WorldWideScience

Sample records for optimized link state

  1. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2012-01-01

    of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link...... optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm...

  2. LinkMind: link optimization in swarming mobile sensor networks.

    Science.gov (United States)

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  3. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2011-08-01

    Full Text Available A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  4. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal...

  5. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  6. Optimal resource states for local state discrimination

    Science.gov (United States)

    Bandyopadhyay, Somshubhro; Halder, Saronath; Nathanson, Michael

    2018-02-01

    We study the problem of locally distinguishing pure quantum states using shared entanglement as a resource. For a given set of locally indistinguishable states, we define a resource state to be useful if it can enhance local distinguishability and optimal if it can distinguish the states as well as global measurements and is also minimal with respect to a partial ordering defined by entanglement and dimension. We present examples of useful resources and show that an entangled state need not be useful for distinguishing a given set of states. We obtain optimal resources with explicit local protocols to distinguish multipartite Greenberger-Horne-Zeilinger and graph states and also show that a maximally entangled state is an optimal resource under one-way local operations and classical communication to distinguish any bipartite orthonormal basis which contains at least one entangled state of full Schmidt rank.

  7. LINKING STATE, UNIVERSITY AND BUSINESS IN NICARAGUA

    Directory of Open Access Journals (Sweden)

    Máximo Andrés Rodríguez Pérez

    2015-07-01

    Full Text Available In Nicaragua levels Linking state, university and business are low, Nicaraguan universities have initiated communication strategies with the state and the private sector. The idiosyncrasies of its citizens favor this link. The entailment policies formalize the communications and information networks. Universities have a key role in building models and organizations that provide alternatives to economic development. Linking the university with the environment, generating virtuous circles, where companies achieve greater competitiveness, the state, higher taxes and public stability, universities generate new knowledge. This article analyzes the strategies linking U-E- E that can be applied in Nicaragua, to strengthen and achieve positive developments in the country.

  8. Optimal trajectories for flexible-link manipulator slewing using recursive quadratic programming: Experimental verification

    International Nuclear Information System (INIS)

    Parker, G.G.; Eisler, G.R.; Feddema, J.T.

    1994-01-01

    Procedures for trajectory planning and control of flexible link robots are becoming increasingly important to satisfy performance requirements of hazardous waste removal efforts. It has been shown that utilizing link flexibility in designing open loop joint commands can result in improved performance as opposed to damping vibration throughout a trajectory. The efficient use of link compliance is exploited in this work. Specifically, experimental verification of minimum time, straight line tracking using a two-link planar flexible robot is presented. A numerical optimization process, using an experimentally verified modal model, is used for obtaining minimum time joint torque and angle histories. The optimal joint states are used as commands to the proportional-derivative servo actuated joints. These commands are precompensated for the nonnegligible joint servo actuator dynamics. Using the precompensated joint commands, the optimal joint angles are tracked with such fidelity that the tip tracking error is less than 2.5 cm

  9. Optimal design of link systems using successive zooming genetic algorithm

    Science.gov (United States)

    Kwon, Young-Doo; Sohn, Chang-hyun; Kwon, Soon-Bum; Lim, Jae-gyoo

    2009-07-01

    Link-systems have been around for a long time and are still used to control motion in diverse applications such as automobiles, robots and industrial machinery. This study presents a procedure involving the use of a genetic algorithm for the optimal design of single four-bar link systems and a double four-bar link system used in diesel engine. We adopted the Successive Zooming Genetic Algorithm (SZGA), which has one of the most rapid convergence rates among global search algorithms. The results are verified by experiment and the Recurdyn dynamic motion analysis package. During the optimal design of single four-bar link systems, we found in the case of identical input/output (IO) angles that the initial and final configurations show certain symmetry. For the double link system, we introduced weighting factors for the multi-objective functions, which minimize the difference between output angles, providing balanced engine performance, as well as the difference between final output angle and the desired magnitudes of final output angle. We adopted a graphical method to select a proper ratio between the weighting factors.

  10. Query optimization for graph analytics on linked data using SPARQL

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokyong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lim, Seung -Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sukumar, Sreenivas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vatsavai, Ranga Raju [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    Triplestores that support query languages such as SPARQL are emerging as the preferred and scalable solution to represent data and meta-data as massive heterogeneous graphs using Semantic Web standards. With increasing adoption, the desire to conduct graph-theoretic mining and exploratory analysis has also increased. Addressing that desire, this paper presents a solution that is the marriage of Graph Theory and the Semantic Web. We present software that can analyze Linked Data using graph operations such as counting triangles, finding eccentricity, testing connectedness, and computing PageRank directly on triple stores via the SPARQL interface. We describe the process of optimizing performance of the SPARQL-based implementation of such popular graph algorithms by reducing the space-overhead, simplifying iterative complexity and removing redundant computations by understanding query plans. Our optimized approach shows significant performance gains on triplestores hosted on stand-alone workstations as well as hardware-optimized scalable supercomputers such as the Cray XMT.

  11. Optimal cloning of mixed Gaussian states

    International Nuclear Information System (INIS)

    Guta, Madalin; Matsumoto, Keiji

    2006-01-01

    We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states

  12. Groundwater Pollution Source Identification using Linked ANN-Optimization Model

    Science.gov (United States)

    Ayaz, Md; Srivastava, Rajesh; Jain, Ashu

    2014-05-01

    Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration

  13. Reexamination of optimal quantum state estimation of pure states

    International Nuclear Information System (INIS)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2005-01-01

    A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independent of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input

  14. Optimal state discrimination using particle statistics

    International Nuclear Information System (INIS)

    Bose, S.; Ekert, A.; Omar, Y.; Paunkovic, N.; Vedral, V.

    2003-01-01

    We present an application of particle statistics to the problem of optimal ambiguous discrimination of quantum states. The states to be discriminated are encoded in the internal degrees of freedom of identical particles, and we use the bunching and antibunching of the external degrees of freedom to discriminate between various internal states. We show that we can achieve the optimal single-shot discrimination probability using only the effects of particle statistics. We discuss interesting applications of our method to detecting entanglement and purifying mixed states. Our scheme can easily be implemented with the current technology

  15. State dependent optimization of measurement policy

    Science.gov (United States)

    Konkarikoski, K.

    2010-07-01

    Measurements are the key to rational decision making. Measurement information generates value, when it is applied in the decision making. An investment cost and maintenance costs are associated with each component of the measurement system. Clearly, there is - under a given set of scenarios - a measurement setup that is optimal in expected (discounted) utility. This paper deals how the measurement policy optimization is affected by different system states and how this problem can be tackled.

  16. State dependent optimization of measurement policy

    International Nuclear Information System (INIS)

    Konkarikoski, K

    2010-01-01

    Measurements are the key to rational decision making. Measurement information generates value, when it is applied in the decision making. An investment cost and maintenance costs are associated with each component of the measurement system. Clearly, there is - under a given set of scenarios - a measurement setup that is optimal in expected (discounted) utility. This paper deals how the measurement policy optimization is affected by different system states and how this problem can be tackled.

  17. Optimal optical communication terminal structure for maximizing the link budget

    Science.gov (United States)

    Huang, Jian; Jiang, Dagang; Deng, Ke; Zhang, Peng

    2015-02-01

    Ordinary inter-satellite optical includes at least three optical paths for acquisition, tracking and communication, the three optical paths work simultaneously and share the received power. An optimal structure of inter-satellite optical communication terminal with single working optical path at each of working stages of acquisition and communication is introduced. A space optical switch based on frustrated total internal reflection effect is applied to switch the received laser power between the acquisition sensor and the communication sensor between the stages of acquisition and communication, this is named as power fusion which means power is transferred for shutting down unused optical path. For the stages of tracking and communication, a multiple cells sensor is used to accomplish the operation of tracking while communication, this is named as function fusion which means accomplishing multiple functions by one device to reduce the redundant optical paths. For optical communication terminal with single working path structure, the total received laser power would be detected by one sensor for each different stages of acquisition, tracking and communication, the link budget would be maximized, and this design would help to enlarge the system tolerance and reduce the acquisition time.

  18. So You Want to Link Your State Data

    Science.gov (United States)

    1996-07-01

    This technical report discusses the advantages of linking state accident and : medical data to enhance decision making on highway safety and injury control : activities. Such data linkage for decision making support requires a systematic : approach t...

  19. Effects of multi-state links in network community detection

    International Nuclear Information System (INIS)

    Rocco, Claudio M.; Moronta, José; Ramirez-Marquez, José E.; Barker, Kash

    2017-01-01

    A community is defined as a group of nodes of a network that are densely interconnected with each other but only sparsely connected with the rest of the network. The set of communities (i.e., the network partition) and their inter-community links could be derived using special algorithms account for the topology of the network and, in certain cases, the possible weights associated to the links. In general, the set of weights represents some characteristic as capacity, flow and reliability, among others. The effects of considering weights could be translated to obtain a different partition. In many real situations, particularly when modeling infrastructure systems, networks must be modeled as multi-state networks (e.g., electric power networks). In such networks, each link is characterized by a vector of known random capacities (i.e., the weight on each link could vary according to a known probability distribution). In this paper a simple Monte Carlo approach is proposed to evaluate the effects of multi-state links on community detection as well as on the performance of the network. The approach is illustrated with the topology of an electric power system. - Highlights: • Identify network communities when considering multi-state links. • Identified how effects of considering weights translate to different partition. • Identified importance of Inter-Community Links and changes with respect to community. • Preamble to performing a resilience assessment able to mimic the evolution of the state of each community.

  20. An auxiliary optimization method for complex public transit route network based on link prediction

    Science.gov (United States)

    Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian

    2018-02-01

    Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.

  1. Optimal Constant DC Link Voltage Operation of aWave Energy Converter

    Directory of Open Access Journals (Sweden)

    Mats Leijon

    2013-04-01

    Full Text Available This article proposes a simple and reliable damping strategy for wave powerfarm operation of small-scale point-absorber converters. The strategy is based on passiverectification onto a constant DC-link, making it very suitable for grid integration of the farm.A complete model of the system has been developed in Matlab Simulink, and uses real sitedata as input. The optimal constant DC-voltage is evaluated as a function of the significantwave height and energy period of the waves. The total energy output of the WEC is derivedfor one year of experimental site data. The energy output is compared for two cases, onewhere the optimal DC-voltage is determined and held constant at half-hour basis throughoutthe year, and one where a selected value of the DC-voltage is kept constant throughout theyear regardless of sea state.

  2. Power Link Optimization for a Neurostimulator in Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Seunghyun Lee

    2017-01-01

    Full Text Available This paper examines system optimization for wirelessly powering a small implant embedded in tissue. For a given small receiver in a multilayer tissue model, the transmitter is abstracted as a sheet of tangential current density for which the optimal distribution is analytically found. This proposes a new design methodology for wireless power transfer systems. That is, from the optimal current distribution, the maximum achievable efficiency is derived first. Next, various design parameters are determined to achieve the target efficiency. Based on this design methodology, a centimeter-sized neurostimulator inside the nasal cavity is demonstrated. For this centimeter-sized implant, the optimal distribution resembles that of a coil source and the optimal frequency is around 15 MHz. While the existing solution showed an efficiency of about 0.3 percent, the proposed system could enhance the efficiency fivefold.

  3. Optimized entanglement witnesses for Dicke states

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Marcel; Guehne, Otfried [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen, Department Physik, Walter-Flex-Strasse 3, D-57068 Siegen (Germany)

    2013-07-01

    Quantum entanglement is an important resource for applications in quantum information processing like quantum teleportation and cryptography. Moreover, the number of particles that can be entangled experimentally using polarized photons or ion traps has been significantly enlarged. Therefore, criteria to decide the question whether a given multi-particle state is entangled or not have to be improved. Our approach to this problem uses the notion of PPT mixtures which form an approximation to the set of bi-separable states. With this method, entanglement witnesses can be obtained in a natural manner via linear semi-definite programming. In our contribution, we will present analytical results for entanglement witnesses for Dicke states. This allows to overcome the limitations of convex optimization.

  4. Optimizing link efficiency for gated DPCCH transmission on HSUPA

    DEFF Research Database (Denmark)

    Zarco, Carlos Ruben Delgado; Wigard, Jeroen; Kolding, T. E.

    2007-01-01

    consider the E-DCH performance degradation caused by gating on other radio procedures relying on the DPCCH, such as inner and outer loop power control. Our studies show that gating is beneficial for both for 2 and 10 ms transmission time intervals. The gains in terms of LE with a Vehicular A 30 kmph......To minimize the terminal's transmission power in bursty uplink traffic conditions, the evolved High-Speed Uplink Packet Access (HSUPA) concept in 3GPP WCDMA includes a feature known as Dedicated Physical Control Channel (DPCCH) gating. We present here a detailed link level study of gating from...... a link efficiency (LE) perspective; LE being expressed in bits per second per Watt. While the overall gain mechanisms of gating are well known, we show how special challenges related to discontinuous Enhanced Dedicated Channel (E-DCH) transmission can be addressed for high link and system performance. We...

  5. Decomposition of the Google pagerank and optimal linking strategy

    NARCIS (Netherlands)

    Avrachenkov, Konstatin; Litvak, Nelli

    2004-01-01

    We provide the analysis of the Google PageRank from the perspective of the Markov Chain Theory. First we study the Google PageRank for a Web that can be decomposed into several connected components which do not have any links to each other. We show that in order to determine the Google PageRank for

  6. Optimizing Word Learning via Links to Perceptual and Motoric Experience

    NARCIS (Netherlands)

    Hald, Lea A.; de Nooijer, Jacqueline; van Gog, Tamara|info:eu-repo/dai/nl/294304975; Bekkering, Harold

    2016-01-01

    The aim of this review is to consider how current vocabulary training methods could be optimized by considering recent scientific insights in how the brain represents conceptual knowledge. We outline the findings from several methods of vocabulary training. In each case, we consider how taking an

  7. Optimizing Word Learning via Links to Perceptual and Motoric Experience

    Science.gov (United States)

    Hald, Lea A.; de Nooijer, Jacqueline; van Gog, Tamara; Bekkering, Harold

    2016-01-01

    The aim of this review is to consider how current vocabulary training methods could be optimized by considering recent scientific insights in how the brain represents conceptual knowledge. We outline the findings from several methods of vocabulary training. In each case, we consider how taking an embodied cognition perspective could impact word…

  8. Optimal signal states for quantum detectors

    International Nuclear Information System (INIS)

    Oreshkov, Ognyan; Calsamiglia, John; Munoz-Tapia, Ramon; Bagan, Emili

    2011-01-01

    Quantum detectors provide information about the microscopic properties of quantum systems by establishing correlations between those properties and a set of macroscopically distinct events that we observe. The question of how much information a quantum detector can extract from a system is therefore of fundamental significance. In this paper, we address this question within a precise framework: given a measurement apparatus implementing a specific POVM measurement, what is the optimal performance achievable with it for a specific information readout task and what is the optimal way to encode information in the quantum system in order to achieve this performance? We consider some of the most common information transmission tasks-the Bayes cost problem, unambiguous message discrimination and the maximal mutual information. We provide general solutions to the Bayesian and unambiguous discrimination problems. We also show that the maximal mutual information is equal to the classical capacity of the quantum-to-classical channel describing the measurement, and study its properties in certain special cases. For a group covariant measurement, we show that the problem is equivalent to the problem of accessible information of a group covariant ensemble of states. We give analytical proofs of optimality in some relevant cases. The framework presented here provides a natural way to characterize generalized quantum measurements in terms of their information readout capabilities.

  9. Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission.

    Science.gov (United States)

    Kiani, Mehdi; Jow, Uei-Ming; Ghovanloo, Maysam

    2011-07-14

    Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for 13.56 MHz carrier frequency and 12 cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.

  10. Probabilistic Cloning of Three Real States with Optimal Success Probabilities

    Science.gov (United States)

    Rui, Pin-shu

    2017-06-01

    We investigate the probabilistic quantum cloning (PQC) of three real states with average probability distribution. To get the analytic forms of the optimal success probabilities we assume that the three states have only two pairwise inner products. Based on the optimal success probabilities, we derive the explicit form of 1 →2 PQC for cloning three real states. The unitary operation needed in the PQC process is worked out too. The optimal success probabilities are also generalized to the M→ N PQC case.

  11. An Improved Ensemble of Random Vector Functional Link Networks Based on Particle Swarm Optimization with Double Optimization Strategy.

    Science.gov (United States)

    Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang

    2016-01-01

    For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system.

  12. The Transimpedance Amplifier Noise Optimization for the Atmospheric Optical Link Receiver

    Directory of Open Access Journals (Sweden)

    A. Prokes

    1996-12-01

    Full Text Available This paper deals with design of wideband low-noise preamplifier of atmospheric optical link receiver. Sources of noise and the noise models for the PIN photodiode coupled to a transimpedance amplifier are described here. This paper presents the way of optimization the signal to noise ratio at the required frequency range.

  13. The Transimpedance Amplifier Noise Optimization for the Atmospheric Optical Link Receiver

    OpenAIRE

    A. Prokes

    1996-01-01

    This paper deals with design of wideband low-noise preamplifier of atmospheric optical link receiver. Sources of noise and the noise models for the PIN photodiode coupled to a transimpedance amplifier are described here. This paper presents the way of optimization the signal to noise ratio at the required frequency range.

  14. Capacity of cognitive radio under imperfect secondary and cross link channel state information

    KAUST Repository

    Sboui, Lokman

    2011-09-01

    In this paper, we study the ergodic capacity of secondary user channel in a spectrum sharing scenario in which the secondary transmitter is instantaneously aware of estimated versions of the cross link (between the secondary transmitter and the primary receiver) and the secondary link Channel State Information (CSI). The secondary link optimal power profile along with the ergodic capacity are derived for a class of fading channels, under an average power constraint and an instantaneous interference outage constraint. We also show that our framework is rather general as it encompasses several previously studied spectrum sharing settings as special cases. In order to gain some insights on the capacity behavior, numerical results are shown for independent Rayleigh fading channels where it is found for instance, that at low SNR regime, only the secondary channel estimation matters and that the cross link CSI has no effect on the ergodic capacity; whereas at high SNR regime, the capacity is rather driven by the cross link CSI. © 2011 IEEE.

  15. Nonlinear Optimization-Based Device-Free Localization with Outlier Link Rejection

    Directory of Open Access Journals (Sweden)

    Wendong Xiao

    2015-04-01

    Full Text Available Device-free localization (DFL is an emerging wireless technique for estimating the location of target that does not have any attached electronic device. It has found extensive use in Smart City applications such as healthcare at home and hospitals, location-based services at smart spaces, city emergency response and infrastructure security. In DFL, wireless devices are used as sensors that can sense the target by transmitting and receiving wireless signals collaboratively. Many DFL systems are implemented based on received signal strength (RSS measurements and the location of the target is estimated by detecting the changes of the RSS measurements of the wireless links. Due to the uncertainty of the wireless channel, certain links may be seriously polluted and result in erroneous detection. In this paper, we propose a novel nonlinear optimization approach with outlier link rejection (NOOLR for RSS-based DFL. It consists of three key strategies, including: (1 affected link identification by differential RSS detection; (2 outlier link rejection via geometrical positional relationship among links; (3 target location estimation by formulating and solving a nonlinear optimization problem. Experimental results demonstrate that NOOLR is robust to the fluctuation of the wireless signals with superior localization accuracy compared with the existing Radio Tomographic Imaging (RTI approach.

  16. Optimized Binomial Quantum States of Complex Oscillators with Real Spectrum

    International Nuclear Information System (INIS)

    Zelaya, K D; Rosas-Ortiz, O

    2016-01-01

    Classical and nonclassical states of quantum complex oscillators with real spectrum are presented. Such states are bi-orthonormal superpositions of n +1 energy eigenvectors of the system with binomial-like coefficients. For large values of n these optimized binomial states behave as photon added coherent states when the imaginary part of the potential is cancelled. (paper)

  17. State space Newton's method for topology optimization

    DEFF Research Database (Denmark)

    Evgrafov, Anton

    2014-01-01

    /10/1-type constraints on the design field through penalties in many topology optimization approaches. We test the algorithm on the benchmark problems of dissipated power minimization for Stokes flows, and in all cases the algorithm outperforms the traditional first order reduced space/nested approaches...

  18. Link Prediction in Social Networks: the State-of-the-Art

    OpenAIRE

    Wang, Peng; Xu, Baowen; Wu, Yurong; Zhou, Xiaoyu

    2014-01-01

    In social networks, link prediction predicts missing links in current networks and new or dissolution links in future networks, is important for mining and analyzing the evolution of social networks. In the past decade, many works have been done about the link prediction in social networks. The goal of this paper is to comprehensively review, analyze and discuss the state-of-the-art of the link prediction in social networks. A systematical category for link prediction techniques and problems ...

  19. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.

    Science.gov (United States)

    Meng, Miao; Kiani, Mehdi

    2017-02-01

    Ultrasound has been recently proposed as an alternative modality for efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions. This paper presents the theory and design methodology of ultrasonic WPT links that involve mm-sized receivers (Rx). For given load (R L ) and powering distance (d), the optimal geometries of transmitter (Tx) and Rx ultrasonic transducers, including their diameter and thickness, as well as the optimal operation frequency (f c ) are found through a recursive design procedure to maximize the power transmission efficiency (PTE). First, a range of realistic f c s is found based on the Rx thickness constrain. For a chosen f c within the range, the diameter and thickness of the Rx transducer are then swept together to maximize PTE. Then, the diameter and thickness of the Tx transducer are optimized to maximize PTE. Finally, this procedure is repeated for different f c s to find the optimal f c and its corresponding transducer geometries that maximize PTE. A design example of ultrasonic link has been presented and optimized for WPT to a 1 mm 3 implant, including a disk-shaped piezoelectric transducer on a silicon die. In simulations, a PTE of 2.11% at f c of 1.8 MHz was achieved for R L of 2.5 [Formula: see text] at [Formula: see text]. In order to validate our simulations, an ultrasonic link was optimized for a 1 mm 3 piezoelectric transducer mounted on a printed circuit board (PCB), which led to simulated and measured PTEs of 0.65% and 0.66% at f c of 1.1 MHz for R L of 2.5 [Formula: see text] at [Formula: see text], respectively.

  20. Optimal trajectories of brain state transitions.

    Science.gov (United States)

    Gu, Shi; Betzel, Richard F; Mattar, Marcelo G; Cieslak, Matthew; Delio, Philip R; Grafton, Scott T; Pasqualetti, Fabio; Bassett, Danielle S

    2017-03-01

    The complexity of neural dynamics stems in part from the complexity of the underlying anatomy. Yet how white matter structure constrains how the brain transitions from one cognitive state to another remains unknown. Here we address this question by drawing on recent advances in network control theory to model the underlying mechanisms of brain state transitions as elicited by the collective control of region sets. We find that previously identified attention and executive control systems are poised to affect a broad array of state transitions that cannot easily be classified by traditional engineering-based notions of control. This theoretical versatility comes with a vulnerability to injury. In patients with mild traumatic brain injury, we observe a loss of specificity in putative control processes, suggesting greater susceptibility to neurophysiological noise. These results offer fundamental insights into the mechanisms driving brain state transitions in healthy cognition and their alteration following injury. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. A first formal link between the price equation and an optimization program.

    Science.gov (United States)

    Grafen, Alan

    2002-07-07

    The Darwin unification project is pursued. A meta-model encompassing an important class of population genetic models is formed by adding an abstract model of the number of successful gametes to the Price equation under uncertainty. A class of optimization programs are defined to represent the "individual-as-maximizing-agent analogy" in a general way. It is then shown that for each population genetic model there is a corresponding optimization program with which formal links can be established. These links provide a secure logical foundation for the commonplace biological principle that natural selection leads organisms to act as if maximizing their "fitness", provides a definition of "fitness", and clarifies the limitations of that principle. The situations covered do not include frequency dependence or social behaviour, but the approach is capable of extension.

  2. Fermionic Orbital Optimization in Tensor Network States

    Czech Academy of Sciences Publication Activity Database

    Krumnow, C.; Veis, Libor; Legeza, Ö.; Eisert, J.

    2016-01-01

    Roč. 117, č. 21 (2016), s. 210402 ISSN 0031-9007 R&D Projects: GA ČR GA16-12052S Institutional support: RVO:61388955 Keywords : Ground state * Linear transformations * quantum chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.462, year: 2016

  3. Link establishment criterion and topology optimization for hybrid GPS satellite communications with laser crosslinks

    Science.gov (United States)

    Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe

    2018-05-01

    In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.

  4. The construction of optimal stated choice experiments theory and methods

    CERN Document Server

    Street, Deborah J

    2007-01-01

    The most comprehensive and applied discussion of stated choice experiment constructions available The Construction of Optimal Stated Choice Experiments provides an accessible introduction to the construction methods needed to create the best possible designs for use in modeling decision-making. Many aspects of the design of a generic stated choice experiment are independent of its area of application, and until now there has been no single book describing these constructions. This book begins with a brief description of the various areas where stated choice experiments are applicable, including marketing and health economics, transportation, environmental resource economics, and public welfare analysis. The authors focus on recent research results on the construction of optimal and near-optimal choice experiments and conclude with guidelines and insight on how to properly implement these results. Features of the book include: Construction of generic stated choice experiments for the estimation of main effects...

  5. Optimal control of transitions between nonequilibrium steady states.

    Directory of Open Access Journals (Sweden)

    Patrick R Zulkowski

    Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.

  6. Energy Link Optimization in a Wireless Power Transfer Grid under Energy Autonomy Based on the Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhihao Zhao

    2016-08-01

    Full Text Available In this paper, an optimization method is proposed for the energy link in a wireless power transfer grid, which is a regional smart microgrid comprised of distributed devices equipped with wireless power transfer technology in a certain area. The relevant optimization model of the energy link is established by considering the wireless power transfer characteristics and the grid characteristics brought in by the device repeaters. Then, a concentration adaptive genetic algorithm (CAGA is proposed to optimize the energy link. The algorithm avoided the unification trend by introducing the concentration mechanism and a new crossover method named forward order crossover, as well as the adaptive parameter mechanism, which are utilized together to keep the diversity of the optimization solution groups. The results show that CAGA is feasible and competitive for the energy link optimization in different situations. This proposed algorithm performs better than its counterparts in the global convergence ability and the algorithm robustness.

  7. A novel constrained H2 optimization algorithm for mechatronics design in flexure-linked biaxial gantry.

    Science.gov (United States)

    Ma, Jun; Chen, Si-Lu; Kamaldin, Nazir; Teo, Chek Sing; Tay, Arthur; Mamun, Abdullah Al; Tan, Kok Kiong

    2017-11-01

    The biaxial gantry is widely used in many industrial processes that require high precision Cartesian motion. The conventional rigid-link version suffers from breaking down of joints if any de-synchronization between the two carriages occurs. To prevent above potential risk, a flexure-linked biaxial gantry is designed to allow a small rotation angle of the cross-arm. Nevertheless, the chattering of control signals and inappropriate design of the flexure joint will possibly induce resonant modes of the end-effector. Thus, in this work, the design requirements in terms of tracking accuracy, biaxial synchronization, and resonant mode suppression are achieved by integrated optimization of the stiffness of flexures and PID controller parameters for a class of point-to-point reference trajectories with same dynamics but different steps. From here, an H 2 optimization problem with defined constraints is formulated, and an efficient iterative solver is proposed by hybridizing direct computation of constrained projection gradient and line search of optimal step. Comparative experimental results obtained on the testbed are presented to verify the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Magnetofluorescent nanocomposites and quantum dots used for optimal application in magnetic fluorescence-linked immunoassay.

    Science.gov (United States)

    Tsai, H Y; Li, S Y; Fuh, C Bor

    2018-03-01

    Magnetofluorescent nanocomposites with optimal magnetic and fluorescent properties were prepared and characterized by combining magnetic nanoparticles (iron oxide@polymethyl methacrylate) with fluorescent nanoparticles (rhodamine 6G@mSiO 2 ). Experimental parameters were optimized to produce nanocomposites with high magnetic susceptibility and fluorescence intensity. The detection of a model biomarker (alpha-fetoprotein) was used to demonstrate the feasibility of applying the magnetofluorescent nanocomposites combined with quantum dots and using magnetic fluorescence-linked immunoassay. The magnetofluorescent nanocomposites enable efficient mixing, fast re-concentration, and nanoparticle quantization for optimal reactions. Biofunctional quantum dots were used to confirm the alpha-fetoprotein (AFP) content in sandwich immunoassay after mixing and washing. The analysis time was only one third that required in ELISA. The detection limit was 0.2 pg mL -1 , and the linear range was 0.68 pg mL -1 -6.8 ng mL -1 . This detection limit is lower, and the linear range is wider than those of ELISA and other methods. The measurements made using the proposed method differed by less than 13% from those obtained using ELISA for four AFP concentrations (0.03, 0.15, 0.75, and 3.75 ng mL -1 ). The proposed method has a considerable potential for biomarker detection in various analytical and biomedical applications. Graphical abstract Magnetofluorescent nanocomposites combined with fluorescent quantum dots were used in magnetic fluorescence-linked immunoassay.

  9. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J. Michael; Altman, Michael D.; Cash, Brandon; Haidle, Andrew M.; Kubiak, Rachel L.; Maddess, Matthew L.; Yan, Youwei; Northrup, Alan B. (Merck)

    2016-12-08

    Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain.

  10. A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links.

    Science.gov (United States)

    Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at ( R L = 1 kΩ, d 23 = 3 cm), and from 23% to 28.2% at ( R L = 100 Ω, d 23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).

  11. Generating optimal states for a homodyne Bell test

    International Nuclear Information System (INIS)

    Daffer, S.; Knight, P.L.

    2005-01-01

    Full text: We present a protocol that produces a conditionally prepared state that can be used for a Bell test based on homodyne detection. Based on the results of Munro, the state is near-optimal for Bell inequality violations based on quadrature-phase homodyne measurements that use correlated photon-number states. The scheme utilizes the Gaussian entanglement distillation protocol of Eisert et. al. and uses only beam splitters and photodetection to conditionally prepare a non-Gaussian state from a source of two-mode squeezed states with low squeezing parameter, permitting a loophole-free test of Bell inequalities. (author)

  12. Improved Sensitivity Relations in State Constrained Optimal Control

    International Nuclear Information System (INIS)

    Bettiol, Piernicola; Frankowska, Hélène; Vinter, Richard B.

    2015-01-01

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjoint state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because

  13. Linking landscape structure and rainfall runoff behaviour in a thermodynamic optimality context

    Science.gov (United States)

    Zehe, Erwin; Ehret, Uwe; Blume, Theresa; Kleidon, Axel; Scherer, Ulrike; Westhoff, Martijn

    2015-04-01

    gradients, and thus a faster relaxation back towards local thermodynamic equilibrium. Thermodynamic optimality principles allow for a priory optimization of the resistance field at a given gradient, not in the sense how they exactly look like but in the sense how they function with respect to export and dissipation of free energy associated with rainfall runoff processes. Based on this framework we explored the possibility of independent predictions of rainfall runoff, in the sense that the a-priory optimum model structures should match independent observations. We found that spatially organized patterns of soils and macropores observed in two distinctly different landscapes are in close accordance with thermodynamic optima expressed either by minimized relaxation times towards local thermodynamic equilibrium in cohesive soils or as steady state in the potential energy of soil water in non-cohesive soils. Predicted rainfall runoff based on the two optimized model structures was in both catchments in acceptable accordance with independent discharge observations. However, the nature of these optima suggests there might be two distinctly different thermodynamically optimal regimes of rainfall runoff behaviour. In the capillary- or c--regime, free energy dynamics of soil water is dominated by changes in its capillary binding energy, which is the case for cohesive soils. Soil wetting during rainfall in the c-regime implies pushing the system back towards LTE, especially after long dry spells. Dead ended macropores (roots, worm burrows which end in the soil matrix) act as dissipative wetting structures by enlarging water flows against steep gradients in soil water potential after long dry spells. This implies accelerated depletion of these gradients and faster relaxation back towards LTE during rainfall runoff. In the c-regime several optimum macropore densities with respect to maximization of net reduction of free energy exist. This is because the governing equation is a second

  14. Optimization is required when using linked hospital and laboratory data to investigate respiratory infections.

    Science.gov (United States)

    Lim, Faye J; Blyth, Christopher C; de Klerk, Nicholas; Valenti, Beverly; Rouhiainen, Oliver J; Wu, Dominic Yu-An; Jansz, Christopher S; Moore, Hannah C

    2016-01-01

    Despite a recommendation for microbiological testing, only 45% of children hospitalized for respiratory infections in our previous data linkage study linked to a microbiological record. We conducted a chart review to validate linked microbiological data. The chart review consisted of children aged data linkage study. Poisson regression was used to identify factors predicting the likelihood of microbiological tests in the chart review cohort. From the chart review, 77% of 746 records had a microbiological test performed compared with 46% of 18,687 records from our previous data linkage study. Of those undergoing testing, 66% of the chart review and 64% of data linkage records had ≥1 respiratory pathogen(s) detected. In the chart review cohort, frequency of testing was highest in children admitted to metropolitan hospitals. Validation studies are essential to ensure the quality of linked data. Our previous data linkage study failed to capture all relevant microbiological records. Findings will be used to optimize extraction protocols for future linkage studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Incorporating time dependent link costs in multi-state supernetworks

    NARCIS (Netherlands)

    Liao, F.

    2011-01-01

    Multi-state supernetwork represents a promising approach to model multi-modal and multi-activity travel behaviour. A derived feature of this approach is that a point-to-point path through the supernetwork represents a specific activity-travel pattern. A limitation of current multi-state

  16. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries

    International Nuclear Information System (INIS)

    He, Weisheng; Cui, Zili; Liu, Xiaochen; Cui, Yanyan; Chai, Jingchao; Zhou, Xinhong; Liu, Zhihong; Cui, Guanglei

    2017-01-01

    The classic poly(ethylene oxide) (PEO) based solid polymer electrolyte suffers from poor ionic conductivity of ambient temperature, low lithium ion transference number and relatively narrow electrochemical window (<4.0 V vs. Li + /Li). Herein, the carbonate-linked PEO solid polymer such as poly(diethylene glycol carbonate) (PDEC) and poly(triethylene glycol carbonate) (PTEC) were explored to find out the feasibility of resolving above issues. It was proven that the optimized ionic conductivity of PTEC based electrolyte reached up to 1.12 × 10 −5 S cm −1 at 25 °C with a decent lithium ion transference number of 0.39 and a wide electrochemical window about 4.5 V vs. Li + /Li. In addition, the PTEC based Li/LiFePO 4 cell could be reversibly charged and discharged at 0.05 C-rates at ambient temperature. Moreover, the higher voltage Li/LiFe 0.2 Mn 0.8 PO 4 cell (cutoff voltage 4.35 V) possessed considerable rate capability and excellent cycling performance even at ambient temperature. Therefore, these carbonate-linked PEO electrolytes were demonstrated to be fascinating candidates for the next generation solid state lithium batteries simultaneously with high energy and high safety.

  17. State of the environment reporting: links with minesite rehabilitation

    International Nuclear Information System (INIS)

    Derrick, J.

    2001-01-01

    The main purpose of State of the Environment (SoE) reporting is to provide clear, objective and scientifically credible information about the condition of Australia's environment to the Australian community. The three main functions of SoE reporting are 1) informing (providing information), 2) tracking (assessing change), and 3) alerting (signalling events, effectiveness and gaps). State of the Environment reporting responds to calls made in Australia's National Strategy.' for Ecologically Sustainable Development. Internationally it fulfils obligations for Agenda 21 (UNCED Rio '92). Its application in relation to minesite rehabilitation is discussed here. Since the release of 'Australia: State of the Environment 1996', the Australian State of the Environment Section has been developing environment indicators. These indicators are designed to serve as a foundation for future State of the Environment reporting products. The goals of the environmental indicator development program were to: identify a key set of environment indicators for national State of the Environment reporting; identify a core set of environment indicators for common reporting across jurisdictions; secure data sources to support the indicators; develop models and stores of baseline information to help interpret the indicators; ensure that the indicators have broad acceptance; and promote research to enable better interpretation and use of indicators. These indicators are set in a modification of the Pressure-State-Response model called Condition-Pressure-Response (C-P-R). Indicator reports are now available for each of the seven themes: Inland Waters, Estuaries and the Sea, the Land, Biodiversity, the Atmosphere, Human Settlements, and Natural and Cultural Heritage. State of the Environment reporting for the Australian jurisdiction is now a requirement under the Environment Protection and Biodiversity Conservation Act 1999. Reports are required every five years and the next one must be produced by

  18. Optimal matrix product states for the Heisenberg spin chain

    International Nuclear Information System (INIS)

    Latorre, Jose I; Pico, Vicent

    2009-01-01

    We present some exact results for the optimal matrix product state (MPS) approximation to the ground state of the infinite isotropic Heisenberg spin-1/2 chain. Our approach is based on the systematic use of Schmidt decompositions to reduce the problem of approximating for the ground state of a spin chain to an analytical minimization. This allows one to show that results of standard simulations, e.g. density matrix renormalization group and infinite time evolving block decimation, do correspond to the result obtained by this minimization strategy and, thus, both methods deliver optimal MPS with the same energy but, otherwise, different properties. We also find that translational and rotational symmetries cannot be maintained simultaneously by the MPS ansatz of minimum energy and present explicit constructions for each case. Furthermore, we analyze symmetry restoration and quantify it to uncover new scaling relations. The method we propose can be extended to any translational invariant Hamiltonian

  19. Optimization of E-DCH channel power ratios to maximize link level efficiency

    DEFF Research Database (Denmark)

    Zarco, Carlos Ruben Delgado; Malone, Jaime Tito; Wigard, Jeroen

    2006-01-01

    For the WCDMA/HSUPA concept, a key to ensuring high spectral efficiency is to correctly adjust the transmission power ratios among the data and control channels. This paper provides optimal values for the power ratio between the Enhanced-Dedicated Physical Data Channel (E-DPDCH) and the Dedicated...... rate (typical values ranging from 8.1 to 9.9 dB) and the RSN target (maintaining or decreasing their value as the target increases). These results show that it is more link efficient to increase the DPCCH transmission power with the bit rate (and the E-DPDCH's by applying the power ratio) than...... to maintain a constant DPCCH transmission power and just increase the EDPDCH to DPCCH power ratio....

