Traffic Flow Optimization Using a Quantum Annealer
Directory of Open Access Journals (Sweden)
Florian Neukart
2017-12-01
Full Text Available Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum processing units (QPUs produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology’s usefulness for optimization and sampling tasks. In this paper, we present a real-world application that uses quantum technologies. Specifically, we show how to map certain parts of a real-world traffic flow optimization problem to be suitable for quantum annealing. We show that time-critical optimization tasks, such as continuous redistribution of position data for cars in dense road networks, are suitable candidates for quantum computing. Due to the limited size and connectivity of current-generation D-Wave QPUs, we use a hybrid quantum and classical approach to solve the traffic flow problem.
Research on the Method of Traffic Organization and Optimization Based on Dynamic Traffic Flow Model
Directory of Open Access Journals (Sweden)
Shu-bin Li
2017-01-01
Full Text Available The modern transportation system is becoming sluggish by traffic jams, so much so that it can harm the economic and society in our country. One of the reasons is the surging vehicles day by day. Another reason is the shortage of the traffic supply seriously. But the most important reason is that the traffic organization and optimization hardly met the conditions of modern transport development. In this paper, the practical method of the traffic organization and optimization used in regional area is explored by the dynamic traffic network analysis method. Firstly, the operational states of the regional traffic network are obtained by simulation method based on the self-developed traffic simulation software DynaCHINA, in which the improved traffic flow simulation model was proposed in order to be more suitable for actual domestic urban transport situation. Then the appropriated optimization model and algorithm were proposed according to different optimized content and organization goals, and the traffic simulation processes more suitable to regional optimization were designed exactly. Finally, a regional network in Tai’an city was selected as an example. The simulation results show that the proposed method is effective and feasible. It can provide strong scientific and technological support for the traffic management department.
Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.
Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe
2017-10-01
Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.
A measure theoretic approach to traffic flow optimization on networks
Cacace, Simone; Camilli, Fabio; De Maio, Raul; Tosin, Andrea
2018-01-01
We consider a class of optimal control problems for measure-valued nonlinear transport equations describing traffic flow problems on networks. The objective isto minimise/maximise macroscopic quantities, such as traffic volume or average speed,controlling few agents, for example smart traffic lights and automated cars. The measuretheoretic approach allows to study in a same setting local and nonlocal drivers interactionsand to consider the control variables as additional measures interacting ...
Directory of Open Access Journals (Sweden)
S.V. Myronenko
2016-12-01
Full Text Available At present sharply there is a problem of traffic management especially in big cities. The increase in the number of vehicles, both personal and public, led to congestion of city roads, many hours of traffic jams, difficulty of movement of pedestrians, increase the number of accidents, etc. Aim: The aim of the study is to evaluate the possibility of using simulation models to solve problems of analysis and optimization of traffic flows. To achieve this goal in a simulation environment the data base of the transport network will be developed. Materials and Methods: The problem of analysis and optimization of traffic flow is considered by the example of the city of Odessa (Ukraine, the results and recommendations can be easily adapted for other cities of Ukraine, and for the cities of most countries of the former socialist bloc. Features of transport systems make it impossible to build an adequate analytical model to explore options for the management of the system and its characteristic in different conditions. At the same time simulation modelling as a method to study such objects is a promising for the solution to this problem. As a simulation environment an OmniTRANS package as a universal tool for modeling of discrete, continuous and hybrid systems. Results: With OmniTRANS programs the model of traffic in Odessa was derived and the intensity of the traffic flow. B first approximation the transport network of the central district of the city was considered and built; without calibration and simulation it was developed a database of elements of the transport network and shown how it can be used to solve problems of analysis and optimization of traffic flows. Models constructed from elements of created database, allows you to change the level of detail of the simulated objects and phenomena, thereby obtaining models as macro and micro level.
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
Traffic Flow Management Wrap-Up
Grabbe, Shon
2011-01-01
Traffic Flow Management involves the scheduling and routing of air traffic subject to airport and airspace capacity constraints, and the efficient use of available airspace. Significant challenges in this area include: (1) weather integration and forecasting, (2) accounting for user preferences in the Traffic Flow Management decision making process, and (3) understanding and mitigating the environmental impacts of air traffic on the environment. To address these challenges, researchers in the Traffic Flow Management area are developing modeling, simulation and optimization techniques to route and schedule air traffic flights and flows while accommodating user preferences, accounting for system uncertainties and considering the environmental impacts of aviation. This presentation will highlight some of the major challenges facing researchers in this domain, while also showcasing recent innovations designed to address these challenges.
Chevoir, François; Gondret, Philippe; Lassarre, Sylvain; Lebacque, Jean-Patrick; Schreckenberg, Michael
2009-01-01
This book covers several research fields, all of which deal with transport. Three main topics are treated: road traffic, granular matter, and biological transport. Different points of view, i.e. modelling, simulations, experiments, and phenomenological observations, are considered. Sub-topics include: highway or urban vehicular traffic (dynamics of traffic, macro/micro modelling, measurements, data analysis, security issues, psychological issues), pedestrian traffic, animal traffic (e.g. social insects), collective motion in biological systems (molecular motors...), granular flow (dense flows, intermittent flows, solid/liquid transition, jamming, force networks, fluid and solid friction), networks (biological networks, urban traffic, the internet, vulnerability of networks, optimal transport networks) and cellular automata applied to the various aforementioned fields.
Real-Time Corrected Traffic Correlation Model for Traffic Flow Forecasting
Directory of Open Access Journals (Sweden)
Hua-pu Lu
2015-01-01
Full Text Available This paper focuses on the problems of short-term traffic flow forecasting. The main goal is to put forward traffic correlation model and real-time correction algorithm for traffic flow forecasting. Traffic correlation model is established based on the temporal-spatial-historical correlation characteristic of traffic big data. In order to simplify the traffic correlation model, this paper presents correction coefficients optimization algorithm. Considering multistate characteristic of traffic big data, a dynamic part is added to traffic correlation model. Real-time correction algorithm based on Fuzzy Neural Network is presented to overcome the nonlinear mapping problems. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling methods.
Big Data-Driven Based Real-Time Traffic Flow State Identification and Prediction
Directory of Open Access Journals (Sweden)
Hua-pu Lu
2015-01-01
Full Text Available With the rapid development of urban informatization, the era of big data is coming. To satisfy the demand of traffic congestion early warning, this paper studies the method of real-time traffic flow state identification and prediction based on big data-driven theory. Traffic big data holds several characteristics, such as temporal correlation, spatial correlation, historical correlation, and multistate. Traffic flow state quantification, the basis of traffic flow state identification, is achieved by a SAGA-FCM (simulated annealing genetic algorithm based fuzzy c-means based traffic clustering model. Considering simple calculation and predictive accuracy, a bilevel optimization model for regional traffic flow correlation analysis is established to predict traffic flow parameters based on temporal-spatial-historical correlation. A two-stage model for correction coefficients optimization is put forward to simplify the bilevel optimization model. The first stage model is built to calculate the number of temporal-spatial-historical correlation variables. The second stage model is present to calculate basic model formulation of regional traffic flow correlation. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling and computing methods.
Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...
With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th
International Workshop on Traffic and Granular Flow
Herrmann, Hans; Schreckenberg, Michael; Wolf, Dietrich; Social, Traffic and Granular Dynamics
2000-01-01
"Are there common phenomena and laws in the dynamic behavior of granular materials, traffic, and socio-economic systems?" The answers given at the international workshop "Traffic and Granular Flow '99" are presented in this volume. From a physical standpoint, all these systems can be treated as (self)-driven many-particle systems with strong fluctuations, showing multistability, phase transitions, non-linear waves, etc. The great interest in these systems is due to several unexpected new discoveries and their practical relevance for solving some fundamental problems of today's societies. This includes intelligent measures for traffic flow optimization and methods from "econophysics" for stabilizing (stock) markets.
Online traffic flow model applying dynamic flow-density relation
International Nuclear Information System (INIS)
Kim, Y.
2002-01-01
This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the
Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei
2017-07-01
Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.
Synchronized flow in oversaturated city traffic.
Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael
2013-11-01
Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.
Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area
Directory of Open Access Journals (Sweden)
Honghai Zhang
2014-01-01
Full Text Available We focus on the spatiotemporal characteristics and their evolvement law of the air traffic flow in airport terminal area to provide scientific basis for optimizing flight control processes and alleviating severe air traffic conditions. Methods in this work combine mathematical derivation and simulation analysis. Based on cell transmission model the macroscopic models of arrival and departure air traffic flow in terminal area are established. Meanwhile, the interrelationship and influential factors of the three characteristic parameters as traffic flux, density, and velocity are presented. Then according to such models, the macro emergence of traffic flow evolution is emulated with the NetLogo simulation platform, and the correlativity of basic traffic flow parameters is deduced and verified by means of sensitivity analysis. The results suggest that there are remarkable relations among the three characteristic parameters of the air traffic flow in terminal area. Moreover, such relationships evolve distinctly with the flight procedures, control separations, and ATC strategies.
From Traffic Flow to Economic System
Bando, M.
The optimal velocity model which is applied to traffic flow phenomena explains a spontaneous formation of traffic congestion. We discuss why the model works well in describing both free-flow and congested flow states in a unified way. The essential ingredient is that our model takes account of a sort of time delay in reacting to a given stimulus. This causes instability of many-body system, and yields a kind of phase transition above a certain critical density. Especially there appears a limit cycle on the phase space along which individual vehicle moves, and they show cyclic behavior. Once that we recognize the mechanism the same idea can be applied to a variety of phenomena which show cyclic behavior observed in many-body systems. As an example of such applications, we investigate business cycles commonly observed in economic system. We further discuss a possible origin of a kind of cyclic behavior observed in climate change.
Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective
Energy Technology Data Exchange (ETDEWEB)
Wang, Hong [Pacific Northwest National Laboratory (PNNL); Aziz, H M Abdul [ORNL; Young, Stan [National Renewable Energy Laboratory (NREL); Patil, Sagar [Pacific Northwest National Laboratory (PNNL)
2017-10-01
Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections. In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.
Directory of Open Access Journals (Sweden)
Seyed Hadi Hosseini
2014-10-01
Full Text Available Traffic flow forecasting is useful for controlling traffic flow, traffic lights, and travel times. This study uses a multi-layer perceptron neural network and the mutual information (MI technique to forecast traffic flow and compares the prediction results with conventional traffic flow forecasting methods. The MI method is used to calculate the interdependency of historical traffic data and future traffic flow. In numerical case studies, the proposed traffic flow forecasting method was tested against data loss, changes in weather conditions, traffic congestion, and accidents. The outcomes were highly acceptable for all cases and showed the robustness of the proposed flow forecasting method.
Probabilistic description of traffic flow
International Nuclear Information System (INIS)
Mahnke, R.; Kaupuzs, J.; Lubashevsky, I.
2005-01-01
A stochastic description of traffic flow, called probabilistic traffic flow theory, is developed. The general master equation is applied to relatively simple models to describe the formation and dissolution of traffic congestions. Our approach is mainly based on spatially homogeneous systems like periodically closed circular rings without on- and off-ramps. We consider a stochastic one-step process of growth or shrinkage of a car cluster (jam). As generalization we discuss the coexistence of several car clusters of different sizes. The basic problem is to find a physically motivated ansatz for the transition rates of the attachment and detachment of individual cars to a car cluster consistent with the empirical observations in real traffic. The emphasis is put on the analogy with first-order phase transitions and nucleation phenomena in physical systems like supersaturated vapour. The results are summarized in the flux-density relation, the so-called fundamental diagram of traffic flow, and compared with empirical data. Different regimes of traffic flow are discussed: free flow, congested mode as stop-and-go regime, and heavy viscous traffic. The traffic breakdown is studied based on the master equation as well as the Fokker-Planck approximation to calculate mean first passage times or escape rates. Generalizations are developed to allow for on-ramp effects. The calculated flux-density relation and characteristic breakdown times coincide with empirical data measured on highways. Finally, a brief summary of the stochastic cellular automata approach is given
Integrated Traffic Flow Management Decision Making
Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit
2009-01-01
A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.
Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing
Directory of Open Access Journals (Sweden)
Zhaosheng Yang
2014-01-01
Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.
Symmetry breaking in optimal timing of traffic signals on an idealized two-way street.
Panaggio, Mark J; Ottino-Löffler, Bertand J; Hu, Peiguang; Abrams, Daniel M
2013-09-01
Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this "green-wave" scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.
Symmetry breaking in optimal timing of traffic signals on an idealized two-way street
Panaggio, Mark J.; Ottino-Löffler, Bertand J.; Hu, Peiguang; Abrams, Daniel M.
2013-09-01
Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.
Optimizing traffic flow efficiency by controlling lane changes: collective, group and user optima
Yao, S.; Knoop, V.L.; van Arem, B.
2017-01-01
Lane changes can lead to disturbances in traffic flow, whilst the uneven distribution of traffic over different lanes as a result of lane changes can also lead to instabilities and congestion on one specific lane. Therefore, giving advice on lane change can be beneficial for both individual drivers
THE METHODS OF TRAFFIC ENGINEERING’S OPTIMIZATION IN CASE OF DATA TRANSFER BY TWO ROUTS
Directory of Open Access Journals (Sweden)
Vera Petrovna Khoborova
2018-05-01
Full Text Available To prevent congestion in certain sections of multi-service networks, data flow management, which leads to a more proportional distribution of resources and improved network functioning, is implemented. The task of selecting routes for individual data streams (traffic class, taking into account requirements of QoS, is solved by the methods of traffic engineering. With the help of these methods, it is strived to load all the network resources maximally and balanced, so that the network, with a given level of service quality, has high total capacity as much as possible. However, at the present time, there are no rigorous well-founded solutions for the problem of distributing data flows between the selected routes, taking into account the possibility of additional control over their capacity. The article proposes a method for optimizing the distribution of data flows and the bandwidth of the channels (routes used in each separate information direction, with different coordination of control actions at adjacent levels of the network architecture. We consider scientific and technical proposals for the implementation of the developed method as part of the mechanisms that implement the traffic engineering in modern multiservice networks. Purpose: increasing the efficiency of the multiservice network by optimizing the traffic engineering. Methodology in article analytical methods for solving optimization problems with a non-linear objective function and linear constraints are used. Results: analytical expressions were obtained for the optimal distribution of data flows and bandwidth of the used channels, which provides the minimum values of delay indicators, and the use of these expressions in calculations in the mechanisms of traffic engineering was suggested. Practical implications: the obtained results should be used in modern multiservice networks, which are implemented data flow management through the traffic engineering in order to improve the
Fuzzy Multiobjective Traffic Light Signal Optimization
Directory of Open Access Journals (Sweden)
N. Shahsavari Pour
2013-01-01
Full Text Available Traffic congestion is a major concern for many cities throughout the world. In a general traffic light controller, the traffic lights change at a constant cycle time. Hence it does not provide an optimal solution. Many traffic light controllers in current use are based on the “time-of-the-day” scheme, which use a limited number of predetermined traffic light patterns and implement these patterns depending upon the time of the day. These automated systems do not provide an optimal control for fluctuating traffic volumes. In this paper, the fuzzy traffic light controller is used to optimize the control of fluctuating traffic volumes such as oversaturated or unusual load conditions. The problem is solved by genetic algorithm, and a new defuzzification method is introduced. The performance of the new defuzzification method (NDM is compared with the centroid point defuzzification method (CPDM by using ANOVA. Finally, an illustrative example is presented to show the competency of proposed algorithm.
SMART VIDEO SURVEILLANCE SYSTEM FOR VEHICLE DETECTION AND TRAFFIC FLOW CONTROL
Directory of Open Access Journals (Sweden)
A. A. SHAFIE
2011-08-01
Full Text Available Traffic signal light can be optimized using vehicle flow statistics obtained by Smart Video Surveillance Software (SVSS. This research focuses on efficient traffic control system by detecting and counting the vehicle numbers at various times and locations. At present, one of the biggest problems in the main city in any country is the traffic jam during office hour and office break hour. Sometimes it can be seen that the traffic signal green light is still ON even though there is no vehicle coming. Similarly, it is also observed that long queues of vehicles are waiting even though the road is empty due to traffic signal light selection without proper investigation on vehicle flow. This can be handled by adjusting the vehicle passing time implementing by our developed SVSS. A number of experiment results of vehicle flows are discussed in this research graphically in order to test the feasibility of the developed system. Finally, adoptive background model is proposed in SVSS in order to successfully detect target objects such as motor bike, car, bus, etc.
Traffic Flow Theory - A State-of-the-Art Report: Revised Monograph on Traffic Flow Theory
2002-04-13
This publication is an update and expansion of the Transportation Research Board (TRB) Special Report 165, "Traffic Flow Theory," published in 1975. This updating was undertaken on recommendation of the TRB's Committee on Traffic Flow Theory and Char...
Analyses of Lattice Traffic Flow Model on a Gradient Highway
International Nuclear Information System (INIS)
Gupta Arvind Kumar; Redhu Poonam; Sharma Sapna
2014-01-01
The optimal current difference lattice hydrodynamic model is extended to investigate the traffic flow dynamics on a unidirectional single lane gradient highway. The effect of slope on uphill/downhill highway is examined through linear stability analysis and shown that the slope significantly affects the stability region on the phase diagram. Using nonlinear stability analysis, the Burgers, Korteweg-deVries (KdV) and modified Korteweg-deVries (mKdV) equations are derived in stable, metastable and unstable region, respectively. The effect of reaction coefficient is examined and concluded that it plays an important role in suppressing the traffic jams on a gradient highway. The theoretical findings have been verified through numerical simulation which confirm that the slope on a gradient highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the optimal current difference effect in the new lattice model. (nuclear physics)
assessment of traffic flow on enugu highways using speed density
African Journals Online (AJOL)
HOD
Corresponding author, tel: +234 – 806 – 435 – 0200 ... construction, maintenance and optimization of the highways using the ...... Research Part A: Policy and Practice 29(4), 273-281. 1995. ... relationships: Quality and Theory of Traffic Flow.
Green Wave Traffic Optimization - A Survey
DEFF Research Database (Denmark)
Warberg, Andreas; Larsen, Jesper; Jørgensen, Rene Munk
The objective of this survey is to cover the research in the area of adaptive traffic control with emphasis on the applied optimization methods. The problem of optimizing traffic signals can be viewed in various ways, depending on political, economic and ecological goals. The survey highlights some...... important conflicts, which support the notion that traffic signal optimization is a multi-objective problem, and relates this to the most common measures of effectiveness. A distinction can be made between classical systems, which operate with a common cycle time, and the more flexible, phase......-based, approach, which is shown to be more suitable for adaptive traffic control. To support this claim three adaptive systems, which use alternatives to the classical optimization procedures, are described in detail....
Traffic Management as a Service: The Traffic Flow Pattern Classification Problem
Directory of Open Access Journals (Sweden)
Carlos T. Calafate
2015-01-01
Full Text Available Intelligent Transportation System (ITS technologies can be implemented to reduce both fuel consumption and the associated emission of greenhouse gases. However, such systems require intelligent and effective route planning solutions to reduce travel time and promote stable traveling speeds. To achieve such goal these systems should account for both estimated and real-time traffic congestion states, but obtaining reliable traffic congestion estimations for all the streets/avenues in a city for the different times of the day, for every day in a year, is a complex task. Modeling such a tremendous amount of data can be time-consuming and, additionally, centralized computation of optimal routes based on such time-dependencies has very high data processing requirements. In this paper we approach this problem through a heuristic to considerably reduce the modeling effort while maintaining the benefits of time-dependent traffic congestion modeling. In particular, we propose grouping streets by taking into account real traces describing the daily traffic pattern. The effectiveness of this heuristic is assessed for the city of Valencia, Spain, and the results obtained show that it is possible to reduce the required number of daily traffic flow patterns by a factor of 4210 while maintaining the essence of time-dependent modeling requirements.
Autosolitons in applied physics and traffic flow
International Nuclear Information System (INIS)
Kerner, B.S.
1996-01-01
A review of investigations of autosolitons in nonlinear systems which are of interest for the applied physics and for the transportation research is presented. Autosolitons are solitary intrinsic states which can be formed in a broad class of physical, chemical, biological dissipative distributed media and in traffic flow. Properties of autosolitons which are general for physical systems and for traffic flow will be discussed. Based on results of recent investigations of traffic jams in traffic flow, a comparison of nonlinear characteristics of traffic jams and with nonlinear properties of autosolitons which can be formed in active systems with diffusion will be given. Forms, properties, processes of evolution of autosolitons in traffic flow, in semiconductors and in gas discharge plasma are considered. copyright 1996 American Institute of Physics
Road Artery Traffic Light Optimization with Use of the Reinforcement Learning
Directory of Open Access Journals (Sweden)
Rok Marsetič
2014-04-01
Full Text Available The basic principle of optimal traffic control is the appropriate real-time response to dynamic traffic flow changes. Signal plan efficiency depends on a large number of input parameters. An actuated signal system can adjust very well to traffic conditions, but cannot fully adjust to stochastic traffic volume oscillation. Due to the complexity of the problem analytical methods are not applicable for use in real time, therefore the purpose of this paper is to introduce heuristic method suitable for traffic light optimization in real time. With the evolution of artificial intelligence new possibilities for solving complex problems have been introduced. The goal of this paper is to demonstrate that the use of the Q learning algorithm for traffic lights optimization is suitable. The Q learning algorithm was verified on a road artery with three intersections. For estimation of the effectiveness and efficiency of the proposed algorithm comparison with an actuated signal plan was carried out. The results (average delay per vehicle and the number of vehicles that left road network show that Q learning algorithm outperforms the actuated signal controllers. The proposed algorithm converges to the minimal delay per vehicle regardless of the stochastic nature of traffic. In this research the impact of the model parameters (learning rate, exploration rate, influence of communication between agents and reward type on algorithm effectiveness were analysed as well.
Will Automated Vehicles Negatively Impact Traffic Flow?
Directory of Open Access Journals (Sweden)
S. C. Calvert
2017-01-01
Full Text Available With low-level vehicle automation already available, there is a necessity to estimate its effects on traffic flow, especially if these could be negative. A long gradual transition will occur from manual driving to automated driving, in which many yet unknown traffic flow dynamics will be present. These effects have the potential to increasingly aid or cripple current road networks. In this contribution, we investigate these effects using an empirically calibrated and validated simulation experiment, backed up with findings from literature. We found that low-level automated vehicles in mixed traffic will initially have a small negative effect on traffic flow and road capacities. The experiment further showed that any improvement in traffic flow will only be seen at penetration rates above 70%. Also, the capacity drop appeared to be slightly higher with the presence of low-level automated vehicles. The experiment further investigated the effect of bottleneck severity and truck shares on traffic flow. Improvements to current traffic models are recommended and should include a greater detail and understanding of driver-vehicle interaction, both in conventional and in mixed traffic flow. Further research into behavioural shifts in driving is also recommended due to limited data and knowledge of these dynamics.
Acceleration of aircraft-level Traffic Flow Management
Rios, Joseph Lucio
This dissertation describes novel approaches to solving large-scale, high fidelity, aircraft-level Traffic Flow Management scheduling problems. Depending on the methods employed, solving these problems to optimality can take longer than the length of the planning horizon in question. Research in this domain typically focuses on the quality of the modeling used to describe the problem and the benefits achieved from the optimized solution, often treating computational aspects as secondary or tertiary. The work presented here takes the complementary view and considers the computational aspect as the primary concern. To this end, a previously published model for solving this Traffic Flow Management scheduling problem is used as starting point for this study. The model proposed by Bertsimas and Stock-Patterson is a binary integer program taking into account all major resource capacities and the trajectories of each flight to decide which flights should be held in which resource for what amount of time in order to satisfy all capacity requirements. For large instances, the solve time using state-of-the-art solvers is prohibitive for use within a potential decision support tool. With this dissertation, however, it will be shown that solving can be achieved in reasonable time for instances of real-world size. Five other techniques developed and tested for this dissertation will be described in detail. These are heuristic methods that provide good results. Performance is measured in terms of runtime and "optimality gap." We then describe the most successful method presented in this dissertation: Dantzig-Wolfe Decomposition. Results indicate that a parallel implementation of Dantzig-Wolfe Decomposition optimally solves the original problem in much reduced time and with better integrality and smaller optimality gap than any of the heuristic methods or state-of-the-art, commercial solvers. The solution quality improves in every measureable way as the number of subproblems
2012-01-24
... Intelligent Network Flow Optimization Operational Concepts; Notice of Public Meeting AGENCY: Research and... Demand Management (ADTM) and Intelligent Network Flow Optimization (INFLO) operational concepts. The ADTM... infrastructure. The vision for ATDM research is to allow transportation agencies to increase traffic flow...
OPTIMAL TRAFFIC MANAGEMENT FOR AIRCRAFT APPROACHING THE AERODROME LANDING AREA
Directory of Open Access Journals (Sweden)
Igor B. Ivenin
2018-01-01
Full Text Available The research proposes a mathematical optimization approach of arriving aircraft traffic at the aerodrome zone. The airfield having two parallel runways, capable of operating independently of each other, is modeled. The incoming traffic of aircraft is described by a Poisson flow of random events. The arriving aircraft are distributed by the air traffic controller between two runways. There is one approach flight path for each runway. Both approach paths have a common starting point. Each approach path has a different length. The approach trajectories do not overlap. For each of the two approach procedures, the air traffic controller sets the average speed of the aircraft. The given model of airfield and airfield zone is considered as the two-channel system of mass service with refusals in service. Each of the two servicing units includes an approach trajectory, a glide path and a runway. The servicing unit can be in one of two states – free and busy. The probabilities of the states of the servicing units are described by the Kolmogorov system of differential equations. The number of refusals in service on the simulated time interval is used as criterion for assessment of mass service system quality of functioning. This quality of functioning criterion is described by an integral functional. The functions describing the distribution of aircraft flows between the runways, as well as the functions describing the average speed of the aircraft, are control parameters. The optimization problem consists in finding such values of the control parameters for which the value of the criterion functional is minimal. To solve the formulated optimization problem, the L.S. Pontryagin maximum principle is applied. The form of the Hamiltonian function and the conjugate system of differential equations is given. The structure of optimal control has been studied for two different cases of restrictions on the control of the distribution of incoming aircraft
Traveling waves in an optimal velocity model of freeway traffic
Berg, Peter; Woods, Andrew
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Directory of Open Access Journals (Sweden)
Wei Zhang
2012-01-01
Full Text Available This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the congestion factor which can be used to evaluate the real-time traffic congestion status along the segment and to predict the subcritical state of traffic jams. The result is expected to support the timing phase optimization of traffic light control for the purpose of avoiding traffic congestion before its formation. We simulate the traffic monitoring based on the Mobile Century dataset and analyze the performance of traffic light control on VISSIM platform when congestion factor is introduced into the signal timing optimization model. The simulation result shows that this method can improve the spatial-temporal resolution of traffic data monitoring and evaluate traffic congestion status with high precision. It is helpful to remarkably alleviate urban traffic congestion and decrease the average traffic delays and maximum queue length.
Optimal Re-Routes and Ground Delays Using a Route-Based Aggregate Air Traffic Flow Model
Soler, Lluis
The National Airspace System (NAS) is very complex and with a high level of uncertainty. For this reason, developing an automated conflict resolution tool at NAS level is presented as a big challenge. One way to address the problem is by using aggregate models, which can significantly reduce its dimension and complexity. Significant effort has been made to develop an air traffic aggregate model capable to effectively state and solve the problem. In this study, a Route-Based Aggregate Model is developed and tested. It consists in a modification of several existing models and overcomes some issues identified in previous aggregate models. It allows the implementation of Traffic Flow Management conventional controls, such as ground delay and rerouting. These control strategies can be used to avoid congestion conflicts based on sectors and airports capacity as well as regions affected by convective weather. The optimization problem is posed as a Linear Programming routine, which guarantees an optimal solution that minimizes the total accumulated delay required to avoid such capacity conflicts. The solutions can be directly translated into specific instructions at aircraft level, via modification of the times of departure and flight plans. The model is integrated with Future Air Traffic Management Concepts Evaluation Tool (FACET), a state of the art air traffic simulation tool, and uses its files as both input and output. This allows simulating in FACET the solution obtained from the aggregate domain. The approach is validated by applying it in three realistic scenarios at different scales. Results show that, for time horizons larger than 2 hours, the accuracy of the aggregate model is similar to other simulation tools. Also, the modified flight plans, the product of the disaggregated solution, reduce the number of capacity conflicts in the FACET simulation. Future research will study the robustness of these solutions and determine the most appropriate scenarios where to
ON THE ARRIVAL TRAFFIC FLOW ORGANIZATION
Directory of Open Access Journals (Sweden)
Nikita A. Assorov
2017-01-01
Full Text Available This article is about air traffic flow organization, ICAO regulations describe the organizing of traffic flow as one of the purposes of air traffic control, but they don’t state exactly at what point the flow has to be organized and metered. The flight phase, where air traffic controller interferes with his instructions in order to begin organizing of all aircraft landing at a certain airport depends on the actual traffic volume per hour, airspace capacity and design.The example of air traffic situation in Moscow Domodedovo airport is described in the article, with runway 32 right in use, no significant weather, real usage of STARs, considering all the ICAO and Russian Federation regulations regarding speed control with the restrictions mentioned in AIP of Moscow Domodedovo. The purpose of the experiment is to prove the need of metering the air traffic flow on the entry points in Moscow TMA, because in case of unorganized air traffic flow approach controllers will have additional unnecessary workload.The conducted calculations show, that only 3 aircraft entering TMA on the same distance from initial approach point can be handled using only speed control and existing standard arrival procedures, in all other cases vectoring or holding areas should be used.In order to avoid such situations and increase the number of the aircraft that can be handled by the approach controller with less instructions, all the traffic arriving on the TMA entry point has to be metered by area control centre, because the air traffic control unit has much more space and time for long term speed control modifications, e.g. ±0,02 Mach. In conclusion a simple rule comes to mind – the bigger inbound traffic is, the earlier one has to organize it, in order to do it speed control, radar vectors, miles-in-trail can be used. Also new equipment and technology can help air traffic controller with this task, e.g. AMAN (arrival manager, in addition to this, the experience of
Analysis of vehicular traffic flow in the major areas of Kuala Lumpur utilizing open-traffic
Manogaran, Saargunawathy; Ali, Muhammad; Yusof, Kamaludin Mohamad; Suhaili, Ramdhan
2017-09-01
Vehicular traffic congestion occurs when a large number of drivers are overcrowded on the road and the traffic flow does not run smoothly. Traffic congestion causes chaos on the road and interruption to daily activities of users. Time consumed on road give lots of negative effects on productivity, social behavior, environmental and cost to economy. Congestion is worsens and leads to havoc during the emergency such as flood, accidents, road maintenance and etc., where behavior of traffic flow is always unpredictable and uncontrollable. Real-time and historical traffic data are critical inputs for most traffic flow analysis applications. Researcher attempt to predict traffic using simulations as there is no exact model of traffic flow exists due to its high complexity. Open Traffic is an open source platform available for traffic data analysis linked to Open Street Map (OSM). This research is aimed to study and understand the Open Traffic platform. The real-time traffic flow pattern in Kuala Lumpur area was successfully been extracted and analyzed using Open Traffic. It was observed that the congestion occurs on every major road in Kuala Lumpur and most of it owes to the offices and the economic and commercial centers during rush hours. At some roads the congestion occurs at night due to the tourism activities.
Directory of Open Access Journals (Sweden)
Qiang Shang
Full Text Available Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS. Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM is proposed based on singular spectrum analysis (SSA and kernel extreme learning machine (KELM. SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.
Traffic flow wide-area surveillance system definition
Energy Technology Data Exchange (ETDEWEB)
Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L. [Oak Ridge National Lab., TN (United States); Moynihan, P.I. [Jet Propulsion Lab., Pasadena, CA (United States)
1994-11-01
Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.
Luding, Stefan; Bovy, Piet; Schreckenberg, Michael; Wolf, Dietrich
2005-01-01
These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the “hot topics” addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the ...
11th Traffic and Granular Flow Conference
Daamen, Winnie
2016-01-01
The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinar...
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
Vehicular Traffic Optimization in VANETs: a Proposal for Nodes Re-routing and Congestion Reduction
Directory of Open Access Journals (Sweden)
Mauro Tropea
2015-01-01
Full Text Available Recently, vehicular networking has grown up in terms of interest and transmission capability, due to the possibility of exploiting the distributed communication paradigm in a mobile scenario, where moving nodes are represented by vehicles. In this paper, we focus our attention on the optimization of traffic flowing in a vehicular environment with vehicle-roadside capability. As shown in the next sections, the proposed idea exploits the information that is gathered by road-side units with the main aim of redirecting traffic flows (in terms of vehicles to less congested roads, with an overall system optimization, also in terms of Carbon Dioxide emissions reduction. A deep campaign of simulations has been carried out to give more effectiveness to our proposal.
Predicting Information Flows in Network Traffic.
Hinich, Melvin J.; Molyneux, Robert E.
2003-01-01
Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)
Seldner, K.
1977-01-01
An algorithm was developed to optimally control the traffic signals at each intersection using a discrete time traffic model applicable to heavy or peak traffic. Off line optimization procedures were applied to compute the cycle splits required to minimize the lengths of the vehicle queues and delay at each intersection. The method was applied to an extensive traffic network in Toledo, Ohio. Results obtained with the derived optimal settings are compared with the control settings presently in use.
Anacleto, Osvaldo; Queen, Catriona; Albers, Casper J.
Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for
A Modified Cellular Automaton Approach for Mixed Bicycle Traffic Flow Modeling
Directory of Open Access Journals (Sweden)
Xiaonian Shan
2015-01-01
Full Text Available Several previous studies have used the Cellular Automaton (CA for the modeling of bicycle traffic flow. However, previous CA models have several limitations, resulting in differences between the simulated and the observed traffic flow features. The primary objective of this study is to propose a modified CA model for simulating the characteristics of mixed bicycle traffic flow. Field data were collected on physically separated bicycle path in Shanghai, China, and were used to calibrate the CA model using the genetic algorithm. Traffic flow features between simulations of several CA models and field observations were compared. The results showed that our modified CA model produced more accurate simulation for the fundamental diagram and the passing events in mixed bicycle traffic flow. Based on our model, the bicycle traffic flow features, including the fundamental diagram, the number of passing events, and the number of lane changes, were analyzed. We also analyzed the traffic flow features with different traffic densities, traffic components on different travel lanes. Results of the study can provide important information for understanding and simulating the operations of mixed bicycle traffic flow.
Reconstruction of dynamical equations for traffic flow
Kriso, S.; Friedrich, R.; Peinke, J.; Wagner, P.
2001-01-01
Traffic flow data collected by an induction loop detector on the highway close to Koeln-Nord are investigated with respect to their dynamics including the stochastic content. In particular we present a new method, with which the flow dynamics can be extracted directly from the measured data. As a result a Langevin equation for the traffic flow is obtained. From the deterministic part of the flow dynamics, stable fixed points are extracted and set into relation with common features of the fund...
International Nuclear Information System (INIS)
Solangi, U.S.; Memon, T.D.; Noonari, A.S.; Ansari, O.A.
2017-01-01
The problem of vehicular traffic congestion is a persistent constraint in the socio-economic development of Pakistan. This paper presents design and implementation of an intelligent traffic controller based on FPGA (Field Programmable Gate Array) to provide an efficient traffic management by optimizing functioning of traffic lights which will result in minimizing traffic congestion at intersections. The existent Traffic Signal system in Pakistan is fixed-time based and offers only Open Loop method for Traffic Control. The Intelligent Traffic Controller presented here uses feedback sensors to read the Traffic density present at a four way intersection to provide an efficient alternative for better supervisory Control of Traffic flow. The traffic density based control logic has been developed in a State Flow Chart for improved visualization of State Machine based operation, and implemented as a Subsystem in Simulink and transferred into VHDL (Hardware Description Language) code using HDL Coder for reducing development time and time to market, which are essential to capitalize Embedded Systems Market. The VHDL code is synthesized with Altera QUARTUS, simulated timing waveform is obtained to verify correctness of the algorithm for different Traffic Scenarios. For implementation purpose estimations were obtained for Cyclone-III and Stratix-III. (author)
Directory of Open Access Journals (Sweden)
UMAIR SAEEDSOLANGI
2017-04-01
Full Text Available The problem of vehicular traffic congestion is a persistent constraint in the socio-economic development of Pakistan. This paper presents design and implementation of an intelligent traffic controller based on FPGA (Field Programmable Gate Array to provide an efficient traffic management by optimizing functioning of traffic lights which will result in minimizing traffic congestion at intersections. The existent Traffic Signal system in Pakistan is fixed-time based and offers only Open Loop method for Traffic Control. The Intelligent Traffic Controller presented here uses feedback sensors to read the Traffic density present at a four way intersection to provide an efficient alternative for better supervisory Control of Traffic flow. The traffic density based control logic has been developed in a State Flow Chart for improved visualization of State Machine based operation, and implemented as a Subsystem in Simulink and transferred into VHDL (Hardware Description Language code using HDL Coder for reducing development time and time to market, which are essential to capitalize Embedded Systems Market. The VHDL code is synthesized with Altera QUARTUS, simulated timing waveform is obtained to verify correctness of the algorithm for different Traffic Scenarios. For implementation purpose estimations were obtained for Cyclone-III and Stratix-III.
Accurate Multisteps Traffic Flow Prediction Based on SVM
Directory of Open Access Journals (Sweden)
Zhang Mingheng
2013-01-01
Full Text Available Accurate traffic flow prediction is prerequisite and important for realizing intelligent traffic control and guidance, and it is also the objective requirement for intelligent traffic management. Due to the strong nonlinear, stochastic, time-varying characteristics of urban transport system, artificial intelligence methods such as support vector machine (SVM are now receiving more and more attentions in this research field. Compared with the traditional single-step prediction method, the multisteps prediction has the ability that can predict the traffic state trends over a certain period in the future. From the perspective of dynamic decision, it is far important than the current traffic condition obtained. Thus, in this paper, an accurate multi-steps traffic flow prediction model based on SVM was proposed. In which, the input vectors were comprised of actual traffic volume and four different types of input vectors were compared to verify their prediction performance with each other. Finally, the model was verified with actual data in the empirical analysis phase and the test results showed that the proposed SVM model had a good ability for traffic flow prediction and the SVM-HPT model outperformed the other three models for prediction.
Abnormal traffic flow data detection based on wavelet analysis
Directory of Open Access Journals (Sweden)
Xiao Qian
2016-01-01
Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.
Microscopic modeling of multi-lane highway traffic flow
Hodas, Nathan O.; Jagota, Anand
2003-12-01
We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.
Traffic Games: Modeling Freeway Traffic with Game Theory.
Cortés-Berrueco, Luis E; Gershenson, Carlos; Stephens, Christopher R
2016-01-01
We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers' interactions.
Real-time traffic signal optimization model based on average delay time per person
Directory of Open Access Journals (Sweden)
Pengpeng Jiao
2015-10-01
Full Text Available Real-time traffic signal control is very important for relieving urban traffic congestion. Many existing traffic control models were formulated using optimization approach, with the objective functions of minimizing vehicle delay time. To improve people’s trip efficiency, this article aims to minimize delay time per person. Based on the time-varying traffic flow data at intersections, the article first fits curves of accumulative arrival and departure vehicles, as well as the corresponding functions. Moreover, this article transfers vehicle delay time to personal delay time using average passenger load of cars and buses, employs such time as the objective function, and proposes a signal timing optimization model for intersections to achieve real-time signal parameters, including cycle length and green time. This research further implements a case study based on practical data collected at an intersection in Beijing, China. The average delay time per person and queue length are employed as evaluation indices to show the performances of the model. The results show that the proposed methodology is capable of improving traffic efficiency and is very effective for real-world applications.
