenario - Mitigation Scenario (Ren S ce) has been introduced reflecting the most probable adaptation measures of this sector to mitigate GHG emission by more dependency on renewable options. Compatible with the Kyoto agreement for developing countries, the CDM is being considered

  13. Searching for biogeochemical hot spots in three dimensions: soil C and N cycling in hydropedologic settings in a northern hardwood forest

    Science.gov (United States)

    J.L. Morse; S.F. Werner; C.P. Gillin; C.L. Goodale; S.W. Bailey; K.J. McGuire; P.M. Groffman

    2014-01-01

    Understanding and predicting the extent, location, and function of biogeochemical hot spots at the watershed scale is a frontier in environmental science. We applied a hydropedologic approach to identify (1) biogeochemical differences among morphologically distinct hydropedologic settings and (2) hot spots of microbial carbon (C) and nitrogen (N) cycling activity in a...

  14. Factors Influencing Divergent Patterns of Phosphorus Availability in NY and PA Biogeochemical `Hotspots'

    Science.gov (United States)

    Saia, S. M.; Hofmeister, K.; Regan, J. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.

    2016-12-01

    Anthropogenic alteration of the soil phosphorus (P) cycle leads to subsequent water quality issues in agricultural dominated watersheds. In the humid Northeastern United States (NE US), variably saturated areas can generate surface runoff that transports P and stimulates biogeochemical processes; these hydrologically dynamic locations are often called biogeochemical `hotspots'. Many studies have evaluated nitrogen and carbon cycling in biogeochemical hot spots but few have focused on P. We hypothesized seasonally wet parts of the landscape (i.e., hotspots) have smaller biologically available P pools because runoff events frequently carry away nutrients like P. To test this hypothesis, we generated soil wetness index (SWI) maps from soil (SURRGO) and elevation (LiDAR rescaled to 3 m) data and used these maps to direct seasonal soil sampling near Klingerstown, Pennsylvania (PA) and Ithaca, New York (NY). We collected 5cm deep soil samples in PA (bimonthly) and NY (monthly) along soil moisture gradients for a range of land cover types (forest, fallow, and cropped) from May through October. We measured soil moisture in the field and percent organic matter (OM), pH, and three increasingly strong soil P extractions (dilute-salt-extractable P, oxalate-extractable P, and total-extractable P) in the laboratory. Our results indicated a negative relationship between dilute-salt-extractable P concentrations and SWI in PA and no relationship between these same variables in NY. We also found positive relationships between each of the three P extractions in PA but only a positive relationship between oxalate-extractable P and total-extractable P in NY. Our findings in PA support our hypothesis; namely, less biologically available P (i.e. dilute-salt-extractable P) is found in wetter areas of the landscape. However, divergent P availability patterns in NY point to further complexities and confounding variables in our understanding in soil P processes. Further studies will look

  15. Reduction of fatigue loads on jacket substructure through blade design optimization for multimegawatt wind turbines at 50 m water depths

    DEFF Research Database (Denmark)

    NJOMO WANDJI, Wilfried; Pavese, Christian; Natarajan, Anand

    2016-01-01

    This paper addresses the reduction of the fore-aft damage equivalent moment at the tower base for multi-megawatt offshore wind turbines mounted on jacket type substructures at 50 m water depths. The study investigates blade design optimization of a reference 10 MW wind turbine under standard wind...... conditions of onshore sites. The blade geometry and structure is optimized to yield a design that minimizes tower base fatigue loads without significant loss of power production compared to that of the reference setup. The resulting blade design is then mounted on a turbine supported by a jacket and placed...

  16. Sorption of organic chemicals at biogeochemical interfaces - calorimetric measurements

    Science.gov (United States)

    Krüger, J.; Lang, F.; Siemens, J.; Kaupenjohann, M.

    2009-04-01

    Biogeochemical interfaces in soil act as sorbents for organic chemicals, thereby controlling the degradation and mobility of these substances in terrestrial environments. Physicochemical properties of the organic chemicals and the sorbent determine sorptive interactions. We hypothesize that the sorption of hydrophobic organic chemicals ("R-determined" chemicals) is an entropy-driven partitioning process between the bulk aqueous phase and biogeochemical interface and that the attachment of more polar organic chemicals ("F-determined" chemicals) to mineral surfaces is due to electrostatic interactions and ligand exchange involving functional groups. In order to determine thermodynamic parameters of sorbate/sorbent interactions calorimetric titration experiments have been conducted at 20˚ C using a Nanocalorimeter (TAM III, Thermometric). Solutions of different organic substances ("R-determined" chemicals: phenanthrene, bisphenol A, "F-determined" chemicals: MCPA, bentazone) with concentrations of 100 mol l-1 were added to suspensions of pure minerals (goethite, muscovite, and kaolinite and to polygalacturonic acid (PGA) as model substance for biofilms in soil. Specific surface, porosity, N and C content, particle size and point of zero charge of the mineral were analyzed to characterize the sorbents. The obtained heat quantities for the initial injection of the organic chemicals to the goethite were 55 and 71 J for bisphenol A and phenanthrene ("R-determined representatives") and 92 and 105 J for MCPA and bentazone ("F-determined" representatives). Further experiments with muscovite, kaolinite and PGA are in progress to determine G and H of the adsorption process.

  17. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    NARCIS (Netherlands)

    Smith, Pete; Cotrufo, M.F.; Rumpel, C.; Paustian, K.; Kuikman, P.J.

    2015-01-01

    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can

  18. Strong diffusion formulation of Markov chain ensembles and its optimal weaker reductions

    Science.gov (United States)

    Güler, Marifi

    2017-10-01

    Two self-contained diffusion formulations, in the form of coupled stochastic differential equations, are developed for the temporal evolution of state densities over an ensemble of Markov chains evolving independently under a common transition rate matrix. Our first formulation derives from Kurtz's strong approximation theorem of density-dependent Markov jump processes [Stoch. Process. Their Appl. 6, 223 (1978), 10.1016/0304-4149(78)90020-0] and, therefore, strongly converges with an error bound of the order of lnN /N for ensemble size N . The second formulation eliminates some fluctuation variables, and correspondingly some noise terms, within the governing equations of the strong formulation, with the objective of achieving a simpler analytic formulation and a faster computation algorithm when the transition rates are constant or slowly varying. There, the reduction of the structural complexity is optimal in the sense that the elimination of any given set of variables takes place with the lowest attainable increase in the error bound. The resultant formulations are supported by numerical simulations.

  19. Bolt Thread Stress Optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2012-01-01

    of threads and therefore indirectly the bolt fatigue life. The root shape is circular, and from shape optimization for minimum stress concentration it is well known that the circular shape is seldom optimal. An axisymmetric Finite Element (FE) formulation is used to analyze the bolted connection, and a study...... is performed to establish the need for contact modeling with regard to finding the correct stress concentration factor. Optimization is performed with a simple parameterization with two design variables. Stress reduction of up to 9% is found in the optimization process, and some similarities are found...... in the optimized designs leading to the proposal of a new standard. The reductions in the stress are achieved by rather simple changes made to the cutting tool....

  20. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.

    Science.gov (United States)

    Marpani, Fauziah; Sárossy, Zsuzsa; Pinelo, Manuel; Meyer, Anne S

    2017-12-01

    Enzymatic reduction of carbon dioxide (CO 2 ) to methanol (CH 3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH 3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO 2 to CH 3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH 3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH 3 OH, a TTN of 160 and BPR of 24 μmol CH 3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH 3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc.

  1. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination

    Science.gov (United States)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as

  2. Model reduction for dynamic real-time optimization of chemical processes

    NARCIS (Netherlands)

    Van den Berg, J.

    2005-01-01

    The value of models in process industries becomes apparent in practice and literature where numerous successful applications are reported. Process models are being used for optimal plant design, simulation studies, for off-line and online process optimization. For online optimization applications

  3. Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by

  4. Biogeochemical gradients above a coal tar DNAPL

    Energy Technology Data Exchange (ETDEWEB)

    Scherr, Kerstin E., E-mail: kerstin.brandstaetter-scherr@boku.ac.at [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Backes, Diana [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Scarlett, Alan G. [University of Plymouth, Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom); Lantschbauer, Wolfgang [Government of Upper Austria, Directorate for Environment and Water Management, Division for Environmental Protection, Kärntner Strasse 10-12, 4021 Linz (Austria); Nahold, Manfred [GUT Gruppe Umwelt und Technik GmbH, Ingenieurbüro für Technischen Umweltschutz, Plesching 15, 4040 Linz (Austria)

    2016-09-01

    Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography–mass spectrometry (GC × GC–MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares – Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H’ and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are

  5. Calibration of a biome-biogeochemical cycles model for modeling the net primary production of teak forests through inverse modeling of remotely sensed data

    Science.gov (United States)

    Imvitthaya, Chomchid; Honda, Kiyoshi; Lertlum, Surat; Tangtham, Nipon

    2011-01-01

    In this paper, we present the results of a net primary production (NPP) modeling of teak (Tectona grandis Lin F.), an important species in tropical deciduous forests. The biome-biogeochemical cycles or Biome-BGC model was calibrated to estimate net NPP through the inverse modeling approach. A genetic algorithm (GA) was linked with Biome-BGC to determine the optimal ecophysiological model parameters. The Biome-BGC was calibrated by adjusting the ecophysiological model parameters to fit the simulated LAI to the satellite LAI (SPOT-Vegetation), and the best fitness confirmed the high accuracy of generated ecophysioligical parameter from GA. The modeled NPP, using optimized parameters from GA as input data, was evaluated using daily NPP derived by the MODIS satellite and the annual field data in northern Thailand. The results showed that NPP obtained using the optimized ecophysiological parameters were more accurate than those obtained using default literature parameterization. This improvement occurred mainly because the model's optimized parameters reduced the bias by reducing systematic underestimation in the model. These Biome-BGC results can be effectively applied in teak forests in tropical areas. The study proposes a more effective method of using GA to determine ecophysiological parameters at the site level and represents a first step toward the analysis of the carbon budget of teak plantations at the regional scale.

  6. Modelling of transport and biogeochemical processes in pollution plumes: Literature review of model development

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial...... Equilibrium Approach (PEA). The PEA assumes the organic degradation step, and not the electron acceptor consumption step, is rate limiting. This distinction is not possible in one-step process models, where consumption of both the electron donor and acceptor are treated kinetically. A three-dimensional, two......-step PEA model is developed. The model allows for Monod kinetics and biomass growth, features usually included only in one-step process models. The biogeochemical part of the model is tested for a batch system with degradation of organic matter under the consumption of a sequence of electron acceptors...

  7. Light-Dependent Transcriptional Regulation of Genes of Biogeochemical Interest in the Diploid and Haploid Life Cycle Stages of Emiliania huxleyi▿ †

    Science.gov (United States)

    Richier, Sophie; Kerros, Marie-Emmanuelle; de Vargas, Colomban; Haramaty, Liti; Falkowski, Paul G.; Gattuso, Jean-Pierre

    2009-01-01

    The expression of genes of biogeochemical interest in calcifying and noncalcifying life stages of the coccolithophore Emiliania huxleyi was investigated. Transcripts potentially involved in calcification were tested through a light-dark cycle. These transcripts were more abundant in calcifying cells and were upregulated in the light. Their application as potential candidates for in situ biogeochemical proxies is also suggested. PMID:19304825

  8. Implications of a More Comprehensive Nitrogen Cycle in a Global Biogeochemical Ocean Model

    Science.gov (United States)

    Six, K. D.; Ilyina, T.

    2016-02-01

    Nitrogen plays a crucial role for nearly all living organisms in the Earth system. Changes in the marine nitrogen cycle not only alter the marine biota, but will also have an impact on the marine carbon cycle and, in turn, on climate due to the close coupling of the carbon-nitrogen cycle. The understanding of processes and controls of the marine nitrogen cycle is therefore a prerequisite to reduce uncertainties in the prediction of future climate. Nevertheless, most ocean biogeochemical components of modern Earth system models have a rather simplistic representation of marine N-cycle mainly focusing on nitrate. Here we present results of the HAMburg Ocean Carbon Cycle model (HAMOCC) as part of the MPI-ESM which was extended by a prognostic representation of ammonium and nitrite to resolve important processes of the marine N-cycle such as nitrification and anaerobic ammonium oxidation (anammox). Additionally, we updated the production of nitrous oxide, an important greenhouse gas, allowing for two sources from oxidation of ammonium (nitrification) and from reduction of nitrite (nitrifier-denitrification) at low oxygen concentrations. Besides an extended model data comparison we discuss the following aspects of the N-cycle by model means: (1) contribution of anammox to the loss of fixed nitrogen, and (2) production and emission of marine nitrous oxide.

  9. A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling

    Science.gov (United States)

    Shapiro, B.; Jin, Q.

    2015-12-01

    Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.

  10. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    Science.gov (United States)

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated.

  11. Biotic and Biogeochemical Feedbacks to Climate Change

    Science.gov (United States)

    Torn, M. S.; Harte, J.

    2002-12-01

    Feedbacks to paleoclimate change are evident in ice core records showing correlations of temperature with carbon dioxide, nitrous oxide, and methane. Such feedbacks may be explained by plant and microbial responses to climate change, and are likely to occur under impending climate warming, as evidenced by results of ecosystem climate manipulation experiments and biometeorological observations along ecological and climate gradients. Ecosystems exert considerable influence on climate, by controlling the energy and water balance of the land surface as well as being sinks and sources of greenhouse gases. This presentation will focus on biotic and biogeochemical climate feedbacks on decadal to century time scales, emphasizing carbon storage and energy exchange. In addition to the direct effects of climate on decomposition rates and of climate and CO2 on plant productivity, climate change can alter species composition; because plant species differ in their surface properties, productivity, phenology, and chemistry, climate-induced changes in plant species composition can exert a large influence on the magnitude and sign of climate feedbacks. We discuss the effects of plant species on ecosystem carbon storage that result from characteristic differences in plant biomass and lifetime, allocation to roots vs. leaves, litter quality, microclimate for decomposition and the ultimate stabilization of soil organic matter. We compare the effect of species transitions on transpiration, albedo, and other surface properties, with the effect of elevated CO2 and warming on single species' surface exchange. Global change models and experiments that investigate the effect of climate only on existing vegetation may miss the biggest impacts of climate change on biogeochemical cycling and feedbacks. Quantification of feedbacks will require understanding how species composition and long-term soil processes will change under global warming. Although no single approach, be it experimental

  12. Novel imaging techniques, integrated with mineralogical, geochemical and microbiological characterizations to determine the biogeochemical controls on technetium mobility in FRC sediments. Final report

    International Nuclear Information System (INIS)

    Lloyd, Jonathan R.

    2009-01-01

    The objective of this research program was to take a highly multidisciplinary approach to define the biogeochemical factors that control technetium (Tc) mobility in FRC sediments. The aim was to use batch and column studies to probe the biogeochemical conditions that control the mobility of Tc at the FRC. Background sediment samples from Area 2 (pH 6.5, low nitrate, low 99 Tc) and Area 3 (pH 3.5, high nitrate, relatively high 99 Tc) of the FRC were selected (http://www.esd.ornl.gov/nabirfrc). For the batch experiments, sediments were mixed with simulated groundwater, modeled on chemical constituents of FRC waters and supplemented with 99 Tc(VII), both with and without added electron donor (acetate). The solubility of the Tc was monitored, alongside other biogeochemical markers (nitrate, nitrite, Fe(II), sulfate, acetate, pH, Eh) as the 'microcosms' aged. At key points, the microbial communities were also profiled using both cultivation-dependent and molecular techniques, and results correlated with the geochemical conditions in the sediments. The mineral phases present in the sediments were also characterized, and the solid phase associations of the Tc determined using sequential extraction and synchrotron techniques. In addition to the batch sediment experiments, where discrete microbial communities with the potential to reduce and precipitate 99 Tc will be separated in time, we also developed column experiments where biogeochemical processes were spatially separated. Experiments were conducted both with and without amendments proposed to stimulate radionuclide immobilization (e.g. the addition of acetate as an electron donor for metal reduction), and were also planned with and without competing anions at high concentration (e.g. nitrate, with columns containing Area 3 sediments). When the columns had stabilized, as determined by chemical analysis of the effluents, we used a spike of the short-lived gamma emitter 99m Tc (50-200 MBq; half life 6 hours) and its

  13. Model reduction for the dynamics and control of large structural systems via neutral network processing direct numerical optimization

    Science.gov (United States)

    Becus, Georges A.; Chan, Alistair K.

    1993-01-01

    Three neural network processing approaches in a direct numerical optimization model reduction scheme are proposed and investigated. Large structural systems, such as large space structures, offer new challenges to both structural dynamicists and control engineers. One such challenge is that of dimensionality. Indeed these distributed parameter systems can be modeled either by infinite dimensional mathematical models (typically partial differential equations) or by high dimensional discrete models (typically finite element models) often exhibiting thousands of vibrational modes usually closely spaced and with little, if any, damping. Clearly, some form of model reduction is in order, especially for the control engineer who can actively control but a few of the modes using system identification based on a limited number of sensors. Inasmuch as the amount of 'control spillover' (in which the control inputs excite the neglected dynamics) and/or 'observation spillover' (where neglected dynamics affect system identification) is to a large extent determined by the choice of particular reduced model (RM), the way in which this model reduction is carried out is often critical.

  14. Development and sensitivity analysis of a fullykinetic model of sequential reductive dechlorination in subsurface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Chambon, Julie Claire Claudia; Albrechtsen, Hans-Jørgen

    2010-01-01

    and natural degradation of chlorinated solvents frequently occurs in the subsurface through sequential reductive dechlorination. However, the occurrence and the performance of natural sequential reductive dechlorination strongly depends on environmental factor such as redox conditions, presence of fermenting...... organic matter / electron donors, presence of specific biomass, etc. Here we develop a new fully-kinetic biogeochemical reactive model able to simulate chlorinated solvents degradation as well as production and consumption of molecular hydrogen. The model is validated using batch experiment data......Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and often represent a serious threat to groundwater-based drinking water resources. Natural attenuation of contaminant plumes can play a major role in contaminated site management...

  15. Global biogeochemical provinces of the mesopelagic zone

    DEFF Research Database (Denmark)

    Reygondeau, Gabriel; Guidi, Lionel; Beaugrand, Gregory

    2018-01-01

    Aim: Following the biogeographical approach implemented by Longhurst for the epipelagic layer, we propose here to identify a biogeochemical 3-D partition for the mesopelagic layer. The resulting partition characterizes the main deep environmental biotopes and their vertical boundaries on a global...... scale, which can be used as a geographical and ecological framework for conservation biology, ecosystem-based management and for the design of oceanographic investigations. Location: The global ocean. Methods: Based on the most comprehensive environmental climatology available to date, which is both...... of the mesopelagic layer. Results: First, we show via numerical interpretation that the vertical division of the pelagic zone varies and, hence, is not constant throughout the global ocean. Indeed, a latitudinal gradient is found between the epipelagic-mesopelagic and mesopelagic-bathypelagic vertical limits. Second...

  16. Defining Mediterranean and Black Sea biogeochemical subprovinces and synthetic ocean indicators using mesoscale oceanographic features

    DEFF Research Database (Denmark)

    Nieblas, Anne-Elise; Drushka, Kyla; Reygondeau, Gabriel

    2014-01-01

    variables to define integrative indices to monitor the environmental changes within each resultant subprovince at monthly resolutions. Using both the classical and mesoscale features, we find five biogeochemical subprovinces for the Mediterranean and Black Seas. Interestingly, the use of mesoscale variables......The Mediterranean and Black Seas are semi-enclosed basins characterized by high environmental variability and growing anthropogenic pressure. This has led to an increasing need for a bioregionalization of the oceanic environment at local and regional scales that can be used for managerial...... applications as a geographical reference. We aim to identify biogeochemical subprovinces within this domain, and develop synthetic indices of the key oceanographic dynamics of each subprovince to quantify baselines from which to assess variability and change. To do this, we compile a data set of 101 months...

  17. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Science.gov (United States)

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  18. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  19. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    Directory of Open Access Journals (Sweden)

    Brian L Zielinski

    Full Text Available The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon

  20. Flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves: Analysis and optimization

    International Nuclear Information System (INIS)

    Xu, Bing; Ye, Shaogan; Zhang, Junhui; Zhang, Chunfeng

    2016-01-01

    This paper investigates the potential of flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves. A dynamic model is developed to analyze the pumping dynamics of the pump and validated by experimental results. The effects of cross-angle on the flow ripples in the outlet and inlet ports, and the piston chamber pressure are investigated. The effects of pressure relief grooves on the optimal solutions obtained by a multi-objective optimization method are identified. A sensitivity analysis is performed to investigate the sensitivity of cross-angle to different working conditions. The results reveal that the flow ripples from the optimal solutions are smaller using the cross-angle and pressure relief grooves than those using the cross-angle and ordinary precompression and decompression angles and the cross-angle can be smaller. In addition, when the optimal design is used, the outlet flow ripples sensitivity can be reduced significantly.

  1. Investigation of Artemisia tridentata as a biogeochemical uranium indicator

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, F E; McGrath, S [Montana Coll. of Mineral Science and Technology, Butte (USA)

    1985-01-01

    Hydroponic experiments were conducted with seedlings of Artemisia tridentata subsp. tridentata (big sagebrush) to test the effect of the phosphate speciation of uranium in solution on its uptake by big sagebrush. No single complex could be identified as being preferentially taken up by the plant, but the varying aqueous phosphate concentrations did affect uranium uptake by the plants at the higher uranium concentrations in solution. The data also substantiate the tendency for uranium to behave as an essential element in this plant species. The implications for the use of Artemisia tridentata as a biogeochemical uranium indicator are discussed.

  2. Size reduction of complex networks preserving modularity

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  3. Advanced Variance Reduction Strategies for Optimizing Mesh Tallies in MAVRIC

    International Nuclear Information System (INIS)

    Peplow, Douglas E.; Blakeman, Edward D; Wagner, John C

    2007-01-01

    More often than in the past, Monte Carlo methods are being used to compute fluxes or doses over large areas using mesh tallies (a set of region tallies defined on a mesh that overlays the geometry). For problems that demand that the uncertainty in each mesh cell be less than some set maximum, computation time is controlled by the cell with the largest uncertainty. This issue becomes quite troublesome in deep-penetration problems, and advanced variance reduction techniques are required to obtain reasonable uncertainties over large areas. The CADIS (Consistent Adjoint Driven Importance Sampling) methodology has been shown to very efficiently optimize the calculation of a response (flux or dose) for a single point or a small region using weight windows and a biased source based on the adjoint of that response. This has been incorporated into codes such as ADVANTG (based on MCNP) and the new sequence MAVRIC, which will be available in the next release of SCALE. In an effort to compute lower uncertainties everywhere in the problem, Larsen's group has also developed several methods to help distribute particles more evenly, based on forward estimates of flux. This paper focuses on the use of a forward estimate to weight the placement of the source in the adjoint calculation used by CADIS, which we refer to as a forward-weighted CADIS (FW-CADIS)

  4. The acclimative biogeochemical model of the southern North Sea

    Science.gov (United States)

    Kerimoglu, Onur; Hofmeister, Richard; Maerz, Joeran; Riethmüller, Rolf; Wirtz, Kai W.

    2017-10-01

    Ecosystem models often rely on heuristic descriptions of autotrophic growth that fail to reproduce various stationary and dynamic states of phytoplankton cellular composition observed in laboratory experiments. Here, we present the integration of an advanced phytoplankton growth model within a coupled three-dimensional physical-biogeochemical model and the application of the model system to the southern North Sea (SNS) defined on a relatively high resolution (˜ 1.5-4.5 km) curvilinear grid. The autotrophic growth model, recently introduced by Wirtz and Kerimoglu (2016), is based on a set of novel concepts for the allocation of internal resources and operation of cellular metabolism. The coupled model system consists of the General Estuarine Transport Model (GETM) as the hydrodynamical driver, a lower-trophic-level model and a simple sediment diagenesis model. We force the model system with realistic atmospheric and riverine fluxes, background turbidity caused by suspended particulate matter (SPM) and open ocean boundary conditions. For a simulation for the period 2000-2010, we show that the model system satisfactorily reproduces the physical and biogeochemical states of the system within the German Bight characterized by steep salinity; nutrient and chlorophyll (Chl) gradients, as inferred from comparisons against observation data from long-term monitoring stations; sparse in situ measurements; continuous transects; and satellites. The model also displays skill in capturing the formation of thin chlorophyll layers at the pycnocline, which is frequently observed within the stratified regions during summer. A sensitivity analysis reveals that the vertical distributions of phytoplankton concentrations estimated by the model can be qualitatively sensitive to the description of the light climate and dependence of sinking rates on the internal nutrient reserves. A non-acclimative (fixed-physiology) version of the model predicted entirely different vertical profiles

  5. Including the biogeochemical impacts of deforestation increases projected warming of climate

    Science.gov (United States)

    Scott, Catherine; Monks, Sarah; Spracklen, Dominick; Arnold, Stephen; Forster, Piers; Rap, Alexandru; Carslaw, Kenneth; Chipperfield, Martyn; Reddington, Carly; Wilson, Christopher

    2016-04-01

    Forests cover almost one third of the Earth's land area and their distribution is changing as a result of human activities. The presence, and removal, of forests affects the climate in many ways, with the net climate impact of deforestation dependent upon the relative strength of these effects (Betts, 2000; Bala et al., 2007; Davin and de Noblet-Ducoudré, 2010). In addition to controlling the surface albedo and exchanging carbon dioxide (CO2) and moisture with the atmosphere, vegetation emits biogenic volatile organic compounds (BVOCs), which lead to the formation of biogenic secondary organic aerosol (SOA) and alter the oxidative capacity of the atmosphere, affecting ozone (O3) and methane (CH4) concentrations. In this work, we combine a land-surface model with a chemical transport model, a global aerosol model, and a radiative transfer model to compare several radiative impacts of idealised deforestation scenarios in the present day. We find that the simulated reduction in biogenic SOA production, due to complete global deforestation, exerts a positive combined aerosol radiative forcing (RF) of between +308.0 and +362.7 mW m-2; comprised of a direct radiative effect of between +116.5 and +165.0 mW m-2, and a first aerosol indirect effect of between +191.5 and +197.7 mW m-2. We find that the reduction in O3 exerts a negative RF of -150.7 mW m-2 and the reduction in CH4 results in a negative RF of -76.2 mWm-2. When the impacts on biogenic SOA, O3 and CH4 are combined, global deforestation exerts an overall positive RF of between +81.1 and +135.9 mW m-2 through changes to short-lived climate forcers (SLCF). Taking these additional biogeochemical impacts into account increases the net positive RF of complete global deforestation, due to changes in CO2 and surface albedo, by 7-11%. Overall, our work suggests that deforestation has a stronger warming impact on climate than previously thought. References: Bala, G. et al., 2007. Combined climate and carbon-cycle effects

  6. Optimization of Ru{sub x}Se{sub y} electrocatalyst loading for oxygen reduction in a PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.G. [Instituto Politecnico Nacional, Laboratorio de Electroquimica y Corrosion ESIQIE, UPALP, 07738 Mexico, D.F., Mexico (Mexico); Guzman-Guzman, A.; Solorza-Feria, O. [Depto. Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, A. Postal 14-740, 07360 Mexico D.F., Mexico (Mexico)

    2010-11-15

    The synthesis, characterization and optimization of Ru{sub x}Se{sub y} catalyst loading as a cathode electrode for a single polymer electrolyte membrane fuel cell, PEMFC were investigated. Ru{sub x}Se{sub y} catalyst was synthesized via a decarbonylation of Ru{sub 3}(CO){sub 12} and elemental selenium in 1,6-hexanediol under refluxing conditions for 2 h. The powder electrocatalyst was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and examined for the oxygen reduction reaction (ORR) in 0.5M H{sub 2}SO{sub 4} by rotating disk electrode (RDE) and in membrane-electrode assemblies, MEAs for a single PEMFC. Results indicate the formation of agglomerates of crystalline particles with nanometric size embedded in an amorphous phase. The catalyst exhibited high current density and lower overpotential for the ORR compared to that of Ru{sub x} cluster catalyst. Dispersed Ru{sub x}Se{sub y} catalyst loading on Vulcan carbon was optimized as a cathode electrode by performance testing in a single H{sub 2}-O{sub 2} fuel cell. (author)

  7. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach.

    Science.gov (United States)

    Lancelot, Christiane; Thieu, Vincent; Polard, Audrey; Garnier, Josette; Billen, Gilles; Hecq, Walter; Gypens, Nathalie

    2011-05-01

    Nutrient reduction measures have been already taken by wealthier countries to decrease nutrient loads to coastal waters, in most cases however, prior to having properly assessed their ecological effectiveness and their economic costs. In this paper we describe an original integrated impact assessment methodology to estimate the direct cost and the ecological performance of realistic nutrient reduction options to be applied in the Southern North Sea watershed to decrease eutrophication, visible as Phaeocystis blooms and foam deposits on the beaches. The mathematical tool couples the idealized biogeochemical GIS-based model of the river system (SENEQUE-RIVERSTRAHLER) implemented in the Eastern Channel/Southern North Sea watershed to the biogeochemical MIRO model describing Phaeocystis blooms in the marine domain. Model simulations explore how nutrient reduction options regarding diffuse and/or point sources in the watershed would affect the Phaeocystis colony spreading in the coastal area. The reference and prospective simulations are performed for the year 2000 characterized by mean meteorological conditions, and nutrient reduction scenarios include and compare upgrading of wastewater treatment plants and changes in agricultural practices including an idealized shift towards organic farming. A direct cost assessment is performed for each realistic nutrient reduction scenario. Further the reduction obtained for Phaeocystis blooms is assessed by comparison with ecological indicators (bloom magnitude and duration) and the cost for reducing foam events on the beaches is estimated. Uncertainty brought by the added effect of meteorological conditions (rainfall) on coastal eutrophication is discussed. It is concluded that the reduction obtained by implementing realistic environmental measures on the short-term is costly and insufficient to restore well-balanced nutrient conditions in the coastal area while the replacement of conventional agriculture by organic farming

  8. Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra

    Science.gov (United States)

    Zheng, J.

    2016-12-01

    Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.

  9. Biogeochemical cycle of boron in a forest ecosystem: the case study of Montiers beech-stand

    International Nuclear Information System (INIS)

    Roux, Philippe

    2016-01-01

    This thesis aims at establishing and understanding the biogeochemical cycle of boron and its isotopes within a forest ecosystem. In that context, many questions remain concerning the dynamics of boron within terrestrial ecosystems: - What are the major sources of boron? - What type of transfer occurs between the compartments of the environment? - What mechanisms are controlling those transfers? In order to establish this biogeochemical cycle, we quantified the different stocks (vegetation, humus and soil) and fluxes (atmospheric dust and dissolved deposition, throughfall, stem-flows, litterfall and drainage) of boron in the study site of Montiers. The use of boron isotopes will give us insight concerning the mechanisms controlling the dynamics of boron. This thesis is divided in 4 main parts: 1. The first part aims at establishing a new method of extraction, purification and measurement of boron and its isotopes within vegetation samples. 2. The second part focuses on the sources and mechanisms controlling boron within atmospheric dust and dissolved deposition on the study site of Montiers. 3. The third part aims at establishing the stocks and fluxes of boron on two distinct soils: a rendisoil (basic pH) and an alocrisoil (acid pH). The goal is to determine the influence of different soil properties on boron dynamics within its biogeochemical cycle. 4. The last part aims at establishing a model of boron and boron isotopes dynamics in the soil plant system. This model is mainly based of the measurement made in 2012. (author) [fr

  10. Connections between physical, optical and biogeochemical processes in the Pacific Ocean

    Science.gov (United States)

    Xiu, Peng; Chai, Fei

    2014-03-01

    A new biogeochemical model has been developed and coupled to a three-dimensional physical model in the Pacific Ocean. With the explicitly represented dissolved organic pools, this new model is able to link key biogeochemical processes with optical processes. Model validation against satellite and in situ data indicates the model is robust in reproducing general biogeochemical and optical features. Colored dissolved organic matter (CDOM) has been suggested to play an important role in regulating underwater light field. With the coupled model, physical and biological regulations of CDOM in the euphotic zone are analyzed. Model results indicate seasonal variability of CDOM is mostly determined by biological processes, while the importance of physical regulation manifests in the annual mean terms. Without CDOM attenuating light, modeled depth-integrated primary production is about 10% higher than the control run when averaged over the entire basin, while this discrepancy is highly variable in space with magnitudes reaching higher than 100% in some locations. With CDOM dynamics integrated in physical-biological interactions, a new mechanism by which physical processes affect biological processes is suggested, namely, physical transport of CDOM changes water optical properties, which can further modify underwater light field and subsequently affect the distribution of phytoplankton chlorophyll. This mechanism tends to occur in the entire Pacific basin but with strong spatial variability, implying the importance of including optical processes in the coupled physical-biogeochemical model. If ammonium uptake is sufficient to permit utilization of DOM, that is, UB∗⩾-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of DOM has the form of FB=(1-r_b){U}/{RB}, bacteria respiration, SB=r_b×U, remineralization by bacteria, EB=UC{UN}/{UC}-{(1-r_b)}/{RB}. If EB > 0, then UB = 0; otherwise, UB = -EB. If there is insufficient ammonium, that is, UB∗CO2 is calculated using the

  11. Modelling benthic biophysical drivers of ecosystem structure and biogeochemical response

    Science.gov (United States)

    Stephens, Nicholas; Bruggeman, Jorn; Lessin, Gennadi; Allen, Icarus

    2016-04-01

    The fate of carbon deposited at the sea floor is ultimately decided by biophysical drivers that control the efficiency of remineralisation and timescale of carbon burial in sediments. Specifically, these drivers include bioturbation through ingestion and movement, burrow-flushing and sediment reworking, which enhance vertical particulate transport and solute diffusion. Unfortunately, these processes are rarely satisfactorily resolved in models. To address this, a benthic model that explicitly describes the vertical position of biology (e.g., habitats) and biogeochemical processes is presented that includes biological functionality and biogeochemical response capturing changes in ecosystem structure, benthic-pelagic fluxes and biodiversity on inter-annual timescales. This is demonstrated by the model's ability to reproduce temporal variability in benthic infauna, vertical pore water nutrients and pelagic-benthic solute fluxes compared to in-situ data. A key advance is the replacement of bulk parameterisation of bioturbation by explicit description of the bio-physical processes responsible. This permits direct comparison with observations and determination of key parameters in experiments. Crucially, the model resolves the two-way interaction between sediment biogeochemistry and ecology, allowing exploration of the benthic response to changing environmental conditions, the importance of infaunal functional traits in shaping benthic ecological structure and the feedback the resulting bio-physical processes exert on pore water nutrient profiles. The model is actively being used to understand shelf sea carbon cycling, the response of the benthos to climatic change, food provision and other societal benefits.