  20. The Approach for Optimization of Transmission over Power Links using the Thyristor-Controlled Series Compensation

    Directory of Open Access Journals (Sweden)

    Fatima Zohra GHERBI

    2008-07-01

    Full Text Available The energy transportation networks can be improved by multiplying or creating new lines. This is not always the case for various reasons. The series capacities controlled by SCRs (Silicon Controlled Rectifiers represent a good alternative to optimize the existing or the new electric links, because they allow the increase of the dynamic stability, the damping of the power oscillations, while balancing the loads between the parallel circuits. This paper presents a resolution method to the power distribution by inserting the TCSC transit controller in the network. The insertion of the TCSC devices has given satisfying results that are, an increase of the transmitted active power and reduction of active losses, an improvement of the angular stability and the voltage stability without decreasing the transportation capacity.

  1. Optimal multicopy asymmetric Gaussian cloning of coherent states

    Science.gov (United States)

    Fiurášek, Jaromír; Cerf, Nicolas J.

    2007-05-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.

  2. Optimal multicopy asymmetric Gaussian cloning of coherent states

    International Nuclear Information System (INIS)

    Fiurasek, Jaromir; Cerf, Nicolas J.

    2007-01-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward

  3. Optimal operation of cogeneration units. State of art and perspective

    International Nuclear Information System (INIS)

    Polimeni, S.

    2001-01-01

    Optimal operation of cogeneration plants and of power plant fueling waste products is a complex challenge as they have to fulfill, beyond the contractual obligation of electric power supply, the constraints of supplying the required thermal energy to the user (for cogeneration units) or to burn completely the by-products of the industrial complex where they are integrated. Electrical power market evolution is pushing such units to a more and more volatile operation caused by uncertain selling price levels. This work intends to pinpoint the state of art in the optimization of these units outlining the important differences among the different size and cycles. The effect of the market liberalization on the automation systems and the optimization algorithms will be discussed [it

  4. Optimization of fuel cells for BWR using Path Re linking and flexible strategies of solution

    International Nuclear Information System (INIS)

    Castillo M, J. A.; Ortiz S, J. J.; Torres V, M.; Perusquia del Cueto, R.

    2009-10-01

    In this work are presented the obtained preliminary results to design nuclear fuel cells for boiling water reactors (BWR) using new strategies. To carry out the cells design some of the used rules in the fuel administration were discarded and other were implemented. The above-mentioned with the idea of making a comparative analysis between the used rules and those implemented here, under the hypothesis that it can be possible to design nuclear fuel cells without using all the used rules and executing the security restrictions that are imposed in these cases. To evaluate the quality of the obtained cells it was taken into account the power pick factor and the infinite multiplication factor, in the same sense, to evaluate the proposed configurations and to obtain the mentioned parameters was used the CASMO-4 code. To optimize the design it is uses the combinatorial optimization technique named Path Re linking and the Dispersed Search as local search method. The preliminary results show that it is possible to implement new strategies for the cells design of nuclear fuel following new rules. (Author)

  5. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.

    Science.gov (United States)

    Aprasoff, Jonathan; Donchin, Opher

    2012-04-01

    Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.

  6. Optimal state estimation theory applied to safeguards accounting

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.

    1977-01-01

    This paper presents a unified theory for the application of modern state estimation techniques to nuclear material accountability. First a summary of the current MUF/LEMUF approach is detailed. It is shown that when inventory measurement error is large in comparison to transfer measurement error, improved estimates of the losses can be achieved using the cumulative summation technique. However, the optimal estimator is shown to be the Kalman filter. An enhancement of the retrospective estimation of losses can be achieved using linear smoothing. State space models are developed for a mixed oxide fuel fabrication facility and examples are presented

  7. Time-optimal thermalization of single-mode Gaussian states

    Science.gov (United States)

    Carlini, Alberto; Mari, Andrea; Giovannetti, Vittorio

    2014-11-01

    We consider the problem of time-optimal control of a continuous bosonic quantum system subject to the action of a Markovian dissipation. In particular, we consider the case of a one-mode Gaussian quantum system prepared in an arbitrary initial state and which relaxes to the steady state due to the action of the dissipative channel. We assume that the unitary part of the dynamics is represented by Gaussian operations which preserve the Gaussian nature of the quantum state, i.e., arbitrary phase rotations, bounded squeezing, and unlimited displacements. In the ideal ansatz of unconstrained quantum control (i.e., when the unitary phase rotations, squeezing, and displacement of the mode can be performed instantaneously), we study how control can be optimized for speeding up the relaxation towards the fixed point of the dynamics and we analytically derive the optimal relaxation time. Our model has potential and interesting applications to the control of modes of electromagnetic radiation and of trapped levitated nanospheres.

  8. Optimal design of tweezer control for chimera states

    Science.gov (United States)

    Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard

    2018-01-01

    Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.

  9. Reliability-Based Design Optimization of Trusses with Linked-Discrete Design Variables using the Improved Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    N. M. Okasha

    2016-04-01

    Full Text Available In this paper, an approach for conducting a Reliability-Based Design Optimization (RBDO of truss structures with linked-discrete design variables is proposed. The sections of the truss members are selected from the AISC standard tables and thus the design variables that represent the properties of each section are linked. Latin hypercube sampling is used in the evaluation of the structural reliability. The improved firefly algorithm is used for the optimization solution process. It was found that in order to use the improved firefly algorithm for efficiently solving problems of reliability-based design optimization with linked-discrete design variables; it needs to be modified as proposed in this paper to accelerate its convergence.

  10. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models

    OpenAIRE

    Aprasoff, Jonathan; Donchin, Opher

    2011-01-01

    Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedb...

  11. Separability of diagonal symmetric states: a quadratic conic optimization problem

    Directory of Open Access Journals (Sweden)

    Jordi Tura

    2018-01-01

    Full Text Available We study the separability problem in mixtures of Dicke states i.e., the separability of the so-called Diagonal Symmetric (DS states. First, we show that separability in the case of DS in $C^d\\otimes C^d$ (symmetric qudits can be reformulated as a quadratic conic optimization problem. This connection allows us to exchange concepts and ideas between quantum information and this field of mathematics. For instance, copositive matrices can be understood as indecomposable entanglement witnesses for DS states. As a consequence, we show that positivity of the partial transposition (PPT is sufficient and necessary for separability of DS states for $d \\leq 4$. Furthermore, for $d \\geq 5$, we provide analytic examples of PPT-entangled states. Second, we develop new sufficient separability conditions beyond the PPT criterion for bipartite DS states. Finally, we focus on $N$-partite DS qubits, where PPT is known to be necessary and sufficient for separability. In this case, we present a family of almost DS states that are PPT with respect to each partition but nevertheless entangled.

  12. Steady-state optimization of ore-dressing plants

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1989-01-01

    The ore-dressing plant consists of the steps of grinding and flotation. Its optimization is based on steady state simulation of the mass balances with a plant model. The model data are obtained by tracer tests and analysis. An evaluation of performance of the plant has to observe the recovery of the valuable mineral, the throughput of the system and the grade of the concentrate which are outputs of the flotation plant. Simulation with the flotation plant model yields that combination of values of controllable inputs to flotation which corresponds to an optimal operation of the conditioning an flotation system, for a specified feed and its fractional composition. Simulations for other feeds and compositions advise how they should be chosen, for a better overall performance. (author)

  13. Remote optimal state estimation over communication channels with random delays

    KAUST Repository

    Mahmoud, Magdi S.

    2014-01-22

    This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system are capsulized without time stamp and then transmitted to the network node at which the filter is located. The probabilities of time delays are assumed to be known. The event-driven estimation scheme is applied in this paper and the estimate of the states is updated only at each time instant when any measurement arrives. To capture the feature of communication, the system considered is augmented, and the arrived measurements are regarded as the uncertain observations of the augmented system. The corresponding optimal estimation algorithm is proposed and additionally, a numerical simulation represents the performance of this work. © 2014 The authors. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  14. The Optimization of Cyclic Links of Live Pig-Industry Chain Based on Circular Economics

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2015-12-01

    Full Text Available To reduce waste and wastewater pollution and to improve the utilization rate of resources in the pig-industry chain, a circular economy of the chain can be developed. The key to constructing the circular economic system of the pig-industry chain is to determine the path of the cyclic materials and to design reasonable waste- and wastewater-treatment capacities. This paper focuses on the treatment and recycling of wastewater in the pig-industry chain and the treatment and recycling of waste into manure and feed. After giving the two circular paths, the paper proposes a multi-objective uncertainty-optimization model for the cyclic links of the pig-industry chain with the highest resource-reuse efficiency and the lowest construction cost based on the uncertainty of market demand. Using a combination of the neural network and genetic algorithm method for designing the solution process for the model, the paper finally introduces the determination methods of relevant parameters and verifies the feasibility and effectiveness of the model through a case study.

  15. Magnetostrophic balance as the optimal state for turbulent magnetoconvection.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2015-01-27

    The magnetic fields of Earth and other planets are generated by turbulent convection in the vast oceans of liquid metal within them. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of planetary rotation and magnetic fields through the Coriolis and Lorentz forces. Theory famously predicts that planetary dynamo systems naturally settle into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. Although this magnetostrophic theory correctly predicts the strength of Earth's magnetic field, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first, to our knowledge, turbulent, magnetostrophic convection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the dynamically optimal magnetostrophic state is the natural expression of turbulent planetary dynamo systems.

  16. Gradient optimization of finite projected entangled pair states

    Science.gov (United States)

    Liu, Wen-Yuan; Dong, Shao-Jun; Han, Yong-Jian; Guo, Guang-Can; He, Lixin

    2017-05-01

    Projected entangled pair states (PEPS) methods have been proven to be powerful tools to solve strongly correlated quantum many-body problems in two dimensions. However, due to the high computational scaling with the virtual bond dimension D , in a practical application, PEPS are often limited to rather small bond dimensions, which may not be large enough for some highly entangled systems, for instance, frustrated systems. Optimization of the ground state using the imaginary time evolution method with a simple update scheme may go to a larger bond dimension. However, the accuracy of the rough approximation to the environment of the local tensors is questionable. Here, we demonstrate that by combining the imaginary time evolution method with a simple update, Monte Carlo sampling techniques and gradient optimization will offer an efficient method to calculate the PEPS ground state. By taking advantage of massive parallel computing, we can study quantum systems with larger bond dimensions up to D =10 without resorting to any symmetry. Benchmark tests of the method on the J1-J2 model give impressive accuracy compared with exact results.

  17. Quantum learning: asymptotically optimal classification of qubit states

    International Nuclear Information System (INIS)

    Guta, Madalin; Kotlowski, Wojciech

    2010-01-01

    Pattern recognition is a central topic in learning theory, with numerous applications such as voice and text recognition, image analysis and computer diagnosis. The statistical setup in classification is the following: we are given an i.i.d. training set (X 1 , Y 1 ), ... , (X n , Y n ), where X i represents a feature and Y i in{0, 1} is a label attached to that feature. The underlying joint distribution of (X, Y) is unknown, but we can learn about it from the training set, and we aim at devising low error classifiers f: X→Y used to predict the label of new incoming features. In this paper, we solve a quantum analogue of this problem, namely the classification of two arbitrary unknown mixed qubit states. Given a number of 'training' copies from each of the states, we would like to 'learn' about them by performing a measurement on the training set. The outcome is then used to design measurements for the classification of future systems with unknown labels. We found the asymptotically optimal classification strategy and show that typically it performs strictly better than a plug-in strategy, which consists of estimating the states separately and then discriminating between them using the Helstrom measurement. The figure of merit is given by the excess risk equal to the difference between the probability of error and the probability of error of the optimal measurement for known states. We show that the excess risk scales as n -1 and compute the exact constant of the rate.

  18. Link-state-estimation-based transmission power control in wireless body area networks.

    Science.gov (United States)

    Kim, Seungku; Eom, Doo-Seop

    2014-07-01

    This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.

  19. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Directory of Open Access Journals (Sweden)

    Cordula Klockenbusch

    2010-01-01

    Full Text Available Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively.

  20. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Science.gov (United States)

    Klockenbusch, Cordula; Kast, Juergen

    2010-01-01

    Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively. PMID:20634879

  1. Optimization-based particle filter for state and parameter estimation

    Institute of Scientific and Technical Information of China (English)

    Li Fu; Qi Fei; Shi Guangming; Zhang Li

    2009-01-01

    In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.

  2. Optimized control strategy for crowbarless solid state modular power supply

    International Nuclear Information System (INIS)

    Upadhyay, R.; Badapanda, M.K.; Tripathi, A.; Hannurkar, P.R.; Pithawa, C.K.

    2009-01-01

    Solid state modular power supply with series connected IGBT based power modules have been employed as high voltage bias power supply of klystron amplifier. Auxiliary compensation of full wave inverter bridge with ZVS/ZCS operations of all IGBTs over entire operating range is incorporated. An optimized control strategy has been adopted for this power supply needing no output filter, making this scheme crowbarless and is presented in this paper. DSP based fully digital control with same duty cycle for all power modules, have been incorporated for regulating this power supply along with adequate protection features. Input to this power supply is taken directly from 11 kV line and the input system is intentionally made 24 pulsed to reduce the input harmonics, improve the input power factor significantly, there by requiring no line filters. Various steps have been taken to increase the efficiency of major subsystems, so as to improve the overall efficiency of this power supply significantly. (author)

  3. Optimizing Inductor Winding Geometry for Lowest DC-Resistance using LiveLink between COMSOL and MATLAB

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Mønster, Jakob Døllner

    2013-01-01

    An optimization routine is presented to optimize a hybrid winding geometry for a toroid inductor in terms of the DC resistance. The hybrid winding geometry consist of bended foil pieces connected through traces in a printed circuit board. MATLAB is used to create a graphical user interface...... that visually plots the winding using input parameters such as core dimensions, number of turns, clearance between windings, and the winding angle of each segment of the winding. COMSOL LiveLink is used to import the winding geometry from MATLAB and create a 2D finite element model to simulate the DC...

  4. Single-step linking transition from superdeformed to spherical states in {sup 143}Eu

    Energy Technology Data Exchange (ETDEWEB)

    Atac, A.; Axelsson, A.; Persson, J. [Uppsala Univ. (Sweden)] [and others

    1996-12-31

    A discrete {gamma}-ray transition which connects the second lowest SD state with a normally deformed one in {sup 143}Eu has been discovered. It has an energy of 3360.6 keV and carries 3.2 % of the full intensity of the SD band. It feeds into a nearly spherical state which is above the I = 35/2{sup +}, E=4947 keV level. The exact placement of the single-step link could, however, not be established due to the especially complicated level scheme in the region of interest. The angular correlation study favours a stretched dipole character for the 3360.6 keV transition. The single-step link agrees well with the previously determined two-step links, both with respect to energy and spin.

  5. Linking state regulation, brain laterality, and self-reported ADHD symptoms in adults

    NARCIS (Netherlands)

    Mohamed, Saleh

    2016-01-01

    Aim: Difficulties in regulating the motor activation state and atypical brain laterality have been suggested to be key factors in Attention-Deficit/Hyperactivity Disorder (ADHD). So far, the link between the two factors has not been directly tested, which is the aim of the present study. Method:

  6. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.; Patel, Niral M.; Roberts, Sean T.; Allen, Kathryn; Djurovich, Peter I.; Bradforth, Stephen E.; Thompson, Mark E.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  7. State Capacity to Link K-12/Postsecondary Data Systems and Report Key Indicators

    Science.gov (United States)

    Data Quality Campaign, 2016

    2016-01-01

    The Every Student Succeeds Act (ESSA) provides an opportunity to produce high quality postsecondary indicators and, as available, publicly report them in ways that inform, engage, and empower communities. As first "required" in 2009's American Recovery and Reinvestment Act (ARRA) stimulus law, almost every state has linked its K-12 and…

  8. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    Science.gov (United States)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  9. Pipeline heating method based on optimal control and state estimation

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, F.L.V. [Dept. of Subsea Technology. Petrobras Research and Development Center - CENPES, Rio de Janeiro, RJ (Brazil)], e-mail: fvianna@petrobras.com.br; Orlande, H.R.B. [Dept. of Mechanical Engineering. POLI/COPPE, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ (Brazil)], e-mail: helcio@mecanica.ufrj.br; Dulikravich, G.S. [Dept. of Mechanical and Materials Engineering. Florida International University - FIU, Miami, FL (United States)], e-mail: dulikrav@fiu.edu

    2010-07-01

    In production of oil and gas wells in deep waters the flowing of hydrocarbon through pipeline is a challenging problem. This environment presents high hydrostatic pressures and low sea bed temperatures, which can favor the formation of solid deposits that in critical operating conditions, as unplanned shutdown conditions, may result in a pipeline blockage and consequently incur in large financial losses. There are different methods to protect the system, but nowadays thermal insulation and chemical injection are the standard solutions normally used. An alternative method of flow assurance is to heat the pipeline. This concept, which is known as active heating system, aims at heating the produced fluid temperature above a safe reference level in order to avoid the formation of solid deposits. The objective of this paper is to introduce a Bayesian statistical approach for the state estimation problem, in which the state variables are considered as the transient temperatures within a pipeline cross-section, and to use the optimal control theory as a design tool for a typical heating system during a simulated shutdown condition. An application example is presented to illustrate how Bayesian filters can be used to reconstruct the temperature field from temperature measurements supposedly available on the external surface of the pipeline. The temperatures predicted with the Bayesian filter are then utilized in a control approach for a heating system used to maintain the temperature within the pipeline above the critical temperature of formation of solid deposits. The physical problem consists of a pipeline cross section represented by a circular domain with four points over the pipe wall representing heating cables. The fluid is considered stagnant, homogeneous, isotropic and with constant thermo-physical properties. The mathematical formulation governing the direct problem was solved with the finite volume method and for the solution of the state estimation problem

  10. Optimized RVB states of the 2-d antiferromagnet: ground state and excitation spectrum

    Science.gov (United States)

    Chen, Yong-Cong; Xiu, Kai

    1993-10-01

    The Gutzwiller projection of the Schwinger-boson mean-field solution of the 2-d spin- {1}/{2} antiferromagnet in a square lattice is shown to produce the optimized, parameter-free RVB ground state. We get -0.6688 J/site and 0.311 for the energy and the staggered magnetization. The spectrum of the excited states is found to be linear and gapless near k≅0. Our calculation suggests, upon breaking of the rotational symmetry, ɛ k≅2JZ r1-γ 2k with Zr≅1.23.

  11. Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John); Lee, K Y

    2009-01-01

    In this paper the state-of-the-art extended particle swarm optimization (PSO) methods for solving multi-objective optimization problems are represented. We emphasize in those, the co-evolution technique of the parallel vector evaluated PSO (VEPSO), analysed and applied in a multi-objective problem...

  12. Optimal Hedging and Pricing of Equity-Linked Life Insurance Contracts in a Discrete-Time Incomplete Market

    Directory of Open Access Journals (Sweden)

    Norman Josephy

    2011-01-01

    Full Text Available We present a method of optimal hedging and pricing of equity-linked life insurance products in an incomplete discrete-time financial market. A pure endowment life insurance contract with guarantee is used as an example. The financial market incompleteness is caused by the assumption that the underlying risky asset price ratios are distributed in a compact interval, generalizing the assumptions of multinomial incomplete market models. For a range of initial hedging capitals for the embedded financial option, we numerically solve an optimal hedging problem and determine a risk-return profile of each optimal non-self-financing hedging strategy. The fair price of the insurance contract is determined according to the insurer's risk-return preferences. Illustrative numerical results of testing our algorithm on hypothetical insurance contracts are documented. A discussion and a test of a hedging strategy recalibration technique for long-term contracts are presented.

  13. Simultaneous control and piezoelectric insert optimization for manipulators with flexible link

    OpenAIRE

    Bottega, Valdecir; Pergher, Rejane; Fonseca, Jun S. O.

    2009-01-01

    This work proposes a tracking control model for a flexible link robotic manipulator using simultaneously motor torques and piezoelectric actuators. The dynamic model of manipulator is obtained in a closed form through the Lagrangian approach. The control uses the motor torques for the tracking control of the joints and also to reduce the low frequency vibration induced in the manipulator links. The stability of this control is guaranteed by the Lyapunov stability theory. Piezoelectric actuato...

  14. Preconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function

    KAUST Repository

    Pearson, John W.; Stoll, Martin; Wathen, Andrew J.

    2012-01-01

    Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here

  15. Seeing the World Through "Pink-Colored Glasses": The Link Between Optimism and Pink.

    Science.gov (United States)

    Kalay-Shahin, Lior; Cohen, Allon; Lemberg, Rachel; Harary, Gil; Lobel, Thalma E

    2016-12-01

    This study investigated optimism, which is considered a personality trait, from the grounded cognition perspective. Three experiments were conducted to investigate the association between pink and optimism. In Experiment 1A, 22 undergraduates (10 females; M age  = 23.68) were asked to classify words as optimistic or pessimistic as fast as possible. Half the words were presented in pink and half in black. Experiment 1B (N = 24; 14 females; M age  = 22.82) was identical to 1A except for the color of the words-black and light blue instead of pink-to rule out the possible influence of brightness. Experiment 2 exposed 144 participants (74 females; M age  = 25.18) to pink or yellow and then measured their optimism level. The findings for Experiments 1A and 1B indicated an association between pink and optimism regardless of brightness. Experiment 2 found that mere exposure to pink increased optimism levels for females. These results contribute to the dynamic view of personality, current views on optimism, and the growing literature on grounded cognition. © 2015 Wiley Periodicals, Inc.

  16. Input Harmonic Analysis on the Slim DC-Link Drive Using Harmonic State Space Model

    DEFF Research Database (Denmark)

    Yang, Feng; Kwon, Jun Bum; Wang, Xiongfei

    2017-01-01

    The harmonic performance of the slim dc-link adjustable speed drives has shown good performance in some studies but poor in some others. The contradiction indicates that a feasible theoretical analysis is still lacking to characterize the harmonic distortion for the slim dc-link drive. Considerin...... results of the slim dc-link drive, loaded up to 2.0 kW, are presented to validate the theoretical analysis....... variation according to the switching instant, the harmonics at the steady-state condition, as well as the coupling between the multiple harmonic impedances. By using this model, the impaction on the harmonics performance by the film capacitor and the grid inductance is derived. Simulation and experimental...

  17. The State Fiscal Policy: Determinants and Optimization of Financial Flows

    Directory of Open Access Journals (Sweden)

    Sitash Tetiana D.

    2017-03-01

    Full Text Available The article outlines the determinants of the state fiscal policy at the present stage of global transformations. Using the principles of financial science it is determined that regulation of financial flows within the fiscal sphere, namely centralization and redistribution of the GDP, which results in the regulation of the financial capacity of economic agents, is of importance. It is emphasized that the urgent measure for improving the tax model is re-considering the provision of fiscal incentives, which are used to stimulate the accumulation of capital, investment activity, innovation, increase of the competitiveness of national products, expansion of exports, increase of the level of the population employment. The necessity of applying the instruments of fiscal regulation of financial flows, which should take place on the basis of institutional economics emphasizing the analysis of institutional changes, the evolution of institutions and their impact on the behavior of participants of economic relations. At the same time it is determined that the maximum effect of fiscal regulation of financial flows is ensured when application of fiscal instruments is aimed not only at achieving the target values of parameters of financial flows but at overcoming institutional deformations as well. It is determined that the optimal movement of financial flows enables creating favorable conditions for development and maintenance of financial balance in the society and achievement of the necessary level of competitiveness of the national economy.

  18. Decomposition of the Google PageRank and Optimal Linking Strategy

    NARCIS (Netherlands)

    Avrachenkov, Konstatin; Litvak, Nelli

    We provide the analysis of the Google PageRank from the perspective of the Markov Chain Theory. First we study the Google PageRank for a Web that can be decomposed into several connected components which do not have any links to each other. We show that in order to determine the Google PageRank for

  19. Coupled dynamics of node and link states in complex networks: a model for language competition

    International Nuclear Information System (INIS)

    Carro, Adrián; Toral, Raúl; Miguel, Maxi San

    2016-01-01

    Inspired by language competition processes, we present a model of coupled evolution of node and link states. In particular, we focus on the interplay between the use of a language and the preference or attitude of the speakers towards it, which we model, respectively, as a property of the interactions between speakers (a link state) and as a property of the speakers themselves (a node state). Furthermore, we restrict our attention to the case of two socially equivalent languages and to socially inspired network topologies based on a mechanism of triadic closure. As opposed to most of the previous literature, where language extinction is an inevitable outcome of the dynamics, we find a broad range of possible asymptotic configurations, which we classify as: frozen extinction states, frozen coexistence states, and dynamically trapped coexistence states. Moreover, metastable coexistence states with very long survival times and displaying a non-trivial dynamics are found to be abundant. Interestingly, a system size scaling analysis shows, on the one hand, that the probability of language extinction vanishes exponentially for increasing system sizes and, on the other hand, that the time scale of survival of the non-trivial dynamical metastable states increases linearly with the size of the system. Thus, non-trivial dynamical coexistence is the only possible outcome for large enough systems. Finally, we show how this coexistence is characterized by one of the languages becoming clearly predominant while the other one becomes increasingly confined to ‘ghetto-like’ structures: small groups of bilingual speakers arranged in triangles, with a strong preference for the minority language, and using it for their intra-group interactions while they switch to the predominant language for communications with the rest of the population. (paper)

  20. Thermometric enzyme linked immunosorbent assay in continuous flow system: optimization and evaluation using human serum albumin as a model system.

    Science.gov (United States)

    Borrebaeck, C; Börjeson, J; Mattiasson, B

    1978-06-15

    Thermometric enzyme-linked immunosorbent assay (TELISA) is described. After the procedure of optimization, human serum albumin was assayed using anti-human serum albumin bound to Sepharose CL 4-B in the enzyme thermistor unit and catalase as label on the free antigen. The model system was used for assays down to 10(-13)M and the preparation of immobilized antibodies was used repeatedly up to 100 times. Comparative studies of the TELISA technique with bromocresol green, immunoturbidimetric and rocket immunoelectrophoretic methods were carried out and showed that TELISA could be used as an alternative method.

  1. Performance evaluation and optimization of multiband phase-modulated radio over IsOWC link with balanced coherent homodyne detection

    Science.gov (United States)

    Zong, Kang; Zhu, Jiang

    2018-04-01

    In this paper, we present a multiband phase-modulated (PM) radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The expressions of RF gain, noise figure (NF) and third-order spurious-free dynamic range (SFDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The optimal power of local oscillator (LO) optical signal is also derived theoretically. Numerical results for RF gain, NF and third-order SFDR are given for demonstration. Results indicate that the gain of the optical preamplifier and the power of LO optical signal should be optimized to obtain the satisfactory performance.

  2. Solution for state constrained optimal control problems applied to power split control for hybrid vehicles

    NARCIS (Netherlands)

    Keulen, van T.A.C.; Gillot, J.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents a numerical solution for scalar state constrained optimal control problems. The algorithm rewrites the constrained optimal control problem as a sequence of unconstrained optimal control problems which can be solved recursively as a two point boundary value problem. The solution

  3. LimitS - A system for limit state analysis and optimal material layout

    DEFF Research Database (Denmark)

    Damkilde, Lars; Krenk, Steen

    1997-01-01

    distribution or an optimal material layout is determined. Through linearization of the yield criteria the optimization problem is stated as a linear programming problem. Within the formulation of the discretized model the optimal lower-bound solution is shown to be an upper-bound solution, and thereby both...

  4. Trophic State and Toxic Cyanobacteria Density in Optimization Modeling of Multi-Reservoir Water Resource Systems

    Directory of Open Access Journals (Sweden)

    Andrea Sulis

    2014-04-01

    Full Text Available The definition of a synthetic index for classifying the quality of water bodies is a key aspect in integrated planning and management of water resource systems. In previous works [1,2], a water system optimization modeling approach that requires a single quality index for stored water in reservoirs has been applied to a complex multi-reservoir system. Considering the same modeling field, this paper presents an improved quality index estimated both on the basis of the overall trophic state of the water body and on the basis of the density values of the most potentially toxic Cyanobacteria. The implementation of the index into the optimization model makes it possible to reproduce the conditions limiting water use due to excessive nutrient enrichment in the water body and to the health hazard linked to toxic blooms. The analysis of an extended limnological database (1996–2012 in four reservoirs of the Flumendosa-Campidano system (Sardinia, Italy provides useful insights into the strengths and limitations of the proposed synthetic index.

  5. Trophic state and toxic cyanobacteria density in optimization modeling of multi-reservoir water resource systems.

    Science.gov (United States)

    Sulis, Andrea; Buscarinu, Paola; Soru, Oriana; Sechi, Giovanni M

    2014-04-22

    The definition of a synthetic index for classifying the quality of water bodies is a key aspect in integrated planning and management of water resource systems. In previous works [1,2], a water system optimization modeling approach that requires a single quality index for stored water in reservoirs has been applied to a complex multi-reservoir system. Considering the same modeling field, this paper presents an improved quality index estimated both on the basis of the overall trophic state of the water body and on the basis of the density values of the most potentially toxic Cyanobacteria. The implementation of the index into the optimization model makes it possible to reproduce the conditions limiting water use due to excessive nutrient enrichment in the water body and to the health hazard linked to toxic blooms. The analysis of an extended limnological database (1996-2012) in four reservoirs of the Flumendosa-Campidano system (Sardinia, Italy) provides useful insights into the strengths and limitations of the proposed synthetic index.

  6. Novel chemically cross-linked solid state electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yin Xiong; Tan Weiwei; Xiang Wangchun; Lin Yuan; Zhang Jingbo; Xiao Xurui; Li Xueping; Zhou Xiaowen; Fang Shibi

    2010-01-01

    Poly(vinylpyridine-co-ethylene glycol methyl ether methacrylate) (P(VP-co-MEOMA)) and α,ω-diiodo poly(ethylene oxide-co-propylene oxide) (I[(EO) 0.8 -co-(PO) 0.2 ] y I) were synthesized and used as chemically cross-linked precursors of the electrolyte for dye-sensitized solar cells. Meanwhile, α-iodo poly(ethylene oxide-co-propylene oxide) methyl ether (CH 3 O[(EO) 0.8 -co-(PO) 0.2 ] x I) was synthesized and added into the electrolyte as an internal plasticizer. Novel polymer electrolyte resulting from chemically cross-linked precursors was obtained by the quaterisation at 90 o C for 30 min. The characteristics for this kind of electrolyte were investigated by means of ionic conductivity, thermogravimetric and photocurrent-voltage. The ambient ionic conductivity was significantly enhanced to 2.3 x 10 -4 S cm -1 after introducing plasticizer, modified-ionic liquid. The weight loss of the solid state electrolyte at 200 o C was 1.8%, and its decomposition temperature was 287 o C. Solid state dye-sensitized solar cell based on chemically cross-linked electrolyte presented an overall conversion efficiency of 2.35% under AM1.5 irradiation (100 mW cm -2 ). The as-fabricated device maintained 88% of its initial performance at room temperature even without sealing for 30 days, showing a good stability.

  7. Remote optimal state estimation over communication channels with random delays

    KAUST Repository

    Mahmoud, Magdi S.; Al-Sunni, Fouad; Liu, Bo

    2014-01-01

    This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system

  8. Optimal quantum error correcting codes from absolutely maximally entangled states

    Science.gov (United States)

    Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio

    2018-02-01

    Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \

  9. Optimal reducibility of all W states equivalent under stochastic local operations and classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Swapan; Parashar, Preeti [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 BT Road, Kolkata (India)

    2011-11-15

    We show that all multipartite pure states that are stochastic local operation and classical communication (SLOCC) equivalent to the N-qubit W state can be uniquely determined (among arbitrary states) from their bipartite marginals. We also prove that only (N-1) of the bipartite marginals are sufficient and that this is also the optimal number. Thus, contrary to the Greenberger-Horne-Zeilinger (GHZ) class, W-type states preserve their reducibility under SLOCC. We also study the optimal reducibility of some larger classes of states. The generic Dicke states |GD{sub N}{sup l}> are shown to be optimally determined by their (l+1)-partite marginals. The class of ''G'' states (superposition of W and W) are shown to be optimally determined by just two (N-2)-partite marginals.

  10. Optimization of wireless power transmission for two port and three port inductive link

    International Nuclear Information System (INIS)

    Haider, Samnan; Mansor, Hasmah; Khan, Sheroz; Arshad, Atika; Shobaki, Mohammed M; Tasnim, Rumana

    2013-01-01

    Recent developments have shown that the use of buried electronic devices or body implants has been becoming prevalent. Such low power devices are being powered up through non-contact means utilizing inductive coupling from external powering source. Inductive coupling not only solves the issue of energy availability but helps collecting the sensed data that can be archived or used for subsequent monitoring purposes. This paper analyses the performance of two-port and three-port inductive links in terms of power sent, power received and power transfer efficiency. All the above mentioned parameters have been plotted using analytical approach and obtaining simulation where required. The effect of mutual coupling has been studied in detail for both systems and demonstrated by plotting the power transfer efficiency for different values of the coefficient of coupling (k) using MATLAB. Results show that power transfer efficiency depends highly upon the value of k

  11. Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.

    Science.gov (United States)

    Ahn, Dukju; Ghovanloo, Maysam

    2016-02-01

    This paper presents a design methodology for RF power transmission to millimeter-sized implantable biomedical devices. The optimal operating frequency and coil geometries are found such that power transfer efficiency (PTE) and tissue-loss-constrained allowed power are maximized. We define receiver power reception susceptibility (Rx-PRS) and transmitter figure of merit (Tx-FoM) such that their multiplication yields the PTE. Rx-PRS and Tx-FoM define the roles of the Rx and Tx in the PTE, respectively. First, the optimal Rx coil geometry and operating frequency range are identified such that the Rx-PRS is maximized for given implant constraints. Since the Rx is very small and has lesser design freedom than the Tx, the overall operating frequency is restricted mainly by the Rx. Rx-PRS identifies such operating frequency constraint imposed by the Rx. Secondly, the Tx coil geometry is selected such that the Tx-FoM is maximized under the frequency constraint at which the Rx-PRS was saturated. This aligns the target frequency range of Tx optimization with the frequency range at which Rx performance is high, resulting in the maximum PTE. Finally, we have found that even in the frequency range at which the PTE is relatively flat, the tissue loss per unit delivered power can be significantly different for each frequency. The Rx-PRS can predict the frequency range at which the tissue loss per unit delivered power is minimized while PTE is maintained high. In this way, frequency adjustment for the PTE and tissue-loss-constrained allowed power is realized by characterizing the Rx-PRS. The design procedure was verified through full-wave electromagnetic field simulations and measurements using de-embedding method. A prototype implant, 1 mm in diameter, achieved PTE of 0.56% ( -22.5 dB) and power delivered to load (PDL) was 224 μW at 200 MHz with 12 mm Tx-to-Rx separation in the tissue environment.

  12. OPTIMAL CONTROL OF A NONLINEAR COUPLED ELECTROMAGNETIC INDUCTION HEATING SYSTEM WITH POINTWISE STATE CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Irwin Yousept

    2010-07-01

    Full Text Available An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part of the paper deals with the analysis of the corresponding linearized equation. Some suffcient conditions are presented which guarantee thesolvability of the linearized system. The final part of the paper is concerned with the optimal control. The aim of the optimization is to find the optimal voltage such that a desired temperature can be achieved optimally. The corresponding first-order necessary optimality condition is presented.

  13. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Antonio [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy); IMAST SCaRL, Piazza Bovio 22, 80133 Naples (Italy); Guarino, Vincenzo, E-mail: vincenzo.guarino@cnr.it; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy)

    2015-12-17

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  14. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    International Nuclear Information System (INIS)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-01-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response

  15. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Science.gov (United States)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-12-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  16. The link between response time and preference, variance and processing heterogeneity in stated choice experiments

    DEFF Research Database (Denmark)

    Campbell, Danny; Mørkbak, Morten Raun; Olsen, Søren Bøye

    2018-01-01

    In this article we utilize the time respondents require to answer a self-administered online stated preference survey. While the effects of response time have been previously explored, this article proposes a different approach that explicitly recognizes the highly equivocal relationship between ...... between response time and utility coefficients, error variance and processing strategies. Our results thus emphasize the importance of considering response time when modeling stated choice data....... response time and respondents' choices. In particular, we attempt to disentangle preference, variance and processing heterogeneity and explore whether response time helps to explain these three types of heterogeneity. For this, we divide the data (ordered by response time) into approximately equal......-sized subsets, and then derive different class membership probabilities for each subset. We estimate a large number of candidate models and subsequently conduct a frequentist-based model averaging approach using information criteria to derive weights of evidence for each model. Our findings show a clear link...