Incorporation of Duffing Oscillator and Wigner-Ville Distribution in Traffic Flow Prediction
Directory of Open Access Journals (Sweden)
Anamarija L. Mrgole
2017-02-01
Full Text Available The main purpose of this study was to investigate the use of various chaotic pattern recognition methods for traffic flow prediction. Traffic flow is a variable, dynamic and complex system, which is non-linear and unpredictable. The emergence of traffic flow congestion in road traffic is estimated when the traffic load on a specific section of the road in a specific time period is close to exceeding the capacity of the road infrastructure. Under certain conditions, it can be seen in concentrating chaotic traffic flow patterns. The literature review of traffic flow theory and its connection with chaotic features implies that this kind of method has great theoretical and practical value. Researched methods of identifying chaos in traffic flow have shown certain restrictions in their techniques but have suggested guidelines for improving the identification of chaotic parameters in traffic flow. The proposed new method of forecasting congestion in traffic flow uses Wigner-Ville frequency distribution. This method enables the display of a chaotic attractor without the use of reconstruction phase space.
Construction and simulation of a novel continuous traffic flow model
International Nuclear Information System (INIS)
Hwang, Yao-Hsin; Yu, Jui-Ling
2017-01-01
In this paper, we aim to propose a novel mathematical model for traffic flow and apply a newly developed characteristic particle method to solve the associate governing equations. As compared with the existing non-equilibrium higher-order traffic flow models, the present one is put forward to satisfy the following three conditions: 1.Preserve the equilibrium state in the smooth region. 2.Yield an anisotropic propagation of traffic flow information. 3.Expressed with a conservation law form for traffic momentum. These conditions will ensure a more practical simulation in traffic flow physics: The current traffic will not be influenced by the condition in the behind and result in unambiguous condition across a traffic shock. Through analyses of characteristics, stability condition and steady-state solution adherent to the equation system, it is shown that the proposed model actually conform to these conditions. Furthermore, this model can be cast into its characteristic form which, incorporated with the Rankine-Hugoniot relation, is appropriate to be simulated by the characteristic particle method to obtain accurate computational results. - Highlights: • The traffic model expressed with the momentum conservation law. • Traffic flow information propagate anisotropically and preserve the equilibrium state in the smooth region. • Computational particles of two families are invented to mimic forward-running and backward-running characteristics. • Formation of shocks will be naturally detected by the intersection of computational particles of same family. • A newly developed characteristic particle method is used to simulate traffic flow model equations.
Traffic flow dynamics data, models and simulation
Treiber, Martin
2013-01-01
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...
Effects of Car Accidents on Three-Lane Traffic Flow
Directory of Open Access Journals (Sweden)
Jianzhong Chen
2014-01-01
Full Text Available A three-lane traffic flow model is proposed to investigate the effect of car accidents on the traffic flow. The model is an extension of the full velocity difference (FVD model by taking into account the lane changing. The extended lane-changing rules are presented to model the lane-changing behaviour. The cases that the car accidents occupy the exterior or interior lane, the medium lane, and two lanes are studied by numerical simulations. The time-space diagrams and the current diagrams are presented, and the traffic jams are investigated. The results show that the car accident has a different effect on the traffic flow when it occupies different lanes. The car accidents have a more serious effect on the whole road when they occupy two lanes. The larger the density is, the greater the influence on the traffic flow becomes.
Particle hopping vs. fluid-dynamical models for traffic flow
Energy Technology Data Exchange (ETDEWEB)
Nagel, K.
1995-12-31
Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.
Hierarchical and coupling model of factors influencing vessel traffic flow.
Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi
2017-01-01
Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.
A Network Traffic Control Enhancement Approach over Bluetooth Networks
DEFF Research Database (Denmark)
Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun
2003-01-01
This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated solu...... as capacity limitations and flow requirements in the network. Simulation shows that the performance of Bluetooth networks could be improved by applying the adaptive distributed network traffic control scheme...... solution of the stated optimization problem that satisfies quality of service requirements and topologically induced constraints in Bluetooth networks, such as link capacity and node resource limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well......This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated...
An Efficient Computational Technique for Fractal Vehicular Traffic Flow
Directory of Open Access Journals (Sweden)
Devendra Kumar
2018-04-01
Full Text Available In this work, we examine a fractal vehicular traffic flow problem. The partial differential equations describing a fractal vehicular traffic flow are solved with the aid of the local fractional homotopy perturbation Sumudu transform scheme and the local fractional reduced differential transform method. Some illustrative examples are taken to describe the success of the suggested techniques. The results derived with the aid of the suggested schemes reveal that the present schemes are very efficient for obtaining the non-differentiable solution to fractal vehicular traffic flow problem.
Traffic Flow Prediction with Rainfall Impact Using a Deep Learning Method
Directory of Open Access Journals (Sweden)
Yuhan Jia
2017-01-01
Full Text Available Accurate traffic flow prediction is increasingly essential for successful traffic modeling, operation, and management. Traditional data driven traffic flow prediction approaches have largely assumed restrictive (shallow model architectures and do not leverage the large amount of environmental data available. Inspired by deep learning methods with more complex model architectures and effective data mining capabilities, this paper introduces the deep belief network (DBN and long short-term memory (LSTM to predict urban traffic flow considering the impact of rainfall. The rainfall-integrated DBN and LSTM can learn the features of traffic flow under various rainfall scenarios. Experimental results indicate that, with the consideration of additional rainfall factor, the deep learning predictors have better accuracy than existing predictors and also yield improvements over the original deep learning models without rainfall input. Furthermore, the LSTM can outperform the DBN to capture the time series characteristics of traffic flow data.
Halim, Herni; Abdullah, Ramdzani
2014-01-01
HIGHLIGHTS Highway traffic noise is a serious problem in Malaysia Heavy traffic flow highway recorded higher noise level compared to low traffic flow Noise level stabilized at certain number of vehicles on the road i.e above 500 vehicles. Although much research on road traffic noise has found that noise level increase are influenced by driver behavior and source-receiver distance, little attention has been paid to the relationship between noise level and total number of vehicles...
Hierarchical and coupling model of factors influencing vessel traffic flow.
Directory of Open Access Journals (Sweden)
Zhao Liu
Full Text Available Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.
Dynamic methods of air traffic flow management
Directory of Open Access Journals (Sweden)
Jacek SKORUPSKI
2011-01-01
Full Text Available Air traffic management is a complex hierarchical system. Hierarchy levels can be defined according to decision making time horizon or to analyze area volume. For medium time horizon and wide analysis area, the air traffic flow management services were established. Their main task is to properly co-ordinate air traffic in European airspace, so as to minimize delays arising in congested sectors. Those services have to assure high safety level at the same time. Thus it is a very complex task, with many goals, many decision variables and many constraints.In the paper review of the methods developed for aiding air traffic flow management services is presented. More detailed description of a dynamic method is given. This method is based on stochastic capacity and scenario analysis. Some problems in utilization of presented methods are also pointed out, so are the next research possibilities.
Cellular automata model for traffic flow at intersections in internet of vehicles
Zhao, Han-Tao; Liu, Xin-Ru; Chen, Xiao-Xu; Lu, Jian-Cheng
2018-03-01
Considering the effect of the front vehicle's speed, the influence of the brake light and the conflict of the traffic flow, we established a cellular automata model called CE-NS for traffic flow at the intersection in the non-vehicle networking environment. According to the information interaction of Internet of Vehicles (IoV), introducing parameters describing the congestion and the accurate speed of the front vehicle into the CE-NS model, we improved the rules of acceleration, deceleration and conflict, and finally established a cellular automata model for traffic flow at intersections of IoV. The relationship between traffic parameters such as vehicle speed, flow and average travel time is obtained by numerical simulation of two models. Based on this, we compared the traffic situation of the non-vehicle networking environment with conditions of IoV environment, and analyzed the influence of the different degree of IoV on the traffic flow. The results show that the traffic speed is increased, the travel time is reduced, the flux of intersections is increased and the traffic flow is more smoothly under IoV environment. After the vehicle which achieves IoV reaches a certain proportion, the operation effect of the traffic flow begins to improve obviously.
Traffic flow characteristic and capacity in intelligent work zones.
2009-10-15
Intellgent transportation system (ITS) technologies are utilized to manage traffic flow and safety in : highway work zones. Traffic management plans for work zones require queuing analyses to determine : the anticipated traffic backups, but the predi...
Structuring of Road Traffic Flows
Directory of Open Access Journals (Sweden)
Planko Rožić
2005-09-01
Full Text Available Systemic traffic count on the Croatian road network hasbeen carried out for more than three decades in different ways.During this period a large number of automatic traffic countershave been installed, and they operate on different principles.The traffic count has been analyzed from the aspect of vehicleclassification. The count results can be only partly comparedsince they yield different structures of traffic flows. Special analysisrefers to the classification of vehicles by automatic trafficcounters.During the research, a database has been formed with physicalelements of vehicles of over five thousand vehicle types. Theresearch results prove that the vehicle length only is not sufficientfor the classification of vehicles, the way it is used in thepresent automatic traffic counts, but rather the number of axles,the wheelbase as well as the front and rear overhangs needto be considered as well. Therefore, the detector system shouldapply also the detector of axles.The results have been presented that were obtained as partof the program TEST- Technological, research, developmentproject supported by the Minist1y of Science, Education andSport.
Directory of Open Access Journals (Sweden)
SiniŁa Vilke
2017-12-01
Full Text Available Natural geotraffic flows act as one of the most important factors directly affecting redirections of the world transportation routes. In terms of door-to-door multimodal transport chain, several routes from Far East toward European destinations exist, with Northern European route acting as prevailing one. The proposed paper elaborates possibilities of redirection of the traffic flow by directing cargoes to an alternative route through the Adriatic Sea. The aim is to justify realisation of mentioned possibility in terms of land transportation segment analysis, i.e. by analysing cargo transportation from ports to final destinations in Central Europe, placed in natural gravitational hinterland of ports of Northern Adriatic Port Association (NAPA. Geo-traffic and logistics’ analyses of NAPA ports are presented in the paper. Container traffic and its trend as compared with Northern European ports are analysed. The development plans of inland connections are presented in function of justification of the traffic flow redirection. A model for the selection and evaluation of the optimal container transport route by using the multiple criteria analysis (MCA has been introduced and developed. The model was applied for the selection of the representative service connecting Far East (origin and the central Europe (destination by detailed analysis of the land transportation segment. The PROMETHEE method was used for the model testing and evaluation. Summarised results are presented and discussed tending to confirmation of the traffic flow redirection justification.
Optimal Control of Hybrid Systems in Air Traffic Applications
Kamgarpour, Maryam
Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient
Directory of Open Access Journals (Sweden)
Qiang Shang
2016-08-01
Full Text Available Short-term traffic flow prediction is an important part of intelligent transportation systems research and applications. For further improving the accuracy of short-time traffic flow prediction, a novel hybrid prediction model (multivariate phase space reconstruction–combined kernel function-least squares support vector machine based on multivariate phase space reconstruction and combined kernel function-least squares support vector machine is proposed. The C-C method is used to determine the optimal time delay and the optimal embedding dimension of traffic variables’ (flow, speed, and occupancy time series for phase space reconstruction. The G-P method is selected to calculate the correlation dimension of attractor which is an important index for judging chaotic characteristics of the traffic variables’ series. The optimal input form of combined kernel function-least squares support vector machine model is determined by multivariate phase space reconstruction, and the model’s parameters are optimized by particle swarm optimization algorithm. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. The experimental results suggest that the new proposed model yields better predictions compared with similar models (combined kernel function-least squares support vector machine, multivariate phase space reconstruction–generalized kernel function-least squares support vector machine, and phase space reconstruction–combined kernel function-least squares support vector machine, which indicates that the new proposed model exhibits stronger prediction ability and robustness.
Navier-Stokes-like equations for traffic flow.
Velasco, R M; Marques, W
2005-10-01
The macroscopic traffic flow equations derived from the reduced Paveri-Fontana equation are closed starting with the maximization of the informational entropy. The homogeneous steady state taken as a reference is obtained for a specific model of the desired velocity and a kind of Chapman-Enskog method is developed to calculate the traffic pressure at the Navier-Stokes level. Numerical solution of the macroscopic traffic equations is obtained and its characteristics are analyzed.
Cellular automata model for urban road traffic flow considering pedestrian crossing street
Zhao, Han-Tao; Yang, Shuo; Chen, Xiao-Xu
2016-11-01
In order to analyze the effect of pedestrians' crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space-time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow's characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.
Traffic flow dynamics. Data, models and simulation
Energy Technology Data Exchange (ETDEWEB)
Treiber, Martin [Technische Univ. Dresden (Germany). Inst. fuer Wirtschaft und Verkehr; Kesting, Arne [TomTom Development Germany GmbH, Berlin (Germany)
2013-07-01
First comprehensive textbook of this fascinating interdisciplinary topic which explains advances in a way that it is easily accessible to engineering, physics and math students. Presents practical applications of traffic theory such as driving behavior, stability analysis, stop-and-go waves, and travel time estimation. Presents the topic in a novel and systematic way by addressing both microscopic and macroscopic models with a focus on traffic instabilities. Revised and extended edition of the German textbook ''Verkehrsdynamik und -simulation''. This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.
Optimization of TTEthernet Networks to Support Best-Effort Traffic
DEFF Research Database (Denmark)
Tamas-Selicean, Domitian; Pop, Paul
2014-01-01
This paper focuses on the optimization of the TTEthernet communication protocol, which offers three traffic classes: time-triggered (TT), sent according to static schedules, rate-constrained (RC) that has bounded end-to-end latency, and best-effort (BE), the classic Ethernet traffic, with no timing...... guarantees. In our earlier work we have proposed an optimization approach named DOTTS that performs the routing, scheduling and packing / fragmenting of TT and RC messages, such that the TT and RC traffic is schedulable. Although backwards compatibility with classic Ethernet networks is one of TTEthernet...
Heterogeneous traffic flow modelling using second-order macroscopic continuum model
Mohan, Ranju; Ramadurai, Gitakrishnan
2017-01-01
Modelling heterogeneous traffic flow lacking in lane discipline is one of the emerging research areas in the past few years. The two main challenges in modelling are: capturing the effect of varying size of vehicles, and the lack in lane discipline, both of which together lead to the 'gap filling' behaviour of vehicles. The same section length of the road can be occupied by different types of vehicles at the same time, and the conventional measure of traffic concentration, density (vehicles per lane per unit length), is not a good measure for heterogeneous traffic modelling. First aim of this paper is to have a parsimonious model of heterogeneous traffic that can capture the unique phenomena of gap filling. Second aim is to emphasize the suitability of higher-order models for modelling heterogeneous traffic. Third, the paper aims to suggest area occupancy as concentration measure of heterogeneous traffic lacking in lane discipline. The above mentioned two main challenges of heterogeneous traffic flow are addressed by extending an existing second-order continuum model of traffic flow, using area occupancy for traffic concentration instead of density. The extended model is calibrated and validated with field data from an arterial road in Chennai city, and the results are compared with those from few existing generalized multi-class models.
Research on three-phase traffic flow modeling based on interaction range
Zeng, Jun-Wei; Yang, Xu-Gang; Qian, Yong-Sheng; Wei, Xu-Ting
2017-12-01
On the basis of the multiple velocity difference effect (MVDE) model and under short-range interaction, a new three-phase traffic flow model (S-MVDE) is proposed through careful consideration of the influence of the relationship between the speeds of the two adjacent cars on the running state of the rear car. The random slowing rule in the MVDE model is modified in order to emphasize the influence of vehicle interaction between two vehicles on the probability of vehicles’ deceleration. A single-lane model which without bottleneck structure under periodic boundary conditions is simulated, and it is proved that the traffic flow simulated by S-MVDE model will generate the synchronous flow of three-phase traffic theory. Under the open boundary, the model is expanded by adding an on-ramp, the congestion pattern caused by the bottleneck is simulated at different main road flow rates and on-ramp flow rates, which is compared with the traffic congestion pattern observed by Kerner et al. and it is found that the results are consistent with the congestion characteristics in the three-phase traffic flow theory.
Impact of distracted driving on safety and traffic flow.
Stavrinos, Despina; Jones, Jennifer L; Garner, Annie A; Griffin, Russell; Franklin, Crystal A; Ball, David; Welburn, Sharon C; Ball, Karlene K; Sisiopiku, Virginia P; Fine, Philip R
2013-12-01
Studies have documented a link between distracted driving and diminished safety; however, an association between distracted driving and traffic congestion has not been investigated in depth. The present study examined the behavior of teens and young adults operating a driving simulator while engaged in various distractions (i.e., cell phone, texting, and undistracted) and driving conditions (i.e., free flow, stable flow, and oversaturation). Seventy five participants 16-25 years of age (split into 2 groups: novice drivers and young adults) drove a STISIM simulator three times, each time with one of three randomly presented distractions. Each drive was designed to represent daytime scenery on a 4 lane divided roadway and included three equal roadway portions representing Levels of Service (LOS) A, C, and E as defined in the 2000 Highway Capacity Manual. Participants also completed questionnaires documenting demographics and driving history. Both safety and traffic flow related driving outcomes were considered. A Repeated Measures Multivariate Analysis of Variance was employed to analyze continuous outcome variables and a Generalized Estimate Equation (GEE) Poisson model was used to analyze count variables. Results revealed that, in general more lane deviations and crashes occurred during texting. Distraction (in most cases, text messaging) had a significantly negative impact on traffic flow, such that participants exhibited greater fluctuation in speed, changed lanes significantly fewer times, and took longer to complete the scenario. In turn, more simulated vehicles passed the participant drivers while they were texting or talking on a cell phone than while undistracted. The results indicate that distracted driving, particularly texting, may lead to reduced safety and traffic flow, thus having a negative impact on traffic operations. No significant differences were detected between age groups, suggesting that all drivers, regardless of age, may drive in a manner
Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow
Balouchi, Ashkan; Browne, Dana
2015-03-01
The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.
Computing Programs for Determining Traffic Flows from Roundabouts
Boroiu, A. A.; Tabacu, I.; Ene, A.; Neagu, E.; Boroiu, A.
2017-10-01
For modelling road traffic at the level of a road network it is necessary to specify the flows of all traffic currents at each intersection. These data can be obtained by direct measurements at the traffic light intersections, but in the case of a roundabout this is not possible directly and the literature as well as the traffic modelling software doesn’t offer ways to solve this issue. Two sets of formulas are proposed by which all traffic flows from the roundabouts with 3 or 4 arms are calculated based on the streams that can be measured. The objective of this paper is to develop computational programs to operate with these formulas. For each of the two sets of analytical relations, a computational program was developed in the Java operating language. The obtained results fully confirm the applicability of the calculation programs. The final stage for capitalizing these programs will be to make them web pages in HTML format, so that they can be accessed and used on the Internet. The achievements presented in this paper are an important step to provide a necessary tool for traffic modelling because these computational programs can be easily integrated into specialized software.
A Sarsa(λ)-based control model for real-time traffic light coordination.
Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.
A Sarsa(λ-Based Control Model for Real-Time Traffic Light Coordination
Directory of Open Access Journals (Sweden)
Xiaoke Zhou
2014-01-01
Full Text Available Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.
Road traffic flow and impact on environment in Hyderabad city
International Nuclear Information System (INIS)
Memon, Zaheer-ud-Din; Ansari, A.K.; Memon, S.A.
2000-01-01
In Hyderabad city due to dramatic increase in traffic intensity on the roads, traffic flow have been much beyond the comfortable limits. High values of traffic flow density have been recorded on Court Road (34.05%), Tilak Road (19.87%), Risala Road (22.91%) and Cafe George (23.14%) of Hyderabad city. Above 80% people are found to be annoyed due to traffic congestion, noise and smoke resulting in health ailments. Slow Moving Vehicles (SMVs) comprising of animal and hand drawn vehicles (rehras) cause serious disruption in the traffic stream on city roads, which are ultimately causing traffic-jam condition resulting a serious impact on environment. No definite parking places exist for public vehicles because of encroachment on roads. Proper foot paths are not available for pedestrian, which results in increase in accidents. (author)
The impact of traffic-flow patterns on air quality in urban street canyons
International Nuclear Information System (INIS)
Thaker, Prashant; Gokhale, Sharad
2016-01-01
We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17–42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. - Highlights: • CFD is used to study impact of traffic-flow patterns on urban air quality. • Facilitating free-flow patterns induce more turbulence in street canyons. • Traffic-generated turbulence alters pollutant levels in urban street canyons. - This study investigates the effect of vehicle-induced-turbulence generated during free-flow traffic pattern in reduction of air pollutant concentrations in urban street canyons.
An Efficient PageRank Approach for Urban Traffic Optimization
Directory of Open Access Journals (Sweden)
Florin Pop
2012-01-01
to determine optimal decisions for each traffic light, based on the solution given by Larry Page for page ranking in Web environment (Page et al. (1999. Our approach is similar with work presented by Sheng-Chung et al. (2009 and Yousef et al. (2010. We consider that the traffic lights are controlled by servers and a score for each road is computed based on efficient PageRank approach and is used in cost function to determine optimal decisions. We demonstrate that the cumulative contribution of each car in the traffic respects the main constrain of PageRank approach, preserving all the properties of matrix consider in our model.
An Analysis of Vehicular Traffic Flow Using Langevin Equation
Directory of Open Access Journals (Sweden)
Çağlar Koşun
2015-08-01
Full Text Available Traffic flow data are stochastic in nature, and an abundance of literature exists thereof. One way to express stochastic data is the Langevin equation. Langevin equation consists of two parts. The first part is known as the deterministic drift term, the other as the stochastic diffusion term. Langevin equation does not only help derive the deterministic and random terms of the selected portion of the city of Istanbul traffic empirically, but also sheds light on the underlying dynamics of the flow. Drift diagrams have shown that slow lane tends to get congested faster when vehicle speeds attain a value of 25 km/h, and it is 20 km/h for the fast lane. Three or four distinct regimes may be discriminated again from the drift diagrams; congested, intermediate, and free-flow regimes. At places, even the intermediate regime may be divided in two, often with readiness to congestion. This has revealed the fact that for the selected portion of the highway, there are two main states of flow, namely, congestion and free-flow, with an intermediate state where the noise-driven traffic flow forces the flow into either of the distinct regimes.
Use of a Phase Transition Concept for Traffic Flow Condition Estimation
Directory of Open Access Journals (Sweden)
Larin Oleg N.
2014-12-01
Full Text Available The article covers the main models of traffic flow conditions, analyzes the condition estimation criteria, and provides the classification of models. The article provides the grounds for the use of the phase transition concept for traffic flow condition estimation. The models of the aggregate condition of free and congested traffic have been developed, the phase boundaries between free and congested traffic have been defined. Applicability conditions for the models of the aggregate condition of have been analyzed.
Impacts of Snowy Weather Conditions on Expressway Traffic Flow Characteristics
Directory of Open Access Journals (Sweden)
Jiancheng Weng
2013-01-01
Full Text Available Snowy weather will significantly degrade expressway operations, reduce service levels, and increase driving difficulty. Furthermore, the impact of snow varies in different types of roads, diverse cities, and snow densities due to different driving behavior. Traffic flow parameters are essential to decide what should be appropriate for weather-related traffic management and control strategies. This paper takes Beijing as a case study and analyzes traffic flow data collected by detectors in expressways. By comparing the performance of traffic flow under normal and snowy weather conditions, this paper quantitatively describes the impact of adverse weather on expressway volume and average speeds. Results indicate that average speeds on the Beijing expressway under heavy snow conditions decrease by 10–20 km/h when compared to those under normal weather conditions, the vehicle headway generally increases by 2–4 seconds, and the road capacity drops by about 33%. This paper also develops a specific expressway traffic parameter reduction model which proposes reduction coefficients of expressway volumes and speeds under various snow density conditions in Beijing. The conclusions paper provide effective foundational parameters for urban expressway controls and traffic management under snow conditions.
Wave dynamics in an extended macroscopic traffic flow model with periodic boundaries
Wang, Yu-Qing; Chu, Xing-Jian; Zhou, Chao-Fan; Yan, Bo-Wen; Jia, Bin; Fang, Chen-Hao
2018-06-01
Motivated by the previous traffic flow model considering the real-time traffic state, a modified macroscopic traffic flow model is established. The periodic boundary condition is applied to the car-following model. Besides, the traffic state factor R is defined in order to correct the real traffic conditions in a more reasonable way. It is a key step that we introduce the relaxation time as a density-dependent function and provide corresponding evolvement of traffic flow. Three different typical initial densities, namely the high density, the medium one and the low one, are intensively investigated. It can be found that the hysteresis loop exists in the proposed periodic-boundary system. Furthermore, the linear and nonlinear stability analyses are performed in order to test the robustness of the system.
Modeling connected and autonomous vehicles in heterogeneous traffic flow
Ye, Lanhang; Yamamoto, Toshiyuki
2018-01-01
The objective of this study was to develop a heterogeneous traffic-flow model to study the possible impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous traffic flow. In particular, operation rules for CAVs are established considering the new characteristics of this emerging technology, including autonomous driving through the adaptive cruise control and inter-vehicle connection via short-range communication. Simulations were conducted under various CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was numerically investigated. The simulation results indicate that the road capacity increases with an increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, providing some insights into the possible impact of the CAVs on traffic systems.
Bertsimas, Dimitris; Odoni, Amedeo
1997-01-01
This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.
A knowledge-based system for controlling automobile traffic
Maravas, Alexander; Stengel, Robert F.
1994-01-01
Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.
Cellular automata model for traffic flow with safe driving conditions
International Nuclear Information System (INIS)
Lárraga María Elena; Alvarez-Icaza Luis
2014-01-01
In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner microscopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in platoons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model. (general)
An optimal general type-2 fuzzy controller for Urban Traffic Network
DEFF Research Database (Denmark)
Khooban, Mohammad Hassan; Vafamand, Navid; Liaghat, Alireza
2017-01-01
Urban traffic network model is illustrated by state-charts and object-diagram. However, they have limitations to show the behavioral perspective of the Traffic Information flow. Consequently, a state space model is used to calculate the half-value waiting time of vehicles. In this study......, a combination of the general type-2 fuzzy logic sets and the Modified Backtracking Search Algorithm (MBSA) techniques are used in order to control the traffic signal scheduling and phase succession so as to guarantee a smooth flow of traffic with the least wait times and average queue length. The parameters...
Traffic Flow Wide-Area Surveillance system
Energy Technology Data Exchange (ETDEWEB)
Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.
1994-09-01
Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a Traffic Flow Wide-Area Surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.
Traffic flow wide-area surveillance system
Allgood, Glenn O.; Ferrell, Regina K.; Kercel, Stephen W.; Abston, Ruth A.
1995-01-01
Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a traffic flow wide-area surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.
Social dilemma structures hidden behind traffic flow with lane changes
International Nuclear Information System (INIS)
Tanimoto, Jun; Kukida, Shinji; Hagishima, Aya
2014-01-01
Aiming to merge traffic flow analysis with evolutionary game theory, we investigated the question of whether such structures can be formed from frequent lane changes in usual traffic flow without any explicit bottlenecks. In our model system, two classes of driver-agents coexist: C-agents (cooperative strategy) always remain in the lane they are initially assigned, whereas D-agents (defective strategy) try to change lanes to move ahead. In relatively high-density flows, such as the metastable and high-density phases, we found structures that correspond to either n-person prisoner dilemma (n-PD) games or quasi-PD games. In these situations, lane changes by D-agents create heavy traffic jams that reduce social efficiency. (paper)
Lagrangian generic second order traffic flow models for node
Directory of Open Access Journals (Sweden)
Asma Khelifi
2018-02-01
Full Text Available This study sheds light on higher order macroscopic traffic flow modeling on road networks, thanks to the generic second order models (GSOM family which embeds a myriad of traffic models. It has been demonstrated that such higher order models are easily solved in Lagrangian coordinates which are compatible with both microscopic and macroscopic descriptions. The generalized GSOM model is reformulated in the Lagrangian coordinate system to develop a more efficient numerical method. The difficulty in applying this approach on networks basically resides in dealing with node dynamics. Traffic flow characteristics at node are different from that on homogeneous links. Different geometry features can lead to different critical research issues. For instance, discontinuity in traffic stream can be an important issue for traffic signal operations, while capacity drop may be crucial for lane-merges. The current paper aims to establish and analyze a new adapted node model for macroscopic traffic flow models by applying upstream and downstream boundary conditions on the Lagrangian coordinates in order to perform simulations on networks of roads, and accompanying numerical method. The internal node dynamics between upstream and downstream links are taken into account of the node model. Therefore, a numerical example is provided to underscore the efficiency of this approach. Simulations show that the discretized node model yields accurate results. Additional kinematic waves and contact discontinuities are induced by the variation of the driver attribute.
Effect of the Length of Traffic Flow Records on the Estimate of a Bridge Service Life
Directory of Open Access Journals (Sweden)
Krejsa Jan
2016-12-01
Full Text Available The service life of bridges is significantly affected by fatigue of used material induced by heavy vehicles. Therefore, precise determination of the vehicle weight is of crucial importance for the calculation of fatigue damage and the prediction of the bridge serviceability. This paper investigates accuracy of the determination of fatigue depending on the length of traffic flow recording. The presented data were obtained from the measurements carried out on a bridge of the Prague Highway Ring. The analysis reveals that the optimal length of traffic recording is about 30 days.
Directory of Open Access Journals (Sweden)
Bin He
2014-01-01
Full Text Available In city traffic, it is important to improve transportation efficiency and the spacing of platoon should be shortened when crossing the street. The best method to deal with this problem is automatic control of vehicles. In this paper, a mathematical model is established for the platoon’s longitudinal movement. A systematic analysis of longitudinal control law is presented for the platoon of vehicles. However, the parameter calibration for the platoon model is relatively difficult because the platoon model is complex and the parameters are coupled with each other. In this paper, the particle swarm optimization method is introduced to effectively optimize the parameters of platoon. The proposed method effectively finds the optimal parameters based on simulations and makes the spacing of platoon shorter.
Strategic Air Traffic Planning Using Eulerian Route Based Modeling and Optimization
Bombelli, Alessandro
Due to a soaring air travel growth in the last decades, air traffic management has become increasingly challenging. As a consequence, planning tools are being devised to help human decision-makers achieve a better management of air traffic. Planning tools are divided into two categories, strategic and tactical. Strategic planning generally addresses a larger planning domain and is performed days to hours in advance. Tactical planning is more localized and is performed hours to minutes in advance. An aggregate route model for strategic air traffic flow management is presented. It is an Eulerian model, describing the flow between cells of unidirectional point-to-point routes. Aggregate routes are created from flight trajectory data based on similarity measures. Spatial similarity is determined using the Frechet distance. The aggregate routes approximate actual well-traveled traffic patterns. By specifying the model resolution, an appropriate balance between model accuracy and model dimension can be achieved. For a particular planning horizon, during which weather is expected to restrict the flow, a procedure for designing airborne reroutes and augmenting the traffic flow model is developed. The dynamics of the traffic flow on the resulting network take the form of a discrete-time, linear time-invariant system. The traffic flow controls are ground holding, pre-departure rerouting and airborne rerouting. Strategic planning--determining how the controls should be used to modify the future traffic flow when local capacity violations are anticipated--is posed as an integer programming problem of minimizing a weighted sum of flight delays subject to control and capacity constraints. Several tests indicate the effectiveness of the modeling and strategic planning approach. In the final, most challenging, test, strategic planning is demonstrated for the six western-most Centers of the 22-Center national airspace. The planning time horizon is four hours long, and there is
Modeling self-consistent multi-class dynamic traffic flow
Cho, Hsun-Jung; Lo, Shih-Ching
2002-09-01
In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.
Modeling, Identification, Estimation, and Simulation of Urban Traffic Flow in Jakarta and Bandung
Directory of Open Access Journals (Sweden)
Herman Y. Sutarto
2015-06-01
Full Text Available This paper presents an overview of urban traffic flow from the perspective of system theory and stochastic control. The topics of modeling, identification, estimation and simulation techniques are evaluated and validated using actual traffic flow data from the city of Jakarta and Bandung, Indonesia, and synthetic data generated from traffic micro-simulator VISSIM. The results on particle filter (PF based state estimation and Expectation-Maximization (EM based parameter estimation (identification confirm the proposed model gives satisfactory results that capture the variation of urban traffic flow. The combination of the technique and the simulator platform assembles possibility to develop a real-time traffic light controller.
FLOW PATTERNS OF VEHICULAR TRAFFIC ALONG HIGHWAY TOLL PLAZA IN OGUN STATE
Directory of Open Access Journals (Sweden)
Bashiru A. Raji
2009-06-01
Full Text Available Congestion on our highways, freeways and arterials are increasing at an alarming rate. This occurs because there is an increase in vehicular growth without a corresponding increase in road size, and this has made free flow of traffic a preponderant problem in our highways. Toll plaza causes delay on our highways and results are formation of queue. This paper examined how simple queuing model can be used to determine traffic intensity and the flow pattern of car traffic at a toll plaza. The study was carried out with twelve field assistants at Ogere toll plaza in Ogun State. Findings show a significant variation in the degree of hourly traffic intensities at the four pay points for cars at the toll plaza. However, variation in the daily traffic intensities at the four pay points for cars showed no significant variation. The study also revealed that bumps constructed to check vehicles speed, hawker’s trading activities are among other factors that constitute hindrance to free flow of traffic other than service time and inter-arrival time of cars at the toll plaza. It is therefore recommended that appropriate authority should look into these factors and take necessary steps towards ensuring free flow of traffic at the plaza.
Advancing Traffic Flow Theory Using Empirical Microscopic Data
2015-01-01
As reviewed in Section 1.1, much of traffic flow theory depends a fundamental relationship (FR) between flow, density, and space mean speed; either explicitly, e.g., hydrodynamic models such as LWR (Lighthill and Whitham, 1955, and Richards, 1956) or...
Traffic flow behavior at a single-lane urban roundabout
Lakouari, N.; Oubram, O.; Ez-Zahraouy, H.; Cisneros-Villalobos, L.; Velásquez-Aguilar, J. G.
In this paper, we propose a stochastic cellular automata model to study the traffic behavior at a single-lane roundabout. Vehicles can enter the interior lane or exit from it via N intersecting lane, the boundary conditions are stochastic. The traffic is controlled by a self-organized scheme. It has turned out that depending on the rules of insertion to the roundabout, five distinct traffic phases can appear, namely, free flow, congestion, maximum current, jammed and gridlock. The transition between the free flow and the gridlock is forbidden. The density profiles are used to study the traffic pattern at the interior lane of the roundabout. In order to quantify the interactions between vehicles in the interior lane of the roundabout, the velocity correlation coefficient (VCC) is also studied. Besides, the spatiotemporal diagrams corresponding to the entry/exit lanes are derived numerically. Furthermore, we have investigated the effect of displaying signal (PIn), as the PIn decreases, the maximum current increases at the expense of the free flow and the jamming phase. Finally, we have investigated the effect of the braking probability P on the interior lane of the roundabout. We have found that the increase of P raises the spontaneous jam formation on the ring. Thus, enlarges the maximum current and the jamming phase while the free flow phase decreases.
Study on network traffic forecast model of SVR optimized by GAFSA
International Nuclear Information System (INIS)
Liu, Yuan; Wang, RuiXue
2016-01-01
There are some problems, such as low precision, on existing network traffic forecast model. In accordance with these problems, this paper proposed the network traffic forecast model of support vector regression (SVR) algorithm optimized by global artificial fish swarm algorithm (GAFSA). GAFSA constitutes an improvement of artificial fish swarm algorithm, which is a swarm intelligence optimization algorithm with a significant effect of optimization. The optimum training parameters used for SVR could be calculated by optimizing chosen parameters, which would make the forecast more accurate. With the optimum training parameters searched by GAFSA algorithm, a model of network traffic forecast, which greatly solved problems of great errors in SVR improved by others intelligent algorithms, could be built with the forecast result approaching stability and the increased forecast precision. The simulation shows that, compared with other models (e.g. GA-SVR, CPSO-SVR), the forecast results of GAFSA-SVR network traffic forecast model is more stable with the precision improved to more than 89%, which plays an important role on instructing network control behavior and analyzing security situation.
The impact of traffic-flow patterns on air quality in urban street canyons.
Thaker, Prashant; Gokhale, Sharad
2016-01-01
We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multiagent reinforcement learning for urban traffic control using coordination graphs
Kuyer, L.; Whiteson, S.; Bakker, B.; Vlassis, N.
2008-01-01
Since traffic jams are ubiquitous in the modern world, optimizing the behavior of traffic lights for efficient traffic flow is a critically important goal. Though most current traffic lights use simple heuristic protocols, more efficient controllers can be discovered automatically via multiagent
Vehicular traffic flow at an intersection with the possibility of turning
International Nuclear Information System (INIS)
Foulaadvand, M Ebrahim; Belbasi, Somayyeh
2011-01-01
We have developed a Nagel-Schreckenberg cellular automata model for describing a vehicular traffic flow at a single intersection. A set of traffic lights operating in a fixed-time scheme controls the traffic flow. An open boundary condition is applied to the streets each of which conducts a unidirectional flow. Streets are single lane and cars can turn upon reaching to the intersection with prescribed probabilities. Extensive Monte Carlo simulations are carried out to find the model flow characteristics. In particular, we investigate the flow dependence on signalization parameters, turning probabilities and input rates. It is shown that for each set of parameters, there exists a plateau region inside which the total outflow from the intersection remains almost constant. We also compute total waiting time of vehicles per cycle behind red lights for various control parameters.
EVALUATION OF HUMAN SETTLEMENT INFLUENCE ON SUBURBAN TRAFFIC FLOW DENSITY
Directory of Open Access Journals (Sweden)
P. Horbachov
2017-06-01
Full Text Available Study results of the human settlement influence on the traffic flow density in suburban service of international, national and regional roads of Ukraine are presented. The possibility of an adequate description of suburban traffic flows in the vicinity of large cities is established, depending on the city population and link remoteness from the city center. The possibility is determined on the basis of obtained models to define the prognosis value of the intensity and specific maintenance of freight and passenger transport flows.
Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system
Liu, Mianfang; Xiong, Shengwu; Li, Bixiang
2016-05-01
With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.
Lee, Katharine K.; Davis, Thomas J.; Levin, Kerry M.; Rowe, Dennis W.
2001-01-01
The Traffic Management Advisor (TMA) is a decision-support tool for traffic managers and air traffic controllers that provides traffic flow visualization and other flow management tools. TMA creates an efficiently sequenced and safely spaced schedule for arrival traffic that meets but does not exceed specified airspace system constraints. TMA is being deployed at selected facilities throughout the National Airspace System in the US as part of the FAA's Free Flight Phase 1 program. TMA development and testing, and its current deployment, focuses on managing the arrival capacity for single major airports within single terminal areas and single en route centers. The next phase of development for this technology is the expansion of the TMA capability to complex facilities in which a terminal area or airport is fed by multiple en route centers, thus creating a multicenter TMA functionality. The focus of the multi-center TMA (McTMA) development is on the busy facilities in the Northeast comdor of the US. This paper describes the planning and development of McTMA and the challenges associated with adapting a successful traffic flow management tool for a very complex airspace.
Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow
Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael
2011-10-01
We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules “acceleration,” “deceleration,” “randomization,” and “motion” of the Nagel-Schreckenberg CA model as well as “overacceleration through lane changing to the faster lane,” “comparison of vehicle gap with the synchronization gap,” and “speed adaptation within the synchronization gap” of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.