  12. Using NEON Data to Test and Refine Conceptual and Numerical Models of Soil Biogeochemical and Microbial Dynamics

    Science.gov (United States)

    Weintraub, S. R.; Stanish, L.; Ayers, E.

    2017-12-01

    Recent conceptual and numerical models have proposed new mechanisms that underpin key biogeochemical phenomena, including soil organic matter storage and ecosystem response to nitrogen deposition. These models seek to explicitly capture the ecological links among biota, especially microbes, and their physical and chemical environment to represent belowground pools and fluxes and how they respond to perturbation. While these models put forth exciting new concepts, their broad predictive abilities are unclear as some have been developed and tested against only small or regional datasets. The National Ecological Observatory Network (NEON) presents new opportunities to test and validate these models with multi-site data that span wide climatic, edaphic, and ecological gradients. NEON is measuring surface soil biogeochemical pools and fluxes along with diversity, abundance, and functional potential of soil microbiota at 47 sites distributed across the United States. This includes co-located measurements of soil carbon and nitrogen concentrations and stable isotopes, net nitrogen mineralization and nitrification rates, soil moisture, pH, microbial biomass, and community composition via 16S and ITS rRNA sequencing and shotgun metagenomic analyses. Early NEON data demonstrates that these wide edaphic and climatic gradients are related to changes in microbial community structure and functional potential, as well as element pools and process rates. Going forward, NEON's suite of standardized soil data has the potential to advance our understanding of soil communities and processes by allowing us to test the predictions of new soil biogeochemical frameworks and models. Here, we highlight several recently developed models that are ripe for this kind of data validation, and discuss key insights that may result. Further, we explore synergies with other networks, such as (i)LTER and (i)CZO, which may increase our ability to advance the frontiers of soil biogeochemical modeling.

  13. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    Science.gov (United States)

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-01-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles. PMID:27774985

  14. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination.

    Science.gov (United States)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as

  15. Insight from Genomics on Biogeochemical Cycles in a Shallow-Sea Hydrothermal System

    Science.gov (United States)

    Lu, G. S.; Amend, J.

    2015-12-01

    Shallow-sea hydrothermal ecosystems are dynamic, high-energy systems influenced by sunlight and geothermal activity. They provide accessible opportunities for investigating thermophilic microbial biogeochemical cycles. In this study, we report biogeochemical data from a shallow-sea hydrothermal system offshore Paleochori Bay, Milos, Greece, which is characterized by a central vent covered by white microbial mats with hydrothermally influenced sediments extending into nearby sea grass area. Geochemical analysis and deep sequencing provide high-resolution information on the geochemical patterns, microbial diversity and metabolic potential in a two-meter transect. The venting fluid is elevated in temperature (~70oC), low in pH (~4), and enriched in reduced species. The geochemical pattern shows that the profile is affected by not only seawater dilution but also microbial regulation. The microbial community in the deepest section of vent core (10-12 cm) is largely dominated by thermophilic archaea, including a methanogen and a recently described Crenarcheon. Mid-core (6-8 cm), the microbial community in the venting area switches to the hydrogen utilizer Aquificae. Near the sediment-water interface, anaerobic Firmicutes and Actinobacteria dominate, both of which are commonly associated with subsurface and hydrothermal sites. All other samples are dominated by diverse Proteobacteria. The sulfate profile is strongly correlated with the population size of delta- and episilon-proteobactia. The dramatic decrease in concentrations of As and Mn in pore fluids as a function of distance from the vent suggests that in addition to seawater dilution, microorganisms are likely transforming these and other ions through a combination of detoxification and catabolism. In addition, high concentrations of dissolved Fe are only measurable in the shallow sea grass area, suggesting that iron-transforming microorganisms are controlling Fe mobility, and promoting biomineralization. Taken

  16. Flow-through Column Experiments and Modeling of Microbially Mediated Cr(VI) Reduction at Hanford 100H

    Science.gov (United States)

    Yang, L.; Molins, S.; Beller, H. R.; Brodie, E. L.; Steefel, C.; Nico, P. S.; Han, R.

    2010-12-01

    Microbially mediated Cr(VI) reduction at the Hanford 100H area was investigated by flow-through column experiments. Three separate experiments were conducted to promote microbial activities associated with denitrification, iron and sulfate reduction, respectively. Replicate columns packed with natural sediments from the site under anaerobic environment were injected with 5mM Lactate as the electron donor and 5 μM Cr(VI) in all experiments. Sulfate and nitrate solutions were added to act as the main electron acceptors in the respective experiments, while iron columns relied on the indigenous sediment iron (and manganese) oxides as electron acceptors. Column effluent solutions were analyzed by IC and ICP-MS to monitor the microbial consumption/conversion of lactate and the associated Cr(VI) reduction. Biogeochemical reactive transport modeling was performed to gain further insights into the reaction mechanisms and Cr(VI) bioreduction rates. All experimental columns showed a reduction of the injected Cr(VI). Columns under denitrifying conditions showed the least Cr(VI) reduction at early stages (simulations indicated that biomass growth completely depleted influent ammonium, and called for an additional source of N to account for the measured reduction rates. Iron columns were the least active with undetectable consumption of the injected lactate, slowest cell growth, and the smallest change in Cr(VI) concentrations during the course of the experiment. In contrast, columns under sulfate-reducing/fermentative conditions exhibited the greatest Cr(VI) reduction capacity. Two sulfate columns evolved to complete lactate fermentation with acetate and propionate produced in the column effluent after 40 days of experiments. These fermenting columns showed a complete removal of injected Cr(VI), visible precipitation of sulfide minerals, and a significant increase in effluent Fe and Mn concentrations. Reactive transport simulations suggested that direct reduction of Cr(VI) by

  17. Drought Conditions Maximize the Impact of High-Frequency Flow Variations on Thermal Regimes and Biogeochemical Function in the Hyporheic Zone.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-01

    Anthropogenic activities, such as dam operations, often induce larger and more frequent stage fluctuations than those occurring in natural rivers. However, the long-term impact of such flow variations on thermal and biogeochemical dynamics of the associated hyporheic zone (HZ) is poorly understood. A heterogeneous, two-dimensional thermo-hydro-biogeochemical model revealed an important interaction between high-frequency flow variations and watershed-scale hydrology. High-frequency stage fluctuations had their strongest thermal and biogeochemical impacts when the mean river stage was low during fall and winter. An abnormally thin snowpack in 2015, however, created a low river stage during summer and early fall, whereby high frequency stage fluctuations caused the HZ to be warmer than usual. This study provided the scientific basis to assess the potential ecological consequences of the high-frequency flow variations in a regulated river, as well as guidance on how to maximize the potential benefits—or minimize the drawbacks—of river regulation to river ecosystems.

  18. ARSENIC ADSORPTION AND REDUCTION IN IRON-RICH SOILS NEARBY LANDFILLS IN NORTHWEST FLORIDA

    Directory of Open Access Journals (Sweden)

    Hongqin Xue

    2016-01-01

    Full Text Available In Florida, soils are mainly composed of Myakka, an acid soil characterized by a subsurface accumulation of humus and Al(III and Fe(III oxides. Downgradient of the landfills in Northwest Florida, elevated levels of iron and arsenic observations had been made in the groundwater from monitoring wells, which was attributed to the geomicrobial iron and arsenic reduction. There is thus an immediate research need for a better understanding of the reduction reactions that are responsible for the mobilization of iron and arsenic in the subsurface soil nearby landfills. Owing to the high Fe(III oxide content, As(V adsorption reactions with Fe(III oxide surfaces are particularly important, which may control As(V reduction. This research focused on the investigation of the biogeochemical processes of the subsurface soil nearby landfills of Northwest Florida. Arsenic and iron reduction was studied in batch reactors and quantified based on Monod-type microbial kinetic growth simulations. As(V adsorption in iron-rich Northwest Floridian soils was further investigated to explain the reduction observations. It was demonstrated in this research that solubilization of arsenic in the subsurface soil nearby landfills in Northwest Florida would likely occur under conditions favoring Fe(III dissimilatory reduction.

  19. Dissimilatory Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Lovley, D R

    1991-06-01

    The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.

  20. Optimization of Power Generation Rights Under the Requirements of Energy Conservation and Emission Reduction

    Science.gov (United States)

    Hu-ping, YANY; Chong-wei, ZHONG; Fei-fei, YAN; Cheng-yi, TANG

    2018-03-01

    In recent years, the energy crisis and greenhouse effect problem have caused wide public concern, if these issues cannot be resolved quickly, they will bring troubles to people’s lives.In response, many countries around the world have implemented policies to reduce energy consumption and greenhouse gas emissions. In our country, the electric power industry has made great contribution to the daily life of people and the development of industry, but it is also an industry of high consumption and high emission.In order to realize the sustainable development of society, it is necessary to make energy conservation and emission reduction in the power industry as an important part of the realization of this goal.In this context, power generation trade has become a hot topic in energy conservation and emission reduction.Through the electricity consumption of the units with different power efficiency and coal consumption rate,it can achieve the target of reducing coal consumption, reducing network loss, reducing greenhouse gas emission, and increasing social benefit,and so on. This article put forward a optimal energy model on the basis of guaranteeing safety and environmental protection.In this paper, they used the IEEE30, IEEE39, IEEE57 and IEEE118 node system as an example, and set up the control groups to prove the practicality of the presented model.The solving method of this model was interior-point method.

  1. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    NARCIS (Netherlands)

    van Breukelen, B.M.; Griffioen, J.; Roling, W.F.M.; van Verseveld, H.W.

    2004-01-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two

  2. Did large animals play an important role in global biogeochemical cycling in the past?

    Science.gov (United States)

    Doughty, C.

    2014-12-01

    In the late Pleistocene (~50-10,000 years ago), ninety-seven genera of large animals (>44kg) (megafauna) went extinct, concentrated in the Americas and Australia. The loss of megafauna had major effects on ecosystem structure, seed dispersal and land surface albedo. However, the impact of this dramatic extinction on ecosystem nutrient biogeochemistry, through the lateral transport of dung and bodies, has never been explored. Here we explore these nutrient impacts using a novel mathematical framework that analyses this lateral transport as a diffusion-like process and demonstrates that large animals play a disproportionately large role in the horizontal transfer of nutrients across landscapes. For example, we estimate that the extinction of the Amazonian megafauna led to a >98% reduction in the lateral transfer flux of the limiting nutrient phosphorus (P) with similar, though less extreme, decreases in all continents outside of Africa. This resulted in strong decreases in phosphorus availability in Eastern Amazonia away from fertile floodplains, a decline which may still be ongoing, and current P limitation in the Amazon basin may be partially a relic of an ecosystem without the functional connectedness it once had. More broadly, the Pleistocene megafaunal extinctions resulted in major and ongoing disruptions to terrestrial biogeochemical cycling at continental scales and increased nutrient heterogeneity globally.

  3. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    Science.gov (United States)

    Dalcin Martins, Paula; Hoyt, David W; Bansal, Sheel; Mills, Christopher T; Tfaily, Malak; Tangen, Brian A; Finocchiaro, Raymond G; Johnston, Michael D; McAdams, Brandon C; Solensky, Matthew J; Smith, Garrett J; Chin, Yu-Ping; Wilkins, Michael J

    2017-08-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions. © 2017 John Wiley & Sons Ltd.

  4. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Dalcin Martins, Paula [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; Hoyt, David W. [Environmental Molecular Sciences Laboratory, Richland WA 99350 USA; Bansal, Sheel [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Mills, Christopher T. [United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Building 20, Denver Federal Center Denver CO 80225 USA; Tfaily, Malak [Environmental Molecular Sciences Laboratory, Richland WA 99350 USA; Tangen, Brian A. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Finocchiaro, Raymond G. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Johnston, Michael D. [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; McAdams, Brandon C. [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; Solensky, Matthew J. [United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown ND 58401 USA; Smith, Garrett J. [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; Chin, Yu-Ping [School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA; Wilkins, Michael J. [Microbiology Department, The Ohio State University, Columbus OH 43210 USA; School of Earth Sciences, The Ohio State University, Columbus OH 43210 USA

    2017-02-23

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR, and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations, or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield non-competitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  5. Terrestrial biogeochemical feedbacks in the climate system: from past to future

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O' Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

    2010-01-05

    The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

  6. Model reduction of parametrized systems

    CERN Document Server

    Ohlberger, Mario; Patera, Anthony; Rozza, Gianluigi; Urban, Karsten

    2017-01-01

    The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters ca...

  7. Decoupling of arsenic and iron release from ferrihydrite suspension under reducing conditions: a biogeochemical model

    Directory of Open Access Journals (Sweden)

    Morin Guillaume

    2007-11-01

    Full Text Available Abstract High levels of arsenic in groundwater and drinking water are a major health problem. Although the processes controlling the release of As are still not well known, the reductive dissolution of As-rich Fe oxyhydroxides has so far been a favorite hypothesis. Decoupling between arsenic and iron redox transformations has been experimentally demonstrated, but not quantitatively interpreted. Here, we report on incubation batch experiments run with As(V sorbed on, or co-precipitated with, 2-line ferrihydrite. The biotic and abiotic processes of As release were investigated by using wet chemistry, X-ray diffraction, X-ray absorption and genomic techniques. The incubation experiments were carried out with a phosphate-rich growth medium and a community of Fe(III-reducing bacteria under strict anoxic conditions for two months. During the first month, the release of Fe(II in the aqueous phase amounted to only 3% to 10% of the total initial solid Fe concentration, whilst the total aqueous As remained almost constant after an initial exchange with phosphate ions. During the second month, the aqueous Fe(II concentration remained constant, or even decreased, whereas the total quantity of As released to the solution accounted for 14% to 45% of the total initial solid As concentration. At the end of the incubation, the aqueous-phase arsenic was present predominately as As(III whilst X-ray absorption spectroscopy indicated that more than 70% of the solid-phase arsenic was present as As(V. X-ray diffraction revealed vivianite Fe(II3(PO42.8H2O in some of the experiments. A biogeochemical model was then developed to simulate these aqueous- and solid-phase results. The two main conclusions drawn from the model are that (1 As(V is not reduced during the first incubation month with high Eh values, but rather re-adsorbed onto the ferrihydrite surface, and this state remains until arsenic reduction is energetically more favorable than iron reduction, and (2 the

  8. Natural and drought scenarios in an east central Amazon forest: Fidelity of the Community Land Model 3.5 with three biogeochemical models

    Science.gov (United States)

    Sakaguchi, Koichi; Zeng, Xubin; Christoffersen, Bradley J.; Restrepo-Coupe, Natalia; Saleska, Scott R.; Brando, Paulo M.

    2011-03-01

    Recent development of general circulation models involves biogeochemical cycles: flows of carbon and other chemical species that circulate through the Earth system. Such models are valuable tools for future projections of climate, but still bear large uncertainties in the model simulations. One of the regions with especially high uncertainty is the Amazon forest where large-scale dieback associated with the changing climate is predicted by several models. In order to better understand the capability and weakness of global-scale land-biogeochemical models in simulating a tropical ecosystem under the present day as well as significantly drier climates, we analyzed the off-line simulations for an east central Amazon forest by the Community Land Model version 3.5 of the National Center for Atmospheric Research and its three independent biogeochemical submodels (CASA', CN, and DGVM). Intense field measurements carried out under Large Scale Biosphere-Atmosphere Experiment in Amazonia, including forest response to drought from a throughfall exclusion experiment, are utilized to evaluate the whole spectrum of biogeophysical and biogeochemical aspects of the models. Our analysis shows reasonable correspondence in momentum and energy turbulent fluxes, but it highlights three processes that are not in agreement with observations: (1) inconsistent seasonality in carbon fluxes, (2) biased biomass size and allocation, and (3) overestimation of vegetation stress to short-term drought but underestimation of biomass loss from long-term drought. Without resolving these issues the modeled feedbacks from the biosphere in future climate projections would be questionable. We suggest possible directions for model improvements and also emphasize the necessity of more studies using a variety of in situ data for both driving and evaluating land-biogeochemical models.

  9. Biogeochemical features technogenic pollution of soils under the influence chemical industry

    Directory of Open Access Journals (Sweden)

    Kuraeva I.V.

    2015-09-01

    Full Text Available The physico-chemical properties of soil (pH, organic matter content, cation exchange capacity. The regularities of the distribution of total and mobile forms of heavy metals in soil sediments in the territory of Shostka Sumy region under the influence of the chemical industry and in the background areas. Biogeochemical indicators obtained content of microscopic fungi and their species, the most characteristic of the study of soils, which can be used as an additional criterion for ecological and geochemical studies.

  10. Efficient Scheduling of Scientific Workflows with Energy Reduction Using Novel Discrete Particle Swarm Optimization and Dynamic Voltage Scaling for Computational Grids

    Directory of Open Access Journals (Sweden)

    M. Christobel

    2015-01-01

    Full Text Available One of the most significant and the topmost parameters in the real world computing environment is energy. Minimizing energy imposes benefits like reduction in power consumption, decrease in cooling rates of the computing processors, provision of a green environment, and so forth. In fact, computation time and energy are directly proportional to each other and the minimization of computation time may yield a cost effective energy consumption. Proficient scheduling of Bag-of-Tasks in the grid environment ravages in minimum computation time. In this paper, a novel discrete particle swarm optimization (DPSO algorithm based on the particle’s best position (pbDPSO and global best position (gbDPSO is adopted to find the global optimal solution for higher dimensions. This novel DPSO yields better schedule with minimum computation time compared to Earliest Deadline First (EDF and First Come First Serve (FCFS algorithms which comparably reduces energy. Other scheduling parameters, such as job completion ratio and lateness, are also calculated and compared with EDF and FCFS. An energy improvement of up to 28% was obtained when Makespan Conservative Energy Reduction (MCER and Dynamic Voltage Scaling (DVS were used in the proposed DPSO algorithm.

  11. Efficient Scheduling of Scientific Workflows with Energy Reduction Using Novel Discrete Particle Swarm Optimization and Dynamic Voltage Scaling for Computational Grids

    Science.gov (United States)

    Christobel, M.; Tamil Selvi, S.; Benedict, Shajulin

    2015-01-01

    One of the most significant and the topmost parameters in the real world computing environment is energy. Minimizing energy imposes benefits like reduction in power consumption, decrease in cooling rates of the computing processors, provision of a green environment, and so forth. In fact, computation time and energy are directly proportional to each other and the minimization of computation time may yield a cost effective energy consumption. Proficient scheduling of Bag-of-Tasks in the grid environment ravages in minimum computation time. In this paper, a novel discrete particle swarm optimization (DPSO) algorithm based on the particle's best position (pbDPSO) and global best position (gbDPSO) is adopted to find the global optimal solution for higher dimensions. This novel DPSO yields better schedule with minimum computation time compared to Earliest Deadline First (EDF) and First Come First Serve (FCFS) algorithms which comparably reduces energy. Other scheduling parameters, such as job completion ratio and lateness, are also calculated and compared with EDF and FCFS. An energy improvement of up to 28% was obtained when Makespan Conservative Energy Reduction (MCER) and Dynamic Voltage Scaling (DVS) were used in the proposed DPSO algorithm. PMID:26075296

  12. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    Science.gov (United States)

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  13. Optimal Wavelength Selection in Ultraviolet Spectroscopy for the Estimation of Toxin Reduction Ratio during Hemodialysis

    Directory of Open Access Journals (Sweden)

    Amir Ghanifar

    2016-06-01

    Full Text Available Introduction The concentration of substances, including urea, creatinine, and uric acid, can be used as an index to measure toxic uremic solutes in the blood during dialysis and interdialytic intervals. The on-line monitoring of toxin concentration allows for the clearance measurement of some low-molecular-weight solutes at any time during hemodialysis.The aim of this study was to determine the optimal wavelength for estimating the changes in urea, creatinine, and uric acid in dialysate, using ultraviolet (UV spectroscopy. Materials and Methods In this study, nine uremic patients were investigated, using on-line spectrophotometry. The on-line absorption measurements (UV radiation were performed with a spectrophotometer module, connected to the fluid outlet of the dialysis machine. Dialysate samples were obtained and analyzed, using standard biochemical methods. Optimal wavelengths for both creatinine and uric acid were selected by using a combination of genetic algorithms (GAs, i.e., GA-partial least squares (GA-PLS and interval partial least squares (iPLS. Results The Artifitial Neural Network (ANN sensitivity analysis determined the wavelengths of the UV band most suitable for estimating the concentration of creatinine and uric acid. The two optimal wavelengths were 242 and 252 nm for creatinine and 295 and 298 nm for uric acid. Conclusion It can be concluded that the reduction ratio of creatinine and uric acid (dialysis efficiency could be continuously monitored during hemodialysis by UV spectroscopy.Compared to the conventional method, which is particularly sensitive to the sampling technique and involves post-dialysis blood sampling, iterative measurements throughout the dialysis session can yield more reliable data.

  14. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    Science.gov (United States)

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  15. Disturbance Error Reduction in Multivariable Optimal Control Systems

    Directory of Open Access Journals (Sweden)

    Ole A. Solheim

    1983-01-01

    Full Text Available The paper deals with the design of optimal multivariable controllers, using a modified LQR approach. All controllers discussed contain proportional feedback and, in addition, there may be feedforward, integral action or state estimation.

  16. In Situ Biogeochemical Treatment Demonstration: Lessons Learned from ESTCP Project ER 201124

    Science.gov (United States)

    2015-12-09

    native soil from the site amended with iron oxides at 3% concentration, electron donors, and sulfate (1,000 mg/L) to simulate an injection strategy...for biogeochemical transformation. Reactor # 2 (Abiotic Mulch) contained sand, mulch, vegetable oil (1%), iron oxides (3%), and sulfate (to simulate ...vegetable oil fermentation to volatile fatty acids (VFA) also likely reduced the pH and this change could have reduced the FeS reactivity. 2.3.5

  17. The Good, the Bad and the Ugly - Interacting Physical, Biogeochemical and Biolological Controls of Nutrient Cycling at Ecohydrological Interfaces

    Science.gov (United States)

    Krause, S.; Baranov, V. A.; Lewandowski, J.; Blaen, P. J.; Romeijn, P.

    2016-12-01

    The interfaces between streams, lakes and their bed sediments have for a long time been in the research focus of ecohydrologists, aquatic ecologists and biogeochemists. While over the past decades, critical understanding has been gained of the spatial patterns and temporal dynamics in nutrient cycling at sediment-freshwater interfaces, important question remain as to the actual drivers (physical, biogeochemical and biological) of the often observed hot spots and hot moments of nutrient cycling at these highly reactive systems. This study reports on a combination of laboratory manipulation, artificial stream and field experiments from reach to river network scales to investigate the interplay of physical, biogeochemical and biological drivers of interface nutrient cycling under the impact of and resilience to global environmental change. Our results indicate that biogeochemical hotspots at sediment-freshwater interfaces were controlled not only by reactant mixing ratios and residence time distributions, but strongly affected by patterns in streambed physical properties and bioavailability of organic carbon. Lab incubation experiments revealed that geology, and in particular organic matter content strongly controlled the magnitude of enhanced streambed greenhouse gas production caused by increasing water temperatures. While these findings help to improve our understanding of physical and biogeochemical controls on nutrient cycling, we only start to understand to what degree biological factors can enhance these processes even further. We found that for instance chironomid or brittle star facilitated bioturbation in has the potential to substantially enhance freshwater or marine sediment pore-water flow and respiration. We revealed that ignorance of these important biologically controls on physical exchange fluxes can lead to critical underestimation of whole system respiration and its increase under global environmental change.

  18. Integrated risk reduction framework to improve railway hazardous materials transportation safety

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liu94@illinois.edu; Saat, M. Rapik, E-mail: mohdsaat@illinois.edu; Barkan, Christopher P.L., E-mail: cbarkan@illinois.edu

    2013-09-15

    Highlights: • An integrated framework is developed to optimize risk reduction. • A negative binomial regression model is developed to analyze accident-cause-specific railcar derailment probability. • A Pareto-optimality technique is applied to determine the lowest risk given any level of resource. • A multi-attribute decision model is developed to determine the optimal amount of investment for risk reduction. • The models could aid the government and rail industry in developing cost-efficient risk reduction policy and practice. -- Abstract: Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation.

  19. Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2016-01-01

    Full Text Available Oil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128 m (24 to 27°C and 2,743 m (80 to 83°C below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate- and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of the Acetothermia (OP1, was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylum Parcubacteria (OD1 that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, including Microgenomates (OP11, Atribacteria (OP9, candidate phyla TA06 and WS6, and Marinimicrobia (SAR406. The results presented here elucidate potential roles of organisms in oil reservoir biological processes.

  20. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    Science.gov (United States)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    characterized at the end of experiment using synchrotron and other microscopic techniques (SEM, µXRF). Stable isotope signatures have been proved as a critical tool in understanding the redox and microbial processes. We monitored ∂34S, ∂66Zn and ∂56Fe isotope evolution with time to understand the relationship between biogeochemical process and isotope fractionation. We observed Δ34S biotic - abiotic ~6‰ and ∂56Fe variation up to 1.5‰ in our study. ZVI was very efficient in metal removal and also in enhancing sulfate reduction in column sediment. Arsenic reduction and thiarsenic species were also detected in biotic columns showing a positive correlation with sulfide production and Fe speciation. Latest results will be presented with integration of different processes. This multidisciplinary approach will help in deep understanding of contaminants behaviour and also to constrain the efficiency and longitivity of treatment system for different contaminants. “This is contribution of the AquaTrain MRTN (Contract No. MRTN-CT-2006-035420) funded under the European Commission sixth framework programme (2002-2006) Marie Curie Actions, Human Resources & Mobility Activity Area- Research Training Networks”

  1. Oceanographic and Biogeochemical Insights from Diatom Genomes

    Science.gov (United States)

    Bowler, Chris; Vardi, Assaf; Allen, Andrew E.

    2010-01-01

    Diatoms are the most successful group of eukaryotic phytoplankton in the modern ocean and have risen to dominance relatively quickly over the last 100 million years. Recently completed whole genome sequences from two species of diatom, Thalassiosira pseudonana and Phaeodactylum tricornutum, have revealed a wealth of information about the evolutionary origins and metabolic adaptations that have led to their ecological success. A major finding is that they have incorporated genes both from their endosymbiotic ancestors and by horizontal gene transfer from marine bacteria. This unique melting pot of genes encodes novel capacities for metabolic management, for example, allowing the integration of a urea cycle into a photosynthetic cell. In this review we show how genome-enabled approaches are being leveraged to explore major phenomena of oceanographic and biogeochemical relevance, such as nutrient assimilation and life histories in diatoms. We also discuss how diatoms may be affected by climate change-induced alterations in ocean processes.

  2. Development of pollution reduction strategies for Mexico City: Estimating cost and ozone reduction effectiveness

    International Nuclear Information System (INIS)

    Thayer, G.R.; Hardie, R.W.; Barrera-Roldan, A.

    1993-01-01

    This reports on the collection and preparation of data (costs and air quality improvement) for the strategic evaluation portion of the Mexico City Air Quality Research Initiative (MARI). Reports written for the Mexico City government by various international organizations were used to identify proposed options along with estimates of cost and emission reductions. Information from appropriate options identified by SCAQMD for Southem California were also used in the analysis. A linear optimization method was used to select a group of options or a strategy to be evaluated by decision analysis. However, the reduction of ozone levels is not a linear function of the reduction of hydrocarbon and NO x emissions. Therefore, a more detailed analysis was required for ozone. An equation for a plane on an isopleth calculated with a trajectory model was obtained using two endpoints that bracket the expected total ozone precursor reductions plus the starting concentrations for hydrocarbons and NO x . The relationship between ozone levels and the hydrocarbon and NO x concentrations was assumed to lie on this plane. This relationship was used in the linear optimization program to select the options comprising a strategy

  3. Numerical modeling of watershed-scale radiocesium transport coupled with biogeochemical cycling in forests

    Science.gov (United States)

    Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.

    2015-12-01

    Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, intensive monitoring and modeling works on radionuclide transfer in environment have been carried out. Although Cesium (Cs) concentration has been attenuating due to both physical and environmental half-life (i.e., wash-off by water and sediment), the attenuation rate depends clearly on the type of land use and land cover. In the Fukushima case, studying the migration in forest land use is important for predicting the long-term behavior of Cs because most of the contaminated region is covered by forests. Atmospheric fallout is characterized by complicated behavior in biogeochemical cycle in forests which can be described by biotic/abiotic interactions between many components. In developing conceptual and mathematical model on Cs transfer in forest ecosystem, defining the dominant components and their interactions are crucial issues (BIOMASS, 1997-2001). However, the modeling of fate and transport in geosphere after Cs exports from the forest ecosystem is often ignored. An integrated watershed modeling for simulating spatiotemporal redistribution of Cs that includes the entire region from source to mouth and surface to subsurface, has been recently developed. Since the deposited Cs can migrate due to water and sediment movement, the different species (i.e., dissolved and suspended) and their interactions are key issues in the modeling. However, the initial inventory as source-term was simplified to be homogeneous and time-independent, and biogeochemical cycle in forests was not explicitly considered. Consequently, it was difficult to evaluate the regionally-inherent characteristics which differ according to land uses, even if the model was well calibrated. In this study, we combine the different advantages in modeling of forest ecosystem and watershed. This enable to include more realistic Cs deposition and time series of inventory can be forced over the land surface. These processes are integrated

  4. Biogeochemical interactions between of coal mine water and gas well cement

    Science.gov (United States)

    Gulliver, D. M.; Gardiner, J. B.; Kutchko, B. G.; Hakala, A.; Spaulding, R.; Tkach, M. K.; Ross, D.

    2017-12-01

    Unconventional natural gas wells drilled in Northern Appalachia often pass through abandoned coal mines before reaching the Marcellus or Utica formations. Biogeochemical interactions between coal mine waters and gas well cements have the potential to alter the cement and compromise its sealing integrity. This study investigates the mineralogical, geochemical, and microbial changes of cement cores exposed to natural coal mine waters. Static reactors with Class H Portland cement cores and water samples from an abandoned bituminous Pittsburgh coal mine simulated the cement-fluid interactions at relevant temperature for time periods of 1, 2, 4, and 6 weeks. Fluids were analyzed for cation and anion concentrations and extracted DNA was analyzed by 16S rRNA gene sequencing and shotgun sequencing. Cement core material was evaluated via scanning electron microscope. Results suggest that the sampled coal mine water altered the permeability and matrix mineralogy of the cement cores. Scanning electron microscope images display an increase in mineral precipitates inside the cement matrix over the course of the experiment. Chemistry results from the reaction vessels' effluent waters display decreases in dissolved calcium, iron, silica, chloride, and sulfate. The microbial community decreased in diversity over the 6-week experiment, with Hydrogenophaga emerging as dominant. These results provide insight in the complex microbial-fluid-mineral interactions of these environments. This study begins to characterize the rarely documented biogeochemical impacts that coal waters may have on unconventional gas well integrity.