  17. Optimal detection of entanglement in Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Kay, Alastair

    2011-01-01

    We present a broad class of N-qubit Greenberger-Horne-Zeilinger (GHZ)-diagonal states such that nonpositivity under the partial transpose operation is necessary and sufficient for the presence of entanglement, including many naturally arising instances such as dephased GHZ states. Furthermore, our proof directly leads to an entanglement witness which saturates this bound. The witness is applied to thermal GHZ states to prove that the entanglement can be extremely robust to system imperfections.

  18. Optimized enzyme-linked immunosorbent assay for detecting cytomegalovirus infections during clinical trials of recombinant vaccines.

    Science.gov (United States)

    Pagnon, Anke; Piras, Fabienne; Gimenez-Fourage, Sophie; Dubayle, Joseline; Arnaud-Barbe, Nadège; Hessler, Catherine; Caillet, Catherine

    2017-11-01

    In clinical trials of cytomegalovirus (CMV) glycoprotein B (gB) vaccines, CMV infection is detected by first depleting serum of anti-gB antibodies and then measuring anti-CMV antibodies with a commercially available enzyme-linked immunosorbent assay (ELISA) kit, with confirmation of positive findings by immunoblot. Identification of CMV immunoantigens for the development of an ELISA that detects specifically CMV infection in clinical samples from individuals immunized with gB vaccines. Sensitivity and specificity of ELISAs using antigenic regions of CMV proteins UL83/pp65, UL99/pp28, UL44/pp52, UL80a/pp38, UL57, and UL32/pp150 were measured. An IgG ELISA using a UL32/pp150 [862-1048] capture peptide was the most specific (93.7%) and sensitive (96.4%) for detecting CMV-specific antibodies in sera. The ELISA successfully detected CMV-specific antibodies in 22 of 22 sera of subjects who had been vaccinated with a gB vaccine but who had later been infected with CMV. The ELISA was linear over a wide range of CMV concentrations (57-16,814 ELISA units/mL) and was reproducible as indicated by a 5% intra-day and 7% inter-day coefficients of variation. The signal was specifically competed by UL32/pp150 [862-1048] peptide but not by CMV-gB or herpes simplex virus 2 glycoprotein D. Lipid and hemoglobin matrix did not interfere with the assay. The UL32/pp150 [862-1048] IgG ELISA can be used for the sensitive and specific detection of CMV infection in gB-vaccinated individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 76 FR 16481 - Lifeline and Link Up Reform and Modernization; Federal-State Joint Board on Universal Service...

    Science.gov (United States)

    2011-03-23

    ... proposes a series of revisions to the information collected by ETCs and their Lifeline and Link Up... apply to all ETCs in all States; (3) allow States to utilize different and/or additional verification... uniform minimum required procedures; (4) require all ETCs in all States to submit the data results of...

  20. Optimal state estimation over communication channels with random delays

    KAUST Repository

    Mahmoud, Magdi S.; Liu, Bo

    2013-01-01

    This paper is concerned with the optimal estimation of linear systems over unreliable communication channels with random delays. The measurements are delivered without time stamp, and the probabilities of time delays are assumed to be known. Since the estimation is time-driven, the actual time delays are converted into virtual time delays among the formulation. The receiver of estimation node stores the sum of arrived measurements between two adjacent processing time instants and also counts the number of arrived measurements. The original linear system is modeled as an extended system with uncertain observation to capture the feature of communication, then the optimal estimation algorithm of systems with uncertain observations is proposed. Additionally, a numerical simulation is presented to show the performance of this work. © 2013 The Franklin Institute.

  1. Optimal state estimation over communication channels with random delays

    KAUST Repository

    Mahmoud, Magdi S.

    2013-04-01

    This paper is concerned with the optimal estimation of linear systems over unreliable communication channels with random delays. The measurements are delivered without time stamp, and the probabilities of time delays are assumed to be known. Since the estimation is time-driven, the actual time delays are converted into virtual time delays among the formulation. The receiver of estimation node stores the sum of arrived measurements between two adjacent processing time instants and also counts the number of arrived measurements. The original linear system is modeled as an extended system with uncertain observation to capture the feature of communication, then the optimal estimation algorithm of systems with uncertain observations is proposed. Additionally, a numerical simulation is presented to show the performance of this work. © 2013 The Franklin Institute.

  2. Multistage optimal PMU placement for hybrid state estimation

    DEFF Research Database (Denmark)

    Hazra, J.; Das, Kaushik; Roy, B. K. S.

    2017-01-01

    placed by the proposed method are used in developing a hybrid state estimator (HSE). The HSE estimates the voltage phasor at all the buses of a power system with a limited numbers of PMUs in steady state as well as in the presence of disturbances even in that part of network which is unobservable through...... PMUs. Performance of the proposed phased installation scheme for HSE is evaluated on the number of standard test system and the simulation results shows an improvement in the accuracy of the estimated states as compared to the existing methods in the literature....

  3. Variational optimization algorithms for uniform matrix product states

    Science.gov (United States)

    Zauner-Stauber, V.; Vanderstraeten, L.; Fishman, M. T.; Verstraete, F.; Haegeman, J.

    2018-01-01

    We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.

  4. Optimizing methods for linking cinematic features to fMRI data.

    Science.gov (United States)

    Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia

    2015-04-15

    One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved

  5. Linking ecosystem services with state-and-transition models to evaluate rangeland management decisions

    Science.gov (United States)

    Lohani, S.; Heilman, P.; deSteiguer, J. E.; Guertin, D. P.; Wissler, C.; McClaran, M. P.

    2014-12-01

    Quantifying ecosystem services is a crucial topic for land management decision making. However, market prices are usually not able to capture all the ecosystem services and disservices. Ecosystem services from rangelands, that cover 70% of the world's land area, are even less well-understood since knowledge of rangelands is limited. This study generated a management framework for rangelands that uses remote sensing to generate state and transition models (STMs) for a large area and a linear programming (LP) model that uses ecosystem services to evaluate natural and/or management induced transitions as described in the STM. The LP optimization model determines the best management plan for a plot of semi-arid land in the Empire Ranch in southeastern Arizona. The model allocated land among management activities (do nothing, grazing, fire, and brush removal) to optimize net benefits and determined the impact of monetizing environmental services and disservices on net benefits, acreage allocation and production output. The ecosystem services under study were forage production (AUM/ac/yr), sediment (lbs/ac/yr), water runoff (inches/yr), soil loss (lbs/ac/yr) and recreation (thousands of number of visitors/ac/yr). The optimization model was run for three different scenarios - private rancher, public rancher including environmental services and excluding disservices, and public rancher including both services and disservices. The net benefit was the highest for the public rancher excluding the disservices. A result from the study is a constrained optimization model that incorporates ecosystem services to analyze investments on conservation and management activities. Rangeland managers can use this model to understand and explain, not prescribe, the tradeoffs of management investments.

  6. Analysis and Optimization of Spiral Circular Inductive Coupling Link for Bio-Implanted Applications on Air and within Human Tissue

    Directory of Open Access Journals (Sweden)

    Saad Mutashar

    2014-06-01

    Full Text Available The use of wireless communication using inductive links to transfer data and power to implantable microsystems to stimulate and monitor nerves and muscles is increasing. This paper deals with the development of the theoretical analysis and optimization of an inductive link based on coupling and on spiral circular coil geometry. The coil dimensions offer 22 mm of mutual distance in air. However, at 6 mm of distance, the coils offer a power transmission efficiency of 80% in the optimum case and 73% in the worst case via low input impedance, whereas, transmission efficiency is 45% and 32%, respectively, via high input impedance. The simulations were performed in air and with two types of simulated human biological tissues such as dry and wet-skin using a depth of 6 mm. The performance results expound that the combined magnitude of the electric field components surrounding the external coil is approximately 98% of that in air, and for an internal coil, it is approximately 50%, respectively. It can be seen that the gain surrounding coils is almost constant and confirms the omnidirectional pattern associated with such loop antennas which reduces the effect of non-alignment between the two coils. The results also show that the specific absorption rate (SAR and power loss within the tissue are lower than that of the standard level. Thus, the tissue will not be damaged anymore.

  7. Cat Swarm Optimization Based Functional Link Artificial Neural Network Filter for Gaussian Noise Removal from Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2016-01-01

    Full Text Available Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN to remove the unwanted noise. The structure of the proposed filter is based on the Functional Link Artificial Neural Network (FLANN and the Cat Swarm Optimization (CSO is utilized for the selection of optimum weight of the neural network filter. The applied filter has been compared with the existing linear filters, like the mean filter and the adaptive Wiener filter. The performance indices, such as peak signal to noise ratio (PSNR, have been computed for the quantitative analysis of the proposed filter. The experimental evaluation established the superiority of the proposed filtering technique over existing methods.

  8. Optimization of PAM-4 transmitters based on lumped silicon photonic MZMs for high-speed short-reach optical links.

    Science.gov (United States)

    Zhou, Shiyu; Wu, Hsin-Ta; Sadeghipour, Khosrov; Scarcella, Carmelo; Eason, Cormac; Rensing, Marc; Power, Mark J; Antony, Cleitus; O'Brien, Peter; Townsend, Paul D; Ossieur, Peter

    2017-02-20

    We demonstrate how to optimize the performance of PAM-4 transmitters based on lumped Silicon Photonic Mach-Zehnder Modulators (MZMs) for short-reach optical links. Firstly, we analyze the trade-off that occurs between extinction ratio and modulation loss when driving an MZM with a voltage swing less than the MZM's Vπ. This is important when driver circuits are realized in deep submicron CMOS process nodes. Next, a driving scheme based upon a switched capacitor approach is proposed to maximize the achievable bandwidth of the combined lumped MZM and CMOS driver chip. This scheme allows the use of lumped MZM for high speed optical links with reduced RF driver power consumption compared to the conventional approach of driving MZMs (with transmission line based electrodes) with a power amplifier. This is critical for upcoming short-reach link standards such as 400Gb/s 802.3 Ethernet. The driver chip was fabricated using a 65nm CMOS technology and flip-chipped on top of the Silicon Photonic chip (fabricated using IMEC's ISIPP25G technology) that contains the MZM. Open eyes with 4dB extinction ratio for a 36Gb/s (18Gbaud) PAM-4 signal are experimentally demonstrated. The electronic driver chip has a core area of only 0.11mm2 and consumes 236mW from 1.2V and 2.4V supply voltages. This corresponds to an energy efficiency of 6.55pJ/bit including Gray encoder and retiming, or 5.37pJ/bit for the driver circuit only.

  9. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links.

    Science.gov (United States)

    Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul

    2014-01-01

    A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn(2+) were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn(2+), and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks.

  10. Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography

    International Nuclear Information System (INIS)

    Nunn, J.; Smith, B. J.; Puentes, G.; Walmsley, I. A.; Lundeen, J. S.

    2010-01-01

    Given an experimental setup and a fixed number of measurements, how should one take data to optimally reconstruct the state of a quantum system? The problem of optimal experiment design (OED) for quantum state tomography was first broached by Kosut et al.[R. Kosut, I. Walmsley, and H. Rabitz, e-print arXiv:quant-ph/0411093 (2004)]. Here we provide efficient numerical algorithms for finding the optimal design, and analytic results for the case of 'minimal tomography'. We also introduce the average OED, which is independent of the state to be reconstructed, and the optimal design for tomography (ODT), which minimizes tomographic bias. Monte Carlo simulations confirm the utility of our results for qubits. Finally, we adapt our approach to deal with constrained techniques such as maximum-likelihood estimation. We find that these are less amenable to optimization than cruder reconstruction methods, such as linear inversion.

  11. Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.

    Science.gov (United States)

    Chang, Joshua; Paydarfar, David

    2014-12-01

    Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.

  12. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States.

    Science.gov (United States)

    Cohen, Judah; Pfeiffer, Karl; Francis, Jennifer A

    2018-03-13

    Recent boreal winters have exhibited a large-scale seesaw temperature pattern characterized by an unusually warm Arctic and cold continents. Whether there is any physical link between Arctic variability and Northern Hemisphere (NH) extreme weather is an active area of research. Using a recently developed index of severe winter weather, we show that the occurrence of severe winter weather in the United States is significantly related to anomalies in pan-Arctic geopotential heights and temperatures. As the Arctic transitions from a relatively cold state to a warmer one, the frequency of severe winter weather in mid-latitudes increases through the transition. However, this relationship is strongest in the eastern US and mixed to even opposite along the western US. We also show that during mid-winter to late-winter of recent decades, when the Arctic warming trend is greatest and extends into the upper troposphere and lower stratosphere, severe winter weather-including both cold spells and heavy snows-became more frequent in the eastern United States.

  13. Optimal control of peridinin excited-state dynamics

    Czech Academy of Sciences Publication Activity Database

    Dietzek, B.; Chábera, P.; Hanf, R.; Tschierlei, S.; Popp, J.; Pascher, T.; Yartsev, A.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 129-136 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : peridin * excited-state dynamics * coherent control Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  14. Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints.

    Science.gov (United States)

    Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan

    2016-08-22

    Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the

  15. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    International Nuclear Information System (INIS)

    Sun, Z.; Sen, A.K.; Longman, R.W.

    2006-01-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used

  16. Event-Triggered Distributed Approximate Optimal State and Output Control of Affine Nonlinear Interconnected Systems.

    Science.gov (United States)

    Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-06-08

    This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.

  17. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links

    Directory of Open Access Journals (Sweden)

    Abolmaali SS

    2014-06-01

    Full Text Available Samira Sadat Abolmaali,1 Ali Tamaddon,1,2 Gholamhossein Yousefi,1,2 Katayoun Javidnia,3 Rasoul Dinarvand41Department of Pharmaceutics, Shiraz School of Pharmacy, 2Center for Nanotechnology in Drug Delivery, 3Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 4Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG and Zn2+ were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn2+, and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX, approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 µM. The

  18. Optimal Classical Simulation of State-Independent Quantum Contextuality

    Science.gov (United States)

    Cabello, Adán; Gu, Mile; Gühne, Otfried; Xu, Zhen-Peng

    2018-03-01

    Simulating quantum contextuality with classical systems requires memory. A fundamental yet open question is what is the minimum memory needed and, therefore, the precise sense in which quantum systems outperform classical ones. Here, we make rigorous the notion of classically simulating quantum state-independent contextuality (QSIC) in the case of a single quantum system submitted to an infinite sequence of measurements randomly chosen from a finite QSIC set. We obtain the minimum memory needed to simulate arbitrary QSIC sets via classical systems under the assumption that the simulation should not contain any oracular information. In particular, we show that, while classically simulating two qubits tested with the Peres-Mermin set requires log224 ≈4.585 bits, simulating a single qutrit tested with the Yu-Oh set requires, at least, 5.740 bits.

  19. A Linear Programming Model to Optimize Various Objective Functions of a Foundation Type State Support Program.

    Science.gov (United States)

    Matzke, Orville R.

    The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…

  20. Extended great deluge algorithm for the imperfect preventive maintenance optimization of multi-state systems

    International Nuclear Information System (INIS)

    Nahas, Nabil; Khatab, Abdelhakim; Ait-Kadi, Daoud; Nourelfath, Mustapha

    2008-01-01

    This paper deals with preventive maintenance optimization problem for multi-state systems (MSS). This problem was initially addressed and solved by Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193-203]. It consists on finding an optimal sequence of maintenance actions which minimizes maintenance cost while providing the desired system reliability level. This paper proposes an approach which improves the results obtained by genetic algorithm (GENITOR) in Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193-203]. The considered MSS have a range of performance levels and their reliability is defined to be the ability to meet a given demand. This reliability is evaluated by using the universal generating function technique. An optimization method based on the extended great deluge algorithm is proposed. This method has the advantage over other methods to be simple and requires less effort for its implementation. The developed algorithm is compared to than in Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193-203] by using a reference example and two newly generated examples. This comparison shows that the extended great deluge gives the best solutions (i.e. those with minimal costs) for 8 instances among 10

  1. Comparison of Different Toll Policies in the Dynamic Second-best Optimal Toll Design Problem : Case study on a Three-link network

    NARCIS (Netherlands)

    Sta?ková, K.; Olsder, J.J.; Bliemer, M.C.J.

    2009-01-01

    In this paper, the dynamic optimal toll design problem is considered as a one leader-many followers hierarchical non-cooperative game. On a given network the road authority as the leader tolls some links in order to reach its objective, while travelers as followers minimize their perceived travel

  2. Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin : Fragment-Based Drug Design Facilitated by Dynamic Combinatorial Chemistry

    NARCIS (Netherlands)

    Mondal, Milon; Radeva, Nedyalka; Fanlo-Virgos, Hugo; Otto, Sijbren; Klebe, Gerhard; Hirsch, Anna K. H.

    2016-01-01

    Fragment-based drug design (FBDD) affords active compounds for biological targets. While there are numerous reports on FBDD by fragment growing/optimization, fragment linking has rarely been reported. Dynamic combinatorial chemistry (DCC) has become a powerful hit-identification strategy for

  3. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2015-03-01

    Full Text Available We linked state-and-transition simulation models (STSMs with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  4. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  5. Methylation state of the EDA gene promoter in Chinese X-linked hypohidrotic ectodermal dysplasia carriers.

    Directory of Open Access Journals (Sweden)

    Wei Yin

    Full Text Available Hypodontia, hypohidrosis, sparse hair and characteristic faces are the main characters of X-linked hypohidrotic ectodermal dysplasia (XLHED which is caused by genetic ectodysplasin A (EDA deficiency. Heterozygous female carriers tend to have mild to moderate XLHED phenotype, even though 30% of them present no obvious symptom.A large Chinese XLHED family was reported and the entire coding region and exon-intron boundaries of EDA gene were sequenced. To elucidate the mechanism for carriers' tempered phenotype, we analyzed the methylation level on four sites of the promoter of EDA by the pyrosequencing system.A known frameshift mutation (c.573-574 insT was found in this pedigree. Combined with the pedigrees we reported before, 120 samples comprised of 23 carrier females from 11 families and 97 healthy females were analyzed for the methylation state of EDA promoter. Within 95% confidence interval (CI, 18 (78.26% carriers were hypermethylated at these 4 sites.Chinese XLHED carriers often have a hypermethylated EDA promoter.

  6. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries

    International Nuclear Information System (INIS)

    Ben youcef, Hicham; Garcia-Calvo, Oihane; Lago, Nerea; Devaraj, Shanmukaraj; Armand, Michel

    2016-01-01

    Semi-interpenetrated network Solid Polymer Electrolytes (SPEs) were fabricated by UV-induced cross-linking of poly(ethyleneglycol) diacrylate (PEGDA) and divinylbenzene (DVB) within a poly(ethyleneoxide) (PEO) matrix (M v = 5 × 10 6 g mol −1 ), comprising lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), at a molar ratio of EO:Li ∼ 30:1. The influence of the DVB content on the final SPE properties was investigated in detail. An increase of DVB concentration resulted in self-standing polymer electrolytes. The DVB cross-linker incorporation was found to decrease the crystallinity of the PEO matrix from 34% to 23%, with a decrease in the melting temperature (T m ) of the membrane from 50 °C to 34 °C. Moreover, the influence of the DVB concentration on the ionic conductivity was determined for polymer electrolytes with 0, 10, 20 and 45% DVB from room temperature (RT) to 80 °C. The resulting SPEs showed a high electrochemical stability of 4.3 V as well as practical conductivity values exceeding 10 −4 S cm −1 at 70 °C. Cycling performance of these semi-interpenetrated SPE’s have been shown with a Li metal polymer battery and all solid -state Li sulphur battery.

  7. Optimal estimate of a pure qubit state from Uhlmann-Josza fidelity

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Manuel Avila, E-mail: manvlk@yahoo.com [Centro Universitario UAEM Valle de Chalco, UAEMex, Edo. de Mexico (Mexico)

    2012-04-15

    In the framework of collective measurements, efforts have been made to reconstruct one-qubit states. Such schemes find an obstacle in the no-cloning theorem, which prevents full reconstruction of a quantum state. Quantum Mechanics thus restricts to obtain estimates of the reconstruction of a pure qubit. We discuss the optimal estimate on the basis of the Uhlmann-Josza fidelity, respecting the limitations imposed by the no-cloning theorem. We derive a realistic optimal expression for the average fidelity. Our formalism also introduces an optimization parameter L. Values close to zero imply full reconstruction of the qubit (i. e., the classical limit), while larger L's represent good quantum optimization of the qubit estimate. The parameter L is interpreted as the degree of quantumness of the average fidelity associated with the reconstruction. (author)

  8. Stress-strain state analysis and optimization of rod system under periodic pulse load

    Directory of Open Access Journals (Sweden)

    Grebenyuk Grigory

    2018-01-01

    Full Text Available The paper considers the problem of analysis and optimization of rod systems subjected to combined static and periodic pulse load. As a result of the study the analysis method was developed based on traditional approach to solving homogeneous matrix equations of state and a special algorithm for developing a particular solution. The influence of pulse parameters variations on stress-strain state of a rod system was analyzed. Algorithms for rod systems optimization were developed basing on strength recalculation and statement and solution of optimization problem as a problem of nonlinear mathematical programming. Recommendations are developed for efficient organization of process for optimization of rod systems under static and periodic pulse load.

  9. Optimal allocation of sensors for state estimation of distributed parameter systems

    International Nuclear Information System (INIS)

    Sunahara, Yoshifumi; Ohsumi, Akira; Mogami, Yoshio.

    1978-01-01

    The purpose of this paper is to present a method for finding the optimal allocation of sensors for state estimation of linear distributed parameter systems. This method is based on the criterion that the error covariance associated with the state estimate becomes minimal with respect to the allocation of the sensors. A theorem is established, giving the sufficient condition for optimizing the allocation of sensors to make minimal the error covariance approximated by a modal expansion. The remainder of this paper is devoted to illustrate important phases of the general theory of the optimal measurement allocation problem. To do this, several examples are demonstrated, including extensive discussions on the mutual relation between the optimal allocation and the dynamics of sensors. (author)

  10. Optimal Control for Fast and Robust Generation of Entangled States in Anisotropic Heisenberg Chains

    Science.gov (United States)

    Zhang, Xiong-Peng; Shao, Bin; Zou, Jian

    2017-05-01

    Motivated by some recent results of the optimal control (OC) theory, we study anisotropic XXZ Heisenberg spin-1/2 chains with control fields acting on a single spin, with the aim of exploring how maximally entangled state can be prepared. To achieve the goal, we use a numerical optimization algorithm (e.g., the Krotov algorithm, which was shown to be capable of reaching the quantum speed limit) to search an optimal set of control parameters, and then obtain OC pulses corresponding to the target fidelity. We find that the minimum time for implementing our target state depending on the anisotropy parameter Δ of the model. Finally, we analyze the robustness of the obtained results for the optimal fidelities and the effectiveness of the Krotov method under some realistic conditions.

  11. Nonlinear dynamic simulation of optimal depletion of crude oil in the lower 48 United States

    International Nuclear Information System (INIS)

    Ruth, M.; Cleveland, C.J.

    1993-01-01

    This study combines the economic theory of optimal resource use with econometric estimates of demand and supply parameters to develop a nonlinear dynamic model of crude oil exploration, development, and production in the lower 48 United States. The model is simulated with the graphical programming language STELLA, for the years 1985 to 2020. The procedure encourages use of economic theory and econometrics in combination with nonlinear dynamic simulation to enhance our understanding of complex interactions present in models of optimal resource use. (author)

  12. Optimal quantum state estimation with use of the no-signaling principle

    International Nuclear Information System (INIS)

    Han, Yeong-Deok; Bae, Joonwoo; Wang Xiangbin; Hwang, Won-Young

    2010-01-01

    A simple derivation of the optimal state estimation of a quantum bit was obtained by using the no-signaling principle. In particular, the no-signaling principle determines a unique form of the guessing probability independent of figures of merit, such as the fidelity or information gain. This proves that the optimal estimation for a quantum bit can be achieved by the same measurement for almost all figures of merit.

  13. Design of an optimal preview controller for linear discrete-time descriptor systems with state delay

    Science.gov (United States)

    Cao, Mengjuan; Liao, Fucheng

    2015-04-01

    In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.

  14. Parameter optimization for transitions between memory states in small arrays of Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Rezac, Jacob D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computing and Computational Sciences Directorate; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematical Sciences; Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computing and Computational Sciences Directorate; Braiman, Yehuda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computing and Computational Sciences Directorate; ; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering

    2017-01-11

    Coupled arrays of Josephson junctions possess multiple stable zero voltage states. Such states can store information and consequently can be utilized for cryogenic memory applications. Basic memory operations can be implemented by sending a pulse to one of the junctions and studying transitions between the states. In order to be suitable for memory operations, such transitions between the states have to be fast and energy efficient. Here in this article we employed simulated annealing, a stochastic optimization algorithm, to study parameter optimization of array parameters which minimizes times and energies of transitions between specifically chosen states that can be utilized for memory operations (Read, Write, and Reset). Simulation results show that such transitions occur with access times on the order of 10–100 ps and access energies on the order of 10-19–5×10-18 J. Numerical simulations are validated with approximate analytical results.

  15. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.

    Science.gov (United States)

    Cheng, Lin; Zhu, Yang; Sun, Junfeng; Deng, Lifu; He, Naying; Yang, Yang; Ling, Huawei; Ayaz, Hasan; Fu, Yi; Tong, Shanbao

    2018-01-25

    Task-related reorganization of functional connectivity (FC) has been widely investigated. Under classic static FC analysis, brain networks under task and rest have been demonstrated a general similarity. However, brain activity and cognitive process are believed to be dynamic and adaptive. Since static FC inherently ignores the distinct temporal patterns between rest and task, dynamic FC may be more a suitable technique to characterize the brain's dynamic and adaptive activities. In this study, we adopted [Formula: see text]-means clustering to investigate task-related spatiotemporal reorganization of dynamic brain networks and hypothesized that dynamic FC would be able to reveal the link between resting-state and task-state brain organization, including broadly similar spatial patterns but distinct temporal patterns. In order to test this hypothesis, this study examined the dynamic FC in default-mode network (DMN) and motor-related network (MN) using Blood-Oxygenation-Level-Dependent (BOLD)-fMRI data from 26 healthy subjects during rest (REST) and a hand closing-and-opening (HCO) task. Two principal FC states in REST and one principal FC state in HCO were identified. The first principal FC state in REST was found similar to that in HCO, which appeared to represent intrinsic network architecture and validated the broadly similar spatial patterns between REST and HCO. However, the second FC principal state in REST with much shorter "dwell time" implied the transient functional relationship between DMN and MN during REST. In addition, a more frequent shifting between two principal FC states indicated that brain network dynamically maintained a "default mode" in the motor system during REST, whereas the presence of a single principal FC state and reduced FC variability implied a more temporally stable connectivity during HCO, validating the distinct temporal patterns between REST and HCO. Our results further demonstrated that dynamic FC analysis could offer unique

  16. Different Stratospheric Polar Vortex States linked to Cold-Spells in North America and Northern Eurasia

    Science.gov (United States)

    Kretschmer, M.; Cohen, J. L.; Runge, J.; Coumou, D.

    2017-12-01

    The stratospheric polar vortex in boreal winter can influence the tropospheric circulation and thereby surface weather in the mid-latitudes. Weak states of the vortex, e.g. associated with Sudden Stratospheric Warmings (SSWs), often precede a negative phase of the North Atlantic Oscillation (NAO), and thus increase the risk of mid-latitude cold-spells especially over Eurasia. Here we show using cluster analysis that next to the well-documented relationship between a zonally symmetric disturbed vortex and a negative NAO, there exists a zonally asymmetric pattern linked to a negative Western Pacific Oscillation (WPO) and cold-spells in the northeastern US, like for example observed in February 2014. The latter is more synoptic in time-scale but occurs more frequently than SSWs. A causal effect network (CEN) approach gives insights into the underlying physical pathways and time-lags showing that high-pressure around Greenland leads to vertical wave activity over eastern Siberia leading to downward propagating waves over Alaska and high pressure over the North Pacific. Moreover, composites propose that a rather strong mid-stratospheric vortex seems to be favorable for this zonally asymmetric and reflective mechanism. Overall, the mutual relationship between stratospheric circulation and high-latitude blocking in both the Pacific and Atlantic Oceans is complex and involves mechanisms operating at different time-scales. Our results suggest that the stratospheric influence on winter circulation should not exclusively be analyzed in terms of a downward propagating Northern Annular Mode (NAM) signal and SSWs. In particular when studying the stratospheric impacts on North American temperature it is crucial to also consider the more transient and zonally asymmetric events which might help to improve seasonal winter predictions for this region.

  17. Multi-objective optimization of linear multi-state multiple sliding window system

    International Nuclear Information System (INIS)

    Konak, Abdullah; Kulturel-Konak, Sadan; Levitin, Gregory

    2012-01-01

    This paper considers the optimal element sequencing in a linear multi-state multiple sliding window system that consists of n linearly ordered multi-state elements. Each multi-state element can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. The failure of type i in the system occurs if for any i (1≤i≤I) the cumulative performance of any r i consecutive elements is lower than w i . The element sequence strongly affects the probability of any type of system failure. The sequence that minimizes the probability of certain type of failure can provide high probability of other types of failures. Therefore the optimization problem for the multiple sliding window system is essentially multi-objective. The paper formulates and solves the multi-objective optimization problem for the multiple sliding window systems. A multi-objective Genetic Algorithm is used as the optimization engine. Illustrative examples are presented.

  18. Optimal conclusive teleportation of a d-dimensional two-particle unknown quantum state

    Institute of Scientific and Technical Information of China (English)

    Yang Yu-Guang; Wen Qiao-Yan; Zhu Fu-Chen

    2006-01-01

    A conclusive teleportation protocol of a d-dimensional two-particle unknown quantum state using three ddimensional particles in an arbitrary pure state is proposed. A sender teleports the unknown state conclusively to a receiver by using the positive operator valued measure(POVM) and introducing an ancillary qudit to perform the generalized Bell basis measurement. We calculate the optimal teleportation fidelity. We also discuss and analyse the reason why the information on the teleported state is lost in the course of the protocol.

  19. Short-Term State Forecasting-Based Optimal Voltage Regulation in Distribution Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui; Jiang, Huaiguang; Zhang, Yingchen

    2017-05-17

    A novel short-term state forecasting-based optimal power flow (OPF) approach for distribution system voltage regulation is proposed in this paper. An extreme learning machine (ELM) based state forecaster is developed to accurately predict system states (voltage magnitudes and angles) in the near future. Based on the forecast system states, a dynamically weighted three-phase AC OPF problem is formulated to minimize the voltage violations with higher penalization on buses which are forecast to have higher voltage violations in the near future. By solving the proposed OPF problem, the controllable resources in the system are optimally coordinated to alleviate the potential severe voltage violations and improve the overall voltage profile. The proposed approach has been tested in a 12-bus distribution system and simulation results are presented to demonstrate the performance of the proposed approach.

  20. Towards optimal experimental tests on the reality of the quantum state

    International Nuclear Information System (INIS)

    Knee, George C

    2017-01-01

    The Barrett–Cavalcanti–Lal–Maroney (BCLM) argument stands as the most effective means of demonstrating the reality of the quantum state. Its advantages include being derived from very few assumptions, and a robustness to experimental error. Finding the best way to implement the argument experimentally is an open problem, however, and involves cleverly choosing sets of states and measurements. I show that techniques from convex optimisation theory can be leveraged to numerically search for these sets, which then form a recipe for experiments that allow for the strongest statements about the ontology of the wavefunction to be made. The optimisation approach presented is versatile, efficient and can take account of the finite errors present in any real experiment. I find significantly improved low-cardinality sets which are guaranteed partially optimal for a BCLM test in low Hilbert space dimension. I further show that mixed states can be more optimal than pure states. (paper)

  1. Global optimization of proteins using a dynamical lattice model: Ground states and energy landscapes

    OpenAIRE

    Dressel, F.; Kobe, S.

    2004-01-01

    A simple approach is proposed to investigate the protein structure. Using a low complexity model, a simple pairwise interaction and the concept of global optimization, we are able to calculate ground states of proteins, which are in agreement with experimental data. All possible model structures of small proteins are available below a certain energy threshold. The exact lowenergy landscapes for the trp cage protein (1L2Y) is presented showing the connectivity of all states and energy barriers.

  2. Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States

    Science.gov (United States)

    2017-04-15

    Performing Organization: The Pennsylvania State University Department of Aerospace Engineering 231C Hammond Building University Park , PA 16802 Attn...Research Assistant Penn State University Co-PI: Chengjian He (408) 523-5100 he@flightlab.com Dooyong Lee Advanced Rotorcraft Technologies...Linear Systems Optimal and Robust Control,” CRC press , 2007 6. Transitions/Impact Submitted AHS Forum Paper and presented paper at AHS UAV

  3. On-line computer control of a nuclear reactor using optimal control and state estimation methods

    International Nuclear Information System (INIS)

    Tye, C.

    1980-01-01

    This paper describes the experimental implementation of a nuclear reactor control system using combined optimal state feedback based on the Quadratic Regulator and state estimation using Kalman filtering techniques. The results obtained from the experiments indicate that a reactor control loop designed using this approach has improved stability margins, greater speed of response and noise filtering properties compared with a conventional reactor control loop. 11 refs

  4. A Unified Statistical Rain-Attenuation Model for Communication Link Fade Predictions and Optimal Stochastic Fade Control Design Using a Location-Dependent Rain-Statistic Database

    Science.gov (United States)

    Manning, Robert M.

    1990-01-01

    A static and dynamic rain-attenuation model is presented which describes the statistics of attenuation on an arbitrarily specified satellite link for any location for which there are long-term rainfall statistics. The model may be used in the design of the optimal stochastic control algorithms to mitigate the effects of attenuation and maintain link reliability. A rain-statistics data base is compiled, which makes it possible to apply the model to any location in the continental U.S. with a resolution of 0-5 degrees in latitude and longitude. The model predictions are compared with experimental observations, showing good agreement.

  5. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2015-07-01

    Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.

  6. Optoelectronic link for analog signals from solid state detectors in high energy physics

    International Nuclear Information System (INIS)

    Manfredi, P.F.; Speziali, V.

    1983-01-01

    An optoelectric link has been made to transmit analog signals over a long distance between the beam area and the remote-end data acquisition instrumentation in high energy experiments. The optoelectronic link is intended for silicon target applications and it is designed to work on the signals at the output of a low noise amplifier system. Its advantages over a conventional galvanic connection as well as its limitations are discussed. (orig.)

  7. Development of a biorefinery optimized biofuel supply curve for the western United States

    Science.gov (United States)

    Nathan Parker; Peter Tittmann; Quinn Hart; Richard Nelson; Ken Skog; Anneliese Schmidt; Edward Gray; Bryan Jenkins

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed...

  8. An effective, robust and parallel implementation of an interior point algorithm for limit state optimization

    DEFF Research Database (Denmark)

    Dollerup, Niels; Jepsen, Michael S.; Frier, Christian

    2014-01-01

    A robust and effective finite element based implementation of lower bound limit state analysis applying an interior point formulation is presented in this paper. The lower bound formulation results in a convex optimization problem consisting of a number of linear constraints from the equilibrium...

  9. Sensitive Constrained Optimal PMU Allocation with Complete Observability for State Estimation Solution

    Directory of Open Access Journals (Sweden)

    R. Manam

    2017-12-01

    Full Text Available In this paper, a sensitive constrained integer linear programming approach is formulated for the optimal allocation of Phasor Measurement Units (PMUs in a power system network to obtain state estimation. In this approach, sensitive buses along with zero injection buses (ZIB are considered for optimal allocation of PMUs in the network to generate state estimation solutions. Sensitive buses are evolved from the mean of bus voltages subjected to increase of load consistently up to 50%. Sensitive buses are ranked in order to place PMUs. Sensitive constrained optimal PMU allocation in case of single line and no line contingency are considered in observability analysis to ensure protection and control of power system from abnormal conditions. Modeling of ZIB constraints is included to minimize the number of PMU network allocations. This paper presents optimal allocation of PMU at sensitive buses with zero injection modeling, considering cost criteria and redundancy to increase the accuracy of state estimation solution without losing observability of the whole system. Simulations are carried out on IEEE 14, 30 and 57 bus systems and results obtained are compared with traditional and other state estimation methods available in the literature, to demonstrate the effectiveness of the proposed method.

  10. Optimization of Verticillium lecanii spore production in solid-state fermentation on sugarcane bagasse

    NARCIS (Netherlands)

    Shi, Y.; Xu, X.; Zhu, Y.

    2009-01-01

    Verticillium lecanii is an entomopathogen with high potential in biological control of pests. We developed a solid-state fermentation with sugarcane bagasse as carrier absorbing liquid medium to propagate V. lecanii spores. Using statistical experimental design, we optimized the medium composition

  11. Experimental evaluation of optimal Vehicle Dynamic Control based on the State Dependent Riccati Equation technique

    NARCIS (Netherlands)

    Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.

    2013-01-01

    Development and experimentally evaluation of an optimal Vehicle Dynamic Control (VDC) strategy based on the State Dependent Riccati Equation (SDRE) control technique is presented. The proposed nonlinear controller is based on a nonlinear vehicle model with nonlinear tire characteristics. A novel

  12. Numerical static state feedback laws for closed-loop singular optimal control

    NARCIS (Netherlands)

    Graaf, de S.C.; Stigter, J.D.; Straten, van G.