Breakdown in traffic networks fundamentals of transportation science
Kerner, Boris S
2017-01-01
This book offers a detailed investigation of breakdowns in traffic and transportation networks. It shows empirically that transitions from free flow to so-called synchronized flow, initiated by local disturbances at network bottlenecks, display a nucleation-type behavior: while small disturbances in free flow decay, larger ones grow further and lead to breakdowns at the bottlenecks. Further, it discusses in detail the significance of this nucleation effect for traffic and transportation theories, and the consequences this has for future automatic driving, traffic control, dynamic traffic assignment, and optimization in traffic and transportation networks. Starting from a large volume of field traffic data collected from various sources obtained solely through measurements in real world traffic, the author develops his insights, with an emphasis less on reviewing existing methodologies, models and theories, and more on providing a detailed analysis of empirical traffic data and drawing consequences regarding t...
Driver's Behavior and Decision-Making Optimization Model in Mixed Traffic Environment
Directory of Open Access Journals (Sweden)
Xiaoyuan Wang
2015-02-01
Full Text Available Driving process is an information treating procedure going on unceasingly. It is very important for the research of traffic flow theory, to study on drivers' information processing pattern in mixed traffic environment. In this paper, bicycle is regarded as a kind of information source to vehicle drivers; the “conflict point method” is brought forward to analyze the influence of bicycles on driving behavior. The “conflict” is studied to be translated into a special kind of car-following or lane-changing process. Furthermore, the computer clocked scan step length is dropped to 0.1 s, in order to scan and analyze the dynamic (static information which influences driving behavior in a more exact way. The driver's decision-making process is described through information fusion based on duality contrast and fuzzy optimization theory. The model test and verification show that the simulation results with the “conflict point method” and the field data are consistent basically. It is feasible to imitate driving behavior and the driver information fusion process with the proposed methods. Decision-making optimized process can be described more accurately through computer precision clocked scan strategy. The study in this paper can provide the foundation for further research of multiresource information fusion process of driving behavior.
Analysis on the Correlation of Traffic Flow in Hainan Province Based on Baidu Search
Chen, Caixia; Shi, Chun
2018-03-01
Internet search data records user’s search attention and consumer demand, providing necessary database for the Hainan traffic flow model. Based on Baidu Index, with Hainan traffic flow as example, this paper conduct both qualitative and quantitative analysis on the relationship between search keyword from Baidu Index and actual Hainan tourist traffic flow, and build multiple regression model by SPSS.
International Nuclear Information System (INIS)
Kerner, Boris S; Klenov, Sergey L; Hiller, Andreas
2006-01-01
Based on empirical and numerical microscopic analyses, the physical nature of a qualitatively different behaviour of the wide moving jam phase in comparison with the synchronized flow phase-microscopic traffic flow interruption within the wide moving jam phase-is found. A microscopic criterion for distinguishing the synchronized flow and wide moving jam phases in single vehicle data measured at a single freeway location is presented. Based on this criterion, empirical microscopic classification of different local congested traffic states is performed. Simulations made show that the microscopic criterion and macroscopic spatiotemporal objective criteria lead to the same identification of the synchronized flow and wide moving jam phases in congested traffic. Microscopic models in the context of three-phase traffic theory have been tested based on the microscopic criterion for the phases in congested traffic. It is found that microscopic three-phase traffic models can explain both microscopic and macroscopic empirical congested pattern features. It is obtained that microscopic frequency distributions for vehicle speed difference as well as fundamental diagrams and speed correlation functions can depend on the spatial co-ordinate considerably. It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic states are qualitatively different. The reason for this is that important spatiotemporal features of congested traffic patterns are lost in these as well as in many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models, specifically, cellular automata traffic flow models
Directory of Open Access Journals (Sweden)
Hemant Kumar Sharma
2012-09-01
Full Text Available Speed-flow functions have been developed by several transportation experts to predict accurately the speed of urban road networks. HCM Speed-Flow Curve, BPR Curve, MTC Speed-Flow Curve, Akçelik Speed-Flow Curve are some extraordinary efforts to define the shape of speed-flow curves. However, the complexity of driver's behaviour, interactions among different type of vehicles, lateral clearance, co-relation of driver's psychology with vehicular characteristics and interdependence of various variables of traffic has led to continuous development and refinement of speed-flow curves. The problem gets more difficult in the case of urban roads with heterogeneous traffic, oversaturated flow and signalized network (which includes some unsignalized intersections as well. This paper presents analysis for various measures of effectiveness (MOE for urban roads with interrupted flow comprising heterogeneous traffic. Model has been developed for heterogeneous traffic under constraints of roadway geometry, vehicle characteristics, driving behaviour and traffic controls. The model developed in this paper predicts speed, delay, average queue and maximum queue estimates for urban roads and quantifies congestion for oversaturated conditions. The investigation details the oversaturated portion of flow in particular.
A cellular automata model of traffic flow with variable probability of randomization
International Nuclear Information System (INIS)
Zheng Wei-Fan; Zhang Ji-Ye
2015-01-01
Research on the stochastic behavior of traffic flow is important to understand the intrinsic evolution rules of a traffic system. By introducing an interactional potential of vehicles into the randomization step, an improved cellular automata traffic flow model with variable probability of randomization is proposed in this paper. In the proposed model, the driver is affected by the interactional potential of vehicles before him, and his decision-making process is related to the interactional potential. Compared with the traditional cellular automata model, the modeling is more suitable for the driver’s random decision-making process based on the vehicle and traffic situations in front of him in actual traffic. From the improved model, the fundamental diagram (flow–density relationship) is obtained, and the detailed high-density traffic phenomenon is reproduced through numerical simulation. (paper)
CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES
G. R. LAI; A. CHE SOH; H. MD. SARKAN; R. Z. ABDUL RAHMAN; M. K. HASSAN
2015-01-01
Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS) concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala L...
Load flow optimization and optimal power flow
Das, J C
2017-01-01
This book discusses the major aspects of load flow, optimization, optimal load flow, and culminates in modern heuristic optimization techniques and evolutionary programming. In the deregulated environment, the economic provision of electrical power to consumers requires knowledge of maintaining a certain power quality and load flow. Many case studies and practical examples are included to emphasize real-world applications. The problems at the end of each chapter can be solved by hand calculations without having to use computer software. The appendices are devoted to calculations of line and cable constants, and solutions to the problems are included throughout the book.
Robust Traffic Flow Management: Coevolutionary Approach, Phase I
National Aeronautics and Space Administration — We will develop a Coevolutionary Decision Support Tool (CDST) that explicitly incorporates weather uncertainty (non-probabilistically) into strategic Traffic Flow...
Multi-Agent Based Microscopic Simulation Modeling for Urban Traffic Flow
Directory of Open Access Journals (Sweden)
Xianyan Kuang
2014-10-01
Full Text Available Traffic simulation plays an important role in the evaluation of traffic decisions. The movement of vehicles essentially is the operating process of drivers, in order to reproduce the urban traffic flow from the micro-aspect on computer, this paper establishes an urban traffic flow microscopic simulation system (UTFSim based on multi-agent. The system is seen as an intelligent virtual environment system (IVES, and the four-layer structure of it is built. The road agent, vehicle agent and signal agent are modeled. The concept of driving trajectory which is divided into LDT (Lane Driving Trajectory and VDDT (Vehicle Dynamic Driving Trajectory is introduced. The “Link-Node” road network model is improved. The driving behaviors including free driving, following driving, lane changing, slowing down, vehicle stop, etc. are analyzed. The results of the signal control experiments utilizing the UTFSim developed in the platform of Visual Studio. NET indicates that it plays a good performance and can be used in the evaluation of traffic management and control.
Agent-Based Collaborative Traffic Flow Management, Phase I
National Aeronautics and Space Administration — We propose agent-based game-theoretic approaches for simulation of strategies involved in multi-objective collaborative traffic flow management (CTFM). Intelligent...
Nonlinear analysis of an extended traffic flow model in ITS environment
Energy Technology Data Exchange (ETDEWEB)
Yu Lei [College of Automation, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)], E-mail: yuleijk@126.com; Shi Zhongke [College of Automation, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)
2008-05-15
An extended traffic flow model is proposed by introducing the relative velocity of arbitrary number of cars that precede and that follow into the Newell-Whitham-type car-following model. The stability condition of this model is obtained by using the linear stability theory. The results show that the stability of traffic flow is improved by taking into account the relative velocity of cars ahead and backward. By applying the nonlinear analysis the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point. The kink-antikink soliton, the solution of the mKdV equation, is obtained to describe the traffic jams. From the numerical simulation, it is shown that the traffic jams are suppressed efficiently by taking into account the relative velocity of cars ahead and backward. The analytical results are consistent with the simulation one.
Nonlinear analysis of an extended traffic flow model in ITS environment
International Nuclear Information System (INIS)
Yu Lei; Shi Zhongke
2008-01-01
An extended traffic flow model is proposed by introducing the relative velocity of arbitrary number of cars that precede and that follow into the Newell-Whitham-type car-following model. The stability condition of this model is obtained by using the linear stability theory. The results show that the stability of traffic flow is improved by taking into account the relative velocity of cars ahead and backward. By applying the nonlinear analysis the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point. The kink-antikink soliton, the solution of the mKdV equation, is obtained to describe the traffic jams. From the numerical simulation, it is shown that the traffic jams are suppressed efficiently by taking into account the relative velocity of cars ahead and backward. The analytical results are consistent with the simulation one
Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model
Zhu, Wen-Xing; Zhang, H. M.
2018-04-01
We investigated the mixed traffic flow with human-driving and autonomous cars. A new mathematical model with adjustable sensitivity and smooth factor was proposed to describe the autonomous car's moving behavior in which smooth factor is used to balance the front and back headway in a flow. A lemma and a theorem were proved to support the stability criteria in traffic flow. A series of simulations were carried out to analyze the mixed traffic flow. The fundamental diagrams were obtained from the numerical simulation results. The varying sensitivity and smooth factor of autonomous cars affect traffic flux, which exhibits opposite varying tendency with increasing parameters before and after the critical density. Moreover, the sensitivity of sensors and smooth factors play an important role in stabilizing the mixed traffic flow and suppressing the traffic jam.
Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor
Directory of Open Access Journals (Sweden)
Memiş Kemal
2010-01-01
Full Text Available Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: "Flow," "Dense" and "Congested". Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.
3D Markov Process for Traffic Flow Prediction in Real-Time
Directory of Open Access Journals (Sweden)
Eunjeong Ko
2016-01-01
Full Text Available Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1 a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2 the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further.
Directory of Open Access Journals (Sweden)
Yuanyuan Nie
2017-09-01
Full Text Available Vessel traffic flow is a key parameter for channel-through capacity and is of great significance to vessel traffic management, channel and port design and navigational risk evaluation. Based on the study of parameters of characteristics of vessel traffic flow related to channel-through capacity, this paper puts forward a brand-new mathematical model for one-way channel-through capacity in which parameters of channel length, vessel arrival rate and velocity difference in different vessels are involved and a theoretical calculating mechanism for the channel-through capacity is provided. In order to verify availability and reliability of the model, extensive simulation studies have been carried out and based on the historical AIS data, an analytical case study on the Xiazhimen Channel validating the proposed model is presented. Both simulation studies and the case study show that the proposed model is valid and all relative parameters can be readjusted and optimized to further improve the channel-through capacity. Thus, all studies demonstrate that the model is valuable for channel design and vessel management.
Some Considerations on the Problem of Non-Steady State Traffic Flow Optimization
2007-01-01
Poor traffic signal timing accounts for an estimated 10 percent of all traffic delay about 300 million vehicle-hours on major roadways alone. Americans agree that this is a problem: one U.S. Department of Transportation (DOT) survey found tha...
Concept definition of traffic flow wide-area surveillance
Energy Technology Data Exchange (ETDEWEB)
Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.
1994-07-01
Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret large spatial projections of data originating from multiple sensor suites. The intent of the Wide-Area Surveillance (WAS) Project is to build upon this concept and define the operational specifications and characteristics of a Traffic Flow Wide-Area Surveillance (TFWAS) system in terms of traffic management and control. In doing so, the functional capabilities of a TFWAS will be mapped onto an operational profile that is consistent with the Federal Highway Administration`s Intelligent Vehicle Highway System. This document provides the underlying foundation of this work by offering a concept definition for the TFWAS system. It concentrates on answering the question: ``What is the system?`` In doing so, the report develops a hierarchy of specialized definitions.
Ma, Xiao; Zheng, Wei-Fan; Jiang, Bao-Shan; Zhang, Ji-Ye
2016-10-01
With the development of traffic systems, some issues such as traffic jams become more and more serious. Efficient traffic flow theory is needed to guide the overall controlling, organizing and management of traffic systems. On the basis of the cellular automata model and the traffic flow model with look-ahead potential, a new cellular automata traffic flow model with negative exponential weighted look-ahead potential is presented in this paper. By introducing the negative exponential weighting coefficient into the look-ahead potential and endowing the potential of vehicles closer to the driver with a greater coefficient, the modeling process is more suitable for the driver’s random decision-making process which is based on the traffic environment that the driver is facing. The fundamental diagrams for different weighting parameters are obtained by using numerical simulations which show that the negative exponential weighting coefficient has an obvious effect on high density traffic flux. The complex high density non-linear traffic behavior is also reproduced by numerical simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11572264, 11172247, 11402214, and 61373009).
Zhao, Shuangming; Zhao, Pengxiang; Cui, Yunfan
2017-07-01
In this paper, we propose an improved network centrality measure framework that takes into account both the topological characteristics and the geometric properties of a road network in order to analyze urban traffic flow in relation to different modes: intersection, road, and community, which correspond to point mode, line mode, and area mode respectively. Degree, betweenness, and PageRank centralities are selected as the analysis measures, and GPS-enabled taxi trajectory data is used to evaluate urban traffic flow. The results show that the mean value of the correlation coefficients between the modified degree, the betweenness, and the PageRank centralities and the traffic flow in all periods are higher than the mean value of the correlation coefficients between the conventional degree, the betweenness, the PageRank centralities and the traffic flow at different modes; this indicates that the modified measurements, for analyzing traffic flow, are superior to conventional centrality measurements. This study helps to shed light into the understanding of urban traffic flow in relation to different modes from the perspective of complex networks.
Fixed Point Learning Based Intelligent Traffic Control System
Zongyao, Wang; Cong, Sui; Cheng, Shao
2017-10-01
Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.
Modeling the Environmental Impact of Air Traffic Operations
Chen, Neil
2011-01-01
There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.
Research on traffic flow characteristics at signal intersection
Zeng, Jun-Wei; Yu, Sen-Bin; Qian, Yong-Sheng; Wei, Xu-Ting; Feng, Xiao; Wang, Hui
2017-09-01
Based on the cautious driving behavior and the principle of the vehicles at left-side having priority to pass in the intersection, a two-dimensional cellular automata model for planar signalized intersection (NS-STCA) is established. The different turning vehicles are regarded as the research objects and the effect of the left-turn probability, signal cycle, vehicle flow density on traffic flow at the intersection is investigated.
An extended continuum model considering optimal velocity change with memory and numerical tests
Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng
2018-01-01
In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.
Optimal Airport Surface Traffic Planning Using Mixed-Integer Linear Programming
Directory of Open Access Journals (Sweden)
P. C. Roling
2008-01-01
Full Text Available We describe an ongoing research effort pertaining to the development of a surface traffic automation system that will help controllers to better coordinate surface traffic movements related to arrival and departure traffic. More specifically, we describe the concept for a taxi-planning support tool that aims to optimize the routing and scheduling of airport surface traffic in such a way as to deconflict the taxi plans while optimizing delay, total taxi-time, or some other airport efficiency metric. Certain input parameters related to resource demand, such as the expected landing times and the expected pushback times, are rather difficult to predict accurately. Due to uncertainty in the input data driving the taxi-planning process, the taxi-planning tool is designed such that it produces solutions that are robust to uncertainty. The taxi-planning concept presented herein, which is based on mixed-integer linear programming, is designed such that it is able to adapt to perturbations in these input conditions, as well as to account for failure in the actual execution of surface trajectories. The capabilities of the tool are illustrated in a simple hypothetical airport.
SYSTEM ANALYSIS OF MAJOR TRENDS IN DEVELOPMENT OF ADAPTIVE TRAFFIC FLOW MANAGEMENT METHODS
Directory of Open Access Journals (Sweden)
A. N. Klimovich
2017-01-01
Full Text Available Adaptive algorithms, which current traffic systems are based on, exist for many decades. Information technologies have developed significantly over this period and it makes more relevant their application in the field of transport. This paper analyses modern trends in the development of adaptive traffic flow control methods. Reviewed the most perspective directions in the field of intelligent transport systems, such as high-speed wireless communication between vehicles and road infrastructure based on such technologies as DSRC and WAVE, traffic jams prediction having such features as traffic flow information, congestion, velocity of vehicles using machine learning, fuzzy logic rules and genetic algorithms, application of driver assistance systems to increase vehicle’s autonomy. Advantages of such technologies in safety, efficiency and usability of transport are shown. Described multi-agent approach, which uses V2I-communication between vehicles and intersection controller to improve efficiency of control due to more complete traffic flow information and possibility to give orders to separate vehicles. Presented number of algorithms which use such approach to create new generation of adaptive transport systems.
Capacity of Freeway Merge Areas with Different On-Ramp Traffic Flow
Directory of Open Access Journals (Sweden)
Jinxing Shen
2015-06-01
Full Text Available This paper is aimed at investigating the influence of different types of traffic flows on the capacity of freeway merge areas. Based on the classical gap-acceptance model, two calculating models were established specifically considering randomly arriving vehicles and individual difference in driving behaviours. Monte-Carlo simulation was implemented to reproduce the maximum traffic volume on the designed freeway merge area under different situations. The results demonstrated that the proposed calculating models have better performance than the conventional gap-acceptance theory on accurately predicting the capacity of freeway merge areas. The findings of research could be helpful to improve the microscopic traffic flow simulation model from a more practical perspective and support the designing of freeway merge areas as well.
A new lattice model of traffic flow with the consideration of the driver's forecast effects
Energy Technology Data Exchange (ETDEWEB)
Peng, G.H., E-mail: pengguanghan@yahoo.com.cn [College of Physics and Electronic Science, Hunan University of Arts and Science, Changde 415000 (China); Cai, X.H.; Liu, C.Q.; Cao, B.F. [College of Physics and Electronic Science, Hunan University of Arts and Science, Changde 415000 (China)
2011-05-30
In this Letter, a new lattice model is presented with the consideration of the driver's forecast effects (DFE). The linear stability condition of the extended model is obtained by using the linear stability theory. The analytical results show that the new model can improve the stability of traffic flow by considering DFE. The modified KdV equation near the critical point is derived to describe the traffic jam by nonlinear analysis. Numerical simulation also shows that the new model can improve the stability of traffic flow by adjusting the driver's forecast intensity parameter, which is consistent with the theoretical analysis. -- Highlights: → A new driver's forecast lattice model of traffic flow has been presented. → The driver's forecast effects on the stability of traffic flow have been explored. → The modified KdV equation near the critical point is derived to describe the traffic jam by nonlinear analysis. → The analytical and numerical results show that the driver's forecast effect can improve the stability of traffic flow.
Self-organized natural roads for predicting traffic flow: a sensitivity study
International Nuclear Information System (INIS)
Jiang, Bin; Zhao, Sijian; Yin, Junjun
2008-01-01
In this paper, we extended road-based topological analysis to both nationwide and urban road networks, and concentrated on a sensitivity study with respect to the formation of self-organized natural roads based on the Gestalt principle of good continuity. Both annual average daily traffic (AADT) and global positioning system (GPS) data were used to correlate with a series of ranking metrics including five centrality-based metrics and two PageRank metrics. It was found that there exists a tipping point from segment-based to road-based network topology in terms of correlation between ranking metrics and their traffic. To our great surprise, (1) this correlation is significantly improved if a selfish rather than utopian strategy is adopted in forming the self-organized natural roads, and (2) point-based metrics assigned by summation into individual roads tend to have a much better correlation with traffic flow than line-based metrics. These counter-intuitive surprising findings constitute emergent properties of self-organized natural roads, which are intelligent enough for predicting traffic flow, thus shedding substantial light on the understanding of road networks and their traffic from the perspective of complex networks
Traffic flow behavior at un-signalized intersection with crossings pedestrians
Khallouk, A.; Echab, H.; Ez-Zahraouy, H.; Lakouari, N.
2018-02-01
Mixed traffic flux composed of crossing pedestrians and vehicles extensively exists in cities. To study the characteristics of the interference traffic flux, we develop a pedestrian-vehicle cellular automata model to present the interaction behaviors on a simple cross road. By realizing the fundamental parameters (i.e. injecting rates α1, α2, the extracting rate β and the pedestrian arrival rate αP), simulations are carried out. The vehicular traffic flux is calculated in terms of rates. The effect of the crosswalk can be regarded as a dynamic impurity. The system phase diagrams in the (α1 ,αP) plane are built. It is found that the phase diagrams consist essentially of four phases namely Free Flow, Congested, Maximal Current and Gridlock. The value of the Maximal current phase depends on the extracting rate β, while the Gridlock phase is achieved only when the pedestrians generating rate is higher than a critical value. Furthermore, the effect of vehicles changing lane (Pch1 ,Pch2) and the location of the crosswalk XP on the dynamic characteristics of vehicles flow are investigated. It is found that traffic situation in the system is slightly enhanced if the location of the crosswalks XP is far from the intersection. However, when Pch1, Pch2 increase, the traffic becomes congested and the Gridlock phase enlarges.
Directory of Open Access Journals (Sweden)
Yangzexi Liu
2017-01-01
Full Text Available The technology of autonomous vehicles is expected to revolutionize the operation of road transport systems. The penetration rate of autonomous vehicles will be low at the early stage of their deployment. It is a challenge to explore the effects of autonomous vehicles and their penetration on heterogeneous traffic flow dynamics. This paper aims to investigate this issue. An improved cellular automaton was employed as the modeling platform for our study. In particular, two sets of rules for lane changing were designed to address mild and aggressive lane changing behavior. With extensive simulation studies, we obtained some promising results. First, the introduction of autonomous vehicles to road traffic could considerably improve traffic flow, particularly the road capacity and free-flow speed. And the level of improvement increases with the penetration rate. Second, the lane-changing frequency between neighboring lanes evolves with traffic density along a fundamental-diagram-like curve. Third, the impacts of autonomous vehicles on the collective traffic flow characteristics are mainly related to their smart maneuvers in lane changing and car following, and it seems that the car-following impact is more pronounced.
Monitoring individual traffic flows within the ATLAS TDAQ network
Sjoen, R; Ciobotaru, M; Batraneanu, S M; Leahu, L; Martin, B; Al-Shabibi, A
2010-01-01
The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities a...
A Queuing Model-Based System for Triggering Traffic Flow Management Algorithms, Phase I
National Aeronautics and Space Administration — Next generation air traffic management systems are expected use multiple software tools and quantitative methods for managing traffic flow in the National Airspace....
National Research Council Canada - National Science Library
Lu, Yadong; Wong, S. C; Zhang, Mengping; Shu, Chi-Wang
2007-01-01
...) traffic flow model with a flow-density relationship which is piecewise quadratic, concave, but not continuous at the junction points where two quadratic polynomials meet, and with piecewise linear...
Iwamura, Yoshiro; Tanimoto, Jun
2018-02-01
To investigate an interesting question as to whether or not social dilemma structures can be found in a realistic traffic flow reproduced by a model, we built a new microscopic model in which an intentional driver may try lane-changing to go in front of other vehicles and may hamper others’ lane-changes. Our model consists of twofold parts; cellular automaton emulating a real traffic flow and evolutionary game theory to implement a driver’s decision making-process. Numerical results reveal that a social dilemma like the multi-player chicken game or prisoner’s dilemma game emerges depending on the traffic phase. This finding implies that a social dilemma, which has been investigated by applied mathematics so far, hides behind a traffic flow, which has been explored by fluid dynamics. Highlight - Complex system of traffic flow with consideration of driver’s decision making process is concerned. - A new model dovetailing cellular automaton with game theory is established. - Statistical result from numerical simulations reveals a social dilemma structure underlying traffic flow. - The social dilemma is triggered by a driver’s egocentric actions of lane-changing and hampering other’s lane-change.
Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao
2017-12-01
Electric vehicle (EV) has become a potential traffic tool, which has attracted researchers to explore various traffic phenomena caused by EV (e.g. congestion, electricity consumption, etc.). In this paper, we study the energy consumption (including the fuel consumption and the electricity consumption) and emissions of heterogeneous traffic flow (that consists of the traditional vehicle (TV) and EV) under three traffic situations (i.e. uniform flow, shock and rarefaction waves, and a small perturbation) from the perspective of macro traffic flow. The numerical results show that the proportion of electric vehicular flow has great effects on the TV’s fuel consumption and emissions and the EV’s electricity consumption, i.e. the fuel consumption and emissions decrease while the electricity consumption increases with the increase of the proportion of electric vehicular flow. The results can help us better understand the energy consumption and emissions of the heterogeneous traffic flow consisting of TV and EV.
Lu, Mujie; Shang, Wenjie; Ji, Xinkai; Hua, Mingzhuang; Cheng, Kuo
2015-12-01
Nowadays, intelligent transportation system (ITS) has already become the new direction of transportation development. Traffic data, as a fundamental part of intelligent transportation system, is having a more and more crucial status. In recent years, video observation technology has been widely used in the field of traffic information collecting. Traffic flow information contained in video data has many advantages which is comprehensive and can be stored for a long time, but there are still many problems, such as low precision and high cost in the process of collecting information. This paper aiming at these problems, proposes a kind of traffic target detection method with broad applicability. Based on three different ways of getting video data, such as aerial photography, fixed camera and handheld camera, we develop a kind of intelligent analysis software which can be used to extract the macroscopic, microscopic traffic flow information in the video, and the information can be used for traffic analysis and transportation planning. For road intersections, the system uses frame difference method to extract traffic information, for freeway sections, the system uses optical flow method to track the vehicles. The system was applied in Nanjing, Jiangsu province, and the application shows that the system for extracting different types of traffic flow information has a high accuracy, it can meet the needs of traffic engineering observations and has a good application prospect.
Multiple Vehicle Detection and Segmentation in Malaysia Traffic Flow
Fariz Hasan, Ahmad; Fikri Che Husin, Mohd; Affendi Rosli, Khairul; Norhafiz Hashim, Mohd; Faiz Zainal Abidin, Amar
2018-03-01
Vision based system are widely used in the field of Intelligent Transportation System (ITS) to extract a large amount of information to analyze traffic scenes. By rapid number of vehicles on the road as well as significant increase on cameras dictated the need for traffic surveillance systems. This system can take over the burden some task was performed by human operator in traffic monitoring centre. The main technique proposed by this paper is concentrated on developing a multiple vehicle detection and segmentation focusing on monitoring through Closed Circuit Television (CCTV) video. The system is able to automatically segment vehicle extracted from heavy traffic scene by optical flow estimation alongside with blob analysis technique in order to detect the moving vehicle. Prior to segmentation, blob analysis technique will compute the area of interest region corresponding to moving vehicle which will be used to create bounding box on that particular vehicle. Experimental validation on the proposed system was performed and the algorithm is demonstrated on various set of traffic scene.
Calibration of CORSIM models under saturated traffic flow conditions.
2013-09-01
This study proposes a methodology to calibrate microscopic traffic flow simulation models. : The proposed methodology has the capability to calibrate simultaneously all the calibration : parameters as well as demand patterns for any network topology....
Traffic flow model at fixed control signals with discrete service time distribution
Directory of Open Access Journals (Sweden)
Lucky I. Igbinosun
2016-04-01
Full Text Available Most of the models of road traffic flow at fixed-cycle controlled intersection assume stationary distributions and provide steady state results. The assumption that a constant number of vehicles can leave the system during the green phase is unrealistic in real life situations. A discrete time queuing model was developed to describe the operation of traffic flow at a road intersection with fixed-cycle signalized control and to account for the randomness in the number of vehicles that can leave the system. The results show the expected queue size in the system when the traffic is light and for a busy period, respectively. For the light period, when the traffic intensity is less than one, it takes a shorter green cycle time for vehicles to clear up than during high traffic intensity (the road junction is saturated. Increasing the number of cars that can leave the junction at the turn of the green phase reduces the number of cycle times before the queue is cleared.
A Study on the Model of Traffic Flow and Vehicle Exhaust Emission
Directory of Open Access Journals (Sweden)
Han Xue
2013-01-01
Full Text Available The increase of traffic flow in cities causes traffic congestion and accidents as well as air pollution. Traffic problems have attracted the interest of many researchers from the perspective of theory and engineering. In order to provide a simple and practical method for measuring the exhaust emission and assessing the effect of pollution control, a model is based on the relationship between traffic flow and vehicle exhaust emission under a certain level of road capacity constraints. In the proposed model, the hydrocarbons (HC, carbon monoxide (CO, and nitrogen oxides (NOx are considered as the indexes of total exhaust emission, and the speed is used as an intermediate variable. To verify the rationality and practicality of the model, a case study for Beijing, China, is provided in which the effects of taxi fare regulation and the specific vehicle emission reduction policy are analyzed.
Roads at risk: traffic detours from debris flows in southern Norway
Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.
2015-05-01
Globalisation and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g. road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load, expressed as vehicle kilometres, because of debris-flow-related road closures. We present two scenarios demonstrating the impact of debris flows on the road network and quantify the associated path-failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and north-western part of the study area are associated with high link-failure risk. Yet options for detours on major routes are manifold and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying on speedy delivery of services and goods.
Urban Traffic Signal System Control Structural Optimization Based on Network Analysis
Directory of Open Access Journals (Sweden)
Li Wang
2013-01-01
Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.
Liu, Gang; He, Jing; Luo, Zhiyong; Yang, Wunian; Zhang, Xiping
2015-05-01
It is important to study the effects of pedestrian crossing behaviors on traffic flow for solving the urban traffic jam problem. Based on the Nagel-Schreckenberg (NaSch) traffic cellular automata (TCA) model, a new one-dimensional TCA model is proposed considering the uncertainty conflict behaviors between pedestrians and vehicles at unsignalized mid-block crosswalks and defining the parallel updating rules of motion states of pedestrians and vehicles. The traffic flow is simulated for different vehicle densities and behavior trigger probabilities. The fundamental diagrams show that no matter what the values of vehicle braking probability, pedestrian acceleration crossing probability, pedestrian backing probability and pedestrian generation probability, the system flow shows the "increasing-saturating-decreasing" trend with the increase of vehicle density; when the vehicle braking probability is lower, it is easy to cause an emergency brake of vehicle and result in great fluctuation of saturated flow; the saturated flow decreases slightly with the increase of the pedestrian acceleration crossing probability; when the pedestrian backing probability lies between 0.4 and 0.6, the saturated flow is unstable, which shows the hesitant behavior of pedestrians when making the decision of backing; the maximum flow is sensitive to the pedestrian generation probability and rapidly decreases with increasing the pedestrian generation probability, the maximum flow is approximately equal to zero when the probability is more than 0.5. The simulations prove that the influence of frequent crossing behavior upon vehicle flow is immense; the vehicle flow decreases and gets into serious congestion state rapidly with the increase of the pedestrian generation probability.
Effect of Water Flows on Ship Traffic in Narrow Water Channels Based on Cellular Automata
Directory of Open Access Journals (Sweden)
Hu Hongtao
2017-11-01
Full Text Available In narrow water channels, ship traffic may be affected by water flows and ship interactions. Studying their effects can help maritime authorities to establish appropriate management strategies. In this study, a two-lane cellular automation model is proposed. Further, the behavior of ship traffic is analyzed by setting different water flow velocities and considering ship interactions. Numerical experiment results show that the ship traffic density-flux relation is significantly different from the results obtained by classical models. Furthermore, due to ship interactions, the ship lane-change rate is influenced by the water flow to a certain degree.
End-to-End Traffic Flow Modeling of the Integrated SCaN Network
Cheung, K.-M.; Abraham, D. S.
2012-05-01
In this article, we describe the analysis and simulation effort of the end-to-end traffic flow for the Integrated Space Communications and Navigation (SCaN) Network. Using the network traffic derived for the 30-day period of July 2018 from the Space Communications Mission Model (SCMM), we generate the wide-area network (WAN) bandwidths of the ground links for different architecture options of the Integrated SCaN Network. We also develop a new analytical scheme to model the traffic flow and buffering mechanism of a store-and-forward network. It is found that the WAN bandwidth of the Integrated SCaN Network is an important differentiator of different architecture options, as the recurring circuit costs of certain architecture options can be prohibitively high.
Development of Road Traffic Assignment and Assessment Sub-Model Applied in the Traffic Study ...
Directory of Open Access Journals (Sweden)
Dražen Topolnik
2012-10-01
Full Text Available The described sub-model is just one small segment of theTraffic Study of the City of Zagreb, in the development of whichnumerous foreign and national experts and institutions tookpart. After comprehensive collection and processing of inputdata, the traffic experts, using the software package "MVATRIPS" for the analysis and search for optimal solutions to theproblem of traffic system, provided the models of public urbantransit for the future.This paper describes the analysis and assessment of sub-models in road traffic assignment for the morning peak, afternoonpeak and average off-peak hours. The principles of assignmentprocedure have been described as well as the convergencetests. The following has been specified: the users categories,the public transit pre-load, and the passenger car unit(PC U. The key guideline in selecting the route is a generalisedformulation of costs presented in the paper. The procedures ofcalibration and the assessment of the finite model have alsobeen defined according to the screenline flows, link flows, andtravelling times. In the end, the summary is given of the basiccharacteristics of the finite travelling matrices.
A New Macro Model for Traffic Flow on a Highway with Ramps and Numerical Tests
International Nuclear Information System (INIS)
Tang Tieqiao; Huang Haijun; Zhang Ying; Wong, S.C.; Gao Ziyou
2009-01-01
In this paper, we present a new macro model for traffic flow on a highway with ramps based on the existing models. We use the new model to study the effects of on-off-ramp on the main road traffic during the morning rush period and the evening rush period. Numerical tests show that, during the two rush periods, these effects are often different and related to the status of the main road traffic. If the main road traffic flow is uniform, then ramps always produce stop-and-go traffic when the main road density is between two critical values, and ramps have little effect on the main road traffic when the main road density is less than the smaller critical value or greater than the larger critical value. If a small perturbation appears on the main road, ramp may lead to stop-and-go traffic, or relieve or even eliminate the stop-and-go traffic, under different circumstances. These results are consistent with real traffic, which shows that the new model is reasonable.
Directory of Open Access Journals (Sweden)
Enrique Castillo
2015-01-01
Full Text Available A state-of-the-art review of flow observability, estimation, and prediction problems in traffic networks is performed. Since mathematical optimization provides a general framework for all of them, an integrated approach is used to perform the analysis of these problems and consider them as different optimization problems whose data, variables, constraints, and objective functions are the main elements that characterize the problems proposed by different authors. For example, counted, scanned or “a priori” data are the most common data sources; conservation laws, flow nonnegativity, link capacity, flow definition, observation, flow propagation, and specific model requirements form the most common constraints; and least squares, likelihood, possible relative error, mean absolute relative error, and so forth constitute the bases for the objective functions or metrics. The high number of possible combinations of these elements justifies the existence of a wide collection of methods for analyzing static and dynamic situations.
A better understanding of long-range temporal dependence of traffic flow time series
Feng, Shuo; Wang, Xingmin; Sun, Haowei; Zhang, Yi; Li, Li
2018-02-01
Long-range temporal dependence is an important research perspective for modelling of traffic flow time series. Various methods have been proposed to depict the long-range temporal dependence, including autocorrelation function analysis, spectral analysis and fractal analysis. However, few researches have studied the daily temporal dependence (i.e. the similarity between different daily traffic flow time series), which can help us better understand the long-range temporal dependence, such as the origin of crossover phenomenon. Moreover, considering both types of dependence contributes to establishing more accurate model and depicting the properties of traffic flow time series. In this paper, we study the properties of daily temporal dependence by simple average method and Principal Component Analysis (PCA) based method. Meanwhile, we also study the long-range temporal dependence by Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctuation Analysis (MFDFA). The results show that both the daily and long-range temporal dependence exert considerable influence on the traffic flow series. The DFA results reveal that the daily temporal dependence creates crossover phenomenon when estimating the Hurst exponent which depicts the long-range temporal dependence. Furthermore, through the comparison of the DFA test, PCA-based method turns out to be a better method to extract the daily temporal dependence especially when the difference between days is significant.
Arita, Chikashi; Foulaadvand, M Ebrahim; Santen, Ludger
2017-03-01
We consider the exclusion process on a ring with time-dependent defective bonds at which the hopping rate periodically switches between zero and one. This system models main roads in city traffics, intersecting with perpendicular streets. We explore basic properties of the system, in particular dependence of the vehicular flow on the parameters of signalization as well as the system size and the car density. We investigate various types of the spatial distribution of the vehicular density, and show existence of a shock profile. We also measure waiting time behind traffic lights, and examine its relationship with the traffic flow.
A mixed-mode traffic assignment model with new time-flow impedance function
Lin, Gui-Hua; Hu, Yu; Zou, Yuan-Yang
2018-01-01
Recently, with the wide adoption of electric vehicles, transportation network has shown different characteristics and been further developed. In this paper, we present a new time-flow impedance function, which may be more realistic than the existing time-flow impedance functions. Based on this new impedance function, we present an optimization model for a mixed-mode traffic network in which battery electric vehicles (BEVs) and gasoline vehicles (GVs) are chosen. We suggest two approaches to handle the model: One is to use the interior point (IP) algorithm and the other is to employ the sequential quadratic programming (SQP) algorithm. Three numerical examples are presented to illustrate the efficiency of these approaches. In particular, our numerical results show that more travelers prefer to choosing BEVs when the distance limit of BEVs is long enough and the unit operating cost of GVs is higher than that of BEVs, and the SQP algorithm is faster than the IP algorithm.
CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES
Directory of Open Access Journals (Sweden)
G. R. LAI
2015-08-01
Full Text Available Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala Lumpur, Malaysia. The aim of this research is to develop an ANFIS traffic signals controller for multilane-isolated four approaches intersections in order to ease traffic congestions at traffic intersections. The new concept to generate sample data for ANFIS training is introduced in this research. The sample data is generated based on fuzzy rules and can be analysed using tree diagram. This controller is simulated on multilane-isolated traffic intersection model developed using M/M/1 queuing theory and its performance in terms of average waiting time, queue length and delay time are compared with traditional controllers and fuzzy controller. Simulation result shows that the average waiting time, queue length, and delay time of ANFIS traffic signal controller are the lowest as compared to the other three controllers. In conclusion, the efficiency and performance of ANFIS controller are much better than that of fuzzy and traditional controllers in different traffic volumes.
An Architecture to Manage Incoming Traffic of Inter-Domain Routing Using OpenFlow Networks
Directory of Open Access Journals (Sweden)
Walber José Adriano Silva
2018-04-01
Full Text Available The Border Gateway Protocol (BGP is the current state-of-the-art inter-domain routing between Autonomous Systems (ASes. Although BGP has different mechanisms to manage outbound traffic in an AS domain, it lacks an efficient tool for inbound traffic control from transit ASes such as Internet Service Providers (ISPs. For inter-domain routing, the BGP’s destination-based forwarding paradigm limits the granularity of distributing the network traffic among the multiple paths of the current Internet topology. Thus, this work offered a new architecture to manage incoming traffic in the inter-domain using OpenFlow networks. The architecture explored direct inter-domain communication to exchange control information and the functionalities of the OpenFlow protocol. Based on the achieved results of the size of exchanging messages, the proposed architecture is not only scalable, but also capable of performing load balancing for inbound traffic using different strategies.