  5. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration

    Science.gov (United States)

    Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.

    1989-01-01

    Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.

  6. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Carmichael, Matthew J.; Inglis, Gordon N.; Badger, Marcus P. S.; Naafs, B. David A.; Behrooz, Leila; Remmelzwaal, Serginio; Monteiro, Fanny M.; Rohrssen, Megan; Farnsworth, Alexander; Buss, Heather L.; Dickson, Alexander J.; Valdes, Paul J.; Lunt, Daniel J.; Pancost, Richard D.

    2017-10-01

    The Paleocene-Eocene Thermal Maximum (PETM) hyperthermal, 56 million years ago (Ma), is the most dramatic example of abrupt Cenozoic global warming. During the PETM surface temperatures increased between 5 and 9 °C and the onset likely took hydrological and associated biogeochemical feedbacks, and proxy data from the PETM can provide constraints on changes in warm climate hydrology simulated by general circulation models (GCMs). In this paper, we provide a critical review of biological and geochemical signatures interpreted as direct or indirect indicators of hydrological change at the PETM, explore the importance of adopting multi-proxy approaches, and present a preliminary model-data comparison. Hydrological records complement those of temperature and indicate that the climatic response at the PETM was complex, with significant regional and temporal variability. This is further illustrated by the biogeochemical consequences of inferred changes in hydrology and, in fact, changes in precipitation and the biogeochemical consequences are often conflated in geochemical signatures. There is also strong evidence in many regions for changes in the episodic and/or intra-annual distribution of precipitation that has not widely been considered when comparing proxy data to GCM output. Crucially, GCM simulations indicate that the response of the hydrological cycle to the PETM was heterogeneous - some regions are associated with increased precipitation - evaporation (P - E), whilst others are characterised by a decrease. Interestingly, the majority of proxy data come from the regions where GCMs predict an increase in PETM precipitation. We propose that comparison of hydrological proxies to GCM output can be an important test of model skill, but this will be enhanced by further data from regions of model-simulated aridity and simulation of extreme precipitation events.

  7. Optimization of hetero-epitaxial growth for the threading dislocation density reduction of germanium epilayers

    Science.gov (United States)

    Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui

    2018-04-01

    In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.

  8. Pre- and post-industrial environmental changes as revealed by the biogeochemical sedimentary record of Drammensfjord, Norway

    NARCIS (Netherlands)

    Smittenberg, R.H.; Baas, M.; Green, M.J.; Hopmans, E.C.; Schouten, S.; Sinninghe Damsté, J.S.

    2005-01-01

    The biogeochemical sedimentary record of the anoxic Drammensfjord, Norway, was investigated on a decadal to centennial time scale over the last millennium, in order to reconstruct the pre-industrial fjord environment and ecosystem and humaninduced environmental changes. The sediments were dated by

  9. Pre- and post-industrial environmental changes as revealed by the biogeochemical sedimentary record of Drammensfjord, Norway

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Smittenberg, R.H.; Baas, M.; Green, M.J.; Hopmans, E.C.; Schouten, S.

    2005-01-01

    The biogeochemical sedimentary record of the anoxic Drammensfjord, Norway, was investigated on a decadal to centennial time scale over the last millennium, in order to reconstruct the pre-industrial fjord environment and ecosystem and human-induced environmental changes. The sediments were dated by

  10. A solution to the optimal power flow using multi-verse optimizer

    Directory of Open Access Journals (Sweden)

    Bachir Bentouati

    2016-12-01

    Full Text Available In this work, the most common problem of the modern power system named optimal power flow (OPF is optimized using the novel meta-heuristic optimization Multi-verse Optimizer(MVO algorithm. In order to solve the optimal power flow problem, the IEEE 30-bus and IEEE 57-bus systems are used. MVO is applied to solve the proposed problem. The problems considered in the OPF problem are fuel cost reduction, voltage profile improvement, voltage stability enhancement. The obtained results are compared with recently published meta-heuristics. Simulation results clearly reveal the effectiveness and the rapidity of the proposed algorithm for solving the OPF problem.

  11. Andreae is New Editor of Global Biogeochemical Cycles

    Science.gov (United States)

    Andreae, Meinrat O.

    2004-10-01

    As the incoming editor of Global Biogeochemical Cycles, I would like to introduce myself and my ideas for the journal to Eos readers and to current and potential GBC authors. I've had a somewhat ``roaming'' scientific evolution, coming from ``straight'' chemistry through hard-rock geochemistry to chemical oceanography, the field in which I did my Ph.D. I taught marine chemistry at Florida State University for a number of years, and developed an interest in ocean/atmosphere interactions and atmospheric chemistry. In 1987 I took on my present job at the Max Planck Institute for Chemistry, in Mainz, Germany, and, after leaving the seacoast, my interests shifted to interactions between the terrestrial biosphere and atmosphere, including the role of vegetation fires. My present focus is on the role of biogenic aerosols and biomass smoke in regulating cloud properties and influencing climate.

  12. Biogeochemical impact of a model western iron source in the Pacific Equatorial Undercurrent

    OpenAIRE

    Slemons, L.; Gorgues, T.; Aumont, Olivier; Menkès, Christophe; Murray, J. W.

    2009-01-01

    Trace element distributions in the source waters of the Pacific Equatorial Undercurrent (EUC) show the existence of elevated total acid-soluble iron concentrations. This region has been suggested to contribute enough bioavailable iron to regulate interannual and interglacial variability in biological productivity downstream in the high-nitrate low-chlorophyll upwelling zone of the eastern equatorial Pacific. We investigated the advection and first-order biogeochemical impact of an imposed, da...

  13. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  14. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-12-01

    Full Text Available With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2 uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W in the Canadian High Arctic. Results show relatively low surface water (1–10 m nitrate (<1.3 µM and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1, total alkalinity (mean±SD=2134±11.09 µmol kg−1 and under-ice pCO2sw (mean±SD=286±17 µatm. These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season.

  15. Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L. [Princeton Univ., NJ (United States); Gnanadesikan, Anand [Princeton Univ., NJ (United States); Gruber, Nicolas [Univ. of California, Los Angeles, CA (United States); Jin, Xin [Univ. of California, Los Angeles, CA (United States); Armstrong, Robert [State Univ. of New York (SUNY), Plattsburgh, NY (United States)

    2007-06-21

    This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecological-biogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1; and, December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the

  16. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Science.gov (United States)

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  17. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  18. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.

    Science.gov (United States)

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.

  19. HYDROBIOGEOCHEM: A coupled model of HYDROlogic transport and mixed BIOGEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Salvage, K.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Gwo, J.P. [Oak Ridge National Lab., TN (United States); Zachara, J.M.; Szecsody, J.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-07-01

    The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.

  20. Optimal Tax Reduction by Depreciation : A Stochastic Model

    NARCIS (Netherlands)

    Berg, M.; De Waegenaere, A.M.B.; Wielhouwer, J.L.

    1996-01-01

    This paper focuses on the choice of a depreciation method, when trying to minimize the expected value of the present value of future tax payments.In a quite general model that allows for stochastic future cash- ows and a tax structure with tax brackets, we determine the optimal choice between the

  1. Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?

    Science.gov (United States)

    Turnewitsch, Robert; Dale, Andrew; Lahajnar, Niko; Lampitt, Richard S.; Sakamoto, Kei

    2017-05-01

    Before particulate matter that settles as 'primary flux' from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying

  2. Biogeochemical linkage between atmosphere and ocean in the eastern equatorial Pacific Ocean: Results from the EqPOS research cruise

    Science.gov (United States)

    Furutani, H.; Inai, Y.; Aoki, S.; Honda, H.; Omori, Y.; Tanimoto, H.; Iwata, T.; Ueda, S.; Miura, K.; Uematsu, M.

    2012-12-01

    Eastern equatorial Pacific Ocean is a unique oceanic region from several biogeochemical points of view. It is a remote open ocean with relatively high marine biological activity, which would result in limited influence of human activity but enhanced effect of marine natural processes on atmospheric composition. It is also characterized as high nutrient low chlorophyll (HNLC) ocean, in which availability of trace metals such as iron and zinc limits marine primary production and thus atmospheric deposition of these trace elements to the ocean surface is expected to play an important role in regulating marine primary production and defining unique microbial community. High sea surface temperature in the region generates strong vertical air convection which efficiently brings tropospheric atmospheric composition into stratosphere. In this unique eastern equatorial Pacific Ocean, EqPOS (Equatorial Pacific Ocean and Stratospheric/Tropospheric Atmospheric Study) research cruise was organized as a part of SOLAS Japan activity to understand biogeochemical ocean-atmospheric interaction in the region. Coordinated atmospheric, oceanic, and marine biological observations including sampling/characterization of thin air-sea interfacial layer (sea surface microlayer: SML) and launching large stratospheric air sampling balloons were carried out on-board R/V Hakuho Maru starting from 29 January for 39 days. Biogeochemically important trace/long-lived gases such as CO2, dimethyl sulfide (DMS), and some volatile organic carbons (VOCs) both in the atmosphere and seawater were continuously monitored and their air-sea fluxes were also observed using gradient and eddy-covariance techniques. Atmospheric gas measurement of CO2, CH4, N2O, SF6, CO, H2, Ar and isotopic composition of selected gases were further extended to stratospheric air by balloon-born sampling in addition to a vertical profiling of O3, CO2, and H2O with sounding sondes. Physical and chemical properties of marine

  3. Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    D.B. Prakash

    2017-12-01

    Full Text Available In present days, continuous effort is being made in bringing down the line losses of the electrical distribution networks. Therefore proper allocation of capacitors is of utmost importance because, it will help in reducing the line losses and maintaining the bus voltage. This in turn results in improving the stability and reliability of the system. In this paper Whale Optimization Algorithm (WOA is used to find optimal sizing and placement of capacitors for a typical radial distribution system. Multi objectives such as operating cost reduction and power loss minimization with inequality constraints on voltage limits are considered and the proposed algorithm is validated by applying it on standard radial systems: IEEE-34 bus and IEEE-85 bus radial distribution test systems. The results obtained are compared with those of existing algorithms. The results show that the proposed algorithm is more effective in bringing down the operating costs and in maintaining better voltage profile. Keywords: Whale Optimization Algorithm (WOA, Optimal allocation and sizing of capacitors, Power loss reduction and voltage stability improvement, Radial distribution system, Operating cost minimization

  4. IIASA's climate-vegetation-biogeochemical cycle module as a part of an integrated model for climate change

    International Nuclear Information System (INIS)

    Ganopolski, A.V.; Jonas, M.; Krabec, J.; Olendrzynski, K.; Petoukhov, V.K.; Venevsky, S.V.

    1994-01-01

    The main objective of this study is the development of a hierarchy of coupled climate biosphere models with a full description of the global biogeochemical cycles. These models are planned for use as the core of a set of integrated models of climate change and they will incorporate the main elements of the Earth system (atmosphere, hydrosphere, pedosphere and biosphere) linked with each other (and eventually with the antroposphere) through the fluxes of heat, momentum, water and through the global biogeochemical cycles of carbon and nitrogen. This set of integrated models can be considered to fill the gap between highly simplified integrated models of climate change and very sophisticated and computationally expensive coupled models, developed on the basis of general circulation models (GCMs). It is anticipated that this range of integrated models will be an effective tool for investigating the broad spectrum of problems connected with the coexistence of human society and biosphere

  5. Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm

    Science.gov (United States)

    Gilat Schmidt, Taly; Barber, Rina F.; Sidky, Emil Y.

    2017-03-01

    Metal objects cause artifacts in computed tomography (CT) images. This work investigated the feasibility of a spectral CT method to reduce metal artifacts. Spectral CT acquisition combined with optimization-based reconstruction is proposed to reduce artifacts by modeling the physical effects that cause metal artifacts and by providing the flexibility to selectively remove corrupted spectral measurements in the spectral-sinogram space. The proposed Constrained `One-Step' Spectral CT Image Reconstruction (cOSSCIR) algorithm directly estimates the basis material maps while enforcing convex constraints. The incorporation of constraints on the reconstructed basis material maps is expected to mitigate undersampling effects that occur when corrupted data is excluded from reconstruction. The feasibility of the cOSSCIR algorithm to reduce metal artifacts was investigated through simulations of a pelvis phantom. The cOSSCIR algorithm was investigated with and without the use of a third basis material representing metal. The effects of excluding data corrupted by metal were also investigated. The results demonstrated that the proposed cOSSCIR algorithm reduced metal artifacts and improved CT number accuracy. For example, CT number error in a bright shading artifact region was reduced from 403 HU in the reference filtered backprojection reconstruction to 33 HU using the proposed algorithm in simulation. In the dark shading regions, the error was reduced from 1141 HU to 25 HU. Of the investigated approaches, decomposing the data into three basis material maps and excluding the corrupted data demonstrated the greatest reduction in metal artifacts.

  6. Implementation ambiguity: The fifth element long lost in uncertainty budgets for land biogeochemical modeling

    Science.gov (United States)

    Tang, J.; Riley, W. J.

    2015-12-01

    Previous studies have identified four major sources of predictive uncertainty in modeling land biogeochemical (BGC) processes: (1) imperfect initial conditions (e.g., assumption of preindustrial equilibrium); (2) imperfect boundary conditions (e.g., climate forcing data); (3) parameterization (type I equifinality); and (4) model structure (type II equifinality). As if that were not enough to cause substantial sleep loss in modelers, we propose here a fifth element of uncertainty that results from implementation ambiguity that occurs when the model's mathematical description is translated into computational code. We demonstrate the implementation ambiguity using the example of nitrogen down regulation, a necessary process in modeling carbon-climate feedbacks. We show that, depending on common land BGC model interpretations of the governing equations for mineral nitrogen, there are three different implementations of nitrogen down regulation. We coded these three implementations in the ACME land model (ALM), and explored how they lead to different preindustrial and contemporary land biogeochemical states and fluxes. We also show how this implementation ambiguity can lead to different carbon-climate feedback estimates across the RCP scenarios. We conclude by suggesting how to avoid such implementation ambiguity in ESM BGC models.

  7. Combustion system optimization of a P-62 lignite boiler in ContourGlobal Maritsa East 3 with NOx-reduction and efficiency improvement

    International Nuclear Information System (INIS)

    Petkov, Ch.; Thierbach, Hans-Ulrich; Totev, T.

    2013-01-01

    Steinmueller Engineering GmbH, Gummersbach, Germany, successfully concluded in consortium with Siemens EOOD, Sofia, the combustion system modification of a P62 lignite fired boiler in TPP ContourGlobal Maritsa East 3, which was targeting mainly the reduction of the NOx emissions below 180 mg/Nm 3 at 6 % O 2 . The modification is part of an EPC contract covering the design, fabrication, installation and commissioning works needed to upgrade the boilers at the power station. The Modification concept involves optimization of PF- and Vapor distribution, replacement of the coal burners, installation of new Over-fire air (OFA) system and Side-wall air (SWA) system and minor modification of the existing control system to allow control of the OFAflow. The main results of the modification are: Reduction of the NOx emissions (at ESP exit) from approximately 390 g/Nm³ to below 180 mg/Nm³ at 6% O 2 , Efficiency increase of the furnace by reduction of the excess air ratio from 1.2 to 1.15 (at furnace outlet) and overall increase of the boiler efficiency. (authors)

  8. A flexibility-based method via the iterated improved reduction system and the cuckoo optimization algorithm for damage quantification with limited sensors

    International Nuclear Information System (INIS)

    Zare Hosseinzadeh, Ali; Ghodrati Amiri, Gholamreza; Bagheri, Abdollah; Koo, Ki-Young

    2014-01-01

    In this paper, a novel and effective damage diagnosis algorithm is proposed to localize and quantify structural damage using incomplete modal data, considering the existence of some limitations in the number of attached sensors on structures. The damage detection problem is formulated as an optimization problem by computing static displacements in the reduced model of a structure subjected to a unique static load. The static responses are computed through the flexibility matrix of the damaged structure obtained based on the incomplete modal data of the structure. In the algorithm, an iterated improved reduction system method is applied to prepare an accurate reduced model of a structure. The optimization problem is solved via a new evolutionary optimization algorithm called the cuckoo optimization algorithm. The efficiency and robustness of the presented method are demonstrated through three numerical examples. Moreover, the efficiency of the method is verified by an experimental study of a five-story shear building structure on a shaking table considering only two sensors. The obtained damage identification results for the numerical and experimental studies show the suitable and stable performance of the proposed damage identification method for structures with limited sensors. (paper)

  9. Optimization and optimal control in automotive systems

    CERN Document Server

    Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi

    2014-01-01

    This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier  approaches, based on some degree of heuristics, to the use of  more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...

  10. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.

    Science.gov (United States)

    Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are

  11. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Stefan G H Simis

    Full Text Available Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM, properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession and physical (thermal stratification processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90 no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively, characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing

  12. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea

    Science.gov (United States)

    Ylöstalo, Pasi; Kallio, Kari Y.; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0–3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms

  13. Combined effects of hydrologic alteration and cyprinid fish in mediating biogeochemical processes in a Mediterranean stream.

    Science.gov (United States)

    Rubio-Gracia, Francesc; Almeida, David; Bonet, Berta; Casals, Frederic; Espinosa, Carmen; Flecker, Alexander S; García-Berthou, Emili; Martí, Eugènia; Tuulaikhuu, Baigal-Amar; Vila-Gispert, Anna; Zamora, Lluis; Guasch, Helena

    2017-12-01

    Flow regimes are important drivers of both stream community and biogeochemical processes. However, the interplay between community and biogeochemical responses under different flow regimes in streams is less understood. In this study, we investigated the structural and functional responses of periphyton and macroinvertebrates to different densities of the Mediterranean barbel (Barbus meridionalis, Cyprinidae) in two stream reaches differing in flow regime. The study was conducted in Llémena Stream, a small calcareous Mediterranean stream with high nutrient levels. We selected a reach with permanent flow (permanent reach) and another subjected to flow regulation (regulated reach) with periods of flow intermittency. At each reach, we used in situ cages to generate 3 levels of fish density. Cages with 10 barbels were used to simulate high fish density (>7indm -2 ); cages with open sides were used as controls (i.e. exposed to actual fish densities of each stream reach) thus having low fish density; and those with no fish were used to simulate the disappearance of fish that occurs with stream drying. Differences in fish density did not cause significant changes in periphyton biomass and macroinvertebrate density. However, phosphate uptake by periphyton was enhanced in treatments lacking fish in the regulated reach with intermittent flow but not in the permanent reach, suggesting that hydrologic alteration hampers the ability of biotic communities to compensate for the absence of fish. This study indicates that fish density can mediate the effects of anthropogenic alterations such as flow intermittence derived from hydrologic regulation on stream benthic communities and associated biogeochemical processes, at least in eutrophic streams. Copyright © 2017. Published by Elsevier B.V.

  14. Dynamic biogeochemical provinces in the global ocean

    Science.gov (United States)

    Reygondeau, Gabriel; Longhurst, Alan; Martinez, Elodie; Beaugrand, Gregory; Antoine, David; Maury, Olivier

    2013-12-01

    In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and interannual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll a concentration, surface temperature, and salinity) are used to infer the spatial distribution of each BGCP over 1997-2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and interannual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.

  15. Determination of the optimal dose reduction level via iterative reconstruction using 640-slice volume chest CT in a pig model.

    Directory of Open Access Journals (Sweden)

    Xingli Liu

    Full Text Available To determine the optimal dose reduction level of iterative reconstruction technique for paediatric chest CT in pig models.27 infant pigs underwent 640-slice volume chest CT with 80kVp and different mAs. Automatic exposure control technique was used, and the index of noise was set to SD10 (Group A, routine dose, SD12.5, SD15, SD17.5, SD20 (Groups from B to E to reduce dose respectively. Group A was reconstructed with filtered back projection (FBP, and Groups from B to E were reconstructed using iterative reconstruction (IR. Objective and subjective image quality (IQ among groups were compared to determine an optimal radiation reduction level.The noise and signal-to-noise ratio (SNR in Group D had no significant statistical difference from that in Group A (P = 1.0. The scores of subjective IQ in Group A were not significantly different from those in Group D (P>0.05. There were no obvious statistical differences in the objective and subjective index values among the subgroups (small, medium and large subgroups of Group D. The effective dose (ED of Group D was 58.9% lower than that of Group A (0.20±0.05mSv vs 0.48±0.10mSv, p <0.001.In infant pig chest CT, using iterative reconstruction can provide diagnostic image quality; furthermore, it can reduce the dosage by 58.9%.

  16. On generalized semi-infinite optimization and bilevel optimization

    NARCIS (Netherlands)

    Stein, O.; Still, Georg J.

    2000-01-01

    The paper studies the connections and differences between bilevel problems (BL) and generalized semi-infinite problems (GSIP). Under natural assumptions (GSIP) can be seen as a special case of a (BL). We consider the so-called reduction approach for (BL) and (GSIP) leading to optimality conditions

  17. Enhanced Sulfate Reduction and Carbon Sequestration in Sediments Underlying the Core of the Arabian Sea Oxygen Minimum Zone

    Science.gov (United States)

    Fernandes, S. Q.; Mazumdar, A.; Peketi, A.; Bhattacharya, S.; Carvalho, M.; Da Silva, R.; Roy, R.; Mapder, T.; Roy, C.; Banik, S. K.; Ghosh, W.

    2017-12-01

    The oxygen minimum zone (OMZ) of the Arabian Sea in the northern Indian Ocean is one of the three major global sites of open ocean denitrification. The functionally anoxic water column between 150 to 1200 mbsl plays host to unique biogeochemical processes and organism interactions. Little is known, however, about the consequence of the low dissolved oxygen on the underlying sedimentary biogeochemical processes. Here we present, for the first time, a comprehensive investigation of sediment biogeochemistry of the Arabian Sea OMZ by coupling pore fluid analyses with microbial diversity data in eight sediment cores collected across a transect off the west coast of India in the Eastern Arabian Sea. We observed that in sediments underlying the core of the OMZ, high organic carbon sequestration coincides with a high diversity of all bacteria (the majority of which are complex organic matter hydrolyzers) and sulfate reducing bacteria (simple organic compound utilizers). Depth-integrated sulfate reduction rate also intensifies in this territory. These biogeochemical features, together with the detected shallowing of the sulfate-methane interface and buildup of pore-water sulfide, are all reflective of heightened carbon-sulfur cycling in the sediments underlying the OMZ core. Our data suggests that the sediment biogeochemistry of the OMZ is sensitive to minute changes in bottom water dissolved oxygen, and is dictated by the potential abundance and bioavailability of complex to simple carbon compounds which can stimulate a cascade of geomicrobial activities pertaining to the carbon-sulfur cycle. Our findings hold implications in benthic ecology and sediment diagenesis.

  18. An algorithm for reduct cardinality minimization

    KAUST Repository

    AbouEisha, Hassan M.

    2013-12-01

    This is devoted to the consideration of a new algorithm for reduct cardinality minimization. This algorithm transforms the initial table to a decision table of a special kind, simplify this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. Results of computer experiments with decision tables from UCI ML Repository are discussed. © 2013 IEEE.

  19. An algorithm for reduct cardinality minimization

    KAUST Repository

    AbouEisha, Hassan M.; Al Farhan, Mohammed; Chikalov, Igor; Moshkov, Mikhail

    2013-01-01

    This is devoted to the consideration of a new algorithm for reduct cardinality minimization. This algorithm transforms the initial table to a decision table of a special kind, simplify this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. Results of computer experiments with decision tables from UCI ML Repository are discussed. © 2013 IEEE.

  20. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    Science.gov (United States)

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  1. Airfoil optimization for unsteady flows with application to high-lift noise reduction

    Science.gov (United States)

    Rumpfkeil, Markus Peer

    The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far

  2. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    Science.gov (United States)

    Smith, P.; Cotrufo, M. F.; Rumpel, C.; Paustian, K.; Kuikman, P. J.; Elliott, J. A.; McDowell, R.; Griffiths, R. I.; Asakawa, S.; Bustamante, M.; House, J. I.; Sobocká, J.; Harper, R.; Pan, G.; West, P. C.; Gerber, J. S.; Clark, J. M.; Adhya, T.; Scholes, R. J.; Scholes, M. C.

    2015-06-01

    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or can result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that although there are knowledge gaps that require further research, enough is known to start improving soils globally. The main challenge is in finding ways to share knowledge with soil managers and policy-makers, so that best-practice management can be implemented. A key element of this knowledge sharing must be in raising awareness of the multiple ecosystem services underpinned by soils, and the natural capital they provide. The International Year of Soils in 2015 presents the perfect opportunity to begin a step-change in how we harness scientific knowledge to bring about more sustainable use of soils for a secure global society.

  3. Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain subalpine watershed.

    Science.gov (United States)

    Dunnette, Paul V; Higuera, Philip E; McLauchlan, Kendra K; Derr, Kelly M; Briles, Christy E; Keefe, Margaret H

    2014-08-01

    Wildfires can significantly alter forest carbon (C) storage and nitrogen (N) availability, but the long-term biogeochemical legacy of wildfires is poorly understood. We obtained a lake-sediment record of fire and biogeochemistry from a subalpine forest in Colorado, USA, to examine the nature, magnitude, and duration of decadal-scale, fire-induced ecosystem change over the past c. 4250 yr. The high-resolution record contained 34 fires, including 13 high-severity events within the watershed. High-severity fires were followed by increased sedimentary N stable isotope ratios (δ15N) and bulk density, and decreased C and N concentrations--reflecting forest floor destruction, terrestrial C and N losses, and erosion. Sustained low sediment C : N c. 20-50 yr post-fire indicates reduced terrestrial organic matter subsidies to the lake. Low sedimentary δ15N c. 50-70 yr post-fire, coincident with C and N recovery, suggests diminishing terrestrial N availability during stand development. The magnitude of post-fire changes generally scaled directly with inferred fire severity. Our results support modern studies of forest successional C and N accumulation and indicate pronounced, long-lasting biogeochemical impacts of wildfires in subalpine forests. However, even repeated high-severity fires over millennia probably did not deplete C or N stocks, because centuries between high-severity fires allowed for sufficient biomass recovery. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Iron chemistry of Hawaiian rainforest soil solution: Biogeochemical implications of multiple Fe redox cycles

    Science.gov (United States)

    Thompson, A.; Chorover, J.; Chadwick, O.

    2003-12-01

    Iron (Fe)-oxides are important sorbents for nutrients, pollutants and natural organic matter (NOM). When flucutations in soil oxygen status exist, Fe can cycle through reduced and oxidized forms and thus greatly affect the aqueous conc. of nutrients and metals. We are examining the influence of oscillating oxic/anoxic conditions on Fe-oxide formation and biogeochemical processes (microbial community composition, and carbon, nutrient and trace metal availability). Our work makes use of a natural rainfall gradient ranging from 2.2 to 4.2 m mean annual precipitation (MAP) on the island of Maui, Hawaii, USA. All sites developed on a 400ky basaltic lava flow and comprise soils under similar vegetation. Solid phase Fe concentration and oxidation state vary systematically across this rainfall gradient with a sharp decrease in pedogenic Fe between 2.8 m and 3.5 m MAP that corresponds with an Eh of 330 mV (1-yr ave.). Fe isotopic composition and Fe-oxide associated rare earth elements (REE) also suggest a shift from ligand-promoted to redutive Fe dissolution with increasing rainfall. To examine the effects of multiple Fe oxidation/reduction cycles, we constructed a set of redox-stat reactors that maintain Eh values within a set range by small Eh-triggered additions of oxygen. Triplicate soil slurry reactors are subjected to redox (Eh) oscillations such that Fe is repeatedly cycled from oxidized to reduced forms. During our current experiment, we measure pH and Eh dynamics and monitor the distribution of Fe(II) and Fe(III), major ion and anion concentrations, a range of trace metals including the REE, and total organic carbon (TOC) in three Stokes-effective particle size fractions (DNA fingerprinting is used to track changes in the microbial community. Prior to implementing the rigorous sampling procedure above, we completed two preliminary reactor experiments focusing only on Fe distribution between aqueous, HCl, and oxalate extractions. These experiments illustrated (1) a

  5. Current strategies for dosage reduction in computed tomography

    International Nuclear Information System (INIS)

    May, M.S.; Wuest, W.; Lell, M.M.; Uder, M.; Kalender, W.A.; Schmidt, B.

    2012-01-01

    The potential risks of radiation exposure associated with computed tomography (CT) imaging are reason for ongoing concern for both medical staff and patients. Radiation dose reduction is, according to the as low as reasonably achievable principle, an important issue in clinical routine, research and development. The complex interaction of preparation, examination and post-processing provides a high potential for optimization on the one hand but on the other a high risk for errors. The radiologist is responsible for the quality of the CT examination which requires specialized and up-to-date knowledge. Most of the techniques for radiation dose reduction are independent of the system and manufacturer. The basic principle should be radiation dose optimization without loss of diagnostic image quality rather than just reduction. (orig.) [de

  6. Helicopter Flight Procedures for Community Noise Reduction

    Science.gov (United States)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.

  7. Third version of vendor-specific model-based iterativereconstruction (Veo 3.0): evaluation of CT image quality in the abdomen using new noise reduction presets and varied slice optimization.

    Science.gov (United States)

    Telesmanich, Morgan E; Jensen, Corey T; Enriquez, Jose L; Wagner-Bartak, Nicolaus A; Liu, Xinming; Le, Ott; Wei, Wei; Chandler, Adam G; Tamm, Eric P

    2017-08-01

    To qualitatively and quantitatively compare abdominal CT images reconstructed with a newversion of model-based iterative reconstruction (Veo 3.0; GE Healthcare Waukesha, WI) utilizing varied presetsof resolution preference, noise reduction and slice optimization. This retrospective study was approved by our Institutional Review Board and was Health Insurance Portability and Accountability Act compliant. The raw datafrom 30 consecutive patients who had undergone CT abdomen scanning were used to reconstructfour clinical presets of 3.75mm axial images using Veo 3.0: 5% resolution preference (RP05n), 5%noise reduction (NR05) and 40% noise reduction (NR40) with new 3.75mm "sliceoptimization," as well as one set using RP05 with conventional 0.625mm "slice optimization" (RP05c). The images were reviewed by two independent readers in a blinded, randomized manner using a 5-point Likert scale as well as a 5-point comparative scale. Multiple two-dimensional circular regions of interest were defined for noise and contrast-to-noise ratio measurements. Line profiles were drawn across the 7 lp cm -1 bar pattern of the Catphan 600 phantom for evaluation of spatial resolution. The NR05 image set was ranked as the best series in overall image quality (mean difference inrank 0.48, 95% CI [0.081-0.88], p = 0.01) and with specific reference to liver evaluation (meandifference 0.46, 95% CI [0.030-0.89], p = 0.03), when compared with the secondbest series ineach category. RP05n was ranked as the best for bone evaluation. NR40 was ranked assignificantly inferior across all assessed categories. Although the NR05 and RP05c image setshad nearly the same contrast-to-noise ratio and spatial resolution, NR05 was generally preferred. Image noise and spatial resolution increased along a spectrum with RP05n the highest and NR40the lowest. Compared to RP05n, the average noise was 21.01% lower for NR05, 26.88%lower for RP05c and 50.86% lower for NR40. Veo 3.0 clinical presets allow for

  8. Biogeochemical studies of wintering waterfowl in the Imperial and Sacramento Valleys

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, J.J.; Stuart, M.; Thompson, S.; Conrado, C.