    2005-01-01

    Singular and non-singular control trajectories of agricultural and (bio) chemical processes may need to be recalculated from time to time for use in closed-loop optimal control, because of unforeseen changes in state values and noise. This is time consuming. As an alternative, in this paper,

  13. Optimal Monetary Policy Cooperation through State-Independent Contracts with Targets

    DEFF Research Database (Denmark)

    Jensen, Henrik

    2000-01-01

    Simple state-independent monetary institutions are shown to secure optimal cooperative policies in a stochastic, linear-quadratic two-country world with international policy spill-overs and national credibility problems. Institutions characterize delegation to independent central bankers facing...... quadratic performance related contracts punishing or rewarding deviations from primary and intermediate policy targets...

  14. Information entropies in antikaon-nucleon scattering and optimal state analysis

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, M.L.; Petrascu, C.

    1998-01-01

    It is known that Jaynes interpreted the entropy as the expected self-information of a class of mutually exclusive and exhaustive events, while the probability is considered to be the rational degree of belief we assign to events based on available experimental evidence. The axiomatic derivation of Jaynes principle of maximum entropy as well as of the Kullback principle of minimum cross-entropy have been reported. Moreover, the optimal states in the Hilbert space of the scattering amplitude, which are analogous to the coherent states from the Hilbert space of the wave functions, were introduced and developed. The possibility that each optimal state possesses a specific minimum entropic uncertainty relation similar to that of the coherent states was recently conjectured. In fact, the (angle and angular momenta) information entropies, as well as the entropic angle-angular momentum uncertainty relations, in the hadron-hadron scattering, are introduced. The experimental information entropies for the pion-nucleon scattering are calculated by using the available phase shift analyses. These results are compared with the information entropies of the optimal states. Then, the optimal state dominance in the pion-nucleon scattering is systematically observed for all P LAB = 0.02 - 10 GeV/c. Also, it is shown that the angle-angular momentum entropic uncertainty relations are satisfied with high accuracy by all the experimental information entropies. In this paper the (angle and angular momentum) information entropies of hadron-hadron scattering are experimentally investigated by using the antikaon-nucleon phase shift analysis. Then, it is shown that the experimental entropies are in agreement with the informational entropies of optimal states. The results obtained in this paper can be explained not only by the presence of an optimal background which accompanied the production of the elementary resonances but also by the presence of the optimal resonances. On the other hand

  15. Stress state during fixation determines susceptibility to fatigue-linked biodegradation in bioprosthetic heart valve materials.

    Science.gov (United States)

    Margueratt, Sean D; Lee, J Michael

    2002-01-01

    Mechanical loading contributes to the structural deterioration of bioprosthetic heart valves. The influence of stress state during fixation may play a substantial role in their failure, linking fatigue damage caused by buckling and tension and the enzymatic degradation of glutaraldehyde-crosslinked collagen. Bovine pericardia were obtained immediately postmortem and 100 mm x 15 mm samples were cut in the base-to-apex direction. Half the samples were subjected to a uniaxial tensile stress of 250 kPa and half remained unloaded during a crosslinking treatment in 0.5% glutaraldehyde. Tissue samples were rinsed and cut into 16 mm x 4 mm test strips. Half of these strips were exposed to cyclic compressive buckling and alternating tension at 30 Hz for 20 million cycles (approx. 7.5 days) using a custom-built multi-sample fatigue system. Fatigue-damaged and non-damaged samples were subsequently incubated at 37 C for 48 hrs in: (i) Type I bacterial collagenase (20 U/ml) buffered in 0.05 M Tris, 10 mM CaCl2 2H2O (pH 7.4) or (ii) 0.05 M Tris buffer (pH 7.4) only. In both cases, the samples were loaded sinusoidally between 40 and 80 g using a previously described microtensile culture system. Tissue removed from the bath was rinsed in 0.1 M EDTA solution and mounted in a servo-hydraulic mechanical testing system (MTS). Ultimate tensile strength (UTS), maximum tissue modulus, and fracture strain were determined. The percent collagen solubilized was assessed by a colourmetric hydroxyproline assay of the enzyme bath and tissue sample. All data were analyzed by analysis of variance (ANOVA). The results confirmed the synergy between fatigue damage and collagenase proteolysis in these materials; however, there were no significant differences in this effect between simple fixation and stress-fixation up to 20 million cycles. There were significant decreases in the mechanical properties and an increase in the amount of collagen solubilized with increased exposure to fatigue cycling.

  16. Beating the Clauser-Horne-Shimony-Holt and the Svetlichny games with optimal states

    Science.gov (United States)

    Su, Hong-Yi; Ren, Changliang; Chen, Jing-Ling; Zhang, Fu-Lin; Wu, Chunfeng; Xu, Zhen-Peng; Gu, Mile; Vinjanampathy, Sai; Kwek, L. C.

    2016-02-01

    We study the relation between the maximal violation of Svetlichny's inequality and the mixedness of quantum states and obtain the optimal state (i.e., maximally nonlocal mixed states, or MNMS, for each value of linear entropy) to beat the Clauser-Horne-Shimony-Holt and the Svetlichny games. For the two-qubit and three-qubit MNMS, we showed that these states are also the most tolerant state against white noise, and thus serve as valuable quantum resources for such games. In particular, the quantum prediction of the MNMS decreases as the linear entropy increases, and then ceases to be nonlocal when the linear entropy reaches the critical points 2 /3 and 9 /14 for the two- and three-qubit cases, respectively. The MNMS are related to classical errors in experimental preparation of maximally entangled states.

  17. How States Can Promote Local Innovation, Options, and Problem-Solving in Public Education. Linking State and Local School Improvement

    Science.gov (United States)

    Posamentier, Jordan; Lake, Robin; Hill, Paul

    2017-01-01

    State policy plays a critical role in determining whether and how well local education improvement strategies can be implemented. As states rework their education policies under the Every Student Succeeds Act (ESSA), state and local leaders need a way to assess their current policy environment and identify the changes needed to encourage local…

  18. Measures of Last Resort: Assessing Strategies for State-Initiated Turnarounds. Linking State and Local School Improvement

    Science.gov (United States)

    Jochim, Ashley

    2016-01-01

    The Every Student Succeeds Act (ESSA) puts responsibility for improving student outcomes back where some say it has always belonged--under states' purview. No longer will prescriptive federal requirements dictate how states should identify, support, and turn around the lowest-performing schools and districts. Instead, states are empowered to craft…

  19. Optimal preventive maintenance and repair policies for multi-state systems

    International Nuclear Information System (INIS)

    Sheu, Shey-Huei; Chang, Chin-Chih; Chen, Yen-Luan; George Zhang, Zhe

    2015-01-01

    This paper studies the optimal preventive maintenance (PM) policies for multi-state systems. The scheduled PMs can be either imperfect or perfect type. The improved effective age is utilized to model the effect of an imperfect PM. The system is considered as in a failure state (unacceptable state) once its performance level falls below a given customer demand level. If the system fails before a scheduled PM, it is repaired and becomes operational again. We consider three types of major, minimal, and imperfect repair actions, respectively. The deterioration of the system is assumed to follow a non-homogeneous continuous time Markov process (NHCTMP) with finite state space. A recursive approach is proposed to efficiently compute the time-dependent distribution of the multi-state system. For each repair type, we find the optimal PM schedule that minimizes the average cost rate. The main implication of our results is that in determining the optimal scheduled PM, choosing the right repair type will significantly improve the efficiency of the system maintenance. Thus PM and repair decisions must be made jointly to achieve the best performance

  20. Optimal spatiotemporal representation of multichannel EEG for recognition of brain states associated with distinct visual stimulus

    Science.gov (United States)

    Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2018-04-01

    In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.

  1. Optimization of Aero Engine Acceleration Control in Combat State Based on Genetic Algorithms

    Science.gov (United States)

    Li, Jie; Fan, Ding; Sreeram, Victor

    2012-03-01

    In order to drastically exploit the potential of the aero engine and improve acceleration performance in the combat state, an on-line optimized controller based on genetic algorithms is designed for an aero engine. For testing the validity of the presented control method, detailed joint simulation tests of the designed controller and the aero engine model are performed in the whole flight envelope. Simulation test results show that the presented control algorithm has characteristics of rapid convergence speed, high efficiency and can fully exploit the acceleration performance potential of the aero engine. Compared with the former controller, the designed on-line optimized controller (DOOC) can improve the security of the acceleration process and greatly enhance the aero engine thrust in the whole range of the flight envelope, the thrust increases an average of 8.1% in the randomly selected working states. The plane which adopts DOOC can acquire better fighting advantage in the combat state.

  2. Implementing nonprojective measurements via linear optics: An approach based on optimal quantum-state discrimination

    International Nuclear Information System (INIS)

    Loock, Peter van; Nemoto, Kae; Munro, William J.; Raynal, Philippe; Luetkenhaus, Norbert

    2006-01-01

    We discuss the problem of implementing generalized measurements [positive operator-valued measures (POVMs)] with linear optics, either based upon a static linear array or including conditional dynamics. In our approach, a given POVM shall be identified as a solution to an optimization problem for a chosen cost function. We formulate a general principle: the implementation is only possible if a linear-optics circuit exists for which the quantum mechanical optimum (minimum) is still attainable after dephasing the corresponding quantum states. The general principle enables us, for instance, to derive a set of necessary conditions for the linear-optics implementation of the POVM that realizes the quantum mechanically optimal unambiguous discrimination of two pure nonorthogonal states. This extends our previous results on projection measurements and the exact discrimination of orthogonal states

  3. Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems

    International Nuclear Information System (INIS)

    Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.

    2010-01-01

    The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.

  4. Dual-earner couples' weekend recovery support, state of recovery, and work engagement: Work-linked relationship as a moderator.

    Science.gov (United States)

    Park, YoungAh; Haun, Verena C

    2017-10-01

    Despite growing recovery research, little is known about couple-dyadic processes of recovery from work. Given that dual-earner couples experience most of their recovery opportunities during nonwork times when they are together, partners in a couple relationship may substantially affect recovery and work engagement. In this study, we propose a couple-dyadic model in which weekend partner recovery support (reported by the recipient partner) is positively related to the recipient partner's state of recovery after the weekend which, in turn, increases the recipient's work engagement the following week (actor-actor mediation effect). We also test the effect of one's state of recovery on the partner's subsequent work engagement (partner effect). Additionally, work-linked relationship status is tested as a moderator of the partner effect. Actor-partner interdependence mediation modeling is used to analyze the data from 167 dual-earner couples who answered surveys on 4 measurement occasions. The results support the indirect effect of partner recovery support on work engagement through the postweekend state of recovery. Multigroup analysis results reveal that the partner effect of state of recovery on work engagement is significant for work-linked couples only and is absent for non-work-linked couples. Theoretical and practical implications, limitations, and future research directions are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. State transformations and Hamiltonian structures for optimal control in discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2006-04-01

    Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.

  6. Optimizing mesoscopic two-band superconductors for observation of fractional vortex states

    Energy Technology Data Exchange (ETDEWEB)

    Piña, Juan C. [Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife, PE (Brazil); Núcleo de Tecnologia, CAA, Universidade Federal de Pernambuco, 55002-970 Caruaru, PE (Brazil); Souza Silva, Clécio C. de, E-mail: clecio@df.ufpe [Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife, PE (Brazil); Milošević, Milorad V. [Departamento de Física, Universidade Federal do Ceará, 60455-900 Fortaleza, Ceará (Brazil); Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2014-08-15

    Highlights: • Observation of fractional vortices in two-band superconductors of broad size range. • There is a minimal sample size for observing each particular fractional state. • Optimal value for stability of each fractional state is determined. • A suitable magnetic dot enhances stability even further. - Abstract: Using the two-component Ginzburg–Landau model, we investigate the effect of sample size and magnitude and homogeneity of external magnetic field on the stability of fractional vortex states in a mesoscopic two-band superconducting disk. We found that each fractional state has a preferable sample size, for which the range of applied field in which the state is stable is pronouncedly large. Vice versa, there exists an optimal magnitude of applied field for which a large range of possible sample radii will support the considered fractional state. Finally, we show that the stability of fractional states can be enhanced even further by magnetic nanostructuring of the sample, i.e. by suitably chosen geometrical parameters and magnetic moment of a ferromagnetic dot placed on top of the superconducting disk.

  7. Preconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function

    KAUST Repository

    Pearson, John W.

    2012-11-21

    Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to be advantageous compared with other approaches. In this paper, we develop robust preconditioners for the efficient solution of the Newton steps associated with the fast solution of the Moreau-Yosida regularized problem. Numerical results illustrate the efficiency of our approach. © 2012 John Wiley & Sons, Ltd.

  8. Optimization of series-parallel multi-state systems under maintenance policies

    International Nuclear Information System (INIS)

    Nourelfath, Mustapha; Ait-Kadi, Daoud

    2007-01-01

    In the redundancy optimization problem, the design goal is achieved by discrete choices made from components available in the market. In this paper, the problem is to find, under reliability constraints, the minimal cost configuration of a multi-state series-parallel system, which is subject to a specified maintenance policy. The number of maintenance teams is less than the number of repairable components, and a maintenance policy specifies the priorities between the system components. To take into account the dependencies resulting from the sharing of maintenance teams, the universal generating function approach is coupled with a Markov model. The resulting optimization approach has the advantage of being mainly analytical

  9. Dynamic Portfolio Optimization with Transaction Costs and State-Dependent Drift

    DEFF Research Database (Denmark)

    Palczewski, Jan; Poulsen, Rolf; Schenk-Hoppe, Klaus Reiner

    2015-01-01

    The problem of dynamic portfolio choice with transaction costs is often addressed by constructing a Markov Chain approximation of the continuous time price processes. Using this approximation, we present an efficient numerical method to determine optimal portfolio strategies under time- and state......-dependent drift and proportional transaction costs. This scenario arises when investors have behavioral biases or the actual drift is unknown and needs to be estimated. Our numerical method solves dynamic optimal portfolio problems with an exponential utility function for time-horizons of up to 40 years....... It is applied to measure the value of information and the loss from transaction costs using the indifference principle....

  10. Uncovering the Links between Prospective Teachers' Personal Responsibility, Academic Optimism, Hope, and Emotions about Teaching: A Mediation Analysis

    Science.gov (United States)

    Eren, Altay

    2014-01-01

    Prospective teachers' sense of personal responsibility has not been examined together with their academic optimism, hope, and emotions about teaching in a single study to date. However, to consider hope, academic optimism, and emotions about teaching together with personal responsibility is important to uncover the factors affecting…

  11. Interactions between two superconducting weak links in the stationary (V = 0) states

    International Nuclear Information System (INIS)

    Way, Y.S.; Hsu, K.S.; Kao, Y.H.

    1977-01-01

    Effects of interaction between two superconducting weak links (SWL) at V = 0 have been calculated using the Ginzburg-Landau theory. Variations of the critical current of one SWL affected by dc current in a neighboring SWL are found in good qualitative agreement with a recent experiment. The current-phase relation of the combined system is computed for various separations between the two SWL7's; it is shown explicitly that the system behaves as a single SWL when the spacing between links is comparable to the coherence length

  12. Constrained optimization of test intervals using a steady-state genetic algorithm

    International Nuclear Information System (INIS)

    Martorell, S.; Carlos, S.; Sanchez, A.; Serradell, V.

    2000-01-01

    There is a growing interest from both the regulatory authorities and the nuclear industry to stimulate the use of Probabilistic Risk Analysis (PRA) for risk-informed applications at Nuclear Power Plants (NPPs). Nowadays, special attention is being paid on analyzing plant-specific changes to Test Intervals (TIs) within the Technical Specifications (TSs) of NPPs and it seems to be a consensus on the need of making these requirements more risk-effective and less costly. Resource versus risk-control effectiveness principles formally enters in optimization problems. This paper presents an approach for using the PRA models in conducting the constrained optimization of TIs based on a steady-state genetic algorithm (SSGA) where the cost or the burden is to be minimized while the risk or performance is constrained to be at a given level, or vice versa. The paper encompasses first with the problem formulation, where the objective function and constraints that apply in the constrained optimization of TIs based on risk and cost models at system level are derived. Next, the foundation of the optimizer is given, which is derived by customizing a SSGA in order to allow optimizing TIs under constraints. Also, a case study is performed using this approach, which shows the benefits of adopting both PRA models and genetic algorithms, in particular for the constrained optimization of TIs, although it is also expected a great benefit of using this approach to solve other engineering optimization problems. However, care must be taken in using genetic algorithms in constrained optimization problems as it is concluded in this paper

  13. Second-Order Necessary Optimality Conditions for Some State-Constrained Control Problems of Semilinear Elliptic Equations

    International Nuclear Information System (INIS)

    Casas, E.; Troeltzsch, F.

    1999-01-01

    In this paper we are concerned with some optimal control problems governed by semilinear elliptic equations. The case of a boundary control is studied. We consider pointwise constraints on the control and a finite number of equality and inequality constraints on the state. The goal is to derive first- and second-order optimality conditions satisfied by locally optimal solutions of the problem

  14. Linked migration systems: immigration and internal labor flows in the United States.

    Science.gov (United States)

    R. Walker; M. Ellis; R. Barff

    1992-01-01

    We investigate the relationship between immigration and internal labor movements in the US. Wedding the literatures on immigration and internal migration, we develop a mobility model linking these various flows on the basis of occupational status of worker, producction and institutional relations in the economy, and economic restructuring.

  15. PVA-PEG physically cross-linked hydrogel film as a wound dressing: experimental design and optimization.

    Science.gov (United States)

    Ahmed, Afnan Sh; Mandal, Uttam Kumar; Taher, Muhammad; Susanti, Deny; Jaffri, Juliana Md

    2017-04-05

    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.

  16. Development of a biorefinery optimized biofuel supply curve for the Western United States

    International Nuclear Information System (INIS)

    Parker, Nathan; Tittmann, Peter; Hart, Quinn; Nelson, Richard; Skog, Ken; Schmidt, Anneliese; Gray, Edward; Jenkins, Bryan

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed integer-linear optimization model that determines the optimal locations, technology types and sizes of biorefineries to satisfy a maximum profit objective function applied across the biofuel supply and demand chain from site of feedstock production to the product fuel terminal. The resource basis includes preliminary considerations of crop and residue sustainability. Sensitivity analyses explore possible effects of policy and technology changes. At a target market price of 19.6 $ GJ -1 , the model predicts a feasible production level of 610-1098 PJ, enough to supply up to 15% of current regional liquid transportation fuel demand. (author)

  17. State-of-the-art research: optimal investment in market-based electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hope, Einar; Skjeret, Frode

    2008-04-15

    The purpose of this state-of-the-art research paper is to surveying the literature on investment in market based electric power systems as a background for identifying and discussing some important issues in the optimal design and operation of such systems. A fundamental distinction has to be made between investment in the competitive part of the power system (generation and trading) on the one hand and the natural monopoly part (network infrastructure) on the other. The paper starts with a listing and discussion on market characteristics and properties of electric power and goes on to discussing performance criteria and potential sources of market failure for optimal electric power investment. After the literature survey there is a discussion of conditions under which optimal investment may occur. (author). 78 refs., figs

  18. Linking Excessive Heat with Daily Heat-Related Mortality over the Coterminous United States

    Science.gov (United States)

    Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.

    2014-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km) much finer than that of GCMs, to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air

  19. The steady-state modeling and optimization of a refrigeration system for high heat flux removal

    International Nuclear Information System (INIS)

    Zhou Rongliang; Zhang Tiejun; Catano, Juan; Wen, John T.; Michna, Gregory J.; Peles, Yoav; Jensen, Michael K.

    2010-01-01

    Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.

  20. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory

    Science.gov (United States)

    Kimberly A. Novick; Chelcy F. Miniat; James M. Vose

    2016-01-01

    We merge concepts from stomatal optimization theory and cohesion–tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a ‘demand limitation’ driven by an assumption of optimal stomatal functioning; (2) ‘hydraulic limitation’ of water movement from the roots to the leaves...

  1. Implementation and Optimization of GPU-Based Static State Security Analysis in Power Systems

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-01-01

    Full Text Available Static state security analysis (SSSA is one of the most important computations to check whether a power system is in normal and secure operating state. It is a challenge to satisfy real-time requirements with CPU-based concurrent methods due to the intensive computations. A sensitivity analysis-based method with Graphics processing unit (GPU is proposed for power systems, which can reduce calculation time by 40% compared to the execution on a 4-core CPU. The proposed method involves load flow analysis and sensitivity analysis. In load flow analysis, a multifrontal method for sparse LU factorization is explored on GPU through dynamic frontal task scheduling between CPU and GPU. The varying matrix operations during sensitivity analysis on GPU are highly optimized in this study. The results of performance evaluations show that the proposed GPU-based SSSA with optimized matrix operations can achieve a significant reduction in computation time.

  2. Optimal Meter Placement for Distribution Network State Estimation: A Circuit Representation Based MILP Approach

    DEFF Research Database (Denmark)

    Chen, Xiaoshuang; Lin, Jin; Wan, Can

    2016-01-01

    State estimation (SE) in distribution networks is not as accurate as that in transmission networks. Traditionally, distribution networks (DNs) are lack of direct measurements due to the limitations of investments and the difficulties of maintenance. Therefore, it is critical to improve the accuracy...... of SE in distribution networks by placing additional physical meters. For state-of-the-art SE models, it is difficult to clearly quantify measurements' influences on SE errors, so the problems of optimal meter placement for reducing SE errors are mostly solved by heuristic or suboptimal algorithms....... Under this background, this paper proposes a circuit representation model to represent SE errors. Based on the matrix formulation of the circuit representation model, the problem of optimal meter placement can be transformed to a mixed integer linear programming problem (MILP) via the disjunctive model...

  3. Using a multi-state recurrent neural network to optimize loading patterns in BWRs

    International Nuclear Information System (INIS)

    Ortiz, Juan Jose; Requena, Ignacio

    2004-01-01

    A Multi-State Recurrent Neural Network is used to optimize Loading Patterns (LP) in BWRs. We have proposed an energy function that depends on fuel assembly positions and their nuclear cross sections to carry out optimisation. Multi-State Recurrent Neural Networks creates LPs that satisfy the Radial Power Peaking Factor and maximize the effective multiplication factor at the Beginning of the Cycle, and also satisfy the Minimum Critical Power Ratio and Maximum Linear Heat Generation Rate at the End of the Cycle, thereby maximizing the effective multiplication factor. In order to evaluate the LPs, we have used a trained back-propagation neural network to predict the parameter values, instead of using a reactor core simulator, which saved considerable computation time in the search process. We applied this method to find optimal LPs for five cycles of Laguna Verde Nuclear Power Plant (LVNPP) in Mexico

  4. Optimization of anisotropic photonic density of states for Raman cooling of solids

    Science.gov (United States)

    Chen, Yin-Chung; Ghosh, Indronil; Schleife, André; Carney, P. Scott; Bahl, Gaurav

    2018-04-01

    Optical refrigeration of solids holds tremendous promise for applications in thermal management. It can be achieved through multiple mechanisms including inelastic anti-Stokes Brillouin and Raman scattering. However, engineering of these mechanisms remains relatively unexplored. The major challenge lies in the natural unfavorable imbalance in transition rates for Stokes and anti-Stokes scattering. We consider the influence of anisotropic photonic density of states on Raman scattering and derive expressions for cooling in such photonically anisotropic systems. We demonstrate optimization of the Raman cooling figure of merit considering all possible orientations for the material crystal and two example photonic crystals. We find that the anisotropic description of the photonic density of states and the optimization process is necessary to obtain the best Raman cooling efficiency for systems having lower symmetry. This general result applies to a wide array of other laser cooling methods in the presence of anisotropy.

  5. Valuing Manggarai Station – Soekarno-Hatta International Airport Rail Link Using Stated Preference Approach

    OpenAIRE

    Adi, Wahyu Tamtomo

    2015-01-01

    This study attempts to identify the characteristics and preference of the SHIA airport travelers, estimate the subjective value of in-vehicle time and waiting time by providing choice experiments regarding the available modes in combination with the Airport Rail Link (ARL) service as hypothetical situation, analyze how the values vary according to the socio-demographics of respondents and forecasting the mode sharing and the elasticity based on several scenarios. Five hundred respondents as p...

  6. Reinforcement of Smoking and Drinking: Tobacco Marketing Strategies Linked With Alcohol in the United States

    Science.gov (United States)

    Jiang, Nan

    2011-01-01

    Objectives. We investigated tobacco companies’ knowledge about concurrent use of tobacco and alcohol, their marketing strategies linking cigarettes with alcohol, and the benefits tobacco companies sought from these marketing activities. Methods. We performed systematic searches on previously secret tobacco industry documents, and we summarized the themes and contexts of relevant search results. Results. Tobacco company research confirmed the association between tobacco use and alcohol use. Tobacco companies explored promotional strategies linking cigarettes and alcohol, such as jointly sponsoring special events with alcohol companies to lower the cost of sponsorships, increase consumer appeal, reinforce brand identity, and generate increased cigarette sales. They also pursued promotions that tied cigarette sales to alcohol purchases, and cigarette promotional events frequently featured alcohol discounts or encouraged alcohol use. Conclusions. Tobacco companies’ numerous marketing strategies linking cigarettes with alcohol may have reinforced the use of both substances. Because using tobacco and alcohol together makes it harder to quit smoking, policies prohibiting tobacco sales and promotion in establishments where alcohol is served and sold might mitigate this effect. Smoking cessation programs should address the effect that alcohol consumption has on tobacco use. PMID:21852637

  7. Reinforcement of smoking and drinking: tobacco marketing strategies linked with alcohol in the United States.

    Science.gov (United States)

    Jiang, Nan; Ling, Pamela M

    2011-10-01

    We investigated tobacco companies' knowledge about concurrent use of tobacco and alcohol, their marketing strategies linking cigarettes with alcohol, and the benefits tobacco companies sought from these marketing activities. We performed systematic searches on previously secret tobacco industry documents, and we summarized the themes and contexts of relevant search results. Tobacco company research confirmed the association between tobacco use and alcohol use. Tobacco companies explored promotional strategies linking cigarettes and alcohol, such as jointly sponsoring special events with alcohol companies to lower the cost of sponsorships, increase consumer appeal, reinforce brand identity, and generate increased cigarette sales. They also pursued promotions that tied cigarette sales to alcohol purchases, and cigarette promotional events frequently featured alcohol discounts or encouraged alcohol use. Tobacco companies' numerous marketing strategies linking cigarettes with alcohol may have reinforced the use of both substances. Because using tobacco and alcohol together makes it harder to quit smoking, policies prohibiting tobacco sales and promotion in establishments where alcohol is served and sold might mitigate this effect. Smoking cessation programs should address the effect that alcohol consumption has on tobacco use.

  8. Strength analysis and optimization of welding robot mechanism in emergency stop state

    OpenAIRE

    Zdeněk Poruba; Jiří Podešva; Ondřej František; Martin Fusek; Robert Brázda; Marek Sadílek

    2016-01-01

    The contribution deals with the strength analysis and optimization of the welding robot mechanism in emergency stop state. The common operational positioning of the welding robot is characterized by smooth course of speeds in the time. The resulting load does not differ significantly from the static loading. However the safety requirements given by the norm require the ability of emergency stop function. Since the course of speed in time is rather steep the higher values of acceleration and t...

  9. Preparing Pseudo-Pure States in a Quadrupolar Spin System Using Optimal Control

    International Nuclear Information System (INIS)

    Tan Yi-Peng; Li Jun; Zhou Xian-Yi; Peng Xin-Hua; Du Jiang-Feng; Nie Xin-Fang; Chen Hong-Wei

    2012-01-01

    Pseudo-pure state (PPS) preparation is crucial in nuclear magnetic resonance quantum computation. There have been some methods in spin-1/2 systems and a few attempts in quadrupolar spin systems. As optimal control via gradient ascent pulses engineering (GRAPE) has been widely used in quantum information science, we apply this technique to PPS preparation in quadrupolar spin systems. This approach shows an effective and fast quantum control method for both the state preparation and the realization of quantum gates in quadrupolar systems

  10. Play and optimal welfare: Does play indicate the presence of positive affective states?

    Science.gov (United States)

    Ahloy-Dallaire, Jamie; Espinosa, Julia; Mason, Georgia

    2017-11-16

    Play is commonly used to assess affective states in both humans and non-human animals. Play appears to be most common when animals are well-fed and not under any direct threats to fitness. Could play and playfulness therefore indicate pre-existing positive emotions, and thence optimal animal welfare? We examine this question by surveying the internal and external conditions that promote or suppress play in a variety of species, starting with humans. We find that negative affective states and poor welfare usually do suppress play (although there are notable exceptions where the opposite occurs). Furthermore, research in children suggests that beyond the frequency or total duration of play, poor welfare may additionally be reflected in qualitative aspects of this heterogeneous behaviour (e.g. display of solitary over social play; and the 'fragmentation' of play bouts) that are often overlooked in animals. There are surprisingly few studies of play in subjects with pre-existing optimal welfare or in unambiguously highly positive affective states, making it currently impossible to determine whether play can distinguish optimal or good welfare from merely neutral welfare. This therefore represents an important and exciting area for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Optimal allocation of multi-state retransmitters in acyclic transmission networks

    International Nuclear Information System (INIS)

    Levitin, Gregory

    2002-01-01

    In this paper, an algorithm for optimal allocation of multi-state elements (MEs) in acyclic transmission networks (ATNs) is suggested. The ATNs consist of a number of positions (nodes) in which MEs capable of receiving and sending a signal are allocated. Each network has a root position where the signal source is located, a number of leaf positions that can only receive a signal, and a number of intermediate positions containing MEs capable of transmitting the received signal to some other nodes. Each ME that is located in a nonleaf node can have different states determined by a set of nodes receiving the signal directly from this ME. The probability of each state is assumed to be known for each ME. The ATN reliability is defined as the probability that a signal from the root node is transmitted to each leaf node. The optimal distribution of MEs with different characteristics among ATN positions provides the greatest possible ATN reliability. The suggested algorithm is based on using a universal generating function technique for network reliability evaluation. A genetic algorithm is used as the optimization tool. Illustrative examples are presented

  12. Pareto-Optimal Evaluation of Ultimate Limit States in Offshore Wind Turbine Structural Analysis

    Directory of Open Access Journals (Sweden)

    Michael Muskulus

    2015-12-01

    Full Text Available The ultimate capacity of support structures is checked with extreme loads. This is straightforward when the limit state equations depend on a single load component, and it has become common to report maxima for each load component. However, if more than one load component is influential, e.g., both axial force and bending moments, it is not straightforward how to define an extreme load. The combination of univariate maxima can be too conservative, and many different combinations of load components can result in the worst value of the limit state equations. The use of contemporaneous load vectors is typically non-conservative. Therefore, in practice, limit state checks are done for each possible load vector, from each time step of a simulation. This is not feasible when performing reliability assessments and structural optimization, where additional, time-consuming computations are involved for each load vector. We therefore propose to use Pareto-optimal loads, which are a small set of loads that together represent all possible worst case scenarios. Simulations with two reference wind turbines show that this approach can be very useful for jacket structures, whereas the design of monopiles is often governed by the bending moment only. Even in this case, the approach might be useful when approaching the structural limits during optimization.

  13. Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin: Fragment-Based Drug Design Facilitated by Dynamic Combinatorial Chemistry.

    Science.gov (United States)

    Mondal, Milon; Radeva, Nedyalka; Fanlo-Virgós, Hugo; Otto, Sijbren; Klebe, Gerhard; Hirsch, Anna K H

    2016-08-01

    Fragment-based drug design (FBDD) affords active compounds for biological targets. While there are numerous reports on FBDD by fragment growing/optimization, fragment linking has rarely been reported. Dynamic combinatorial chemistry (DCC) has become a powerful hit-identification strategy for biological targets. We report the synergistic combination of fragment linking and DCC to identify inhibitors of the aspartic protease endothiapepsin. Based on X-ray crystal structures of endothiapepsin in complex with fragments, we designed a library of bis-acylhydrazones and used DCC to identify potent inhibitors. The most potent inhibitor exhibits an IC50 value of 54 nm, which represents a 240-fold improvement in potency compared to the parent hits. Subsequent X-ray crystallography validated the predicted binding mode, thus demonstrating the efficiency of the combination of fragment linking and DCC as a hit-identification strategy. This approach could be applied to a range of biological targets, and holds the potential to facilitate hit-to-lead optimization. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin: Fragment‐Based Drug Design Facilitated by Dynamic Combinatorial Chemistry

    Science.gov (United States)

    Mondal, Milon; Radeva, Nedyalka; Fanlo‐Virgós, Hugo; Otto, Sijbren; Klebe, Gerhard

    2016-01-01

    Abstract Fragment‐based drug design (FBDD) affords active compounds for biological targets. While there are numerous reports on FBDD by fragment growing/optimization, fragment linking has rarely been reported. Dynamic combinatorial chemistry (DCC) has become a powerful hit‐identification strategy for biological targets. We report the synergistic combination of fragment linking and DCC to identify inhibitors of the aspartic protease endothiapepsin. Based on X‐ray crystal structures of endothiapepsin in complex with fragments, we designed a library of bis‐acylhydrazones and used DCC to identify potent inhibitors. The most potent inhibitor exhibits an IC50 value of 54 nm, which represents a 240‐fold improvement in potency compared to the parent hits. Subsequent X‐ray crystallography validated the predicted binding mode, thus demonstrating the efficiency of the combination of fragment linking and DCC as a hit‐identification strategy. This approach could be applied to a range of biological targets, and holds the potential to facilitate hit‐to‐lead optimization. PMID:27400756

  15. Improving the Reliability of Optimised Link State Routing in a Smart Grid Neighbour Area Network based Wireless Mesh Network Using Multiple Metrics

    Directory of Open Access Journals (Sweden)

    Yakubu Tsado

    2017-02-01

    Full Text Available Reliable communication is the backbone of advanced metering infrastructure (AMI. Within the AMI, the neighbourhood area network (NAN transports a multitude of traffic, each with unique requirements. In order to deliver an acceptable level of reliability and latency, the underlying network, such as the wireless mesh network(WMN, must provide or guarantee the quality-of-service (QoS level required by the respective application traffic. Existing WMN routing protocols, such as optimised link state routing (OLSR, typically utilise a single metric and do not consider the requirements of individual traffic; hence, packets are delivered on a best-effort basis. This paper presents a QoS-aware WMN routing technique that employs multiple metrics in OLSR optimal path selection for AMI applications. The problems arising from this approach are non deterministic polynomial time (NP-complete in nature, which were solved through the combined use of the analytical hierarchy process (AHP algorithm and pruning techniques. For smart meters transmitting Internet Protocol (IP packets of varying sizes at different intervals, the proposed technique considers the constraints of NAN and the applications’ traffic characteristics. The technique was developed by combining multiple OLSR path selection metrics with the AHP algorithminns-2. Compared with the conventional link metric in OLSR, the results show improvements of about 23% and 45% in latency and Packet Delivery Ratio (PDR, respectively, in a 25-node grid NAN.

  16. N-Linked Glycosylation is an Important Parameter for Optimal Selection of Cell Lines Producing Biopharmaceutical Human IgG

    NARCIS (Netherlands)

    van Berkel, Patrick H. C.; Gerritsen, Jolanda; Perdok, Gerrard; Valbjorn, Jesper; Vink, Tom; van de Winkel, Jan G. J.; Parren, Paul W. H. I.

    2009-01-01

    We studied the variations in N-linked glycosylation of human IgG molecules derived from 105 different stable cell lines each expressing one of the six different antibodies. Antibody expression was based on glutamine synthetase selection technology in suspension growing CHO-KISV cells. The glycans

  17. International differences in the links between obesity and physiological dysregulation: the United States, England, and Taiwan.

    Science.gov (United States)

    Vasunilashorn, Sarinnapha; Kim, Jung Ki; Crimmins, Eileen M

    2013-01-01

    Excess weight has generally been associated with adverse health outcomes; however, the link between overweight and health outcomes may vary with socioeconomic, cultural, and epidemiological conditions. We examine associations of weight with indicators of biological risk in three nationally representative populations: the US National Health and Nutrition Examination Survey, the English Longitudinal Study of Ageing, and the Social Environment and Biomarkers of Aging Study in Taiwan. Indicators of biological risk were compared for obese (defined using body mass index (BMI) and waist circumference) and normal weight individuals aged 54+. Generally, obesity in England was associated with elevated risk for more markers examined; obese Americans also had elevated risks except that they did not have elevated blood pressure (BP). Including waist circumference in our consideration of BMI indicated different links between obesity and waist size across countries; we found higher physiological dysregulation among those with high waist but normal BMI compared to those with normal waist and normal BMI. Americans had the highest levels of biological risk in all weight/waist groups. Cross-country variation in biological risk associated with obesity may reflect differences in health behaviors, lifestyle, medication use, and culture.