Modelling traffic flows with intelligent cars and intelligent roads
van Arem, Bart; Tampere, Chris M.J.; Malone, Kerry
2003-01-01
This paper addresses the modeling of traffic flows with intelligent cars and intelligent roads. It will describe the modeling approach MIXIC and review the results for different ADA systems: Adaptive Cruise Control, a special lane for Intelligent Vehicles, cooperative following and external speed
Directory of Open Access Journals (Sweden)
Yao Xiao
2015-01-01
Full Text Available This paper aimed to analyze the influence of drivers’ behavior of phone use while driving on traffic flow, including both traffic efficiency and traffic safety. An improved cellular automaton model was proposed to simulate traffic flow with distracted drivers based on the Nagel-Schreckenberg model. The driving characters of drivers using a phone were first discussed and a value representing the probability to use a phone while driving was put into the CA model. Simulation results showed that traffic flow rate was significantly reduced if some drivers used a phone compared to no phone use. The flow rate and velocity decreased as the proportion of drivers using a phone increased. While, under low density, the risk of traffic decreased first and then increased as the distracted drivers increased, the distracted behavior of drivers, like using a phone, could reduce the flow rate by 5 percent according to the simulation.
Stationary velocity distributions in traffic flows
International Nuclear Information System (INIS)
1997-01-01
We introduce a traffic flow model that incorporates clustering and passing. We obtain analytically the steady state characteristics of the flow from a Boltzmann-like equation. A single dimensionless parameter, R=c 0 v 0 t 0 with c 0 the concentration, v 0 the velocity range, and t 0 -1 the passing rate, determines the nature of the steady state. When R 1, large clusters with average mass left-angle m right-angle ∼R α form, and the flux is J∼R -γ . The initial distribution of slow cars governs the statistics. When P 0 (v)∼v μ as v→0, the scaling exponents are γ=1/(μ+2), α=1/2 when μ>0, and α=(μ+1)/(μ+2) when μ<0. copyright 1997 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Sossoe, K.S., E-mail: kwami.sossoe@irt-systemx.fr [TECHNOLOGICAL RESEARCH INSTITUTE SYSTEMX (France); Lebacque, J-P., E-mail: jean-patrick.lebacque@ifsttar.fr [UPE/IFSTTAR-COSYS-GRETTIA (France)
2015-03-10
We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap scheme is introduced to numerically approximate the model’s flow equations.
Carpooling and Driver Responses to Fuel Price Changes: Evidence from Traffic Flows in Los Angeles
Antonio M. Bento; Jonathan E. Hughes; Daniel T. Kaffine
2012-01-01
Understanding how drivers respond to fuel price changes has important implications for highway congestion, accidents, carbon policy, local air pollution and taxation. We examine the underexplored relationship between fuel prices and carpooling. Using a simple theoretical model we show that traffic flows in mainline lanes decrease when fuel prices increase. However in carpool (HOV) lanes, flow can either increase or decrease. Traffic flows in mainline lanes are shown to be more responsive to p...
Locating replenishment stations for electric vehicles: Application to Danish traffic data
DEFF Research Database (Denmark)
Wen, Min; Laporte, Gilbert; Madsen, Oli B.G.
2012-01-01
for electric vehicles on a traffic network with flow-based demand. The objective is to optimize the network performance, for example to maximize the flow covered by a prefixed number of stations, or to minimize the number of stations needed to cover traffic flows. Two mixed integer linear programming......Environment-friendly electric vehicles have gained substantial attention in governments, industry and universities. The deployment of a network of recharging stations is essential given their limited travel range. This paper considers the problem of locating electronic replenishment stations...
Monitoring individual traffic flows within the ATLAS TDAQ network
International Nuclear Information System (INIS)
Sjoen, R; Batraneanu, S M; Leahu, L; Martin, B; Al-Shabibi, A; Stancu, S; Ciobotaru, M
2010-01-01
The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities and limitations of this diagnostic tool, giving an example of its use in solving system problems that arise during the ATLAS data taking.
Traffic Flow Visualization and Control
National Research Council Canada - National Science Library
Larson, Robert
1999-01-01
.... Air Force Research Laboratory. It is a video-camera-based, wide-area, traffic surveillance and detection system that provides real-time traffic information to traffic management center operators...
Directory of Open Access Journals (Sweden)
Cheng Xu
2015-01-01
Full Text Available Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles’ free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists’ characteristics were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.
Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael
2014-05-01
Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.
Memory effects in microscopic traffic models and wide scattering in flow-density data
Treiber, Martin; Helbing, Dirk
2003-10-01
By means of microscopic simulations we show that noninstantaneous adaptation of the driving behavior to the traffic situation together with the conventional method to measure flow-density data provides a possible explanation for the observed inverse-λ shape and the wide scattering of flow-density data in “synchronized” congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing an additional dynamical variable (the “subjective level of service”) describing the adaptation of drivers to the surrounding traffic situation during the past few minutes and couple this internal state to parameters of the underlying model that are related to the driving style. For illustration, we use the intelligent-driver model (IDM) as the underlying model, characterize the level of service solely by the velocity, and couple the internal variable to the IDM parameter “time gap” to model an increase of the time gap in congested traffic (“frustration effect”), which is supported by single-vehicle data. We simulate open systems with a bottleneck and obtain flow-density data by implementing “virtual detectors.” The shape, relative size, and apparent “stochasticity” of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.
Energy Technology Data Exchange (ETDEWEB)
Matsumura, M. [Shizuoka University, Shizuoka (Japan); Nagatani, T. [Shizuoka University, Shizuoka (Japan). Faculty of Engineering
1999-07-25
Traffic jams are investigated numerically and analystically in the optimal velocity model on a single-line highway. The condition is found whether or not traffic jams occur when a car stops instantly. It is shown that traffic soliton appears at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability point. The soliton obtained from the nonlinear analysis is consistent with that of the numerical simulation. (author)
1974-02-01
The volume presents a description of the services a generic Advanced Air Traffic Management System (AATMS) should provide to the useres of the system to facilitate the safe, efficient flow of traffic. It provides a definition of the functions which t...
An evolutionary outlook of air traffic flow management techniques
Kistan, Trevor; Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian; Batuwangala, Eranga
2017-01-01
In recent years Air Traffic Flow Management (ATFM) has become pertinent even in regions without sustained overload conditions caused by dense traffic operations. Increasing traffic volumes in the face of constrained resources has created peak congestion at specific locations and times in many areas of the world. Increased environmental awareness and economic drivers have combined to create a resurgent interest in ATFM as evidenced by a spate of recent ATFM conferences and workshops mediated by official bodies such as ICAO, IATA, CANSO the FAA and Eurocontrol. Significant ATFM acquisitions in the last 5 years include South Africa, Australia and India. Singapore, Thailand and Korea are all expected to procure ATFM systems within a year while China is expected to develop a bespoke system. Asia-Pacific nations are particularly pro-active given the traffic growth projections for the region (by 2050 half of all air traffic will be to, from or within the Asia-Pacific region). National authorities now have access to recently published international standards to guide the development of national and regional operational concepts for ATFM, geared to Communications, Navigation, Surveillance/Air Traffic Management and Avionics (CNS+A) evolutions. This paper critically reviews the field to determine which ATFM research and development efforts hold the best promise for practical technological implementations, offering clear benefits both in terms of enhanced safety and efficiency in times of growing air traffic. An evolutionary approach is adopted starting from an ontology of current ATFM techniques and proceeding to identify the technological and regulatory evolutions required in the future CNS+A context, as the aviation industry moves forward with a clearer understanding of emerging operational needs, the geo-political realities of regional collaboration and the impending needs of global harmonisation.
Canepa, Edward S.; Odat, Enas M.; Dehwah, Ahmad H.; Mousa, Mustafa; Jiang, Jiming; Claudel, Christian G.
2014-01-01
This article describes a new approach to urban traffic flow sensing using decentralized traffic state estimation. Traffic sensor data is generated both by fixed traffic flow sensor nodes and by probe vehicles equipped with a short range transceiver. The data generated by these sensors is sent to a local coordinator node, that poses the problem of estimating the local state of traffic as a mixed integer linear program (MILP). The resulting optimization program is then solved by the nodes in a distributed manner, using branch-and-bound methods. An optimal amount of noise is then added to the maps before dissemination to a central database. Unlike existing probe-based traffic monitoring systems, this system does not transmit user generated location tracks nor any user presence information to a centralized server, effectively preventing privacy attacks. A simulation of the system performance on computer-generated traffic data shows that the system can be implemented with currently available technology. © 2014 Springer International Publishing Switzerland.
Delay-feedback control strategy for reducing CO2 emission of traffic flow system
Zhang, Li-Dong; Zhu, Wen-Xing
2015-06-01
To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.
Sonification of network traffic flow for monitoring and situational awareness
2018-01-01
Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators’ situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen. PMID:29672543
Sonification of network traffic flow for monitoring and situational awareness.
Debashi, Mohamed; Vickers, Paul
2018-01-01
Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators' situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen.
Li, Xin; Li, Xingang; Xiao, Yao; Jia, Bin
2016-06-01
Real traffic is heterogeneous with car and truck. Due to mechanical restrictions, the car and the truck have different limited deceleration capabilities, which are important factors in safety driving. This paper extends the single lane safety driving (SD) model with limited deceleration capability to two-lane SD model, in which car-truck heterogeneous traffic is considered. A car has a larger limited deceleration capability while a heavy truck has a smaller limited deceleration capability as a result of loaded goods. Then the safety driving conditions are different as the types of the following and the leading vehicles vary. In order to eliminate the well-known plug in heterogeneous two-lane traffic, it is assumed that heavy truck has active deceleration behavior when the heavy truck perceives the forming plug. The lane-changing decisions are also determined by the safety driving conditions. The fundamental diagram, spatiotemporal diagram, and lane-changing frequency were investigated to show the effect of mechanical restriction on heterogeneous traffic flow. It was shown that there would be still three traffic phases in heterogeneous traffic condition; the active deceleration of the heavy truck could well eliminate the plug; the lane-changing frequency was low in synchronized flow; the flow and velocity would decrease as the proportion of heavy truck grows or the limited deceleration capability of heavy truck drops; and the flow could be improved with lane control measures.
Varotto, S.F.; Hoogendoorn, R.G.; Van Arem, B.; Hoogendoorn, S.P.
2014-01-01
Automated driving potentially has a significant impact on traffic flow efficiency. Automated vehicles, which possess cooperative capabilities, are expected to reduce congestion levels for instance by increasing road capacity, by anticipating traffic conditions further downstream and also by
Physics of automated driving in framework of three-phase traffic theory.
Kerner, Boris S
2018-04-01
We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.
Physics of automated driving in framework of three-phase traffic theory
Kerner, Boris S.
2018-04-01
We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.
Energy Technology Data Exchange (ETDEWEB)
Korlapati, D.R.
2007-07-01
Due to urbanization and accelerated growth in vehicular traffic, most big cities in India face problems related to traffic management resulting in severe congestion, pollution, and a high rate of accidents during peak hours. Lane blocking incidents on arterials or urban traffic corridors cause major disruption to traffic flow. Peak hour congestion with low average speeds and high accident rates are commonly associated with traffic in major cities in India. The situation is deteriorating further as creation of new facilities are almost impossible, with resource and space constraints. In such scenarios, application of advanced technologies seems to offer hope. One such application area is Advanced Traffic Management Systems (ATMS), a component of intelligent transportation system (ITS). Due to the unique traffic characteristics prevailing in India, the application of such systems needs to first be evaluated before implementation. This paper proposed a research methodology for the evaluation of diversion strategies in the context of ATMS for an urban corridor in India. The evaluation framework combined several relevant modules related to various aspects of traffic control, surveillance and advisory. As part of this study, a simulation model and a simulation optimization model were developed. The simulation model was microscopic in nature and captured the driver behaviour and traffic characteristics realistically by modeling the complex interactions among vehicles traversing a corridor. It was concluded that the results and observations were useful indicators to gauge the potential success of diversion plans. 10 refs., 1 tab., 2 figs.
A new traffic control design method for large networks with signalized intersections
Leininger, G. G.; Colony, D. C.; Seldner, K.
1979-01-01
The paper presents a traffic control design technique for application to large traffic networks with signalized intersections. It is shown that the design method adopts a macroscopic viewpoint to establish a new traffic modelling procedure in which vehicle platoons are subdivided into main stream queues and turning queues. Optimization of the signal splits minimizes queue lengths in the steady state condition and improves traffic flow conditions, from the viewpoint of the traveling public. Finally, an application of the design method to a traffic network with thirty-three signalized intersections is used to demonstrate the effectiveness of the proposed technique.
Traffic congestion forecasting model for the INFORM System. Final report
Energy Technology Data Exchange (ETDEWEB)
Azarm, A.; Mughabghab, S.; Stock, D.
1995-05-01
This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.
Characterization of General TCP Traffic under a Large Number of Flows Regime
National Research Council Canada - National Science Library
Tinnakornsrisuphap, Peerapol; La, Richard J; Makowski, Armand M
2002-01-01
.... Accurate traffic modeling of a large number of short-lived TCP flows is extremely difficult due to the interaction between session, transport, and network layers, and the explosion of the size...
Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic
International Nuclear Information System (INIS)
Kerner, Boris S; Schreckenberg, Michael; Klenov, Sergey L
2014-01-01
Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown. (paper)
Some exact solutions to the Lighthill–Whitham–Richards–Payne traffic flow equations
International Nuclear Information System (INIS)
Rowlands, G; Infeld, E; Skorupski, A A
2013-01-01
We find a class of exact solutions to the Lighthill–Whitham–Richards–Payne (LWRP) traffic flow equations. Using two consecutive Lagrangian transformations, a linearization is achieved. Next, depending on the initial density, we either apply (again two) Lambert functions and obtain exact formulae for the dependence of the car density and velocity on x, t, or else, failing that, the same result in a parametric representation. The calculation always involves two possible factorizations of a consistency condition. Both must be considered. In physical terms, the lineup usually separates into two offshoots at different velocities. Each velocity soon becomes uniform. This outcome in many ways resembles the two soliton solution to the Korteweg–de Vries equation. We check general conservation requirements. Although traffic flow research has developed tremendously since LWRP, this calculation, being exact, may open the door to solving similar problems, such as gas dynamics or water flow in rivers. With this possibility in mind, we outline the procedure in some detail at the end. (paper)
Klunder, G.; Li, M.; Minderhoud, M.
2009-01-01
In 2006 in the Netherlands, a field operational test was carried out to study the effect of adaptive cruise control (ACC) and lane departure warning on driver behavior and traffic flow in real traffic. To estimate the effect for larger penetration rates, simulations were needed. For a reliable
A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect
International Nuclear Information System (INIS)
Tian Chuan; Sun Di-Hua; Yang Shu-Hong
2011-01-01
We present a new multi-anticipation lattice hydrodynamic model based on the traffic anticipation effect in the real world. Applying the linear stability theory, we obtain the linear stability condition of the model. Through nonlinear analysis, we derive the modified Korteweg-de Vries equation to describe the propagating behaviour of a traffic density wave near the critical point. The good agreement between the simulation results and the analytical results shows that the stability of traffic flow can be enhanced when the multi-anticipation effect is considered. (interdisciplinary physics and related areas of science and technology)
An Improved Macro Model of Traffic Flow with the Consideration of Ramps and Numerical Tests
Directory of Open Access Journals (Sweden)
Zhongke Shi
2015-01-01
Full Text Available We present an improved macro model for traffic flow based on the existing models. The equilibrium point equation of the model is obtained. The stop-and-go traffic phenomenon is described in phase plane and the relationship between traffic jams and system instability is clearly shown in the phase plane diagrams. Using the improved model, some traffic phenomena on a highway with ramps are found in this paper. The numerical simulation is carried out to investigate various nonlinear traffic phenomena with a single ramp generated by different initial densities and vehicle generation rates. According to the actual road sections of Xi’an-Baoji highways, the situations of morning peak with several ramps are also analyzed. All these results are consistent with real traffic, which shows that the improved model is reasonable.
Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect
International Nuclear Information System (INIS)
Zhao Min; Sun Di-Hua; Tian Chuan
2012-01-01
By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered. (interdisciplinary physics and related areas of science and technology)
Tampere, C.; Hoogendoorn, S.P.; van Arem, Bart
2009-01-01
This paper presents a continuous traffic-flow model for the explorative analysis of advanced driver-assistance systems (ADASs). Such systems use technology (sensors and intervehicle communication) to support the task of the driver, who retains full control over the vehicle. Based on a review of
ReFlow: Reports on Internet Traffic
Hoogesteger, Martijn; de Oliveira Schmidt, R.; Sperotto, Anna; Pras, Aiko
Internet traffic statistics can provide valuable information to network analysts and researchers about the traffic, technologies and main characteristics of today’s networks. For many years Internet2 maintained a public website with statistics about the traffic in the Abilene network. This site was
Intelligent Testing of Traffic Light Programs: Validation in Smart Mobility Scenarios
Directory of Open Access Journals (Sweden)
Javier Ferrer
2016-01-01
Full Text Available In smart cities, the use of intelligent automatic techniques to find efficient cycle programs of traffic lights is becoming an innovative front for traffic flow management. However, this automatic programming of traffic lights requires a validation process of the generated solutions, since they can affect the mobility (and security of millions of citizens. In this paper, we propose a validation strategy based on genetic algorithms and feature models for the automatic generation of different traffic scenarios checking the robustness of traffic light cycle programs. We have concentrated on an extensive urban area in the city of Malaga (in Spain, in which we validate a set of candidate cycle programs generated by means of four optimization algorithms: Particle Swarm Optimization for Traffic Lights, Differential Evolution for Traffic Lights, random search, and Sumo Cycle Program Generator. We can test the cycles of traffic lights considering the different states of the city, weather, congestion, driver expertise, vehicle’s features, and so forth, but prioritizing the most relevant scenarios among a large and varied set of them. The improvement achieved in solution quality is remarkable, especially for CO2 emissions, in which we have obtained a reduction of 126.99% compared with the experts’ solutions.
Optimal and Robust Switching Control Strategies : Theory, and Applications in Traffic Management
Hajiahmadi, M.
2015-01-01
Macroscopic modeling, predictive and robust control and route guidance for large-scale freeway and urban traffic networks are the main focus of this thesis. In order to increase the efficiency of our control strategies, we propose several mathematical and optimization techniques. Moreover, in the
Topology optimization of flow problems
DEFF Research Database (Denmark)
Gersborg, Allan Roulund
2007-01-01
This thesis investigates how to apply topology optimization using the material distribution technique to steady-state viscous incompressible flow problems. The target design applications are fluid devices that are optimized with respect to minimizing the energy loss, characteristic properties...... transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the thesis gives a proof-of-concept for the application of the method within fluid dynamic problems and it remains of interest for the design of microfluidic devices. Furthermore, the thesis contributes...... at the Technical University of Denmark. Large topology optimization problems with 2D and 3D Stokes flow modeling are solved with direct and iterative strategies employing the parallelized Sun Performance Library and the OpenMP parallelization technique, respectively....
Canepa, Edward S.; Claudel, Christian G.
2012-01-01
This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.
Canepa, Edward S.
2012-09-01
This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.
Reducing the impact of speed dispersion on subway corridor flow.
Qiao, Jing; Sun, Lishan; Liu, Xiaoming; Rong, Jian
2017-11-01
The rapid increase in the volume of subway passengers in Beijing has necessitated higher requirements for the safety and efficiency of subway corridors. Speed dispersion is an important factor that affects safety and efficiency. This paper aims to analyze the management control methods for reducing pedestrian speed dispersion in subways. The characteristics of the speed dispersion of pedestrian flow were analyzed according to field videos. The control measurements which were conducted by placing traffic signs, yellow marking, and guardrail were proposed to alleviate speed dispersion. The results showed that the methods of placing traffic signs, yellow marking, and a guardrail improved safety and efficiency for all four volumes of pedestrian traffic flow, and the best-performing control measurement was guardrails. Furthermore, guardrails' optimal position and design measurements were explored. The research findings provide a rationale for subway managers in optimizing pedestrian traffic flow in subway corridors. Copyright © 2017. Published by Elsevier Ltd.
Energy Technology Data Exchange (ETDEWEB)
Dadashova, B.
2016-07-01
In this paper the effect of truck traffic on road safety has been analyzed through simulation study. The main objective of the study is to quantify the effect of the decreasing average annual daily traffic of heavy duty vehicles (trucks) on road safety. As the road safety indicators the frequency road accidents is considered. The data used in the study were collected from one of the most crowded routes in Spain which connects Almeria (south-east) with Barcelona (northeast). The observed data covers year 2010 and were classified into 2 road types: dual carriageways and toll roads. The estimation was carried out using negative binomial model and Markov Chain Monte Carlo simulation. Using the estimation results new traffic scenarios were proposed where the traffic flow is assumed to change its values. A total of 33 scenarios were proposed and new accidents data were generated through MCMC sampling. The comparison of the simulated and observed accident data shows that the effect of decreasing truck traffic flow could meliorate road safety in the route. The simulation tool could be applied to evaluate the effects of freight modal shift from road to rail. (Author)
Tampere, C.M.J.; Hoogendoorn, S.P.; Arem, B. van
2009-01-01
This paper presents a continuous traffic-flow model for the explorative analysis of advanced driver-assistance systems (ADASs). Such systems use technology (sensors and intervehicle communication) to support the task of the driver, who retains full control over the vehicle. Based on a review of
Numerical optimization using flow equations
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
Directory of Open Access Journals (Sweden)
Adacher Ludovica
2017-12-01
Full Text Available In this paper we extend a stochastic discrete optimization algorithm so as to tackle the signal setting problem. Signalized junctions represent critical points of an urban transportation network, and the efficiency of their traffic signal setting influences the overall network performance. Since road congestion usually takes place at or close to junction areas, an improvement in signal settings contributes to improving travel times, drivers’ comfort, fuel consumption efficiency, pollution and safety. In a traffic network, the signal control strategy affects the travel time on the roads and influences drivers’ route choice behavior. The paper presents an algorithm for signal setting optimization of signalized junctions in a congested road network. The objective function used in this work is a weighted sum of delays caused by the signalized intersections. We propose an iterative procedure to solve the problem by alternately updating signal settings based on fixed flows and traffic assignment based on fixed signal settings. To show the robustness of our method, we consider two different assignment methods: one based on user equilibrium assignment, well established in the literature as well as in practice, and the other based on a platoon simulation model with vehicular flow propagation and spill-back. Our optimization algorithm is also compared with others well known in the literature for this problem. The surrogate method (SM, particle swarm optimization (PSO and the genetic algorithm (GA are compared for a combined problem of global optimization of signal settings and traffic assignment (GOSSTA. Numerical experiments on a real test network are reported.
Directory of Open Access Journals (Sweden)
Tan-Jan Ho
2016-07-01
Full Text Available For satisfactory traffic management of an intelligent transport system, it is vital that traffic microwave radar detectors (TMRDs can provide real-time traffic information with high accuracy. In this study, we develop several information-aided smart schemes for traffic detection improvements of TMRDs in multiple-lane environments. Specifically, we select appropriate thresholds not only for removing noise from fast Fourier transforms (FFTs of regional lane contexts but also for reducing FFT side lobes within each lane. The resulting FFTs of reflected vehicle signals and those of clutter are distinguishable. We exploit FFT and lane-/or time stamp-related information for developing smart schemes, which mitigate adverse effects of lane-crossing FFT side lobes of a vehicle signal. As such, the proposed schemes can enhance the detection accuracy of both lane vehicle flow and directional traffic volume. On-site experimental results demonstrate the advantages and feasibility of the proposed methods, and suggest the best smart scheme.
Flow area optimization in point to area or area to point flows
International Nuclear Information System (INIS)
Ghodoossi, Lotfollah; Egrican, Niluefer
2003-01-01
This paper deals with the constructal theory of generation of shape and structure in flow systems connecting one point to a finite size area. The flow direction may be either from the point to the area or the area to the point. The formulation of the problem remains the same if the flow direction is reversed. Two models are used in optimization of the point to area or area to point flow problem: cost minimization and revenue maximization. The cost minimization model enables one to predict the shape of the optimized flow areas, but the geometric sizes of the flow areas are not predictable. That is, as an example, if the area of flow is a rectangle with a fixed area size, optimization of the point to area or area to point flow problem by using the cost minimization model will only predict the height/length ratio of the rectangle not the height and length itself. By using the revenue maximization model in optimization of the flow problems, all optimized geometric aspects of the interested flow areas will be derived as well. The aim of this paper is to optimize the point to area or area to point flow problems in various elemental flow area shapes and various structures of the flow system (various combinations of elemental flow areas) by using the revenue maximization model. The elemental flow area shapes used in this paper are either rectangular or triangular. The forms of the flow area structure, made up of an assembly of optimized elemental flow areas to obtain bigger flow areas, are rectangle-in-rectangle, rectangle-in-triangle, triangle-in-triangle and triangle-in-rectangle. The global maximum revenue, revenue collected per unit flow area and the shape and sizes of each flow area structure have been derived in optimized conditions. The results for each flow area structure have been compared with the results of the other structures to determine the structure that provides better performance. The conclusion is that the rectangle-in-triangle flow area structure
Swenson, Harry N.; Vincent, Danny; Tobias, Leonard (Technical Monitor)
1997-01-01
NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.
RESEARCH OF ENGINEERING TRAFFIC IN COMPUTER UZ NETWORK USING MPLS TE TECHNOLOGY
Directory of Open Access Journals (Sweden)
V. M. Pakhomovа
2014-12-01
Full Text Available Purpose. In railway transport of Ukraine one requires the use of computer networks of different technologies: Ethernet, Token Bus, Token Ring, FDDI and others. In combined computer networks on the railway transport it is necessary to use packet switching technology in multiprotocol networks MPLS (MultiProtocol Label Switching more effectively. They are based on the use of tags. Packet network must transmit different types of traffic with a given quality of service. The purpose of the research is development a methodology for determining the sequence of destination flows for the considered fragment of computer network of UZ. Methodology. When optimizing traffic management in MPLS networks has the important role of technology traffic engineering (Traffic Engineering, TE. The main mechanism of TE in MPLS is the use of unidirectional tunnels (MPLS TE tunnel to specify the path of the specified traffic. The mathematical model of the problem of traffic engineering in computer network of UZ technology MPLS TE was made. Computer UZ network is represented with the directed graph, their vertices are routers of computer network, and each arc simulates communication between nodes. As an optimization criterion serves the minimum value of the maximum utilization of the TE-tunnel. Findings. The six options destination flows were determined; rational sequence of flows was found, at which the maximum utilization of TE-tunnels considered a simplified fragment of a computer UZ network does not exceed 0.5. Originality. The method of solving the problem of traffic engineering in Multiprotocol network UZ technology MPLS TE was proposed; for different classes its own way is laid, depending on the bandwidth and channel loading. Practical value. Ability to determine the values of the maximum coefficient of use of TE-tunnels in computer UZ networks based on developed software model «TraffEng». The input parameters of the model: number of routers, channel capacity, the
Traffic signal synchronization.
Huang, Ding-wei; Huang, Wei-neng
2003-05-01
The benefits of traffic signal synchronization are examined within the cellular automata approach. The microsimulations of traffic flow are obtained with different settings of signal period T and time delay delta. Both numerical results and analytical approximations are presented. For undersaturated traffic, the green-light wave solutions can be realized. For saturated traffic, the correlation among the traffic signals has no effect on the throughput. For oversaturated traffic, the benefits of synchronization are manifest only when stochastic noise is suppressed.
Passenger Flow Forecasting Research for Airport Terminal Based on SARIMA Time Series Model
Li, Ziyu; Bi, Jun; Li, Zhiyin
2017-12-01
Based on the data of practical operating of Kunming Changshui International Airport during2016, this paper proposes Seasonal Autoregressive Integrated Moving Average (SARIMA) model to predict the passenger flow. This article not only considers the non-stationary and autocorrelation of the sequence, but also considers the daily periodicity of the sequence. The prediction results can accurately describe the change trend of airport passenger flow and provide scientific decision support for the optimal allocation of airport resources and optimization of departure process. The result shows that this model is applicable to the short-term prediction of airport terminal departure passenger traffic and the average error ranges from 1% to 3%. The difference between the predicted and the true values of passenger traffic flow is quite small, which indicates that the model has fairly good passenger traffic flow prediction ability.
2017-10-01
This project investigated the factors impacting individual vehicle energy consumption, including vehicle characteristics, ambient temperature, season, speed, driving behavior, and traffic flow. A fleet of 18 vehicles with a variety of ownership, size...
Directory of Open Access Journals (Sweden)
I. P. Bolodurina
2017-01-01
Full Text Available Currently, the proportion of use of cloud computing technology in today's business processes of companies is growing steadily. Despite the fact that it allows you to reduce the cost of ownership and operation of IT infrastructure, there are a number of problems related to the control of data centers. One such problem is the efficiency of the use of available companies compute and network resources. One of the directions of optimization is the process of traffic control of cloud applications and services in data centers. Given the multi-tier architecture of modern data center, this problem does not quite trivial. The advantage of modern virtual infrastructure is the ability to use software-configurable networks and software-configurable data storages. However, existing solutions with algorithmic optimization does not take into account a number of features forming network traffic with multiple classes of applications. Within the framework of the exploration solved the problem of optimizing the distribution of traffic cloud applications and services for the software-controlled virtual data center infrastructure. A simulation model describing the traffic in data center and software-configurable network segments involved in the processing of user requests for applications and services located network environment that includes a heterogeneous cloud platform and software-configurable data storages. The developed model has allowed to implement cloud applications traffic management algorithm and optimize access to the storage system through the effective use of the channel for data transmission. In experimental studies found that the application of the developed algorithm can reduce the response time of cloud applications and services, and as a result improve the performance of processing user requests and to reduce the number of failures.
Directory of Open Access Journals (Sweden)
Adithya Guru Vaishnav.S
2015-08-01
Full Text Available This paper aims at providing a theoretical framework to find an optimized route from any source to destination considering the real-time traffic congestion issues. The distance of various possible routes from the source and destination are calculated and a PathRank is allocated in the descending order of distance to each possible path. Each intermediate locations are considered as nodes of a graph and the edges are represented by real-time traffic flow monitored using GoogleMaps GPS crowdsourcing data. The Page Rank is calculated for each intermediate node. From the values of PageRank and PathRank the minimum sum term is used to find an optimized route with minimal trade-off between shortest path and real-time traffic.
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-03-14
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.
Traffic management simulation development : summary.
2011-01-01
Increasingly, Florida traffic is monitored electronically by components of the Intelligent Traffic System (ITS), which send data to regional traffic management centers and assist management of traffic flows and incident response using software called...
Evaluating Application-Layer Traffic Optimization Cost Metrics for P2P Multimedia Streaming
DEFF Research Database (Denmark)
Poderys, Justas; Soler, José
2017-01-01
To help users of P2P communication systems perform better-than-random selection of communication peers, Internet Engineering Task Force standardized the Application Layer Traffic Optimization (ALTO) protocol. The ALTO provided data-routing cost metric, can be used to rank peers in P2P communicati...
Topology optimization of Channel flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.
2005-01-01
function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical......This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low to moderate Reynolds numbers. This makes the flow problem non-linear and hence a non-trivial extension of the work of [Borrvall&Petersson 2002......]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...
Hazardous Traffic Event Detection Using Markov Blanket and Sequential Minimal Optimization (MB-SMO
Directory of Open Access Journals (Sweden)
Lixin Yan
2016-07-01
Full Text Available The ability to identify hazardous traffic events is already considered as one of the most effective solutions for reducing the occurrence of crashes. Only certain particular hazardous traffic events have been studied in previous studies, which were mainly based on dedicated video stream data and GPS data. The objective of this study is twofold: (1 the Markov blanket (MB algorithm is employed to extract the main factors associated with hazardous traffic events; (2 a model is developed to identify hazardous traffic event using driving characteristics, vehicle trajectory, and vehicle position data. Twenty-two licensed drivers were recruited to carry out a natural driving experiment in Wuhan, China, and multi-sensor information data were collected for different types of traffic events. The results indicated that a vehicle’s speed, the standard deviation of speed, the standard deviation of skin conductance, the standard deviation of brake pressure, turn signal, the acceleration of steering, the standard deviation of acceleration, and the acceleration in Z (G have significant influences on hazardous traffic events. The sequential minimal optimization (SMO algorithm was adopted to build the identification model, and the accuracy of prediction was higher than 86%. Moreover, compared with other detection algorithms, the MB-SMO algorithm was ranked best in terms of the prediction accuracy. The conclusions can provide reference evidence for the development of dangerous situation warning products and the design of intelligent vehicles.
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Simonetto, Andrea
2018-03-01
This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall, the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.
Djuana, E.; Rahardjo, K.; Gozali, F.; Tan, S.; Rambung, R.; Adrian, D.
2018-01-01
A city could be categorized as a smart city when the information technology has been developed to the point that the administration could sense, understand, and control every resource to serve its people and sustain the development of the city. One of the smart city aspects is transportation and traffic management. This paper presents a research project to design an adaptive traffic lights control system as a part of the smart system for optimizing road utilization and reducing congestion. Research problems presented include: (1) Congestion in one direction toward an intersection due to dynamic traffic condition from time to time during the day, while the timing cycles in traffic lights system are mostly static; (2) No timing synchronization among traffic lights in adjacent intersections that is causing unsteady flows; (3) Difficulties in traffic condition monitoring on the intersection and the lack of facility for remotely controlling traffic lights. In this research, a simulator has been built to model the adaptivity and integration among different traffic lights controllers in adjacent intersections, and a case study consisting of three sets of intersections along Jalan K. H. Hasyim Ashari has been simulated. It can be concluded that timing slots synchronization among traffic lights is crucial for maintaining a steady traffic flow.
Estimation and Control of Networked Distributed Parameter Systems: Application to Traffic Flow
Canepa, Edward
2016-11-01
The management of large-scale transportation infrastructure is becoming a very complex task for the urban areas of this century which are covering bigger geographic spaces and facing the inclusion of connected and self-controlled vehicles. This new system paradigm can leverage many forms of sensing and interaction, including a high-scale mobile sensing approach. To obtain a high penetration sensing system on urban areas more practical and scalable platforms are needed, combined with estimation algorithms suitable to the computational capabilities of these platforms. The purpose of this work was to develop a transportation framework that is able to handle different kinds of sensing data (e.g., connected vehicles, loop detectors) and optimize the traffic state on a defined traffic network. The framework estimates the traffic on road networks modeled by a family of Lighthill-Whitham-Richards equations. Based on an equivalent formulation of the problem using a Hamilton-Jacobi equation and using a semi-analytic formula, I will show that the model constraints resulting from the Hamilton-Jacobi equation are linear, albeit with unknown integer variables. This general framework solve exactly a variety of problems arising in transportation networks: traffic estimation, traffic control (including robust control), cybersecurity and sensor fault detection, or privacy analysis of users in probe-based traffic monitoring systems. This framework is very flexible, fast, and yields exact results. The recent advances in sensors (GPS, inertial measurement units) and microprocessors enable the development low-cost dedicated devices for traffic sensing in cities, 5 which are highly scalable, providing a feasible solution to cover large urban areas. However, one of the main problems to address is the privacy of the users of the transportation system, the framework presented here is a viable option to guarantee the privacy of the users by design.
Evaluation of dynamic message signs and their potential impact on traffic flow : [research summary].
2013-04-01
The objective of this research was to understand the potential impact of DMS messages on traffic : flow and evaluate their accuracy, timeliness, relevance and usefulness. Additionally, Bluetooth : sensors were used to track and analyze the diversion ...
Phase-plane analysis to an “anisotropic” higher-order traffic flow model
Wu, Chun-Xiu
2018-04-01
The qualitative theory of differential equations is applied to investigate the traveling wave solution to an “anisotropic” higher-order viscous traffic flow model under the Lagrange coordinate system. The types and stabilities of the equilibrium points are discussed in the phase plane. Through the numerical simulation, the overall distribution structures of trajectories are drawn to analyze the relation between the phase diagram and the selected conservative solution variables, and the influences of the parameters on the system are studied. The limit-circle, limit circle-spiral point, saddle-spiral point and saddle-nodal point solutions are obtained. These steady-state solutions provide good explanation for the phenomena of the oscillatory and homogeneous congestions in real-world traffic.
Trajectory Based Traffic Analysis
DEFF Research Database (Denmark)
Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin
2013-01-01
We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point-and-click a......We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point......-and-click analysis, due to a novel and efficient indexing structure. With the web-site daisy.aau.dk/its/spqdemo/we will demonstrate several analyses, using a very large real-world data set consisting of 1.9 billion GPS records (1.5 million trajectories) recorded from more than 13000 vehicles, and touching most...
Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive
Nagatani, Takashi
1995-04-01
A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.
Optimizing aspects of pedestrian traffic in building designs
Rodriguez, Samuel
2013-11-01
In this work, we investigate aspects of building design that can be optimized. Architectural features that we explore include pillar placement in simple corridors, doorway placement in buildings, and agent placement for information dispersement in an evacuation. The metrics utilized are tuned to the specific scenarios we study, which include continuous flow pedestrian movement and building evacuation. We use Multidimensional Direct Search (MDS) optimization with an extreme barrier criteria to find optimal placements while enforcing building constraints. © 2013 IEEE.
Optimizing aspects of pedestrian traffic in building designs
Rodriguez, Samuel; Yinghua Zhang,; Gans, Nicholas; Amato, Nancy M.
2013-01-01
In this work, we investigate aspects of building design that can be optimized. Architectural features that we explore include pillar placement in simple corridors, doorway placement in buildings, and agent placement for information dispersement in an evacuation. The metrics utilized are tuned to the specific scenarios we study, which include continuous flow pedestrian movement and building evacuation. We use Multidimensional Direct Search (MDS) optimization with an extreme barrier criteria to find optimal placements while enforcing building constraints. © 2013 IEEE.
Examining perimeter gating control of urban traffic networkswith locally adaptive traffic signals
Keyvan Ekbatani, M.; Gao, X.; Gayah, V.V.; Knoop, V.L.
2015-01-01
Traditionally, urban traffic is controlled by traffic lights. Recent findings of the Macroscopic or Network Fundamental Diagram (MFD or NFD) have led to the development of novel traffic control strategies that can be applied at a networkwide level. One pertinent example is perimeter flow control
A theory of traffic congestion at moving bottlenecks
Energy Technology Data Exchange (ETDEWEB)
Kerner, Boris S [Daimler AG, GR/PTF, HPC: G021, 71059 Sindelfingen (Germany); Klenov, Sergey L, E-mail: boris.kerner@daimler.co [Department of Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region (Russian Federation)
2010-10-22
The physics of traffic congestion occurring at a moving bottleneck on a multi-lane road is revealed based on the numerical analyses of vehicular traffic with a discrete stochastic traffic flow model in the framework of three-phase traffic theory. We find that there is a critical speed of a moving bottleneck at which traffic breakdown, i.e. a first-order phase transition from free flow to synchronized flow, occurs spontaneously at the moving bottleneck, if the flow rate upstream of the bottleneck is great enough. The greater the flow rate, the higher the critical speed of the moving bottleneck. A diagram of congested traffic patterns at the moving bottleneck is found, which shows regions in the flow-rate-moving-bottleneck-speed plane in which congested patterns emerge spontaneously or can be induced through large enough disturbances in an initial free flow. A comparison of features of traffic breakdown and resulting congested patterns at the moving bottleneck with known ones at an on-ramp (and other motionless) bottleneck is made. Nonlinear features of complex interactions and transformations of congested traffic patterns occurring at on- and off-ramp bottlenecks due to the existence of the moving bottleneck are found. The physics of the phenomenon of traffic congestion due to 'elephant racing' on a multi-lane road is revealed.