    1979-10-01

    Trace and major elemental composition were determined in the organs of wintering waterfowl in the Imperial and Sacramento Valleys of California, and in soils, sediments, and agricultural fertilizer that constitute the various sources of elements in the waterfowl. These data provide a biogeochemical baseline for waterfowl populations wintering in an area being developed for geothermal power. This baseline in the Imperial Valley is affected by soil and sediment composition, agricultural effluents in irrigation and stream water, and spent shot deposited by hunters in waterfowl habitats. The waterfowl acquire a set of trace elements from these sources and concentrations increase in their organs over the wintering period. Nickel, arsenic, selenium, bromine, and lead are the primary elements acquired from soil sources, agricultural effluents, and spent shot in the Imperial Valley. The assessment of effects from geothermal effluents on waterfowl populations in complex because there are large influxes of materials into the Imperial Valley ecosystem that contain trace elements, i.e., irrigation water, phosphatic fertilizers, pesticides, and lead shot. Multiple sources exist for many elements prominent in the expected geothermal effluents. The relationships between the two California valleys, the Imperial and Sacramento, are apparent in the trace element concentrations in the organs of waterfowl obtained in those two valleys. Arsenic is absent in the waterfowl organs obtained in the Sacramento Valley and relatively common in the Imperial Valley waterfowl. The effect of any release of geothermal effluent in the Imperial Valley waterfowl habitats will be difficult to describe because of the complexity of the biogeochemical baseline and the multiple sources of trace and major elements in the ecosystem.

  9. Optimization and modeling of reduction of wastewater sludge water content and turbidity removal using magnetic iron oxide nanoparticles (MION).

    Science.gov (United States)

    Hwang, Jeong-Ha; Han, Dong-Woo

    2015-01-01

    Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process.

  10. An Indirect Simulation-Optimization Model for Determining Optimal TMDL Allocation under Uncertainty

    Directory of Open Access Journals (Sweden)

    Feng Zhou

    2015-11-01

    Full Text Available An indirect simulation-optimization model framework with enhanced computational efficiency and risk-based decision-making capability was developed to determine optimal total maximum daily load (TMDL allocation under uncertainty. To convert the traditional direct simulation-optimization model into our indirect equivalent model framework, we proposed a two-step strategy: (1 application of interval regression equations derived by a Bayesian recursive regression tree (BRRT v2 algorithm, which approximates the original hydrodynamic and water-quality simulation models and accurately quantifies the inherent nonlinear relationship between nutrient load reductions and the credible interval of algal biomass with a given confidence interval; and (2 incorporation of the calibrated interval regression equations into an uncertain optimization framework, which is further converted to our indirect equivalent framework by the enhanced-interval linear programming (EILP method and provides approximate-optimal solutions at various risk levels. The proposed strategy was applied to the Swift Creek Reservoir’s nutrient TMDL allocation (Chesterfield County, VA to identify the minimum nutrient load allocations required from eight sub-watersheds to ensure compliance with user-specified chlorophyll criteria. Our results indicated that the BRRT-EILP model could identify critical sub-watersheds faster than the traditional one and requires lower reduction of nutrient loadings compared to traditional stochastic simulation and trial-and-error (TAE approaches. This suggests that our proposed framework performs better in optimal TMDL development compared to the traditional simulation-optimization models and provides extreme and non-extreme tradeoff analysis under uncertainty for risk-based decision making.

  11. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  12. PRELIMINARY BIOGEOCHEMICAL DATA ON MICROBIAL CARBONATOGENESIS IN ANCIENT EXTREME ENVIRONMENTS (KESS-KESS MOUNDS, MOROCCO

    Directory of Open Access Journals (Sweden)

    ADRIANO GUIDO

    2013-03-01

    Full Text Available The Devonian Kess-Kess mounds, cropping out in the Hamar Laghdad Ridge (SE Morocco, provide a useful case-study for understanding the relationships between the microbial metabolic activities and micrite precipitation in an extreme environment. Very fine dark and white wrinkled laminae record microbial activity and the geochemistry of the organic matter allows the  characterization of the source organisms. The biogeochemical characterization of extracted organic matter was performed through the functional group analyses by FT-IR Spectroscopy. FT-IR parameters indicate a marine origin and low thermal evolution for the organic material. The organic matter is characterized by the presence of stretching ?C=C vibrations attributable to alkene and/or unsaturated carboxylic acids. Preliminary analysis with GC-MS provides evidence for an autochthonous (biogeochemical signatures of microbial carbonate precipitation in an ancient extreme environment may have implications in astrobiological research considering the recent discovery of carbonate deposits on Mars. 

  13. The Biogeochemical Response to Inter-decadal Atmospheric Forcing Across Watershed Scales in Canada's Subarctic

    Science.gov (United States)

    Spence, C.

    2016-12-01

    Rapid landscape changes in the circumpolar north have been documented, including degradation of permafrost and alteration of vegetation communities. These are widely expected to have profound impacts on the freshwater fluxes of solutes, carbon and nitrogen across the Arctic domain. However, there have been few attempts to document trends across the diversity of landscapes in the circumpolar north, mostly due to a dearth of long term data. Some of the fastest rates of warming over the last thirty years have occurred in Canada's Northwest Territories, so this region should already exhibit changes in aquatic chemistry. Observations of chemical loads in streams draining the ice-poor discontinuous permafrost subarctic Canadian Shield region were analyzed with the goal of determining how basins across scales have responded to changes in atmospheric forcing. Smaller streams, with much closer linkages to terrestrial processes, experienced a synchrony among hydrological and biogeochemical processes that enhanced chemical flux above that in their larger counterparts. This demonstrates that there are differences in resiliency and resistance across scales to climate change. These results highlight the importance of biogeochemical process understanding to properly explain and predict how chemical loading scales from headwaters to river mouths. This is important information if society is to properly adapt policies for effluent discharge, nearshore marine management, among others.

  14. Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration - the Thur River case study

    Science.gov (United States)

    Schirmer, M.; Luster, J.; Linde, N.; Perona, P.; Mitchell, E. A. D.; Barry, D. A.; Hollender, J.; Cirpka, O. A.; Schneider, P.; Vogt, T.; Radny, D.; Durisch-Kaiser, E.

    2014-06-01

    River restoration can enhance river dynamics, environmental heterogeneity and biodiversity, but the underlying processes governing the dynamic changes need to be understood to ensure that restoration projects meet their goals, and adverse effects are prevented. In particular, we need to comprehend how hydromorphological variability quantitatively relates to ecosystem functioning and services, biodiversity as well as ground- and surface water quality in restored river corridors. This involves (i) physical processes and structural properties, determining erosion and sedimentation, as well as solute and heat transport behavior in surface water and within the subsurface; (ii) biogeochemical processes and characteristics, including the turnover of nutrients and natural water constituents; and (iii) ecological processes and indicators related to biodiversity and ecological functioning. All these aspects are interlinked, requiring an interdisciplinary investigation approach. Here, we present an overview of the recently completed RECORD (REstored CORridor Dynamics) project in which we combined physical, chemical, and biological observations with modeling at a restored river corridor of the perialpine Thur River in Switzerland. Our results show that river restoration, beyond inducing morphologic changes that reshape the river bed and banks, triggered complex spatial patterns of bank infiltration, and affected habitat type, biotic communities and biogeochemical processes. We adopted an interdisciplinary approach of monitoring the continuing changes due to restoration measures to address the following questions: How stable is the morphological variability established by restoration? Does morphological variability guarantee an improvement in biodiversity? How does morphological variability affect biogeochemical transformations in the river corridor? What are some potential adverse effects of river restoration? How is river restoration influenced by catchment-scale hydraulics

  15. The biogeochemical iron cycle and astrobiology

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Christian, E-mail: christian.schroeder@stir.ac.uk [University of Stirling, Biological and Environmental Sciences, School of Natural Sciences (United Kingdom); Köhler, Inga [Eberhard Karls University of Tübingen, Geomicrobiology, Centre for Applied Geoscience (Germany); Muller, Francois L. L. [Qatar University, Department of Biological and Environmental Sciences (Qatar); Chumakov, Aleksandr I.; Kupenko, Ilya; Rüffer, Rudolf [ESRF-The European Synchrotron (France); Kappler, Andreas [Eberhard Karls University of Tübingen, Geomicrobiology, Centre for Applied Geoscience (Germany)

    2016-12-15

    Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO{sub 2}. This corresponds to observations of a ‘rusty carbon sink’ in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the

  16. The biogeochemical iron cycle and astrobiology

    Science.gov (United States)

    Schröder, Christian; Köhler, Inga; Muller, Francois L. L.; Chumakov, Aleksandr I.; Kupenko, Ilya; Rüffer, Rudolf; Kappler, Andreas

    2016-12-01

    Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO2. This corresponds to observations of a `rusty carbon sink' in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the environment and

  17. The biogeochemical iron cycle and astrobiology

    International Nuclear Information System (INIS)

    Schröder, Christian; Köhler, Inga; Muller, Francois L. L.; Chumakov, Aleksandr I.; Kupenko, Ilya; Rüffer, Rudolf; Kappler, Andreas

    2016-01-01

    Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO 2 . This corresponds to observations of a ‘rusty carbon sink’ in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the

  18. The two-layer geochemical structure of modern biogeochemical provinces and its significance for spatially adequate ecological evaluations and decisions

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2014-05-01

    Contamination of the environment has reached such a scale that ecogeochemical situation in any area can be interpreted now as a result of the combined effect of natural and anthropogenic factors. The areas that appear uncomfortable for a long stay can have natural and anthropogenic genesis, but the spatial structure of such biogeochemical provinces is in any case formed of a combination of natural and technogenic fields of chemical elements. Features of structural organization and the difference in factors and specific time of their formation allow their separation on one hand and help in identification of areas with different ecological risks due to overlay of the two structures on the other. Geochemistry of soil cover reflects the long-term result of the naturally balanced biogeochemical cycles, therefore the soil geochemical maps of the undisturbed areas may serve the basis for evaluation of the natural geochemical background with due regard to the main factors of geochemical differentiation in biosphere. Purposeful and incidental technogenic concentrations and dispersions of chemical elements of specific (mainly mono- or polycentric) structure are also fixed in soils that serve as secondary sources of contamination of the vegetation cover and local food chains. Overlay of the two structures forms specific heterogeneity of modern biogeochemical provinces with different risk for particular groups of people, animals and plants adapted to specific natural geochemical background within particular concentration interval. The developed approach is believed to be helpful for biogeochemical regionalizing of modern biosphere (noosphere) and for spatially adequate ecogeochemical evaluation of the environment and landuse decisions. It allows production of a set of applied geochemical maps such as: 1) health risk due to chemical elements deficiency and technogenic contamination accounting of possible additive effects; 2) adequate soil fertilization and melioration with due

  19. Breast Cancer-Related Arm Lymphedema: Incidence Rates, Diagnostic Techniques, Optimal Management and Risk Reduction Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chirag [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Vicini, Frank A., E-mail: fvicini@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States)

    2011-11-15

    As more women survive breast cancer, long-term toxicities affecting their quality of life, such as lymphedema (LE) of the arm, gain importance. Although numerous studies have attempted to determine incidence rates, identify optimal diagnostic tests, enumerate efficacious treatment strategies and outline risk reduction guidelines for breast cancer-related lymphedema (BCRL), few groups have consistently agreed on any of these issues. As a result, standardized recommendations are still lacking. This review will summarize the latest data addressing all of these concerns in order to provide patients and health care providers with optimal, contemporary recommendations. Published incidence rates for BCRL vary substantially with a range of 2-65% based on surgical technique, axillary sampling method, radiation therapy fields treated, and the use of chemotherapy. Newer clinical assessment tools can potentially identify BCRL in patients with subclinical disease with prospective data suggesting that early diagnosis and management with noninvasive therapy can lead to excellent outcomes. Multiple therapies exist with treatments defined by the severity of BCRL present. Currently, the standard of care for BCRL in patients with significant LE is complex decongestive physiotherapy (CDP). Contemporary data also suggest that a multidisciplinary approach to the management of BCRL should begin prior to definitive treatment for breast cancer employing patient-specific surgical, radiation therapy, and chemotherapy paradigms that limit risks. Further, prospective clinical assessments before and after treatment should be employed to diagnose subclinical disease. In those patients who require aggressive locoregional management, prophylactic therapies and the use of CDP can help reduce the long-term sequelae of BCRL.

  20. Breast Cancer-Related Arm Lymphedema: Incidence Rates, Diagnostic Techniques, Optimal Management and Risk Reduction Strategies

    International Nuclear Information System (INIS)

    Shah, Chirag; Vicini, Frank A.

    2011-01-01

    As more women survive breast cancer, long-term toxicities affecting their quality of life, such as lymphedema (LE) of the arm, gain importance. Although numerous studies have attempted to determine incidence rates, identify optimal diagnostic tests, enumerate efficacious treatment strategies and outline risk reduction guidelines for breast cancer–related lymphedema (BCRL), few groups have consistently agreed on any of these issues. As a result, standardized recommendations are still lacking. This review will summarize the latest data addressing all of these concerns in order to provide patients and health care providers with optimal, contemporary recommendations. Published incidence rates for BCRL vary substantially with a range of 2–65% based on surgical technique, axillary sampling method, radiation therapy fields treated, and the use of chemotherapy. Newer clinical assessment tools can potentially identify BCRL in patients with subclinical disease with prospective data suggesting that early diagnosis and management with noninvasive therapy can lead to excellent outcomes. Multiple therapies exist with treatments defined by the severity of BCRL present. Currently, the standard of care for BCRL in patients with significant LE is complex decongestive physiotherapy (CDP). Contemporary data also suggest that a multidisciplinary approach to the management of BCRL should begin prior to definitive treatment for breast cancer employing patient-specific surgical, radiation therapy, and chemotherapy paradigms that limit risks. Further, prospective clinical assessments before and after treatment should be employed to diagnose subclinical disease. In those patients who require aggressive locoregional management, prophylactic therapies and the use of CDP can help reduce the long-term sequelae of BCRL.

  1. Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction

    International Nuclear Information System (INIS)

    Lee, Myeong Gon; Han, Seung Ho; Lim, Cha Suk

    2015-01-01

    A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively

  2. Shape optimization of three-way reversing valve for cavitation reduction

    International Nuclear Information System (INIS)

    Lee, Myeong Gon; Han, Seung Ho; Lim, Cha Suk

    2015-01-01

    A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively

  3. Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong Gon; Han, Seung Ho [Donga Univ., Busan (Korea, Republic of); Lim, Cha Suk [Baek San Hi-Tech Co., Ltd., Seoul (Korea, Republic of)

    2015-11-15

    A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

  4. Shape optimization of three-way reversing valve for cavitation reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong Gon; Han, Seung Ho [Dept. of Mechanical Engineering, Dong-A University, Busan (Korea, Republic of); Lim, Cha Suk [Baek San Hi-Tech Co., Ltd., Yangsan(Korea, Republic of)

    2015-11-15

    A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

  5. Breaking Computational Barriers: Real-time Analysis and Optimization with Large-scale Nonlinear Models via Model Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Kevin Thomas [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; Drohmann, Martin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; Tuminaro, Raymond S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Computational Mathematics; Boggs, Paul T. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; Ray, Jaideep [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Optimization and Uncertainty Estimation

    2014-10-01

    -model errors. This enables ROMs to be rigorously incorporated in uncertainty-quantification settings, as the error model can be treated as a source of epistemic uncertainty. This work was completed as part of a Truman Fellowship appointment. We note that much additional work was performed as part of the Fellowship. One salient project is the development of the Trilinos-based model-reduction software module Razor , which is currently bundled with the Albany PDE code and currently allows nonlinear reduced-order models to be constructed for any application supported in Albany. Other important projects include the following: 1. ROMES-equipped ROMs for Bayesian inference: K. Carlberg, M. Drohmann, F. Lu (Lawrence Berkeley National Laboratory), M. Morzfeld (Lawrence Berkeley National Laboratory). 2. ROM-enabled Krylov-subspace recycling: K. Carlberg, V. Forstall (University of Maryland), P. Tsuji, R. Tuminaro. 3. A pseudo balanced POD method using only dual snapshots: K. Carlberg, M. Sarovar. 4. An analysis of discrete v. continuous optimality in nonlinear model reduction: K. Carlberg, M. Barone, H. Antil (George Mason University). Journal articles for these projects are in progress at the time of this writing.

  6. MURMoT. Design and Application of Microbial Uranium Reduction Monitoring Tools

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Frank E. [Univ. of Tennessee, Knoxville, TN (United States)

    2014-12-31

    Uranium (U) contamination in the subsurface is a major remediation challenge at many DOE sites. Traditional site remedies present enormous costs to DOE; hence, enhanced bioremediation technologies (i.e., biostimulation and bioaugmentation) combined with monitoring efforts are being considered as cost-effective corrective actions to address subsurface contamination. This research effort improved understanding of the microbial U reduction process and developed new tools for monitoring microbial activities. Application of these tools will promote science-based site management decisions that achieve contaminant detoxification, plume control, and long-term stewardship in the most efficient manner. The overarching hypothesis was that the design, validation and application of a suite of new molecular and biogeochemical tools advance process understanding, and improve environmental monitoring regimes to assess and predict in situ U immobilization. Accomplishments: This project (i) advanced nucleic acid-based approaches to elucidate the presence, abundance, dynamics, spatial distribution, and activity of metal- and radionuclide-detoxifying bacteria; (ii) developed proteomics workflows for detection of metal reduction biomarker proteins in laboratory cultures and contaminated site groundwater; (iii) developed and demonstrated the utility of U isotopic fractionation using high precision mass spectrometry to quantify U(VI) reduction for a range of reduction mechanisms and environmental conditions; and (iv) validated the new tools using field samples from U-contaminated IFRC sites, and demonstrated their prognostic and diagnostic capabilities in guiding decision making for environmental remediation and long-term site stewardship.

  7. Reduction of acidification from electricity. Generating industries in Taiwan by Life Cycle Assessment and Monte Carlo optimization

    International Nuclear Information System (INIS)

    Yang, Ying-Hsien; Lin, Sue-Jane; Lewis, Charles

    2009-01-01

    Life Cycle Assessment (LCA) is a rather common tool for reducing environmental impacts while striving for cleaner processes. This method yields reliable information when input data is sufficient; however, in uncertain systems Monte Carlo (MC) simulation is used as a means to compensate for insufficient data. The MC optimization model was constructed from environmental emissions, process parameters and operation constraints. The results of MC optimization allow for the prediction of environmental performance and the opportunity for environmental improvement. The case study presented here focuses on the acidification improvement regarding uncertain emissions and on the available operation of Taiwan's power plants. The boundary definitions of LCA were established for generation, fuel refining and mining. The model was constructed according to objective functional minimization of acidification potential, base loading, fuel cost and generation mix constraints. Scenario simulations are given the different variation of fuel cost ratios for Taiwan. The simulation results indicate that fuel cost was the most important parameter influencing the acidification potential for seven types of fired power. Owing to the low operational loading, coal-fired power is the best alternative for improving acidification. The optimal scenario for acidification improvement occurred at 15% of the fuel cost. The impact decreased from 1.39 to 1.24 kg SO 2 -eq./MWh. This reduction benefit was about 10.5% lower than the reference year. Regarding eco-efficiency at an optimum scenario level of 5%, the eco-efficiency value was - 12.4 $US/kg SO 2 -eq. Considering the environmental and economical impacts, results indicated that the ratio of coal-fired steam turbine should be reduced. (author)

  8. Adaptive parametric model order reduction technique for optimization of vibro-acoustic models: Application to hearing aid design

    Science.gov (United States)

    Creixell-Mediante, Ester; Jensen, Jakob S.; Naets, Frank; Brunskog, Jonas; Larsen, Martin

    2018-06-01

    Finite Element (FE) models of complex structural-acoustic coupled systems can require a large number of degrees of freedom in order to capture their physical behaviour. This is the case in the hearing aid field, where acoustic-mechanical feedback paths are a key factor in the overall system performance and modelling them accurately requires a precise description of the strong interaction between the light-weight parts and the internal and surrounding air over a wide frequency range. Parametric optimization of the FE model can be used to reduce the vibroacoustic feedback in a device during the design phase; however, it requires solving the model iteratively for multiple frequencies at different parameter values, which becomes highly time consuming when the system is large. Parametric Model Order Reduction (pMOR) techniques aim at reducing the computational cost associated with each analysis by projecting the full system into a reduced space. A drawback of most of the existing techniques is that the vector basis of the reduced space is built at an offline phase where the full system must be solved for a large sample of parameter values, which can also become highly time consuming. In this work, we present an adaptive pMOR technique where the construction of the projection basis is embedded in the optimization process and requires fewer full system analyses, while the accuracy of the reduced system is monitored by a cheap error indicator. The performance of the proposed method is evaluated for a 4-parameter optimization of a frequency response for a hearing aid model, evaluated at 300 frequencies, where the objective function evaluations become more than one order of magnitude faster than for the full system.

  9. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    Science.gov (United States)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths

  10. Small Moves, NUI. Small Moves: Beginning to Investigate Biogeochemical Exchange From the Seafloor to the Exterior of an Ice-Covered Ocean

    Science.gov (United States)

    German, C. R.; Boetius, A.

    2017-12-01

    We present results from two recent cruises, using the new Nereid Under Ice (NUI) vehicle aboard the FS Polarstern, in which we investigated biogeochemical fluxes from the deep seafloor of the Gakkel Ridge, an ultraslow spreading ridge that spans the ice-covered Arctic Ocean, and the mechanisms by which biogeochemical signals might be transferred from within the underlying ocean to the overlying Arctic ice. The scientific advances for this work progress hand in hand with technological capability. During a first cruise in 2014, our NUI-based investigations focused on photosynthetically-driven biogeochemical cycling in the uppermost water column and how to study such processes using in situ sensing immediately at and beneath the rough topography of the overlying ice-cover. For that work we relied entirely upon human-in-the-loop control of the vehicle via a single optical fiber light tether than provided real-time monitoring and control of the vehicle as it ranged laterally out under the ice up to 1km distant from the ship, conducting physical, geochemical and biological surveys. Instrumentation used for that work included multibeam mapping and imaging (digital still photographs and HD video), in situ spectroscopy to study light transmission through the ice and biogeochemical mapping of the ocean water column using a combination of CTD sensing, fluorometry and an in situ nitrate analyzer. Returning to the Arctic in 2016 we extended our exploration modes with NUI further, investigating for seafloor fluid flow at a shallow setting on the flanks of the Gakkel Ridge where the seabed rises from >4000m to movement of the ship (horizontal displacements of 1km or more) at the ice-covered ocean surface. While the existing NUI vehicle does not map directly to model payloads for future SLS missions to Europa or Enceladus it does provide for important small moves in the right direction.

  11. A Class-Specific Optimizing Compiler

    Directory of Open Access Journals (Sweden)

    Michael D. Sharp

    1993-01-01

    Full Text Available Class-specific optimizations are compiler optimizations specified by the class implementor to the compiler. They allow the compiler to take advantage of the semantics of the particular class so as to produce better code. Optimizations of interest include the strength reduction of class:: array address calculations, elimination of large temporaries, and the placement of asynchronous send/recv calls so as to achieve computation/communication overlap. We will outline our progress towards the implementation of a C++ compiler capable of incorporating class-specific optimizations.

  12. An Improved Method for Reconfiguring and Optimizing Electrical Active Distribution Network Using Evolutionary Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Nur Faziera Napis

    2018-05-01

    Full Text Available The presence of optimized distributed generation (DG with suitable distribution network reconfiguration (DNR in the electrical distribution network has an advantage for voltage support, power losses reduction, deferment of new transmission line and distribution structure and system stability improvement. However, installation of a DG unit at non-optimal size with non-optimal DNR may lead to higher power losses, power quality problem, voltage instability and incremental of operational cost. Thus, an appropriate DG and DNR planning are essential and are considered as an objective of this research. An effective heuristic optimization technique named as improved evolutionary particle swarm optimization (IEPSO is proposed in this research. The objective function is formulated to minimize the total power losses (TPL and to improve the voltage stability index (VSI. The voltage stability index is determined for three load demand levels namely light load, nominal load, and heavy load with proper optimal DNR and DG sizing. The performance of the proposed technique is compared with other optimization techniques, namely particle swarm optimization (PSO and iteration particle swarm optimization (IPSO. Four case studies on IEEE 33-bus and IEEE 69-bus distribution systems have been conducted to validate the effectiveness of the proposed IEPSO. The optimization results show that, the best achievement is done by IEPSO technique with power losses reduction up to 79.26%, and 58.41% improvement in the voltage stability index. Moreover, IEPSO has the fastest computational time for all load conditions as compared to other algorithms.

  13. Influence of harvesting on biogeochemical exchange in sheetflow and soil processes in a eutrophic floodplain forest

    Science.gov (United States)

    B.G. Lockaby; R.G. Clawson; K. Flynn; Robert Rummer; S. Meadows; B Stokes; John A. Stanturf

    1997-01-01

    Floodplain forests contribute to the maintenance of water quality as a result of various biogeochemical transformations which occur within them. In particular, they can serve as sinks for nutrient run-off from adjacent uplands or as nutrient transformers as water moves downstream. However, little is known about the potential that land management activities may have for...

  14. Optimization of the nitrous vapors experimental conditions production by nitric acid electrochemical reduction

    International Nuclear Information System (INIS)

    Lemaire, M.

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be produced by electrochemical reduction of nitric acid. This is an interesting alternative to the existing process because no wastes are generated. voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0,05 V SHE and between 0,5 V SHE and 1 V SHE . The highest potential region reduction mechanism was studied by: classical micro-electrolysis methods, macro-electrolysis methods, infrared spectroscopy coupled to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric reduction can also explained by an other chemical reaction. If the potential value of platinum electrode is above 0,8 V SHE , products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  15. Optimization of filtration for the reduction of lung dose from Rn decay products: Part II--Experimental

    International Nuclear Information System (INIS)

    Curling, C.A.; Rudnick, S.N.; Harrington, D.P.; Moeller, D.W.

    1990-01-01

    Research was performed to determine the validity of a model developed to theoretically predict the optimal characteristics of a recirculating filter system for minimizing the lung dose to a person breathing airborne Rn progeny. Four designs, each with different filter thicknesses, solidities, and fiber diameters, were tested to evaluate the accuracy of the model over a range of parameters. Increasing thicknesses were then tested for the most effective filter design to provide a more definitive comparison of experimental data and model predictions for this key parameter. The experimental data supported the conclusion that the most effective design was a thin filter of low solidity composed of coarse fibers. Although the maximum reduction in the dose-equivalent rate observed in these experiments was 50%, this was largely due to constraints on the experimental arrangements. With properly constructed filter units, much better removal efficiencies can undoubtedly be achieved

  16. Global biogeochemical cycle of vanadium.

    Science.gov (United States)

    Schlesinger, William H; Klein, Emily M; Vengosh, Avner

    2017-12-26

    Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 10 9 g V/y) and extraction and combustion of fossil fuels (600 × 10 9 g V/y), humans are the predominant force in the geochemical cycle of V at Earth's surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced-with about 40 × 10 9 g V/y to 50 × 10 9 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.

  17. Non-heuristic reduction of the graph in graph-cut optimization

    International Nuclear Information System (INIS)

    Malgouyres, François; Lermé, Nicolas

    2012-01-01

    During the last ten years, graph cuts had a growing impact in shape optimization. In particular, they are commonly used in applications of shape optimization such as image processing, computer vision and computer graphics. Their success is due to their ability to efficiently solve (apparently) difficult shape optimization problems which typically involve the perimeter of the shape. Nevertheless, solving problems with a large number of variables remains computationally expensive and requires a high memory usage since underlying graphs sometimes involve billion of nodes and even more edges. Several strategies have been proposed in the literature to improve graph-cuts in this regards. In this paper, we give a formal statement which expresses that a simple and local test performed on every node before its construction permits to avoid the construction of useless nodes for the graphs typically encountered in image processing and vision. A useless node is such that the value of the maximum flow in the graph does not change when removing the node from the graph. Such a test therefore permits to limit the construction of the graph to a band of useful nodes surrounding the final cut.

  18. Optimization of conditions to produce nitrous gases by electrochemical reduction of nitric acid

    International Nuclear Information System (INIS)

    Lemaire, M.; CEA Centre d'Etudes de la Vallee du Rhone, 30 -Marcoule

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be an produced by electrochemical reduction of nitric acid. This could be an interesting alternative to the usual process because no wastes are generated. Voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0.05 V S HE and 0.3 V S HE and O.5 V S HE and 1 V S HE. The highest potential region reduction mechanism was studies by: classical micro-electrolysis methods; macro-electrolysis methods; infra-red spectroscopy couplet to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric acid reduction can also be explained by an other chemical reaction. In the potential value of platinum electrode is above 0.8 V S HE, products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  19. Biogeochemical sensor performance in the SOCCOM profiling float array

    Science.gov (United States)

    Johnson, Kenneth S.; Plant, Joshua N.; Coletti, Luke J.; Jannasch, Hans W.; Sakamoto, Carole M.; Riser, Stephen C.; Swift, Dana D.; Williams, Nancy L.; Boss, Emmanuel; Haëntjens, Nils; Talley, Lynne D.; Sarmiento, Jorge L.

    2017-08-01

    The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inaccurate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The initial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory measurements made on samples collected by a hydrographic cast with a rosette sampler at the float deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet average oxygen data are accurate to 1 ± 1%, nitrate to within 0.5 ± 0.5 µmol kg-1, and pH to 0.005 ± 0.007, where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon concentration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate to with 35 mg C m-3 or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll a concentrations are evaluated.Plain Language SummaryThe ocean science community must move toward greater use of autonomous platforms and sensors if we are to extend our knowledge of the effects of climate driven change within the ocean. Essential to this shift in observing strategies is an understanding of the performance that can be obtained from biogeochemical sensors on platforms deployed for years and the

  20. Biogeochemical studies of technetium in marine and estuarine ecosystems. Progress report, 1 July 1980-31 July 1981

    International Nuclear Information System (INIS)

    Beasley, T.M.

    1981-01-01

    This report summarizes progress from July 1980 through July 1981 on studies dealing with the biogeochemical behavior of technetium in marine and estuarine ecosystems. While the duration of the research has been slightly over two years, the results of our experiments have substantially extended our understanding of the environmental behavior of Tc

  1. Topology optimization of two-dimensional elastic wave barriers

    DEFF Research Database (Denmark)

    Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.

    2016-01-01

    harmonic sources at a frequency in a given range, a uniform reduction of the response over a frequency range is pursued. The minimal insertion loss over the frequency range of interest is maximized. The resulting design contains features at depth leading to a reduction of the insertion loss at the lowest...... frequencies and features close to the surface leading to a reduction at the highest frequencies. For broadband sources, the average insertion loss in a frequency range is optimized. This leads to designs that especially reduce the response at high frequencies. The designs optimized for the frequency averaged...

  2. Reconstructing disturbances and their biogeochemical consequences over multiple timescales

    Science.gov (United States)

    McLauchlan, Kendra K.; Higuera, Philip E.; Gavin, Daniel G.; Perakis, Steven S.; Mack, Michelle C.; Alexander, Heather; Battles, John; Biondi, Franco; Buma, Brian; Colombaroli, Daniele; Enders, Sara K.; Engstrom, Daniel R.; Hu, Feng Sheng; Marlon, Jennifer R.; Marshall, John; McGlone, Matt; Morris, Jesse L.; Nave, Lucas E.; Shuman, Bryan; Smithwick, Erica A.H.; Urrego, Dunia H.; Wardle, David A.; Williams, Christopher J.; Williams, Joseph J.

    2014-01-01

    Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilience.

  3. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2011-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...... data, clamping conditions, and drill geometry were varied in order to optimize the process and reach the desired quality. The results revealed possible reduction of burr occurrence on both the entry and exit side of the sheet, requiring no additional deburring. The demand on the uniform appearance...... of drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....

  4. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2012-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...... data, clamping conditions, and drill geometry were varied in order to optimize the process and reach the desired quality. The results revealed possible reduction of burr occurrence on both the entry and exit side of the sheet, requiring no additional deburring. The demand on the uniform appearance...... of drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....