  18. International Differences in the Links between Obesity and Physiological Dysregulation: The United States, England, and Taiwan

    Directory of Open Access Journals (Sweden)

    Sarinnapha Vasunilashorn

    2013-01-01

    Full Text Available Excess weight has generally been associated with adverse health outcomes; however, the link between overweight and health outcomes may vary with socioeconomic, cultural, and epidemiological conditions. We examine associations of weight with indicators of biological risk in three nationally representative populations: the US National Health and Nutrition Examination Survey, the English Longitudinal Study of Ageing, and the Social Environment and Biomarkers of Aging Study in Taiwan. Indicators of biological risk were compared for obese (defined using body mass index (BMI and waist circumference and normal weight individuals aged 54+. Generally, obesity in England was associated with elevated risk for more markers examined; obese Americans also had elevated risks except that they did not have elevated blood pressure (BP. Including waist circumference in our consideration of BMI indicated different links between obesity and waist size across countries; we found higher physiological dysregulation among those with high waist but normal BMI compared to those with normal waist and normal BMI. Americans had the highest levels of biological risk in all weight/waist groups. Cross-country variation in biological risk associated with obesity may reflect differences in health behaviors, lifestyle, medication use, and culture.

  19. Linking public relations processes and organizational effectiveness at a state health department.

    Science.gov (United States)

    Wise, Kurt

    2003-01-01

    This qualitative case study explored a state health department's relationships with strategic constituencies from a public relations perspective. The relationships were explored within the theoretical framework of the Excellence Theory, the dominant paradigm in public research. Findings indicate application of the Excellence Theory has the potential to increase organizational effectiveness at public health entities. With respect to the case investigated, findings indicate that the state health department could increase its organizational effectiveness through the adoption of recommendations based on the Excellence Theory.

  20. Simulating quantum search algorithm using vibronic states of I2 manipulated by optimally designed gate pulses

    International Nuclear Information System (INIS)

    Ohtsuki, Yukiyoshi

    2010-01-01

    In this paper, molecular quantum computation is numerically studied with the quantum search algorithm (Grover's algorithm) by means of optimal control simulation. Qubits are implemented in the vibronic states of I 2 , while gate operations are realized by optimally designed laser pulses. The methodological aspects of the simulation are discussed in detail. We show that the algorithm for solving a gate pulse-design problem has the same mathematical form as a state-to-state control problem in the density matrix formalism, which provides monotonically convergent algorithms as an alternative to the Krotov method. The sequential irradiation of separately designed gate pulses leads to the population distribution predicted by Grover's algorithm. The computational accuracy is reduced by the imperfect quality of the pulse design and by the electronic decoherence processes that are modeled by the non-Markovian master equation. However, as long as we focus on the population distribution of the vibronic qubits, we can search a target state with high probability without introducing error-correction processes during the computation. A generalized gate pulse-design scheme to explicitly include decoherence effects is outlined, in which we propose a new objective functional together with its solution algorithm that guarantees monotonic convergence.

  1. High-throughput metabolic state analysis: The missing link in integrated functional genomics of yeasts

    DEFF Research Database (Denmark)

    Villas-Bôas, Silas Granato; Moxley, Joel. F; Åkesson, Mats Fredrik

    2005-01-01

    that achieve comparable throughput, effort and cost compared with DNA arrays. Our sample workup method enables simultaneous metabolite measurements throughout central carbon metabolism and amino acid biosynthesis, using a standard GC-MS platform that was optimized for this Purpose. As an implementation proof......-of-concept, we assayed metabolite levels in two yeast strains and two different environmental conditions in the context of metabolic pathway reconstruction. We demonstrate that these differential metabolite level data distinguish among sample types, such as typical metabolic fingerprinting or footprinting. More...

  2. Dynamic state estimation based on Poisson spike trains—towards a theory of optimal encoding

    International Nuclear Information System (INIS)

    Susemihl, Alex; Opper, Manfred; Meir, Ron

    2013-01-01

    Neurons in the nervous system convey information to higher brain regions by the generation of spike trains. An important question in the field of computational neuroscience is how these sensory neurons encode environmental information in a way which may be simply analyzed by subsequent systems. Many aspects of the form and function of the nervous system have been understood using the concepts of optimal population coding. Most studies, however, have neglected the aspect of temporal coding. Here we address this shortcoming through a filtering theory of inhomogeneous Poisson processes. We derive exact relations for the minimal mean squared error of the optimal Bayesian filter and, by optimizing the encoder, obtain optimal codes for populations of neurons. We also show that a class of non-Markovian, smooth stimuli are amenable to the same treatment, and provide results for the filtering and prediction error which hold for a general class of stochastic processes. This sets a sound mathematical framework for a population coding theory that takes temporal aspects into account. It also formalizes a number of studies which discussed temporal aspects of coding using time-window paradigms, by stating them in terms of correlation times and firing rates. We propose that this kind of analysis allows for a systematic study of temporal coding and will bring further insights into the nature of the neural code. (paper)

  3. Optimal loading and protection of multi-state systems considering performance sharing mechanism

    International Nuclear Information System (INIS)

    Xiao, Hui; Shi, Daimin; Ding, Yi; Peng, Rui

    2016-01-01

    Engineering systems are designed to carry the load. The performance of the system largely depends on how much load it carries. On the other hand, the failure rate of the system is strongly affected by its load. Besides internal failures, such as fatigue and aging process, systems may also fail due to external impacts such as nature disasters and terrorism. In this paper, we integrate the effect of loading and protection of external impacts on multi-state systems with performance sharing mechanism. The objective of this research is to determine how to balance the load and protection on system elements. An availability evaluation algorithm of the proposed system is suggested and the corresponding optimization problem is solved utilizing genetic algorithms. - Highlights: • Performance sharing of multi-state systems is considered. • The effect of load on system elements is analyzed. • Joint optimization model of element loading and protection is formulated. • Genetic Algorithms are adapted to solve the reliability optimization problem.

  4. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  5. The optimal solution of a non-convex state-dependent LQR problem and its applications.

    Directory of Open Access Journals (Sweden)

    Xudan Xu

    Full Text Available This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR problem, in which the control penalty weighting matrix [Formula: see text] in the performance index is state-dependent. A necessary and sufficient condition for the optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE simultaneously with the closed-loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors found in human and animals are reproduced using different control weighting [Formula: see text]. It is found that these two behaviors save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant control weighting [Formula: see text], in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon races and target hitting missions.

  6. CULTURAL AND LEGAL FACTORS OF OPTIMIZATION OF THE IDEOLOGY OF STATE-BUILDING IN UKRAINE

    Directory of Open Access Journals (Sweden)

    O. V. Krasnokutskyi

    2014-12-01

    Full Text Available The Purpose is to investigate the legal cultural phenomenon in the riches of the contours of its essence, raising the level of this phenomenon as part of the system of determinants of the optimization of ideology of state-building in modern Ukraine. Methodology. The study is based on the principles of materialist dialectics and the principles of historicism, social determinism, complexity. The scientific novelty. The cultural and legal factors of optimization of the ideology of state-building are conceptually considered for the first time in modern Ukraine; three methodological points that should be targeted in the definition of «legal culture» are outlined; the definition of legal culture is improved; a working template program of improvement and increase of the level of legal culture in contemporary Ukrainian society is developed; four key conceptual areas of the program are outlined. Conclusions. Legal culture can be defined as a separate category to mark the legal system which was historically formed and the institutions of a state-organized society that are correlated with it, and also the legal knowledge and motives, forms, techniques and methods of legal activities, values, estimates with the necessity inherent to every people, class, nation, community groups, to the individual person at a certain stage of their development. Rise of the level of legal awareness is one of the leading systematic factors, cultural and code keys to optimizing the development of state-building ideology in the conditions of today's Ukraine. The program for the improvement and enhancement of legal culture in contemporary Ukrainian society is composed of four major conceptual areas: the growth of basic legal literacy; the rise of their legal awareness; the increase of theoretical justification of the existing legal reality, the prospects for its future development, the increase of the efficiency of the legal theory; progressive formation of legal ideology.

  7. Optimal replacement policy for safety-related multi-component multi-state systems

    International Nuclear Information System (INIS)

    Xu Ming; Chen Tao; Yang Xianhui

    2012-01-01

    This paper investigates replacement scheduling for non-repairable safety-related systems (SRS) with multiple components and states. The aim is to determine the cost-minimizing time for replacing SRS while meeting the required safety. Traditionally, such scheduling decisions are made without considering the interaction between the SRS and the production system under protection, the interaction being essential to formulate the expected cost to be minimized. In this paper, the SRS is represented by a non-homogeneous continuous time Markov model, and its state distribution is evaluated with the aid of the universal generating function. Moreover, a structure function of SRS with recursive property is developed to evaluate the state distribution efficiently. These methods form the basis to derive an explicit expression of the expected system cost per unit time, and to determine the optimal time to replace the SRS. The proposed methodology is demonstrated through an illustrative example.

  8. Discrete-State Simulated Annealing For Traveling-Wave Tube Slow-Wave Circuit Optimization

    Science.gov (United States)

    Wilson, Jeffrey D.; Bulson, Brian A.; Kory, Carol L.; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Algorithms based on the global optimization technique of simulated annealing (SA) have proven useful in designing traveling-wave tube (TWT) slow-wave circuits for high RF power efficiency. The characteristic of SA that enables it to determine a globally optimized solution is its ability to accept non-improving moves in a controlled manner. In the initial stages of the optimization, the algorithm moves freely through configuration space, accepting most of the proposed designs. This freedom of movement allows non-intuitive designs to be explored rather than restricting the optimization to local improvement upon the initial configuration. As the optimization proceeds, the rate of acceptance of non-improving moves is gradually reduced until the algorithm converges to the optimized solution. The rate at which the freedom of movement is decreased is known as the annealing or cooling schedule of the SA algorithm. The main disadvantage of SA is that there is not a rigorous theoretical foundation for determining the parameters of the cooling schedule. The choice of these parameters is highly problem dependent and the designer needs to experiment in order to determine values that will provide a good optimization in a reasonable amount of computational time. This experimentation can absorb a large amount of time especially when the algorithm is being applied to a new type of design. In order to eliminate this disadvantage, a variation of SA known as discrete-state simulated annealing (DSSA), was recently developed. DSSA provides the theoretical foundation for a generic cooling schedule which is problem independent, Results of similar quality to SA can be obtained, but without the extra computational time required to tune the cooling parameters. Two algorithm variations based on DSSA were developed and programmed into a Microsoft Excel spreadsheet graphical user interface (GUI) to the two-dimensional nonlinear multisignal helix traveling-wave amplifier analysis program TWA3

  9. Infectious Dose of Listeria monocytogenes in Outbreak Linked to Ice Cream, United States, 2015.

    Science.gov (United States)

    Pouillot, Régis; Klontz, Karl C; Chen, Yi; Burall, Laurel S; Macarisin, Dumitru; Doyle, Matthew; Bally, Kären M; Strain, Errol; Datta, Atin R; Hammack, Thomas S; Van Doren, Jane M

    2016-12-01

    The relationship between the number of ingested Listeria monocytogenes cells in food and the likelihood of developing listeriosis is not well understood. Data from an outbreak of listeriosis linked to milkshakes made from ice cream produced in 1 factory showed that contaminated products were distributed widely to the public without any reported cases, except for 4 cases of severe illness in persons who were highly susceptible. The ingestion of high doses of L. monocytogenes by these patients infected through milkshakes was unlikely if possible additional contamination associated with the preparation of the milkshake is ruled out. This outbreak illustrated that the vast majority of the population did not become ill after ingesting a low level of L. monocytogenes but raises the question of listeriosis cases in highly susceptible persons after distribution of low-level contaminated products that did not support the growth of this pathogen.

  10. Optimal Portfolio Choice with Annuitization

    NARCIS (Netherlands)

    Koijen, R.S.J.; Nijman, T.E.; Werker, B.J.M.

    2006-01-01

    We study the optimal consumption and portfolio choice problem over an individual's life-cycle taking into account annuity risk at retirement. Optimally, the investor allocates wealth at retirement to nominal, inflation-linked, and variable annuities and conditions this choice on the state of the

  11. Is sexual motivational state linked to dopamine release in the medial preoptic area?

    Science.gov (United States)

    Kleitz-Nelson, H K; Dominguez, J M; Cornil, C A; Ball, G F

    2010-04-01

    The medial preoptic area (mPOA) is a key site for the dopaminergic enhancement of male sexual behavior. Dopamine release increases in the rat mPOA with mating, supporting the critical stimulatory role played by preoptic dopamine on male sexual behavior. However, it has been questioned whether dopamine is specifically related to the occurrence of male sexual behavior and not simply involved in general arousal. To address this question, we asked whether dopamine release in the mPOA is linked to the production of male sexual behavior in Japanese quail (Coturnix japonica), a species that exhibits a much shorter temporal pattern of copulation than rats and does not have an intermittent organ, resulting in a very different topography of their sexual response. Extracellular samples from the mPOA of adult sexually experienced male quail were collected every 6 min before, during, and after exposure to a female using in vivo microdialysis and analyzed using high-performance liquid chromatography with electrochemical detection. Extracellular dopamine significantly increased in the presence of a female and returned to baseline after removal of the female. However, quail that failed to copulate did not display this increased release. These findings indicate that it is not solely the presence of a female that drives dopamine release in males, but how a male responds to her. Furthermore, in quail that copulated, dopamine release did not change in samples collected during periods of no copulation. Together, these findings support the hypothesis that dopamine action in the mPOA is specifically linked to sexual motivation and not only to copulatory behavior or physical arousal.

  12. Links Among High EPDS Scores, State of Mind Regarding Attachment, and Symptoms of Personality Disorder.

    Science.gov (United States)

    Smith-Nielsen, Johanne; Steele, Howard; Mehlhase, Heike; Cordes, Katharina; Steele, Miriam; Harder, Susanne; Væver, Mette Skovgaard

    2015-12-01

    Underlying persistent psychological difficulties have been found to moderate potential adverse effects of maternal postpartum depression (PPD) on parenting and infant development. The authors examined whether mothers presenting postpartum depressive symptoms showed higher levels of personality pathology and more insecure state of mind regarding attachment compared to nondepressed mothers. Participants (N = 85) were assessed with the Edinburgh Postnatal Depression Scale (EPDS), the Present State Examination, the Adult Attachment Interview, and the Structured Clinical Interview for DSM-IV Axis II. Mothers with high EPDS scores were more likely to have a preoccupied insecure state of mind and to have personality disorder compared with mothers scoring below clinical cutoff. Furthermore, multiple regression analysis showed that personality disorder and AAI classification were independently related to EPDS score, and that these two factors together accounted for 48% of the variance in EPDS score. Findings are discussed in terms of heterogeneity in PPD populations and underline the importance of examining potential coexisting psychological difficulties when studying PPD.

  13. Study of the Conformational State of Non-Cross-Linked and Cross-Linked Poly(alkylmethyldiallylammonium chlorides) in Aqueous Solution by Fluorescence Probing

    NARCIS (Netherlands)

    Wang, Guang-Jia; Engberts, Jan B.F.N.

    The aggregation behaviour of novel non-cross-linked and cross-linked poly(alkylmethyldiallylammonium chlorides) in aqueous solutions has been investigated by fluorescence spectroscopy using pyrene as a probe. These copolymers were found to exhibit similar aggregate properties as the corresponding

  14. Robust state feedback controller design of STATCOM using chaotic optimization algorithm

    Directory of Open Access Journals (Sweden)

    Safari Amin

    2010-01-01

    Full Text Available In this paper, a new design technique for the design of robust state feedback controller for static synchronous compensator (STATCOM using Chaotic Optimization Algorithm (COA is presented. The design is formulated as an optimization problem which is solved by the COA. Since chaotic planning enjoys reliability, ergodicity and stochastic feature, the proposed technique presents chaos mapping using Lozi map chaotic sequences which increases its convergence rate. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results reveal that the proposed controller has an excellent capability in damping power system low frequency oscillations and enhances greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions shows that the phase based controller is superior compare to the magnitude based controller.

  15. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control with State Estimation

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Jørgensen, John Bagterp; Rawlings, James B.

    2015-01-01

    In this paper, we develop an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) for a complete spray drying plant with multiple stages. In the E-NMPC the initial state is estimated by an extended Kalman Filter (EKF) with noise covariances estimated by an autocovariance least...... squares method (ALS). We present a model for the spray drying plant and use this model for simulation as well as for prediction in the E-NMPC. The open-loop optimal control problem in the E-NMPC is solved using the single-shooting method combined with a quasi-Newton Sequential Quadratic programming (SQP......) algorithm and the adjoint method for computation of gradients. We evaluate the economic performance when unmeasured disturbances are present. By simulation, we demonstrate that the E-NMPC improves the profit of spray drying by 17% compared to conventional PI control....

  16. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    Science.gov (United States)

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  17. Linking Curriculum and Learning to Facilities: Arizona State University's GK-12 Sustainable Schools Program

    Science.gov (United States)

    Elser, Monica M.; Pollari, Lynette; Frisk, Erin; Wood, Mark

    2011-01-01

    Arizona State University's "Sustainability Science for Sustainable Schools program" brings together graduate students, sustainability researchers, high school teachers and students, and school or district administrators in a project designed to address the challenge of becoming a "sustainable school." Funded by the National…

  18. Linked tandem mirror configuration as a possible steady state high β plasma container

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1982-04-01

    A possibility of achieving steady state high β plasma confinement in toroidal geometry is considered in detail by closing off the ends of tandem mirrors entirely by flux bridges, where β is the ratio of plasma pressure to the magnetic pressure. The key problem of this approach seems to be the magnetic design of magneto-hydrodynamically stabilized, preferentially leaky bridges. (author)

  19. Application of Linked Regional Scale Growth, Biogeography, and Economic Models for Southeastern United States Pine Forests

    Science.gov (United States)

    Steven G. McNulty; Jennifer A. Moore; Louis Iverson; Anantha Prasad; Robert Abt; Bryan Smith; Ge Sun; Michael Gavazzi; John Bartlett; Brian Murray; Robert A. Mickler; John D. Aber

    2000-01-01

    The southern United States produces over 50% of commercial timber harvests in the US and the demand for southern timber are likely to increase in the future. Global change is altering the physical and chemical environmental which will play a major role in determining future forest stand growth, insect and disease outbreaks, regeneration success, and distribution of...

  20. Application of linked regional scale growth, biogeography, and economic models for southeastern United States pine forests

    Science.gov (United States)

    Steven G. McNulty; Jennifer A. Moore; Louis Iverson; Anantha Prasad; Robert, et al. Abt

    2000-01-01

    The southern United States produces over 50% of commercial timber harvests in the US and the demand for southern timber are likely to increase in the future. Global change is altering the physical and chemical environmental which will play a major role in determining future forest stand growth, insect and disease outbreaks, regeneration success, and distribution of...

  1. Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration

    International Nuclear Information System (INIS)

    Li, Y.F.; Peng, R.

    2014-01-01

    Most studies on multi-state series–parallel systems focus on the static type of system architecture. However, it is insufficient to model many complex industrial systems having several operation phases and each requires a subset of the subsystems combined together to perform certain tasks. To bridge this gap, this study takes into account this type of dynamic behavior in the multi-state series–parallel system and proposes an analytical approach to calculate the system availability and the operation cost. In this approach, Markov process is used to model the dynamics of system phase changing and component state changing, Markov reward model is used to calculate the operation cost associated with the dynamics, and universal generating function (UGF) is used to build system availability function from the system phase model and the component models. Based upon these models, an optimization problem is formulated to minimize the total system cost with the constraint that system availability is greater than a desired level. The genetic algorithm is then applied to solve the optimization problem. The proposed modeling and solution procedures are illustrated on a system design problem modified from a real-world maritime oil transportation system

  2. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models.

    Science.gov (United States)

    Ran, Shi-Ju

    2016-05-01

    In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising

  3. Rearing Styles, Parents' Attachment Mental State,and Children's Social Abilities: The Link to Peer Acceptance

    Directory of Open Access Journals (Sweden)

    Grazia Attili

    2011-01-01

    Full Text Available This paper examines the discriminant effect of mothers' and fathers' attachment working models, the quality of their relationships in everyday settings, and children's social abilities on children's peer acceptance. Participants were thirty-four 7–9 year olds, their mothers, and fathers. Interactions were observed at home and coded on global measures of positive, negative, controlling, disconfirming, correcting behaviors, and neutral conversation. Parents' IWM were assessed by the AAI. Children's peer acceptance and behavioral orientations as a measure of a child's social competence at school were assessed by sociometric techniques. By using both traditional statistical analyses and a multidimensional scaling approach (MDS, in terms of “similarity structure analysis (SSA” and the “external variables as points technique,” it emerged that children's lack of success among peers associated with social behaviors which were linked to parents' rejecting/neglecting and directive interactive styles, mainly to negative, disconfirming, and a few positive interactions. These parenting styles were significantly affected by adults' insecure IWM.

  4. Differences between individual and societal health state valuations: any link with personality?

    Science.gov (United States)

    Chapman, Benjamin P; Franks, Peter; Duberstein, Paul R; Jerant, Anthony

    2009-08-01

    The concept of "adaptation" has been proposed to account for differences between individual and societal valuations of specific health states in patients with chronic diseases. Little is known about psychological indices of adaptational capacity, which may predict differences in individual and societal valuations of health states. We investigated whether such differences were partially explained by personality traits in chronic disease patients. Analysis of baseline data of randomized controlled trial. Three hundred seventy patients with chronic disease. The NEO-five factor inventory measure of personality, EuroQoL-5D (EQ-5D) societal-based, and the EQ visual analogue scale individually-based measures of health valuation. Regression analyses modeled Dev, a measure of difference between the EQ-Visual Analogue Scale and EQ-5D, as a function of personality traits, sociodemographic factors, and chronic diseases. Individual valuations were significantly and clinically higher than societal valuations among patients in the second and third quartile of conscientiousness (Dev = 0.08, P = 0.01); among covariates, only depression (Dev = -0.04, P = 0.046) was also associated with Dev. Compared with societal valuations of a given health state, persons at higher quartiles of conscientiousness report less disutility associated with poor health. The effect is roughly twice that of some estimates of minimally important clinical differences on the EQ-5D and of depression. Although useful at the aggregate level, societal preference measures may systematically undervalue the health states of more conscientious individuals. Future work should examine the impact this has on individual patient outcome evaluation in clinical studies.

  5. Optimization of solid state fermentation of sugar cane by Aspergillus niger considering particles size effect

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, J.; Rodriguez, L.J.A.; Delgado, G. (Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar (ICIDCA), La Habana (Cuba)); Espinosa, M.E. (Centro Nacional de Investigaciones Cientificas, La Habana (Cuba))

    1991-01-01

    The protein enrichment of sugar cane by solid state fermentation employing Aspergillus niger was optimized in a packed bed column using a two Factor Central Composit Design {alpha} = 2, considering as independent factors the particle diameter corresponding to different times of grinding for a sample and the air flow rate. It was significative for the air flow rate (optimum 4.34 VKgM) and the particle diameter (optimum 0.136 cm). The average particle size distribution, shape factor, specific surface, volume-surface mean diameter, number of particles, real and apparent density and holloweness for the different times of grinding were determined, in order to characterize the samples. (orig.).

  6. Optimal State Estimation for Discrete-Time Markov Jump Systems with Missing Observations

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-01-01

    Full Text Available This paper is concerned with the optimal linear estimation for a class of direct-time Markov jump systems with missing observations. An observer-based approach of fault detection and isolation (FDI is investigated as a detection mechanic of fault case. For systems with known information, a conditional prediction of observations is applied and fault observations are replaced and isolated; then, an FDI linear minimum mean square error estimation (LMMSE can be developed by comprehensive utilizing of the correct information offered by systems. A recursive equation of filtering based on the geometric arguments can be obtained. Meanwhile, a stability of the state estimator will be guaranteed under appropriate assumption.

  7. Product code optimization for determinate state LDPC decoding in robust image transmission.

    Science.gov (United States)

    Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G

    2006-08-01

    We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.

  8. Optimizations of large area quasi-solid-state dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Biancardo, M.; West, K.; Krebs, Frederik C

    2006-01-01

    In this paper, we address optimizations of dye sensitized solar cells (DSSCs) through the combination of important issues like semi-transparency, quasi-solid-state constructions and low-cost realization of serially connected modules. DSSCs with a transparency of 50% in the visible region, moderate...... encouraging results. A short circuit current (I-sc) of 4.45 mA cm(-2) with an open circuit voltage (V-oc) of 0.5 V were recorded in standard solar cells sensitized by cis-bis(thiocyano) ruthenium(II)-bis-2, 2'-bipyridine-4, 4'-dicarboxylate. Up-scaling tests demonstrate the easy realization of a 625 cm(2...

  9. Managed care market share and cesarean section rates in the United States: is there a link?

    Science.gov (United States)

    Hueston, W J; Sutton, A

    2000-11-01

    After peaking during the early 1980s, cesarean section rates in the United States have been falling for the last decade. At the same time, managed care enrollment has increased dramatically. This study examines whether managed care penetration in local markets is associated with lower cesarean section rates in those geographic area. A cross-sectional comparison of cesarean section rates and health maintenance organization (HMO) market penetration in 61 selected metropolitan areas in the United States was conducted. National birth certificate data for 1996 were used to calculate crude and race-adjusted cesarean section rates for residents in each area. No relationship between overall cesarean section rates in the metropolitan areas and managed care penetration was observed. Subanalyses of racial groups demonstrated the existence of a weak association between managed care penetration and cesarean section rates for white women (21.2% for the highest quartile of HMO penetration, compared with 19.1% for the lowest quartile; P = .03), but not for African-Americans or other minorities. Managed care penetration in a market may have an association with cesarean section rates for white women, but the strength of this relationship is small. Even if managed care delivery systems reduce cesarean section rates in their own populations, this change is likely to have only a small impact on overall cesarean rates. HMO penetration is unlikely to influence national cesarean section rates, nor does it appear to explain state variations in these rates.

  10. Amygdala volume linked to individual differences in mental state inference in early childhood and adulthood

    Directory of Open Access Journals (Sweden)

    Katherine Rice

    2014-04-01

    Full Text Available We investigated the role of the amygdala in mental state inference in a sample of adults and in a sample of children aged 4 and 6 years. This period in early childhood represents a time when mentalizing abilities undergo dramatic changes. Both children and adults inferred mental states from pictures of others’ eyes, and children also inferred the mental states of others from stories (e.g., a false belief task. We also collected structural MRI data from these participants, to determine whether larger amygdala volumes (controlling for age and total gray matter volume were related to better face-based and story-based mentalizing. For children, larger amygdala volumes were related to better face-based, but not story-based, mentalizing. In contrast, in adults, amygdala volume was not related to face-based mentalizing. We next divided the face-based items into two subscales: cognitive (e.g., thinking, not believing versus affective (e.g., friendly, kind items. For children, performance on cognitive items was positively correlated with amygdala volume, but for adults, only performance on affective items was positively correlated with amygdala volume. These results indicate that the amygdala's role in mentalizing may be specific to face-based tasks and that the nature of its involvement may change over development.

  11. Gain optimization method of a DQW superluminescent diode with broad multi-state emission

    KAUST Repository

    Dimas, Clara E.

    2010-01-01

    Optimizing gain through systematic methods of varying current injection schemes analytically is significant to maximize experimentally device yield and evaluation. Various techniques are used to calculate the amplified spontaneous emission (ASE) gain for light emitting devices consisting of single-section and multiple-sections of even length. Recently double quantum well (DQW) superluminescent diodes (SLD) have shown a broad multi-state emission due to mutlielectrodes of non-equal lengths and at high non-equal current densities. In this study, we adopt an improved method utilizing an ASE intensity ratio to calibrate a gain curve based on the sum of the measured ASE spectra to efficiently estimate the gain. Although the laser gain for GaAs/AlGaAs material is well studied, the ASE gain of SLD devices has not been systematically studied particular to further explain the multiple-state emission observed in fabricated devices. In addition a unique gain estimate was achieved where the excited state gain clamps prior to the ground state due to approaching saturation levels. In our results, high current densities in long sectioned active regions achieved sufficient un-truncated gain that show evidence of excited state emission has been observed.

  12. Linking “Micro” to “Macro” Models of State Breakdown to Improve Methods for Political Forecasting

    Directory of Open Access Journals (Sweden)

    Peter Turchin

    2017-12-01

    Full Text Available Three predictive problems bedevil our ability to foresee political crises and state breakdown: (1 how to tell when a previously stable state falls into a situation of hidden but dangerous instability; (2 how to tell, once a certain level of instability has appeared in the form of protests, riots, or regional rebellions, whether chaos will grow and accelerate into revolution or civil war, or if the protests are likely to be contained and dampen out; and (3 how to tell which individuals and groups are likely to be the main source of mobilization for radical movements, and whether opposition networks will link up, grow and spread, or be isolated and contained. Prior work has focused on each of these problems separately. However, all three issues are crucial to understanding and foreseeing conflict dynamics. These issues operate on different time-scales and require separate models. In this article we discuss how better models of each process could be developed and, crucially, integrated with data for a more effective prediction system. A major theoretical challenge for us is to link these different approaches in order to increase their predictive power. A major empirical challenge is to identify data (direct or proxy that can be used to parameterize, validate, and test our models.

  13. Optimization of Saccharomyces boulardii production in solid-state fermentation with response surface methodology

    Directory of Open Access Journals (Sweden)

    Yuanliang Hu

    2016-01-01

    Full Text Available Saccharomyces boulardii preparations are promising probiotics and clinical agents for animals and humans. This work focused on optimizing the nutritional conditions for the production of S. boulardii in solid-state fermentation by using classical and statistical methods. In single-factor experiments, the S. boulardii production was significantly increased by the addition of glucoamylase and the optimal carbon and nitrogen sources were found to be soluble starch and NH4Cl, respectively. The effects of the glucoamylase, soluble starch and NH4Cl on S. boulardii production were evaluated by a three-level three-factor Box–Behnken design and response surface methodology (RSM. The maximal yeast count (4.50 ×109CFU/g was obtained under the optimized conditions (198 U/g glucoamylase, 2.37% soluble starch and 0.9% NH4Cl, which was in a good agreement with the predicted value of the model. This study has provided useful information on how to improve the accumulation of yeast cells by RSM.

  14. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    Science.gov (United States)

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.

  15. Optimal control of photovoltaic systems by a new battery state-of-charge observer

    Energy Technology Data Exchange (ETDEWEB)

    Giglioli, R; Zini, G; Conte, M; Raugi, M

    1988-06-01

    In photovoltaic power plants, the ability to accurately determine battery state-of-charge at any given time can reduce the risk of curtailed energy and allow more precise and less costly battery sizing. In this paper, a new state-of-charge observer, based on an original equivalent electric network of the lead-acid battery, is shown and used to develop an optimal control of the system. Hence, a management plan for a complete photovoltaic system is studied. Finally, a comparison between a simulation of the proposed plan and experimental data from a monitored photovoltaic plant, with very simple management requirements, is made and discussed. The present work was carried out within the framework of the Italian Finalized Energy Project-2.

  16. Addressing the Influence of Hidden State on Wireless Network Optimizations using Performance Maps

    DEFF Research Database (Denmark)

    Højgaard-Hansen, Kim; Madsen, Tatiana Kozlova; Schwefel, Hans-Peter

    2015-01-01

    be used to optimize the use of the wireless net- work by predicting future network performance and scheduling the net- work communication for certain applications on mobile devices. However, other important factors influence the performance of the wireless communication such as changes in the propagation...... environment and resource sharing. In this work we extend the framework of performance maps for wireless networks by introducing network state as an abstraction for all other factors than location that influence the performance. Since network state might not always be directly observable the framework......Performance of wireless connectivity for network client devices is location dependent. It has been shown that it can be beneficial to collect network performance metrics along with location information to generate maps of the location dependent network performance. These performance maps can...

  17. Quantum circuit implementation of the optimal information-disturbance tradeoff of maximally entangled states

    International Nuclear Information System (INIS)

    Zhang ShengLi; Zou Xubo; Li Ke; Jin Chenhui; Guo Guangcan

    2008-01-01

    We give a direct derivation for the information-disturbance tradeoff in estimating a maximally entangled state, which was first obtained by Sacchi (2006 Phys. Rev. Lett. 96 220502) in terms of the covariant positive operator valued measurement (POVM) and Jamiolkowski's isomorphism. We find that, the Cauchy-Schwarz inequality, which is one of the most powerful tools in deriving the tradeoff for a single-particle pure state still plays a key role in the case of the maximal entanglement estimation. Our result shows that the inequality becomes equality when the optimal tradeoff is achieved. Moreover, we demonstrate that such a tradeoff is physically achievable with a quantum circuit that only involves single- and two-particle logic gates and single-particle measurements

  18. On the optimization of a steady-state bootstrap-reactor

    International Nuclear Information System (INIS)

    Polevoy, A.R.; Martynov, A.A.; Medvedev, S.Yu.

    1993-01-01

    A commercial fusion tokamak-reactor may be economically acceptable only for low recirculating power fraction r 0 ≡ P CD /P α BS ≡I BS /I > 0.9 to sustain the steady-state operation mode for high plasma densities > 1.5 10 20 m -3 , fulfilled the divertor conditions. This paper presents the approximate expressions for the optimal set of reactor parameters for r BS /I∼1, based on the self-consistent plasma simulations by 1.5D ASTRA code. The linear MHD stability analysis for ideal n=1 kink and ballooning modes has been carried out to determine the conditions of stabilization for bootstrap steady state tokamak reactor BSSTR configurations. (author) 10 refs., 1 tab

  19. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    Science.gov (United States)

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species. Published 2015. This article is a US Government work and is in the public domain in the USA.

  20. HIV/AIDS mitigation strategies and the State in sub-Saharan Africa--the missing link?

    Science.gov (United States)

    Mohiddin, Abdu; Johnston, Deborah

    2006-01-17

    The HIV/AIDS pandemic in sub-Saharan Africa is widely recognised as a development disaster threatening poverty reduction, economic growth and not merely a health issue. Its mitigation includes the societal-wide adoption and implementation of specific health technologies, many of which depend on functional institutions and State. Donor and International Institutions' strategies to mitigate HIV/AIDS in sub-Saharan Africa are premised on a single optimal model of the State, one which focuses on the decentralised delivery of public goods alone (such as healthcare) - the service delivery state. The empirical evidence, though sparse, of "successful" and "unsuccessful" sub-Saharan Africa states' performance in mitigating HIV/AIDS does not support this model. Rather, the evidence suggests an alternative model that takes a country context specific approach - encompassing political power, institutional structures and the level of health technology needed. This model draws on the historical experience of East Asian countries' rapid development. For international public health policies to be effective, they must consider a country tailored approach, one that advocates a coordinated strategy designed and led by the State with involvement of wider society specific to each country's particular history, culture, and level of development.

  1. HIV/AIDS mitigation strategies and the State in sub-Saharan Africa – the missing link?

    Directory of Open Access Journals (Sweden)

    Johnston Deborah

    2006-01-01

    Full Text Available Abstract Background The HIV/AIDS pandemic in sub-Saharan Africa is widely recognised as a development disaster threatening poverty reduction, economic growth and not merely a health issue. Its mitigation includes the societal-wide adoption and implementation of specific health technologies, many of which depend on functional institutions and State. Discussion Donor and International Institutions' strategies to mitigate HIV/AIDS in sub-Saharan Africa are premised on a single optimal model of the State, one which focuses on the decentralised delivery of public goods alone (such as healthcare – the service delivery state. The empirical evidence, though sparse, of "successful" and "unsuccessful" sub-Saharan Africa states' performance in mitigating HIV/AIDS does not support this model. Rather, the evidence suggests an alternative model that takes a country context specific approach – encompassing political power, institutional structures and the level of health technology needed. This model draws on the historical experience of East Asian countries' rapid development. Summary For international public health policies to be effective, they must consider a country tailored approach, one that advocates a coordinated strategy designed and led by the State with involvement of wider society specific to each country's particular history, culture, and level of development.

  2. Outbreak of Salmonella Oslo Infections Linked to Persian Cucumbers - United States, 2016.

    Science.gov (United States)

    Bottichio, Lyndsay; Medus, Carlota; Sorenson, Alida; Donovan, Danielle; Sharma, Reeti; Dowell, Natasha; Williams, Ian; Wellman, Allison; Jackson, Alikeh; Tolar, Beth; Griswold, Taylor; Basler, Colin

    2016-12-30

    In April 2016, PulseNet, the national molecular subtyping network for foodborne disease surveillance, detected a multistate cluster of Salmonella enterica serotype Oslo infections with an indistinguishable pulsed-field gel electrophoresis (PFGE) pattern (XbaI PFGE pattern OSLX01.0090).* This PFGE pattern was new in the database; no previous infections or outbreaks have been identified. CDC, state and local health and agriculture departments and laboratories, and the Food and Drug Administration (FDA) conducted epidemiologic, traceback, and laboratory investigations to identify the source of this outbreak. A total of 14 patients in eight states were identified, with illness onsets occurring during March 21-April 9, 2016. Whole genome sequencing, a highly discriminating subtyping method, was used to further characterize PFGE pattern OSLX01.0090 isolates. Epidemiologic evidence indicates Persian cucumbers as the source of Salmonella Oslo infections in this outbreak. This is the fourth identified multistate outbreak of salmonellosis associated with cucumbers since 2013. Further research is needed to understand the mechanism and factors that contribute to contamination of cucumbers during growth, harvesting, and processing to prevent future outbreaks.