A theory of traffic congestion at moving bottlenecks
International Nuclear Information System (INIS)
Kerner, Boris S; Klenov, Sergey L
2010-01-01
The physics of traffic congestion occurring at a moving bottleneck on a multi-lane road is revealed based on the numerical analyses of vehicular traffic with a discrete stochastic traffic flow model in the framework of three-phase traffic theory. We find that there is a critical speed of a moving bottleneck at which traffic breakdown, i.e. a first-order phase transition from free flow to synchronized flow, occurs spontaneously at the moving bottleneck, if the flow rate upstream of the bottleneck is great enough. The greater the flow rate, the higher the critical speed of the moving bottleneck. A diagram of congested traffic patterns at the moving bottleneck is found, which shows regions in the flow-rate-moving-bottleneck-speed plane in which congested patterns emerge spontaneously or can be induced through large enough disturbances in an initial free flow. A comparison of features of traffic breakdown and resulting congested patterns at the moving bottleneck with known ones at an on-ramp (and other motionless) bottleneck is made. Nonlinear features of complex interactions and transformations of congested traffic patterns occurring at on- and off-ramp bottlenecks due to the existence of the moving bottleneck are found. The physics of the phenomenon of traffic congestion due to 'elephant racing' on a multi-lane road is revealed.
Transmission tariffs based on optimal power flow
International Nuclear Information System (INIS)
Wangensteen, Ivar; Gjelsvik, Anders
1998-01-01
This report discusses transmission pricing as a means of obtaining optimal scheduling and dispatch in a power system. This optimality includes consumption as well as generation. The report concentrates on how prices can be used as signals towards operational decisions of market participants (generators, consumers). The main focus is on deregulated systems with open access to the network. The optimal power flow theory, with demand side modelling included, is briefly reviewed. It turns out that the marginal costs obtained from the optimal power flow gives the optimal transmission tariff for the particular load flow in case. There is also a correspondence between losses and optimal prices. Emphasis is on simple examples that demonstrate the connection between optimal power flow results and tariffs. Various cases, such as open access and single owner are discussed. A key result is that the location of the ''marketplace'' in the open access case does not influence the net economical result for any of the parties involved (generators, network owner, consumer). The optimal power flow is instantaneous, and in its standard form cannot deal with energy constrained systems that are coupled in time, such as hydropower systems with reservoirs. A simplified example of how the theory can be extended to such a system is discussed. An example of the influence of security constraints on prices is also given. 4 refs., 24 figs., 7 tabs
Directory of Open Access Journals (Sweden)
Xiangmin Guan
2015-01-01
Full Text Available Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology.
Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations
Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.
2012-01-01
Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.
Security constrained optimal power flow by modern optimization tools
African Journals Online (AJOL)
Security constrained optimal power flow by modern optimization tools. ... International Journal of Engineering, Science and Technology ... If you would like more information about how to print, save, and work with PDFs, Highwire Press ...
An improved multi-value cellular automata model for heterogeneous bicycle traffic flow
Energy Technology Data Exchange (ETDEWEB)
Jin, Sheng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China); Qu, Xiaobo [Griffith School of Engineering, Griffith University, Gold Coast, 4222 Australia (Australia); Xu, Cheng [Department of Transportation Management Engineering, Zhejiang Police College, Hangzhou, 310053 China (China); College of Transportation, Jilin University, Changchun, 130022 China (China); Ma, Dongfang, E-mail: mdf2004@zju.edu.cn [Ocean College, Zhejiang University, Hangzhou, 310058 China (China); Wang, Dianhai [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China)
2015-10-16
This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated.
An improved multi-value cellular automata model for heterogeneous bicycle traffic flow
International Nuclear Information System (INIS)
Jin, Sheng; Qu, Xiaobo; Xu, Cheng; Ma, Dongfang; Wang, Dianhai
2015-01-01
This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated
Congestion and communication in confined ant traffic
Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A. D.; Goldman, Daniel I.
2014-03-01
Many social animals move and communicate within confined spaces. In subterranean fire ants Solenopsis invicta, mobility within crowded nest tunnels is important for resource and information transport. Within confined tunnels, communication and traffic flow are at odds: trafficking ants communicate through tactile interactions while stopped, yet ants that stop to communicate impose physical obstacles on the traffic. We monitor the bi-directional flow of fire ant workers in laboratory tunnels of varied diameter D. The persistence time of communicating ant aggregations, τ, increases approximately linearly with the number of participating ants, n. The sensitivity of traffic flow increases as D decreases and diverges at a minimum diameter, Dc. A cellular automata model incorporating minimal traffic features--excluded volume and communication duration--reproduces features of the experiment. From the model we identify a competition between information transfer and the need to maintain jam-free traffic flow. We show that by balancing information transfer and traffic flow demands, an optimum group strategy exists which maximizes information throughput. We acknowledge funding from NSF PoLS #0957659 and #PHY-1205878.
Zeroual, Abdelhafid; Harrou, Fouzi; Sun, Ying; Messai, Nadhir
2017-01-01
Monitoring vehicle traffic flow plays a central role in enhancing traffic management, transportation safety and cost savings. In this paper, we propose an innovative approach for detection of traffic congestion. Specifically, we combine the flexibility and simplicity of a piecewise switched linear (PWSL) macroscopic traffic model and the greater capacity of the exponentially-weighted moving average (EWMA) monitoring chart. Macroscopic models, which have few, easily calibrated parameters, are employed to describe a free traffic flow at the macroscopic level. Then, we apply the EWMA monitoring chart to the uncorrelated residuals obtained from the constructed PWSL model to detect congested situations. In this strategy, wavelet-based multiscale filtering of data has been used before the application of the EWMA scheme to improve further the robustness of this method to measurement noise and reduce the false alarms due to modeling errors. The performance of the PWSL-EWMA approach is successfully tested on traffic data from the three lane highway portion of the Interstate 210 (I-210) highway of the west of California and the four lane highway portion of the State Route 60 (SR60) highway from the east of California, provided by the Caltrans Performance Measurement System (PeMS). Results show the ability of the PWSL-EWMA approach to monitor vehicle traffic, confirming the promising application of this statistical tool to the supervision of traffic flow congestion.
Zeroual, Abdelhafid
2017-08-19
Monitoring vehicle traffic flow plays a central role in enhancing traffic management, transportation safety and cost savings. In this paper, we propose an innovative approach for detection of traffic congestion. Specifically, we combine the flexibility and simplicity of a piecewise switched linear (PWSL) macroscopic traffic model and the greater capacity of the exponentially-weighted moving average (EWMA) monitoring chart. Macroscopic models, which have few, easily calibrated parameters, are employed to describe a free traffic flow at the macroscopic level. Then, we apply the EWMA monitoring chart to the uncorrelated residuals obtained from the constructed PWSL model to detect congested situations. In this strategy, wavelet-based multiscale filtering of data has been used before the application of the EWMA scheme to improve further the robustness of this method to measurement noise and reduce the false alarms due to modeling errors. The performance of the PWSL-EWMA approach is successfully tested on traffic data from the three lane highway portion of the Interstate 210 (I-210) highway of the west of California and the four lane highway portion of the State Route 60 (SR60) highway from the east of California, provided by the Caltrans Performance Measurement System (PeMS). Results show the ability of the PWSL-EWMA approach to monitor vehicle traffic, confirming the promising application of this statistical tool to the supervision of traffic flow congestion.
With the development of Connected Vehicle Technology that facilitates wireless communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at...
Box, Simon
2014-12-01
Optimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human 'player' to control the traffic light settings on the junctions within the simulation. A supervised learning approach, based on simple neural network classifiers can be used to capture human player's strategies in the game and thus develop a human-trained machine control (HuTMaC) system that approaches human levels of performance. Experiments conducted within the simulation compare the performance of HuTMaC to two well-established traffic-responsive control systems that are widely deployed in the developed world and also to a temporal difference learning-based control method. In all experiments, HuTMaC outperforms the other control methods in terms of average delay and variance over delay. The conclusion is that these results add weight to the suggestion that HuTMaC may be a viable alternative, or supplemental method, to approximate optimization for some practical engineering control problems where the optimal strategy is computationally intractable.
Traffic experiment reveals the nature of car-following.
Jiang, Rui; Hu, Mao-Bin; Zhang, H M; Gao, Zi-You; Jia, Bin; Wu, Qing-Song; Wang, Bing; Yang, Ming
2014-01-01
As a typical self-driven many-particle system far from equilibrium, traffic flow exhibits diverse fascinating non-equilibrium phenomena, most of which are closely related to traffic flow stability and specifically the growth/dissipation pattern of disturbances. However, the traffic theories have been controversial due to a lack of precise traffic data. We have studied traffic flow from a new perspective by carrying out large-scale car-following experiment on an open road section, which overcomes the intrinsic deficiency of empirical observations. The experiment has shown clearly the nature of car-following, which runs against the traditional traffic flow theory. Simulations show that by removing the fundamental notion in the traditional car-following models and allowing the traffic state to span a two-dimensional region in velocity-spacing plane, the growth pattern of disturbances has changed qualitatively and becomes qualitatively or even quantitatively in consistent with that observed in the experiment.
Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11
2013-01-01
This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena. The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.
Optimal Power Flow by Interior Point and Non Interior Point Modern Optimization Algorithms
Directory of Open Access Journals (Sweden)
Marcin Połomski
2013-03-01
Full Text Available The idea of optimal power flow (OPF is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.
Analytical and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model
Mazaré , Pierre Emmanuel; Dehwah, Ahmad H.; Claudel, Christian G.; Bayen, Alexandre M.
2011-01-01
In this article, we propose a computational method for solving the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) semi-analytically for arbitrary piecewise-constant initial and boundary conditions, and for arbitrary concave fundamental diagrams. With these assumptions, we show that the solution to the LWR PDE at any location and time can be computed exactly and semi-analytically for a very low computational cost using the cumulative number of vehicles formulation of the problem. We implement the proposed computational method on a representative traffic flow scenario to illustrate the exactness of the analytical solution. We also show that the proposed scheme can handle more complex scenarios including traffic lights or moving bottlenecks. The computational cost of the method is very favorable, and is compared with existing algorithms. A toolbox implementation available for public download is briefly described, and posted at http://traffic.berkeley.edu/project/downloads/lwrsolver. © 2011 Elsevier Ltd.
Analytical and grid-free solutions to the Lighthill-Whitham-Richards traffic flow model
Mazaré, Pierre Emmanuel
2011-12-01
In this article, we propose a computational method for solving the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) semi-analytically for arbitrary piecewise-constant initial and boundary conditions, and for arbitrary concave fundamental diagrams. With these assumptions, we show that the solution to the LWR PDE at any location and time can be computed exactly and semi-analytically for a very low computational cost using the cumulative number of vehicles formulation of the problem. We implement the proposed computational method on a representative traffic flow scenario to illustrate the exactness of the analytical solution. We also show that the proposed scheme can handle more complex scenarios including traffic lights or moving bottlenecks. The computational cost of the method is very favorable, and is compared with existing algorithms. A toolbox implementation available for public download is briefly described, and posted at http://traffic.berkeley.edu/project/downloads/lwrsolver. © 2011 Elsevier Ltd.
Evolutionary design optimization of traffic signals applied to Quito city.
Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.
A solution to the optimal power flow using multi-verse optimizer
Directory of Open Access Journals (Sweden)
Bachir Bentouati
2016-12-01
Full Text Available In this work, the most common problem of the modern power system named optimal power flow (OPF is optimized using the novel meta-heuristic optimization Multi-verse Optimizer(MVO algorithm. In order to solve the optimal power flow problem, the IEEE 30-bus and IEEE 57-bus systems are used. MVO is applied to solve the proposed problem. The problems considered in the OPF problem are fuel cost reduction, voltage profile improvement, voltage stability enhancement. The obtained results are compared with recently published meta-heuristics. Simulation results clearly reveal the effectiveness and the rapidity of the proposed algorithm for solving the OPF problem.
Pedestrian Friendly Traffic Signal Control.
2016-01-01
This project continues research aimed at real-time detection and use of pedestrian : traffic flow information to enhance adaptive traffic signal control in urban areas : where pedestrian traffic is substantial and must be given appropriate attention ...
Security constrained optimal power flow by modern optimization tools
African Journals Online (AJOL)
The main objective of an optimal power flow (OPF) functions is to optimize .... It is characterized as propagation of plants and this happens by gametes union. ... ss and different variables, for example, wind, nearby fertilization can have a critic.
Systemic Approach to Traffic Evaluation of Mostar Airport
Directory of Open Access Journals (Sweden)
Eldo Raguž
2005-11-01
Full Text Available The attempt of this work is to systematically find solutionsfor Mostar Airport development through technical and technologicalharmonization of traffic processes undertaken in twoseparate organizations - airport and air traffic control and coordinationbetween other traffic branches. The work uses theindicators of traffic flows and tourist trends in the region, andtogether with the mentioned simulations it attempts to evaluatethe traffic potentials in the region by affecting the change in thecurrent negative traffic flows at Mostar Airport.
Traffic dynamics on coupled spatial networks
International Nuclear Information System (INIS)
Du, Wen-Bo; Zhou, Xing-Lian; Chen, Zhen; Cai, Kai-Quan; Cao, Xian-Bin
2014-01-01
With the rapid development of modern traffic, various means of transportation systems make it more convenient and diversified for passengers to travel out. In this paper, we establish a two-layered spatial network model where the low-speed lower layer is a regular lattice and the high-speed upper layer is a scale-free network embedded in the lattice. Passengers will travel along the path with the minimal travel time, and they can transfer from one layer to the other, which will induce extra transfer cost. We extensively investigate the traffic process on these coupled spatial networks and focus on the effect of the parameter α, the speed ratio between two networks. It is found that, as α grows, the network capacity of the coupled networks increases in the early stage and then decreases, indicating that cooperation between the coupled networks will induce the highest network capacity at an optimal α. We then provide an explanation for this non-monotonous dependence from a micro-scope point of view. The travel time reliability is also examined. Both in free-flow state and congestion state, the travel time is linearly related to the Euclidean distance. However, the variance of travel time in the congestion state is remarkably larger than that in the free-flow state, namely, people have to set aside more redundant time in an unreliable traffic system
Predicting Traffic Flow in Local Area Networks by the Largest Lyapunov Exponent
Directory of Open Access Journals (Sweden)
Yan Liu
2016-01-01
Full Text Available The dynamics of network traffic are complex and nonlinear, and chaotic behaviors and their prediction, which play an important role in local area networks (LANs, are studied in detail, using the largest Lyapunov exponent. With the introduction of phase space reconstruction based on the time sequence, the high-dimensional traffic is projected onto the low dimension reconstructed phase space, and a reduced dynamic system is obtained from the dynamic system viewpoint. Then, a numerical method for computing the largest Lyapunov exponent of the low-dimensional dynamic system is presented. Further, the longest predictable time, which is related to chaotic behaviors in the system, is studied using the largest Lyapunov exponent, and the Wolf method is used to predict the evolution of the traffic in a local area network by both Dot and Interval predictions, and a reliable result is obtained by the presented method. As the conclusion, the results show that the largest Lyapunov exponent can be used to describe the sensitivity of the trajectory in the reconstructed phase space to the initial values. Moreover, Dot Prediction can effectively predict the flow burst. The numerical simulation also shows that the presented method is feasible and efficient for predicting the complex dynamic behaviors in LAN traffic, especially for congestion and attack in networks, which are the main two complex phenomena behaving as chaos in networks.
Oda, Toshihiko
Nitrogen oxide (NOx) and carbon dioxide (CO2) emissions from vehicles have been increasing every year because of the growing number of vehicles, and they cause serious environmental problems such as air pollution and global warming. To alleviate these problems, this paper proposes a new traffic signal control method for reducing vehicle NOx and CO2 emissions on arterial roads. To this end, we first model the amount of vehicle emissions as a function of the traffic delay and the number of stops at intersections. This step is necessary because it is difficult to obtain the amount of emissions directly using traffic control systems. Second, we introduce a signal control model in which the control parameters are continuously updated on the basis of predictions of arrival traffic flows at intersections. The signal timings are calculated in such a manner so as to minimize the weighted sum of the two emissions, which depend on the traffic flow. To evaluate the validity of this method, simulation experiments are carried out on an arterial road. The experiments show that the proposed method significantly outperforms existing methods in reducing both the emissions and travel time.
Ren, Yihui
As real-world complex networks are heterogeneous structures, not all their components such as nodes, edges and subgraphs carry the same role or importance in the functions performed by the networks: some elements are more critical than others. Understanding the roles of the components of a network is crucial for understanding the behavior of the network as a whole. One the most basic function of networks is transport; transport of vehicles/people, information, materials, forces, etc., and these quantities are transported along edges between source and destination nodes. For this reason, network path-based importance measures, also called centralities, play a crucial role in the understanding of the transport functions of the network and the network's structural and dynamical behavior in general. In this thesis we study the notion of betweenness centrality, which measures the fraction of lowest-cost (or shortest) paths running through a network component, in particular through a node or an edge. High betweenness centrality nodes/edges are those that will be frequently used by the entities transported through the network and thus they play a key role in the overall transport properties of the network. In the first part of the thesis we present a first-principles based method for traffic prediction using a cost-based generalization of the radiation model (emission/absorbtion model) for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. We then focus on studying the extent of changes in traffic flows in the wake of a localized damage or alteration to the
Multi-objective optimization approach for air traffic flow management
Directory of Open Access Journals (Sweden)
Fadil Rabie
2017-01-01
The decision-making stage was then performed with the aid of data clustering techniques to reduce the sizeof the Pareto-optimal set and obtain a smaller representation of the multi-objective design space, there by making it easier for the decision-maker to find satisfactory and meaningful trade-offs, and to select a preferred final design solution.
Directory of Open Access Journals (Sweden)
Hemant Kumar Sharma
2012-06-01
Full Text Available Bus Rapid Transit (BRT has emerged as a preferred mode of public transport in various countries all over the world for its cost effectiveness in construction as well as in operation and maintenance. The rapid transit feature of BRT is seen as a solution to many traffic problems in these countries. However, in developing countries like India, the right -of-way for most of the roads is restricted and traffic is heterogeneous in nature. Provision of BRT in existing right -of-way reduces the capacity available for other motorized traffic. As the buses travel with a certain frequency on dedicated bus- ways, the dedicated corridor remains unused for most of the period when other traffic on motorized vehicle (MV lanes suffers from congestion. The problem gets severe at intersections. However, if buses are operated in mixed traffic it is no more rapid transit. Hence, a solution is required to address this problem and optimize the performance of traffic as a whole. This paper presents the effect if dedicated bus-ways end at a reasonable distance before the stop line at a busy signalized at-grade intersection, and bus lanes (beyond that are made available to all the motorized vehicular traffic (heterogeneous traffic at intersection. The performance evaluation is done in terms of average queue length, maximum queue length, average delay time per vehicle, vehicle throughput, average speed in network and emission of Carbon monoxide CO, mono-nitrogen oxides NOx and Volatile organic compounds (VOC. It is observed that availability of bus lanes to other motorized traffic for a reasonable distance before intersection considerably reduces the average queue length, maximum queue length, average delay time per vehicle and emission per vehicle, while there is an increase in vehicle throughput and average speed of all the vehicles in the network. Thus it results in reduction of congestion and performance enhancement of at-grade intersections and network. Results of
Wing, David J.; Ballin, Mark G.; Koczo, Stefan, Jr.; Vivona, Robert A.; Henderson, Jeffrey M.
2013-01-01
The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines Automatic Dependent Surveillance Broadcast (ADS-B) IN and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of Air Traffic Control (ATC) approval for the resulting trajectory change request. TASAR is designed as a near-term application to improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting ATC. Previous work has indicated the potential for significant benefits for each TASAR-equipped aircraft. This paper will discuss the approach to minimizing TASAR's cost for implementation and accelerating readiness for near-term implementation.
Detecting Anomaly in Traffic Flow from Road Similarity Analysis
Liu, Xinran
2016-06-02
Taxies equipped with GPS devices are considered as 24-hour moving sensors widely distributed in urban road networks. Plenty of accurate and realtime trajectories of taxi are recorded by GPS devices and are commonly studied for understanding traffic dynamics. This paper focuses on anomaly detection in traffic volume, especially the non-recurrent traffic anomaly caused by unexpected or transient incidents, such as traffic accidents, celebrations and disasters. It is important to detect such sharp changes of traffic status for sensing abnormal events and planning their impact on the smooth volume of traffic. Unlike existing anomaly detection approaches that mainly monitor the derivation of current traffic status from history in the past, the proposed method in this paper evaluates the abnormal score of traffic on one road by comparing its current traffic volume with not only its historical data but also its neighbors. We define the neighbors as the roads that are close in sense of both geo-location and traffic patterns, which are extracted by matrix factorization. The evaluation results on trajectories data of 12,286 taxies over four weeks in Beijing show that our approach outperforms other baseline methods with higher precision and recall.
Flow level performance approximations for elastic traffic integrated with prioritized stream traffic
Malhotra, R.; Berg, J.L. van den
2007-01-01
Almost all traffic in todays networks can be classified as being either stream or elastic. The support of these two traffic types is possible either with a Differentiated (DiffServ) or an Integrated Services (IntServ) architecture. However, both DiffServ and IntServ rely on efficient scheduling
Long-range correlation analysis of urban traffic data
International Nuclear Information System (INIS)
Peng, Sheng; Jun-Feng, Wang; Shu-Long, Zhao; Tie-Qiao, Tang
2010-01-01
This paper investigates urban traffic data by analysing the long-range correlation with detrended fluctuation analysis. Through a large number of real data collected by the travel time detection system in Beijing, the variation of flow in different time periods and intersections is studied. According to the long-range correlation in different time scales, it mainly discusses the effect of intersection location in road net, people activity customs and special traffic controls on urban traffic flow. As demonstrated by the obtained results, the urban traffic flow represents three-phase characters similar to highway traffic. Moreover, compared by the two groups of data obtained before and after the special traffic restrictions (vehicles with special numbered plates only run in a special workday) enforcement, it indicates that the rules not only reduce the flow but also avoid irregular fluctuation. (general)
Topology optimization of turbulent flows
DEFF Research Database (Denmark)
Dilgen, Cetin B.; Dilgen, Sumer B.; Fuhrman, David R.
2018-01-01
The aim of this work is to present a fast and viable approach for taking into account turbulence in topology optimization of complex fluid flow systems, without resorting to any simplifying assumptions in the derivation of discrete adjoints. Topology optimization is an iterative gradient...
Helbing, Dirk; Schönhof, Martin; Kern, Daniel
2002-06-01
The coordinated and efficient distribution of limited resources by individual decisions is a fundamental, unsolved problem. When individuals compete for road capacities, time, space, money, goods, etc, they normally make decisions based on aggregate rather than complete information, such as TV news or stock market indices. In related experiments, we have observed a volatile decision dynamics and far-from-optimal payoff distributions. We have also identified methods of information presentation that can considerably improve the overall performance of the system. In order to determine optimal strategies of decision guidance by means of user-specific recommendations, a stochastic behavioural description is developed. These strategies manage to increase the adaptibility to changing conditions and to reduce the deviation from the time-dependent user equilibrium, thereby enhancing the average and individual payoffs. Hence, our guidance strategies can increase the performance of all users by reducing overreaction and stabilizing the decision dynamics. These results are highly significant for predicting decision behaviour, for reaching optimal behavioural distributions by decision support systems and for information service providers. One of the promising fields of application is traffic optimization.
Smith, Jeremy C.; Bussink, Frank J. L.
2008-01-01
This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR
Intelligent driving in traffic systems with partial lane discipline
Assadi, Hamid; Emmerich, Heike
2013-04-01
It is a most common notion in traffic theory that driving in lanes and keeping lane changes to a minimum leads to smooth and laminar traffic flow, and hence to increased traffic capacity. On the other hand, there exist persistent vehicular traffic systems that are characterised by habitual disregarding of lane markings, and partial or complete loss of laminar traffic flow. Here, we explore the stability of such systems through a microscopic traffic flow model, where the degree of lane-discipline is taken as a variable, represented by the fraction of drivers that disregard lane markings completely. The results show that lane-free traffic may win over completely ordered traffic at high densities, and that partially ordered traffic leads to the poorest overall flow, while not considering the crash probability. Partial order in a lane-free system is similar to partial disorder in a lane-disciplined system in that both lead to decreased traffic capacity. This could explain the reason why standard enforcement methods, which rely on continuous increase of order, often fail to incur order to lane-free traffic systems. The results also provide an insight into the cooperative phenomena in open systems with self-driven particles.
Innovative model-based flow rate optimization for vanadium redox flow batteries
König, S.; Suriyah, M. R.; Leibfried, T.
2016-11-01
In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.
Physics of traffic gridlock in a city.
Kerner, Boris S
2011-10-01
Based on simulations of stochastic three-phase and two-phase traffic flow models, we reveal that at a signalized city intersection under small link inflow rates at which a vehicle queue developed during the red phase of the light signal dissolves fully during the green phase, i.e., no traffic gridlock should be expected, nevertheless, spontaneous traffic breakdown with subsequent city gridlock occurs with some probability after a random time delay. In most cases, this traffic breakdown is initiated by a phase transition from free flow to a synchronized flow occurring upstream of the queue at the light signal. The probability of traffic breakdown at the light signal is an increasing function of the link inflow rate and duration of the red phase of the light signal.
Gis-Based Route Finding Using ANT Colony Optimization and Urban Traffic Data from Different Sources
Davoodi, M.; Mesgari, M. S.
2015-12-01
Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD), Automatic Number Plate Recognition (ANPR), Floating Car Data (FCD), VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network) is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.
Directory of Open Access Journals (Sweden)
Zhenyu Mei
2012-01-01
Full Text Available The ongoing controversy about in what condition should we set the curb parking has few definitive answers because comprehensive research in this area has been lacking. Our goal is to present a set of heuristic urban street speed functions under mixed traffic flow by taking into account impacts of curb parking. Two impacts have been defined to classify and quantify the phenomena of motor vehicles' speed dynamics in terms of curb parking. The first impact is called Space impact, which is caused by the curb parking types. The other one is the Time impact, which results from the driver maneuvering in or out of parking space. In this paper, based on the empirical data collected from six typical urban streets in Nanjing, China, two models have been proposed to describe these phenomena for one-way traffic and two-way traffic, respectively. An intensive experiment has been conducted in order to calibrate and validate these proposed models, by taking into account the complexity of the model parameters. We also provide guidelines in terms of how to cluster and calculate those models' parameters. Results from these models demonstrated promising performance of modeling motor vehicles' speed for mixed traffic flow under the influence of curb parking.
A new stochastic cellular automaton model on traffic flow and its jamming phase transition
International Nuclear Information System (INIS)
Sakai, Satoshi; Nishinari, Katsuhiro; Iida, Shinji
2006-01-01
A general stochastic traffic cellular automaton (CA) model, which includes the slow-to-start effect and driver's perspective, is proposed in this paper. It is shown that this model includes well-known traffic CA models such as the Nagel-Schreckenberg model, the quick-start model and the slow-to-start model as specific cases. Fundamental diagrams of this new model clearly show metastable states around the critical density even when the stochastic effect is present. We also obtain analytic expressions of the phase transition curve in phase diagrams by using approximate flow-density relations at boundaries. These phase transition curves are in excellent agreement with numerical results
Directory of Open Access Journals (Sweden)
Sajid Gul Khawaja
Full Text Available With the increase of transistors' density, popularity of System on Chip (SoC has increased exponentially. As a communication module for SoC, Network on Chip (NoC framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows.
Urban traffic simulated from the dual representation: Flow, crisis and congestion
International Nuclear Information System (INIS)
Hu Maobin; Jiang Rui; Wang Ruili; Wu Qingsong
2009-01-01
We propose a traffic simulation model for urban system based on the dual graph representation of a urban road network and with a random entering vehicle rate. To avoid the shortcoming of 'Space Syntax' of ignoring the road's metric distance, we consider both the motion of the vehicles along roads and the navigation of the vehicles in the network. Simulations have shown some basic properties of urban traffic system, such as flux fluctuation, crisis and dissipation, phase transition from a free flow to jams, overall capacity, the distribution of traveling time, and the fundamental diagram. The system's behavior greatly depends on the topology of the transportation network. A well-planned lattice grid can keep more vehicles travelling. The critical entering vehicle rate is much greater in lattice grid than in a self-organized network. The vehicles have to travel longer time in a self-organized urban system due to the navigation cost.
Property relationships of the physical infrastructure and the traffic flow networks
Zhou, Ta; Zou, Sheng-Rong; He, Da-Ren
2010-03-01
We studied both empirically and analytically the correlation between the degrees or the clustering coefficients, respectively, of the networks in the physical infrastructure and the traffic flow layers in three Chinese transportation systems. The systems are bus transportation systems in Beijing and Hangzhou, and the railway system in the mainland. It is found that the correlation between the degrees obey a linear function; while the correlation between the clustering coefficients obey a power law. A possible dynamic explanation on the rules is presented.
Airfoil Shape Optimization in Transonic Flow
International Nuclear Information System (INIS)
Islam, Z.
2004-01-01
A computationally efficient and adaptable design tool is constructed by coupling a flow analysis code based on Euler equations, with the well established numerical optimization algorithms. Optimization technique involving two analysis methods of Simplex and Rosenbrock have been used. The optimization study involves the minimization of wave drag for two different airfoils with geometric constraints on the airfoil maximum thickness or the cross sectional area along with aerodynamic constraint on lift coefficient. The method is applied to these airfoils transonic flow design points, and the results are compared with the original values. This study shows that the conventional low speed airfoils can be optimized to become supercritical for transonic flight speeds, while existing supercritical airfoils can still be improved further at particular design condition. (author)
Simulation of load traffic and steeped speed control of conveyor
Reutov, A. A.
2017-10-01
The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.
Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints
Feron, Eric; Bilimoria, Karl (Technical Monitor)
2001-01-01
The past year's activity has concentrated on the following two activities: (1) Refining and completing our study on the stability of interacting flows of aircraft when they have to resolve conflicts in a decentralized and sequential manner. More specifically, it was felt that some of the modeling assumptions made during previous research (such offset maneuvering models) could be improved to include more realistic models such as heading changes when analyzing interacting flow stability problems. We extended our analysis to achieve this goal. The results of this study have been submitted for presentation at the 2002 American Control Conference; (2) Examining the issues associated with delay propagation across multiple enroute sectors. This study was initiated at NASA in cooperation with Dr. Karl Bilimoria. Considering a set of adjacent sectors, this ongoing study concentrates on the effect of various traffic flow management strategies on the propagation of delays and congestion across sectors. The problem description and findings so far are reported in the attached working paper "Enroute sector buffering capacity."
Estimation Trajectory of the Low-Frequency Floating Car Considering the Traffic Control
Directory of Open Access Journals (Sweden)
Zhijian Wang
2013-01-01
Full Text Available Floating car equipped with GPS to detect traffic flow has been widely used in ITS research and applications. The trajectory estimation is the most critical and complex part in the floating vehicle information processing system. However, the trajectory estimation would be more difficult when using the low-frequency data sampling because of the high communication cost and the numerous data. Specifically, the ordinary algorithm cannot determine the specific vehicle paths with two anchor points across multiple intersections. Considering the accuracy in map matching, this paper used a delay matching algorithm and studied the trajectory estimation algorithm focusing on the issue of existence of a small road network between two anchor points. A method considering the three multiobjective factors of signal control and driving distance and number of intersections was developed. Firstly, an optimal solution set was acquired according to multiobjective decision theory and Pareto optimal principles in game theory. Then, the optimal solution set was evaluated synthetically based on the fuzzy set theory. Finally, the candidate trajectory which is the core evaluation factor was identified as the best possible travel path. The algorithm was validated by using the real traffic data in Wangjing area of Beijing. The results showed that the algorithm can get a better trajectory estimation and provide more traffic information to traffic management department.
On vehicular traffic data analysis
Energy Technology Data Exchange (ETDEWEB)
Brics, Martins; Mahnke, Reinhard [Institute of Physics, Rostock University (Germany)
2011-07-01
This contribution consists of analysis of empirical vehicular traffic flow data. The main focus lies on the Next Generation Simulation (NGSIM) data. The first findings show that there are artificial structures within the data due to errors of monitoring as well as smoothing position measurement data. As a result speed data show discretisation in 5 feet per second. The aim of this investigation is to construct microscopic traffic flow models which are in agreement to the analysed empirical data. The ongoing work follows the subject of research summarized by Christof Liebe in his PhD thesis entitled ''Physics of traffic flow: Empirical data and dynamical models'' (Rostock, 2010).
Dynamic control of traffic lights
Haijema, Rene; Hendrix, Eligius M.T.; Wal, van der Jan
2017-01-01
Traffic lights are put in place to dynamically change priority between traffic participants. Commonly, the duration of green intervals and the grouping, and ordering in which traffic flows are served are pre-fixed. In this chapter, the problem of minimizing vehicle delay at isolated intersections is
Optimized Virtual Machine Placement with Traffic-Aware Balancing in Data Center Networks
Directory of Open Access Journals (Sweden)
Tao Chen
2016-01-01
Full Text Available Virtualization has been an efficient method to fully utilize computing resources such as servers. The way of placing virtual machines (VMs among a large pool of servers greatly affects the performance of data center networks (DCNs. As network resources have become a main bottleneck of the performance of DCNs, we concentrate on VM placement with Traffic-Aware Balancing to evenly utilize the links in DCNs. In this paper, we first proposed a Virtual Machine Placement Problem with Traffic-Aware Balancing (VMPPTB and then proved it to be NP-hard and designed a Longest Processing Time Based Placement algorithm (LPTBP algorithm to solve it. To take advantage of the communication locality, we proposed Locality-Aware Virtual Machine Placement Problem with Traffic-Aware Balancing (LVMPPTB, which is a multiobjective optimization problem of simultaneously minimizing the maximum number of VM partitions of requests and minimizing the maximum bandwidth occupancy on uplinks of Top of Rack (ToR switches. We also proved it to be NP-hard and designed a heuristic algorithm (Least-Load First Based Placement algorithm, LLBP algorithm to solve it. Through extensive simulations, the proposed heuristic algorithm is proven to significantly balance the bandwidth occupancy on uplinks of ToR switches, while keeping the number of VM partitions of each request small enough.
Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto
2018-01-12
This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.
2017-10-01
The objective of this project was to investigate the impacts of several factors, including vehicle characteristics, ambient temperature, season, speed, driving behavior, and traffic flow, on individual vehicle energy consumption.
A Wavelet Analysis Approach for Categorizing Air Traffic Behavior
Drew, Michael; Sheth, Kapil
2015-01-01
In this paper two frequency domain techniques are applied to air traffic analysis. The Continuous Wavelet Transform (CWT), like the Fourier Transform, is shown to identify changes in historical traffic patterns caused by Traffic Management Initiatives (TMIs) and weather with the added benefit of detecting when in time those changes take place. Next, with the expectation that it could detect anomalies in the network and indicate the extent to which they affect traffic flows, the Spectral Graph Wavelet Transform (SGWT) is applied to a center based graph model of air traffic. When applied to simulations based on historical flight plans, it identified the traffic flows between centers that have the greatest impact on either neighboring flows, or flows between centers many centers away. Like the CWT, however, it can be difficult to interpret SGWT results and relate them to simulations where major TMIs are implemented, and more research may be warranted in this area. These frequency analysis techniques can detect off-nominal air traffic behavior, but due to the nature of air traffic time series data, so far they prove difficult to apply in a way that provides significant insight or specific identification of traffic patterns.
GIS-BASED ROUTE FINDING USING ANT COLONY OPTIMIZATION AND URBAN TRAFFIC DATA FROM DIFFERENT SOURCES
Directory of Open Access Journals (Sweden)
M. Davoodi
2015-12-01
Full Text Available Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD, Automatic Number Plate Recognition (ANPR, Floating Car Data (FCD, VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.
Optimal Power Flow Control by Rotary Power Flow Controller
Directory of Open Access Journals (Sweden)
KAZEMI, A.
2011-05-01
Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.
A Harmony Search Algorithm approach for optimizing traffic signal timings
Directory of Open Access Journals (Sweden)
Mauro Dell'Orco
2013-07-01
Full Text Available In this study, a bi-level formulation is presented for solving the Equilibrium Network Design Problem (ENDP. The optimisation of the signal timing has been carried out at the upper-level using the Harmony Search Algorithm (HSA, whilst the traffic assignment has been carried out through the Path Flow Estimator (PFE at the lower level. The results of HSA have been first compared with those obtained using the Genetic Algorithm, and the Hill Climbing on a two-junction network for a fixed set of link flows. Secondly, the HSA with PFE has been applied to the medium-sized network to show the applicability of the proposed algorithm in solving the ENDP. Additionally, in order to test the sensitivity of perceived travel time error, we have used the HSA with PFE with various level of perceived travel time. The results showed that the proposed method is quite simple and efficient in solving the ENDP.
Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.
2017-09-01
Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.
Directory of Open Access Journals (Sweden)
G. Gill
2017-09-01
Full Text Available Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.
Radio resource management for mobile traffic offloading in heterogeneous cellular networks
Wu, Yuan; Huang, Jianwei; Shen, Xuemin (Sherman)
2017-01-01
This SpringerBrief offers two concrete design examples for traffic offloading. The first is an optimal resource allocation for small-cell based traffic offloading that aims at minimizing mobile users’ data cost. The second is an optimal resource allocation for device-to-device assisted traffic offloading that also minimizes the total energy consumption and cellular link usage (while providing an overview of the challenging issues). Both examples illustrate the importance of proper resource allocation to the success of traffic offloading, show the consequent performance advantages of executing optimal resource allocation, and present the methodologies to achieve the corresponding optimal offloading solution for traffic offloading in heterogeneous cellular networks. The authors also include an overview of heterogeneous cellular networks and explain different traffic offloading paradigms ranging from uplink traffic offloading through small cells to downlink traffic offloading via mobile device-to-device cooper...
Traffic light control by multiagent reinforcement learning systems
Bakker, B.; Whiteson, S.; Kester, L.; Groen, F.C.A.; Babuška, R.; Groen, F.C.A.
2010-01-01
Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of
Traffic Light Control by Multiagent Reinforcement Learning Systems
Bakker, B.; Whiteson, S.; Kester, L.J.H.M.; Groen, F.C.A.
2010-01-01
Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of
Optimal Control of Connected and Automated Vehicles at Roundabouts
Energy Technology Data Exchange (ETDEWEB)
Zhao, Liuhui [University of Delaware; Malikopoulos, Andreas [ORNL; Rios-Torres, Jackeline [ORNL
2018-01-01
Connectivity and automation in vehicles provide the most intriguing opportunity for enabling users to better monitor transportation network conditions and make better operating decisions to improve safety and reduce pollution, energy consumption, and travel delays. This study investigates the implications of optimally coordinating vehicles that are wirelessly connected to each other and to an infrastructure in roundabouts to achieve a smooth traffic flow without stop-and-go driving. We apply an optimization framework and an analytical solution that allows optimal coordination of vehicles for merging in such traffic scenario. The effectiveness of the efficiency of the proposed approach is validated through simulation and it is shown that coordination of vehicles can reduce total travel time by 3~49% and fuel consumption by 2~27% with respect to different traffic levels. In addition, network throughput is improved by up to 25% due to elimination of stop-and-go driving behavior.