  5. A comparative analysis to quantify the biogeochemical and biogeophysical cooling effects on climate of a white mustard cover crop

    Science.gov (United States)

    Ferlicoq, Morgan; Ceschia, Eric; Brut, Aurore; Tallec, Tiphaine; Carrer, Dominique; Pique, Gaetan; Ferroni, Nicole

    2017-04-01

    During the COP21, agriculture was recognised as a strategic sector and an opportunity to strengthen climate mitigation. In particular, the "4 per 1000" initiative relies upon solutions that refer to agro-ecology, conservation agriculture, … that could lead to increase carbon storage. Among those agro-ecology practices, including cover crops during fallow periods is considered as a fundamental agronomic lever for storing carbon. However, if biogeochemical benefits of cover-crops (CC) have already been addressed, their biogeophysical effects on climate have never been quantified and compared to biogeochemical effects. This comparative study (CC vs. bare soil), quantified and compared biogeochemical (including carbon storage) and biophysical effects (albedo and energy partitioning effect) of CC on climate. An experimental campaign was performed in 2013 in Southwest France, during the fallow period following a winter-wheat crop (and before a maize). The experimental plot was divided in two: the northern part was maintained in bare soil (BS) while white-mustard (WM) was grown during 3-months on the southern part. On each subplot, continuous measurements of CO2, latent and sensible fluxes (by eddy covariance) and solar radiation were acquired. Also, N2O emissions were measured by means of automatic chambers on each subplots. Moreover, by using a Life-Cycle-Analysis approach, each component of the greenhouse gas budget (GHGB) was quantified for each subplot, including emissions associated to field operations (FO). To quantify the albedo induced radiative forcing (RFα) caused by the white-mustard, the bare soil subplot was used as a reference state (IPCC, 2007). Finally, the net radiative forcing for each subplot was calculated as the sum of biogeochemical and biogeophysical (albedo effect) radiative forcing. The white-mustard allowed a net CO2 fixation of 63 g C-eq.m-2, corresponding to 20% of the net annual CO2 flux that year (-332 g C-eq.m-2). Through the WM seeds

  6. The nitrate-reduction gene cluster components exert lineage-dependent contributions to optimization of Sinorhizobium symbiosis with soybeans.

    Science.gov (United States)

    Liu, Li Xue; Li, Qin Qin; Zhang, Yun Zeng; Hu, Yue; Jiao, Jian; Guo, Hui Juan; Zhang, Xing Xing; Zhang, Biliang; Chen, Wen Xin; Tian, Chang Fu

    2017-12-01

    Receiving nodulation and nitrogen fixation genes does not guarantee rhizobia an effective symbiosis with legumes. Here, variations in gene content were determined for three Sinorhizobium species showing contrasting symbiotic efficiency on soybeans. A nitrate-reduction gene cluster absent in S. sojae was found to be essential for symbiotic adaptations of S. fredii and S. sp. III. In S. fredii, the deletion mutation of the nap (nitrate reductase), instead of nir (nitrite reductase) and nor (nitric oxide reductase), led to defects in nitrogen-fixation (Fix - ). By contrast, none of these core nitrate-reduction genes were required for the symbiosis of S. sp. III. However, within the same gene cluster, the deletion of hemN1 (encoding oxygen-independent coproporphyrinogen III oxidase) in both S. fredii and S. sp. III led to the formation of nitrogen-fixing (Fix + ) but ineffective (Eff - ) nodules. These Fix + /Eff - nodules were characterized by significantly lower enzyme activity of glutamine synthetase indicating rhizobial modulation of nitrogen-assimilation by plants. A distant homologue of HemN1 from S. sojae can complement this defect in S. fredii and S. sp. III, but exhibited a more pleotropic role in symbiosis establishment. These findings highlighted the lineage-dependent optimization of symbiotic functions in different rhizobial species associated with the same host. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Optimal recombination in genetic algorithms for combinatorial optimization problems: Part I

    Directory of Open Access Journals (Sweden)

    Eremeev Anton V.

    2014-01-01

    Full Text Available This paper surveys results on complexity of the optimal recombination problem (ORP, which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results. Part I presents the basic principles of optimal recombination with a survey of results on Boolean Linear Programming Problems. Part II (to appear in a subsequent issue is devoted to the ORPs for problems which are naturally formulated in terms of search for an optimal permutation.

  8. The impact of uncertainty on optimal emission policies

    Science.gov (United States)

    Botta, Nicola; Jansson, Patrik; Ionescu, Cezar

    2018-05-01

    We apply a computational framework for specifying and solving sequential decision problems to study the impact of three kinds of uncertainties on optimal emission policies in a stylized sequential emission problem.We find that uncertainties about the implementability of decisions on emission reductions (or increases) have a greater impact on optimal policies than uncertainties about the availability of effective emission reduction technologies and uncertainties about the implications of trespassing critical cumulated emission thresholds. The results show that uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies. In other words, delaying emission reductions to the point in time when effective technologies will become available is suboptimal when these uncertainties are accounted for rigorously. By contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make early emission reductions less rewarding.

  9. Carbon and Nitrogen in the Lower Basin of the Paraíba do Sul River, Southeastern Brazil: Element fluxes and biogeochemical processes

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Martinelli

    2011-08-01

    Full Text Available The study was conducted in the lower basin of the Paraíba do Sul River (PSR, in which 57,000 km2 of the basin is located in the Brazilian states of São Paulo, Minas Gerais and Rio de Janeiro. We proposed to identify the main sources of C and N fluxes in the PSR waters, to evaluate biogeochemical processes in the watershed, and to estimate C and N riverine loads to the Atlantic Ocean in the context of the sugarcane plantation expansion for ethanol production. Riverine water samples were collected at seven stations along 12 months. Physicochemical and limnological parameters, as well as discharge, were measured together with organic and inorganic C and N species in the dissolved and suspended particulate material. C and N concentrations in bed fluvial sediments, and suspended particulate material were measured, and their elemental ([C:N]a and isotopic (δ13C compositions were compared with the [C:N]a and δ13C of the following sources: riparian soils, insular flooded soils, aquatic macrophytes, phytoplankton, pasture grass, sugarcane, sugarcane byproducts, and forest litterfall. Temporal patterns in the physicochemical and limnological environment were correlated to discharge. It also was observed that sugar cane production can increase riverine C and N fluxes. Riparian soils inputs were larger than insular soils, which was likely to act as a biogeochemical barrier. Effects of the macrophytes on riverine C and N were unclear, as well as urban sewage disposal effects. Although the PSR loads represented a very small percentage of the fluvial input to global biogeochemical cycles, we suggest that this and other medium sized watersheds in Eastern and Southeastern South America can be significant contributors to the continental biogeochemical riverine loads to the ocean, if their loads are considered together.

  10. Optimization of the Pd-Fe-Mo Catalysts for Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Lee, Yeayeon; Jang, Jeongseok; Lee, Jin Goo; Jeon, Ok Sung; Kim, Hyeong Su; Hwang, Ho Jung; Shul, Yong Gun

    2016-01-01

    Highlights: • Pd-Mo-Fe catalysts show high catalytic activity and stability for oxygen-reduction reactions in acid media. • The optimum compositions were 7.5:1.5:1.0 for Pd-Fe-Mo, and the optimum temperatures were 500 °C. • The Pd-Fe-Mo catalysts were successfully applied to the PEMFC cathode, showing ∼500 mA cm −1 at 0.6 V. • The lattice constant was strongly related to the activity and stability of the catalysts for oxygen-reduction reactions. - Abstract: Highly active and durable non-platinum catalysts for oxygen-reduction reaction (ORR) have been developed for energy conversion devices such as proton-exchange membrane fuel cells (PEMFCs). In this study, Pd-Fe-Mo catalyst is reported as a non-platinum catalyst for ORR. The atomic ratio and annealing temperatures are controlled on the catalysts to understand interplay between their physical and chemical properties and electrochemical activities. The Pd-Fe-Mo catalyst optimized with 7.5:1.5:1.0 of the atomic ratio and 500 °C of the annealing temperature shows 32.18 mA mg −1 PGM (PGM: platinum group metal) of the kinetic current density at 0.9 V for ORR, which is comparable to that of commercial Pt/C catalyst. The current density is degraded to 6.20 mA mg −1 PGM after 3000 cycling of cyclic voltammetry, but it is greatly enhanced value compared to other non-platinum catalysts. In actual application to PEMFCs, the 20% Pd-Fe-Mo catalyst supported on carbons exhibits a high performance of 506 mA cm −2 at 0.6 V. The results suggest that the Pd-Fe-Mo catalyst can be a good candidate for non-platinum ORR catalysts.

  11. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    Science.gov (United States)

    Alexander, Richard B.; Böhlke, John Karl; Boyer, Elizabeth W.; David, Mark B.; Harvey, Judson W.; Mulholland, Patrick J.; Seitzinger, Sybil P.; Tobias, Craig R.; Tonitto, Christina; Wollheim, Wilfred M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  12. Biogeochemical-Argo: achievements, challenges for the future and potential synergies with other components of ocean observation systems

    Science.gov (United States)

    Claustre, Hervé; Johnson, Ken

    2017-04-01

    The recently launched Biogeochemical-Argo (BGC-Argo) program aims at developing a global network of biogeochemical sensors on Argo profiling floats for acquiring long-term high-quality time-series of oceanic properties. BGC-Argo is in particular poised to address a number of challenges in ocean science (e.g. hypoxia, carbon uptake, ocean acidification, biological-carbon pump and phytoplankton communities), topics that are difficult, if not impossible, to address with our present observing assets. Presently six variables are considered as core BGC-Argo variables (O2, NO3, pH, Chla, suspended particles and downwelling irradiance). Historically, BGC-Argo has been initiated through small-scale "showcase" projects progressively scaling up into regional case studies essentially addressing key biological pump-related questions in specific regions (e.g. sub-tropical gyres, North Atlantic, Southern Ocean). Now BGC-Argo is transitioning towards a global and sustained observation system thanks to progressive international coordination of national contributions and to increasingly mature and efficient data management and distribution systems. In this presentation, we will highlight a variety of results derived from BGC-Argo observations and encompassing a wide range of topics related to ocean biogeochemistry. Challenges for the future and long-term sustainability of the system will be addressed in particular with respect to maintaining a high-quality and interoperable dataset over long-term. Part of this can be achieved through a tight interaction with programs (e.g. GOSHIP) and their historical databases, which should constitute a corner stone to assess data quality. Example on the interplay between BGC-Argo and GlodapV2 databases will be particularly exemplified in this context. Furthermore, we will illustrate the potential synergies between synoptically measured surface satellite-quantities and their vertically resolved (BGC-Argo) counterparts into the development of 3D

  13. Numerical investigation of optimal yaw misalignment and collective pitch angle for load imbalance reduction of rigid and flexible HAWT blades under sheared inflow

    International Nuclear Information System (INIS)

    Jeong, Min-Soo; Cha, Myung-Chan; Kim, Sang-Woo; Lee, In

    2015-01-01

    Wind shear can strongly influence the cyclic loading on horizontal axis wind turbine blades. These load fluctuation causes a variation of power output and introduces fatigue load. Thus, individual pitch controllers have been developed that are focused on the load alleviations, however, comes at a price of actuator requirements for control. Moreover, these controllers are unable to apply to already existing wind turbines with active yaw and collective pitch control system. Therefore, the investigations for minimizing load imbalance through the adjustments of yaw misalignment and collective pitch angle are implemented for the rigid and flexible blades under the sheared inflow. By applying the optimization process based on a sequential quadratic programming approach, the optimal yaw and pitch angle can be estimated. Then, the numerical simulations for predicting the performance are performed. The results showed that the fluctuation range of the root flapwise bending moment for the rigid blades can be reduced by 84.5%, whereas the vibratory bending moment for the flexible blades can be reduced by up to approximately 82.4% in the best case. Therefore, the magnitudes of load imbalance can be minimized by the adjustment of the optimal yaw misalignment and collective pitch angle without any power loss. - Highlights: • We propose a novel method for the reduction of load imbalance under sheared inflow. • We estimate optimal yaw misalignment and collective pitch angle through optimization. • Numerical results of performance are predicted for rigid and flexible blades. • By applying optimal angles, load variations are reduced without any power loss

  14. Basic study for Joint Implementation Pipeline System Optimization Project including rehabilitation of gas pipeline in Ukraine for greenhouse gas reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a study was conducted of a project for repair/optimization of the Shebelinka, Dikanka-Kyiv, gas pipeline system in the Republic of Ukraine. As a result of the study, the following plans were proposed. The gas turbine compressor now in use has been used more than 30 years, and is needed to be changed due to the superannuation. Changes are needed of the equipment used for pipeline inspection, corrosion prevention equipment, damaged data collecting equipment, pressure detection automatic drive valve, etc. Further needed are a portable compressor by which repair work can be done without gas release into the atmospheric air. The investment required for repair/installation of these equipment totaled approximately 216 million dollars. This brings the reduction in greenhouse effect gas emissions of 512,000 tons/year, and the energy conservation of 103,000 tons/year of crude oil or its equivalent. These are estimated at about 10 million dollars in greenhouse effect gas reduction and at 15 million dollars in energy conservation. (NEDO)

  15. The Seasonal Cycle of Carbon in the Southern Pacific Ocean Observed from Biogeochemical Profiling Floats

    Science.gov (United States)

    Sarmiento, J. L.; Gray, A. R.; Johnson, K. S.; Carter, B.; Riser, S.; Talley, L. D.; Williams, N. L.

    2016-02-01

    The Southern Ocean is thought to play an important role in the ocean-atmosphere exchange of carbon dioxide and the uptake of anthropogenic carbon dioxide. However, the total number of observations of the carbonate system in this region is small and heavily biased towards the summer. Here we present 1.5 years of biogeochemical measurements, including pH, oxygen, and nitrate, collected by 11 autonomous profiling floats deployed in the Pacific sector of the Southern Ocean in April 2014. These floats sampled a variety of oceanographic regimes ranging from the seasonally ice-covered zone to the subtropical gyre. Using an algorithm trained with bottle measurements, alkalinity is estimated from salinity, temperature, and oxygen and then used together with the measured pH to calculate total carbon dioxide and pCO2 in the upper 1500 dbar. The seasonal cycle in the biogeochemical quantities is examined, and the factors governing pCO2 in the surface waters are analyzed. The mechanisms driving the seasonal cycle of carbon are further investigated by computing budgets of heat, carbon, and nitrogen in the mixed layer. Comparing the different regimes sampled by the floats demonstrates the complex and variable nature of the carbon cycle in the Southern Ocean.

  16. Optimal dose reduction in computed tomography methodologies predicted from real-time dosimetry

    Science.gov (United States)

    Tien, Christopher Jason

    Over the past two decades, computed tomography (CT) has become an increasingly common and useful medical imaging technique. CT is a noninvasive imaging modality with three-dimensional volumetric viewing abilities, all in sub-millimeter resolution. Recent national scrutiny on radiation dose from medical exams has spearheaded an initiative to reduce dose in CT. This work concentrates on dose reduction of individual exams through two recently-innovated dose reduction techniques: organ dose modulation (ODM) and tube current modulation (TCM). ODM and TCM tailor the phase and amplitude of x-ray current, respectively, used by the CT scanner during the scan. These techniques are unique because they can be used to achieve patient dose reduction without any appreciable loss in image quality. This work details the development of the tools and methods featuring real-time dosimetry which were used to provide pioneering measurements of ODM or TCM in dose reduction for CT.

  17. A Summary of Research on Energy Saving and Emission Reduction of Transportation

    Science.gov (United States)

    Cheng, Dongxiang; Wu, Lufen

    2017-12-01

    Road transport is an important part of transportation, and road in the field of energy-saving emission reduction is a very important industry. According to the existing problems of road energy saving and emission reduction, this paper elaborates the domestic and international research on energy saving and emission reduction from three aspects: road network optimization, pavement material and pavement maintenance. Road network optimization may be overlooked, and the research content is still relatively preliminary; pavement materials mainly from the asphalt pavement temperature mixed asphalt technology research; pavement maintenance technology development is relatively comprehensive.

  18. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework

    Science.gov (United States)

    Best management practices (BMPs) are perceived as being effective in reducing nutrient loads transported from non-point sources (NPS) to receiving water bodies. The objective of this study was to develop a modeling-optimization framework that can be used by watershed management p...

  19. Quantifying the Variability of CH4 Emissions from Pan-Arctic Lakes with Lake Biogeochemical and Landscape Evolution Models

    Science.gov (United States)

    Tan, Z.; Zhuang, Q.

    2014-12-01

    Recent studies in the arctic and subarctic show that CH4 emissions from pan-arctic lakes are playing much more significant roles in the regional carbon cycling than previously estimated. Permafrost thawing due to pronounced warming at northern high latitudes affects lake morphology, changing its CH4 emissions. Thermokarst can enlarge the extent of artic lakes, exposing stable ancient carbon buried in the permafrost zone for degradation and changing a previously known carbon sink to a large carbon source. In some areas, the thawing of subarctic discontinuous and isolated permafrost can diminish thermokarst lakes. To date, few models have considered these important hydrological and biogeochemical processes to provide adequate estimation of CH4 emissions from these lakes. To fill this gap, we have developed a process-based climate-sensitive lake biogeochemical model and a landscape evolution model, which have been applied to quantify the state and variability of CH4 emissions from this freshwater system. Site-level experiments show the models are capable to capture the spatial and temporal variability of CH4 emissions from lakes across Siberia and Alaska. With the lake biogeochemical model solely, we estimate that the magnitude of CH4 emissions from lakes is 13.2 Tg yr-1 in the north of 60 ºN at present, which is on the same order of CH4 emissions from northern high-latitude wetlands. The maximum increment is 11.8 Tg CH4 yr-1 by the end of the 21st century when the worst warming scenario is assumed. We expect the landscape evolution model will improve the existing estimates.

  20. The significance of biogeochemical cycles of macro- and microelements in connection with man-made evolution of the living matter

    International Nuclear Information System (INIS)

    Ermakov, V.V.

    2008-01-01

    Biogeochemistry as an integrated science studying the elemental composition of the living matter and its role in migration, transformation, accumulation of chemical elements and their compounds in the biosphere, has again become the leading scientific branch highlighting the man-made evolution of the planet and the pathways of interaction between the man and environment. Nowadays the central problem of biogeochemistry as science about the biosphere is that of pollution of the different taxons of the biosphere. In the most case man-made factors effect on the different organisms and the flow of chemical elements changing their local, regional and global biogeochemical cycles. The concept of balance of O 2 , CO 2 and H 2 O as general condition of the sustained development of the biosphere is considered. The questions of biological rhythms, appearance of microelementhoses and modern systemic biogeochemical methodology of assessment of taxons of the biosphere are considered too

  1. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    Science.gov (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and

  2. Compensatory vapor loss and biogeochemical attenuation along flowpaths mute the water resources impacts of insect-induced forest mortality

    Science.gov (United States)

    Biederman, J. A.; Brooks, P. D.; Harpold, A. A.; Gochis, D. J.; Ewers, B. E.; Reed, D. E.; Gutmann, E. D.

    2013-12-01

    Forested montane catchments are critical to the amount and quality of downstream water resources. In western North America more than 60 million people rely on mountain precipitation, and water managers face uncertain response to an unprecedented forest die-off from mountain pine beetle (MPB) infestation. Reduced snow interception and transpiration are expected to increase streamflow, while increased organic matter decay is expected to increase biogeochemical stream fluxes. Tree- to plot-scale observations have documented some of the expected changes, but there has been little significant change to streamflow or water quality at the larger scales relevant to water resources. A critical gap exists in our understanding of why tree-scale process changes have not led to the expected, large-scale increases in streamflow and biogeochemical fluxes. We address this knowledge gap with observations of water and biogeochemical fluxes at nested spatial scales including tree, hillslope, and catchments from 3 to 700 ha with more than 75% mortality. Catchment discharge showed reduced water yield consistent with co-located eddy covariance observations showing increased vapor losses following MPB. Stable water isotopes showed progressive kinetic fractionation (i.e. unsaturated transition layer above the evaporating surface) in snowpack, soil water and streams indicating greater abiotic evaporation from multiple water sources offsetting decreased interception and transpiration. In the 3rd to 5th years following MPB forest mortality, soil water DOC and DON were similar beneath killed and healthy trees, but concentrations were elevated 2-10 times in groundwater of MPB-impacted sites as compared to unimpacted. Stream water DOC and DON were about 3 times as large during snowmelt runoff in ephemeral zero-order channels of MPB-impacted sites compared to unimpacted. Processing in the headwater streams of MPB-impacted forests rapidly attenuated dissolved organic matter. From the MPB

  3. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.

    Science.gov (United States)

    Zyout, Imad; Czajkowska, Joanna; Grzegorzek, Marcin

    2015-12-01

    The high number of false positives and the resulting number of avoidable breast biopsies are the major problems faced by current mammography Computer Aided Detection (CAD) systems. False positive reduction is not only a requirement for mass but also for calcification CAD systems which are currently deployed for clinical use. This paper tackles two problems related to reducing the number of false positives in the detection of all lesions and masses, respectively. Firstly, textural patterns of breast tissue have been analyzed using several multi-scale textural descriptors based on wavelet and gray level co-occurrence matrix. The second problem addressed in this paper is the parameter selection and performance optimization. For this, we adopt a model selection procedure based on Particle Swarm Optimization (PSO) for selecting the most discriminative textural features and for strengthening the generalization capacity of the supervised learning stage based on a Support Vector Machine (SVM) classifier. For evaluating the proposed methods, two sets of suspicious mammogram regions have been used. The first one, obtained from Digital Database for Screening Mammography (DDSM), contains 1494 regions (1000 normal and 494 abnormal samples). The second set of suspicious regions was obtained from database of Mammographic Image Analysis Society (mini-MIAS) and contains 315 (207 normal and 108 abnormal) samples. Results from both datasets demonstrate the efficiency of using PSO based model selection for optimizing both classifier hyper-parameters and parameters, respectively. Furthermore, the obtained results indicate the promising performance of the proposed textural features and more specifically, those based on co-occurrence matrix of wavelet image representation technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Deriving forest fire ignition risk with biogeochemical process modelling.

    Science.gov (United States)

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  5. Deriving forest fire ignition risk with biogeochemical process modelling☆

    Science.gov (United States)

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  6. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    Le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea andplay a major role in the processing of organic matter. We investigated the biogeochemical consequencesof these transports on particulate organic matter at the molecular level in the southern North

  7. Biogeochemical and Optical Analysis of Coastal DOM for Satellite Retrieval of Terrigenous DOM in the U.S. Middle Atlantic Bight

    Science.gov (United States)

    Mannino, A.; Dyda, R. Y.; Hernes, P. J.; Hooker, Stan; Hyde, Kim; Novak, Mike

    2012-01-01

    Estuaries and coastal ocean waters experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine/estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements (elemental content, molecular analyses), optical properties (absorption) and remote sensing to examine terrestrial DOM contributions into the U.S. Middle Atlantic Bight (MAB). We measured lignin phenol composition, DOC and CDOM absorption within the Chesapeake and Delaware Bay mouths, plumes and adjacent coastal ocean waters to derive empirical relationships between CDOM and biogeochemical measurements for satellite remote sensing application. Lignin ranged from 0.03 to 6.6 ug/L between estuarine and outer shelf waters. Our results demonstrate that satellite-derived CDOM is useful as a tracer of terrigenous DOM in the coastal ocean

  8. The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study

    Science.gov (United States)

    Moriarty, Julia M.; Harris, Courtney K.; Fennel, Katja; Friedrichs, Marjorie A. M.; Xu, Kehui; Rabouille, Christophe

    2017-04-01

    Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhône subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhône Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water

  9. Optimal placement of distributed generation in distribution networks ...

    African Journals Online (AJOL)

    This paper proposes the application of Particle Swarm Optimization (PSO) technique to find the optimal size and optimum location for the placement of DG in the radial distribution networks for active power compensation by reduction in real power losses and enhancement in voltage profile. In the first segment, the optimal ...

  10. A role for biological optimization within the current treatment planning paradigm

    International Nuclear Information System (INIS)

    Das, Shiva

    2009-01-01

    Purpose: Biological optimization using complication probability models in intensity modulated radiotherapy (IMRT) planning has tremendous potential for reducing radiation-induced toxicity. Nevertheless, biological optimization is almost never clinically utilized, probably because of clinician confidence in, and familiarity with, physical dose-volume constraints. The method proposed here incorporates biological optimization after dose-volume constrained optimization so as to improve the dose distribution without detrimentally affecting the important reductions achieved by dose-volume optimization (DVO). Methods: Following DVO, the clinician/planner first identifies ''fixed points'' on the target and organ-at-risk (OAR) dose-volume histograms. These points represent important DVO plan qualities that are not to be violated within a specified tolerance. Biological optimization then maximally reduces a biological metric (illustrated with equivalent uniform dose (EUD) in this work) while keeping the fixed dose-volume points within tolerance limits, as follows. Incremental fluence adjustments are computed and applied to incrementally reduce the OAR EUDs while approximately maintaining the fixed points. This process of incremental fluence adjustment is iterated until the fixed points exceed tolerance. At this juncture, remedial fluence adjustments are computed and iteratively applied to bring the fixed points back within tolerance, without increasing OAR EUDs. This process of EUD reduction followed by fixed-point correction is repeated until no further EUD reduction is possible. The method is demonstrated in the context of a prostate cancer case and olfactory neuroblastoma case. The efficacy of EUD reduction after DVO is evaluated by comparison to an optimizer with purely biological (EUD) OAR objectives. Results: For both cases, EUD reduction after DVO additionally reduced doses, especially high doses, to normal organs. For the prostate case, bladder/rectum EUDs were

  11. Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis

    Directory of Open Access Journals (Sweden)

    D. Béal

    2010-02-01

    Full Text Available In biogeochemical models coupled to ocean circulation models, vertical mixing is an important physical process which governs the nutrient supply and the plankton residence in the euphotic layer. However, vertical mixing is often poorly represented in numerical simulations because of approximate parameterizations of sub-grid scale turbulence, wind forcing errors and other mis-represented processes such as restratification by mesoscale eddies. Getting a sufficient knowledge of the nature and structure of these errors is necessary to implement appropriate data assimilation methods and to evaluate if they can be controlled by a given observation system.

    In this paper, Monte Carlo simulations are conducted to study mixing errors induced by approximate wind forcings in a three-dimensional coupled physical-biogeochemical model of the North Atlantic with a 1/4° horizontal resolution. An ensemble forecast involving 200 members is performed during the 1998 spring bloom, by prescribing perturbations of the wind forcing to generate mixing errors. The biogeochemical response is shown to be rather complex because of nonlinearities and threshold effects in the coupled model. The response of the surface phytoplankton depends on the region of interest and is particularly sensitive to the local stratification. In addition, the statistical relationships computed between the various physical and biogeochemical variables reflect the signature of the non-Gaussian behaviour of the system. It is shown that significant information on the ecosystem can be retrieved from observations of chlorophyll concentration or sea surface temperature if a simple nonlinear change of variables (anamorphosis is performed by mapping separately and locally the ensemble percentiles of the distributions of each state variable on the Gaussian percentiles. The results of idealized observational updates (performed with perfect observations and neglecting horizontal correlations

  12. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    Science.gov (United States)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  13. OPtimal backlight scanning for 3D crosstalk reduction in LCD TV

    DEFF Research Database (Denmark)

    Burini, Nino; Shu, Xiao; Jiao, Liangbao

    2013-01-01

    This work presents a method to determine the optimal backlight scanning signals to minimize crosstalk for time-sequential stereoscopic 3D on LCD TV with active shutter glasses. The solution is obtained through optimization of the variables defined by a model of backlight scanning that considers...... important aspects like liquid crystal transitions and light diffusion, subject to constraints that ensure the rendition of a uniform backlight. Compared with basic backlight scanning, the proposed method can increase luminance at a given crosstalk level or reduce crosstalk at a given luminance level....

  14. Biogeochemical cycles at the sulfate-methane transition zone (SMTZ) and geochemical characteristics of the pore fluids offshore southwestern Taiwan

    Science.gov (United States)

    Hu, Ching-Yi; Frank Yang, Tsanyao; Burr, George S.; Chuang, Pei-Chuan; Chen, Hsuan-Wen; Walia, Monika; Chen, Nai-Chen; Huang, Yu-Chun; Lin, Saulwood; Wang, Yunshuen; Chung, San-Hsiung; Huang, Chin-Da; Chen, Cheng-Hong

    2017-11-01

    In this study, we used pore water dissolved inorganic carbon (DIC), SO42-, Ca2+ and Mg2+ gradients at the sulfate-methane transition zone (SMTZ) to estimate biogeochemical fluxes for cored sediments collected offshore SW Taiwan. Net DIC flux changes (ΔDIC-Prod) were applied to determine the proportion of sulfate consumption by organic matter oxidation (heterotrophic sulfate reduction) and anaerobic oxidation of methane (AOM), and to determine reliable CH4 fluxes at the SMTZ. Our results show that SO42- profiles are mainly controlled by AOM rather than heterotrophic sulfate reduction. Refinement of CH4 flux estimates enhance our understanding of methane abundance from deep carbon reservoirs to the SMTZ. Concentrations of chloride (Cl-), bromide (Br-) and iodide (I-) dissolved in pore water were used to identify potential sources that control fluid compositions and the behavior of dissolved ions. Constant Cl- concentrations throughout ∼30 m sediment suggest no influence of gas hydrates for the compositions within the core. Bromide (Br-) and Iodine (I-) concentrations increase with sediment depth. The I-/Br- ratio appears to reflect organic matter degradation. SO42- concentrations decrease with sediment depth at a constant rate, and sediment depth profiles of Br- and I- concentrations suggests diffusion as the main transport mechanism. Therefore diffusive flux calculations are reasonable. Coring sites with high CH4 fluxes are more common in the accretionary wedge, amongst thrust faults and fractures, than in the passive continental margin offshore southwestern Taiwan. AOM reactions are a major sink for CH4 passing upward through the SMTZ and prevent high methane fluxes in the water column and to the atmosphere.

  15. Modeling the fate of nitrogen on the catchment scale using a spatially explicit hydro-biogeochemical simulation system

    Science.gov (United States)

    Klatt, S.; Butterbach-Bahl, K.; Kiese, R.; Haas, E.; Kraus, D.; Molina-Herrera, S. W.; Kraft, P.

    2015-12-01

    The continuous growth of the human population demands an equally growing supply for fresh water and food. As a result, available land for efficient agriculture is constantly diminishing which forces farmers to cultivate inferior croplands and intensify agricultural practices, e.g., increase the use of synthetic fertilizers. This intensification of marginal areas in particular will cause a dangerous rise in nitrate discharge into open waters or even drinking water resources. In order to reduce the amount of nitrate lost by surface runoff or lateral subsurface transport, bufferstrips have proved to be a valuable means. Current laws, however, promote rather static designs (i.e., width and usage) even though a multitude of factors, e.g., soil type, slope, vegetation and the nearby agricultural management, determines its effectiveness. We propose a spatially explicit modeling approach enabling to assess the effects of those factors on nitrate discharge from arable lands using the fully distributed hydrology model CMF coupled to the complex biogeochemical model LandscapeDNDC. Such a modeling scheme allows to observe the displacement of dissolved nutrients in both vertical and horizontal directions and serves to estimate both their uptake by the vegetated bufferstrip and loss to the environment. First results indicate a significant reduction of nitrate loss in the presence of a bufferstrip (2.5 m). We show effects induced by various buffer strip widths and plant cover on the nitrate retention.

  16. A conceptual framework for noise reduction

    CERN Document Server

    Benesty, Jacob

    2015-01-01

    Though noise reduction and speech enhancement problems have been studied for at least five decades, advances in our understanding and the development of reliable algorithms are more important than ever, as they support the design of tailored solutions for clearly defined applications. In this work, the authors propose a conceptual framework that can be applied to the many different aspects of noise reduction, offering a uniform approach to monaural and binaural noise reduction problems, in the time domain and in the frequency domain, and involving a single or multiple microphones. Moreover, the derivation of optimal filters is simplified, as are the performance measures used for their evaluation.

  17. Operation costs and pollutant emissions reduction by definition of new collection scheduling and optimization of MSW collection routes using GIS. The case study of Barreiro, Portugal.

    Science.gov (United States)

    Zsigraiova, Zdena; Semiao, Viriato; Beijoco, Filipa

    2013-04-01

    This work proposes an innovative methodology for the reduction of the operation costs and pollutant emissions involved in the waste collection and transportation. Its innovative feature lies in combining vehicle route optimization with that of waste collection scheduling. The latter uses historical data of the filling rate of each container individually to establish the daily circuits of collection points to be visited, which is more realistic than the usual assumption of a single average fill-up rate common to all the system containers. Moreover, this allows for the ahead planning of the collection scheduling, which permits a better system management. The optimization process of the routes to be travelled makes recourse to Geographical Information Systems (GISs) and uses interchangeably two optimization criteria: total spent time and travelled distance. Furthermore, rather than using average values, the relevant parameters influencing fuel consumption and pollutant emissions, such as vehicle speed in different roads and loading weight, are taken into consideration. The established methodology is applied to the glass-waste collection and transportation system of Amarsul S.A., in Barreiro. Moreover, to isolate the influence of the dynamic load on fuel consumption and pollutant emissions a sensitivity analysis of the vehicle loading process is performed. For that, two hypothetical scenarios are tested: one with the collected volume increasing exponentially along the collection path; the other assuming that the collected volume decreases exponentially along the same path. The results evidence unquestionable beneficial impacts of the optimization on both the operation costs (labor and vehicles maintenance and fuel consumption) and pollutant emissions, regardless the optimization criterion used. Nonetheless, such impact is particularly relevant when optimizing for time yielding substantial improvements to the existing system: potential reductions of 62% for the total

  18. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  19. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea and play a major role in the processing of organic matter. We investigated the biogeochemical consequences of these transports on particulate organic matter at the molecular level in the southern

  20. Study of the seasonal cycle of the biogeochemical processes in the Ligurian Sea using a 1D interdisciplinary model

    NARCIS (Netherlands)

    Raick, C.; Delhez, E.J.M.; Soetaert, K.E.R.; Grégoire, M.