  3. Climate change and States security: an operational link to develop locally and on the medium term

    International Nuclear Information System (INIS)

    Taithe, Alexandre

    2007-01-01

    The author first notices that climate change and environmental degradations induce new logics in international relationships, and then discusses how consequences of climate change can be factors of instability for States, and how to address them. He recalls and comments the main effects of climate change as they have been described in IPCC reports. He outlines limitations of conventional approaches in terms of direct and indirect impacts on States. Direct effects concern territories (for example, a modification of borders due to sea level rise or to erosion), populations (impact of extreme events on housing, on health) and the economy (more particularly the primary sector and high levels of adaptation costs). The author outlines the limitations of these global models, and proposes additional and corrective approaches: hybrid (regional and global) approaches, local and medium term-based approach (some natural resource management can be assessed and organised only locally). An appendix proposes a contribution of an IPCC work-group in which impacts, adaptation and vulnerabilities of the different regions of the world in front of climate changes are summarized

  4. System state estimation and optimal energy control framework for multicell lithium-ion battery system

    International Nuclear Information System (INIS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai; Kang, Yu

    2017-01-01

    Highlights: • Employed a dual-scale EKF based estimator for in-pack cells’ SOC values. • Proposed a two-stage hybrid state-feedback and output-feedback equalization algorithm. • A switchable balance current mode is designed in the equalization topology. • Verified the performance of proposed method under two conditions. - Abstract: Cell variations caused by the inevitable inconsistency during manufacture and use of battery cells have significant impacts on battery capacity, security and durability for battery energy storage systems. Thus, the battery equalization systems are essentially required to reduce variations of in-pack cells and increase battery pack capability. In order to protect all in-pack cells from damaging, estimate battery state and reduce variations, a system state estimation and energy optimal control framework for multicell lithium-ion battery system is proposed. The state-of-charge (SOC) values of all in-pack cells are firstly estimated using a dual-scale extended Kalman filtering (EKF) to improve estimation accuracy and reduce computation simultaneously. These estimated SOC values provide specific details of battery system, which cannot only be used to protect cells from over-charging/over-discharging, but also be employed to design state-feedback controller for battery equalization system. A two-stage hybrid state-feedback and output-feedback equalization algorithm is proposed. The state-feedback controller is firstly employed for coarse-grained adjustment to reduce equalization time cost with large current. However, due to the inevitable SOC estimation errors, the output-feedback controller is then used for fine-grained adjustment with trickle current. Experimental results show that the proposed framework can provide an effectively estimation and energy control for multicell battery systems. Finally, the implementation of the proposed method is further discussed for the real applications.

  5. Variational data assimilation for the optimized ozone initial state and the short-time forecasting

    Directory of Open Access Journals (Sweden)

    S.-Y. Park

    2016-03-01

    Full Text Available In this study, we apply the four-dimensional variational (4D-Var data assimilation to optimize initial ozone state and to improve the predictability of air quality. The numerical modeling systems used for simulations of atmospheric condition and chemical formation are the Weather Research and Forecasting (WRF model and the Community Multiscale Air Quality (CMAQ model. The study area covers the capital region of South Korea, where the surface measurement sites are relatively evenly distributed. The 4D-Var code previously developed for the CMAQ model is modified to consider background error in matrix form, and various numerical tests are conducted. The results are evaluated with an idealized covariance function for the appropriateness of the modified codes. The background error is then constructed using the NMC method with long-term modeling results, and the characteristics of the spatial correlation scale related to local circulation are analyzed. The background error is applied in the 4D-Var research, and a surface observational assimilation is conducted to optimize the initial concentration of ozone. The statistical results for the 12 h assimilation periods and the 120 observatory sites show a 49.4 % decrease in the root mean squared error (RMSE, and a 59.9 % increase in the index of agreement (IOA. The temporal variation of spatial distribution of the analysis increments indicates that the optimized initial state of ozone concentration is transported to inland areas by the clockwise-rotating local circulation during the assimilation windows. To investigate the predictability of ozone concentration after the assimilation window, a short-time forecasting is carried out. The ratios of the RMSE (root mean squared error with assimilation versus that without assimilation are 8 and 13 % for the +24 and +12 h, respectively. Such a significant improvement in the forecast accuracy is obtained solely by using the optimized initial state. The potential

  6. Novel optimization strategy for tannase production through a modified solid-state fermentation system.

    Science.gov (United States)

    Wu, Changzheng; Zhang, Feng; Li, Lijun; Jiang, Zhedong; Ni, Hui; Xiao, Anfeng

    2018-01-01

    High amounts of insoluble substrates exist in the traditional solid-state fermentation (SSF) system. The presence of these substrates complicates the determination of microbial biomass. Thus, enzyme activity is used as the sole index for the optimization of the traditional SSF system, and the relationship between microbial growth and enzyme synthesis is always ignored. This study was conducted to address this deficiency. All soluble nutrients from tea stalk were extracted using water. The aqueous extract was then mixed with polyurethane sponge to establish a modified SSF system, which was then used to conduct tannase production. With this system, biomass, enzyme activity, and enzyme productivity could be measured rationally and accurately. Thus, the association between biomass and enzyme activity could be easily identified, and the shortcomings of traditional SSF could be addressed. Different carbon and nitrogen sources exerted different effects on microbial growth and enzyme production. Single-factor experiments showed that glucose and yeast extract greatly improved microbial biomass accumulation and that tannin and (NH 4 ) 2 SO 4 efficiently promoted enzyme productivity. Then, these four factors were optimized through response surface methodology. Tannase activity reached 19.22 U/gds when the added amounts of tannin, glucose, (NH 4 ) 2 SO 4 , and yeast extract were 7.49, 8.11, 9.26, and 2.25%, respectively. Tannase activity under the optimized process conditions was 6.36 times higher than that under the initial process conditions. The optimized parameters were directly applied to the traditional tea stalk SSF system. Tannase activity reached 245 U/gds, which is 2.9 times higher than our previously reported value. In this study, a modified SSF system was established to address the shortcomings of the traditional SSF system. Analysis revealed that enzymatic activity and microbial biomass are closely related, and different carbon and nitrogen sources have different

  7. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention.

    Science.gov (United States)

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten

    2010-01-01

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were smaller, but still significant, in detection than in discrimination. The auditory steady-state response (SSR) showed no effects of attention at frontocentral locations, but did so at occipital locations where it was evident only when attention was divided between audition and vision. Similarly, the visual SSR at occipital locations was substantially enhanced when attention was divided across modalities. Both effects were equally present in detection and discrimination. We suggest that both effects reflect a common cause: An attention-dependent influence of auditory information processing on early cortical stages of visual information processing, mediated by enhanced effective connectivity between the two modalities under conditions of divided attention. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. A Reading from the state of Goiás, Brazil: links between music and place

    Directory of Open Access Journals (Sweden)

    Rodrigo Capelle Suess

    2016-01-01

    Full Text Available Music, in addition to propagating culture, stands out as a strong promoter of identity and reveals the soul of its locations. In geography, the location is the appropriate tool for studying those prints or marks that express themselves in space. These are also perceived via songs, given that the location allows us to understand what happens in the space in which we live beyond natural or human conditions. The method used was hermeneutics phenomenology, in that a great part of the theoretical framework is associated with authors and topics that have some kind of affinity with said method. Therefore, this work has as its objective to carry out a reading of musical letters that interpret the Goiás state as a location. It is about a good option for whoever desires to get to know Goiás from another perspective or in a different way from that which other territories and sites are read.

  9. Projection-based circular constrained state estimation and fusion over long-haul links

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qiang [ORNL; Rao, Nageswara S. [ORNL

    2017-07-01

    In this paper, we consider a scenario where sensors are deployed over a large geographical area for tracking a target with circular nonlinear constraints on its motion dynamics. The sensor state estimates are sent over long-haul networks to a remote fusion center for fusion. We are interested in different ways to incorporate the constraints into the estimation and fusion process in the presence of communication loss. In particular, we consider closed-form projection-based solutions, including rules for fusing the estimates and for incorporating the constraints, which jointly can guarantee timely fusion often required in realtime systems. We test the performance of these methods in the long-haul tracking environment using a simple example.

  10. Stress and food deprivation: linking physiological state to migration success in a teleost fish

    DEFF Research Database (Denmark)

    Midwood, J.D.; Larsen, Martin Hage; Aarestrup, Kim

    2016-01-01

    for the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol caused impaired growth and reduced survival of both resident and migratory......Food deprivation (FD) is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how FD interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial...... of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term FD and experimental cortisol elevation (i.e., intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status...

  11. Stress and food deprivation: linking physiological state to migration success in a teleost fish.

    Science.gov (United States)

    Midwood, Jonathan D; Larsen, Martin H; Aarestrup, Kim; Cooke, Steven J

    2016-12-01

    Food deprivation is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how food deprivation interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial migration, whereby a portion of the population smoltifies and migrates to the ocean, and the rest remain in their natal stream. This distinct, natural dichotomy of life-history strategies provides an excellent opportunity to explore the roles of energetic state (as affected by food deprivation) and activation of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term food deprivation and experimental cortisol elevation (i.e. intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status, survival and growth of juvenile brown trout relative to a control were evaluated. Fewer fish migrated in both the food deprivation and cortisol treatments; however, migration of fish in cortisol and control treatments occurred at the same time while that of fish in the food deprivation treatment was delayed for approximately 1 week. A significantly greater proportion of trout in the food deprivation treatment remained in their natal stream, but unlike the cortisol treatment, there were no long-term negative effects of food deprivation on growth, relative to the control. Overall survival rates were comparable between the food deprivation and control treatments, but significantly lower for fish in the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol causes impaired growth and reduced survival of both resident and migratory individuals. © 2016. Published by The

  12. Optimizing Likelihood Models for Particle Trajectory Segmentation in Multi-State Systems.

    Science.gov (United States)

    Young, Dylan Christopher; Scrimgeour, Jan

    2018-06-19

    Particle tracking offers significant insight into the molecular mechanics that govern the behav- ior of living cells. The analysis of molecular trajectories that transition between different motive states, such as diffusive, driven and tethered modes, is of considerable importance, with even single trajectories containing significant amounts of information about a molecule's environment and its interactions with cellular structures. Hidden Markov models (HMM) have been widely adopted to perform the segmentation of such complex tracks. In this paper, we show that extensive analysis of hidden Markov model outputs using data derived from multi-state Brownian dynamics simulations can be used both for the optimization of the likelihood models used to describe the states of the system and for characterization of the technique's failure mechanisms. This analysis was made pos- sible by the implementation of parallelized adaptive direct search algorithm on a Nvidia graphics processing unit. This approach provides critical information for the visualization of HMM failure and successful design of particle tracking experiments where trajectories contain multiple mobile states. © 2018 IOP Publishing Ltd.

  13. Conscious access is linked to ongoing brain state: electrophysiological evidence from the attentional blink.

    Science.gov (United States)

    Pincham, Hannah L; Szucs, Dénes

    2012-10-01

    Neuroscience explanations of conscious access focus on neural events elicited by stimuli. In contrast, here, we used the attentional blink paradigm in combination with event-related brain potentials to examine whether the ongoing state of the brain before a stimulus can determine both conscious access and the poststimulus neural events associated with consciousness. Participants were required to detect 2 target letters from digit distractors while their brain activity was being recorded. Trials were classified based on whether the secondcritical target (T2) was detected. We found that T2-detection was predetermined by brain activity prior to the onset of the stimulation stream. Specifically, T2-detected trials were predicated by a frontocentral positive going deflection that started more than 200 ms before the stream began. Accurate T2 detection was also accompanied by enhanced poststimulus neural activity, as reflected by a larger P3b component. Furthermore, prestimulus and poststimulus markers of T2-detection were highly correlated with one another. We therefore argue that conscious experiences are shaped by potentially random fluctuations in neural activity. Overall, the results reveal that conscious access is underpinned by an important relationship involving predictive prestimulus neural activity and responsive poststimulus brain activity.

  14. Investigating the link between fish community structure and environmental state in deep-time

    Science.gov (United States)

    Sibert, E. C.

    2017-12-01

    community composition in well-constrained systems. Furthermore, when fish community structure or abundance diverges from the expected state, this may provide significant insight into the structure and functioning of marine ecosystems.

  15. Prevalence and Level of Listeria monocytogenes in Ice Cream Linked to a Listeriosis Outbreak in the United States.

    Science.gov (United States)

    Chen, Y I; Burall, Laurel S; Macarisin, Dumitru; Pouillot, Régis; Strain, Errol; DE Jesus, Antonio J; Laasri, Anna; Wang, Hua; Ali, Laila; Tatavarthy, Aparna; Zhang, Guodong; Hu, Lijun; Day, James; Kang, Jihun; Sahu, Surasri; Srinivasan, Devayani; Klontz, Karl; Parish, Mickey; Evans, Peter S; Brown, Eric W; Hammack, Thomas S; Zink, Donald L; Datta, Atin R

    2016-11-01

    A most-probable-number (MPN) method was used to enumerate Listeria monocytogenes in 2,320 commercial ice cream scoops manufactured on a production line that was implicated in a 2015 listeriosis outbreak in the United States. The analyzed samples were collected from seven lots produced in November 2014, December 2014, January 2015, and March 2015. L. monocytogenes was detected in 99% (2,307 of 2,320) of the tested samples (lower limit of detection, 0.03 MPN/g), 92% of which were contaminated at ice cream products linked to a listeriosis outbreak provided a unique data set for further understanding the risk associated with L. monocytogenes contamination for highly susceptible populations.

  16. Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems

    International Nuclear Information System (INIS)

    Nourelfath, Mustapha; Châtelet, Eric; Nahas, Nabil

    2012-01-01

    This paper formulates a joint redundancy and imperfect preventive maintenance planning optimization model for series–parallel multi-state degraded systems. Non identical multi-state components can be used in parallel to improve the system availability by providing redundancy in subsystems. Multiple component choices are available in the market for each subsystem. The status of each component is considered to degrade with use. The objective is to determine jointly the maximal-availability series–parallel system structure and the appropriate preventive maintenance actions, subject to a budget constraint. System availability is defined as the ability to satisfy consumer demand that is represented as a piecewise cumulative load curve. A procedure is used, based on Markov processes and universal moment generating function, to evaluate the multi-state system availability and the cost function. A heuristic approach is also proposed to solve the formulated problem. This heuristic is based on a combination of space partitioning, genetic algorithms (GA) and tabu search (TS). After dividing the search space into a set of disjoint subsets, this approach uses GA to select the subspaces, and applies TS to each selected sub-space.

  17. A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm

    Science.gov (United States)

    Zhang, Xu; Wang, Yujie; Liu, Chang; Chen, Zonghai

    2018-02-01

    An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.

  18. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    International Nuclear Information System (INIS)

    Michele, Pognani; Giuliana, D’Imporzano; Carlo, Minetti; Sergio, Scotti; Fabrizio, Adani

    2015-01-01

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH 4 was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH 4 , getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doing so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium

  19. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Michele, Pognani, E-mail: michele.pognani@unimi.it [Gruppo Ricicla – DiSAA, Università degli Studi di Milano, Soil and Env. Lab, Via Celoria, 2, 20133 Milano (Italy); Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it [Gruppo Ricicla – DiSAA, Università degli Studi di Milano, Soil and Env. Lab, Via Celoria, 2, 20133 Milano (Italy); Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi (Italy); Carlo, Minetti, E-mail: carlo.minetti@a2a.eu [Ecodeco, a2a Group, Cascina Darsena 1, 27010 Giussago, Pavia (Italy); Sergio, Scotti, E-mail: sergio.scotti@a2a.eu [Ecodeco, a2a Group, Cascina Darsena 1, 27010 Giussago, Pavia (Italy); Fabrizio, Adani, E-mail: farbrizio.adani@unimi.it [Gruppo Ricicla – DiSAA, Università degli Studi di Milano, Soil and Env. Lab, Via Celoria, 2, 20133 Milano (Italy); Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi (Italy)

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doing so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.

  20. Linked-cluster formulation of electron-hole interaction kernel in real-space representation without using unoccupied states.

    Science.gov (United States)

    Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam

    2018-05-21

    Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results

  1. Laccase production by Coriolopsis caperata RCK2011: Optimization under solid state fermentation by Taguchi DOE methodology

    Science.gov (United States)

    Nandal, Preeti; Ravella, Sreenivas Rao; Kuhad, Ramesh Chander

    2013-01-01

    Laccase production by Coriolopsis caperata RCK2011 under solid state fermentation was optimized following Taguchi design of experiment. An orthogonal array layout of L18 (21 × 37) was constructed using Qualitek-4 software with eight most influensive factors on laccase production. At individual level pH contributed higher influence, whereas, corn steep liquor (CSL) accounted for more than 50% of the severity index with biotin and KH2PO4 at the interactive level. The optimum conditions derived were; temperature 30°C, pH 5.0, wheat bran 5.0 g, inoculum size 0.5 ml (fungal cell mass = 0.015 g dry wt.), biotin 0.5% w/v, KH2PO4 0.013% w/v, CSL 0.1% v/v and 0.5 mM xylidine as an inducer. The validation experiments using optimized conditions confirmed an improvement in enzyme production by 58.01%. The laccase production to the level of 1623.55 Ugds−1 indicates that the fungus C. caperata RCK2011 has the commercial potential for laccase. PMID:23463372

  2. Optimization of Laccase Production using White Rot Fungi and Agriculture Wastes in Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Hendro Risdianto

    2012-07-01

    Full Text Available Laccase has been produced in a solid state fermentation (SSF using white rot fungi and various lignocellulosic based substrates. White rot fungi used were Marasmius sp, Trametes hirsuta, Trametes versicolor and Phanerochaete crysosporium. The solid substrates employed in this research were collected from agriculture waste which were empty fruit bunches (EFB, rice straw, corn cob, and rice husk. The objective of this research was to determine the most promising fungus, the best solid substrate and the optimal conditions for the production of laccase. The results showed that Marasmius sp. on all solid substrates displayed higher laccase activity than that of any other strain of white rot fungi. Marasmius sp. and solid substrate of rice straw demonstrated the highest laccase activity of 1116.11 U/L on day 10. Three significant factors, i.e. pH, temperature and yeast extract concentration were studied by response surface method on laccase production using Marasmius sp and rice straw. The optimized conditions were pH, temperature and yeast extract concentration of 4.9, 31ºC and 0.36 g/L respectively. The fermentation of Marasmius sp. in SSF on agricultural waste shows a great potential for the production of laccase.

  3. Optimization of tannase production by Aspergillus niger in solid-state packed-bed bioreactor.

    Science.gov (United States)

    Rodríguez-Durán, Luis V; Contreras-Esquivel, Juan C; Rodríguez, Raúl; Prado-Barragán, L Arely; Aguilar, Cristóbal N

    2011-09-01

    Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett–Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature (30°C), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.

  4. Entanglement sharing via qudit channels: Nonmaximally entangled states may be necessary for one-shot optimal singlet fraction and negativity

    Science.gov (United States)

    Pal, Rajarshi; Bandyopadhyay, Somshubhro

    2018-03-01

    We consider the problem of establishing entangled states of optimal singlet fraction and negativity between two remote parties for every use of a noisy quantum channel and trace-preserving local operations and classical communication (LOCC) under the assumption that the parties do not share prior correlations. We show that for a family of quantum channels in every finite dimension d ≥3 , one-shot optimal singlet fraction and entanglement negativity are attained only with appropriate nonmaximally entangled states. A consequence of our results is that the ordering of entangled states in all finite dimensions may not be preserved under trace-preserving LOCC.

  5. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to the Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.

  6. Robustness of Operational Matrices of Differentiation for Solving State-Space Analysis and Optimal Control Problems

    Directory of Open Access Journals (Sweden)

    Emran Tohidi

    2013-01-01

    Full Text Available The idea of approximation by monomials together with the collocation technique over a uniform mesh for solving state-space analysis and optimal control problems (OCPs has been proposed in this paper. After imposing the Pontryagins maximum principle to the main OCPs, the problems reduce to a linear or nonlinear boundary value problem. In the linear case we propose a monomial collocation matrix approach, while in the nonlinear case, the general collocation method has been applied. We also show the efficiency of the operational matrices of differentiation with respect to the operational matrices of integration in our numerical examples. These matrices of integration are related to the Bessel, Walsh, Triangular, Laguerre, and Hermite functions.

  7. Homotopy Algorithm for Optimal Control Problems with a Second-order State Constraint

    International Nuclear Information System (INIS)

    Hermant, Audrey

    2010-01-01

    This paper deals with optimal control problems with a regular second-order state constraint and a scalar control, satisfying the strengthened Legendre-Clebsch condition. We study the stability of structure of stationary points. It is shown that under a uniform strict complementarity assumption, boundary arcs are stable under sufficiently smooth perturbations of the data. On the contrary, nonreducible touch points are not stable under perturbations. We show that under some reasonable conditions, either a boundary arc or a second touch point may appear. Those results allow us to design an homotopy algorithm which automatically detects the structure of the trajectory and initializes the shooting parameters associated with boundary arcs and touch points.

  8. Strength analysis and optimization of welding robot mechanism in emergency stop state

    Directory of Open Access Journals (Sweden)

    Zdeněk Poruba

    2016-03-01

    Full Text Available The contribution deals with the strength analysis and optimization of the welding robot mechanism in emergency stop state. The common operational positioning of the welding robot is characterized by smooth course of speeds in the time. The resulting load does not differ significantly from the static loading. However the safety requirements given by the norm require the ability of emergency stop function. Since the course of speed in time is rather steep the higher values of acceleration and thus higher excitation force is expected. The dynamical simulation performed describes the response of the robot mechanism in the form of stress course in time, quantifies the peak values of the stress caused by the dynamical component of loading and highlights the potential risks associated with this phenomenon.

  9. Design optimization of JT-60SU for steady-state advanced operation

    International Nuclear Information System (INIS)

    Ushigusa, K.; Kurita, G.; Toyoshima, N.

    2001-01-01

    Design optimization of JT-60SU has been done for a steady-state advanced operation. A transport code simulation indicates that a fully non-inductive reversed shear plasmas with fractions of 70% of the bootstrap current and 30% of beam driven current can be sustained for more than 1,000s without any additional control. Investigations have been progressed on MHD stability, vertical positional stability and dynamics of the vertical displacement events. Significant progress has been achieved in the R and D of Nb 3 Al superconducting wires, low induced activation material (Fe-Cr-Mn steel). A design improvement has been made in TF coils to reduce a local stress on radial disk. Dynamic behaviors of the tokamak machine have been analyzed at emergency events such as an earthquake. (author)

  10. Optimization of the immobilization process of β-galatosidade by combined entrapment-cross-linking and the kinetics of lactose hydrolysis

    Directory of Open Access Journals (Sweden)

    F. F. Freitas

    2012-03-01

    Full Text Available The immobilization of Aspergillus oryzae β-galactosidase was achieved by entrapment in sodium alginate and gelatin and cross-linking with glutaraldehyde. The optimal concentrations of the aforementioned variables in the immobilization process were determined using an orthogonal central composite design with an orthogonal axial value of 1.35313. The concentrations of alginate, gelatin and glutaraldehyde that provided the greatest enzymatic activity were 6.60%, 4.05% and 3.64% (w/v, respectively. The stability of the immobilized enzyme under the optimal conditions was evaluated through daily activity assays. After 25 uses, a 20% decrease in the enzymatic activity was observed, indicating that the immobilization process could be used to produce a stable biocatalyst. This study investigates the influence of lactose and product concentrations on kinetic reaction hydrolysis. The concentration ranges for the studied variables were 10 to 56 g/L for lactose and 0 to 11.5 g/L for glucose and galactose. Only galactose presented a competitive inhibitory effect.

  11. Multistate Outbreak of Salmonella Virchow Infections Linked to a Powdered Meal Replacement Product - United States, 2015-2016.

    Science.gov (United States)

    Gambino-Shirley, Kelly J; Tesfai, Adiam; Schwensohn, Colin A; Burnett, Cindy; Smith, Lori; Wagner, Jennifer M; Eikmeier, Dana; Smith, Kirk; Stone, Jolianne P; Updike, Dawn; Hines, Jonas; Shade, Lauren N; Tolar, Beth; Fu, Tong-Jen; Viazis, Stelios; Seelman, Sharon L; Blackshear, Kathryn; Wise, Matthew E; Neil, Karen P

    2018-03-07

    Nontyphoidal Salmonella is the leading cause of bacterial gastroenteritis in the United States. Meal replacement products containing raw and 'superfood' ingredients have gained increasing popularity among consumers in recent years. In January 2016, we investigated a multistate outbreak of infections with a novel strain of Salmonella Virchow. Cases were defined using molecular subtyping procedures. Commonly reported exposures were compared with responses from healthy people interviewed in the 2006-2007 FoodNet Population Survey. Firm inspections and product traceback and testing were performed. Thirty-five cases from 24 states were identified; 6 hospitalizations and no deaths were reported. Thirty-one (94%) of 33 ill people interviewed reported consuming a powdered supplement in the week before illness; of these, 30 (97%) reported consuming Product A, a raw organic powdered shake product consumed as a meal replacement. Laboratory testing isolated the outbreak strain of Salmonella Virchow from: leftover Product A collected from ill people's homes, organic moringa leaf powder (an ingredient in Product A), and finished product retained by the firm. Firm inspections at three facilities linked to Product A production did not reveal contamination at the facilities. Traceback identified that the contaminated moringa leaf powder was imported from South Africa. This investigation identified a novel outbreak vehicle and highlighted the potential risk with similar products not intended to be cooked by consumers before consuming. The company issued a voluntary recall of all implicated products. As this product has a long shelf-life, the recall likely prevented additional illnesses.

  12. Optimization and control of a novel upflow anaerobic solid-state (UASS) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mumme, J.; Linke, B. [Leibniz Inst. for Agricultural Engineering, Potsdam (Germany); Tolle, R. [Humboldt Univ., Berlin (Germany). Dept. of Biosystems Technology

    2010-07-01

    Optimization and control strategies for a newly developed upflow anaerobic solid-state (UASS) reactor equipped with liquor recirculation were investigated. The UASS reactor converts solid biomass into biogas while the particulate organic matter (POM) ascends in the form of a solid-state bed (SSB) driven by the adherence of self-produced micro gas bubbles. Performance data and technical characteristics were obtained from a technical scale semi-automatic 400 L UASS reactor that operated for 117 days with maize silage under thermophilic conditions at 55 degrees C. The process liquor was continuously recirculated through separate methanogenic reactors in order to prevent an accumulation of volatile fatty acids. Emphasis was placed on determining the gas and metabolite production. The volatile solids (VS) loading rate was fixed at 5 g per litre per day. The methane production rate of the UASS reactor stabilized between 1.5 and 2.0 L per litre per day. The average volatile solids (VS) methane yield of the maize silage was 380 L per kg. The liquor exchange was found to play an important role in the performance and stability of the digestion process. Although low exchange rates can cause process failure by acidification, high exchange rates have the risk of clogging inside the SSB. It was concluded that the UASS reactor is a viable solution for the digestion of various organic matter.

  13. Access to benznidazole for Chagas disease in the United States-Cautious optimism?

    Directory of Open Access Journals (Sweden)

    Jonathan D Alpern

    2017-09-01

    Full Text Available Drugs for neglected tropical diseases (NTD are being excessively priced in the United States. Benznidazole, the first-line drug for Chagas disease, may become approved by the Food and Drug Administration (FDA and manufactured by a private company in the US, thus placing it at risk of similar pricing. Chagas disease is an NTD caused by Trypanosoma cruzi; it is endemic to Latin America, infecting 8 million individuals. Human migration has changed the epidemiology causing nonendemic countries to face increased challenges in diagnosing and managing patients with Chagas disease. Only 2 drugs exist with proven efficacy: benznidazole and nifurtimox. Benznidazole has historically faced supply problems and drug shortages, limiting accessibility. In the US, it is currently only available under an investigational new drug (IND protocol from the CDC and is provided free of charge to patients. However, 2 companies have stated that they intend to submit a New Drug Application (NDA for FDA approval. Based on recent history of companies acquiring licensing rights for NTD drugs in the US with limited availability, it is likely that benznidazole will become excessively priced by the manufacturer-paradoxically making it less accessible. However, if the companies can be taken at their word, there may be reason for optimism.

  14. Access to benznidazole for Chagas disease in the United States-Cautious optimism?

    Science.gov (United States)

    Alpern, Jonathan D; Lopez-Velez, Rogelio; Stauffer, William M

    2017-09-01

    Drugs for neglected tropical diseases (NTD) are being excessively priced in the United States. Benznidazole, the first-line drug for Chagas disease, may become approved by the Food and Drug Administration (FDA) and manufactured by a private company in the US, thus placing it at risk of similar pricing. Chagas disease is an NTD caused by Trypanosoma cruzi; it is endemic to Latin America, infecting 8 million individuals. Human migration has changed the epidemiology causing nonendemic countries to face increased challenges in diagnosing and managing patients with Chagas disease. Only 2 drugs exist with proven efficacy: benznidazole and nifurtimox. Benznidazole has historically faced supply problems and drug shortages, limiting accessibility. In the US, it is currently only available under an investigational new drug (IND) protocol from the CDC and is provided free of charge to patients. However, 2 companies have stated that they intend to submit a New Drug Application (NDA) for FDA approval. Based on recent history of companies acquiring licensing rights for NTD drugs in the US with limited availability, it is likely that benznidazole will become excessively priced by the manufacturer-paradoxically making it less accessible. However, if the companies can be taken at their word, there may be reason for optimism.

  15. Soft computing approach for reliability optimization: State-of-the-art survey

    International Nuclear Information System (INIS)

    Gen, Mitsuo; Yun, Young Su

    2006-01-01

    In the broadest sense, reliability is a measure of performance of systems. As systems have grown more complex, the consequences of their unreliable behavior have become severe in terms of cost, effort, lives, etc., and the interest in assessing system reliability and the need for improving the reliability of products and systems have become very important. Most solution methods for reliability optimization assume that systems have redundancy components in series and/or parallel systems and alternative designs are available. Reliability optimization problems concentrate on optimal allocation of redundancy components and optimal selection of alternative designs to meet system requirement. In the past two decades, numerous reliability optimization techniques have been proposed. Generally, these techniques can be classified as linear programming, dynamic programming, integer programming, geometric programming, heuristic method, Lagrangean multiplier method and so on. A Genetic Algorithm (GA), as a soft computing approach, is a powerful tool for solving various reliability optimization problems. In this paper, we briefly survey GA-based approach for various reliability optimization problems, such as reliability optimization of redundant system, reliability optimization with alternative design, reliability optimization with time-dependent reliability, reliability optimization with interval coefficients, bicriteria reliability optimization, and reliability optimization with fuzzy goals. We also introduce the hybrid approaches for combining GA with fuzzy logic, neural network and other conventional search techniques. Finally, we have some experiments with an example of various reliability optimization problems using hybrid GA approach

  16. Optimal control for wind turbine system via state-space method

    Science.gov (United States)

    Shanoob, Mudhafar L.

    Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on

  17. Hierarchical Control with Virtual Resistance Optimization for Efficiency Enhancement and State-of-Charge Balancing in DC Microgrids

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    This paper proposes a hierarchical control scheme which applies optimization method into DC microgrids in order to improve the system overall efficiency while considering the State-of-Charge (SoC) balancing at the same time. Primary droop controller, secondary voltage restoration controller...... and tertiary optimization tool formulate the complete hierarchical control system. Virtual resistances are taken as the decision variables for achieving the objective. simulation results are presented to verify the proposed approach....

  18. Addiction as an Attachment Disorder: White Matter Impairment Is Linked to Increased Negative Affective States in Poly-Drug Use

    Directory of Open Access Journals (Sweden)

    Eva Z. Reininghaus

    2017-04-01

    Full Text Available Substance use disorders (SUD have been shown to be linked to various neuronal and behavioral impairments. In this study, we investigate whether there is a connection between the integrity of white matter (WM and attachment styles as well as different affective states including spirituality in a group of patients diagnosed for poly-drug use disorder (PUD in comparison to non-clinical controls. A total sample of 59 right-handed men, comprising the groups of patients with PUD (n = 19, recreational drug-using individuals (RUC; n = 20 as well as non-drug using controls were recruited (NUC; n = 20. For the behavioral assessment, we applied the Adult Attachment-Scale, the Affective Neuroscience Personality-Scale (short version and the Multidimensional Inventory for Religious/Spiritual Well-Being. Diffusion Tensor Imaging was used to investigate differences in WM neural connectivity. Analyses revealed decreased Fractional Anisotropy and decreased Mean Diffusivity in PUD patients as compared to RUC and NUC. No differences were found between RUC and NUC. Additional ROI analyses suggested that WM impairment in the superior longitudinal fasciculus (SLF and the superior corona radiata (SCR was linked to more insecure attachment as well as to more negative affectivity. No substantial correlation was observed with spirituality. These findings are mainly limited by the cross-sectional design of the study. However, our preliminary results support the idea of addiction as an attachment disorder, both at neuronal and behavioral levels. Further research might be focused on the changes of insecure attachment patterns in SUD treatment and their correlation with changes in the brain.

  19. Are learning strategies linked to academic performance among adolescents in two States in India? A tobit regression analysis.

    Science.gov (United States)

    Areepattamannil, Shaljan

    2014-01-01

    The results of the fourth cycle of the Program for International Student Assessment (PISA) revealed that an unacceptably large number of adolescent students in two states in India-Himachal Pradesh and Tamil Nadu-have failed to acquire basic skills in reading, mathematics, and science (Walker, 2011). Drawing on data from the PISA 2009 database and employing multivariate left-censored to bit regression as a data analytic strategy, the present study, therefore, examined whether or not the learning strategies-memorization, elaboration, and control strategies-of adolescent students in Himachal Pradesh (N = 1,616; Mean age = 15.81 years) and Tamil Nadu (N = 3,210; Mean age = 15.64 years) were linked to their performance on the PISA 2009 reading, mathematics, and science assessments. Tobit regression analyses, after accounting for student demographic characteristics, revealed that the self-reported use of control strategies was significantly positively associated with reading, mathematical, and scientific literacy of adolescents in Himachal Pradesh and Tamil Nadu. While the self-reported use of elaboration strategies was not significantly associated with reading literacy among adolescents in Himachal Pradesh and Tamil Nadu, it was significantly positively associated with mathematical literacy among adolescents in Himachal Pradesh and Tamil Nadu. Moreover, the self-reported use of elaboration strategies was significantly and positively linked to scientific literacy among adolescents in Himachal Pradesh alone. The self-reported use of memorization strategies was significantly negatively associated with reading, mathematical, and scientific literacy in Tamil Nadu, while it was significantly negatively associated with mathematical and scientific literacy alone in Himachal Pradesh. Implications of these findings are discussed.

  20. Linking state regulation, brain laterality, and self-reported attention-deficit/hyperactivity disorder (ADHD) symptoms in adults.

    Science.gov (United States)

    Mohamed, Saleh M H; Börger, Norbert A; Geuze, Reint H; van der Meere, Jaap J

    2016-10-01

    Many clinical studies have shown that performance of subjects with attention-deficit/hyperactivity disorder (ADHD) is impaired when stimuli are presented at a slow rate compared to a medium or fast rate. According to the cognitive-energetic model, this finding may reflect difficulty in allocating sufficient effort to regulate the motor activation state. Other studies have shown that the left hemisphere is relatively responsible for keeping humans motivated, allocating sufficient effort to complete their tasks. This leads to a prediction that poor effort allocation might be associated with an affected left-hemisphere functioning in ADHD. So far, this prediction has not been directly tested, which is the aim of the present study. Seventy-seven adults with various scores on the Conners' Adult ADHD Rating Scale performed a lateralized lexical decision task in three conditions with stimuli presented in a fast, a medium, and a slow rate. The left-hemisphere functioning was measured in terms of visual field advantage (better performance for the right than for the left visual field). All subjects showed an increased right visual field advantage for word processing in the slow presentation rate of stimuli compared to the fast and the medium rate. Higher ADHD scores were related to a reduced right visual field advantage in the slow rate only. The present findings suggest that ADHD symptomatology is associated with less involvement of the left hemisphere when extra effort allocation is needed to optimize the low motor activation state.

  1. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    Science.gov (United States)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  2. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    within 1 °С. Optical schematic diagram of the laser resonator keeps the laser beam divergence not exceeding a diffraction limit more than twice under a light pump power of 100 W. We have also shown that to increase the lasing efficiency, slab multilayer dielectric coatings made of SiO2 и ZrO2 should be used. Practical Relevance. We have proposed original design of the diode pumped solid-state laser module optimizing the generation and pump modes of solid-state lasers by the temperature stabilization technique for laser diode array and by compensation of the slab aberrations. The techniques are also applicable under space conditions; that is an important factor at developing the space-based lasers.

  3. Efficiency of PR communication in establishing links between archives and students: case study of the State Archives in Zadar

    Directory of Open Access Journals (Sweden)

    Goran Pavelin

    2013-03-01

    Full Text Available The aim of the paper is to highlight the changing role of archives and to use the case study to indicate the lacking communication with students due to the absence of PR activities, as well as to point to the difficulties of access to digital archival materials needed for student research. Using PR strategies the archives can sensitise the public for its material through different public programmes, exhibitions and fostering goodmedia relations. The archives try to develop good relations with target groups, in this case with students as potential users, taking into consideration their research needs and materials they are interested in. Research findings on student needs for archival data are extremely rare, even in recent American research. Therefore, we conducted this research using a questionnaire for students of four departments of the University of Zadar (geography, history, art history, tourism and communication, who were users of the State Archives in Zadar. The research results show whether the subjects use archival material, for what purposes, and what other resources they used prior to archival material. It also provides information on the level of familiarity with online archival material and use of web pages with archival resources. We can conclude that the students in Zadar are not well acquainted with the digital resources and use them rarely for their research purposes. The situation can be improved by having the State Archives in Zadar take a more proactive role in identifying target groups of students, their user profiles, difficulties they face, and by allowing a more flexible access to archival material. In addition to goo d relations with the Department of Information Sciences, the Archives should foster links with other departments and include them in planning and implementation of their programmes.