International Nuclear Information System (INIS)
Mei Chaoqun; Liu Yejin
2011-01-01
In this paper, we develop a cellular automaton model to describe the phase transition of traffic flow on urban expressway systems with on-off-ramps and accessory roads. The lane changing rules are given in detailed, the numerical results show that the main road and the accessory road both produce phase transitions. These phase transitions will often be influenced by the number of lanes, lane changing, the ramp flow, the input flow rate, and the geometry structure. (interdisciplinary physics and related areas of science and technology)
Dense Array Optimization of Cross-Flow Turbines
Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian
2017-11-01
Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.
Cross-layer based adaptive wireless traffic control for per-flow and per-station fairness
Directory of Open Access Journals (Sweden)
Siwamogsatham Siwaruk
2011-01-01
Full Text Available Abstract In the IEEE 802.11 wireless LANs, the bandwidth is not fairly shared among stations due to the distributed coordination function (DCF mechanism in the IEEE 802.11 MAC protocol. It introduces the per-flow and per-station unfairness problems between uplink and downlink flows, as the uplink flows usually dominate the downlink flows. In addition, some users may use greedy applications such as video streaming, which may prevent other applications from connecting to the Internet. In this article, we propose an adaptive cross-layer bandwidth allocation mechanism to provide per-station and per-flow fairness. To verify the effectiveness and scalability, our scheme is implemented on a wireless access router and numerous experiments in a typical wireless environment with both TCP and UDP traffic are conducted to evaluate performance of the proposed scheme.
3D Topology optimization of Stokes flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Dammann, Bernd
of energy efficient devices for 2D Stokes flow. Creeping flow problems are described by the Stokes equations which model very viscous fluids at macro scales or ordinary fluids at very small scales. The latter gives the motivation for topology optimization problems based on the Stokes equations being a model......The present talk is concerned with the application of topology optimization to creeping flow problems in 3D. This research is driven by the fact that topology optimization has proven very successful as a tool in academic and industrial design problems. Success stories are reported from such diverse...
Traffic Modelling for Moving-Block Train Control System
International Nuclear Information System (INIS)
Tang Tao; Li Keping
2007-01-01
This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagram of traffic flow and the trajectory of train movement is used to obtain insight into the characteristic behavior of railway traffic flow. A number of simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway traffic. Not only the characteristic behavior of railway traffic flow can be reproduced, but also the simulation values of the minimum time headway are close to the theoretical values.
Jaarsma, C.F.; Hermans, C.M.L.; Rienks, W.A.; Vries, de J.R.
2012-01-01
Multifunctional agriculture (MFA) is a leading catchword in European agricultural policy. This paper aims to investigate expanding traffic flows arising from new activities connected with agricultural business, such as on-farm sales of products, care-farming, and agritourism. These activities put an
Nonlocal multi-scale traffic flow models: analysis beyond vector spaces
Directory of Open Access Journals (Sweden)
Peter E. Kloeden
2016-08-01
Full Text Available Abstract Realistic models of traffic flow are nonlinear and involve nonlocal effects in balance laws. Flow characteristics of different types of vehicles, such as cars and trucks, need to be described differently. Two alternatives are used here, $$L^p$$ L p -valued Lebesgue measurable density functions and signed Radon measures. The resulting solution spaces are metric spaces that do not have a linear structure, so the usual convenient methods of functional analysis are no longer applicable. Instead ideas from mutational analysis will be used, in particular the method of Euler compactness will be applied to establish the well-posedness of the nonlocal balance laws. This involves the concatenation of solutions of piecewise linear systems on successive time subintervals obtained by freezing the nonlinear nonlocal coefficients to their values at the start of each subinterval. Various compactness criteria lead to a convergent subsequence. Careful estimates of the linear systems are needed to implement this program.
Applying Graph Theory to Problems in Air Traffic Management
Farrahi, Amir H.; Goldberg, Alan T.; Bagasol, Leonard N.; Jung, Jaewoo
2017-01-01
Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it isshown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.
Directory of Open Access Journals (Sweden)
Dexin Yu
2016-01-01
Full Text Available In order to optimize the signal timing for isolated intersection, a new method based on fuzzy programming approach is proposed in this paper. Considering the whole operation efficiency of the intersection comprehensively, traffic capacity, vehicle cycle delay, cycle stops, and exhaust emission are chosen as optimization goals to establish a multiobjective function first. Then fuzzy compromise programming approach is employed to give different weight coefficients to various optimization objectives for different traffic flow ratios states. And then the multiobjective function is converted to a single objective function. By using genetic algorithm, the optimized signal cycle and effective green time can be obtained. Finally, the performance of the traditional method and new method proposed in this paper is compared and analyzed through VISSIM software. It can be concluded that the signal timing optimized in this paper can effectively reduce vehicle delays and stops, which can improve traffic capacity of the intersection as well.
Autonomic urban traffic optimization using data analytics
Garriga Porqueras, Albert
2017-01-01
This work focuses on a smart mobility use case where real-time data analytics on traffic measures is used to improve mobility in the event of a perturbation causing congestion in a local urban area. The data monitored is analysed in order to identify patterns that are used to properly reconfigure traffic lights. The monitoring and data analytics infrastructure is based on a hierarchical distributed architecture that allows placing data analytics processes such as machine learning close to the...
Jam Formation of Traffic Flow in Harbor Tunnel
International Nuclear Information System (INIS)
He Hongdi; Lu Weizhen; Dong Liyun
2011-01-01
This paper reports a study concerning occurrence and growth of traffic jam in a harbor tunnel. The single-lane with three sections (downgrade, flat, and upgrade) is taken into account and they are characterized with different velocity limit. At the low density, the traffic current increases linearly with density and saturates at some values of immediately density. As the density increases, the traffic jam appears firstly before the upgrade section and then extends to the downgrade section. Additionally, the relationships of the velocity and headway against position in different densities are obtained from simulation. These results clearly clarify where and when the traffic jam appears. Finally, the critical densities are derived via the theoretical analysis before and after the discontinuous fronts and the theoretical results are consistent with the critical values of simulation results. (interdisciplinary physics and related areas of science and technology)
Counting the corners of a random walk and its application to traffic flow
International Nuclear Information System (INIS)
Knorr, Florian; Schreckenberg, Michael
2012-01-01
We study a system with two types of interacting particles on a one-dimensional lattice. Particles of the first type, which we call ‘active’, are able to detect particles of the second type (called ‘passive’). By relating the problem to a discrete random walk in one dimension with a fixed number of steps we determine the fraction of active and detected particles for both open and periodic boundary conditions as well as for the case where passive particles interact with both or only one neighbors. In the random walk picture, where the two particles types stand for steps in opposite directions, passive particles are detected whenever the resulting path has a corner. For open boundary conditions, it turns out that a simple mean field approximation reproduces the exact result if the particles interact with one neighbor only. A practical application of this problem is heterogeneous traffic flow with communicating and non-communicating vehicles. In this context communicating vehicles can be thought of as active particles which can by front (and rear) sensors detect the vehicle ahead (and behind) although these vehicles do not actively share information. Therefore, we also present simulation results which show the validity of our analysis for real traffic flow. (paper)
2018-04-01
Consistent efforts with dense sensor deployment and data gathering processes for bridge big data have accumulated profound information regarding bridge performance, associated environments, and traffic flows. However, direct applications of bridge bi...
Thermodynamic optimization of geometry in engineering flow systems
Energy Technology Data Exchange (ETDEWEB)
Bejan, A.; Jones, J.A. [Duke Univ., Durham, NC (United States)
2000-07-01
This review draws attention to an emerging body of work that relies on global thermodynamic optimization in the pursuit of flow system architecture. Exergy analysis establishes the theoretical performance limit. Thermodynamic optimization (or entropy generation minimization) brings the design as closely as permissible to the theoretical limit. The design is destined to remain imperfect because of constraints (finite sizes, times, and costs). Improvements are registered by spreading the imperfection (e.g., flow resistances) through the system. Resistances compete against each other and must be optimized together. Optimal spreading means spatial distribution, geometric form, topology, and geography. System architecture springs out of constrained global optimization. The principle is illustrated by simple examples: the optimization of dimensions, spacings, and the distribution (allocation) of heat transfer surface to the two heat exchangers of a power plant. Similar opportunities for deducing flow architecture exist in more complex systems for power and refrigeration. Examples show that the complete structure of heat exchangers for environmental control systems of aircraft can be derived based on this principle. (authors)
A theory of traffic congestion at heavy bottlenecks
Energy Technology Data Exchange (ETDEWEB)
Kerner, Boris S [Daimler AG, GR/ETI, HPC: G021, 71059 Sindelfingen (Germany)
2008-05-30
Spatiotemporal features and physics of vehicular traffic congestion occurring due to heavy highway bottlenecks caused for example by bad weather conditions or accidents are found based on simulations in the framework of three-phase traffic theory. A model of a heavy bottleneck is presented. Under a continuous non-limited increase in bottleneck strength, i.e., when the average flow rate within a congested pattern allowed by the heavy bottleneck decreases continuously up to zero, the evolution of the traffic phases in congested traffic, synchronized flow and wide moving jams, is studied. It is found that at a small enough flow rate within the congested pattern, the pattern exhibits a non-regular structure: a pinch region of synchronized flow within the pattern disappears and appears randomly over time; wide moving jams upstream of the pinch region exhibit a complex non-regular dynamics in which the jams appear and disappear randomly. At greater bottleneck strengths, wide moving jams merge onto a mega-wide moving jam (mega-jam) within which low-speed patterns with a complex non-regular spatiotemporal dynamics occur. We show that when the bottleneck strength is great enough, only the mega-jam survives and synchronized flow remains only within its downstream front separating free flow and congested traffic. Theoretical results presented can explain why no sequence of wide moving jams can often be distinguished in non-homogeneous traffic congestion measured at very heavy bottlenecks caused by bad weather conditions or accidents.
A theory of traffic congestion at heavy bottlenecks
International Nuclear Information System (INIS)
Kerner, Boris S
2008-01-01
Spatiotemporal features and physics of vehicular traffic congestion occurring due to heavy highway bottlenecks caused for example by bad weather conditions or accidents are found based on simulations in the framework of three-phase traffic theory. A model of a heavy bottleneck is presented. Under a continuous non-limited increase in bottleneck strength, i.e., when the average flow rate within a congested pattern allowed by the heavy bottleneck decreases continuously up to zero, the evolution of the traffic phases in congested traffic, synchronized flow and wide moving jams, is studied. It is found that at a small enough flow rate within the congested pattern, the pattern exhibits a non-regular structure: a pinch region of synchronized flow within the pattern disappears and appears randomly over time; wide moving jams upstream of the pinch region exhibit a complex non-regular dynamics in which the jams appear and disappear randomly. At greater bottleneck strengths, wide moving jams merge onto a mega-wide moving jam (mega-jam) within which low-speed patterns with a complex non-regular spatiotemporal dynamics occur. We show that when the bottleneck strength is great enough, only the mega-jam survives and synchronized flow remains only within its downstream front separating free flow and congested traffic. Theoretical results presented can explain why no sequence of wide moving jams can often be distinguished in non-homogeneous traffic congestion measured at very heavy bottlenecks caused by bad weather conditions or accidents
A Perspective on NASA Ames Air Traffic Management Research
Schroeder, Jeffery A.
2012-01-01
This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink.
A Machine Learning Approach to Air Traffic Route Choice Modelling
Marcos, Rodrigo; García-Cantú, Oliva; Herranz, Ricardo
2018-01-01
Air Traffic Flow and Capacity Management (ATFCM) is one of the constituent parts of Air Traffic Management (ATM). The goal of ATFCM is to make airport and airspace capacity meet traffic demand and, when capacity opportunities are exhausted, optimise traffic flows to meet the available capacity. One of the key enablers of ATFCM is the accurate estimation of future traffic demand. The available information (schedules, flight plans, etc.) and its associated level of uncertainty differ across the...
Traffic Flow at Sags : Theory, Modeling and Control
Goni-Ros, B.
2016-01-01
Sag vertical curves (sags) are roadway sections along which the gradient increases gradually in the direction of traffic. Empirical observations show that, on freeways, traffic congestion often occurs at sags; actually, in some countries (e.g., Japan), sags are one of the most common types of
Directory of Open Access Journals (Sweden)
Li Wang
2017-01-01
Full Text Available Traffic congestion is a common problem in many countries, especially in big cities. At present, China’s urban road traffic accidents occur frequently, the occurrence frequency is high, the accident causes traffic congestion, and accidents cause traffic congestion and vice versa. The occurrence of traffic accidents usually leads to the reduction of road traffic capacity and the formation of traffic bottlenecks, causing the traffic congestion. In this paper, the formation and propagation of traffic congestion are simulated by using the improved medium traffic model, and the control strategy of congestion dissipation is studied. From the point of view of quantitative traffic congestion, the paper provides the fact that the simulation platform of urban traffic integration is constructed, and a feasible data analysis, learning, and parameter calibration method based on RBF neural network is proposed, which is used to determine the corresponding decision support system. The simulation results prove that the control strategy proposed in this paper is effective and feasible. According to the temporal and spatial evolution of the paper, we can see that the network has been improved on the whole.
Marine Traffic Optimization Using Petri Net and Genetic Algorithm
Directory of Open Access Journals (Sweden)
Anita Gudelj
2012-11-01
Full Text Available The paper deals with the traffic control and job optimization in the marine canal system. The moving of vessels can be described as a set of discrete events and states. Some of these states can be undesirable such as conflicts and deadlocks. It is necessary to apply adequate control policy to avoid deadlocks and blocks the vessels’ moving only in the case of dangerous situation. This paper addresses the use of Petri net as modelling and scheduling tool in this context. To find better solutions the authors propose the integration of Petri net with a genetic algorithm. Also, a matrix based formal method is proposed for analyzing discrete event dynamic system (DEDS. The algorithm is developed to deal with multi-project, multi-constrained scheduling problem with shared resources. It is verified by a computer simulation using MATLAB environment.
Optimal Airport Surface Traffic Planning Using Mixed-Integer Linear Programming
Roling, P.C.; Visser, H.G.
2008-01-01
We describe an ongoing research effort pertaining to the development of a surface traffic automation system that will help controllers to better coordinate surface traffic movements related to arrival and departure traffic. More specifically, we describe the concept for a taxi-planning support tool
Modeling Mixed Bicycle Traffic Flow: A Comparative Study on the Cellular Automata Approach
Directory of Open Access Journals (Sweden)
Dan Zhou
2015-01-01
Full Text Available Simulation, as a powerful tool for evaluating transportation systems, has been widely used in transportation planning, management, and operations. Most of the simulation models are focused on motorized vehicles, and the modeling of nonmotorized vehicles is ignored. The cellular automata (CA model is a very important simulation approach and is widely used for motorized vehicle traffic. The Nagel-Schreckenberg (NS CA model and the multivalue CA (M-CA model are two categories of CA model that have been used in previous studies on bicycle traffic flow. This paper improves on these two CA models and also compares their characteristics. It introduces a two-lane NS CA model and M-CA model for both regular bicycles (RBs and electric bicycles (EBs. In the research for this paper, many cases, featuring different values for the slowing down probability, lane-changing probability, and proportion of EBs, were simulated, while the fundamental diagrams and capacities of the proposed models were analyzed and compared between the two models. Field data were collected for the evaluation of the two models. The results show that the M-CA model exhibits more stable performance than the two-lane NS model and provides results that are closer to real bicycle traffic.
Integral Optimization of Systematic Parameters of Flip-Flow Screens
Institute of Scientific and Technical Information of China (English)
翟宏新
2004-01-01
The synthetic index Ks for evaluating flip-flow screens is proposed and systematically optimized in view of the whole system. A series of optimized values of relevant parameters are found and then compared with those of the current industrial specifications. The results show that the optimized value Ks approaches the one of those famous flip-flow screens in the world. Some new findings on geometric and kinematics parameters are useful for improving the flip-flow screens with a low Ks value, which is helpful in developing clean coal technology.
Some random models in traffic science
Energy Technology Data Exchange (ETDEWEB)
Hjorth, U.
1996-06-01
We give an overview of stochastic models for the following traffic phenomena. Models for traffic flow including gaps and capacities for lanes, crossings and roundabouts. Models for wanted and achieved speed distributions. Mode selection models including dispersed equilibrium models and traffic accident models. Also some statistical questions are discussed. 60 refs, 1 tab
Optimal velocity difference model for a car-following theory
International Nuclear Information System (INIS)
Peng, G.H.; Cai, X.H.; Liu, C.Q.; Cao, B.F.; Tuo, M.X.
2011-01-01
In this Letter, we present a new optimal velocity difference model for a car-following theory based on the full velocity difference model. The linear stability condition of the new model is obtained by using the linear stability theory. The unrealistically high deceleration does not appear in OVDM. Numerical simulation of traffic dynamics shows that the new model can avoid the disadvantage of negative velocity occurred at small sensitivity coefficient λ in full velocity difference model by adjusting the coefficient of the optimal velocity difference, which shows that collision can disappear in the improved model. -- Highlights: → A new optimal velocity difference car-following model is proposed. → The effects of the optimal velocity difference on the stability of traffic flow have been explored. → The starting and braking process were carried out through simulation. → The effects of the optimal velocity difference can avoid the disadvantage of negative velocity.
Communication efficiency and congestion of signal traffic in large-scale brain networks.
Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R
2014-01-01
The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication.
Computational Optimization of a Natural Laminar Flow Experimental Wing Glove
Hartshom, Fletcher
2012-01-01
Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.
Optimization of traffic light control system of an intersection using ...
African Journals Online (AJOL)
This paper considers an automated static road traffic control system of an intersection for the purpose of minimizing the effects of traffic jam and hence its attendant consequences such as prolonged waiting time, emission of toxic hydrocarbons from automobiles, etc. Using real-time road traffic data, a dynamic round-robin ...
Phase diagram distortion from traffic parameter averaging.
Stipdonk, H. Toorenburg, J. van & Postema, M.
2010-01-01
Motorway traffic congestion is a major bottleneck for economic growth. Therefore, research of traffic behaviour is carried out in many countries. Although well describing the undersaturated free flow phase as an almost straight line in a (k,q)-phase diagram, congested traffic observations and
Evaluation of Intersection Traffic Control Measures through Simulation
Asaithambi, Gowri; Sivanandan, R.
2015-12-01
Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.
Canepa, Edward S.; Claudel, Christian G.
2013-01-01
in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill-Whitham- Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set
Minimal-delay traffic grooming for WDM star networks
Choi, Hongsik; Garg, Nikhil; Choi, Hyeong-Ah
2003-10-01
All-optical networks face the challenge of reducing slower opto-electronic conversions by managing assignment of traffic streams to wavelengths in an intelligent manner, while at the same time utilizing bandwidth resources to the maximum. This challenge becomes harder in networks closer to the end users that have insufficient data to saturate single wavelengths as well as traffic streams outnumbering the usable wavelengths, resulting in traffic grooming which requires costly traffic analysis at access nodes. We study the problem of traffic grooming that reduces the need to analyze traffic, for a class of network architecture most used by Metropolitan Area Networks; the star network. The problem being NP-complete, we provide an efficient twice-optimal-bound greedy heuristic for the same, that can be used to intelligently groom traffic at the LANs to reduce latency at the access nodes. Simulation results show that our greedy heuristic achieves a near-optimal solution.
Optimization of ramp area aircraft push back time windows in the presence of uncertainty
Coupe, William Jeremy
It is well known that airport surface traffic congestion at major airports is responsible for increased taxi-out times, fuel burn and excess emissions and there is potential to mitigate these negative consequences through optimizing airport surface traffic operations. Due to a highly congested voice communication channel between pilots and air traffic controllers and a data communication channel that is used only for limited functions, one of the most viable near-term strategies for improvement of the surface traffic is issuing a push back advisory to each departing aircraft. This dissertation focuses on the optimization of a push back time window for each departing aircraft. The optimization takes into account both spatial and temporal uncertainties of ramp area aircraft trajectories. The uncertainties are described by a stochastic kinematic model of aircraft trajectories, which is used to infer distributions of combinations of push back times that lead to conflict among trajectories from different gates. The model is validated and the distributions are included in the push back time window optimization. Under the assumption of a fixed taxiway spot schedule, the computed push back time windows can be integrated with a higher level taxiway scheduler to optimize the flow of traffic from the gate to the departure runway queue. To enable real-time decision making the computational time of the push back time window optimization is critical and is analyzed throughout.
Reports on internet traffic statistics
Hoogesteger, Martijn; de Oliveira Schmidt, R.; Sperotto, Anna; Pras, Aiko
2013-01-01
Internet traffic statistics can provide valuable information to network analysts and researchers about the way nowadays networks are used. In the past, such information was provided by Internet2 in a public website called Internet2 NetFlow: Weekly Reports. The website reported traffic statistics
Lu, Feng; Liu, Kang; Duan, Yingying; Cheng, Shifen; Du, Fei
2018-07-01
A better characterization of the traffic influence among urban roads is crucial for traffic control and traffic forecasting. The existence of spatial heterogeneity imposes great influence on modeling the extent and degree of road traffic correlation, which is usually neglected by the traditional distance based method. In this paper, we propose a traffic-enhanced community detection approach to spatially reveal the traffic correlation in city road networks. First, the road network is modeled as a traffic-enhanced dual graph with the closeness between two road segments determined not only by their topological connection, but also by the traffic correlation between them. Then a flow-based community detection algorithm called Infomap is utilized to identify the road segment clusters. Evaluated by Moran's I, Calinski-Harabaz Index and the traffic interpolation application, we find that compared to the distance based method and the community based method, our proposed traffic-enhanced community based method behaves better in capturing the extent of traffic relevance as both the topological structure of the road network and the traffic correlations among urban roads are considered. It can be used in more traffic-related applications, such as traffic forecasting, traffic control and guidance.
Impacts of Traffic Tidal Flow on Pollutant Dispersion in a Non-Uniform Urban Street Canyon
Directory of Open Access Journals (Sweden)
Tingzhen Ming
2018-02-01
Full Text Available A three-dimensional geometrical model was established based on a section of street canyons in the 2nd Ring Road of Wuhan, China, and a mathematical model describing the fluid flow and pollutant dispersion characteristics in the street canyon was developed. The effect of traffic tidal flow was investigated based on the measurement results of the passing vehicles as the pollution source of the CFD method and on the spatial distribution of pollutants under various ambient crosswinds. Numerical investigation results indicated that: (i in this three-dimensional asymmetrical shallow street canyon, if the pollution source followed a non-uniform distribution due to the traffic tidal flow and the wind flow was perpendicular to the street, a leeward side source intensity stronger than the windward side intensity would cause an expansion of the pollution space even if the total source in the street is equal. When the ambient wind speed is 3 m/s, the pollutant source intensity near the leeward side that is stronger than that near the windward side (R = 2, R = 3, and R = 5 leads to an increased average concentration of CO at pedestrian breathing height by 26%, 37%, and 41%, respectively. (R is the ratio parameter of the left side pollution source and the right side pollution source; (ii However, this feature will become less significant with increasing wind speeds and changes of wind direction; (iii the pollution source intensity exerted a decisive influence on the pollutant level in the street canyon. With the decrease of the pollution source intensity, the pollutant concentration decreased proportionally.
2018-02-02
Within the Seattle metropolitan area, traffic incident management (TIM) operations provide a multi-jurisdictional and coordinated strategy to detect, respond to, and clear traffic incidents so that traffic flow can be restored quickly and safely. The...
2016-12-25
The key objectives of this study were to: 1. Develop advanced analytical techniques that make use of a dynamically configurable connected vehicle message protocol to predict traffic flow regimes in near-real time in a virtual environment and examine ...
SignalGuru: Leveraging mobile phones for collaborative traffic signal schedule advisory
Koukoumidis, Emmanouil; Peh, Li-Shiuan; Martonosi, Margaret
2011-01-01
While traffic signals are necessary to safely control competing flows of traffic, they inevitably enforce a stop-and-go movement pattern that increases fuel consumption, reduces traffic flow and causes traffic jams. These side effects can be alleviated by providing drivers and their onboard computational devices (e.g., vehicle computer, smartphone) with information about the schedule of the traffic signals ahead. Based on when the signal ahead will turn green, drivers can then adjust speed so...
Distributed traffic signal control using fuzzy logic
Chiu, Stephen
1992-01-01
We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.
Improvement of driving safety in road traffic system
Li, Ke-Ping; Gao, Zi-You
2005-05-01
A road traffic system is a complex system in which humans participate directly. In this system, human factors play a very important role. In this paper, a kind of control signal is designated at a given site (i.e., signal point) of the road. Under the effect of the control signal, the drivers will decrease their velocities when their vehicles pass the signal point. Our aim is to transit the traffic flow states from disorder to order and then improve the traffic safety. We have tested this technique for the two-lane traffic model that is based on the deterministic Nagel-Schreckenberg (NaSch) traffic model. The simulation results indicate that the traffic flow states can be transited from disorder to order. Different order states can be observed in the system and these states are safer.
Continuous residual reinforcement learning for traffic signal control optimization
Aslani, Mohammad; Seipel, Stefan; Wiering, Marco
2018-01-01
Traffic signal control can be naturally regarded as a reinforcement learning problem. Unfortunately, it is one of the most difficult classes of reinforcement learning problems owing to its large state space. A straightforward approach to address this challenge is to control traffic signals based on
Phase Plane Analysis Method of Nonlinear Traffic Phenomena
Directory of Open Access Journals (Sweden)
Wenhuan Ai
2015-01-01
Full Text Available A new phase plane analysis method for analyzing the complex nonlinear traffic phenomena is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the analysis in phase plane. According to the new model, various traffic phenomena, such as the well-known shock waves, rarefaction waves, and stop-and-go waves, are analyzed in the phase plane. From the phase plane diagrams, we can see the relationship between traffic jams and system instability. So the problem of traffic flow could be converted into that of system stability. The results show that the traffic phenomena described by the new method is consistent with that described by traditional methods. Moreover, the phase plane analysis highlights the unstable traffic phenomena we are chiefly concerned about and describes the variation of density or velocity with time or sections more clearly.
A hierarchical framework for air traffic control
Roy, Kaushik
Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation
Modeling of speed distribution for mixed bicycle traffic flow
Directory of Open Access Journals (Sweden)
Cheng Xu
2015-11-01
Full Text Available Speed is a fundamental measure of traffic performance for highway systems. There were lots of results for the speed characteristics of motorized vehicles. In this article, we studied the speed distribution for mixed bicycle traffic which was ignored in the past. Field speed data were collected from Hangzhou, China, under different survey sites, traffic conditions, and percentages of electric bicycle. The statistics results of field data show that the total mean speed of electric bicycles is 17.09 km/h, 3.63 km/h faster and 27.0% higher than that of regular bicycles. Normal, log-normal, gamma, and Weibull distribution models were used for testing speed data. The results of goodness-of-fit hypothesis tests imply that the log-normal and Weibull model can fit the field data very well. Then, the relationships between mean speed and electric bicycle proportions were proposed using linear regression models, and the mean speed for purely electric bicycles or regular bicycles can be obtained. The findings of this article will provide effective help for the safety and traffic management of mixed bicycle traffic.
Particle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution
Directory of Open Access Journals (Sweden)
Prabha Umapathy
2010-01-01
Full Text Available This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO. The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW, a time-varying inertia weight (TVIW, and global-local best inertia weight (GLbestIW, are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques.
Cooperative driving in mixed traffic networks - Optimizing for performance
Calvert, S.C.; Broek, T.H.A. van den; Noort, M. van
2012-01-01
This paper discusses a cooperative adaptive cruise control application and its effects on the traffic system. In previous work this application has been tested on the road, and traffic simulation has been used to scale up the results of the field test to larger networks and more vehicles. The
An Efficient Traffic Congestion Monitoring System on Internet of Vehicles
Directory of Open Access Journals (Sweden)
Duc-Binh Nguyen
2018-01-01
Full Text Available Existing intelligent transport systems (ITS do not fully consider and resolve accuracy, instantaneity, and compatibility challenges while resolving traffic congestion in Internet of Vehicles (IoV environments. This paper proposes a traffic congestion monitoring system, which includes data collection, segmented structure establishment, traffic-flow modelling, local segment traffic congestion prediction, and origin-destination traffic congestion service for drivers. Macroscopic model-based traffic-flow factors were formalized on the basis of the analysis results. Fuzzy rules-based local segment traffic congestion prediction was performed to determine the traffic congestion state. To enhance prediction efficiency, this paper presents a verification process for minimizing false predictions which is based on the Rankine-Hugoniot condition and an origin-destination traffic congestion service is also provided. To verify the feasibility of the proposed system, a prototype was implemented. The experimental results demonstrate that the proposed scheme can effectively monitor traffic congestion in terms of accuracy and system response time.
Optimized open-flow mixing: insights from microbubble streaming
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2015-11-01
Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.
enviroCar - citizen science for sustainable traffic
Stasch, Christoph; Remke, Albert; Jirka, Simon; Nuest, Daniel
2015-04-01
Optimizing traffic flow is a challenging task, affecting both the mobility of people and the environment. Up to now, traffic monitoring is based on small samples using GPS devices or remote sensors such as cameras. Citizens are usually not actively involved in the process of collecting or analyzing traffic data. The enviroCar project (www.envirocar.org) aims at addressing this situation by providing an open platform that can be used by everyone to collect and analyze traffic-related data and thus to achieve sustainable traffic management by answering questions such as: How is the average speed on a certain route? Where are exceptionally long waiting times in front of traffic lights? At which crossings do more cars stop than drive through? Where are hotspots of fuel consumption and air pollutant emission during a certain time interval? In this presentation, an overview on the enviroCar project is given and current research challenges addressed in the context of the project are presented. Citizens are able to participate by registering at the enviroCar portal and downloading the enviroCar Android app. Once installed, the Android app allows citizens to collect car sensor data, e.g. speed, mass air flow, or intake temperature via an On-Board Diagnosis 2 (OBD-II) Adapter. After finishing a car ride, the data can be uploaded to the central enviroCar server where the data is anonymized and published as open data. Each enviroCar member has a profile page giving control on his own data and providing statistics on personal driving behavior. The portal also allows comparing personal statistics with the statistics of other members. It thus facilitates analysis whether, for example, a member is driving in a more fuel saving manner than other users. Besides only acting as a data collector, citizens can also explore the enviroCar data in online maps or download the data in standard formats for certain spatial areas and/or time intervals allowing them to conduct spatio
Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow
Bette, Henrik M.; Habel, Lars; Emig, Thorsten; Schreckenberg, Michael
2017-01-01
We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P (v =0 ) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P (v ∈{0 ,1 }) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density.
Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors
Tun, Min Thaw; Sakaguchi, Daisaku
2016-06-01
High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.
Consistency analysis of network traffic repositories
Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko
Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for
Traffic Management System on Airport Manoeuvring Areas
Directory of Open Access Journals (Sweden)
Miroslav Borković
2006-11-01
Full Text Available In the last twenty years the number of flights at the busiestairports in the world has doubled, which, in the meantime hasled to a situation in which runways and taxi ways (manoeuvringareas cannot follow such substantial increase. As the result,many airports could not use their capacities in the full range interms of handling passengers and cargo. As a consequence,there were delays and traffic congestion, fuel was unnecessarilywasted, all of which caused negative impact on the environment.Traffic capacity increase on the ground cannot be consideredwithout the development and implementation of thesystem infrastructure that would optimize traffic flows and itsdistribution on the airport itself In these terms, and for positivesolution of these problems, a new system for surveillance andcontrol of aircraft on the airport manoeuvring areas is necessary,one which could be implemented fairly quickly, would becomplementary with the existing international standards andwould be upgraded to the existing and available technology andinfrastructure. With the implementation of the Advanced SurfaceMonitoring and Control System (A-SMGCS the aircrafttaxiing time could be significantly shortened and could be determinedmore accurately, which would have positive impacton the flight schedule. The unnecessary aircraft braking actionscould be also avoided, and this would reduce the fuel consumption,as well as noise and environmental pollution.
Controlling traffic jams by time modulating the safety distance
DEFF Research Database (Denmark)
Gaididei, Yu B.; Gorria, C.; Berkemer, R.
2013-01-01
The possibility of controlling traffic dynamics by applying high-frequency time modulation of traffic flow parameters is studied. It is shown that the region of the car density where the uniform (free) flow is unstable changes in the presence of time modulation compared with the unmodulated case....
Group Elevator Peak Scheduling Based on Robust Optimization Model
Directory of Open Access Journals (Sweden)
ZHANG, J.
2013-08-01
Full Text Available Scheduling of Elevator Group Control System (EGCS is a typical combinatorial optimization problem. Uncertain group scheduling under peak traffic flows has become a research focus and difficulty recently. RO (Robust Optimization method is a novel and effective way to deal with uncertain scheduling problem. In this paper, a peak scheduling method based on RO model for multi-elevator system is proposed. The method is immune to the uncertainty of peak traffic flows, optimal scheduling is realized without getting exact numbers of each calling floor's waiting passengers. Specifically, energy-saving oriented multi-objective scheduling price is proposed, RO uncertain peak scheduling model is built to minimize the price. Because RO uncertain model could not be solved directly, RO uncertain model is transformed to RO certain model by elevator scheduling robust counterparts. Because solution space of elevator scheduling is enormous, to solve RO certain model in short time, ant colony solving algorithm for elevator scheduling is proposed. Based on the algorithm, optimal scheduling solutions are found quickly, and group elevators are scheduled according to the solutions. Simulation results show the method could improve scheduling performances effectively in peak pattern. Group elevators' efficient operation is realized by the RO scheduling method.
Passive performance monitoring and traffic characteristics on the SLAC internet border
International Nuclear Information System (INIS)
Logg, C.; Cottrell, L.
2001-01-01
Understanding how the Internet is used by HEP is critical to optimizing the performance of the inter-lab computing environment. Typically use requirements have been defined by discussions between collaborators. However, later analysis of the actual traffic has show this is often misunderstood and actual use is significantly different to that predicted. Passive monitoring of the real traffic provides insight into the true communications requirements and the performance of a large number of inter-communicating nodes. It may be useful in identifying performance problems that are due to factors other than Internet congestion, especially when compared to other methods such as active monitoring where traffic is generated specifically to measure its performance. Controlled active monitoring between dedicated servers often gives an indication of what can be achieved on a network. Passive monitoring of the real traffic gives a picture of the true performance. The authors will discuss the method and results of collecting and analyzing flows of data obtained from the SLAC Internet border. The insights this has brought to understanding the network will be reviewed and the benefit it can bring to engineering networks will be discussed
A Traffic Restriction Scheme for Enhancing Carpooling
Directory of Open Access Journals (Sweden)
Dong Ding
2017-01-01
Full Text Available For the purpose of alleviating traffic congestion, this paper proposes a scheme to encourage travelers to carpool by traffic restriction. By a variational inequity we describe travelers’ mode (solo driving and carpooling and route choice under user equilibrium principle in the context of fixed demand and detect the performance of a simple network with various restriction links, restriction proportions, and carpooling costs. Then the optimal traffic restriction scheme aiming at minimal total travel cost is designed through a bilevel program and applied to a Sioux Fall network example with genetic algorithm. According to various requirements, optimal restriction regions and proportions for restricted automobiles are captured. From the results it is found that traffic restriction scheme is possible to enhance carpooling and alleviate congestion. However, higher carpooling demand is not always helpful to the whole network. The topology of network, OD demand, and carpooling cost are included in the factors influencing the performance of the traffic system.
Phase transition in traffic jam experiment on a circuit
International Nuclear Information System (INIS)
Tadaki, Shin-ichi; Kikuchi, Macoto; Fukui, Minoru; Yosida, Taturu; Nakayama, Akihiro; Nishinari, Katsuhiro; Shibata, Akihiro; Sugiyama, Yuki; Yukawa, Satoshi
2013-01-01
The emergence of a traffic jam is considered to be a dynamical phase transition in a physics point of view; traffic flow becomes unstable and changes phase into a traffic jam when the car density exceeds a critical value. In order to verify this view, we have been performing a series of circuit experiments. In our previous work (2008 New J. Phys. 10 033001), we demonstrated that a traffic jam emerges even in the absence of bottlenecks at a certain high density. In this study, we performed a larger indoor circuit experiment in the Nagoya Dome in which the positions of cars were observed using a high-resolution laser scanner. Over a series of sessions at various values of density, we found that jammed flow occurred at high densities, whereas free flow was conserved at low densities. We also found indications of metastability at an intermediate density. The critical density is estimated by analyzing the fluctuations in speed and the density–flow relation. The value of this critical density is consistent with that observed on real expressways. This experiment provides strong support for physical interpretations of the emergence of traffic jams as a dynamical phase transition. (paper)
Phase transition in traffic jam experiment on a circuit
Tadaki, Shin-ichi; Kikuchi, Macoto; Fukui, Minoru; Nakayama, Akihiro; Nishinari, Katsuhiro; Shibata, Akihiro; Sugiyama, Yuki; Yosida, Taturu; Yukawa, Satoshi
2013-10-01
The emergence of a traffic jam is considered to be a dynamical phase transition in a physics point of view; traffic flow becomes unstable and changes phase into a traffic jam when the car density exceeds a critical value. In order to verify this view, we have been performing a series of circuit experiments. In our previous work (2008 New J. Phys. 10 033001), we demonstrated that a traffic jam emerges even in the absence of bottlenecks at a certain high density. In this study, we performed a larger indoor circuit experiment in the Nagoya Dome in which the positions of cars were observed using a high-resolution laser scanner. Over a series of sessions at various values of density, we found that jammed flow occurred at high densities, whereas free flow was conserved at low densities. We also found indications of metastability at an intermediate density. The critical density is estimated by analyzing the fluctuations in speed and the density-flow relation. The value of this critical density is consistent with that observed on real expressways. This experiment provides strong support for physical interpretations of the emergence of traffic jams as a dynamical phase transition.
On traffic modelling in GPRS networks
DEFF Research Database (Denmark)
Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee
2005-01-01
Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...
Multiobjective Reinforcement Learning for Traffic Signal Control Using Vehicular Ad Hoc Network
Directory of Open Access Journals (Sweden)
Houli Duan
2010-01-01
Full Text Available We propose a new multiobjective control algorithm based on reinforcement learning for urban traffic signal control, named multi-RL. A multiagent structure is used to describe the traffic system. A vehicular ad hoc network is used for the data exchange among agents. A reinforcement learning algorithm is applied to predict the overall value of the optimization objective given vehicles' states. The policy which minimizes the cumulative value of the optimization objective is regarded as the optimal one. In order to make the method adaptive to various traffic conditions, we also introduce a multiobjective control scheme in which the optimization objective is selected adaptively to real-time traffic states. The optimization objectives include the vehicle stops, the average waiting time, and the maximum queue length of the next intersection. In addition, we also accommodate a priority control to the buses and the emergency vehicles through our model. The simulation results indicated that our algorithm could perform more efficiently than traditional traffic light control methods.
Cash flow optimization in industrial enterprise
Directory of Open Access Journals (Sweden)
Myznikova T.N.
2017-01-01
Full Text Available Optimization of cash flows of the industrial company provides economic entity necessity and sufficiency of financial resources for sustainable activities. Cash optimization techniques are grouped into two blocks: theoretical - is mainly foreign methods and applied techniques that are mostly used by Russian authors. Models described in the literature are not allowed for the particular industry in the formation of cash. The mathematical models described in the literature do not allow to take into account industry characteristics in the formation of funds. The proposed methodology by authors allows to predict cash amounts based on business company. The balance of cash flows is provided by the budgeting system. The company’s the released money can send funds for investment purposes. Effectiveness of confirmed by practical testing methodology on the existing machine-building enterprise.