    2005-01-01

    A one-dimensional coupled physical–biogeochemical model has been built to study the pelagic food web of the Ligurian Sea (NW Mediterranean Sea). The physical model is the turbulent closure model (version 1D) developed at the GeoHydrodynamics and Environmental Laboratory (GHER) of the University of

  1. Biogeochemical Cycles for Combining Chemical Knowledge and ESD Issues in Greek Secondary Schools Part I: Designing the Didactic Materials

    Science.gov (United States)

    Koutalidi, Sophia; Scoullos, Michael

    2016-01-01

    Biogeochemical cycles support all anthropogenic activities and are affected by them, therefore they are intricately interlinked with global environmental and socioeconomic issues. Elements of these cycles that are already included in the science/chemical curriculum and textbooks intended for formal education in Greek secondary schools were…

  2. What can high frequency data tell us about hydrological and biogeochemical processes in a permafrost-underlain watershed that we do not already know?

    Science.gov (United States)

    Carey, S. K.; Shatilla, N. J.; Tang, W.

    2017-12-01

    Permafrost and frozen ground play a key role in the delivery of water and solutes from the landscape to the stream, and in biogeochemical cycling by acting as a cold season or semi-permanent aquitard. Conceptual models of permafrost hydrology have been well defined for over 40 years, yet renewed interest in the face of global climate change and rapid degradation of frozen ground has provided an opportunity to revisit previous paradigms. At the same time, new instruments and techniques to understand coupled hydrological and biogeochemical processes have emerged, providing a more nuanced view of northern systems. High-frequency sub-hourly measures of flows, water quality and biogeochemical parameters such as salinity and chromophoric dissolved organic matter (CDOM), along with eddy covariance systems provide considerable data, yet using this data to reveal new process information remains challenging. In this presentation, multi-year high frequency data sets of water, solute and carbon fluxes from Granger Creek, an instrumented alpine watershed with discontinuous permafrost within the Wolf Creek Research Basin, Yukon Territory, Canada, will be shown. While several decades of hydrometric and geochemical data exist for Granger Creek, inter-annual variability is considerable and makes evaluating long-term trends difficult. Insights derived from high-frequency sub-hourly salinity, CDOM and flow over recent years reveal that hysteresis loops among variables can be used to assess changing connectivity and flow paths as both magnitude and direction of loops can be used to infer landscape-scale linkages. These patterns highlight spatial connections among landscape units not previously observed, and identify periods when hydrological and biogeochemical cycles are coupled. Evaluation of these patterns at the headwater scale provides alternate hypotheses for how permafrost landscapes will respond to a changing climate.

  3. Advanced backend optimization

    CERN Document Server

    Touati, Sid

    2014-01-01

    This book is a summary of more than a decade of research in the area of backend optimization. It contains the latest fundamental research results in this field. While existing books are often more oriented toward Masters students, this book is aimed more towards professors and researchers as it contains more advanced subjects.It is unique in the sense that it contains information that has not previously been covered by other books in the field, with chapters on phase ordering in optimizing compilation; register saturation in instruction level parallelism; code size reduction for software pipe

  4. Optimal shutdown management

    International Nuclear Information System (INIS)

    Bottasso, C L; Croce, A; Riboldi, C E D

    2014-01-01

    The paper presents a novel approach for the synthesis of the open-loop pitch profile during emergency shutdowns. The problem is of interest in the design of wind turbines, as such maneuvers often generate design driving loads on some of the machine components. The pitch profile synthesis is formulated as a constrained optimal control problem, solved numerically using a direct single shooting approach. A cost function expressing a compromise between load reduction and rotor overspeed is minimized with respect to the unknown blade pitch profile. Constraints may include a load reduction not-to-exceed the next dominating loads, a not-to-be-exceeded maximum rotor speed, and a maximum achievable blade pitch rate. Cost function and constraints are computed over a possibly large number of operating conditions, defined so as to cover as well as possible the operating situations encountered in the lifetime of the machine. All such conditions are simulated by using a high-fidelity aeroservoelastic model of the wind turbine, ensuring the accuracy of the evaluation of all relevant parameters. The paper demonstrates the capabilities of the novel proposed formulation, by optimizing the pitch profile of a multi-MW wind turbine. Results show that the procedure can reliably identify optimal pitch profiles that reduce design-driving loads, in a fully automated way

  5. Optimal shutdown management

    Science.gov (United States)

    Bottasso, C. L.; Croce, A.; Riboldi, C. E. D.

    2014-06-01

    The paper presents a novel approach for the synthesis of the open-loop pitch profile during emergency shutdowns. The problem is of interest in the design of wind turbines, as such maneuvers often generate design driving loads on some of the machine components. The pitch profile synthesis is formulated as a constrained optimal control problem, solved numerically using a direct single shooting approach. A cost function expressing a compromise between load reduction and rotor overspeed is minimized with respect to the unknown blade pitch profile. Constraints may include a load reduction not-to-exceed the next dominating loads, a not-to-be-exceeded maximum rotor speed, and a maximum achievable blade pitch rate. Cost function and constraints are computed over a possibly large number of operating conditions, defined so as to cover as well as possible the operating situations encountered in the lifetime of the machine. All such conditions are simulated by using a high-fidelity aeroservoelastic model of the wind turbine, ensuring the accuracy of the evaluation of all relevant parameters. The paper demonstrates the capabilities of the novel proposed formulation, by optimizing the pitch profile of a multi-MW wind turbine. Results show that the procedure can reliably identify optimal pitch profiles that reduce design-driving loads, in a fully automated way.

  6. A Multi-Model Reduction Technique for Optimization of Coupled Structural-Acoustic Problems

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas

    2016-01-01

    Finite Element models of structural-acoustic coupled systems can become very large for complex structures with multiple connected parts. Optimization of the performance of the structure based on harmonic analysis of the system requires solving the coupled problem iteratively and for several frequ....... Several methods are compared in terms of accuracy and size of the reduced systems for optimization of simple models....

  7. Spatial distributions of biogeochemical reactions in freshwater-saltwater mixing zones of sandy beach aquifers

    Science.gov (United States)

    Kim, K. H.; Michael, H. A.; Ullman, W. J.; Cai, W. J.

    2017-12-01

    Beach aquifers host biogeochemically dynamic mixing zones between fresh and saline groundwaters of contrasting origins, histories, and compositions. Seawater, driven up the beachface by waves and tides, infiltrates into the sand and meets the seaward-discharging fresh groundwater, creating and maintaining a highly reactive intertidal circulation cell well-defined by salinity. Seawater supplies oxygen and reactive carbon to the circulation cell, supporting biogeochemical reactions within the cell that transform and attenuate dissolved nutrient fluxes from terrestrial sources. We investigated the spatial distribution of chemical reaction zones within the intertidal circulation cell at Cape Shores, Lewes, Delaware. Porewater samples were collected from multi-level wells along a beach-perpendicular transect. Samples were analyzed for particulate carbon and reactive solutes, and incubated to obtain rates of oxic respiration and denitrification. High rates of oxic respiration were observed higher on the beach, in the landward freshwater-saline water mixing zone, where dissolved oxygen availability was high. Denitrification was dominant in lower areas of the beach, below the intertidal discharge point. High respiration rates did not correlate with particulate carbon concentrations entrained within porewater, suggesting that dissolved organic carbon or immobile particulate carbon trapped within the sediment can contribute to and alter bulk reactivity. A better understanding of the sources and sinks of carbon within the beach will improve our ability to predict nutrient fluxes to estuaries and oceans, aiding the management of coastal environments and ecosystems.

  8. Simulated reduction of hypoxia in the northern Gulf of Mexico due to phosphorus limitation

    Directory of Open Access Journals (Sweden)

    Arnaud Laurent

    2014-02-01

    Full Text Available Abstract Excess nutrient loading from the Mississippi-Atchafalaya River system promotes the seasonal development of hypoxic bottom waters on the Louisiana shelf with detrimental effects on the benthic fauna. In the Mississippi River plume, primary production becomes phosphorus-limited between May and July at the peak of nutrient loading, displacing a portion of primary production and depositional fluxes westward. Here we quantitatively assessed, for the first time, the effect of phosphorus limitation on hypoxia development in the Mississippi-Atchafalaya River plume using a realistic physical-biogeochemical model. Results indicate that, despite a redistribution of respiration processes toward the western shelf, phosphorus limitation does not promote a westward expansion or relocation of hypoxia, as previously speculated. Rather, the onset of hypoxia was delayed and the size of the hypoxic zone reduced. Sensitivity experiments showed that this feature is robust in our model. Results from simulations with altered river input indicate that, despite phosphorus limitation, the co-reduction of nitrogen and phosphorus loads remains the best strategy to reduce hypoxia. Yet, even though nutrient load reductions have an immediate effect on hypoxia in this analysis, a 50% reduction in both nutrients will not be sufficient to meet the Gulf Hypoxia action plan goal of a 5·103 km2 hypoxic area.

  9. Performance Limits of Photoelectrochemical CO2 Reduction Based on Known Electrocatalysts and the Case for Two-Electron Reduction Products

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Seger, Brian

    2016-01-01

    Solar-drivenreduction of CO2 to solar fuels as an alternative to H2 via water splitting is an intriguing proposition. We modelthe solar-to-fuel (STF) efficiencies using realistic parameters basedon recently reported CO2 reduction catalysts with a highperformance tandem photoabsorber structure. CO...... due to excessiveoverpotentials and poor selectivity. This work considers breakingup the multielectron reduction pathway into individually optimized,separate two-electron steps as a way forward....

  10. The Southern Ocean biogeochemical divide.

    Science.gov (United States)

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L

    2006-06-22

    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  11. Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: Potential synergies with ocean color remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Claustre, H.; Bishop, J.; Boss, E.; Bernard, S.; Berthon, J.-F.; Coatanoan, C.; Johnson, K.; Lotiker, A.; Ulloa, O.; Perry, M.J.; D' Ortenzio, F.; D' andon, O.H.F.; Uitz, J.

    2009-10-01

    Profiling floats now represent a mature technology. In parallel with their emergence, the field of miniature, low power bio-optical and biogeochemical sensors is rapidly evolving. Over recent years, the bio-geochemical and bio-optical community has begun to benefit from the increase in observational capacities by developing profiling floats that allow the measurement of key biooptical variables and subsequent products of biogeochemical and ecosystem relevance like Chlorophyll a (Chla), optical backscattering or attenuation coefficients which are proxies of Particulate Organic Carbon (POC), Colored Dissolved Organic Matter (CDOM). Thanks to recent algorithmic improvements, new bio-optical variables such as backscattering coefficient or absorption by CDOM, at present can also be extracted from space observations of ocean color. In the future, an intensification of in situ measurements by bio-optical profiling floats would permit the elaboration of unique 3D/4D bio-optical climatologies, linking surface (remotely detected) properties to their vertical distribution (measured by autonomous platforms), with which key questions in the role of the ocean in climate could be addressed. In this context, the objective of the IOCCG (International Ocean Color Coordinating Group) BIO-Argo working group is to elaborate recommendations in view of a future use of bio-optical profiling floats as part of a network that would include a global array that could be 'Argo-relevant', and specific arrays that would have more focused objectives or regional targets. The overall network, realizing true multi-scale sustained observations of global marine biogeochemistry and biooptics, should satisfy the requirements for validation of ocean color remote sensing as well as the needs of a wider community investigating the impact of global change on biogeochemical cycles and ecosystems. Regarding the global profiling float array, the recommendation is that Chla as well as POC should be the

  12. Tracking Water, C, N, and P by Linking Local Scale Soil Hydrologic and Biogeochemical Features to Watershed Scale

    Science.gov (United States)

    Sedaghatdoost, A.; Mohanty, B.; Huang, Y.

    2017-12-01

    The biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P) have many contemporary significance due to their critical roles in determining the structure and function of ecosystems. The objectives of our study is to find out temporal dynamics and spatial distribution of soil physical, chemical, and biological properties and their interaction with C, N, and P cycles in the soil for different land covers and weather conditions. The study is being conducted at three locations within Texas Water Observatory (TWO), including Riesel (USDA-ARS experimental watersheds), Texas A&M Agrilife Research Farm, and Danciger forest in Texas. Soil physical, hydraulic, chemical (total C, total N, total P, pH, EC, redox potential, N-NO3-, N-NH4+, PO42-, K, Ca, Mg, Na, Mn, and Alox and Feox), and microbiological (Microbial biomass C, N, and P, PLFA analysis, enzymatic activity) properties are being measured in the top 30 cm of the soil profile. Our preliminary data shows that biogeochemical processes would be more profound in the areas with higher temperature and precipitation as these factors stimulate microbial activity and thus influence C, N, and P cycles. Also concentrations of C and N are greater in woodlands relative to remnant grasslands as a consequence of the greater above- and below-ground productivity of woodlands relative to remnant grasslands. We hypothesize that finer soil textures have more organic matter, microbial population, and reactive surfaces for chemicals than coarse soils, as described in some recent literature. However, the microbial activity may not be active in fine textured soils as organic materials may be sorbed to clay surfaces or protected from decomposing organisms. We also expect reduced condition in saturated soils which will decrease carbon mineralization while increase denitrification and alkalinity in the soil. Spatio-temporal data with initial evaluation of biogeochemical factors/processes for different land covers will be presented.

  13. Vibration behavior optimization of planetary gear sets

    Directory of Open Access Journals (Sweden)

    Farshad Shakeri Aski

    2014-12-01

    Full Text Available This paper presents a global optimization method focused on planetary gear vibration reduction by means of tip relief profile modifications. A nonlinear dynamic model is used to study the vibration behavior. In order to investigate the optimal radius and amplitude, Brute Force method optimization is used. One approach in optimization is straightforward and requires considerable computation power: brute force methods try to calculate all possible solutions and decide afterwards which one is the best. Results show the influence of optimal profile on planetary gear vibrations.

  14. Numerical and experimental investigation on labyrinth seal mechanism for bypass flow reduction in prismatic VHTR core

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong, E-mail: paper80@snu.ac.r [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Sang-Moon [Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Tak, Nam-il; Kim, Min-Hwan [Korea Atomic Energy Research Institute, 150-1 Deokjin-Dong, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Kwang-Yong [Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2013-09-15

    Highlights: • Bypass flow reduction method was developed by applying labyrinth seal mechanism. • Grooves on side walls of replaceable reflector block were made. • Design of the grooved wall of the reflector block was optimized by the RSA method. • The flow resistance of the bypass gap rose from 18.04 to 26.24 by the optimization. • The bypass ratios at the inlet and outlet were reduced by 36.19% and 14.66%, respectively. -- Abstract: Core bypass flow in block type very high temperature reactor (VHTR) occurs due to the inevitable gaps between the hexagonal core blocks for the block installation and refueling. Since the core bypass flow affects the reactor safety and efficiency, it should be minimized to enhance the core thermal margin. In this regard, the core bypass flow reduction method applying the labyrinth seal mechanism was developed and optimized by using the single-objective shape optimization method. Response surface approximation (RSA) method was adopted as the optimization method. Side wall of the replaceable reflector block was redesigned and response surface approximate model was adopted to optimize the shape of the reflector wall. Computational fluid dynamics (CFD) analyses were carried out not only to assess the limitation of existing method of bypass flow reduction, but also to optimize the design of a newly developed reduction method. The experiment with Seoul National University (SNU) multi-block experimental facility was performed to demonstrate the performance of the reduction method. It was found that the effect of the existing bypass flow reduction method by sealing the bypass gap exit was restricted nearby the lower region of the core. However, the flow resistance factor of the bypass gap increased from 18.04 to 26.24 by the optimized reduction method. The results of the performance test showed that the bypass flow distribution was reduced throughout the entire core regions. The bypass flow ratios at the inlet and the outlet were

  15. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  16. How to `Elk-test' biogeochemical models in a data rich world? (Invited)

    Science.gov (United States)

    Reichstein, M.; Ciais, P.; Seneviratne, S. I.; Carvalhais, N.; Dalmonech, D.; Jung, M.; Luo, Y.; Mahecha, M. D.; Moffat, A. M.; Tomelleri, E.; Zaehle, S.

    2010-12-01

    Process-oriented biogeochemical models are a primary tool that has been used to project future states of climate and ecosystems in the earth system in response to anthropogenic and other forcing, and receive tremendous attention also in the context us the planned assessment report AR5 by the IPCC. However, model intercomparison and data-model comparison studies indicate large uncertainties regarding predictions of global interactions between atmosphere and biosphere. Rigorous scientific testing of these models is essential but very challenging, largely because neither it is technically and ethically possible to perform global earth-scale experiments, nor do we have replicate Earths for hypothesis testing. Hence, model evaluations have to rely on monitoring data such as ecological observation networks, global remote sensing or short-term and small-scale experiments. Here, we critically examine strategies of how model evaluations have been performed with a particular emphasis on terrestrial ecosystems. Often weak ‘validations’ are being presented which do not take advantage of all the relevant information in the observed data, but also apparent falsifications are made, that are hampered by a confusion of system processes with system behavior. We propose that a stronger integration of recent advances in pattern-oriented and system-oriented methodologies will lead to more satisfying earth system model evaluation and development, and show a few enlightening examples from terrestrial biogeochemical modeling and other disciplines. Moreover it is crucial to take advantage of the multidimensional nature of arising earth observation data sets which should be matched by models simultaneously, instead of relying on univariate simple comparisons. A new critical model evaluation is needed to improve future IPCC assessments in order to reduce uncertainties by distinguishing plausible simulation trajectories from fairy tales.

  17. Reactor power reduction system and method

    International Nuclear Information System (INIS)

    Bruno, S.J.; Dunn, S.A.; Raber, M.

    1978-01-01

    A method of operating a nuclear power reactor is disclosed which enables an accelerated power reduction of the reactor without completely shutting the reactor down. The method includes monitoring the incidents which, upon their occurrence, would require an accelerated power reduction in order to maintain the reactor in a safe operation mode; calculating the power reduction required on the occurrence of such an incident; determining a control rod insertion sequence for the normal operation of the reactor, said sequence being chosen to optimize reactor power capability; selecting the number of control rods necessary to respond to the accelerated power reduction demand, said selection being made according to a priority determined by said control rod insertion sequence; and inserting said selected control rods into the reactor core. 11 claims, 13 figures

  18. Diffusion tensor tractography of the brainstem pyramidal tract; A study on the optimal reduction factor in parallel imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yun Jung; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu [Dept. of of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-08-15

    Parallel imaging mitigates susceptibility artifacts that can adversely affect diffusion tensor tractography (DTT) of the pons depending on the reduction (R) factor. We aimed to find the optimal R factor for DTT of the pons that would allow us to visualize the largest possible number of pyramidal tract fibers. Diffusion tensor imaging was performed on 10 healthy subjects at 3 Tesla based on single-shot echo-planar imaging using the following parameters: b value, 1000 s/mm{sup 2}; gradient direction, 15; voxel size, 2 × 2 × 2 mm{sup 3}; and R factors, 1, 2, 3, 4, and 5. DTT of the right and left pyramidal tracts in the pons was conducted in all subjects. Signal-to-noise ratio (SNR), image distortion, and the number of fibers in the tracts were compared across R factors. SNR, image distortion, and fiber number were significantly different according to R factor. Maximal SNR was achieved with an R factor of 2. Image distortion was minimal with an R factor of 5. The number of visible fibers was greatest with an R factor of 3. R factor 3 is optimal for DTT of the pontine pyramidal tract. A balanced consideration of SNR and image distortion, which do not have the same dependence on the R factor, is necessary for DTT of the pons.

  19. Structural optimization of reinforced concrete container for radioactive wastes

    International Nuclear Information System (INIS)

    Tamura, M.

    1984-01-01

    A structural optimization study of reinforced concrete container for transportation and disposal of the low level radioactive waste generated in Brazilian nuclear power plants. The code requires the structural integrity of these containers when subjected to fall from specified height, avoiding environmental contamination. The structural optimization allows material and transportation cost reduction by container wall thickness reduction. The structural analysis is performed by tridimensional mathematical model using finite element method. (Author) [pt

  20. A biogeochemical transport model to simulate the attenuation of chlorinated hydrocarbon contaminant fluxes across the groundwater-surface water interface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2009-01-01

    and biogeochemical transformation model of the discharge of a TCE plume into a stream, and to determine which parameters most strongly affect pollutant discharge concentrations. Here biological kinetics and the interaction with the soil matrix are implemented in PHREEQC. The ability of PHREEQC to deal with a large...

  1. Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific)

    Science.gov (United States)

    Rousselet, Louise; de Verneil, Alain; Doglioli, Andrea M.; Petrenko, Anne A.; Duhamel, Solange; Maes, Christophe; Blanke, Bruno

    2018-04-01

    The patterns of the large-scale, meso- and submesoscale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE cruise (February-April 2015). Multi-disciplinary original in situ observations were achieved along a zonal transect through the WTSP and their analysis was coupled with satellite data. The use of Lagrangian diagnostics allows for the identification of water mass pathways, mesoscale structures, and submesoscale features such as fronts. In particular, we confirmed the existence of a global wind-driven southward circulation of surface waters in the entire WTSP, using a new high-resolution altimetry-derived product, validated by in situ drifters, that includes cyclogeostrophy and Ekman components with geostrophy. The mesoscale activity is shown to be responsible for counter-intuitive water mass trajectories in two subregions: (i) the Coral Sea, with surface exchanges between the North Vanuatu Jet and the North Caledonian Jet, and (ii) around 170° W, with an eastward pathway, whereas a westward general direction dominates. Fronts and small-scale features, detected with finite-size Lyapunov exponents (FSLEs), are correlated with 25 % of surface tracer gradients, which reveals the significance of such structures in the generation of submesoscale surface gradients. Additionally, two high-frequency sampling transects of biogeochemical parameters and microorganism abundances demonstrate the influence of fronts in controlling the spatial distribution of bacteria and phytoplankton, and as a consequence the microbial community structure. All circulation scales play an important role that has to be taken into account not only when analysing the data from OUTPACE but also, more generally, for understanding the global distribution of biogeochemical components.

  2. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    Science.gov (United States)

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  3. Clio: An Autonomous Vertical Sampling Vehicle for Global Ocean Biogeochemical Mapping

    Science.gov (United States)

    Jakuba, M.; Gomez-Ibanez, D.; Saito, M. A.; Dick, G.; Breier, J. A., Jr.

    2014-12-01

    We report the preliminary design of a fast vertical profiling autonomous underwater vehicle, called Clio, designed to cost-effectively improve the understanding of marine microorganism ecosystem dynamics on a global scale. The insights into biogeochemical cycles to be gained from illuminating the relationships between ocean life and chemistry have led to establishment of the GEOTRACES program. The nutrient and trace element profiles generated by GEOTRACES will provide insight into what is happening biogeochemically, but not how it is happening, i.e., what biochemical pathways are active? Advances in sequencing technology and in situ preservation have made it possible to study the genomics (DNA), transcriptomics (RNA), proteomics (proteins and enzymes), metabolomics (lipids and other metabolites), and metallomics (metals), associated with marine microorganisms; however, these techniques require sample collection. To this end, Clio will carry two to four SUspended Particle Rosette (SUPR) multi-samplers to depths of 6000 m. Clio is being designed specifically to complement the GEOTRACES program—to operate simultaneously and independently of the wire-based sampling protocols developed for GEOTRACES. At each GEOTRACES ocean transect sampling station, Clio will be deployed from the ship, transit vertically to the seafloor, and then ascend to, and stop at up to 32 sampling depths, where it will filter up to 150 l of seawater per sample. Filtered samples for RNA will be administered a dose of preservative (RNALater) in situ. Clio must efficiently hold station at multiple depths between the surface and 6000 m, but also move rapidly between sampling depths. It must be chemically clean and avoid disturbing the water column while sampling. Clio must be operationally friendly, requiring few personnel to operate, and have minimal impact on shipboard operations. We have selected a positively-buoyant thruster-driven design with a quasi-isopycnal construction. Our simulations

  4. Optimizing Blocking and Nonblocking Reduction Operations for Multicore Systems: Hierarchical Design and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Gorentla Venkata, Manjunath [ORNL; Shamis, Pavel [ORNL; Graham, Richard L [ORNL; Ladd, Joshua S [ORNL; Sampath, Rahul S [ORNL

    2013-01-01

    Many scientific simulations, using the Message Passing Interface (MPI) programming model, are sensitive to the performance and scalability of reduction collective operations such as MPI Allreduce and MPI Reduce. These operations are the most widely used abstractions to perform mathematical operations over all processes that are part of the simulation. In this work, we propose a hierarchical design to implement the reduction operations on multicore systems. This design aims to improve the efficiency of reductions by 1) tailoring the algorithms and customizing the implementations for various communication mechanisms in the system 2) providing the ability to configure the depth of hierarchy to match the system architecture, and 3) providing the ability to independently progress each of this hierarchy. Using this design, we implement MPI Allreduce and MPI Reduce operations (and its nonblocking variants MPI Iallreduce and MPI Ireduce) for all message sizes, and evaluate on multiple architectures including InfiniBand and Cray XT5. We leverage and enhance our existing infrastructure, Cheetah, which is a framework for implementing hierarchical collective operations to implement these reductions. The experimental results show that the Cheetah reduction operations outperform the production-grade MPI implementations such as Open MPI default, Cray MPI, and MVAPICH2, demonstrating its efficiency, flexibility and portability. On Infini- Band systems, with a microbenchmark, a 512-process Cheetah nonblocking Allreduce and Reduce achieves a speedup of 23x and 10x, respectively, compared to the default Open MPI reductions. The blocking variants of the reduction operations also show similar performance benefits. A 512-process nonblocking Cheetah Allreduce achieves a speedup of 3x, compared to the default MVAPICH2 Allreduce implementation. On a Cray XT5 system, a 6144-process Cheetah Allreduce outperforms the Cray MPI by 145%. The evaluation with an application kernel, Conjugate

  5. Urban pollution of sediments: Impact on the physiology and burrowing activity of tubificid worms and consequences on biogeochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Pigneret, M., E-mail: mathilde.pigneret@univ-lyon1.fr [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France); Mermillod-Blondin, F.; Volatier, L.; Romestaing, C. [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France); Maire, E.; Adrien, J. [MATEIS, UMR CNRS 5510, INSA de Lyon, 25 avenue Jean Capelle, 69621 Villeurbanne (France); Guillard, L.; Roussel, D.; Hervant, F. [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France)

    2016-10-15

    In urban areas, infiltration basins are designed to manage stormwater runoff from impervious surfaces and allow the settling of associated pollutants. The sedimentary layer deposited at the surface of these structures is highly organic and multicontaminated (mainly heavy metals and hydrocarbons). Only few aquatic species are able to maintain permanent populations in such an extreme environment, including the oligochaete Limnodrilus hoffmeisteri. Nevertheless, the impact of urban pollutants on these organisms and the resulting influence on infiltration basin functioning remain poorly studied. Thus, the aim of this study was to determine how polluted sediments could impact the survival, the physiology and the bioturbation activity of L. hoffmeisteri and thereby modify biogeochemical processes occurring at the water-sediment interface. To this end, we conducted laboratory incubations of worms, in polluted sediments from infiltration basins or slightly polluted sediments from a stream. Analyses were performed to evaluate physiological state and burrowing activity (X-ray micro-tomography) of worms and their influences on biogeochemical processes (nutrient fluxes, CO{sub 2} and CH{sub 4} degassing rates) during 30-day long experiments. Our results showed that worms exhibited physiological responses to cope with high pollution levels, including a strong ability to withstand the oxidative stress linked to contamination with heavy metals. We also showed that the presence of urban pollutants significantly increased the burrowing activity of L. hoffmeisteri, demonstrating the sensitivity and the relevance of such a behavioural response as biomarker of sediment toxicity. In addition, we showed that X-ray micro-tomography was an adequate technique for accurate and non-invasive three-dimensional investigations of biogenic structures formed by bioturbators. The presence of worms induced stimulations of nutrient fluxes and organic matter recycling (between + 100% and 200% of CO

  6. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.

    Science.gov (United States)

    DeJong, Jason T; Soga, Kenichi; Banwart, Steven A; Whalley, W Richard; Ginn, Timothy R; Nelson, Douglas C; Mortensen, Brina M; Martinez, Brian C; Barkouki, Tammer

    2011-01-06

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized.

  7. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions

    Science.gov (United States)

    DeJong, Jason T.; Soga, Kenichi; Banwart, Steven A.; Whalley, W. Richard; Ginn, Timothy R.; Nelson, Douglas C.; Mortensen, Brina M.; Martinez, Brian C.; Barkouki, Tammer

    2011-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming—these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that ‘soil engineering in vivo’, wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon—effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

  8. Optimization of spatiotemporally fractionated radiotherapy treatments with bounds on the achievable benefit

    Science.gov (United States)

    Gaddy, Melissa R.; Yıldız, Sercan; Unkelbach, Jan; Papp, Dávid

    2018-01-01

    Spatiotemporal fractionation schemes, that is, treatments delivering different dose distributions in different fractions, can potentially lower treatment side effects without compromising tumor control. This can be achieved by hypofractionating parts of the tumor while delivering approximately uniformly fractionated doses to the surrounding tissue. Plan optimization for such treatments is based on biologically effective dose (BED); however, this leads to computationally challenging nonconvex optimization problems. Optimization methods that are in current use yield only locally optimal solutions, and it has hitherto been unclear whether these plans are close to the global optimum. We present an optimization framework to compute rigorous bounds on the maximum achievable normal tissue BED reduction for spatiotemporal plans. The approach is demonstrated on liver tumors, where the primary goal is to reduce mean liver BED without compromising any other treatment objective. The BED-based treatment plan optimization problems are formulated as quadratically constrained quadratic programming (QCQP) problems. First, a conventional, uniformly fractionated reference plan is computed using convex optimization. Then, a second, nonconvex, QCQP model is solved to local optimality to compute a spatiotemporally fractionated plan that minimizes mean liver BED, subject to the constraints that the plan is no worse than the reference plan with respect to all other planning goals. Finally, we derive a convex relaxation of the second model in the form of a semidefinite programming problem, which provides a rigorous lower bound on the lowest achievable mean liver BED. The method is presented on five cases with distinct geometries. The computed spatiotemporal plans achieve 12-35% mean liver BED reduction over the optimal uniformly fractionated plans. This reduction corresponds to 79-97% of the gap between the mean liver BED of the uniform reference plans and our lower bounds on the lowest

  9. MOPS-1.0: towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes

    Directory of Open Access Journals (Sweden)

    I. Kriest

    2015-09-01

    Analysis of the model misfit with respect to observed biogeochemical tracer distributions and fluxes suggests a particle flux profile close to the one suggested by Martin et al. (1987. Simulated pelagic denitrification best agrees with the lower values between 59 and 84 Tg N yr−1 recently estimated by other authors.