  4. PERCEPTION OF PATIENTS ON ART ABOUT THE SERVICES AVAILED AT LINK ART CENTERS IN SELECTED STATES OF INDIA

    Directory of Open Access Journals (Sweden)

    Ruchi Sogarwal

    2012-07-01

    Full Text Available Objectives: The present study was attempted to assess the perception of patients on ART about the services availed at Link ART Centers (LAC in selected states of India. Methods: A total of 354 PLHAs were selected from 20 systematic randomly selected LACs from Gujarat, Maharashtra, Rajasthan and Uttar Pradesh. Results: Study reveals that majority (97% of the patients seeking services from LACs made regular visits to the center. It was found that 57 percent of the patients had spent less than 100 rupees during the last visit. More than 95 percent of the clients reported waiting time less than 30 minutes for availing counseling and collection of drugs at LACs. The mean±SD score of patient’s level of satisfaction with the services availed at LACs is 4.7±0.5. Conclusions: Study concludes that while majority of the patients were satisfied with the services at LACs, there is need of strengthening the existing ‘package’ of services in these centers and expand the network across the country.

  5. PERCEPTION OF PATIENTS ON ART ABOUT THE SERVICES AVAILED AT LINK ART CENTERS IN SELECTED STATES OF INDIA

    Directory of Open Access Journals (Sweden)

    Ruchi Sogarwal

    2012-06-01

    Full Text Available Objectives: The present study was attempted to assess the perception of patients on ART about the services availed at Link ART Centers (LAC in selected states of India. Methods: A total of 354 PLHAs were selected from 20 systematic randomly selected LACs from Gujarat, Maharashtra, Rajasthan and Uttar Pradesh. Results: Study reveals that majority (97% of the patients seeking services from LACs made regular visits to the center. It was found that 57 percent of the patients had spent less than 100 rupees during the last visit. More than 95 percent of the clients reported waiting time less than 30 minutes for availing counseling and collection of drugs at LACs. The mean±SD score of patient’s level of satisfaction with the services availed at LACs is 4.7±0.5. Conclusions: Study concludes that while majority of the patients were satisfied with the services at LACs, there is need of strengthening the existing ‘package’ of services in these centers and expand the network across the country.

  6. Allocating HIV prevention funds in the United States: recommendations from an optimization model.

    Directory of Open Access Journals (Sweden)

    Arielle Lasry

    Full Text Available The Centers for Disease Control and Prevention (CDC had an annual budget of approximately $327 million to fund health departments and community-based organizations for core HIV testing and prevention programs domestically between 2001 and 2006. Annual HIV incidence has been relatively stable since the year 2000 and was estimated at 48,600 cases in 2006 and 48,100 in 2009. Using estimates on HIV incidence, prevalence, prevention program costs and benefits, and current spending, we created an HIV resource allocation model that can generate a mathematically optimal allocation of the Division of HIV/AIDS Prevention's extramural budget for HIV testing, and counseling and education programs. The model's data inputs and methods were reviewed by subject matter experts internal and external to the CDC via an extensive validation process. The model projects the HIV epidemic for the United States under different allocation strategies under a fixed budget. Our objective is to support national HIV prevention planning efforts and inform the decision-making process for HIV resource allocation. Model results can be summarized into three main recommendations. First, more funds should be allocated to testing and these should further target men who have sex with men and injecting drug users. Second, counseling and education interventions ought to provide a greater focus on HIV positive persons who are aware of their status. And lastly, interventions should target those at high risk for transmitting or acquiring HIV, rather than lower-risk members of the general population. The main conclusions of the HIV resource allocation model have played a role in the introduction of new programs and provide valuable guidance to target resources and improve the impact of HIV prevention efforts in the United States.

  7. Substrate milling pretreatment as a key parameter for Solid-State Anaerobic Digestion optimization.

    Science.gov (United States)

    Motte, J-C; Escudié, R; Hamelin, J; Steyer, J-P; Bernet, N; Delgenes, J-P; Dumas, C

    2014-12-01

    The effect of milling pretreatment on performances of Solid-State Anaerobic Digestion (SS-AD) of raw lignocellulosic residue is still controverted. Three batch reactors treating different straw particle sizes (milled 0.25 mm, 1 mm and 10 mm) were followed during 62 days (6 sampling dates). Although a fine milling improves substrate accessibility and conversion rate (up to 30% compared to coarse milling), it also increases the risk of media acidification because of rapid and high acids production during fermentation of the substrate soluble fraction. Meanwhile, a gradual adaptation of microbial communities, were observed according to both reaction progress and methanogenic performances. The study concluded that particle size reduction affected strongly the performances of the reaction due to an increase of substrate bioaccessibility. An optimization of SS-AD processes thanks to particle size reduction could therefore be applied at farm or industrial scale only if a specific management of the soluble compounds is established. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Matrix-product-state method with local basis optimization for nonequilibrium electron-phonon systems

    Science.gov (United States)

    Heidrich-Meisner, Fabian; Brockt, Christoph; Dorfner, Florian; Vidmar, Lev; Jeckelmann, Eric

    We present a method for simulating the time evolution of quasi-one-dimensional correlated systems with strongly fluctuating bosonic degrees of freedom (e.g., phonons) using matrix product states. For this purpose we combine the time-evolving block decimation (TEBD) algorithm with a local basis optimization (LBO) approach. We discuss the performance of our approach in comparison to TEBD with a bare boson basis, exact diagonalization, and diagonalization in a limited functional space. TEBD with LBO can reduce the computational cost by orders of magnitude when boson fluctuations are large and thus it allows one to investigate problems that are out of reach of other approaches. First, we test our method on the non-equilibrium dynamics of a Holstein polaron and show that it allows us to study the regime of strong electron-phonon coupling. Second, the method is applied to the scattering of an electronic wave packet off a region with electron-phonon coupling. Our study reveals a rich physics including transient self-trapping and dissipation. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 1807.

  9. Optimization of Media for Enhanced Glucoamylase Production in Solid-State Fermentation by Fusarium solani

    Directory of Open Access Journals (Sweden)

    Haq Nawaz Bhatti

    2007-01-01

    Full Text Available Solid-state cultivation of Fusarium solani was carried out for enhanced production of glucoamylase (GA using different substrates like wheat bran, rice bran, green gram bran, black gram bran and maize bran. The SSF medium containing wheat bran as a substrate yielded the highest enzyme activity. The physical and chemical parameters were optimized. Maximum enzyme activity (61.35±3.69 U/g of dry wheat bran was achieved under optimum growth conditions. The optimum conditions were fructose as carbon and energy additive 1 % (by mass, urea as nitrogen additive 1 % (by mass, initial moisture content of solid substrate 70 % (by mass per volume, incubation period 96 h, inoculum size 15 % (by mass per volume having 10^6–10^7 spores/mL, incubation temperature (35±1 °C and pH=5.0. It was further observed that the addition of surfactants caused a decrease in enzyme biosynthesis by F. solani in SSF of wheat bran under optimum process conditions.

  10. Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: optimization of culture conditions.

    Science.gov (United States)

    Sahnoun, Mouna; Kriaa, Mouna; Elgharbi, Fatma; Ayadi, Dorra-Zouari; Bejar, Samir; Kammoun, Radhouane

    2015-04-01

    Aspergillus oryzae S2 was assayed for alpha-amylase production under solid state fermentation (SSF). In addition to AmyA and AmyB already produced in monitored submerged culture, the strain was noted to produce new AmyB oligomeric forms, in particular a dominant tetrameric form named AmyC. The latter was purified to homogeneity through fractional acetone precipitation and size exclusion chromatography. SDS-PAGE and native PAGE analyses revealed that, purified AmyC was an approximately 172 kDa tetramer of four 42 kDa subunits. AmyC was also noted to display the same NH2-terminal amino acid sequence residues and approximately the same physico-chemical properties of AmyA and AmyB, to exhibit maximum activity at pH 5.6 and 60 °C, and to produce maltose and maltotriose as major starch hydrolysis end-products. Soyabean meal was the best substitute to yeast extract compared to fish powder waste and wheat gluten waste. AmyC production was optimized under SSF using statistical design methodology. Moisture content of 76.25%, C/N substrate ratio of 0.62, and inoculum size of 10(6.87) spores allowed maximum activity of 22118.34 U/g of dried substrate, which was 33 times higher than the one obtained before the application of the central composite design (CCD). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state

    Science.gov (United States)

    Sisodia, Mitali; Shukla, Abhishek; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    An explicit scheme (quantum circuit) is designed for the teleportation of an n-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources have been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general n-qubit state considered here. A trade-off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof-of-principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. The experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional controlled state teleportation.

  12. Weather Regime-Dependent Predictability: Sequentially Linked High-Impact Weather Events over the United States during March 2016

    Science.gov (United States)

    Bosart, L. F.; Winters, A. C.; Keyser, D.

    2016-12-01

    High-impact weather events (HWEs), defined by episodes of excessive precipitation or periods of well above or well below normal temperatures, can pose important predictability challenges on medium-range (8-16 day) time scales. Furthermore, HWEs can contribute disproportionately to temperature and precipitation anomaly statistics for a particular season. This disproportionate contribution suggests that HWEs need to be considered in describing and understanding the dynamical and thermodynamic processes that operate at the weather-climate intersection. HWEs typically develop in conjunction with highly amplified flow patterns that permit an extensive latitudinal exchange of polar and tropical air masses. Highly amplified flow patterns over North America often occur in response to a reconfiguration of the large-scale upstream flow pattern over the North Pacific Ocean. The large-scale flow pattern over the North Pacific, North America, and western North Atlantic during the latter half of March 2016 was characterized by frequent cyclonic wave breaking (CWB). This large-scale flow pattern enabled three sequentially linked HWEs to develop over the continental United States. The first HWE was a challenging-to-predict cyclogenesis event on 23-24 March in the central Plains that resulted in both a major snowstorm along the Colorado Front Range and a severe weather outbreak over the central and southern Plains. The second HWE was a severe weather outbreak that occurred over the Tennessee and Ohio River Valleys on 27-28 March. The third HWE was the development of well below normal temperatures over the eastern United States that followed the formation of a high-latitude omega block over northwestern North America during 28 March-1 April. This study will examine (1) the role that CWB over the North Pacific and North America played in the evolution of the flow pattern during late-March 2016 and the development of the three HWEs and (2) the skill of GFS operational and ensemble

  13. Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems

    Science.gov (United States)

    Magnasco, Valerio

    2008-01-01

    Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H[subscript 2][superscript +], H[subscript 2], He[subscript 2][superscript +], He[subscript 2] gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region. Correct bond lengths and…

  14. Enhancing State-of-the-art Multi-objective Optimization Algorithms by Applying Domain Specific Operators

    DEFF Research Database (Denmark)

    Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2015-01-01

    optimization problems where the environment does not change dynamically. For that reason, the requirement for convergence in static optimization problems is not as timecritical as for dynamic optimization problems. Most MOEAs use generic variables and operators that scale to static multi-objective optimization...... problem. The domain specific operators only encode existing knowledge about the environment. A comprehensive comparative study is provided to evaluate the results of applying the CONTROLEUM-GA compared to NSGAII, e-NSGAII and e- MOEA. Experimental results demonstrate clear improvements in convergence time...

  15. State estimation and optimal long period clinical treatment of HIV seropositive patients

    Directory of Open Access Journals (Sweden)

    Juliana M. Grégio

    2009-03-01

    Full Text Available Optimal control theory provides a very interesting quantitative method that can be used to assist the decision making process in several areas of application, such as engineering, biology, economics and sociology. The main idea is to determine the values of the manipulated variables, such as drug doses, so that some cost function is minimized, subject to physical constraints. In this work, the cost function reflects the number of CD4+T cells, viral particles and the drug doses. It is worth noticing that high drug doses are related to more intense side-effects, apart from the impact on the actual cost of the treatment. In a previous paper by the authors, the LQR - Linear Quadratic Regulator approach was proposed for the computation of long period maintenance doses for the drugs, which turns out to be of state feedback form. However, it is not practical to determine all the components of the state vector, due to the fact that infected and uninfected CD4+T cells are not microscopically distinguishable. In order to overcome this difficulty, this work proposes the use of Extended Kalman Filter to estimate the state, even though, because of the nonlinear nature of the involved state equations, the separation principle may not be valid. Extensive simulations were then carried out to investigate numerically if the control strategy consisting of the feedback of estimated states yielded satisfactory clinical results.A teoria de controle ótimo apresenta um método quantitativo muito interessante que pode ajudar no processo de tomada de decisão em algumas áreas de aplicação, tais como engenharia, biologia, economia e sociologia. A principal idéia é determinar os valores das variáveis controladas, tais como doses de medicamentos, onde alguma função-custo é minimizada, sujeito às restrições físicas. Neste trabalho, a função-custo reflete o número de células CD4+T, partículas virais e doses de medicamentos. É fato que altas dosagens de

  16. The role of dissociation channels of excited electronic states in quantum optimal control of ozone isomerization: A three-state dynamical model

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru, E-mail: kurosaki.yuzuru@jaea.go.jp [Quantum Beam Science Directorate, Tokai Research and Development Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ho, Tak-San, E-mail: tsho@Princeton.EDU [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Rabitz, Herschel, E-mail: hrabitz@Princeton.EDU [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)

    2016-05-01

    The prospect of performing the open → cyclic ozone isomerization has attracted much research attention. Here we explore this consideration theoretically by performing quantum optimal control calculations to demonstrate the important role that excited-state dissociation channels could play in the isomerization transformation. In the calculations we use a three-state, one-dimensional dynamical model constructed from the lowest five {sup 1}A′ potential energy curves obtained with high-level ab initio calculations. Besides the laser field-dipole couplings between all three states, this model also includes the diabatic coupling between the two excited states at an avoided crossing leading to competing dissociation channels that can further hinder the isomerization process. The present three-state optimal control simulations examine two possible control pathways previously considered in a two-state model, and reveal that only one of the pathways is viable, achieving a robust ∼95% yield to the cyclic target in the three-state model. This work represents a step towards an ultimate model for the open → cyclic ozone transformation capable of giving adequate guidance about the necessary experimental control field resources as well as an estimate of the ro-vibronic spectral character of cyclic ozone as a basis for an appropriate probe of its formation.

  17. Benefits of Dairy Nutrients - Optimization of Formulations: The State of the Art in Moderate Acute Malnutrition

    International Nuclear Information System (INIS)

    Lagrange, Veronique; Dirienzo, Douglas

    2014-01-01

    Full text: Milk-derived ingredients provide important nutrients: high quality protein, minerals, B-vitamins, lactose, and bioactive factors for the treatment of moderate acute malnutrition (MAM). Milk proteins are high quality proteins due to their excellent digestibility, content of essential amino acids and branched chain amino acids, needed for growth. Lactose, a major component of human milk and dairy ingredients, can enhance palatability, provide energy and has been shown to enhance mineral absorption in infants. It may have beneficial effects on growth and enhance beneficial intestinal bacteria. Milk minerals can have effects on bone growth. These nutrients are available in variable proportions in milk and whey ingredients, allowing both nutritionists and food scientists to optimize (for cost effectiveness) formulations designed to treat and prevent MAM. Major options available to researchers are outlined. The use of RUTF in severe acute malnutrition (SAM) is now an established international standard of care. Studies have shown benefits in recovery rates when using RUTFs contain 25% milk when compared to 10% or no milk. In contrast to SAM, programs for the management of MAM had remained relatively unchanged over 30 years, with grain blends often provided. Recently, the addition of animal source foods has been recommended for promotion of growth in children with MAM, and testing of various formulations underway are highlighted. We review studies published since 2008 and assess the state of the science testing interventions that contain dairy ingredients for MAM. Clinical trials using new RUSF and CSB++ containing milk powder have demonstrated high recovery rates and benefits on growth. The identification of the optimal level of components of milk for treatment or prevention of MAM needs to be defined. Two studies currently testing levels of milk powders in supplements for MAM are in progress and will provide answers. One study is examining LNS with and without

  18. Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors

    International Nuclear Information System (INIS)

    Zhong, Xiongwei; Tang, Jun; Cao, Lujie; Kong, Weiguang; Sun, Zheng; Cheng, Hua; Lu, Zhouguang; Pan, Hui; Xu, Baomin

    2017-01-01

    Highlights: •A facile method to prepare gel polymer electrolyte with high conductivity is proposed. •A flexible symmetric capacitor based on the prepared GPE shows ultra-flexibility. •The capacitor with high voltage can power up a 3.0 V LED even bended to a angle of 180°. -- Abstract: It is highly desirable to develop flexible solid-state electrochemical double-layer capacitors (EDLCs) with non-liquid electrolyte. However, it is still a great challenge to prepare gel polymer electrolyte (GPE) possessing high ionic conductivity and good mechanical property. In this work, a simple and novel method to improve the conductivity and mechanical properties of GPE film for their applications as electrolyte and separator in EDLC is presented. The GPE film is prepared by cross-linking ionic liquid (IL) with poly (ethylene oxide) (PEO) and benzophenone (Bp) followed by ultraviolet (UV) irradiation. Then, a non-woven cellulose separator (FPC) is used to absorb the GPE. By tuning the mass ratio (n) between IL and PEO, the flexible EDLC cooperated with low-cost active carbon and the electrolyte film with n = 10 has a high capacitance of 70.84 F∙g −1 , a wide and stable electrochemical window of 3.5 V, an energy density of 30.13 Wh∙kg −1 and a power density of 874.8 W∙kg −1 at a current density of 1 A∙g −1 , which can drive a 3.0 V light-emitting diode (LED). Importantly, the excellent performance of the flexible and low-cost EDLC can be maintained at a bending angle up to 180°, indicating the ultra-flexibility. It is expected that the IL-PEO-FPC electrolyte film is a promising candidate of GPE for flexible devices and energy storage systems.

  19. Two-stage simplified swarm optimization for the redundancy allocation problem in a multi-state bridge system

    International Nuclear Information System (INIS)

    Lai, Chyh-Ming; Yeh, Wei-Chang

    2016-01-01

    The redundancy allocation problem involves configuring an optimal system structure with high reliability and low cost, either by alternating the elements with more reliable elements and/or by forming them redundantly. The multi-state bridge system is a special redundancy allocation problem and is commonly used in various engineering systems for load balancing and control. Traditional methods for redundancy allocation problem cannot solve multi-state bridge systems efficiently because it is impossible to transfer and reduce a multi-state bridge system to series and parallel combinations. Hence, a swarm-based approach called two-stage simplified swarm optimization is proposed in this work to effectively and efficiently solve the redundancy allocation problem in a multi-state bridge system. For validating the proposed method, two experiments are implemented. The computational results indicate the advantages of the proposed method in terms of solution quality and computational efficiency. - Highlights: • Propose two-stage SSO (SSO_T_S) to deal with RAP in multi-state bridge system. • Dynamic upper bound enhances the efficiency of searching near-optimal solution. • Vector-update stages reduces the problem dimensions. • Statistical results indicate SSO_T_S is robust both in solution quality and runtime.

  20. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    Science.gov (United States)

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Optimal design of multi-state weighted k-out-of-n systems based on component design

    International Nuclear Information System (INIS)

    Li Wei; Zuo, Ming J.

    2008-01-01

    This paper presents a study on design optimization of multi-state weighted k-out-of-n systems. The studied system reliability model is more general than the traditional k-out-of-n system model. The system and its components are capable of assuming a whole range of performance levels, varying from perfect functioning to complete failure. A utility value corresponding to each state is used to indicate the corresponding performance level. A widely studied reliability optimization problem is the 'component selection problem', which involves selection of components with known reliability and cost characteristics. Less adequately addressed has been the problem of determining system cost and utility based on the relationships between component reliability, cost and utility. This paper addresses this topic. All the optimization problems dealt with in this paper can be categorized as either minimizing the expected total system cost subject to system reliability requirements, or maximizing system reliability subject to total system cost limitation. The resulting optimization problems are too complicated to be solved by traditional optimization approaches; therefore, genetic algorithm (GA) is used to solve them. Our results show that GA is a powerful tool for solving these kinds of problems

  2. Prevalence of insufficient, borderline, and optimal hours of sleep among high school students - United States, 2007.

    Science.gov (United States)

    Eaton, Danice K; McKnight-Eily, Lela R; Lowry, Richard; Perry, Geraldine S; Presley-Cantrell, Letitia; Croft, Janet B

    2010-04-01

    We describe the prevalence of insufficient, borderline, and optimal sleep hours among U.S. high school students on an average school night. Most students (68.9%) reported insufficient sleep, whereas few (7.6%) reported optimal sleep. The prevalence of insufficient sleep was highest among female and black students, and students in grades 11 and 12. Published by Elsevier Inc.

  3. Quantum optimal control pathways of ozone isomerization dynamics subject to competing dissociation: A two-state one-dimensional model

    International Nuclear Information System (INIS)

    Kurosaki, Yuzuru; Ho, Tak-San; Rabitz, Herschel

    2014-01-01

    We construct a two-state one-dimensional reaction-path model for ozone open → cyclic isomerization dynamics. The model is based on the intrinsic reaction coordinate connecting the cyclic and open isomers with the O 2 + O asymptote on the ground-state 1 A ′ potential energy surface obtained with the high-level ab initio method. Using this two-state model time-dependent wave packet optimal control simulations are carried out. Two possible pathways are identified along with their respective band-limited optimal control fields; for pathway 1 the wave packet initially associated with the open isomer is first pumped into a shallow well on the excited electronic state potential curve and then driven back to the ground electronic state to form the cyclic isomer, whereas for pathway 2 the corresponding wave packet is excited directly to the primary well of the excited state potential curve. The simulations reveal that the optimal field for pathway 1 produces a final yield of nearly 100% with substantially smaller intensity than that obtained in a previous study [Y. Kurosaki, M. Artamonov, T.-S. Ho, and H. Rabitz, J. Chem. Phys. 131, 044306 (2009)] using a single-state one-dimensional model. Pathway 2, due to its strong coupling to the dissociation channel, is less effective than pathway 1. The simulations also show that nonlinear field effects due to molecular polarizability and hyperpolarizability are small for pathway 1 but could become significant for pathway 2 because much higher field intensity is involved in the latter. The results suggest that a practical control may be feasible with the aid of a few lowly excited electronic states for ozone isomerization

  4. Link State Relationships Under Incident Conditions: Using a CTM-Based Linear Programming Dynamic Traffic Assignment Model

    Science.gov (United States)

    2010-03-01

    Urban transportation networks, consisting of numerous links and nodes, experience traffic incidents such as accidents and road maintenance work. A typical consequence of incidents is congestion which results in long queues and causes high travel time...

  5. Link state relationships under incident conditions : using a CTM-based linear programming dynamic traffic assignment model.

    Science.gov (United States)

    2010-03-01

    Urban transportation networks, consisting of numerous links and nodes, experience traffic incidents such as accidents and road : maintenance work. A typical consequence of incidents is congestion which results in long queues and causes high travel ti...

  6. Optimization and Optimal Control

    CERN Document Server

    Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider

    2010-01-01

    During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou

  7. Toward a Rational Design of Bioactive Glasses with Optimal Structural Features: Composition–Structure Correlations Unveiled by Solid-State NMR and MD Simulations

    Science.gov (United States)

    2013-01-01

    The physiological responses of silicate-based bioactive glasses (BGs) are known to depend critically on both the P content (nP) of the glass and its silicate network connectivity (N̅BOSi). However, while the bioactivity generally displays a nonmonotonic dependence on nP itself, recent work suggest that it is merely the net orthophosphate content that directly links to the bioactivity. We exploit molecular dynamics (MD) simulations combined with 31P and 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy to explore the quantitative relationships between N̅BOSi, nP, and the silicate and phosphate speciations in a series of Na2O–CaO–SiO2–P2O5 glasses spanning 2.1 ≤ N̅BOSi ≤ 2.9 and variable P2O5 contents up to 6.0 mol %. The fractional population of the orthophosphate groups remains independent of nP at a fixed N̅BOSi-value, but is reduced slightly as N̅BOSi increases. Nevertheless, P remains predominantly as readily released orthophosphate ions, whose content may be altered essentially independently of the network connectivity, thereby offering a route to optimize the glass bioactivity. We discuss the observed composition-structure links in relation to known composition-bioactivity correlations, and define how Na2O–CaO–SiO2–P2O5 compositions exhibiting an optimal bioactivity can be designed by simultaneously altering three key parameters: the silicate network connectivity, the (ortho)phosphate content, and the nNa/nCa molar ratio. PMID:24364818

  8. Present status of reactor physics in the United States and Japan-III. 2. Nuclear Fuel Management Optimization Capabilities

    International Nuclear Information System (INIS)

    Karve, Atul A.; Keller, Paul M.; Turinsky, Paul J.; Maldonado, G. Ivan

    2001-01-01

    are developed by the designer from the lattice designs. These bundle designs are then provide d to the in-core optimization code, either FORMOSA-P (Ref. 4) or FORMOSA-B (Ref. 5). Since the fresh fuel inventory can be over-specified in either of these codes, it can now select from the available bundle designs the preferred designs to utilize. Since FORMOSA-P and FORMOSA-B both complete only single cycle optimization, multicycle effects must be treated in an ad hoc manner. This is done by imposing upper and lower batch power share limits, including discharge burnup maximization as an objective function, and automating a multicycle restart capability. As we look into the future, nearer-term activities underway include reducing the computational time and relaxing the control rod programming heuristic rules of FORMOSA-B, developing a robust multi-objective optimization capability for FORMOSA-P and FORMOSA-B, enhancing the fidelity of the core simulators utilized in OCEON-P, and loosely linking OCEON-P and FORMOSA-P. The longer-term activity, which we can think of as the grand challenge of nuclear fuel management optimization, will be the integration of the sub-optimization problems into a global optimization problem that involves the simultaneous selection of all decision variables so selected to optimize performance over multiple cycles. (authors)

  9. Optimal Long-term Contracting with Learning

    OpenAIRE

    Jianfeng Yu; Bin Wei; Zhiguo He

    2012-01-01

    This paper introduces profitability uncertainty into an infinite-horizon variation of the classic Holmstrom and Milgrom (1987) model, and studies optimal dynamic contracting with endogenous learning. The agent's potential belief manipulation leads to the hidden information problem, which makes incentive provisions intertemporally linked in the optimal contract. We reduce the contracting problem into a dynamic programming problem with one state variable, and characterize the optimal contract w...

  10. Going against the flow: a critical analysis of inter-state virtual water trade in the context of India's national river linking programme

    NARCIS (Netherlands)

    Verma, Shilp; Kampman, Doeke A.; van der Zaag, Pieter; Hoekstra, Arjen Ysbert

    2009-01-01

    Virtual water trade has been promoted as a tool to address national and regional water scarcity. In the context of international (food) trade, this concept has been applied with a view to optimize the flow of commodities considering the water endowments of nations. The concept states that water rich

  11. A State-Space Approach to Optimal Level-Crossing Prediction for Linear Gaussian Processes

    Science.gov (United States)

    Martin, Rodney Alexander

    2009-01-01

    In many complex engineered systems, the ability to give an alarm prior to impending critical events is of great importance. These critical events may have varying degrees of severity, and in fact they may occur during normal system operation. In this article, we investigate approximations to theoretically optimal methods of designing alarm systems for the prediction of level-crossings by a zero-mean stationary linear dynamic system driven by Gaussian noise. An optimal alarm system is designed to elicit the fewest false alarms for a fixed detection probability. This work introduces the use of Kalman filtering in tandem with the optimal level-crossing problem. It is shown that there is a negligible loss in overall accuracy when using approximations to the theoretically optimal predictor, at the advantage of greatly reduced computational complexity. I

  12. Aggregate assesment and durability evaluation of optimized graded concrete in the state of Oklahoma

    Science.gov (United States)

    Ghaeezadeh, Ashkan

    This research is a part of a larger project that emphasizes on creating a more scientific approach to designing concrete mixtures for concrete pavements that use less cement and more aggregate which is called optimized graded concrete. The most challenging obstacle in optimized mixtures is reaching enough workability so that one doesn't have to add more cement or super-plasticizer to reach the desired level of flowability. Aggregate gradation and characteristics have found to be very important when it comes to the workabaility of optimized graded concrete. In this research a new automated method of aggregate assessment was used to compare the shape and the surface of different aggregates as well as their influence on the concrete flowability. At the end, the performance of optimized graded concrete against drying shrinkage and freezing and thawing condition were investigated.

  13. Modeling and Optimization of Woody Biomass Harvest and Logistics in the Northeastern United States

    Science.gov (United States)

    Hartley, Damon S.

    World energy consumption is at an all-time high and is projected to continue growing for the foreseeable future. Currently, much of the energy that is produced comes from non-renewable fossil energy sources, which includes the burden of increased greenhouse gas emissions and the fear of energy insecurity. Woody biomass is being considered as a material that can be utilized to reduce the burden caused by fossil energy. While the technical capability to convert woody biomass to energy has been known for a long period of time, the cost of the feedstock has been considered too costly to be implemented in a large commercial scale. Increasing the use of woody biomass as an energy source requires that the supply chains are setup in a way that minimizes cost, the locational factors that lead to development are understood, the facilities are located in the most favorable locations and local resource assessments can be made. A mixed integer linear programming model to efficiently configure woody biomass supply chain configurations and optimize the harvest, extraction, transport, storage and preprocessing of the woody biomass resources to provide the lowest possible delivered price. The characteristics of woody biomass, such as spatial distribution and low bulk density, tend to make collection and transport difficult as compared to traditional energy sources. These factors, as well as others, have an adverse effect on the cost of the feedstock. The average delivered cost was found to be between 64.69-98.31 dry Mg for an annual demand of 180,000 dry Mg. The effect of resource availability and required demand was examined to determine the impact that each would have on the total cost. The use of woody biomass for energy has been suggested as a way to improve rural economies through job creation, reduction of energy costs and regional development. This study examined existing wood using bio-energy facilities in the northeastern United States to define the drivers of

  14. Optimal controlled teleportation via several kinds of three-qubit states

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The probability of successful controlled teleportation of an unknown qubit using a general three-particle state is investigated. The analytic expressions of maximal probabilities via several kinds of tripartite states are given, including a tripartite Greenberger-Horne-Zeilinger state and a tripartite W-state.

  15. Optimal multi-dimensional poverty lines: The state of poverty in Iraq

    Science.gov (United States)

    Ameen, Jamal R. M.

    2017-09-01

    Poverty estimation based on calories intake is unrealistic. The established concept of multidimensional poverty has methodological weaknesses in the treatment of different dimensions and there is disagreement in methods of combining them into a single poverty line. This paper introduces a methodology to estimate optimal multidimensional poverty lines and uses the Iraqi household socio-economic survey data of 2012 to demonstrate the idea. The optimal poverty line for Iraq is found to be 170.5 Thousand Iraqi Dinars (TID).

  16. Optimization of Quantum-state-preserving Frequency Conversion by Changing the Input Signal

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Reddy, D. V.; McKinstrie, C. J.

    We optimize frequency conversion based on four-wave mixing by using the input modes of the system. We find a 10-25 % higher conversion efficiency relative to a pump-shaped input signal.......We optimize frequency conversion based on four-wave mixing by using the input modes of the system. We find a 10-25 % higher conversion efficiency relative to a pump-shaped input signal....

  17. Backward Stochastic Riccati Equations and Infinite Horizon L-Q Optimal Control with Infinite Dimensional State Space and Random Coefficients

    International Nuclear Information System (INIS)

    Guatteri, Giuseppina; Tessitore, Gianmario

    2008-01-01

    We study the Riccati equation arising in a class of quadratic optimal control problems with infinite dimensional stochastic differential state equation and infinite horizon cost functional. We allow the coefficients, both in the state equation and in the cost, to be random.In such a context backward stochastic Riccati equations are backward stochastic differential equations in the whole positive real axis that involve quadratic non-linearities and take values in a non-Hilbertian space. We prove existence of a minimal non-negative solution and, under additional assumptions, its uniqueness. We show that such a solution allows to perform the synthesis of the optimal control and investigate its attractivity properties. Finally the case where the coefficients are stationary is addressed and an example concerning a controlled wave equation in random media is proposed

  18. DC-Link Voltage Coordinated-Proportional Control for Cascaded Converter With Zero Steady-State Error and Reduced System Type

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin

    2016-01-01

    Cascaded converter is formed by connecting two subconverters together, sharing a common intermediate dc-link voltage. Regulation of this dc-link voltage is frequently realized with a proportional-integral (PI) controller, whose high gain at dc helps to force a zero steady-state tracking error....... The proposed scheme can be used with either unidirectional or bidirectional power flow, and has been verified by simulation and experimental results presented in this paper........ Such precise tracking is, however, at the expense of increasing the system type, caused by the extra pole at the origin introduced by the PI controller. The overall system may, hence, be tougher to control. To reduce the system type while preserving precise dc-link voltage tracking, this paper proposes...

  19. Optimization of a Solid-State Electron Spin Qubit Using Gate Set Tomography (Open Access, Publisher’s Version)

    Science.gov (United States)

    2016-10-13

    and addressedwhen the qubit is usedwithin a fault-tolerant quantum computation scheme. 1. Introduction One of themain challenges in the physical...supplied in the supplementarymaterial. Additionally, we have supplied the datafiles constructed from the experiments, alongwith the Python notebook used to...New J. Phys. 18 (2016) 103018 doi:10.1088/1367-2630/18/10/103018 PAPER Optimization of a solid-state electron spin qubit using gate set tomography

  20. Conference on "State of the Art in Global Optimization : Computational Methods and Applications"

    CERN Document Server

    Pardalos, P

    1996-01-01

    Optimization problems abound in most fields of science, engineering, and technology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob­ lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver­ age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solvin...

  1. Optimization of solid-state fermentation conditions for Trichoderma harzianum using an orthogonal test.

    Science.gov (United States)

    Zhang, J D; Yang, Q

    2015-03-13

    The aim of this study was to develop a protocol for the production of fungal bio-pesticides with high efficiency, low cost, and non-polluting fermentation, while also increasing their survival rate under field conditions. This is the first study to develop biocontrol Trichoderma harzianum transformants TS1 that are resistant to benzimidazole fungicides. Agricultural corn stover and wheat bran waste were used as a medium and inducing carbon source for solid fermentation. Spore production was observed, and the method was optimized using single-factor tests with 4 factors at 3 levels in an orthogonal experimental design to determine the optimal culture conditions for T. harzianum TS1. In this step, we determined the best conditions for fermenting the biocontrol fungi. The optimal culture conditions for T. harzianum TS1 were cultivated for 8 days, a ratio of straw to wheat bran of 1:3, ammonium persulfate as the nitrogen source, and a water content of 30 mL. Under optimal culture conditions, the sporulation of T. harzianum TS1 reached 1.49 x 10(10) CFU/g, which was 1.46-fold higher than that achieved before optimization. Increased sporulation of T. harzianum TS1 results in better utilization of space and nutrients to achieve control of plant pathogens. This method allows for the recycling of agricultural waste straw.

  2. Optimal task partition and state-dependent loading in heterogeneous two-element work sharing system

    International Nuclear Information System (INIS)

    Levitin, Gregory; Xing, Liudong; Ben-Haim, Hanoch; Dai, Yuanshun

    2016-01-01

    Many real-world systems such as multi-channel data communication, multi-path flow transmission and multi-processor computing systems have work sharing attributes where system elements perform different portions of the same task simultaneously. Motivated by these applications, this paper models a heterogeneous work-sharing system with two non-repairable elements. When one element fails, the other element takes over the uncompleted task of the failed element upon finishing its own part; the load level of the remaining operating element can change at the time of the failure, which further affects its performance, failure behavior and operation cost. Considering these dynamics, mission success probability (MSP), expected mission completion time (EMCT) and expected cost of successful mission (ECSM) are first derived. Further, optimization problems are formulated and solved, which find optimal task partition and element load levels maximizing MSP, minimizing EMCT or minimizing ECSM. Effects of element reliability, performance, operation cost on the optimal solutions are also investigated through examples. Results of this work can facilitate a tradeoff analysis of different mission performance indices for heterogeneous work-sharing systems. - Highlights: • A heterogeneous work-sharing system with two non-repairable elements is considered. • The optimal work distribution and element loading problem is formulated and solved. • Effects of element reliability, performance, operation cost on the optimal solutions are investigated.

  3. Variable Structure Disturbance Rejection Control for Nonlinear Uncertain Systems with State and Control Delays via Optimal Sliding Mode Surface Approach

    Directory of Open Access Journals (Sweden)

    Jing Lei

    2013-01-01

    Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.