Capacity Drop on Freeways: Traffic Dynamics, Theory and Modeling
Yuan, K.
2016-01-01
Earlier studies on the traffic flow on freeways reveal that queue discharge rate cannot
reach as high as the free-flow capacity. This important phenomenon is called the
“Capacity drop”, which indicates that the potential freeway capacity cannot be fully
utilized when discharging traffic
Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel; Allkim, T.P.; van Arem, Bart
2010-01-01
Multi objective optimization of externalities of traffic is performed solving a network design problem in which Dynamic Traffic Management measures are used. The resulting Pareto optimal set is determined by employing the SPEA2+ evolutionary algorithm.
The development of area wide traffic management scenarios
Van Zuylen, H.J.; Lu, S.; Li, J.; Yusen, C.
2014-01-01
Traffic management in cities with congestion is a big challenge with still unused opportunities. Intersection control is a corner stone but this should be done in an area-wide context. The dominant traffic process on urban roads is the traffic flow on the intersections. Spill back is a most
Shape signature based on Ricci flow and optimal mass transportation
Luo, Wei; Su, Zengyu; Zhang, Min; Zeng, Wei; Dai, Junfei; Gu, Xianfeng
2014-11-01
A shape signature based on surface Ricci flow and optimal mass transportation is introduced for the purpose of surface comparison. First, the surface is conformally mapped onto plane by Ricci flow, which induces a measure on the planar domain. Second, the unique optimal mass transport map is computed that transports the new measure to the canonical measure on the plane. The map is obtained by a convex optimization process. This optimal transport map encodes all the information of the Riemannian metric on the surface. The shape signature consists of the optimal transport map, together with the mean curvature, which can fully recover the original surface. The discrete theories of surface Ricci flow and optimal mass transportation are explained thoroughly. The algorithms are given in detail. The signature is tested on human facial surfaces with different expressions accquired by structured light 3-D scanner based on phase-shifting method. The experimental results demonstrate the efficiency and efficacy of the method.
Physics of traffic gridlock in a city
Kerner, Boris S.
2011-01-01
Based of simulations of a stochastic three-phase traffic flow model, we reveal that at a signalized city intersection under small link inflow rates at which a vehicle queue developed during the red phase of light signal dissolves fully during the green phase, i.e., no traffic gridlock should be expected, nevertheless, traffic breakdown with the subsequent city gridlock occurs with some probability after a random time delay. This traffic breakdown is initiated by a first-order phase transition...
Directory of Open Access Journals (Sweden)
Yoichiro Iwasaki
2015-01-01
Full Text Available To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires’ thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized.
Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki
2015-01-01
To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized.
Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki
2015-01-01
To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized. PMID:25763384
Canepa, Edward S.
2013-01-01
Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill-Whitham- Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for some decision variable. We use this fact to pose the problem of detecting spoofing cyber-attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offline. A numerical implementation is performed on a cyber-attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © 2013 IEEE.
Canepa, Edward S.
2013-09-01
Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill- Whitham-Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data generated by multiple sensors of different types, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for a specific decision variable. We use this fact to pose the problem of detecting spoofing cyber attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offliine. A numerical implementation is performed on a cyber attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © American Institute of Mathematical Sciences.
Intelligent transportation systems in improving traffic flow in tourism destinations
Mrnjavac, Edna; Marsanic, Robert
2007-01-01
The rapid growth and development of motorisation combined with relatively small investments made to improving transportation infrastructure in cities, as well as in tourism destinations, has led to serious problems in the unobstructed movement of vehicles in public traffic areas. Traffic congestion on roadways, in ferryboat ports and at state borders during the summer months and year-round lines of cars going to or returning from work are a regular presence in traffic in most urban and touris...
A novel downlink scheduling strategy for traffic communication system based on TD-LTE technology.
Chen, Ting; Zhao, Xiangmo; Gao, Tao; Zhang, Licheng
2016-01-01
There are many existing classical scheduling algorithms which can obtain better system throughput and user equality, however, they are not designed for traffic transportation environment, which cannot consider whether the transmission performance of various information flows could meet comprehensive requirements of traffic safety and delay tolerance. This paper proposes a novel downlink scheduling strategy for traffic communication system based on TD-LTE technology, which can perform two classification mappings for various information flows in the eNodeB: firstly, associate every information flow packet with traffic safety importance weight according to its relevance to the traffic safety; secondly, associate every traffic information flow with service type importance weight according to its quality of service (QoS) requirements. Once the connection is established, at every scheduling moment, scheduler would decide the scheduling order of all buffers' head of line packets periodically according to the instant value of scheduling importance weight function, which calculated by the proposed algorithm. From different scenario simulations, it can be verified that the proposed algorithm can provide superior differentiated transmission service and reliable QoS guarantee to information flows with different traffic safety levels and service types, which is more suitable for traffic transportation environment compared with the existing popularity PF algorithm. With the limited wireless resource, information flow closed related to traffic safety will always obtain priority scheduling right timely, which can help the passengers' journey more safe. Moreover, the proposed algorithm cannot only obtain good flow throughput and user fairness which are almost equal to those of the PF algorithm without significant differences, but also provide better realtime transmission guarantee to realtime information flow.
Topology optimization considering design-dependent Stokes flow loads
Picelli, R.; Vicente, W.M.; Pavanello, R.; van Keulen, A.; Li, Qing; Steven, Grant P.; Zhang, Zhongpu
2015-01-01
This article presents an evolutionary topology optimization method for mean compliance minimization of structures under design-dependent viscous fluid flow loads. The structural domain is governed by the elasticity equation and the fluid by the incompressible Stokes flow equations. When the
Intelligent Traffic Information System a Real-Time Traffic Information System on the Shiraz Bypass
Directory of Open Access Journals (Sweden)
Sodagaran Amir
2016-01-01
Full Text Available Real-time traffic information system is an Intelligent Transportation System (ITS that allows commuters to make their traveling plan better. In this regard, an intelligent and real-time traffic information system was developed based on the video detection and an image processing algorithm was applied to measure traffic-flow according to the average speed of vehicles. Then, traffic status of each pass way is broadcasted to the electronic boards installed on all decision making entrance / exit. Different levels of congestion related to the routes ahead are shown on the boards with different colors in order to assist commuters. This system was implemented on the Shiraz Dry River’s bypasses which account as vital routes to moderate traffic of city center. Experimental results are promising due to the proximity of determined traffic status by the system compared to the detection done by traffic experts. Average speed improvement is another result of using this system. This intelligent system developed and implemented in Shiraz city for the first time in Iran.s.
Directory of Open Access Journals (Sweden)
Zhiyuan Liu
2017-01-01
Full Text Available This study proposes a practical trial-and-error method to solve the optimal toll design problem of cordon-based pricing, where only the traffic counts autonomously collected on the entry links of the pricing cordon are needed. With the fast development and adoption of vehicle-to-infrastructure (V2I facilities, it is very convenient to autonomously collect these data. Two practical properties of the cordon-based pricing are further considered in this article: the toll charge on each entry of one pricing cordon is identical; the total inbound flow to one cordon should be restricted in order to maintain the traffic conditions within the cordon area. Then, the stochastic user equilibrium (SUE with asymmetric link travel time functions is used to assess each feasible toll pattern. Based on a variational inequality (VI model for the optimal toll pattern, this study proposes a theoretically convergent trial-and-error method for the addressed problem, where only traffic counts data are needed. Finally, the proposed method is verified based on a numerical network example.
Analytical study on the criticality of the stochastic optimal velocity model
International Nuclear Information System (INIS)
Kanai, Masahiro; Nishinari, Katsuhiro; Tokihiro, Tetsuji
2006-01-01
In recent works, we have proposed a stochastic cellular automaton model of traffic flow connecting two exactly solvable stochastic processes, i.e., the asymmetric simple exclusion process and the zero range process, with an additional parameter. It is also regarded as an extended version of the optimal velocity model, and moreover it shows particularly notable properties. In this paper, we report that when taking optimal velocity function to be a step function, all of the flux-density graph (i.e. the fundamental diagram) can be estimated. We first find that the fundamental diagram consists of two line segments resembling an inversed-λ form, and next identify their end-points from a microscopic behaviour of vehicles. It is notable that by using a microscopic parameter which indicates a driver's sensitivity to the traffic situation, we give an explicit formula for the critical point at which a traffic jam phase arises. We also compare these analytical results with those of the optimal velocity model, and point out the crucial differences between them
Optimal energy growth in a stably stratified shear flow
Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama
2018-02-01
Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.
Optimum principle for a vehicular traffic network: minimum probability of congestion
International Nuclear Information System (INIS)
Kerner, Boris S
2011-01-01
We introduce an optimum principle for a vehicular traffic network with road bottlenecks. This network breakdown minimization (BM) principle states that the network optimum is reached when link flow rates are assigned in the network in such a way that the probability for spontaneous occurrence of traffic breakdown in at least one of the network bottlenecks during a given observation time reaches the minimum possible value. Based on numerical simulations with a stochastic three-phase traffic flow model, we show that in comparison to the well-known Wardrop's principles, the application of the BM principle permits considerably greater network inflow rates at which no traffic breakdown occurs and, therefore, free flow remains in the whole network. (fast track communication)
Bayesian Data Assimilation for Improved Modeling of Road Traffic
Van Hinsbergen, C.P.Y.
2010-01-01
This thesis deals with the optimal use of existing models that predict certain phenomena of the road traffic system. Such models are extensively used in Advanced Traffic Information Systems (ATIS), Dynamic Traffic Management (DTM) or Model Predictive Control (MPC) approaches in order to improve the
Gunawan, Fergyanto E.; Abbas, Bahtiar S.; Atmadja, Wiedjaja; Yoseph Chandra, Fajar; Agung, Alexander AS; Kusnandar, Erwin
2014-03-01
Traffic congestion in Asian megacities has become extremely worse, and any means to lessen the congestion level is urgently needed. Building an efficient mass transportation system is clearly necessary. However, implementing Intelligent Transportation Systems (ITS) have also been demonstrated effective in various advanced countries. Recently, the floating vehicle technique (FVT), an ITS implementation, has become cost effective to provide real-time traffic information with proliferation of the smartphones. Although many publications have discussed various issues related to the technique, none of them elaborates the discrepancy of a single floating car data (FCD) and the associated fleet data. This work addresses the issue based on an analysis of Sugiyama et al's experimental data. The results indicate that there is an optimum averaging time interval such that the estimated velocity by the FVT reasonably representing the traffic velocity.
Reducing habitat fragmentation on minor rural roads through traffic calming
Jaarsma, C.F.; Willems, G.P.A.
2002-01-01
The rural road network suffers continually from ambiguity. On the one hand, the presence of this network and its traffic flows offer accessibility and make a contribution to economic development. While on the other, its presence and its traffic flows cause fragmentation. The actual ecological impact
Robust, Optimal, Predictive, and Integrated Road Traffic Control : Research proposal
Van de Weg, G.S.; Hegyi, A.; Hoogendoorn, S.P.
2014-01-01
The development of control strategies for traffic lights, ramp metering installations, and variable speed limits to improve the throughput of road traffic networks can contribute to a more efficient use of road networks. In this project, a hierarchical controller will be developed for the
Energy Technology Data Exchange (ETDEWEB)
Jicha, M.; Katolicky, J.; Pospisil, J. [Brno University of Technology (Czech Republic). Faculty of Mechanical Engineering
2002-07-01
A 3-D Eulerian-Lagrangian approach to moving vehicles is presented that takes into account the traffic-induced flow rate and turbulence. The method is applied to pollutant dispersion in an individual street canyon and a system of two street canyons forming a perpendicular intersection. The approach is based on computational fluid dynamics (CFD) calculations using a Eulerian approach for continuous phase and a Lagrangian approach for moving vehicles. The wind speed was assigned values of 4, 7 and 12 m/s. One-way and two-way traffic with different traffic rates per lane is considered. In the case of the intersection, a longitudinal wind direction was assumed. Predictions show differences in the pollutant dispersion in the case of one-way and two-way traffic. (author)
Qiu, Shanwen
2013-09-01
In this article, we propose a new exact and grid-free numerical scheme for computing solutions associated with an hybrid traffic flow model based on the Lighthill-Whitham-Richards (LWR) partial differential equation, for a class of fundamental diagrams. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a constant acceleration otherwise. We first propose a mathematical definition of the solution as a minimization problem. We use this formulation to build a grid-free solution method for this model based on the minimization of component function. We then derive these component functions analytically for triangular fundamental diagrams, which are commonly used to model traffic flow. We also show that the proposed computational method can handle fixed or moving bottlenecks. A toolbox implementation of the resulting algorithm is briefly discussed, and posted at https://dl.dropbox.com/u/1318701/Toolbox.zip. © 2013 Elsevier Ltd.
Design and Optimization of Annular Flow Electromagnetic Measurement System for Drilling Engineering
Directory of Open Access Journals (Sweden)
Liang Ge
2018-01-01
Full Text Available Using the downhole annular flow measurement system to get real-time information of downhole annular flow is the core and foundation of downhole microflux control drilling technology. The research work of electromagnetic flowmeter in recent years creates a challenge to the design of downhole annular flow measurement. This paper proposes a design and optimization of annular flow electromagnetic measurement system for drilling engineering based on the finite element method. Firstly, the annular flow measuring and optimization principle are described. Secondly, a simulation model of an annular flow electromagnetic measurement system with two pairs of coil is built based on the fundamental equation of electromagnetic flowmeter by COMSOL. Thirdly, simulations of the structure of excitation system of the measurement system are carried out, and simulations of the size of the electrode’s radius are also carried out based on the optimized structure, and then all the simulation results are analyzed to evaluate the optimization effect based on the evaluation indexes. The simulation results show that optimized shapes of the excitation system and electrode size can yield a better performance in the annular flow measurement.
Directory of Open Access Journals (Sweden)
Kazuhiko Hasegawa
2013-06-01
Full Text Available Difficulty of sailing is quite subjective matter. It depends on various factors. Using Marine Traffic Simulation System (MTSS developed by Osaka University this challenging subject is discussed. In this system realistic traffic flow including collision avoidance manoeuvres can be reproduced in a given area. Simulation is done for southward of Tokyo Bay, Strait of Singapore and off-Shanghai area changing traffic volume from 5 or 50 to 150 or 200% of the present volume. As a result, strong proportional relation between near-miss ratio and traffic density per hour per sailed area is found, independent on traffic volume, area size and configuration. The quantitative evaluation index of the difficulty of sailing, here called risk rate of the area is defined using thus defined traffic density and near-miss ratio.
Determination of Optimal Flow Paths for Safety Injection According to Accident Conditions
Energy Technology Data Exchange (ETDEWEB)
Yoo, Kwae Hwan; Kim, Ju Hyun; Kim, Dong Yeong; Na, Man Gyun [Chosun Univ., Gwangju (Korea, Republic of); Hur, Seop; Kim, Changhwoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In case severe accidents happen, major safety parameters of nuclear reactors are rapidly changed. Therefore, operators are unable to respond appropriately. This situation causes the human error of operators that led to serious accidents at Chernobyl. In this study, we aimed to develop an algorithm that can be used to select the optimal flow path for cold shutdown in serious accidents, and to recover an NPP quickly and efficiently from the severe accidents. In order to select the optimal flow path, we applied a Dijkstra algorithm. The Dijkstra algorithm is used to find the path of minimum total length between two given nodes and needs a weight (or length) matrix. In this study, the weight between nodes was calculated from frictional and minor losses inside pipes. That is, the optimal flow path is found so that the pressure drop between a starting node (water source) and a destination node (position that cooling water is injected) is minimized. In case a severe accident has happened, if we inject cooling water through the optimized flow path, then the nuclear reactor will be safely and effectively returned into the cold shutdown state. In this study, we have analyzed the optimal flow paths for safety injection as a preliminary study for developing an accident recovery system. After analyzing the optimal flow path using the Dijkstra algorithm, and the optimal flow paths were selected by calculating the head loss according to path conditions.
Effects of node buffer and capacity on network traffic
International Nuclear Information System (INIS)
Ling Xiang; Ding Jian-Xun; Hu Mao-Bin
2012-01-01
In this paper, we study the optimization of network traffic by considering the effects of node buffer ability and capacity. Two node buffer settings are considered. The node capacity is considered to be proportional to its buffer ability. The node effects on network traffic systems are studied with the shortest path protocol and an extension of the optimal routing [Phys. Rev. E 74 046106 (2006)]. In the diagrams of flux—density relationships, it is shown that a nodes buffer ability and capacity have profound effects on the network traffic
CATS-based Air Traffic Controller Agents
Callantine, Todd J.
2002-01-01
This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human
Cellular Automata Models of Traffic Behavior in Presence of Speed Breaking Structures
International Nuclear Information System (INIS)
Ramachandran, Parthasarathy
2009-01-01
In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals. Through a cellular automata model we study the impact of such structures on global traffic characteristics. The simulation results indicate that the presence of speed breakers could reduce the global flow under moderate global densities. However, under low and high global density traffic regime the presence of speed breakers does not have an impact on the global flow. Further the speed limit enforced by the speed breaker creates a phase distinction. For a given global density and slowdown probability, as the speed limit enforced by the speed breaker increases, the traffic moves from the reduced flow phase to maximum flow phase. This underlines the importance of proper design of these structures to avoid undesired flow restrictions. (general)
A Continuous Dynamic Traffic Assignment Model From Plate Scanning Technique
Energy Technology Data Exchange (ETDEWEB)
Rivas, A.; Gallego, I.; Sanchez-Cambronero, S.; Ruiz-Ripoll, L.; Barba, R.M.
2016-07-01
This paper presents a methodology for the dynamic estimation of traffic flows on all links of a network from observable field data assuming the first-in-first-out (FIFO) hypothesis. The traffic flow intensities recorded at the exit of the scanned links are propagated to obtain the flow waves on unscanned links. For that, the model calculates the flow-cost functions through information registered with the plate scanning technique. The model also responds to the concern about the parameter quality of flow-cost functions to replicate the real traffic flow behaviour. It includes a new algorithm for the adjustment of the parameter values to link characteristics when its quality is questionable. For that, it is necessary the a priori study of the location of the scanning devices to identify all path flows and to measure travel times in all links. A synthetic network is used to illustrate the proposed method and to prove its usefulness and feasibility. (Author)
Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes
Directory of Open Access Journals (Sweden)
Xi Wu
2017-08-01
Full Text Available The successful application of the unified power flow controller (UPFC provides a new control method for the secure and economic operation of power system. In order to make the full use of UPFC and improve the economic efficiency and static security of a power system, a preventive security-constrained power flow optimization method considering UPFC control modes is proposed in this paper. Firstly, an iterative method considering UPFC control modes is deduced for power flow calculation. Taking into account the influence of different UPFC control modes on the distribution of power flow after N-1 contingency, the optimization model is then constructed by setting a minimal system operation cost and a maximum static security margin as the objective. Based on this model, the particle swarm optimization (PSO algorithm is utilized to optimize power system operating parameters and UPFC control modes simultaneously. Finally, a standard IEEE 30-bus system is utilized to demonstrate that the proposed method fully exploits the potential of static control of UPFC and significantly increases the economic efficiency and static security of the power system.
Wireless traffic steering for green cellular networks
Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)
2016-01-01
This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...
Directory of Open Access Journals (Sweden)
Rui Li
2016-01-01
Full Text Available This paper proposes a new optimization framework for the transit signal priority strategies in terms of green extension, red truncation, and phase insertion at the stop-to-stop segment of bus lines. The optimization objective is to minimize both passenger delay and the deviation from bus schedule simultaneously. The objective functions are defined with respect to the segment between bus stops, which can include the adjacent signalized intersections and downstream bus stops. The transit priority signal timing is optimized by using a biobjective optimization framework considering both the total delay at a segment and the delay deviation from the arrival schedules at bus stops. The proposed framework is evaluated using a VISSIM model calibrated with field traffic volume and traffic signal data of Caochangmen Boulevard in Nanjing, China. The optimized TSP-based phasing plans result in the reduced delay and improved reliability, compared with the non-TSP scenario under the different traffic flow conditions in the morning peak hour. The evaluation results indicate the promising performance of the proposed optimization framework in reducing the passenger delay and improving the bus schedule adherence for the urban transit system.
Li, Jinjian; Dridi, Mahjoub; El-Moudni, Abdellah
2016-01-01
The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I). This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP) to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes. PMID:27999333
Directory of Open Access Journals (Sweden)
Jinjian Li
2016-12-01
Full Text Available The problem of reducing traffic delays and decreasing fuel consumption simultaneously in a network of intersections without traffic lights is solved by a cooperative traffic control algorithm, where the cooperation is executed based on the connection of Vehicle-to-Infrastructure (V2I. This resolution of the problem contains two main steps. The first step concerns the itinerary of which intersections are chosen by vehicles to arrive at their destination from their starting point. Based on the principle of minimal travel distance, each vehicle chooses its itinerary dynamically based on the traffic loads in the adjacent intersections. The second step is related to the following proposed cooperative procedures to allow vehicles to pass through each intersection rapidly and economically: on one hand, according to the real-time information sent by vehicles via V2I in the edge of the communication zone, each intersection applies Dynamic Programming (DP to cooperatively optimize the vehicle passing sequence with minimal traffic delays so that the vehicles may rapidly pass the intersection under the relevant safety constraints; on the other hand, after receiving this sequence, each vehicle finds the optimal speed profiles with the minimal fuel consumption by an exhaustive search. The simulation results reveal that the proposed algorithm can significantly reduce both travel delays and fuel consumption compared with other papers under different traffic volumes.
Optimum principle for a vehicular traffic network: minimum probability of congestion
Energy Technology Data Exchange (ETDEWEB)
Kerner, Boris S, E-mail: boris.kerner@daimler.com [Daimler AG, GR/PTF, HPC: G021, 71059 Sindelfingen (Germany)
2011-03-04
We introduce an optimum principle for a vehicular traffic network with road bottlenecks. This network breakdown minimization (BM) principle states that the network optimum is reached when link flow rates are assigned in the network in such a way that the probability for spontaneous occurrence of traffic breakdown in at least one of the network bottlenecks during a given observation time reaches the minimum possible value. Based on numerical simulations with a stochastic three-phase traffic flow model, we show that in comparison to the well-known Wardrop's principles, the application of the BM principle permits considerably greater network inflow rates at which no traffic breakdown occurs and, therefore, free flow remains in the whole network. (fast track communication)
A Novel Multisensor Traffic State Assessment System Based on Incomplete Data
Directory of Open Access Journals (Sweden)
Yiliang Zeng
2014-01-01
Full Text Available A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system.
design and implementation of a density-based traffic light control
African Journals Online (AJOL)
HOD
sensors, a new traffic light control system was developed to ease the flow of traffic at a particular ... of traffic on each lane at the intersection triggered when a vehicle comes between the ... change the sequence back to the normal sequence.
Air Traffic Management Research at NASA Ames
Davis, Thomas J.
2012-01-01
The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.
Characterization of YouTube Video Streaming Traffic
Ravattu, Radha; Balasetty, Prudhviraj
2013-01-01
Online digital videos have made a revolutionary evolution since the social networking sites such as YouTube and Hulu have emerged. These websites facilitate video accessable and only a click away. Ever increasing internet traffic and a very significant increase in the use of videos in social networking has led to the problem of network congestion. Consequently, it becomes essential and imperative to analyze the traffic flow and comprehend how it is being delivered from the server. If the flow...
Topology Optimization of Large Scale Stokes Flow Problems
DEFF Research Database (Denmark)
Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan
2008-01-01
This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....
Streamlining Transportation Corridor Planning Processess: Freight and Traffic Information
Energy Technology Data Exchange (ETDEWEB)
Franzese, Oscar [ORNL
2010-08-01
The traffic investigation is one of the most important parts of an Environmental Impact Statement of projects involving the construction of new roadway facilities and/or the improvement of existing ones. The focus of the traffic analysis is on the determination of anticipated traffic flow characteristics of the proposed project, by the application of analytical methods that can be grouped under the umbrella of capacity analysis methodologies. In general, the main traffic parameter used in EISs to describe the quality of traffic flow is the Level of Service (LOS). The current state of the practice in terms of the traffic investigations for EISs has two main shortcomings. The first one is related to the information that is necessary to conduct the traffic analysis, and specifically to the lack of integration among the different transportation models and the sources of information that, in general, reside in GIS databases. A discussion of the benefits of integrating CRS&SI technologies and the transportation models used in the EIS traffic investigation is included. The second shortcoming is in the presentation of the results, both in terms of the appearance and formatting, as well as content. The presentation of traffic results (current and proposed) is discussed. This chapter also addresses the need of additional data, in terms of content and coverage. Regarding the former, other traffic parameters (e.g., delays) that are more meaningful to non-transportation experts than LOS, as well as additional information (e.g., freight flows) that can impact traffic conditions and safety are discussed. Spatial information technologies can decrease the negative effects of, and even eliminate, these shortcomings by making the relevant information that is input to the models more complete and readily available, and by providing the means to communicate the results in a more clear and efficient manner. The benefits that the application and use of CRS&SI technologies can provide to
Topology optimization of unsteady flow problems using the lattice Boltzmann method
DEFF Research Database (Denmark)
Nørgaard, Sebastian Arlund; Sigmund, Ole; Lazarov, Boyan Stefanov
2016-01-01
This article demonstrates and discusses topology optimization for unsteady incompressible fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial bounceback model is implemented to model the transition between fluid and solid phases in the optimization problems...
Dynamic ADMM for Real-time Optimal Power Flow: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-02-23
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.
Modeling Road Traffic Using Service Center
Directory of Open Access Journals (Sweden)
HARAGOS, I.-M.
2012-05-01
Full Text Available Transport systems have an essential role in modern society because they facilitate access to natural resources and they stimulate trade. Current studies aimed at improving transport networks by developing new methods for optimization. Because of the increase in the global number of cars, one of the most common problems facing the transport network is congestion. By creating traffic models and simulate them, we can avoid this problem and find appropriate solutions. In this paper we propose a new method for modeling traffic. This method considers road intersections as being service centers. A service center represents a set consisting of a queue followed by one or multiple servers. This model was used to simulate real situations in an urban traffic area. Based on this simulation, we have successfully determined the optimal functioning and we have computed the performance measures.
Jeong, Eunbi; Oh, Cheol; Lee, Seolyoung
2017-07-01
Automated driving systems (ADSs) are expected to prevent traffic accidents caused by driver carelessness on freeways. There is no doubt regarding this safety benefit if all vehicles in the transportation system were equipped with ADSs; however, it is implausible to expect that ADSs will reach 100% market penetration rate (MPR) in the near future. Therefore, the following question arises: 'Can ADSs, which consider only situations in the vicinity of an equipped vehicle, really contribute to a significant reduction in traffic accidents?' To address this issue, the interactions between equipped and unequipped vehicles must be investigated, which is the purpose of this study. This study evaluated traffic safety at different MPRs based on a proposed index to represent the overall rear-end crash risk of the traffic stream. Two approaches were evaluated for adjusting longitudinal vehicle maneuvers: vehicle safety-based maneuvering (VSM), which considers the crash risk of an equipped vehicle and its neighboring vehicles, and traffic safety-based maneuvering (TSM), which considers the overall crash risk in the traffic stream. TSM assumes that traffic operational agencies are able to monitor all the vehicles and to intervene in vehicle maneuvering. An optimization process, which attempts to obtain vehicle maneuvering control parameters to minimize the overall crash risk, is integrated into the proposed evaluation framework. The main purpose of employing the optimization process for vehicle maneuvering in this study is to identify opportunities to improve traffic safety through effective traffic management rather than developing a vehicle control algorithm that can be implemented in practice. The microscopic traffic simulator VISSIM was used to simulate the freeway traffic stream and to conduct systematic evaluations based on the proposed methodology. Both TSM and VSM achieved significant reductions in the potential for rear-end crashes. However, TSM obtained much greater
Effect of adaptive cruise control systems on mixed traffic flow near an on-ramp
Davis, L. C.
2007-06-01
Mixed traffic flow consisting of vehicles equipped with adaptive cruise control (ACC) and manually driven vehicles is analyzed using car-following simulations. Simulations of merging from an on-ramp onto a freeway reported in the literature have not thus far demonstrated a substantial positive impact of ACC. In this paper cooperative merging for ACC vehicles is proposed to improve throughput and increase distance traveled in a fixed time. In such a system an ACC vehicle senses not only the preceding vehicle in the same lane but also the vehicle immediately in front in the other lane. Prior to reaching the merge region, the ACC vehicle adjusts its velocity to ensure that a safe gap for merging is obtained. If on-ramp demand is moderate, cooperative merging produces significant improvement in throughput (20%) and increases up to 3.6 km in distance traveled in 600 s for 50% ACC mixed flow relative to the flow of all-manual vehicles. For large demand, it is shown that autonomous merging with cooperation in the flow of all ACC vehicles leads to throughput limited only by the downstream capacity, which is determined by speed limit and headway time.
van Driel, Cornelie; van Arem, Bart
2010-01-01
This article presents the results of a microscopic traffic simulation study conducted to investigate the impact of a Congestion Assistant on traffic efficiency and traffic safety. The Congestion Assistant is an in-vehicle system in which an active pedal supports the driver when approaching
Traffic improvement and transportation pollution control in Xiamen
Energy Technology Data Exchange (ETDEWEB)
Dongxing Yuan; Zilin, Wu
1996-12-31
in this paper, the urban traffic improvement and transportation control in Xiamen are highlighted. Xiamen is a port city and an economical special zone of China. As the economy grows, the transportation is developing dramatically and becoming the key for further economic development. The air quality is threatened by the rapid growth of the vehicles in the city. The most urgent task in improving urban traffic is to establish a sound traffic system. The municipal government takes great effort to improve the traffic condition, as well as to reduce green house gases and protect air environment. Some management and technical measures are carried out. Those management measures are mainly as follows: (1) systematic planning of the city arrangement and city functional division, and integrated planning of the urban roads system, (2) putting great emphasis on tail gas monitoring and management, and (3) establishing optimized utilization of motor vehicles. Those included in the main technical measures are (1) making the roads clear, (2) enlarging traffic capacity, and (3) developing the public transport. The most urgent task in improving urban traffic is to establish a sound traffic system. The city municipal government and Transportation Management Bureau plan to make a series of reforms to improve the urban traffic condition, such as building high quality road around the city, reducing the number of one way roads and replacing gasoline buses with electric buses. An optimized traffic system of Xiamen, taking public transport as the main means, is the key to meet the needs of both traffic improvement and urban transportation pollution control.
Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji
2002-06-01
This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright
Spectral Analysis of Traffic Functions in Urban Areas
Directory of Open Access Journals (Sweden)
Florin Nemtanu
2015-12-01
Full Text Available The paper is focused on the Fourier transform application in urban traffic analysis and the use of said transform in traffic decomposition. The traffic function is defined as traffic flow generated by different categories of traffic participants. A Fourier analysis was elaborated in terms of identifying the main traffic function components, called traffic sub-functions. This paper presents the results of the method being applied in a real case situation, that is, an intersection in the city of Bucharest where the effect of a bus line was analysed. The analysis was done using different time scales, while three different traffic functions were defined to demonstrate the theoretical effect of the proposed method of analysis. An extension of the method is proposed to be applied in urban areas, especially in the areas covered by predictive traffic control.
Optimal power flow based on glow worm-swarm optimization for three-phase islanded microgrids
DEFF Research Database (Denmark)
Quang, Ninh Nguyen; Sanseverino, Eleonora Riva; Di Silvestre, Maria Luisa
2014-01-01
This paper presents an application of the Glowworm Swarm Optimization method (GSO) to solve the optimal power flow problem in three-phase islanded microgrids equipped with power electronics dc-ac inverter interfaced distributed generation units. In this system, the power injected by the distribut...
Optimization of plasma flow parameters of the magnetoplasma compressor
International Nuclear Information System (INIS)
Dojcinovic, I P; Kuraica, M M; Obradovc, B M; Cvetanovic, N; Puric, J
2007-01-01
Optimization of the working conditions of the magnetoplasma compressor (MPC) has been performed through analysing discharge and compression plasma flow parameters in hydrogen, nitrogen and argon at different pressures. Energy conversion rate, volt-ampere curve exponent and plasma flow velocities have been studied to optimize the efficiency of energy transfer from the supply source to the plasma. It has been found that the most effective energy transfer from the supply to the plasma is in hydrogen as a working gas at 1000 Pa pressure. It was found that the accelerating regime exists for hydrogen up to 3000 Pa pressures, in nitrogen up to 2000 Pa and in argon up to 1000 Pa pressure. At higher pressures MPC in all the gases works in the decelerating regime. At pressures lower than 200 Pa, high cathode erosion is observed. MPC plasma flow parameter optimization is very important because this plasma accelerating system may be of special interest for solid surface modification and other technology applications
Wang, Yunong; Ge, Hongxia; Cheng, Rongjun
2017-11-01
In this paper, a lattice hydrodynamic model is derived considering the delayed-feedback control influence of optimal flux for forward looking sites on a single-lane road which includes more comprehensive information. The control method is used to analyze the stability of the model. The critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of optimal flux for forward looking sites. Moreover it indicates that the characteristic of the model can lead to a lower energy consumption in traffic system. The results are consistent with the theoretical analysis correspondingly.
Optical flow optimization using parallel genetic algorithm
Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe
2011-06-01
A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.
Robust and Agile System against Fault and Anomaly Traffic in Software Defined Networks
Directory of Open Access Journals (Sweden)
Mihui Kim
2017-03-01
Full Text Available The main advantage of software defined networking (SDN is that it allows intelligent control and management of networking though programmability in real time. It enables efficient utilization of network resources through traffic engineering, and offers potential attack defense methods when abnormalities arise. However, previous studies have only identified individual solutions for respective problems, instead of finding a more global solution in real time that is capable of addressing multiple situations in network status. To cover diverse network conditions, this paper presents a comprehensive reactive system for simultaneously monitoring failures, anomalies, and attacks for high availability and reliability. We design three main modules in the SDN controller for a robust and agile defense (RAD system against network anomalies: a traffic analyzer, a traffic engineer, and a rule manager. RAD provides reactive flow rule generation to control traffic while detecting network failures, anomalies, high traffic volume (elephant flows, and attacks. The traffic analyzer identifies elephant flows, traffic anomalies, and attacks based on attack signatures and network monitoring. The traffic engineer module measures network utilization and delay in order to determine the best path for multi-dimensional routing and load balancing under any circumstances. Finally, the rule manager generates and installs a flow rule for the selected best path to control traffic. We implement the proposed RAD system based on Floodlight, an open source project for the SDN controller. We evaluate our system using simulation with and without the aforementioned RAD modules. Experimental results show that our approach is both practical and feasible, and can successfully augment an existing SDN controller in terms of agility, robustness, and efficiency, even in the face of link failures, attacks, and elephant flows.
Applying the flow-capturing location-allocation model to an authentic network: Edmonton, Canada
M.J. Hodgson (John); K.E. Rosing (Kenneth); A.L.G. Storrier (Leontien)
1996-01-01
textabstractTraditional location-allocation models aim to locate network facilities to optimally serve demand expressed as weights at nodes. For some types of facilities demand is not expressed at nodes, but as passing network traffic. The flow-capturing location-allocation model responds to this
A self-sensing carbon nanotube/cement composite for traffic monitoring
International Nuclear Information System (INIS)
Han Baoguo; Yu Xun; Kwon, Eil
2009-01-01
In this paper, a self-sensing carbon nanotube (CNT)/cement composite is investigated for traffic monitoring. The cement composite is filled with multi-walled carbon nanotubes whose piezoresistive properties enable the detection of mechanical stresses induced by traffic flow. The sensing capability of the self-sensing CNT/cement composite is explored in laboratory tests and road tests. Experimental results show that the fabricated self-sensing CNT/cement composite presents sensitive and stable responses to repeated compressive loadings and impulsive loadings, and has remarkable responses to vehicular loadings. These findings indicate that the self-sensing CNT/cement composite has great potential for traffic monitoring use, such as in traffic flow detection, weigh-in-motion measurement and vehicle speed detection.
Ant colony optimization algorithm for signal coordination of oversaturated traffic networks.
2010-05-01
Traffic congestion is a daily and growing problem of the modern era in mostly all major cities in the world. : Increasing traffic demand strains the existing transportation system, leading to oversaturated network : conditions, especially at peak hou...
Obtaining traffic information by urban air quality inspection
International Nuclear Information System (INIS)
Federico, G; Simone, A.; Simone, A.; Traverso, M.; Nicolosi, S.
2006-01-01
Transportation and its environmental impacts are a major component of urban environmental management. At the same time, transportation and mobility are an important part of urban economics and quality of life. To analyze urban transportation and its environmental impacts, a comprehensive, interdisciplinary approach is needed. Unfortunately, theoretical works about traffic flow and pollutant dynamic have independently evolved, rarely meeting contact points. Our works aims to provide a contribution in linking traffic flow and pollutant dynamic by proponing a new traffic model, able to calculate the number of running vehicles, once the ground level of an arbitrary pollutant concentration is know. The validation and simulation of this model is made possible by the training of an adaptive.(Author)
A queuing model for road traffic simulation
International Nuclear Information System (INIS)
Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N.
2015-01-01
We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme
A new cellular automaton for signal controlled traffic flow based on driving behaviors
Wang, Yang; Chen, Yan-Yan
2015-03-01
The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined. Project supported by the National Basic Research Program of China (Grand No. 2012CB723303) and the Beijing Committee of Science and Technology, China (Grand No. Z1211000003120100).
Optimal power flow for technically feasible Energy Management systems in Islanded Microgrids
DEFF Research Database (Denmark)
Sanseverino, Eleonora Riva; T. T. Quynh, T.; Di Silvestre, Maria Luisa
2016-01-01
This paper presents a combined optimal energy and power flow management for islanded microgrids. The highest control level in this case will provide a feasible and optimized operating point around the economic optimum. In order to account for both unbalanced and balanced loads, the optimal power...... flow is carried out using a Glow-worm Swarm Optimizer. The control level is organized into two different sub-levels, the highest of which accounts for minimum cost operation and the lowest one solving the optimal power flow and devising the set points of inverter interfaced generation units...... and rotating machines with a minimum power loss. A test has been carried out for 6 bus islanded microgrids to show the efficiency and feasibility of the proposed technique....
Suppressing traffic-driven epidemic spreading by adaptive routing strategy
International Nuclear Information System (INIS)
Yang, Han-Xin; Wang, Zhen
2016-01-01
The design of routing strategies for traffic-driven epidemic spreading has received increasing attention in recent years. In this paper, we propose an adaptive routing strategy that incorporates topological distance with local epidemic information through a tunable parameter h. In the case where the traffic is free of congestion, there exists an optimal value of routing parameter h, leading to the maximal epidemic threshold. This means that epidemic spreading can be more effectively controlled by adaptive routing, compared to that of the static shortest path routing scheme. Besides, we find that the optimal value of h can greatly relieve the traffic congestion in the case of finite node-delivering capacity. We expect our work to provide new insights into the effects of dynamic routings on traffic-driven epidemic spreading.
Optimal traffic control in highway transportation networks using linear programming
Li, Yanning
2014-06-01
This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.
Equation-Free Analysis of Macroscopic Behavior in Traffic and Pedestrian Flow
DEFF Research Database (Denmark)
Marschler, Christian; Sieber, Jan; Hjorth, Poul G.