  10. Earth's Early Biosphere and the Biogeochemical Carbon Cycle

    Science.gov (United States)

    DesMarais, David

    2004-01-01

    Our biosphere has altered the global environment principally by influencing the chemistry of those elements most important for life, e g., C, N, S, O, P and transition metals (e.g., Fe and Mn). The coupling of oxygenic photosynthesis with the burial in sediments of photosynthetic organic matter, and with the escape of H2 to space, has increased the state of oxidation of the Oceans and atmosphere. It has also created highly reduced conditions within sedimentary rocks that have also extensively affected the geochemistry of several elements. The decline of volcanism during Earth's history reduced the flow of reduced chemical species that reacted with photosynthetically produced O2. The long-term net accumulation of photosynthetic O2 via biogeochemical processes has profoundly influenced our atmosphere and biosphere, as evidenced by the O2 levels required for algae, multicellular life and certain modem aerobic bacteria to exist. When our biosphere developed photosynthesis, it tapped into an energy resource that was much larger than the energy available from oxidation-reduction reactions associated with weathering and hydrothermal activity. Today, hydrothermal sources deliver globally (0.13-1.1)x10(exp l2) mol yr(sup -1) of reduced S, Fe(2+), Mn(2+), H2 and CH4; this is estimated to sustain at most about (0.2-2)xl0(exp 12)mol C yr(sup -1) of organic carbon production by chemautotrophic microorganisms. In contrast, global photosynthetic productivity is estimated to be 9000x10(exp 12) mol C yr(sup -1). Thus, even though global thermal fluxes were greater in the distant geologic past than today, the onset of oxygenic photosynthesis probably increased global organic productivity by some two or more orders of magnitude. This enormous productivity materialized principally because oxygenic photosynthesizers unleashed a virtually unlimited supply of reduced H that forever freed life from its sole dependence upon abiotic sources of reducing power such as hydrothermal emanations

  11. Optimal matching for prostate brachytherapy seed localization with dimension reduction.

    Science.gov (United States)

    Lee, Junghoon; Labat, Christian; Jain, Ameet K; Song, Danny Y; Burdette, Everette C; Fichtinger, Gabor; Prince, Jerry L

    2009-01-01

    In prostate brachytherapy, x-ray fluoroscopy has been used for intra-operative dosimetry to provide qualitative assessment of implant quality. More recent developments have made possible 3D localization of the implanted radioactive seeds. This is usually modeled as an assignment problem and solved by resolving the correspondence of seeds. It is, however, NP-hard, and the problem is even harder in practice due to the significant number of hidden seeds. In this paper, we propose an algorithm that can find an optimal solution from multiple projection images with hidden seeds. It solves an equivalent problem with reduced dimensional complexity, thus allowing us to find an optimal solution in polynomial time. Simulation results show the robustness of the algorithm. It was validated on 5 phantom and 18 patient datasets, successfully localizing the seeds with detection rate of > or = 97.6% and reconstruction error of < or = 1.2 mm. This is considered to be clinically excellent performance.

  12. Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea): what complexity is required in the coastal zone?

    Science.gov (United States)

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007-2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.

  13. Biogeochemical environments of streambed-sediment pore waters withand without arsenic enrichment in a sedimentary rock terrain, New Jersey Piedmont, USA

    Science.gov (United States)

    Mumford, Adam C.; Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Blum, Alex E.; Young, Lily Y.

    2015-01-01

    Release of arsenic (As) from sedimentary rocks has resulted in contamination of groundwater in aquifers of the New Jersey Piedmont Physiographic Province, USA; the contamination also may affect the quality of the region's streamwater to which groundwater discharges. Biogeochemical mechanisms involved in the release process were investigated in the streambeds of Six Mile Run and Pike Run, tributaries to the Millstone River in the Piedmont. At Six Mile Run, streambed pore water and shallow groundwater were low or depleted in oxygen, and contained As at concentrations greater than 20μg/L. At Pike Run, oxidizing conditions were present in the streambed, and the As concentration in pore water was 2.1μg/L. The 16S rRNA gene and the As(V) respiratory reductase gene, arrA, were amplified from DNA extracted from streambed pore water at both sites and analyzed, revealing that distinct bacterial communities that corresponded to the redox conditions were present at each site. Anaerobic enrichment cultures were inoculated with pore water from gaining reaches of the streams with acetate and As(V). As(V) was reduced by microbes to As(III) in enrichments with Six Mile Run pore water and groundwater, whereas no reduction occurred in enrichments with Pike Run pore water. Cloning and sequencing of the arrA gene indicated 8 unique operational taxonomic units (OTUs) at Six Mile Run and 11 unique OTUs at Pike Run, which may be representative of the arsenite oxidase gene arxA. Low-oxygen conditions at Six Mile Run have favored microbial As reduction and release, whereas release was inhibited by oxidizing conditions at Pike Run.

  14. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    Science.gov (United States)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  15. Overall bolt stress optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with International Organization for Standardization metric thread design is examined and optimized. The assumed failure mode is fatigue, so the applied preload and the load amplitude together with the stress concentrations define the connection strength....... Maximum stress in the bolt is found at the fillet under the head, at the thread start, or at the thread root. To minimize the stress concentration, shape optimization is applied. Nut shape optimization also has a positive effect on the maximum stress. The optimization results show that designing a nut......, which results in a more evenly distribution of load along the engaged thread, has a limited influence on the maximum stress due to the stress concentration at the first thread root. To further reduce the maximum stress, the transition from bolt shank to the thread must be optimized. Stress reduction...

  16. Aeroelastic Wingbox Stiffener Topology Optimization

    Science.gov (United States)

    Stanford, Bret K.

    2017-01-01

    This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.

  17. Noise Reduction with Optimal Variable Span Linear Filters

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2016-01-01

    In this paper, the problem of noise reduction is addressed as a linear filtering problem in a novel way by using concepts from subspace-based enhancement methods, resulting in variable span linear filters. This is done by forming the filter coefficients as linear combinations of a number...... included in forming the filter. Using these concepts, a number of different filter designs are considered, like minimum distortion, Wiener, maximum SNR, and tradeoff filters. Interestingly, all these can be expressed as special cases of variable span filters. We also derive expressions for the speech...... demonstrate the advantages and properties of the variable span filter designs, and their potential performance gain compared to widely used speech enhancement methods....

  18. Optimization of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    Science.gov (United States)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Schiller, N. H.; Born, J. C.

    2016-01-01

    This paper employs three acoustic propagation codes to explore variable-depth liner configurations for the NASA Langley Grazing Flow Impedance Tube (GFIT). The initial study demonstrates that a variable impedance can acceptably be treated as a uniform impedance if the spatial extent over which this variable impedance occurs is less than one-third of a wavelength of the incident sound. A constrained optimization study is used to design a variable-depth liner and to select an optimization metric. It also provides insight regarding how much attenuation can be achieved with variable-depth liners. Another optimization study is used to design a liner with much finer chamber depth resolution for the Mach 0.0 and 0.3 test conditions. Two liners are designed based on spatial rearrangement of chambers from this liner to determine whether the order is critical. Propagation code predictions suggest this is not the case. Both liners are fabricated via additive manufacturing and tested in the GFIT for the Mach 0.0 condition. Predicted and measured attenuations compare favorably across the full frequency range. These results clearly suggest that the chambers can be arranged in any order, thus offering the potential for innovative liner designs to minimize depth and weight.

  19. Nonlinear Non-convex Optimization of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Kallesøe, Carsten; Leth, John-Josef

    2013-01-01

    Pressure management in water supply systems is an effective way to reduce the leakage in a system. In this paper, the pressure management and the reduction of power consumption of a water supply system is formulated as an optimization problem. The problem is to minimize the power consumption in p....... They can be used for a general hydraulic networks to optimize the leakage and energy consumption and to satisfy the demands at the end-users. The results in this paper show that the power consumption of the pumps is reduced.......Pressure management in water supply systems is an effective way to reduce the leakage in a system. In this paper, the pressure management and the reduction of power consumption of a water supply system is formulated as an optimization problem. The problem is to minimize the power consumption...

  20. Optimizing Preseason Training Loads in Australian Football.

    Science.gov (United States)

    Carey, David L; Crow, Justin; Ong, Kok-Leong; Blanch, Peter; Morris, Meg E; Dascombe, Ben J; Crossley, Kay M

    2018-02-01

    To investigate whether preseason training plans for Australian football can be computer generated using current training-load guidelines to optimize injury-risk reduction and performance improvement. A constrained optimization problem was defined for daily total and sprint distance, using the preseason schedule of an elite Australian football team as a template. Maximizing total training volume and maximizing Banister-model-projected performance were both considered optimization objectives. Cumulative workload and acute:chronic workload-ratio constraints were placed on training programs to reflect current guidelines on relative and absolute training loads for injury-risk reduction. Optimization software was then used to generate preseason training plans. The optimization framework was able to generate training plans that satisfied relative and absolute workload constraints. Increasing the off-season chronic training loads enabled the optimization algorithm to prescribe higher amounts of "safe" training and attain higher projected performance levels. Simulations showed that using a Banister-model objective led to plans that included a taper in training load prior to competition to minimize fatigue and maximize projected performance. In contrast, when the objective was to maximize total training volume, more frequent training was prescribed to accumulate as much load as possible. Feasible training plans that maximize projected performance and satisfy injury-risk constraints can be automatically generated by an optimization problem for Australian football. The optimization methods allow for individualized training-plan design and the ability to adapt to changing training objectives and different training-load metrics.

  1. A cooperative reduction model for regional air pollution control in China that considers adverse health effects and pollutant reduction costs.

    Science.gov (United States)

    Xie, Yujing; Zhao, Laijun; Xue, Jian; Hu, Qingmi; Xu, Xiang; Wang, Hongbo

    2016-12-15

    How to effectively control severe regional air pollution has become a focus of global concern recently. The non-cooperative reduction model (NCRM) is still the main air pollution control pattern in China, but it is both ineffective and costly, because each province must independently fight air pollution. Thus, we proposed a cooperative reduction model (CRM), with the goal of maximizing the reduction in adverse health effects (AHEs) at the lowest cost by encouraging neighboring areas to jointly control air pollution. CRM has two parts: a model of optimal pollutant removal rates using two optimization objectives (maximizing the reduction in AHEs and minimizing pollutant reduction cost) while meeting the regional pollution control targets set by the central government, and a model that allocates the cooperation benefits (i.e., health improvement and cost reduction) among the participants according to their contributions using the Shapley value method. We applied CRM to the case of sulfur dioxide (SO 2 ) reduction in Yangtze River Delta region. Based on data from 2003 to 2013, and using mortality due to respiratory and cardiovascular diseases as the health endpoints, CRM saves 437 more lives than NCRM, amounting to 12.1% of the reduction under NCRM. CRM also reduced costs by US $65.8×10 6 compared with NCRM, which is 5.2% of the total cost of NCRM. Thus, CRM performs significantly better than NCRM. Each province obtains significant benefits from cooperation, which can motivate them to actively cooperate in the long term. A sensitivity analysis was performed to quantify the effects of parameter values on the cooperation benefits. Results shown that the CRM is not sensitive to the changes in each province's pollutant carrying capacity and the minimum pollutant removal capacity, but sensitive to the maximum pollutant reduction capacity. Moreover, higher cooperation benefits will be generated when a province's maximum pollutant reduction capacity increases. Copyright

  2. A supply chain optimization framework for CO

    NARCIS (Netherlands)

    Kalyanarengan Ravi, Narayen; Zondervan, Edwin; Van Sint Annaland, Martin; Fransoo, Jan C.; Grievink, J.

    2016-01-01

    A major challenge for the industrial deployment of a CO2 emission reduction methodology is to reduce the overall cost and the integration of all the nodes in the supply chain for CO2 emission reduction. In this work, we develop a mixed integer linear optimization model that

  3. OPTIMIZATION METHOD AND SOFTWARE FOR FUEL COST REDUCTION IN CASE OF ROAD TRANSPORT ACTIVITY

    Directory of Open Access Journals (Sweden)

    György Kovács

    2017-06-01

    Full Text Available The transport activity is one of the most expensive processes in the supply chain and the fuel cost is the highest cost among the cost components of transportation. The goal of the research is to optimize the transport costs in case of a given transport task both by the selecting the optimal petrol station and by determining the optimal amount of the refilled fuel. Recently, in practice, these two decisions have not been made centrally at the forwarding company, but they depend on the individual decision of the driver. The aim of this study is to elaborate a precise and reliable mathematical method for selecting the optimal refuelling stations and determining the optimal amount of the refilled fuel to fulfil the transport demands. Based on the elaborated model, new decision-supporting software is developed for the economical fulfilment of transport trips.

  4. Using coral Ba/Ca records to investigate seasonal to decadal scale biogeochemical cycling in the surface and intermediate ocean.

    Science.gov (United States)

    LaVigne, M.; Cobb, K. M.; DeLong, K. L.; Freiberger, M. M.; Grottoli, A. G.; Hill, T. M.; Miller, H. R.; Nurhati, I. S.; Richey, J. N.; Serrato Marks, G.; Sherrell, R. M.

    2016-12-01

    Dissolved barium (BaSW), a bio-intermediate element, is linked to several biogeochemical processes such as the cycling and export of nutrients, organic carbon (Corg), and barite in surface and intermediate oceans. Dynamic BaSW cycling has been demonstrated in the water column on short timescales (days-weeks) while sedimentary records have documented geologic-scale changes in barite preservation driven by export production. Our understanding of how seasonal-decadal scale climate variability impacts these biogeochemical processes currently lacks robust records. Ba/Ca calibrations in surface and deep sea corals suggest barium is incorporated via cationic substitution in both aragonite and calcite. Here we demonstrate the utility of Ba/Ca for reconstructing biogeochemical variability using examples of surface and deep sea coral records. Century-long deep sea coral records from the California Current System (bamboo corals: 900-1500m) record interannual variations in Ba/Ca, likely reflecting changes in barite formation via bacterial Corg respiration or barite saturation state. A surface Porites coral Ba/Ca record from Christmas Island (central equatorial Pacific: 1978-1995) shows maxima during low productivity El Niño warm periods, suggesting that variations in BaSW are driven by biological removal via direct cellular uptake or indirectly via barite precipitation with the decomposition of large phytoplankton blooms at this location. Similarly, a sixteen-year long Siderastera siderea surface coral record from Dry Tortugas, FL (Gulf of Mexico: 1991-2007) shows seasonal Ba/Ca cycles that align with annual chlorophyll and δ13C. Taken together, these records demonstrate the linkages among Corg, nutrient cycling and BaSW in the surface and intermediate ocean on seasonal to decadal timescales. Multi-proxy paleoceanographic reconstructions including Ba/Ca have the potential to elucidate the mechanisms linking past climate, productivity, nutrients, and BaSW cycling in the past.

  5. Bacterial Production and Enzymatic Activities in Deep-Sea Sediments of the Pacific Ocean: Biogeochemical Implications of Different Temperature Constraints

    Science.gov (United States)

    Danovaro, R.; Corinaldesi, C.; dell'Anno, A.

    2002-12-01

    The deep-sea bed, acting as the ultimate sink for organic material derived from the upper oceans primary production, is now assumed to play a key role in biogeochemical cycling of organic matter on global scale. Early diagenesis of organic matter in marine sediments is dependent upon biological processes (largely mediated by bacterial activity) and by molecular diffusion. Organic matter reaching the sea floor by sedimentation is subjected to complex biogeochemical transformations that make organic matter largely unsuitable for direct utilization by benthic heterotrophs. Extracellular enzymatic activities in the sediment is generally recognized as the key step in the degradation and utilization of organic polymers by bacteria and a key role in biopolymeric carbon mobilization is played by aminopeptidase, alkaline phosphatase and glucosidase activities. In the present study we investigated bacterial density, bacterial C production and exo-enzymatic activities (aminopeptidase, glucosidase and phosphatase activity) in deep-sea sediments of the Pacific Ocean in relation with the biochemical composition of sediment organic matter (proteins, carbohydrates and lipids), in order to gather information on organic matter cycling and diagenesis. Benthic viral abundance was also measured to investigate the potential role of viruses on microbial loop functioning. Sediment samples were collected at eight stations (depth ranging from 2070-3100 m) along two transects located at the opposite side (north and south) of ocean seismic ridge Juan Fernandez (along latitudes 33° 20' - 33° 40'), constituted by the submerged vulcanoes, which connects the Chilean coasts to Rapa Nui Island. Since the northern and southern sides of this ridge apparently displayed small but significant differences in deep-sea temperature (related to the general ocean circulation), this sampling strategy allowed also investigating the role of different temperature constraints on bacterial activity and

  6. GEOTRACES – An international study of the global marine biogeochemical cycles of trace elements and their isotopes

    OpenAIRE

    Henderson, G.M.; Anderson, R.F.; Adkins, J.; Andersson, P.; Boyle, E.A.; Cutter, Greg; Baar, H. de; Eisenhauer, Anton; Frank, Martin; Francois, R.; Orians, Kristin; Gamo, T.; German, C.; Jenkins, W.; Moffett, J.

    2007-01-01

    Trace elements serve important roles as regulators of ocean processes including marine ecosystem dynamics and carbon cycling. The role of iron, for instance, is well known as a limiting micronutrient in the surface ocean. Several other trace elements also play crucial roles in ecosystem function and their supply therefore controls the structure, and possibly the productivity, of marine ecosystems. Understanding the biogeochemical cycling of these micronutrients requires knowledge of their div...

  7. Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.

    Science.gov (United States)

    Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne

    2012-11-01

    We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Relative Linkages of Stream Dissolved Oxygen with the Hydroclimatic and Biogeochemical Drivers across the Gulf Coast of U.S.A.

    Science.gov (United States)

    Gebreslase, A. K.; Abdul-Aziz, O. I.

    2017-12-01

    Dynamics of coastal stream water quality is influenced by a multitude of interacting environmental drivers. A systematic data analytics approach was employed to determine the relative linkages of stream dissolved oxygen (DO) with the hydroclimatic and biogeochemical variables across the Gulf Coast of U.S.A. Multivariate pattern recognition techniques of PCA and FA, alongside Pearson's correlation matrix, were utilized to examine the interrelation of variables at 36 water quality monitoring stations from USGS NWIS and EPA STORET databases. Power-law based partial least square regression models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to estimate the relative linkages of dissolved oxygen with the hydroclimatic and biogeochemical variables by appropriately resolving multicollinearity (Nash-Sutcliffe efficiency = 0.58-0.94). Based on the dominant drivers, stations were divided into four environmental regimes. Water temperature was the dominant driver of DO in the majority of streams, representing most the northern part of Gulf Coast states. However, streams in the southern part of Texas and Florida showed a dominant pH control on stream DO. Further, streams representing the transition zone of the two environmental regimes showed notable controls of multiple drivers (i.e., water temperature, stream flow, and specific conductance) on the stream DO. The data analytics research provided profound insight to understand the dynamics of stream DO with the hydroclimatic and biogeochemical variables. The knowledge can help water quality managers in formulating plans for effective stream water quality and watershed management in the U.S. Gulf Coast. Keywords Data analytics, coastal streams, relative linkages, dissolved oxygen, environmental regimes, Gulf Coast, United States.

  9. Biogeochemical anomaly above oil-containing structures in an arid zone. [Growth stimulation of plants by sodium naphthenate used for prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, O.M.

    1983-01-01

    Visual biological anomalies above the oil-containing structures are characterized by bright green coloring of the vegetation cover, gigantism of the plants, extended vegetation period of the plants, deformity of the plants, etc. Biological anomalies are associated with geological features and are observed only above the zone of fault disorders of the earth's crust, above deep faults. A conclusion is drawn about the presence above the oil-bearing structures in the arid zone of a biogeochemical anomaly whose origin is explained by the biological activity of oil and its derivatives. The petroleum growth matter is the sodium salt of naphthene acid, a growth stimulator of plants and animals. The oils of the USSR contain 0.8-4.8% naphthene acids, which effuse through the faults into the root area levels of the soil. As a result of stimulation of growth and development by the petroleum growth matter, the vegetation period of the plants is prolonged. Under the influence of natural petroleum growth substances, the height and productivity of the anomalous plants increases 2-3-fold. Formation and manifestation of signs of biogeochemical anomalies above the oil-bearing structures in the arid zone predetermine the following conditions: presence of fault disorders of the earth's crust; salinity of the root area of the soil layer necessary for neutralization of the naphthene acids with subsequent formation of the biologically active naphthenates; aridity of the desert landscape; plain relief excluding color diversity in vegetation cover because of nonuniform wetting, etc. The established biogeochemical anomaly can be used in prospecting and exploration of oil, gas and bitumen, and also in determining the fault disorders of the earth's crust.

  10. Reestablishing the Dominance of Biogeochemical Pathways for Reducing Downstream Nutrient Losses from Aged Impounded Features

    Science.gov (United States)

    Shukla, S.; Shukla, A.

    2017-12-01

    Water and phosphorus (P) dynamics and loss pathways at two stormwater impoundments (SIs) were analyzed using measured fluxes between 2008 and 2011. These SIs are a decade old. Analyses of water and P budgets along with the discernment of various P pools and characterization of the intermediary processes revealed that soil adsorption and plant uptake are secondary to volume reduction apropos of P treatment. At one site, extreme wet conditions in a year combined with soil P saturation resulted in it being a P source rather than a sink. The impoundment (SI-1) discharged 12% more P than incoming due to soil P desorption, a consequence of dilution of incoming stormwater with large water input from an extreme tropical rain event. The second impoundment (SI-2) was a consistent sink of P; 55% and 95% of the incoming total P was retained in the two years, mainly as a result of 49% and 84% volume retention, respectively. Analysis of plant available aluminum, iron, and phosphorus showed the surface soil to be P saturated and at risk of releasing P to a limit of environmental concern. These results when seen in light of more frequent extreme precipitation events under the changed climate scenario call for alternatives to revive the role of biogeochemical processes in P treatment because volume reduction may not always be the viable option, especially for wet conditions. Aboveground biomass harvesting and removal was evaluated to transform the SIs from a frequent P source to sink and maintain the long-term sink functions of the SIs. Use of harvested biomass as a source of nutrients (N and P) and carbon to agricultural soil can result in beneficial use of biomass and offset the cost of harvesting. Other avenues such as altering the hydrology of the SIs by compartmentalizing the system and increasing the storage were also explored for short-term benefits. Results provided a combination of hydraulic and biochemical options for achieving long-term water and nutrient retentions in

  11. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    Science.gov (United States)

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  12. Optimization of a space based radiator

    International Nuclear Information System (INIS)

    Sam, Kien Fan Cesar Hung; Deng Zhongmin

    2011-01-01

    Nowadays there is an increased demand in satellite weight reduction for the reduction of costs. Thermal control system designers have to face the challenge of reducing both the weight of the system and required heater power while maintaining the components temperature within their design ranges. The main purpose of this paper is to present an optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a communications satellite payload panel was considered. Four radiator areas were defined instead of a centralized one in order to improve the heat rejection into space; the radiator's dimensions were determined considering worst hot scenario, solar fluxes, heat dissipation and the component's design temperature upper limit. Dimensions, thermal properties of the structural panel, optical properties and degradation/contamination on thermal control coatings were also considered. A thermal model was constructed for thermal analysis and two heat pipe network designs were evaluated and compared. The model that allowed better radiator efficiency was selected for parametric thermal analysis and optimization. This pursues finding the minimum size of the heat pipe network while keeping complying with thermal control requirements without increasing power consumption. - Highlights: →Heat pipe radiator optimization applied to a practical engineering design application. →The heat pipe radiator of a communications satellite panel is optimized. →A thermal model was built for parametric thermal analysis and optimization. →Optimal heat pipe network size is determined for the optimal weight solution. →The thermal compliance was verified by transient thermal analysis.

  13. Evidence of linked biogeochemical and hydrological processes in homogeneous and layered vadose zone systems

    Science.gov (United States)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2010-12-01

    Understanding chemical fate and transport in the vadose zone is critical to protect groundwater resources and preserve ecosystem health. However, prediction can be challenging due to the dynamic hydrologic and biogeochemical nature of the vadose zone. Additional controls on hydrobiogeochemical processes are added by subsurface structural heterogeneity. This study uses repacked soil column experiments to quantify linkages between microbial activity, geochemical cycling and hydrologic flow. Three “short” laboratory soil columns were constructed to evaluate the effects of soil layering: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. In addition, two “long” columns were constructed using either gamma-irradiated (sterilized) or untreated sediments to evaluate the effects of both soil layers and the presence of microorganisms. The long columns were packed identically; a medium-grained sand matrix with two vertically separated and horizontally offset lenses of organic-rich loam. In all 5 columns, downward and upward infiltration of water was evaluated to simulate rainfall and rising water table events respectively. In-situ colocated probes were used to measure soil water content, matric potential, Eh, major anions, ammonium, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the short layered column versus the short, homogeneous columns, and enumerations of iron and sulfate reducing bacteria were 1-2 orders of magnitude greater. In the long columns, microbial activity caused mineral bands and produced insoluble gases that impeded water flow through the pores of the sediment. Capillary barriers, formed around the lenses due to soil textural differences, retarded water flow rates through the lenses. This allowed reducing conditions to develop, evidenced by the production of Fe2+ and S2-. At the fringes of the lenses, Fe2+ oxidized to form Fe(III)-oxide bands that further retarded water

  14. Development of Modal Aerosol Module in CAM5 for Biogeochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaohong [Univ. of Wyoming, Laramie, WY (United States)

    2017-11-18

    This project aims at developing new capabilities for the Modal Aerosol Module in the DOE’s E3SM model with the applications to the global biogeochemical cycle. The impacts of the new developments on model simulations of clouds and climate will be examined. There are thee objectives for this project study: Implementing primary marine organic aerosols into the modal aerosol module (MAM) and investigate effects of primary marine organic aerosols on climate in E3SM; Implementing dust speciation in MAM and investigate the effect of dust species on mixed-phase clouds through indirect effects in E3SM; Writing papers documenting the new MAM developments (e.g., MAM4 documentation paper, marine organic aerosol paper, dust speciation); These objectives will be accomplished in collaborations with Drs. Phil Rasch, Steve Ghan, and Susannah Burrows at Pacific Northwest National Laboratory.

  15. Handbook of simulation optimization

    CERN Document Server

    Fu, Michael C

    2014-01-01

    The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes. This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science,...

  16. Integrated risk reduction framework to improve railway hazardous materials transportation safety.

    Science.gov (United States)

    Liu, Xiang; Saat, M Rapik; Barkan, Christopher P L

    2013-09-15

    Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Energy based optimization of viscous–friction dampers on cables

    International Nuclear Information System (INIS)

    Weber, F; Boston, C

    2010-01-01

    This investigation optimizes numerically a viscous–friction damper connected to a cable close to one cable anchor for fastest reduction of the total mechanical cable energy during a free vibration decay test. The optimization parameters are the viscous coefficient of the viscous part and the ratio between the friction force and displacement amplitude of the friction part of the transverse damper. Results demonstrate that an almost pure friction damper with negligibly small viscous damping generates fastest cable energy reduction over the entire decay. The ratio between the friction force and displacement amplitude of the optimal friction damper differs from that derived from the energy equivalent optimal viscous damper. The reason for this is that the nonlinearity of the friction damper causes energy spillover from the excited to higher modes of the order of 10%, i.e. cables with attached friction dampers vibrate at several frequencies. This explains why the energy equivalent approach does not yield the optimal friction damper. Analysis of the simulation data demonstrates that the optimally tuned friction damper dissipates the same energy per cycle as if each modal component of the cable were damped by its corresponding optimal linear viscous damper

  18. An Optimization Mechanism Intended for Static Power Reduction Using Dual-thTechnique

    Directory of Open Access Journals (Sweden)

    Rodolfo P. Santos

    2012-01-01

    Full Text Available Power consumption reduction is a challenge nowadays. Techniques for dynamic and static power minimization have been proposed, but most of them are very time consuming. This work proposes an algorithm for reducing static power, which can be perfectly inserted in the conventional design flow for integrated systems considering an open source environment (open access infrastructure. The proposed approach, based on a Dual-Threshold technique, replaces part of the cells of the circuit by cells with a higher threshold voltage without resulting in timing violations in the circuit. The decision to replace a cell is based on timing estimates of the circuit modeling with the cell replacement, before it is actually replaced. The fact that only some cells are replaced every iteration results in a reduction of the runtime of the algorithm. Additionally, results showed a reduction in static power up to 39.28%, when applying the proposed approach in the ISCAS85 benchmark circuits.

  19. Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies

    Directory of Open Access Journals (Sweden)

    Paula M. Esquivias

    2012-07-01

    Full Text Available This work evaluates the potential for the reduction of energy demand in residential buildings by acting on the exterior envelope, both in newly constructed buildings and in the retrofitting of existing stock. It focuses on analysing social housing buildings in Mediterranean areas and on quantifying the scope of that reduction in the application of different envelope design strategies, with the purpose of prioritizing their application based on their energy efficiency. The analyses and quantifications were made by means of the generation of energy models with the TRNSYS tool for simple or combined solutions, identifying possible potentials for reduction of the energy demand from 20% to 25%, basically by acting on the windows. The case study was a newly built social housing building of a closed block type located in Seville (Spain. Its constructive techniques and the insulation level of its envelope are standardized for current buildings widespread across Mediterranean Europe.

  20. Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea: what complexity is required in the coastal zone?

    Directory of Open Access Journals (Sweden)

    Marion Fraysse

    Full Text Available Terrestrial inputs (natural and anthropogenic from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C and nitrogen (N cycles and a second model that also considers the phosphorus (P cycle. Realistic simulations were performed for a period of 5 years (2007-2011. The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.

  1. Development and optimization of neutron measurement methods by fission chamber on experimental reactors - management, treatment and reduction of uncertainties

    International Nuclear Information System (INIS)

    Blanc-De-Lanaute, N.

    2012-01-01

    The main objectives of this research thesis are the management and reduction of uncertainties associated with measurements performed by means of a fission-chamber type sensor. The author first recalls the role of experimental reactors in nuclear research, presents the various sensors used in nuclear detection (photographic film, scintillation sensor, gas ionization sensor, semiconducting sensor, other types of radiation sensors), and more particularly addresses neutron detection (activation sensor, gas filling sensor). In a second part, the author gives an overview of the state of the art of neutron measurement by fission chamber in a mock-up reactor (signal formation, processing and post-processing, associated measurements and uncertainties, return on experience of measurements by fission chamber on Masurca and Minerve research reactors). In a third part, he reports the optimization of two intrinsic parameters of this sensor: the thickness of fissile material deposit, and the pressure and nature of the filler gas. The fourth part addresses the improvement of measurement electronics and of post-processing methods which are used for result analysis. The fifth part deals with the optimization of spectrum index measurements by means of a fission chamber. The impact of each parameter is quantified. Results explain some inconsistencies noticed in measurements performed on the Minerve reactor in 2004, and allow the improvement of biases with computed values [fr

  2. Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress

    Directory of Open Access Journals (Sweden)

    Bogdan Ołdakowski

    2008-03-01

    Full Text Available The Baltic Sea Science Congress was held at Rostock University, Germany, from 19 to 22 March 2007. In the session entitled"Upwelling events, coastal offshore exchange, links to biogeochemical processes" 20 presentations were given,including 7 talks and 13 posters related to the theme of the session.This paper summarises new findings of the upwelling-related studies reported in the session. It deals with investigationsbased on the use of in situ and remote sensing measurements as well as numerical modelling tools. The biogeochemicalimplications of upwelling are also discussed.Our knowledge of the fine structure and dynamic considerations of upwelling has increased in recent decades with the advent ofhigh-resolution modern measurement techniques and modelling studies. The forcing and the overall structure, duration and intensity ofupwelling events are understood quite well. However, the quantification of related transports and the contribution to the overall mixingof upwelling requires further research. Furthermore, our knowledge of the links between upwelling and biogeochemical processes is stillincomplete. Numerical modelling has advanced to the extent that horizontal resolutions of c. 0.5 nautical miles can now be applied,which allows the complete spectrum of meso-scale features to be described. Even the development of filaments can be describedrealistically in comparison with high-resolution satellite data.But the effect of upwelling at a basin scale and possible changes under changing climatic conditions remain open questions.

  3. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    Science.gov (United States)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  4. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    International Nuclear Information System (INIS)

    Jeon, P-H; Lee, C-L; Kim, D-H; Lee, Y-J; Kim, H-J; Jeon, S-S

    2014-01-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose

  5. The potential impact of microbial Fe(III) reduction on subsurface U(VI) mobility at a low level radioactive waste storage site

    International Nuclear Information System (INIS)

    Wilkins, M.J.; Livens, F.R.; Vaughan, D.J.; Lloyd, J.R.; Beadle, I.; Small, J.S.