2014-01-01
Equation-free methods make possible an analysis of the evolution of a few coarse-grained or macroscopic quantities for a detailed and realistic model with a large number of fine-grained or microscopic variables, even though no equations are explicitly given on the macroscopic level. This will fac......Equation-free methods make possible an analysis of the evolution of a few coarse-grained or macroscopic quantities for a detailed and realistic model with a large number of fine-grained or microscopic variables, even though no equations are explicitly given on the macroscopic level....... This will facilitate a study of how the model behavior depends on parameter values including an understanding of transitions between different types of qualitative behavior. These methods are introduced and explained for traffic jam formation and emergence of oscillatory pedestrian counter flow in a corridor...
Numerical optimization of conical flow waveriders including detailed viscous effects
Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego
1987-01-01
A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.
Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan
2018-02-02
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.
Optimization Method of Intersection Signal Coordinated Control Based on Vehicle Actuated Model
Directory of Open Access Journals (Sweden)
Chen Zhao-Meng
2015-01-01
Full Text Available Traditional timing green wave control with predetermined cycle, split, and offset cannot adapt for dynamic real-time traffic flow. This paper proposes a coordinated control method for variable cycle time green wave bandwidth optimization integrated with traffic-actuated control. In the coordinated control, green split is optimized in real time by the measured presence of arriving and/or standing vehicles in each intersection and simultaneously green waves along arterials are guaranteed. Specifically, the dynamic bound of green wave is firstly determined, and then green early-start and green late-start algorithms are presented respectively to accommodate the fluctuations in vehicle arrival rates in each phase. Numerical examples show that the proposed method improves green time, expands green wave bandwidth, and reduces queuing.
Directory of Open Access Journals (Sweden)
Andronov Roman
2018-01-01
Full Text Available By widely introducing information technology tools in the field of traffic control, it is possible to increase the capacity of hubs and reduce vehicle delays. Adaptive traffic light control is one of such tools. Its effectiveness can be assessed through traffic flow simulation. The aim of this study is to create a simulation model of a signal-controlled intersection that can be used to assess the effectiveness of adaptive control in various traffic situations, including the presence or absence of pedestrian traffic through an intersection. The model is based on a numerical experiment conducted using the Monte Carlo method. As a result of the study, vehicle delays, queue length and duration of traffic light cycles are calculated subject to different intensities of incoming traffic flows, and the presence or absence of pedestrian traffic.
Jiang, Jiming
2013-06-01
This paper presents a new wireless platform designed for an integrated traffic monitoring system based on combined Lagrangian (mobile) and Eulerian (fixed) sensing. The sensor platform is built around a 32-bit ARM Cortex M4 micro-controller and a 2.4GHz 802.15.4 ISM compliant radio module, and can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. The platform is specially designed and optimized to be integrated in a solar-powered wireless sensor network in which traffic flow maps are computed by the nodes directly using distributed computing. A MPPT circuitry is proposed to increase the power output of the attached solar panel. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debug. An ongoing implementation is briefly discussed, and compared with existing platforms used in wireless sensor networks. © 2013 IEEE.
Analysis of a Dynamic Multi-Track Airway Concept for Air Traffic Management
Wing, David J.; Smith, Jeremy C.; Ballin, Mark G.
2008-01-01
The Dynamic Multi-track Airways (DMA) Concept for Air Traffic Management (ATM) proposes a network of high-altitude airways constructed of multiple, closely spaced, parallel tracks designed to increase en-route capacity in high-demand airspace corridors. Segregated from non-airway operations, these multi-track airways establish high-priority traffic flow corridors along optimal routes between major terminal areas throughout the National Airspace System (NAS). Air traffic controllers transition aircraft equipped for DMA operations to DMA entry points, the aircraft use autonomous control of airspeed to fly the continuous-airspace airway and achieve an economic benefit, and controllers then transition the aircraft from the DMA exit to the terminal area. Aircraft authority within the DMA includes responsibility for spacing and/or separation from other DMA aircraft. The DMA controller is responsible for coordinating the entry and exit of traffic to and from the DMA and for traffic flow management (TFM), including adjusting DMA routing on a daily basis to account for predicted weather and wind patterns and re-routing DMAs in real time to accommodate unpredicted weather changes. However, the DMA controller is not responsible for monitoring the DMA for traffic separation. This report defines the mature state concept, explores its feasibility and performance, and identifies potential benefits. The report also discusses (a) an analysis of a single DMA, which was modeled within the NAS to assess capacity and determine the impact of a single DMA on regional sector loads and conflict potential; (b) a demand analysis, which was conducted to determine likely city-pair candidates for a nationwide DMA network and to determine the expected demand fraction; (c) two track configurations, which were modeled and analyzed for their operational characteristic; (d) software-prototype airborne capabilities developed for DMA operations research; (e) a feasibility analysis of key attributes in
A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic
Directory of Open Access Journals (Sweden)
Meng Fan-Bo
2016-01-01
Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management
Directory of Open Access Journals (Sweden)
Luis Cruz-Piris
2018-02-01
Full Text Available One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.
Air traffic management evaluation tool
Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)
2012-01-01
Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.
Qiu, Shanwen; Abdelaziz, Mohamed Ewis; Abdel Latif, Fadl Hicham Fadl; Claudel, Christian G.
2013-01-01
In this article, we propose a new exact and grid-free numerical scheme for computing solutions associated with an hybrid traffic flow model based on the Lighthill-Whitham-Richards (LWR) partial differential equation, for a class of fundamental
Adaptive optimization for active queue management supporting TCP flows
Baldi, S.; Kosmatopoulos, Elias B.; Pitsillides, Andreas; Lestas, Marios; Ioannou, Petros A.; Wan, Y.; Chiu, George; Johnson, Katie; Abramovitch, Danny
2016-01-01
An adaptive decentralized strategy for active queue management of TCP flows over communication networks is presented. The proposed strategy solves locally, at each link, an optimal control problem, minimizing a cost composed of residual capacity and buffer queue size. The solution of the optimal
Airborne Management of Traffic Conflicts in Descent With Arrival Constraints
Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik
2005-01-01
NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.
Development of a graphical method for choosing the optimal mode of traffic light
Novikov, A. N.; Katunin, A. A.; Novikov, I. A.; Kravchenko, A. A.; Shevtsova, A. G.
2018-05-01
Changing the transportation infrastructure for improving the main characteristics of the transportation flow is the key problem in transportation planning, therefore the main question lies in the ability to plan the change of the main indicators for the long term. In this investigation, an analysis of the city’s population has been performed and the most difficult transportation segment has been identified. During its identification, the main characteristics of the transportation flow have been established. For the evaluation of these characteristics until 2025, an analysis of the available methods of establishing changes in their values has been conducted. During the analysis of the above mentioned methods of evaluation of the change in intensity, based on the method of extrapolation, three scenarios of the development of the transportation system have been identified. It has been established that the most favorable method of controlling the transportation flow in the entrance to the city is the long term control of the traffic system. For the first time, with the help of the authors, based on the investigations of foreign scientists and the mathematical analysis of the changes in intensiveness on the main routes of the given road, the method of graphically choosing the required control plan has been put forward. The effectiveness of said organization scheme of the transportation system has been rated in the Transyt-14 program, with the analysis of changes in the main characteristics of the transportation flow.
Estimation of traffic recovery time for different flow regimes on freeways.
2008-06-01
This study attempts to estimate post-incident traffic recovery time along a freeway using Monte Carlo simulation techniques. It has been found that there is a linear relationship between post-incident traffic recovery time, and incident time and traf...
Modeling Air Traffic Situation Complexity with a Dynamic Weighted Network Approach
Directory of Open Access Journals (Sweden)
Hongyong Wang
2018-01-01
Full Text Available In order to address the flight delays and risks associated with the forecasted increase in air traffic, there is a need to increase the capacity of air traffic management systems. This should be based on objective measurements of traffic situation complexity. In current air traffic complexity research, no simple means is available to integrate airspace and traffic flow characteristics. In this paper, we propose a new approach for the measurement of air traffic situation complexity. This approach considers the effects of both airspace and traffic flow and objectively quantifies air traffic situation complexity. Considering the aircraft, waypoints, and airways as nodes, and the complexity relationships among these nodes as edges, a dynamic weighted network is constructed. Air traffic situation complexity is defined as the sum of the weights of all edges in the network, and the relationships of complexity with some commonly used indices are statistically analyzed. The results indicate that the new complexity index is more accurate than traffic count and reflects the number of trajectory changes as well as the high-risk situations. Additionally, analysis of potential applications reveals that this new index contributes to achieving complexity-based management, which represents an efficient method for increasing airspace system capacity.
Traffic measurement for big network data
Chen, Shigang; Xiao, Qingjun
2017-01-01
This book presents several compact and fast methods for online traffic measurement of big network data. It describes challenges of online traffic measurement, discusses the state of the field, and provides an overview of the potential solutions to major problems. The authors introduce the problem of per-flow size measurement for big network data and present a fast and scalable counter architecture, called Counter Tree, which leverages a two-dimensional counter sharing scheme to achieve far better memory efficiency and significantly extend estimation range. Unlike traditional approaches to cardinality estimation problems that allocate a separated data structure (called estimator) for each flow, this book takes a different design path by viewing all the flows together as a whole: each flow is allocated with a virtual estimator, and these virtual estimators share a common memory space. A framework of virtual estimators is designed to apply the idea of sharing to an array of cardinality estimation solutions, achi...
Temporal-Spatial Analysis of Traffic Congestion Based on Modified CTM
Directory of Open Access Journals (Sweden)
Chenglong Chu
2015-01-01
Full Text Available A modified cell transmission model (CTM is proposed to depict the temporal-spatial evolution of traffic congestion on urban freeways. Specifically, drivers’ adaptive behaviors and the corresponding influence on traffic flows are emphasized. Two piecewise linear regression models are proposed to describe the relationship of flow and density (occupancy. Several types of cellular connections are designed to depict urban rapid roads with on/off-ramps and junctions. Based on the data collected on freeway of Queen Elizabeth, Ontario, Canada, we show that the new model provides a relatively higher accuracy of temporal-spatial evolution of traffic congestions.
Directory of Open Access Journals (Sweden)
Su Yang
Full Text Available Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1 Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2 The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3 The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.
Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie
2015-01-01
Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.
Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles
DEFF Research Database (Denmark)
Löschner, Katrin; Navratilova, Jana; Legros, Samuel
2013-01-01
flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses...... especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross...... obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs...
Artuñedo, Antonio; Del Toro, Raúl M; Haber, Rodolfo E
2017-04-26
Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller ( TLC ) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.
Directory of Open Access Journals (Sweden)
Antonio Artuñedo
2017-04-01
Full Text Available Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller (TLC network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.
Optimization and control methods in industrial engineering and construction
Wang, Xiangyu
2014-01-01
This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering, and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P, and target contracts optimization. The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and c...
Geometric optimization of cross-flow heat exchanger based on dynamic controllability
Directory of Open Access Journals (Sweden)
Alotaibi Sorour
2008-01-01
Full Text Available The operation of heat exchangers and other thermal equipments in the face of variable loads is usually controlled by manipulating inlet fluid temperatures or mass flow rates, where the controlled variable is usually one of the output temperatures. The aim of this work is to optimize the geometry of a tube with internal flow of water and an external cross-flow of air, based on its controllability characteristics. Controllability is a useful concept both from theoretical and practical perspective since it tells us if a particular output can be controlled by a particular input. This concept can also provide us with information about the easiest operating condition to control a particular output. A transient model of a tube in cross-flow is developed, where an implicit formulation is used for transient numerical solutions. The aspect ratio of the tube is optimized, subject to volume constraints, based on the optimum operation in terms of controllability. The reported optimized aspect ratio, water mass flow rate and controllability are studied for deferent external properties of the tube.
Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint
Energy Technology Data Exchange (ETDEWEB)
Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Low, Steven H. [California Institute of Technology
2017-11-27
This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.
Contributory factors to traffic crashes at signalized intersections in Hong Kong.
Wong, S C; Sze, N N; Li, Y C
2007-11-01
Efficient geometric design and signal timing not only improve operational performance at signalized intersections by expanding capacity and reducing traffic delays, but also result in an appreciable reduction in traffic conflicts, and thus better road safety. Information on the incidence of crashes, traffic flow, geometric design, road environment, and traffic control at 262 signalized intersections in Hong Kong during 2002 and 2003 are incorporated into a crash prediction model. Poisson regression and negative binomial regression are used to quantify the influence of possible contributory factors on the incidence of killed and severe injury (KSI) crashes and slight injury crashes, respectively, while possible interventions by traffic flow are controlled. The results for the incidence of slight injury crashes reveal that the road environment, degree of curvature, and presence of tram stops are significant factors, and that traffic volume has a diminishing effect on the crash risk. The presence of tram stops, number of pedestrian streams, road environment, proportion of commercial vehicles, average lane width, and degree of curvature increase the risk of KSI crashes, but the effect of traffic volume is negligible.
Directory of Open Access Journals (Sweden)
Mina Ghanbarikarekani
2016-06-01
Full Text Available Optimization of signal timing in urban network is usually done by minimizing the delay times or queue lengths. Sincethe effect of each intersection on the whole network is not considered in the mentioned methods, traffic congestion may occur in network links. Therefore, this paper has aimed to provide a timing optimization algorithm for traffic signals using internal timing policy based on balancing queue time ratio of vehicles in network links. In the proposed algorithm, the difference between the real queue time ratio and the optimum one for each link of intersection was minimized. To evaluate the efficiency of the proposed algorithm on traffic performance, the proposed algorithm was applied in a hypothetical network. By comparing the simulating software outputs, before and after implementing the algorithm, it was concluded that the queue time ratio algorithm has improved the traffic parameters by increasing the flow as well as reducing the delay time and density of the network.
CIME course on Modelling and Optimisation of Flows on Networks
Ambrosio, Luigi; Helbing, Dirk; Klar, Axel; Zuazua, Enrique
2013-01-01
In recent years flows in networks have attracted the interest of many researchers from different areas, e.g. applied mathematicians, engineers, physicists, economists. The main reason for this ubiquity is the wide and diverse range of applications, such as vehicular traffic, supply chains, blood flow, irrigation channels, data networks and others. This book presents an extensive set of notes by world leaders on the main mathematical techniques used to address such problems, together with investigations into specific applications. The main focus is on partial differential equations in networks, but ordinary differential equations and optimal transport are also included. Moreover, the modeling is completed by analysis, numerics, control and optimization of flows in networks. The book will be a valuable resource for every researcher or student interested in the subject.
Reports on internet traffic statistics
Hoogesteger, Martijn; de Oliveira Schmidt, R.; Sperotto, Anna; Pras, Aiko
2013-01-01
Internet traffic statistics can provide valuable information to network analysts and researchers about the way nowadays networks are used. In the past, such information was provided by Internet2 in a public website called Internet2 NetFlow: Weekly Reports. The website reported traffic statistics from the Abilene network on a weekly basis. At that time, the network connected 230 research institutes with a 10Gb/s link. Although these reports were limited to the behavior of the Albeline's users,...
Airfoil optimization for unsteady flows with application to high-lift noise reduction
Rumpfkeil, Markus Peer
The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far
Applicability of models to estimate traffic noise for urban roads.
Melo, Ricardo A; Pimentel, Roberto L; Lacerda, Diego M; Silva, Wekisley M
2015-01-01
Traffic noise is a highly relevant environmental impact in cities. Models to estimate traffic noise, in turn, can be useful tools to guide mitigation measures. In this paper, the applicability of models to estimate noise levels produced by a continuous flow of vehicles on urban roads is investigated. The aim is to identify which models are more appropriate to estimate traffic noise in urban areas since several models available were conceived to estimate noise from highway traffic. First, measurements of traffic noise, vehicle count and speed were carried out in five arterial urban roads of a brazilian city. Together with geometric measurements of width of lanes and distance from noise meter to lanes, these data were input in several models to estimate traffic noise. The predicted noise levels were then compared to the respective measured counterparts for each road investigated. In addition, a chart showing mean differences in noise between estimations and measurements is presented, to evaluate the overall performance of the models. Measured Leq values varied from 69 to 79 dB(A) for traffic flows varying from 1618 to 5220 vehicles/h. Mean noise level differences between estimations and measurements for all urban roads investigated ranged from -3.5 to 5.5 dB(A). According to the results, deficiencies of some models are discussed while other models are identified as applicable to noise estimations on urban roads in a condition of continuous flow. Key issues to apply such models to urban roads are highlighted.
An efficient statistical-based approach for road traffic congestion monitoring
Abdelhafid, Zeroual
2017-12-14
In this paper, we propose an effective approach which has to detect traffic congestion. The detection strategy is based on the combinational use of piecewise switched linear traffic (PWSL) model with exponentially-weighted moving average (EWMA) chart. PWSL model describes traffic flow dynamics. Then, PWSL residuals are used as the input of EWMA chart to detect traffic congestions. The evaluation results of the developed approach using data from a portion of the I210-W highway in Califorina showed the efficiency of the PWSL-EWMA approach in in detecting traffic congestions.
An efficient statistical-based approach for road traffic congestion monitoring
Abdelhafid, Zeroual; Harrou, Fouzi; Sun, Ying
2017-01-01
In this paper, we propose an effective approach which has to detect traffic congestion. The detection strategy is based on the combinational use of piecewise switched linear traffic (PWSL) model with exponentially-weighted moving average (EWMA) chart. PWSL model describes traffic flow dynamics. Then, PWSL residuals are used as the input of EWMA chart to detect traffic congestions. The evaluation results of the developed approach using data from a portion of the I210-W highway in Califorina showed the efficiency of the PWSL-EWMA approach in in detecting traffic congestions.
Improved Optical Flow Algorithm for a Intelligent Traffic Tracking System
Directory of Open Access Journals (Sweden)
Xia Yupeng
2013-05-01
Full Text Available It is known that to get the contours and segmentations of moving cars is the essential step of image processing in intelligent traffic tracking systems. As an effective way, the optical flow algorithm is widely used for this kind of applications. But in traditional gradient-based approaches, in order to make the data responding to the edges of moving objects expand to the area, which gray level is flat, it needs to keep the iteration times large enough. It takes a large amount of calculation time, and the accuracy of the result is not as good as expected. In order to improve the numerical reliability of image gradient data, Hessian matrix distinguishing, Gaussian filtering standard deviation amending, mean model amending and multi-image comparing, the four algorithms were investigated by applying them to track moving objects. From the experimental results, it is shown that both the calculation convergence speed and accuracy of our methods have greatly improved comparing with traditional algorithms, the feasibility and validity of those methods were confirmed.
Managing Traffic Flows for Cleaner Cities: The Role of Green Navigation Systems
Directory of Open Access Journals (Sweden)
Fiamma Perez-Prada
2017-06-01
Full Text Available Cities worldwide suffer from serious air pollution problems and are main contributors to climate change. Green Navigation systems have a great potential to reduce fuel consumption and exhaust emissions from traffic. This research evaluates the impacts of different percentages of green drivers on traffic, CO2, and NOx over the entire Madrid Region. A macroscopic traffic model was combined with an enhanced macroscopic emissions model and a GIS (Geographic Information Systems to simulate emissions on the basis of average vehicle speeds and traffic intensity at the link level. NOx emissions are evaluated, taking into account not only the exhaust emissions produced by transport activity, but also the amount of the population exposed to these air pollutants. Results show up to 10.4% CO2 and 13.8% NOx reductions in congested traffic conditions for a 90% penetration of green drivers; however, the population’s exposure to NOx increases up to 20.2%. Moreover, while traffic volumes decrease by 13.5% for the entire region, they increase by up to 16.4% downtown. Travel times also increase by 28.7%. Since green drivers tend to choose shorter routes through downtown areas, eco-routing systems are an effective tool for fighting climate change, but are ineffective to reduce air pollution in dense urban areas.
Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays
Directory of Open Access Journals (Sweden)
Helen V. Hsieh
2017-05-01
Full Text Available Immunochromatographic or lateral flow assays (LFAs are inexpensive, easy to use, point-of-care medical diagnostic tests that are found in arenas ranging from a doctor’s office in Manhattan to a rural medical clinic in low resource settings. The simplicity in the LFA itself belies the complex task of optimization required to make the test sensitive, rapid and easy to use. Currently, the manufacturers develop LFAs by empirical optimization of material components (e.g., analytical membranes, conjugate pads and sample pads, biological reagents (e.g., antibodies, blocking reagents and buffers and the design of delivery geometry. In this paper, we will review conventional optimization and then focus on the latter and outline analytical tools, such as dynamic light scattering and optical biosensors, as well as methods, such as microfluidic flow design and mechanistic models. We are applying these tools to find non-obvious optima of lateral flow assays for improved sensitivity, specificity and manufacturing robustness.
Efficient relaxations for joint chance constrained AC optimal power flow
Energy Technology Data Exchange (ETDEWEB)
Baker, Kyri; Toomey, Bridget
2017-07-01
Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality as an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.
Expanding the Use of Time-Based Metering: Multi-Center Traffic Management Advisor
Landry, Steven J.; Farley, Todd; Hoang, Ty
2005-01-01
Time-based metering is an efficient air traffic management alternative to the more common practice of distance-based metering (or "miles-in-trail spacing"). Despite having demonstrated significant operational benefit to airspace users and service providers, time-based metering is used in the United States for arrivals to just nine airports and is not used at all for non-arrival traffic flows. The Multi-Center Traffic Management Advisor promises to bring time-based metering into the mainstream of air traffic management techniques. Not constrained to operate solely on arrival traffic, Multi-Center Traffic Management Advisor is flexible enough to work in highly congested or heavily partitioned airspace for any and all traffic flows in a region. This broader and more general application of time-based metering is expected to bring the operational benefits of time-based metering to a much wider pool of beneficiaries than is possible with existing technology. It also promises to facilitate more collaborative traffic management on a regional basis. This paper focuses on the operational concept of the Multi-Center Traffic Management Advisor, touching also on its system architecture, field test results, and prospects for near-term deployment to the United States National Airspace System.
Traffic signal synchronization in the saturated high-density grid road network.
Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye
2015-01-01
Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.
Modeling pedestrian gap crossing index under mixed traffic condition.
Naser, Mohamed M; Zulkiple, Adnan; Al Bargi, Walid A; Khalifa, Nasradeen A; Daniel, Basil David
2017-12-01
There are a variety of challenges faced by pedestrians when they walk along and attempt to cross a road, as the most recorded accidents occur during this time. Pedestrians of all types, including both sexes with numerous aging groups, are always subjected to risk and are characterized as the most exposed road users. The increased demand for better traffic management strategies to reduce the risks at intersections, improve quality traffic management, traffic volume, and longer cycle time has further increased concerns over the past decade. This paper aims to develop a sustainable pedestrian gap crossing index model based on traffic flow density. It focusses on the gaps accepted by pedestrians and their decision for street crossing, where (Log-Gap) logarithm of accepted gaps was used to optimize the result of a model for gap crossing behavior. Through a review of extant literature, 15 influential variables were extracted for further empirical analysis. Subsequently, data from the observation at an uncontrolled mid-block in Jalan Ampang in Kuala Lumpur, Malaysia was gathered and Multiple Linear Regression (MLR) and Binary Logit Model (BLM) techniques were employed to analyze the results. From the results, different pedestrian behavioral characteristics were considered for a minimum gap size model, out of which only a few (four) variables could explain the pedestrian road crossing behavior while the remaining variables have an insignificant effect. Among the different variables, age, rolling gap, vehicle type, and crossing were the most influential variables. The study concludes that pedestrians' decision to cross the street depends on the pedestrian age, rolling gap, vehicle type, and size of traffic gap before crossing. The inferences from these models will be useful to increase pedestrian safety and performance evaluation of uncontrolled midblock road crossings in developing countries. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Volodymyr Kharchenko
2017-03-01
Full Text Available Purpose: the aim of this study is to research applied models of air traffic controllers’ errors prevention in terminal control areas (TMA under uncertainty conditions. In this work the theoretical framework descripting safety events and errors of air traffic controllers connected with the operations in TMA is proposed. Methods: optimisation of terminal control area formal description based on the Threat and Error management model and the TMA network model of air traffic flows. Results: the human factors variables associated with safety events in work of air traffic controllers under uncertainty conditions were obtained. The Threat and Error management model application principles to air traffic controller operations and the TMA network model of air traffic flows were proposed. Discussion: Information processing context for preventing air traffic controller errors, examples of threats in work of air traffic controllers, which are relevant for TMA operations under uncertainty conditions.
Wang, William S.; Vanapalli, Siva A.
2014-01-01
We report that modular millifluidic networks are simpler, more cost-effective alternatives to traditional microfluidic networks, and they can be rapidly generated and altered to optimize designs. Droplet traffic can also be studied more conveniently and inexpensively at the millimeter scale, as droplets are readily visible to the naked eye. Bifurcated loops, ladder networks, and parking networks were made using only Tygon® tubing and plastic T-junction fittings and visualized using an iPod® camera. As a case study, droplet traffic experiments through a millifluidic bifurcated loop were conducted, and the periodicity of drop spacing at the outlet was mapped over a wide range of inlet drop spacing. We observed periodic, intermittent, and aperiodic behaviors depending on the inlet drop spacing. The experimentally observed periodic behaviors were in good agreement with numerical simulations based on the simple network model. Our experiments further identified three main sources of intermittency between different periodic and/or aperiodic behaviors: (1) simultaneous entering and exiting events, (2) channel defects, and (3) equal or nearly equal hydrodynamic resistances in both sides of the bifurcated loop. In cases of simultaneous events and/or channel defects, the range of input spacings where intermittent behaviors are observed depends on the degree of inherent variation in input spacing. Finally, using a time scale analysis of syringe pump fluctuations and experiment observation times, we find that in most cases, more consistent results can be generated in experiments conducted at the millimeter scale than those conducted at the micrometer scale. Thus, millifluidic networks offer a simple means to probe collective interactions due to drop traffic and optimize network geometry to engineer passive devices for biological and material analysis. PMID:25553188
Optimal orientation in flows : Providing a benchmark for animal movement strategies
McLaren, James D.; Shamoun-Baranes, Judy; Dokter, Adriaan M.; Klaassen, Raymond H. G.; Bouten, Willem
2014-01-01
Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal)
Rapid transporter regulation prevents substrate flow traffic jams in boron transport
Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi
2017-01-01
Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana, boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow. PMID:28870285
Adaptive traffic control systems for urban networks
Directory of Open Access Journals (Sweden)
Radivojević Danilo
2017-01-01
Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.
Overtaking as Indicator of Road Traffic Conditions
Directory of Open Access Journals (Sweden)
Dražen Topolnik
2012-10-01
Full Text Available Overtaking is presemed as one of the indicators of roadtraffic flow. The possibility of overtaking depends on the existenceof an intetval in the opposing traffic flow sufficient to performovertaking. It also analyses the probability of overtakingby applying adequate equations and graphical presentations
Directory of Open Access Journals (Sweden)
В.П. Харченко
2010-01-01
Full Text Available The issue of application of Air Traffic Control (ATC competence reference models as a mean of air navigation services provider’s charge optimization is described in the article, and this issue is interpretated as an optimization task. The data relating to the significant growth of aviation traffic, especially using the airspace of Ukraine, given by authors, and the statement of fact that Air Traffic Management (ATM system’s technical component reliability increasement takes place on the basis of practically invariable psychophysiological abilities of aviation controller, make the substantiation of ANSP provision with the most trained ATC controllers for the work on the working places of ATC Unit actual. The ‘mechanism’ of ATC controllers competence reference model creation is defined step-by step. There is an example of candidate’s for the working place competence quantitative individual model forming as a common criteria of competence, which, in its turn, is the compressed format of all parameters of its working activity, received at the stage of control. The approach, according to which the individual parameters of graduating student’s output model’s professional characteristics, which he received after the examination of his work as Tower controller (ATM Unit of aerodrome control service, approach controller or area control service controller, are compared with the predetermined specialist’s competence reference model, relating to the special working place in ATM system, is supposed here. Notably, the conception, relating to the correspondence of the graduating student’s competence output level to the defined reference model of ATC controller, relating to the special working place of ATM Unit, is realised.
Shakouri, Mahmoud; Ikuma, Laura H; Aghazadeh, Fereydoun; Punniaraj, Karthy; Ishak, Sherif
2014-10-01
This paper investigates the effect of changing work zone configurations and traffic density on performance variables and subjective workload. Data regarding travel time, average speed, maximum percent braking force and location of lane changes were collected by using a full size driving simulator. The NASA-TLX was used to measure self-reported workload ratings during the driving task. Conventional lane merge (CLM) and joint lane merge (JLM) were modeled in a driving simulator, and thirty participants (seven female and 23 male), navigated through the two configurations with two levels of traffic density. The mean maximum braking forces was 34% lower in the JLM configuration, and drivers going through the JLM configuration remained in the closed lane longer. However, no significant differences in speed were found between the two merge configurations. The analysis of self-reported workload ratings show that participants reported 15.3% lower total workload when driving through the JLM. In conclusion, the implemented changes in the JLM make it a more favorable merge configuration in both high and low traffic densities in terms of optimizing traffic flow by increasing the time and distance cars use both lanes, and in terms of improving safety due to lower braking forces and lower reported workload. Copyright © 2014 Elsevier Ltd. All rights reserved.
Refining Lane-Based Traffic Signal Settings to Satisfy Spatial Lane Length Requirements
Directory of Open Access Journals (Sweden)
Yanping Liu
2017-01-01
Full Text Available In conventional lane-based signal optimization models, lane markings guiding road users in making turns are optimized with traffic signal settings in a unified framework to maximize the overall intersection capacity or minimize the total delay. The spatial queue requirements of road lanes should be considered to avoid overdesigns of green durations. Point queue system adopted in the conventional lane-based framework causes overflow in practice. Based on the optimization results from the original lane-based designs, a refinement is proposed to enhance the lane-based settings to ensure that spatial holding limits of the approaching traffic lanes are not exceeded. A solution heuristic is developed to modify the green start times, green durations, and cycle length by considering the vehicle queuing patterns and physical holding capacities along the approaching traffic lanes. To show the effectiveness of this traffic signal refinement, a case study of one of the busiest and most complicated intersections in Hong Kong is given for demonstration. A site survey was conducted to collect existing traffic demand patterns and existing traffic signal settings in peak periods. Results show that the proposed refinement method is effective to ensure that all vehicle queue lengths satisfy spatial lane capacity limits, including short lanes, for daily operation.
Optimization of micropillar sequences for fluid flow sculpting
Energy Technology Data Exchange (ETDEWEB)
Stoecklein, Daniel; Ganapathysubramanian, Baskar [Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Wu, Chueh-Yu; Kim, Donghyuk; Di Carlo, Dino [Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)
2016-01-15
Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery. We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in microchannels with different micropillar configurations as a set of state transition matrix operations. These state transition matrices are constructed from experimentally validated streamtraces for a fixed channel length per pillar. This facilitates modeling the effect of a sequence of micropillars as nested matrix-matrix products, which have very efficient numerical implementations. With this new forward model, arbitrary micropillar sequences can be rapidly simulated with various inlet configurations, allowing optimization routines quick access to a large search space. We integrate this framework with the genetic algorithm and showcase its applicability by designing micropillar sequences for various useful transformations. We computationally discover micropillar sequences for complex transformations that are substantially shorter than manually designed sequences. We also determine sequences for novel transformations that were difficult to manually design. Finally, we experimentally validate these computational designs by fabricating devices and comparing predictions with the results from confocal microscopy.
Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint
Energy Technology Data Exchange (ETDEWEB)
Baker, Kyri; Dall' Anese, Emiliano; Summers, Tyler
2016-09-01
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flow equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.
Mathematical programs with complementarity constraints in traffic and telecommunications networks.
Ralph, Daniel
2008-06-13
Given a suitably parametrized family of equilibrium models and a higher level criterion by which to measure an equilibrium state, mathematical programs with equilibrium constraints (MPECs) provide a framework for improving or optimizing the equilibrium state. An example is toll design in traffic networks, which attempts to reduce total travel time by choosing which arcs to toll and what toll levels to impose. Here, a Wardrop equilibrium describes the traffic response to each toll design. Communication networks also have a deep literature on equilibrium flows that suggest some MPECs. We focus on mathematical programs with complementarity constraints (MPCCs), a subclass of MPECs for which the lower level equilibrium system can be formulated as a complementarity problem and therefore, importantly, as a nonlinear program (NLP). Although MPECs and MPCCs are typically non-convex, which is a consequence of the upper level objective clashing with the users' objectives in the lower level equilibrium program, the last decade of research has paved the way for finding local solutions of MPCCs via standard NLP techniques.
Joint QoS and Congestion Control Based on Traffic Prediction in SDN
Directory of Open Access Journals (Sweden)
Mohammad Mahdi Tajiki
2017-12-01
Full Text Available Due to the various network requirements of applications, quality of service (QoS-aware routing plays an important role in the networks. Recently proposed resource allocation algorithms focus on the current traffic matrix, which is not applicable for dynamic networks. In this paper, we exploit an estimation of flow matrix that gives our scheme the ability to sufficiently reduce the total packet loss and simultaneously raise the network throughput. In this way, we mathematically formulate the QoS-aware resource reallocation in software-defined networking (SDN networks based on the traffic prediction. To solve this optimization problem, two schemes are proposed: (i exact solution; and (ii fast suboptimal one. The proposed schemes are compared with the accuracy perspective. Moreover, the impact of prediction on resource reallocation is discussed. In this regard, it is shown that, compared with the conventional scheme, the proposed scheme decreases the packet loss and increases the throughput significantly.
Validating the passenger traffic model for Copenhagen
DEFF Research Database (Denmark)
Overgård, Christian Hansen; VUK, Goran
2006-01-01
The paper presents a comprehensive validation procedure for the passenger traffic model for Copenhagen based on external data from the Danish national travel survey and traffic counts. The model was validated for the years 2000 to 2004, with 2004 being of particular interest because the Copenhagen...... matched the observed traffic better than those of the transit assignment model. With respect to the metro forecasts, the model over-predicts metro passenger flows by 10% to 50%. The wide range of findings from the project resulted in two actions. First, a project was started in January 2005 to upgrade...
Leveraging spatial abstraction in traffic analysis and forecasting with visual analytics
Andrienko, N.; Andrienko, G.; Rinzivillo, S.
2016-01-01
A spatially abstracted transportation network is a graph where nodes are territory compartments (areas in geographic space) and edges, or links, are abstract constructs, each link representing all possible paths between two neighboring areas. By applying visual analytics techniques to vehicle traffic data from different territories, we discovered that the traffic intensity (a.k.a. traffic flow or traffic flux) and the mean velocity are interrelated in a spatially abstracted transportation net...
Cost-optimal power system extension under flow-based market coupling
Energy Technology Data Exchange (ETDEWEB)
Hagspiel, Simeon; Jaegemann, Cosima; Lindenberger, Dietmar [Koeln Univ. (Germany). Energiewirtschaftliches Inst.; Brown, Tom; Cherevatskiy, Stanislav; Troester, Eckehard [Energynautics GmbH, Langen (Germany)
2013-05-15
Electricity market models, implemented as dynamic programming problems, have been applied widely to identify possible pathways towards a cost-optimal and low carbon electricity system. However, the joint optimization of generation and transmission remains challenging, mainly due to the fact that different characteristics and rules apply to commercial and physical exchanges of electricity in meshed networks. This paper presents a methodology that allows to optimize power generation and transmission infrastructures jointly through an iterative approach based on power transfer distribution factors (PTDFs). As PTDFs are linear representations of the physical load flow equations, they can be implemented in a linear programming environment suitable for large scale problems. The algorithm iteratively updates PTDFs when grid infrastructures are modified due to cost-optimal extension and thus yields an optimal solution with a consistent representation of physical load flows. The method is first demonstrated on a simplified three-node model where it is found to be robust and convergent. It is then applied to the European power system in order to find its cost-optimal development under the prescription of strongly decreasing CO{sub 2} emissions until 2050.
Evaluating the Interference of Bicycle Traffic on Vehicle Operation on Urban Streets with Bike Lanes
Directory of Open Access Journals (Sweden)
Ziyuan Pu
2017-01-01
Full Text Available Many urban streets are designed with on-street bike lanes to provide right-of-way for bicycle traffic. However, when bicycle flow is large, extensive passing maneuvers could occupy vehicle lanes and thus cause interferences to vehicle traffic. The primary objective of this study is to evaluate how bicycle traffic affects vehicle operation on urban streets with bike lanes. Data were collected on six street segments in Nanjing, China. The cumulative curves were constructed to extract traffic flow information including individual bicycle and vehicle speeds and aggregated traffic parameters such as flow and density. The results showed that as bicycle density on bike lanes continuously increases faster bicycles may run into vehicle lanes causing considerable reductions in vehicle speeds. A generalized linear model was estimated to predict the vehicle delay. Results showed that vehicle delay increases as bicycle flow and vehicle flow increase. Number of vehicle lanes and width of bike lane also have significant impact on vehicle delay. Findings of the study are helpful to regions around the world in bike infrastructure design in order to improve operations of both bicycles and vehicles.
LightFD: A Lightweight Flow Detection Mechanism for Traffic Grooming in Optical Wireless DCNs
Al-Ghadhban, Amer
2018-05-05
State of the art wireless technologies have recently shown a great potential for enabling re-configurable data center network (DCN) topologies by augmenting the cabling complexity and link inflexibility of traditional wired data centers (DCs). In this paper, we propose an optical traffic grooming (TG) method for mice flows (MFs) and elephant flows (EFs) in wireless DCNs which are interconnected with wavelength division multiplexing (WDM) capable free-space optical (FSO) links. Since handling the bandwidth-hungry EFs along with delay-sensitive MFs over the same network resources have undesirable consequences, proposed TG policy handles MFs and EFs over distinctive network resources. MFs/EFs destined to the same rack are groomed into larger rack-to-rack MF/EF flows over dedicated lightpaths whose routes and capacities are jointly determined in a load balancing manner. Performance evaluations of proposed TG policy show a significant throughput improvement thanks to efficient bandwidth utilization of the WDM-FSO links. As MFs and EFs are needed to be separated, proposed TG requires expeditious flow detection mechanisms which can immediately classify EFs with very high accuracy. Since these cannot be met by existing packet-sampling and port-mirroring based solutions, we propose a fast and lightweight in-network flow detection (LightFD) mechanism with perfect accuracy. LightFD is designed as a module on the Virtual-Switch/Hypervisor, which detects EFs based on acknowledgment sequence number of flow packets. Emulation results show that LightFD can provide up to 500 times faster detection speeds than the sampling-based methods with %100 detection precision. We also demonstrate that the EF detection speed has a considerable impact on achievable EF throughput.
Detecting Traffic Anomalies in Urban Areas Using Taxi GPS Data
Directory of Open Access Journals (Sweden)
Weiming Kuang
2015-01-01
Full Text Available Large-scale GPS data contain hidden information and provide us with the opportunity to discover knowledge that may be useful for transportation systems using advanced data mining techniques. In major metropolitan cities, many taxicabs are equipped with GPS devices. Because taxies operate continuously for nearly 24 hours per day, they can be used as reliable sensors for the perceived traffic state. In this paper, the entire city was divided into subregions by roads, and taxi GPS data were transformed into traffic flow data to build a traffic flow matrix. In addition, a highly efficient anomaly detection method was proposed based on wavelet transform and PCA (principal component analysis for detecting anomalous traffic events in urban regions. The traffic anomaly is considered to occur in a subregion when the values of the corresponding indicators deviate significantly from the expected values. This method was evaluated using a GPS dataset that was generated by more than 15,000 taxies over a period of half a year in Harbin, China. The results show that this detection method is effective and efficient.