    2005-01-01

    Full text of publication follows: Fe(III) oxy-hydroxides have the potential to be utilised as terminal electron acceptors by indigenous microbial communities in the British Nuclear Fuels (BNFL) low level radioactive waste storage site at Drigg (Cumbria, UK) and these organisms may have a critical control on the biogeochemical cycling of several environmentally important radionuclides. In terms of radiological impact at Drigg, uranium is the most significant contributor to radiological impact and it is strongly influenced by biogeochemical processes. In terms of mass (moles) it is also the most abundant radionuclide in the Drigg inventory. Thus, the potential biotic and abiotic effects of Fe(III) reduction on U(VI) mobility in the Drigg subsurface are of interest. Culture-dependent and molecular techniques showed that the sediments in and around the Drigg site contained a diversity of Fe(III)-reducing bacteria. A series of microcosm experiments were utilised to create environmentally relevant experimental conditions. Microcosms set up using Drigg sediment and synthetic ground water were spiked with 100 μM U(VI) and acetate as an electron donor. U(VI) concentrations in groundwater were measured using a chemical assay while total U levels were determined using ICP-MS. Fe(II) levels were determined using the ferrozine method. Sediment surface areas were measured using BET analysis. The low surface area of the sediments resulted in only a small proportion of the 100 μM U(VI) spike sorbing onto mineral surfaces. The addition of ferri-hydrite to some microcosms resulted in an immediate lowering of soluble U(VI) concentrations, suggesting that the formation of soluble U(VI) complexes were not responsible for the minimal adsorption. The presence of biogenic Fe(II) in the microcosms did not affect the soluble U(VI) concentration. Similarly, soluble U(VI) levels remained unchanged when sediments were spiked with U(VI) post-microbial Fe(III) reduction. However, a lowering in

  6. Algorithm comparison for schedule optimization in MR fingerprinting.

    Science.gov (United States)

    Cohen, Ouri; Rosen, Matthew S

    2017-09-01

    In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. In-stream biogeochemical processes of a temporary river.

    Science.gov (United States)

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Amaxidis, Yorgos; Skoulikidis, Nikolaos Th

    2007-02-15

    A reach at the estuary of Krathis River in Greece was used to assess how in-stream processes alter its hydrologic and biogeochemical regime. Krathis River exhibited high annual flow variability and its transmission losses become significant, especially during the dry months. These transmission losses are enhanced in chemistry due to release of nutrients from river sediments. These fluxes are significant because they correspond to 11% of the dissolved inorganic nitrogen flux of the river. Release of nitrogen species was influenced by temperature, while release of phosphate was not because phosphate levels were below the equilibrium concentration. There is a significant amount of sediments with fine composition that create "hot spot" areas in the river reach. These sediments are mobilized during the first flush events in the fall carrying with them a significant load of nutrient and suspended matter to the coastal zone. The nutrient organic content of sediments was also significant and it was studied in terms of its mineralization capacity. The capacity for mineralization was influenced by soil moisture, exhibiting significant capacity even at moisture levels of 40%. Temporary rivers are sensitive ecosystems, vulnerable to climate changes. In-stream processes play a significant role in altering the hydrology and biogeochemistry of the water and its impacts to the coastal zone.

  8. Methodology of shell structure reinforcement layout optimization

    Science.gov (United States)

    Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof

    2018-01-01

    This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.

  9. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    Science.gov (United States)

    Smith, P.; Cotrufo, M. F.; Rumpel, C.; Paustian, K.; Kuikman, P. J.; Elliott, J. A.; McDowell, R.; Griffiths, R. I.; Asakawa, S.; Bustamante, M.; House, J. I.; Sobocká, J.; Harper, R.; Pan, G.; West, P. C.; Gerber, J. S.; Clark, J. M.; Adhya, T.; Scholes, R. J.; Scholes, M. C.

    2015-11-01

    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still needed to better understand the relationships between different facets of soils and the array of ecosystem services they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways to share knowledge with soil managers and policy makers so that best management can be implemented. A key element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for soil scientists to work together with policy makers and land managers to put soils at the centre of environmental policy making and land management decisions.

  10. Optimal Information Extraction of Laser Scanning Dataset by Scale-Adaptive Reduction

    Science.gov (United States)

    Zang, Y.; Yang, B.

    2018-04-01

    3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed method, suggesting a reliable solution for optimal information extraction of object.

  11. OPTIMAL INFORMATION EXTRACTION OF LASER SCANNING DATASET BY SCALE-ADAPTIVE REDUCTION

    Directory of Open Access Journals (Sweden)

    Y. Zang

    2018-04-01

    Full Text Available 3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed method, suggesting a reliable solution for optimal information extraction of object.

  12. Computational reduction techniques for numerical vibro-acoustic analysis of hearing aids

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester

    . In this thesis, several challenges encountered in the process of modelling and optimizing hearing aids are addressed. Firstly, a strategy for modelling the contacts between plastic parts for harmonic analysis is developed. Irregularities in the contact surfaces, inherent to the manufacturing process of the parts....... Secondly, the applicability of Model Order Reduction (MOR) techniques to lower the computational complexity of hearing aid vibro-acoustic models is studied. For fine frequency response calculation and optimization, which require solving the numerical model repeatedly, a computational challenge...... is encountered due to the large number of Degrees of Freedom (DOFs) needed to represent the complexity of the hearing aid system accurately. In this context, several MOR techniques are discussed, and an adaptive reduction method for vibro-acoustic optimization problems is developed as a main contribution. Lastly...

  13. Optimal scenario balance of reduction in costs and greenhouse gas emissions for municipal solid waste management

    Institute of Scientific and Technical Information of China (English)

    邓娜; 张强; 陈广武; 齐长青; 崔文谦; 张于峰; 马洪亭

    2015-01-01

    To reduce carbon intensity, an improved management method balancing the reduction in costs and greenhouse gas (GHG) emissions is required for Tianjin’s waste management system. Firstly, six objective functions, namely, cost minimization, GHG minimization, eco-efficiency minimization, cost maximization, GHG maximization and eco-efficiency maximization, are built and subjected to the same constraints with each objective function corresponding to one scenario. Secondly, GHG emissions and costs are derived from the waste flow of each scenario. Thirdly, the range of GHG emissions and costs of other potential scenarios are obtained and plotted through adjusting waste flow with infinitely possible step sizes according to the correlation among the above six scenarios. And the optimal scenario is determined based on this range. The results suggest the following conclusions. 1) The scenarios located on the border between scenario cost minimization and GHG minimization create an optimum curve, and scenario GHG minimization has the smallest eco-efficiency on the curve;2) Simple pursuit of eco-efficiency minimization using fractional programming may be unreasonable; 3) Balancing GHG emissions from incineration and landfills benefits Tianjin’s waste management system as it reduces GHG emissions and costs.

  14. Biogeochemical Cycles for Combining Chemical Knowledge and ESD Issues in Greek Secondary Schools Part II: Assessing the Impact of the Intervention

    Science.gov (United States)

    Koutalidi, Sophia; Psallidas, Vassilis; Scoullos, Michael

    2016-01-01

    In searching for effective ways to combine science/chemical education with EE/ESD, new didactic materials were designed and produced focussing on biogeochemical cycles and their connection to sustainable development. The materials were experimentally applied in 16 Greek schools under the newly introduced compulsory "school project" which…

  15. Application of a SEEK filter to a 1D biogeochemical model of the Ligurian Sea: Twin experiments and real data assimilation

    NARCIS (Netherlands)

    Raick, C.; Alvera-Azcarate, A.; Barth, A.; Brankart, J.-M.; Soetaert, K.E.R.; Grégoire, M.

    2007-01-01

    The Singular Evolutive Extended Kalman (SEEK) filter has been implemented to assimilate in-situ data in a 1D coupled physical-ecosystem model of the Ligurian Sea. The biogeochemical model describes the partly decoupled nitrogen and carbon cycles of the pelagic food web. The GHER hydrodynamic model

  16. Global Emissions of Nitrous Oxide: Key Source Sectors, their Future Activities and Technical Opportunities for Emission Reduction

    Science.gov (United States)

    Winiwarter, W.; Höglund-Isaksson, L.; Klimont, Z.; Schöpp, W.; Amann, M.

    2017-12-01

    Nitrous oxide originates primarily from natural biogeochemical processes, but its atmospheric concentrations have been strongly affected by human activities. According to IPCC, it is the third largest contributor to the anthropogenic greenhouse gas emissions (after carbon dioxide and methane). Deep decarbonization scenarios, which are able to constrain global temperature increase within 1.5°C, require strategies to cut methane and nitrous oxide emissions on top of phasing out carbon dioxide emissions. Employing the Greenhouse gas and Air pollution INteractions and Synergies (GAINS) model, we have estimated global emissions of nitrous oxide until 2050. Using explicitly defined emission reduction technologies we demonstrate that, by 2030, about 26% ± 9% of the emissions can be avoided assuming full implementation of currently existing reduction technologies. Nearly a quarter of this mitigation can be achieved at marginal costs lower than 10 Euro/t CO2-eq with the chemical industry sector offering important reductions. Overall, the largest emitter of nitrous oxide, agriculture, also provides the largest emission abatement potentials. Emission reduction may be achieved by precision farming methods (variable rate technology) as well as by agrochemistry (nitrification inhibitors). Regionally, the largest emission reductions are achievable where intensive agriculture and industry are prevalent (production and application of mineral fertilizers): Centrally Planned Asia including China, North and Latin America, and South Asia including India. Further deep cuts in nitrous oxide emissions will require extending reduction efforts beyond strictly technological solutions, i.e., considering behavioral changes, including widespread adoption of "healthy diets" minimizing excess protein consumption.

  17. A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland

    Science.gov (United States)

    Pester, Michael; Bittner, Norbert; Deevong, Pinsurang; Wagner, Michael; Loy, Alexander

    2015-01-01

    Methane emission from peatlands contributes substantially to global warming but is significantly reduced by sulfate reduction, which is fuelled by globally increasing aerial sulfur pollution. However, the biology behind sulfate reduction in terrestrial ecosystems is not well understood and the key players for this process as well as their abundance remained unidentified. Comparative 16S rRNA gene stable isotope probing in the presence and absence of sulfate indicated that a Desulfosporosinus species, which constitutes only 0.006% of the total microbial community 16S rRNA genes, is an important sulfate reducer in a long-term experimental peatland field site. Parallel stable isotope probing using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] identified no additional sulfate reducers under the conditions tested. For the identified Desulfosporosinus species a high cell-specific sulfate reduction rate of up to 341 fmol SO42− cell−1 day−1 was estimated. Thus, the small Desulfosporosinus population has the potential to reduce sulfate in situ at a rate of 4.0–36.8 nmol (g soil w. wt.)−1 day−1, sufficient to account for a considerable part of sulfate reduction in the peat soil. Modeling of sulfate diffusion to such highly active cells identified no limitation in sulfate supply even at bulk concentrations as low as 10 μM. Collectively, these data show that the identified Desulfosporosinus species, despite being a member of the ‘rare biosphere’, contributes to an important biogeochemical process that diverts the carbon flow in peatlands from methane to CO2 and, thus, alters their contribution to global warming. PMID:20535221

  18. Optimization of cask for transport of radioactive material under impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kuldeep, E-mail: kuldeep.brit@gmail.com [Indian Institute of Technology Bombay (India); Pawaskar, D.N.; Guha, Anirban [Indian Institute of Technology Bombay (India); Singh, R.K. [Bhabha Atomic Research Center (India)

    2014-07-01

    Highlights: • Cost and weight are important criteria for fabrication and transportation of cask used for transportation of radioactive material. • Reduction of cask cost by modifying few cask geometry parameters using complex search method. • Maximum von Mises stress generated and deformation after impact as design constraints. • Up to 6.9% reduction in cost and 4.6% reduction in weight observed in the examples used. - Abstract: Casks used for transporting radioactive material need to be certified fit by subjecting them to a specific set of tests (IAEA, 2012). The high cost of these casks gives rise to the need for optimizing them. Conducting actual experiments for the process of design iterations is very costly. This work outlines a procedure for optimizing Type B(U) casks through simulations of the 9 m drop test conducted in ABAQUS{sup ®}. Standard designs and material properties were chosen, thus making the process as realistic as reasonable even at the cost of reducing the options (design variables) available for optimization. The results, repeated for different source cavity sizes, show a scope for 6.9% reduction in cost and 4.6% reduction in weight over currently used casks.

  19. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – are DOC exports mediated by iron reduction/oxidation cycles?

    Directory of Open Access Journals (Sweden)

    K.-H. Knorr

    2013-02-01

    Full Text Available Dissolved organic carbon (DOC exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water and DOC fluorescence, the wetlands were identified as the main source of DOC. Antecedent biogeochemical conditions, i.e., water table levels in the wetlands, influenced the discharge patterns of nitrate, iron and DOC during an event. The correlation of DOC with pH was positive in pore waters, but negative in surface waters; it was negative for DOC with sulfate in pore waters, but only weak in surface waters. Though, the positive correlation of DOC with iron was universal for pore and surface water. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidising iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is, thus, a need to consider processes more thoroughly of DOC mobilisation in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least, in part, be caused by increasing activities in iron reduction, possibly due to increases in temperature, increasing wetness of riparian wetlands, or by a shift from sulfate dominated to iron

  20. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    Science.gov (United States)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems

  1. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, David [Harvard Univ., Cambridge, MA (United States); Wankel, Scott David [Woods Hole Oceanographic Inst., MA (United States); Buchwald, Carolyn [Woods Hole Oceanographic Inst., MA (United States); Hansel, Colleen [Woods Hole Oceanographic Inst., MA (United States)

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  2. Optimization-based reconstruction for reduction of CBCT artifact in IGRT

    Science.gov (United States)

    Xia, Dan; Zhang, Zheng; Paysan, Pascal; Seghers, Dieter; Brehm, Marcus; Munro, Peter; Sidky, Emil Y.; Pelizzari, Charles; Pan, Xiaochuan

    2016-04-01

    Kilo-voltage cone-beam computed tomography (CBCT) plays an important role in image guided radiation therapy (IGRT) by providing 3D spatial information of tumor potentially useful for optimizing treatment planning. In current IGRT CBCT system, reconstructed images obtained with analytic algorithms, such as FDK algorithm and its variants, may contain artifacts. In an attempt to compensate for the artifacts, we investigate optimization-based reconstruction algorithms such as the ASD-POCS algorithm for potentially reducing arti- facts in IGRT CBCT images. In this study, using data acquired with a physical phantom and a patient subject, we demonstrate that the ASD-POCS reconstruction can significantly reduce artifacts observed in clinical re- constructions. Moreover, patient images reconstructed by use of the ASD-POCS algorithm indicate a contrast level of soft-tissue improved over that of the clinical reconstruction. We have also performed reconstructions from sparse-view data, and observe that, for current clinical imaging conditions, ASD-POCS reconstructions from data collected at one half of the current clinical projection views appear to show image quality, in terms of spatial and soft-tissue-contrast resolution, higher than that of the corresponding clinical reconstructions.

  3. Thermodynamics of lunar ilmenite reduction

    Science.gov (United States)

    Altenberg, B. H.; Franklin, H. A.; Jones, C. H.

    1993-01-01

    With the prospect of returning to the moon, the development of a lunar occupation would fulfill one of the goals of the Space Exploration Initiative (SEI) of the late 1980's. Processing lunar resources into useful products, such as liquid oxygen for fuel and life support, would be one of many aspects of an active lunar base. ilmenite (FeTiO3) is found on the lunar surface and can be used as a feed stock to produce oxygen. Understanding the various ilmenite-reduction reactions elucidates many processing options. Defining the thermodynamic chemical behavior at equilibrium under various conditions of temperature and pressures can be helpful in specifying optimal operating conditions. Differences between a previous theoretical analysis and experimentally determined results has sparked interest in trying to understand the effect of operating pressure on the hydrogen-reduction-of-ilmenite reaction. Various aspects of this reduction reaction are discussed.

  4. Biogeochemical Modeling of the Second Rise of Oxygen

    Science.gov (United States)

    Smith, M. L.; Catling, D.; Claire, M.; Zahnle, K.

    2014-03-01

    The rise of atmospheric oxygen set the tempo for the evolution of complex life on Earth. Oxygen levels are thought to have increased in two broad steps: one step occurred in the Archean ~ 2.45 Ga (the Great Oxidation Event or GOE), and another step occured in the Neoproterozoic ~750-580 Ma (the Neoprotoerozoic Oxygenation Event or NOE). During the NOE, oxygen levels increased from ~1-10% of the present atmospheric level (PAL) (Holland, 2006), to ~15% PAL in the late Neoproterozoic, to ~100% PAL later in the Phanerozoic. Complex life requires O2, so this transition allowed complex life to evolve. We seek to understand what caused the NOE. To explore causes for the NOE, we build upon the biogeochemical model of Claire et al. (2006), which calculates the redox evolution of the atmosphere, ocean, biosphere, and crust in the Archean through to the early Proterozoic. In this model, the balance between oxygenconsuming and oyxgen-producing fluxes evolves over time such that at ~2.4 Ga, the rapidly acting sources of oxygen outweigh the rapidly-acting sinks. Or, in other words, at ~2.4 Ga, the flux of oxygen from organic carbon burial exceeds the sinks of oxygen from reaction with reduced volcanic and metamoprphic gases. The model is able to drive oxygen levels to 1-10% PAL in the Proterozoic; however, the evolving redox fluxes in the model cannot explain how oxygen levels pushed above 1-10% in the late Proterozoic. The authors suggest that perhaps another buffer, such as sulfur, is needed to describe Proterozoic and Phanerozoic redox evolution. Geologic proxies show that in the Proterozoic, up to 10% of the deep ocean may have been sulfidic. With this ocean chemistry, the global sulfur cycle would have worked differently than it does today. Because the sulfur and oxygen cycles interact, the oxygen concentration could have permanently changed due to an evolving sulfur cycle (in combination with evolving redox fluxes associated with other parts of the oxygen cycle and carbon

  5. Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review.

    Science.gov (United States)

    Chen, Meilian; Hur, Jin

    2015-08-01

    Dissolved organic matter (DOM) in sediments, termed here sediment DOM, plays a variety of important roles in global biogeochemical cycling of carbon and nutrients as well as in the fate and transport of xenobiotics. Here we reviewed sediment DOM, including pore waters and water extractable organic matter from inland and coastal sediments, based on recent literature (from 1996 to 2014). Sampling, pre-treatment, and characterization methods for sediment DOM were summarized. The characteristics of sediment DOM have been compared along an inland to coastal ecosystems gradient and also with the overlying DOM in water column to distinguish the unique nature of it. Dissolved organic carbon (DOC) from inland sediment DOM was generally higher than coastal areas, while no notable differences were found for their aromaticity and apparent molecular weight. Fluorescence index (FI) revealed that mixed sources are dominant for inland sediment DOM, but marine end-member prevails for coastal sediment DOM. Many reports showed that sediments operate as a net source of DOC and chromophoric DOM (CDOM) to the water column. Sediment DOM has shown more enrichment of nitrogen- and sulfur-containing compounds in the elemental signature than the overlying DOM. Fluorescent fingerprint investigated by excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) further demonstrated the characteristics of sediment DOM lacking in the photo-oxidized and the intermediate components, which are typically present in the overlying surface water. In addition, the biogeochemical changes in sediment DOM and the subsequent environmental implications were discussed with the focus on the binding and the complexation properties with pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Central Plant Optimization for Waste Energy Reduction (CPOWER). ESTCP Cost and Performance Report

    Science.gov (United States)

    2016-12-01

    meet all demands, and not necessarily for fuel economy or energy efficiency. Plant operators run the equipment according to a pre-set, fixed strategy ...exchanger, based on the site protocol. Thermal Energy Storage Tank Site-specific optimal operating strategies were developed for the chilled water...being served by the central plant Hypothesis The hypothesis tested that the optimized operation reduces wasted energy and energy costs by smart

  7. Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique

    Science.gov (United States)

    Wells, Kelley C.; Millet, Dylan B.; Bousserez, Nicolas; Henze, Daven K.; Griffis, Timothy J.; Chaliyakunnel, Sreelekha; Dlugokencky, Edward J.; Saikawa, Eri; Xiang, Gao; Prinn, Ronald G.; O'Doherty, Simon; Young, Dickon; Weiss, Ray F.; Dutton, Geoff S.; Elkins, James W.; Krummel, Paul B.; Langenfelds, Ray; Steele, L. Paul

    2018-01-01

    We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr-1 (SVD-based inversion) to 17.5-17.7 Tg N yr-1 (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N2O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when

  8. Environmental and biogeochemical controls on N2 fixation in ombrotrophic peatlands

    Science.gov (United States)

    Zivkovic, T.; Moore, T. R.

    2017-12-01

    Northern peatlands have low atmospheric nitrogen (N) inputs and acquire N mostly via biological, microbially-driven N2-fixation. Little is known about rates and controls on N2-fixation in ombrotrophic bogs. We conducted two studies to test environmental and biogeochemical controls on N2-fixation. First, we used acetylene reduction assay (ARA) calibrated with 15N2 tracer to measure N2-fixation rates in three species of Sphagnum mosses along a hydrological gradient (beaver pond, hollow and hummock in bog margin and in bog) at Mer Bleue bog from June-October 2013 and May - November 2014. We tested the following controls: moisture availability, temperature, and PAR. The largest ARA rates throughout both seasons occurred in the pond in floating Sphagnum cuspidatum mats (50.3 ± 12.9 μmol m-2 d-1 Mean ± SE), which were up to 2.5 times larger than the rates found in the driest hummock site. There was a significant seasonal peak in both years in July and early August that coincided with the peak of the air temperature. In fact, 45% of the variance of N2 fixation rates over the two field seasons was explained by rain events, water table fluctuations and the surface peat temperature (multiple regression analysis, n = 539). Our results highlight the potential impact of climate change, namely negative effects due to potential droughts and positive effect of warming, on N2 fixation patterns in ombrotrophic peatlands. Secondly, we tested stoichiometric controls (Sphagnum tissue N and phosphorous (P) ratio) of N2-fixation. In a controlled environment, we selected eight study sites along a latitudinal gradient from temperate, boreal to subarctic zone in eastern Canada. We found that decreasing N:P ratio corresponded to increasing N2-fixation. N:P explained 65% of the variance in N2-fixation in hollows but only 20% in hummocks. Changes in neither N or P concentration alone explained the increase in N2-fixation better than N:P ratio. We interpret that the difference between

  9. Eutrophication, microbial-sulfate reduction and mass extinctions

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas

    2016-01-01

    to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This climate warming feedback produces large-scale eutrophication on the continental shelf, which, in turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by increased microbial-sulfate...

  10. Introduction of Bootstrap Current Reduction in the Stellarator Optimization Using the Algorithm DAB; Introducción de la reducción actual de bootstrap en la optimización de stellarator utilizando el algoritmo DAB

    Energy Technology Data Exchange (ETDEWEB)

    Castejón, F.; Gómez-Iglesias, A.; Velasco, J. L.

    2015-07-01

    This work is devoted to introduce new optimization criterion in the DAB (Distributed Asynchronous Bees) code. With this new criterion, we have now in DAB the equilibrium and Mercier stability criteria, the minimization of Bxgrad(B) criterion, which ensures the reduction of neoclassical transport and the improvement of the confinement of fast particles, and the reduction of bootstrap current. We have started from a neoclassically optimised configuration of the helias type and imposed the reduction of bootstrap current. The obtained configuration only presents a modest reduction of total bootstrap current, but the local current density is reduced along the minor radii. Further investigations are developed to understand the reason of this modest improvement.

  11. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    Science.gov (United States)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  12. Environmental and biogeochemical changes following a decade's reclamation in the Dapeng (Tapong) Bay, southwestern Taiwan

    Science.gov (United States)

    Hung, J.-J.; Huang, W.-C.; Yu, C.-S.

    2013-09-01

    This study examines the environmental and biogeochemical changes in Dapeng (formerly spelled Tapong) Bay, a semi-enclosed coastal lagoon in southwestern Taiwan, after two major reclamation works performed between 1999 and 2010. The lagoon was largely occupied by oyster culture racks and fish farming cages before December, 2002. Substantial external inputs of nutrients and organic carbon and the fairly long water exchange time (τ) (10 ± 2 days) caused the lagoon to enter a eutrophic state, particularly at the inner lagoon, which directly received nutrient inputs. However, the entire lagoon showed autotrophic, and the estimated net ecosystem production (NEP) during the first stage was 5.8 mol C m-2 yr-1. After January, 2003, the aquaculture structures were completely removed, and the τ decreased to 6 ± 2 days. The annual mean concentrations of dissolved oxygen increased, and nutrients decreased substantially, likely due to improved water exchange, absence of feeding and increased biological utilization. The NEP increased 37% to 7.7 mol C m-2 yr-1 after structure removal. The second reclamation work beginning from July, 2006, focused on establishing artificial wetlands for wastewater treatment and on dredging bottom sediment. Although the τ did not change significantly (8 ± 3 days), substantial decreases in nutrient concentrations and dissolved organic matter continued. The NEP (14.3 mol C m-2 yr-1) increased 85% compared to that in the second stage. The data suggest that the reclamations substantially improved water quality, carbon and nutrient biogeochemical processes and budgets in this semi-enclosed ecosystem.

  13. Biogeochemical Impact of Snow Cover and Cyclonic Intrusions on the Winter Weddell Sea Ice Pack

    Science.gov (United States)

    Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.

    2017-12-01

    Sea ice is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack ice in the Weddell Sea (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm sea ice cover due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high ice permeability and cyclic events of brine movements within the sea ice cover (brine tubes), favoring relatively high chlorophyll-a (Chl-a) concentrations. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale sea ice model simulations also suggest a context of increasingly deep snow, warm ice, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic sea ice conditions, characterized by a longer ice season, thicker, and more concentrated ice are sufficient to increase the snow depth and, somehow counterintuitively, to warm the ice.

  14. Optimal experiment design for identification of grey-box models

    DEFF Research Database (Denmark)

    Sadegh, Payman; Melgaard, Henrik; Madsen, Henrik

    1994-01-01

    Optimal experiment design is investigated for stochastic dynamic systems where the prior partial information about the system is given as a probability distribution function in the system parameters. The concept of information is related to entropy reduction in the system through Lindley's measur...... estimation results in a considerable reduction of the experimental length. Besides, it is established that the physical knowledge of the system enables us to design experiments, with the goal of maximizing information about the physical parameters of interest.......Optimal experiment design is investigated for stochastic dynamic systems where the prior partial information about the system is given as a probability distribution function in the system parameters. The concept of information is related to entropy reduction in the system through Lindley's measure...... of average information, and the relationship between the choice of information related criteria and some estimators (MAP and MLE) is established. A continuous time physical model of the heat dynamics of a building is considered and the results show that performing an optimal experiment corresponding to a MAP...

  15. Reflector optimization for coupled liquid hydrogen moderator

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Furusaka, M.

    1991-01-01

    As a part of optimization studies on a coupled liquid hydrogen moderator system, the optimal thickness of the reflector, the effects of neutron absorbing liners and other beam hole/moderator on the cold-neutron-beam intensity were studied experimentally. It turns out that the optimal thickness is rather thick in this system and the existence of Cd liners around the beam extraction hole considerably reduces the cold neutron beam intensity, while the existence of other beam hole and moderator does not give an important intensity reduction. (author)

  16. Pb, Cd, Cu and Zn biogeochemical behaviour and biological transfer processes in the Northwestern Mediterranean

    International Nuclear Information System (INIS)

    Nicolas, E.; Marty, J.C.; Miquel, J.C.; Fowler, S.W.

    1999-01-01

    Cd, Pb, Cu and Zn concentrations were determined in planktonic organisms (Salps, copepods), their associated faecal pellets and in particles collected at 200 and 2000 m depth in sediment traps moored in the Ligurian Sea. Al and P were also measured and taken as tracers of lithogenic and biogenic components, respectively. The aim of this work was to determine the fluxes of trace metals in the Ligurian Sea and their variations with depth, and to to assess the biogeochemical behaviour of elements having, for some of them, an anthropogenic origin, by the study of biologically-mediated uptake and removal processes

  17. A Proposal for User-defined Reductions in OpenMP

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A; Ferrer, R; Klemm, M; de Supinski, B R; Ayguade, E

    2010-03-22

    Reductions are commonly used in parallel programs to produce a global result from partial results computed in parallel. Currently, OpenMP only supports reductions for primitive data types and a limited set of base language operators. This is a significant limitation for those applications that employ user-defined data types (e. g., objects). Implementing manual reduction algorithms makes software development more complex and error-prone. Additionally, an OpenMP runtime system cannot optimize a manual reduction algorithm in ways typically applied to reductions on primitive types. In this paper, we propose new mechanisms to allow the use of most pre-existing binary functions on user-defined data types as User-Defined Reduction (UDR) operators. Our measurements show that our UDR prototype implementation provides consistently good performance across a range of thread counts without increasing general runtime overheads.

  18. Geochemical variability of soils and biogeochemical variability of plants in the Piceance Basin, Colorado

    Science.gov (United States)

    Tuttle, M.L.; Severson, R.C.; Dean, W.E.; Klusman, R.W.

    1986-01-01

    Geochemical baselines for native soils and biogeochemical baselines for plants in the Piceance basin provide data that can be used to assess geochemical and biogeochemical effects of oil-shale development, monitor changes in the geochemical and biogeochemical environment during development, and assess the degree of success of rehabilitation of native materials after development. Baseline values for 52 properties in native soils, 15 properties in big sagebrush, and 13 properties in western wheatgrass were established. Our Study revealed statistically significant regional variations of the following properties across the basin: in soil&-aluminum, cobalt, copper, iron, manganese, sodium, nickel, phosphorus, lead, scandium, titanium, vanadium, zinc, organic and total carbon, pH, clay, dolomite, sodium feldspar, and DTPA-extractable calcium, cadmium, iron, potassium, manganese, nickel, phosphorus, yttrium, and zinc; in big sagebrush-barium, calcium, copper, magnesium, molybdenum, sodium, strontium, zinc, and ash; and in western wheatgrass-boron, barium, calcium, magnesium, manganese, molybdenum, strontium, zinc, and ash. These variations show up as north-south trends across the basin, or they reflect differences in elevation, hydrology, and soil parent material. Baseline values for properties that do not have statistically significant regional variations can be represented by geometric means and deviations calculated from all values within the basin. Chemical and mineralogical analyses of soil and chemical analyses of western wheatgrass samples from Colorado State University's experimental revegetation plot at Anvil Points provide data useful in assessing potential effects on soil and plant properties when largescale revegetation operations begin. The concentrations of certain properties are related to the presence of topsoil over spent shale in the lysimeters. In soils, calcium, fluorine, lithium, magnesium, sodium, phosphorus, strontium, carbonate and total carbon

  19. Beyond bixels: Generalizing the optimization parameters for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Markman, Jerry; Low, Daniel A.; Beavis, Andrew W.; Deasy, Joseph O.

    2002-01-01

    Intensity modulated radiation therapy (IMRT) treatment planning systems optimize fluence distributions by subdividing the fluence distribution into rectangular bixels. The algorithms typically optimize the fluence intensity directly, often leading to fluence distributions with sharp discontinuities. These discontinuities may yield difficulties in delivery of the fluence distribution, leading to inaccurate dose delivery. We have developed a method for decoupling the bixel intensities from the optimization parameters; either by introducing optimization control points from which the bixel intensities are interpolated or by parametrizing the fluence distribution using basis functions. In either case, the number of optimization search parameters is reduced from the direct bixel optimization method. To illustrate the concept, the technique is applied to two-dimensional idealized head and neck treatment plans. The interpolation algorithms investigated were nearest-neighbor, linear and cubic spline, and radial basis functions serve as the basis function test. The interpolation and basis function optimization techniques were compared against the direct bixel calculation. The number of optimization parameters were significantly reduced relative to the bixel optimization, and this was evident in the reduction of computation time of as much as 58% from the full bixel optimization. The dose distributions obtained using the reduced optimization parameter sets were very similar to the full bixel optimization when examined by dose distributions, statistics, and dose-volume histograms. To evaluate the sensitivity of the fluence calculations to spatial misalignment caused either by delivery errors or patient motion, the doses were recomputed with a 1 mm shift in each beam and compared to the unshifted distributions. Except for the nearest-neighbor algorithm, the reduced optimization parameter dose distributions were generally less sensitive to spatial shifts than the bixel

  20. An optimization method for defects reduction in fiber laser keyhole welding

    Science.gov (United States)

    Ai, Yuewei; Jiang, Ping; Shao, Xinyu; Wang, Chunming; Li, Peigen; Mi, Gaoyang; Liu, Yang; Liu, Wei

    2016-01-01

    Laser welding has been widely used in automotive, power, chemical, nuclear and aerospace industries. The quality of welded joints is closely related to the existing defects which are primarily determined by the welding process parameters. This paper proposes a defects optimization method that takes the formation mechanism of welding defects and weld geometric features into consideration. The analysis of welding defects formation mechanism aims to investigate the relationship between welding defects and process parameters, and weld features are considered to identify the optimal process parameters for the desired welded joints with minimum defects. The improved back-propagation neural network possessing good modeling for nonlinear problems is adopted to establish the mathematical model and the obtained model is solved by genetic algorithm. The proposed method is validated by macroweld profile, microstructure and microhardness in the confirmation tests. The results show that the proposed method is effective at reducing welding defects and obtaining high-quality joints for fiber laser keyhole welding in practical production.