  4. A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems

    International Nuclear Information System (INIS)

    Attar, Ahmad; Raissi, Sadigh; Khalili-Damghani, Kaveh

    2017-01-01

    A simulation-based optimization (SBO) method is proposed to handle multi-objective joint availability-redundancy allocation problem (JARAP). Here, there is no emphasis on probability distributions of time to failures and repair times for multi-state multi-component series-parallel configuration under active, cold and hot standby strategies. Under such conditions, estimation of availability is not a trivial task. First, an efficient computer simulation model is proposed to estimate the availability of the aforementioned system. Then, the estimated availability values are used in a repetitive manner as parameter of a two-objective joint availability-redundancy allocation optimization model through SBO mechanism. The optimization model is then solved using two well-known multi-objective evolutionary computation algorithms, i.e., non-dominated sorting genetic algorithm (NSGA-II), and Strength Pareto Evolutionary Algorithm (SPEA2). The proposed SBO approach is tested using non-exponential numerical example with multi-state repairable components. The results are presented and discussed through different demand scenarios under cold and hot standby strategies. Furthermore, performance of NSGA-II and SPEA2 are statistically compared regarding multi-objective accuracy, and diversity metrics. - Highlights: • A Simulation-Based Optimization (SBO) procedure is introduced for JARAP. • The proposed SBO works for any given failure and repair times. • An efficient simulation procedure is developed to estimate availability. • Customized NSGA-II and SPEA2 are proposed to solve the bi-objective JARAP. • Statistical analysis is employed to test the performance of optimization methods.

  5. FLOODPLAIN-CHANNEL COMPLEX OF SMALL RIVER: ASSESSMENT OF CURRENT STATE, OPTIMIZATION MEASURES

    Directory of Open Access Journals (Sweden)

    Kovalchuk I.

    2016-05-01

    Full Text Available The article describes main methodological principles of geoecological assessment of riverbed-floodplain complex condition of one of the small rivers in Ukrainian Carpathians. According to our long-term field, cartographic, laboratory and remote sensing research, division of riverbed into homogeneous geoecological segments was made, as well as their standardization in accordance to the trends of unfavorable processes. Main reasons for deterioration of quality characteristics of channel-floodplain river complex were outlined; the role of natural and anthropogenic factors in deterioration of geoecological condition of the river and its floodplain complex was analyzed. Based on the assessment results it is possible to state that the condition of study segments of the Berezhnytsya river flood-plain and stream-way complex was marked as “excellent”, “good” and “satisfactory”. “Unsatisfactory” and “catastrophic” river and flood-plain condition has not been detected yet, although within Dashava urban settlement the river area condition is close to the “satisfactory” grade. The best situation is at the river head as human impact is minimized here and natural vegetation is preserved. Downstream we trace the tendency of condition worsening as anthropogenic load on the basin system and flood-plain and stream-way complex increases. Its negative impact is balanced by large forests, thus in segments limited by Banya Lysovytska village and Lotatnyky village the river and flood-plain condition is rated as “good”. So, downstream from the named village the value of such an important natural barrier as forest is reducing and anthropogenic load on the river significantly increases. The latter manifests in an intensive agricultural reclamation and housing development of flood-plains. Since degradation processes are rapidly developing over a considerable part of the Berezhnytsya river, negative changes are visible and only the study area

  6. A multi-objective optimization problem for multi-state series-parallel systems: A two-stage flow-shop manufacturing system

    International Nuclear Information System (INIS)

    Azadeh, A.; Maleki Shoja, B.; Ghanei, S.; Sheikhalishahi, M.

    2015-01-01

    This research investigates a redundancy-scheduling optimization problem for a multi-state series parallel system. The system is a flow shop manufacturing system with multi-state machines. Each manufacturing machine may have different performance rates including perfect performance, decreased performance and complete failure. Moreover, warm standby redundancy is considered for the redundancy allocation problem. Three objectives are considered for the problem: (1) minimizing system purchasing cost, (2) minimizing makespan, and (3) maximizing system reliability. Universal generating function is employed to evaluate system performance and overall reliability of the system. Since the problem is in the NP-hard class of combinatorial problems, genetic algorithm (GA) is used to find optimal/near optimal solutions. Different test problems are generated to evaluate the effectiveness and efficiency of proposed approach and compared to simulated annealing optimization method. The results show the proposed approach is capable of finding optimal/near optimal solution within a very reasonable time. - Highlights: • A redundancy-scheduling optimization problem for a multi-state series parallel system. • A flow shop with multi-state machines and warm standby redundancy. • Objectives are to optimize system purchasing cost, makespan and reliability. • Different test problems are generated and evaluated by a unique genetic algorithm. • It locates optimal/near optimal solution within a very reasonable time

  7. An Effective, Robust And Parallel Implementation Of An Interior Point Algorithm For Limit State Optimization

    DEFF Research Database (Denmark)

    Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars

    2013-01-01

    The artide describes a robust and effective implementation of the interior point optimization algorithm. The adopted method includes a precalculation step, which reduces the number of variables by fulfilling the equilibrium equations a priori. This work presents an improved implementation of the ...

  8. Optimization of an intracavity Q-switched solid-state second order Raman laser

    Science.gov (United States)

    Chen, Zhiqiong; Fu, Xihong; Peng, Hangyu; Zhang, Jun; Qin, Li; Ning, Yongqiang

    2017-01-01

    In this paper, the model of an intracavity Q-switched second order Raman laser is established, the characteristics of the output 2nd Stokes are simulated. The dynamic balance mechanism among intracavity conversion rates of stimulated emission, first order Raman and second order Raman is obtained. Finally, optimization solutions for increasing output 2nd Stokes pulse energy are proposed.

  9. Mean-variance portfolio optimization with state-dependent risk aversion

    DEFF Research Database (Denmark)

    Bjoerk, Tomas; Murgoci, Agatha; Zhou, Xun Yu

    2014-01-01

    The objective of this paper is to study the mean-variance portfolio optimization in continuous time. Since this problem is time inconsistent we attack it by placing the problem within a game theoretic framework and look for subgame perfect Nash equilibrium strategies. This particular problem has...

  10. Performance optimization of a CNC machine through exploration of the timed state space

    NARCIS (Netherlands)

    Mota, M.A. Mujica; Piera, Miquel Angel

    2010-01-01

    Flexible production units provide very efficient mechanisms to adapt the type and production rate according to fluctuations in demand. The optimal sequence of the different manufacturing tasks in each machine is a challenging problem that can deal with important productivity benefits.

  11. Optimization of a Lattice Boltzmann Computation on State-of-the-Art Multicore Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine

    2009-04-10

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon E5345 (Clovertown), AMD Opteron 2214 (Santa Rosa), AMD Opteron 2356 (Barcelona), Sun T5140 T2+ (Victoria Falls), as well as a QS20 IBM Cell Blade. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned LBMHD application achieves up to a 15x improvement compared with the original code at a given concurrency. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.

  12. Expat University Professors' State of Psychological Well-Being and Academic Optimism towards University Task in UAE

    Directory of Open Access Journals (Sweden)

    Luis Guanzon Rile Jr.

    2015-06-01

    Full Text Available This study explored the state of psychological well-being and academic optimism in relation to university tasks among one hundred sixty-nine (169 professors in selected UAE universities, utilizing mixed quantitative and qualitative research approaches. The quantitative aspect primarily employed descriptive correlation method which used quantifiable data through survey instruments on psychological well-being, academic optimism, and university tasks. The qualitative analysis was used through a focused group discussion among nineteen (19 key informants. Six (6 areas of psychological wellbeing: autonomy, environmental mastery, personal growth, positive relations, purpose in life, and selfacceptance were measured through the Ryff's Scales of Psychological Well-Being. Academic optimism scale measured three (3 subscales: efficacy, trust, and academic emphasis. University tasks were categorized into three (3 major areas: student centered work, professional development work, and community centered work. The moderator variables considered were age, gender, length of teaching experience, length of experience in the UAE, and area of specialization. The results showed that the participants tend towards high scores in the subscales of autonomy, self-acceptance, and purpose in life. The academic optimism scale showed prominent high scores in efficacy and trust. Among the university tasks, student-centered work was the most fulfilled. Using the focused-group discussion, most expat university professors lament on the lack of time, management support, and lack of funding to pursue professional development, particularly research and publication. The regression analysis showed that there is a significant correlation between psychological well-being and academic optimism. Both psychological well-being and academic optimism predicts fulfillment of university tasks.

  13. Computation of the target state and feedback controls for time optimal consensus in multi-agent systems

    Science.gov (United States)

    Mulla, Ameer K.; Patil, Deepak U.; Chakraborty, Debraj

    2018-02-01

    N identical agents with bounded inputs aim to reach a common target state (consensus) in the minimum possible time. Algorithms for computing this time-optimal consensus point, the control law to be used by each agent and the time taken for the consensus to occur, are proposed. Two types of multi-agent systems are considered, namely (1) coupled single-integrator agents on a plane and, (2) double-integrator agents on a line. At the initial time instant, each agent is assumed to have access to the state information of all the other agents. An algorithm, using convexity of attainable sets and Helly's theorem, is proposed, to compute the final consensus target state and the minimum time to achieve this consensus. Further, parts of the computation are parallelised amongst the agents such that each agent has to perform computations of O(N2) run time complexity. Finally, local feedback time-optimal control laws are synthesised to drive each agent to the target point in minimum time. During this part of the operation, the controller for each agent uses measurements of only its own states and does not need to communicate with any neighbouring agents.

  14. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    Science.gov (United States)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  15. Optimized surface-slab excited-state muffin-tin potential and surface core level shifts

    International Nuclear Information System (INIS)

    Rundgren, J.

    2003-01-01

    An optimized muffin-tin (MT) potential for surface slabs with preassigned surface core-level shifts (SCLS's) is presented. By using the MT radii as adjustable parameters the model is able to conserve the definition of the SCLS with respect to the bulk and concurrently to generate a potential that is continuous at the MT radii. The model is conceived for elastic electron scattering in a surface slab with exchange-correlation interaction described by the local density approximation. The model employs two data bases for the self-energy of the signal electron (after Hedin and Lundqvist or Sernelius). The potential model is discussed in detail with two surface structures Be(101-bar0), for which SCLS's are available, and Cu(111)p(2x2)Cs, in which the close-packed radii of the atoms are extremely different. It is considered plausible that tensor LEED based on an optimized MT potential can be used for determining SCLS's

  16. Optimization of edge state velocity in the integer quantum Hall regime

    Science.gov (United States)

    Sahasrabudhe, H.; Novakovic, B.; Nakamura, J.; Fallahi, S.; Povolotskyi, M.; Klimeck, G.; Rahman, R.; Manfra, M. J.

    2018-02-01

    Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here we present a new simulation method for designing heterostructures with high edge state velocity by realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. Using this simulation method, we also predict the filling factor at the center of QPCs and their conductance at different gate voltages. The 3D Schrödinger equation is split into 1D and 2D parts. Quasi-1D Schrödinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile, and quantum transport is used to solve for the edge state wave functions. The velocity of edge states is found to be /B , where is the expectation value of the electric field for the edge state. Anisotropically etched trench gated heterostructures with double-sided delta doping have the highest edge state velocity among the structures considered.

  17. Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions.

    Directory of Open Access Journals (Sweden)

    Vijayaraghava T S Rao

    Full Text Available Within the microenvironment of multiple sclerosis lesions, oligodendrocytes are subject to metabolic stress reflecting effects of focal ischemia and inflammation. Previous studies have shown that under optimal conditions in vitro, the respiratory activity of human adult brain-derived oligodendrocytes is lower and more predominantly glycolytic compared to oligodendrocytes differentiated in vitro from post natal rat brain oligodendrocyte progenitor cells. In response to sub-lethal metabolic stress, adult human oligodendrocytes reduce overall energy production rate impacting the capacity to maintain myelination. Here, we directly compare the metabolic profiles of oligodendrocytes derived from adult rat brain with oligodendrocytes newly differentiated in vitro from oligodendrocyte progenitor cells obtained from the post natal rat brain, under both optimal culture and metabolic stress (low/no glucose conditions. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. Our findings indicate that under optimal conditions, adult rat oligodendrocytes preferentially use glycolysis whereas newly differentiated post natal rat oligodendrocytes, and the oligodendrocyte progenitor cells from which they are derived, mainly utilize oxidative phosphorylation to produce ATP. Metabolic stress increases the rate of ATP production via oxidative phosphorylation and significantly reduces glycolysis in adult oligodendrocytes. The rate of ATP production was relatively unchanged in newly differentiated post natal oligodendrocytes under these stress conditions, while it was significantly reduced in oligodendrocyte progenitor cells. Our study indicates that both age and maturation influence the metabolic profile under optimal and stressed conditions, emphasizing the need to consider these variables for in vitro studies that aim to model adult human disease.

  18. Determination of radial profile of ICF hot spot's state by multi-objective parameters optimization

    International Nuclear Information System (INIS)

    Dong Jianjun; Deng Bo; Cao Zhurong; Ding Yongkun; Jiang Shaoen

    2014-01-01

    A method using multi-objective parameters optimization is presented to determine the radial profile of hot spot temperature and density. And a parameter space which contain five variables: the temperatures at center and the interface of fuel and remain ablator, the maximum model density of remain ablator, the mass ratio of remain ablator to initial ablator and the position of interface between fuel and the remain ablator, is used to described the hot spot radial temperature and density. Two objective functions are set as the variances of normalized intensity profile from experiment X-ray images and the theory calculation. Another objective function is set as the variance of experiment average temperature of hot spot and the average temperature calculated by theoretical model. The optimized parameters are obtained by multi-objective genetic algorithm searching for the five dimension parameter space, thereby the optimized radial temperature and density profiles can be determined. The radial temperature and density profiles of hot spot by experiment data measured by KB microscope cooperating with X-ray film are presented. It is observed that the temperature profile is strongly correlated to the objective functions. (authors)

  19. Maintenance optimization and prognostics of residual life - A state of the art report

    Energy Technology Data Exchange (ETDEWEB)

    Nystad, Bent

    2006-01-15

    In many industries a huge part of the daily operational costs are related to maintenance. One key function in cutting costs is in optimization of the maintenance efforts. A major task is to change the work culture and work processes from being repair oriented, with focus on repairing breakdowns, to being proactive and maintain critical parts/systems before failures occur. Estimation of residual life distributions is of great need to obtain an optimum preventive maintenance strategy. In this report two approaches for estimation of residual life are discussed. The first model assumes that the residual life follows a Weibull distribution where the parameters are dependent on expert judgement, inspection data, repair data, and technical health trends. The second model is based on a continuous time Markov chain. In maintenance optimization a quantitative approach like the mean residual life estimation is needed in addition to a qualitative approach like the Reliability Centred Maintenance (RCM) methodology to give support for e.g. optimization of the maintenance overhaul intervals.The use of residual life knowledge in opportunistic maintenance is also discussed.(auth)

  20. Wireless Powered Relaying Networks Under Imperfect Channel State Information: System Performance and Optimal Policy for Instantaneous Rate

    Directory of Open Access Journals (Sweden)

    D. T. Do

    2017-09-01

    Full Text Available In this investigation, we consider wireless powered relaying systems, where energy is scavenged by a relay via radio frequency (RF signals. We explore hybrid time switching-based and power splitting-based relaying protocol (HTPSR and compare performance of Amplify-and-Forward (AF with Decode-and-Forward (DF scheme under imperfect channel state information (CSI. Most importantly, the instantaneous rate, achievable bit error rate (BER are determined in the closed-form expressions under the impact of imperfect CSI. Through numerical analysis, we evaluate system insights via different parameters such as power splitting (PS and time switching (TS ratio of the considered HTPSR which affect outage performance and BER. It is noted that DF relaying networks outperform AF relaying networks. Besides that, the numerical results are given to prove the optimization problems of PS and TS ratio to obtain optimal instantaneous rate.

  1. Concept for Multi-cycle Nuclear Fuel Optimization Based On Parallel Simulated Annealing With Mixing of States

    International Nuclear Information System (INIS)

    Kropaczek, David J.

    2008-01-01

    A new concept for performing nuclear fuel optimization over a multi-cycle planning horizon is presented. The method provides for an implicit coupling between traditionally separate in-core and out-of-core fuel management decisions including determination of: fresh fuel batch size, enrichment and bundle design; exposed fuel reuse; and core loading pattern. The algorithm uses simulated annealing optimization, modified with a technique called mixing of states that allows for deployment in a scalable parallel environment. Analysis of algorithm performance for a transition cycle design (i.e. a PWR 6 month cycle length extension) demonstrates the feasibility of the approach as a production tool for fuel procurement and multi-cycle core design. (authors)

  2. A Comparative Study of Temperature Optimal Control in a Solid State Fermentation Process for Edible Mushroom Growing

    Directory of Open Access Journals (Sweden)

    K. J. Gurubel

    2017-04-01

    Full Text Available In this paper, optimal control strategies for temperature trajectory determination in order to maximize thermophilic bacteria in a fed-batch solid-state fermentation reactor are proposed. This process is modeled by nonlinear differential equations, which has been previously validated experimentally with scale reactor temperature profiles. The dynamic input aeration rate of the reactor is determined to increase microorganisms growth of a selective substrate for edible mushroom cultivation. In industrial practice, the process is comprised of three thermal stages with constant input air flow and three types of microorganisms in a 150-hour lapse. Scytalidium thermophilum and actinobacteria are desired in order to obtain a final biomass composition with acceptable microorganisms concentration. The Steepest Descent gradient algorithm in continuous time and the Gradient Projection algorithm in discrete-time are used for the process optimal control. A comparison of simulation results in the presence of disturbances is presented, where the resulting temperature trajectories exhibit similar tendencies as industrial data.

  3. OPTIMIZATION OF THE CULTURE CONDITIONS FOR TANNASE PRODUCTION BY Aspergillus sp. GM4 UNDER SOLID-STATE FERMENTATION

    Directory of Open Access Journals (Sweden)

    Patrícia Nirlane da Costa Souza

    2015-03-01

    Full Text Available The production of tannase by Aspergillus sp. GM4 under solid-state fermentation (SSF  was investigated using different vegetables leaves such as mango, jamun, coffee and agricultural residues such as coffee husks, rice husks and wheat bran. Among substrates used jamun leaves yielded high tannase production. The Plackett-Burman design was conducted to evaluate the effects of 12 independent variables on the production of tannase under SSF using jamun leaves as substrate. Among these variables, incubation time, potassium nitrate and tannic acid had significant effects on enzyme production. The best incubation time was studied and others variables were optimized using the Central Composite Design. The best conditions for tannase production were: incubation time of 2 days; tannic acid 1.53% (w/w and potassium nitrate 2.71% (w/w. After the optimization process, the tannase production increased 4.65-fold. Keywords: surface response methodology; enzyme; jamun

  4. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-12-15

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.

  5. Buffer-Aided Relaying with Adaptive Link Selection

    DEFF Research Database (Denmark)

    Zlatanov, Nikola; Schober, Robert; Popovski, Petar

    2013-01-01

    In this paper, we consider a simple network consisting of a source, a half-duplex decode-and-forward relay, and a destination. We propose a new relaying protocol employing adaptive link selection, i.e., in any given time slot, based on the channel state information of the source-relay and the relay......-destination link a decision is made whether the source or the relay transmits. In order to avoid data loss at the relay, adaptive link selection requires the relay to be equipped with a buffer such that data can be queued until the relay-destination link is selected for transmission. We study both delay......-constrained and delay-unconstrained transmission. For the delay-unconstrained case, we characterize the optimal link selection policy, derive the corresponding throughput, and develop an optimal power allocation scheme. For the delay-constrained case, we propose to starve the buffer of the relay by choosing...

  6. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang; Zhang, Yingchen

    2016-11-14

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vector regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.

  7. Spacing optimization of high power LED arrays for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Y. Sing; Lee, S. W. Ricky, E-mail: rickylee@ust.hk [Electronic Packaging Laboratory, Center for Advanced Microsystems Packaging, Hong Kong University of Science and Technology (Hong Kong)

    2011-01-15

    This paper provides an analytical approach to determine the optimum pitch by utilizing a thermal resistance network, under the assumption of constant luminous efficiency. This work allows an LED array design which is mounted on a printed circuit board (PCB) attached with a heat sink subject to the natural convection cooling. Being validated by finite element (FE) models, the current approach can be shown as an effective method for the determination of optimal component spacing in an LED array assembly for SSL. (semiconductor devices)

  8. State-of-The-Art of Modeling Methodologies and Optimization Operations in Integrated Energy System

    Science.gov (United States)

    Zheng, Zhan; Zhang, Yongjun

    2017-08-01

    Rapid advances in low carbon technologies and smart energy communities are reshaping future patterns. Uncertainty in energy productions and demand sides are paving the way towards decentralization management. Current energy infrastructures could not meet with supply and consumption challenges, along with emerging environment and economic requirements. Integrated Energy System(IES) whereby electric power, natural gas, heating couples with each other demonstrates that such a significant technique would gradually become one of main comprehensive and optimal energy solutions with high flexibility, friendly renewables absorption and improving efficiency. In these global energy trends, we summarize this literature review. Firstly the accurate definition and characteristics of IES have been presented. Energy subsystem and coupling elements modeling issues are analyzed. It is pointed out that decomposed and integrated analysis methods are the key algorithms for IES optimization operations problems, followed by exploring the IES market mechanisms. Finally several future research tendencies of IES, such as dynamic modeling, peer-to-peer trading, couple market design, sare under discussion.

  9. Energy consumption of agitators in activated sludge tanks - actual state and optimization potential.

    Science.gov (United States)

    Füreder, K; Svardal, K; Frey, W; Kroiss, H; Krampe, J

    2018-02-01

    Depending on design capacity, agitators consume about 5 to 20% of the total energy consumption of a wastewater treatment plant. Based on inhabitant-specific energy consumption (kWh PE 120 -1 a -1 ; PE 120 is population equivalent, assuming 120 g chemical oxygen demand per PE per day), power density (W m -3 ) and volume-specific energy consumption (Wh m -3 d -1 ) as evaluation indicators, this paper provides a sound contribution to understanding energy consumption and energy optimization potentials of agitators. Basically, there are two ways to optimize agitator operation: the reduction of the power density and the reduction of the daily operating time. Energy saving options range from continuous mixing with low power densities of 1 W m -3 to mixing by means of short, intense energy pulses (impulse aeration, impulse stirring). However, the following correlation applies: the shorter the duration of energy input, the higher the power density on the respective volume-specific energy consumption isoline. Under favourable conditions with respect to tank volume, tank geometry, aeration and agitator position, mixing energy can be reduced to 24 Wh m -3 d -1 and below. Additionally, it could be verified that power density of agitators stands in inverse relation to tank volume.

  10. A General Finite Element Scheme for Limit State Analysis and Optimization

    DEFF Research Database (Denmark)

    Damkilde, Lars

    1999-01-01

    Limit State analysis which is based on a perfect material behaviour is used in many different applications primarily within Structural Engineering and Geotechnics. The calculation methods have not reached the same level of automation such as Finite Element Analysis for elastic structures....... The computer based systems are more ad hoc based and are typically not well-integrated with pre- and postprocessors well-known from commercial Finite Element codes.A finite element based formulation of limit state analysis is presented which allows an easy integration with standard Finite Element codes...... for elastic analysis. In this way the user is able to perform a limit state analysis on the same model used for elastic analysis only adding data for the yield surface.The method is based on the lower-bound theorem and uses stress-based elements with a linearized yield surface. The mathematical problem...

  11. Medium optimization for nuclease P1 production by Penicillium citrinum in solid-state fermentation using polyurethane foam as inert carrier

    NARCIS (Netherlands)

    Zhu, Y.; Knol, W.; Smits, J.P.; Bol, J.

    1996-01-01

    A solid-state fermentation system, using polyurethane foam as an inert carrier, was used for the production of nuclease P1 by Penicillium citrinum. Optimization of nuclease P1 production was carried out using a synthetic liquid medium. After a two-step medium optimization using a fractional

  12. Assessing the optimism-pessimism debate: Nuclear proliferation, nuclear risks, and theories of state action

    International Nuclear Information System (INIS)

    Busch, Nathan Edward

    2001-01-01

    This dissertation focuses on the current debate in international relations literature over the risks associated with the proliferation of nuclear weapons. On this subject, IR scholars are divided into roughly two schools: proliferation 'optimists,' who argue that proliferation can be beneficial and that its associated hazards are at least surmountable, and proliferation 'pessimists,' who believe the opposite. This debate centers upon a theoretical disagreement about how best to explain and predict the behavior of states. Optimists generally ground their arguments on rational deterrence theory and maintain that nuclear weapons can actually increase stability among states, while pessimists often ground their arguments on 'organization theory,' which contends that organizational, bureaucratic, and other factors prevent states from acting rationally. A major difficulty with the proliferation debate, however, is that both sides tend to advance their respective theoretical positions without adequately supporting them with solid empirical evidence. This dissertation detailed analyses of the nuclear programs in the United States, Russia, China, India, and Pakistan to determine whether countries with nuclear weapons have adequate controls over their nuclear arsenals and tissue material stockpiles (such as highly enriched uranium and plutonium). These case studies identify the strengths and weaknesses of different systems of nuclear controls and help predict what types of controls proliferating states are likely to employ. On the basis of the evidence gathered from these cases, this dissertation concludes that a further spread of nuclear weapons would tend to have seriously negative effects on international stability by increasing risks of accidental, unauthorized, or inadvertent use of nuclear weapons and risks of thefts of fissile materials for use in nuclear or radiological devices by aspiring nuclear states or terrorist groups. (author)

  13. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 2. Case study

    Science.gov (United States)

    Graham, Wendy D.; Neff, Christina R.

    1994-05-01

    The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.

  14. Optimal initiation of electronic excited state mediated intramolecular H-transfer in malonaldehyde by UV-laser pulses

    Science.gov (United States)

    Nandipati, K. R.; Singh, H.; Nagaprasad Reddy, S.; Kumar, K. A.; Mahapatra, S.

    2014-12-01

    Optimally controlled initiation of intramolecular H-transfer in malonaldehyde is accomplished by designing a sequence of ultrashort (~80 fs) down-chirped pump-dump ultra violet (UV)-laser pulses through an optically bright electronic excited [ S 2 ( π π ∗)] state as a mediator. The sequence of such laser pulses is theoretically synthesized within the framework of optimal control theory (OCT) and employing the well-known pump-dump scheme of Tannor and Rice [D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985)]. In the OCT, the control task is framed as the maximization of cost functional defined in terms of an objective function along with the constraints on the field intensity and system dynamics. The latter is monitored by solving the time-dependent Schrödinger equation. The initial guess, laser driven dynamics and the optimized pulse structure (i.e., the spectral content and temporal profile) followed by associated mechanism involved in fulfilling the control task are examined in detail and discussed. A comparative account of the dynamical outcomes within the Condon approximation for the transition dipole moment versus its more realistic value calculated ab initio is also presented.

  15. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart.

    Science.gov (United States)

    Beqiri, Arian; Price, Anthony N; Padormo, Francesco; Hajnal, Joseph V; Malik, Shaihan J

    2017-06-01

    Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 + ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  16. State and parameter estimation in nonlinear systems as an optimal tracking problem

    International Nuclear Information System (INIS)

    Creveling, Daniel R.; Gill, Philip E.; Abarbanel, Henry D.I.

    2008-01-01

    In verifying and validating models of nonlinear processes it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, we present a framework for connecting a data signal with a model in a way that minimizes the required coupling yet allows the estimation of unknown parameters in the model. The need to evaluate unknown parameters in models of nonlinear physical, biophysical, and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. Our approach builds on existing work that uses synchronization as a tool for parameter estimation. We address some of the critical issues in that work and provide a practical framework for finding an accurate solution. In particular, we show the equivalence of this problem to that of tracking within an optimal control framework. This equivalence allows the application of powerful numerical methods that provide robust practical tools for model development and validation

  17. 438 Optimal Number of States in Hidden Markov Models and its ...

    African Journals Online (AJOL)

    In this paper, Hidden Markov Model is applied to model human movements as to .... emit either discrete information or a continuous data derived from a Probability .... For each hidden state in the test set, the probability = ... by applying the Kullback-Leibler distance (Juang & Rabiner, 1985) which ..... One Size Does Not Fit.

  18. Optimizing transport logistics taking into account the state of roads and road traffic

    Directory of Open Access Journals (Sweden)

    Shikul’skaya Ol’ga Mikhaylovna

    2015-12-01

    Full Text Available The choice and use of rational routes at strict observance of deliveries terms help to achieve not only minimization of operational expenses, but also to reduce commodity and production stocks in warehouses by 1,5...2 times. Therefore special relevance is gained by the works allowing precisely calculating the volumes of a cargo transportation, to count the quantity of transport units necessary for providing cargo flow, to define the rational routes of transportation, and also to reduce total costs of transportation. On the basis of the analysis of the known mathematical methods applied in transport logistics, the authors drew a conclusion that the route of freight delivery is estimated according to the distance passed by the vehicle. However the time of freight delivery depends not only on distance, but also on a set of other factors, such as vehicle type, road capacity, intensity of transport stream, weather conditions, season and others. For taking note of additional factors when optimizing a freight delivery route the method of analogy and similarity is used by the authors. The transportation parameters were estimated by analogy with an electric chain. For this purpose the authors entered the new concepts “fictitious distance” and “conductivity of the road”. The mathematical model allowing optimizing the organization of freight delivery taking into account not only distances, but also the probable speed of the vehicle movement depending on the road quality, intensity of transport stream and weather conditions is developed. Further development of the system of decision-making support while choosing the optimum route of cargo delivery is planned.

  19. Optimization in supply chain management, the current state and future directions: A systematic review and bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Mahmood Movahedipour

    2016-11-01

    Full Text Available Purpose: The purpose of this paper is finding the current state of research and identifies high-potential area for future investigation in optimization in supply chain management. Design/methodology/approach: In this paper we present Bibliometric and Network analysis to examine current state research on optimization in supply chain management to identify established and emergent research field for future investigation. The systematic research review which we used in our study have not grasp or assess by other researchers on this topic. Firstly, based on our methodology Bibliometric analysis began by identifying 1610 publications raised from scientific journals, included literatures from 1994 to March of 2016. Secondly, we applied PageRank algorithm in our data for citation analysis to indicate the significance of a publication. Thirdly, the topological decision variables analysis is done based on Louvain method for network data clustering, for this proposes we used the rigorous tools. Finding: Based on our Network analysis result, the optimization in supply chain management research can be divided into four clusters /modules that introduced fundamental skill, knowledge, theory, application and method. Research limitations/implications: We presented some limitation in our research in some fields which could allow new researchers and practitioners conduct the future research to grow up in different dimensions. Practical implications: Practitioners or policy maker usually are not familiar with these type researches so this is why mush of these survey remain in theatrical and conceptual .Future investigation needs to play in practical application  domain instead stop merely in opinion.    Originality/value: Based on our research, the researchers have more attention to work in conceptual analysis due to other fields but we believe that in facility location problem there many remarkable rooms still exist for future research to development

  20. Optimization in supply chain management, the current state and future directions: A systematic review and bibliometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Movahedipour, M.; Yang, M.; Zeng, J.; Wu, X.; Salam, S.

    2016-07-01

    Purpose: The purpose of this paper is finding the current state of research and identifies high-potential area for future investigation in optimization in supply chain management. Design/methodology/approach: In this paper we present Bibliometric and Network analysis to examine current state research on optimization in supply chain management to identify established and emergent research field for future investigation. The systematic research review which we used in our study have not grasp or assess by other researchers on this topic. Firstly, based on our methodology Bibliometric analysis began by identifying 1610 publications raised from scientific journals, included literatures from 1994 to March of 2016. Secondly, we applied PageRank algorithm in our data for citation analysis to indicate the significance of a publication. Thirdly, the topological decision variables analysis is done based on Louvain method for network data clustering, for this proposes we used the rigorous tools. Finding: Based on our Network analysis result, the optimization in supply chain management research can be divided into four clusters /modules that introduced fundamental skill, knowledge, theory, application and method. Research limitations/implications: We presented some limitation in our research in some fields which could allow new researchers and practitioners conduct the future research to grow up in different dimensions. Practical implications: Practitioners or policy maker usually are not familiar with these type researches so this is why mush of these survey remain in theatrical and conceptual .Future investigation needs to play in practical application domain instead stop merely in opinion. Originality/value: Based on our research, the researchers have more attention to work in conceptual analysis due to other fields but we believe that in facility location problem there many remarkable rooms still exist for future research to development. We also contributed more details in

  1. Optimization in supply chain management, the current state and future directions: A systematic review and bibliometric analysis

    International Nuclear Information System (INIS)

    Movahedipour, M.; Yang, M.; Zeng, J.; Wu, X.; Salam, S.

    2016-01-01

    Purpose: The purpose of this paper is finding the current state of research and identifies high-potential area for future investigation in optimization in supply chain management. Design/methodology/approach: In this paper we present Bibliometric and Network analysis to examine current state research on optimization in supply chain management to identify established and emergent research field for future investigation. The systematic research review which we used in our study have not grasp or assess by other researchers on this topic. Firstly, based on our methodology Bibliometric analysis began by identifying 1610 publications raised from scientific journals, included literatures from 1994 to March of 2016. Secondly, we applied PageRank algorithm in our data for citation analysis to indicate the significance of a publication. Thirdly, the topological decision variables analysis is done based on Louvain method for network data clustering, for this proposes we used the rigorous tools. Finding: Based on our Network analysis result, the optimization in supply chain management research can be divided into four clusters /modules that introduced fundamental skill, knowledge, theory, application and method. Research limitations/implications: We presented some limitation in our research in some fields which could allow new researchers and practitioners conduct the future research to grow up in different dimensions. Practical implications: Practitioners or policy maker usually are not familiar with these type researches so this is why mush of these survey remain in theatrical and conceptual .Future investigation needs to play in practical application domain instead stop merely in opinion. Originality/value: Based on our research, the researchers have more attention to work in conceptual analysis due to other fields but we believe that in facility location problem there many remarkable rooms still exist for future research to development. We also contributed more details in

  2. Chapter 6 - Links between land cover and lichen species richness at large scales in forested ecosystems across the United States.

    Science.gov (United States)

    Susan Will-Wolf; Randall S. Morin; Mark J. Ambrose; Kurt Riitters; Sarah Jovan

    2014-01-01

    Lichen community composition is well known for exhibiting response to air pollution, and to macroenvironmental and microenvironmental variables. Lichens are useful indicators of air quality impact, forest health, and forest ecosystem integrity across the United States (McCune 2000, reviews in Nimis and others 2002, USDA Forest Service 2007).

  3. Linking Housing and School Integration Policy: What Federal, State and Local Governments Can Do. Issue Brief No. 5

    Science.gov (United States)

    Tegeler, Philip

    2015-01-01

    This Issue Brief states that, in spite of the obvious "reciprocal relationship" between housing and school policy, government housing and education agencies have rarely collaborated to promote the common goals of racial and economic integration. Recent efforts to promote collaboration among housing and school agencies have focused on…

  4. The weakest link in welfare state legitimacy : European perceptions of moral and administrative failure in the targeting of social benefits

    NARCIS (Netherlands)

    Roosma, F.; van Oorschot, W.J.H.; Gelissen, J.P.T.M.

    2014-01-01

    In the field of welfare attitude research, generally studies examining critical attitudes toward the welfare state are rather limited. However, the existing studies find that people are most negative about the mis-targeting of welfare benefits – that is, people are particularly critical of the high

  5. Optimization in mammography - monthly monitoring of image quality at the state of Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Joana, Georgia S.; Andrade, Mauricio C. de; Silva, Sabrina D. da; Silva, Rafael R. da; Cesar, Adriana C.Z.; Oliveira, Mauricio de; Peixoto, Joao E.

    2011-01-01

    The State Program of Quality Control in Mammography (PECQMamo) of the state of Minas Gerais was established in 2004 and consists of tests for evaluation of image quality and performance of equipment used in the diagnosis of breast cancer, and evaluation the infrastructure of mammography centers. The monthly monitoring of image quality in mammography is part of this program that has been executed since May 2009 with a character essentially educational. In the assessment of individual services that participate in the monthly monitoring, there was an increased percentage of average annual compliance from 2009 to 2010 in all 85 services with the exception of one service. Therefore, evolution of the performance of the services evaluated, since the program began, shows a positive impact on the numbers, confirming the relevance of this type of operation of Sanitary Surveillance in the area of quality in mammography. (author)

  6. Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities

    Science.gov (United States)

    Batle, J.; Naseri, M.; Ghoranneviss, M.; Farouk, A.; Alkhambashi, M.; Elhoseny, M.

    2017-03-01

    It is a well-known fact that both quantum entanglement and nonlocality (implied by the violation of Bell inequalities) constitute quantum correlations that cannot be arbitrarily shared among subsystems. They are both monogamous, albeit in a different fashion. In the present contribution we focus on nonlocality monogamy relations such as the Toner-Verstraete, the Seevinck, and a derived monogamy inequality for three parties and compare them with multipartite nonlocality measures for the whole set of pure states distributed according to the Haar measure. In this numerical endeavor, we also see that, although monogamy relations for nonlocality cannot exist for more than three parties, in practice the exploration of the whole set of states for different numbers of qubits will return effective bounds on the maximum value of all bipartite Bell violations among subsystems. Hence, we shed light on the effective nonlocality monogamy bounds in the multiqubit case.

  7. Fluid status monitoring with a wireless network to reduce cardiovascular-related hospitalizations and mortality in heart failure: rationale and design of the OptiLink HF Study (Optimization of Heart Failure Management using OptiVol Fluid Status Monitoring and CareLink)

    Science.gov (United States)

    Brachmann, Johannes; Böhm, Michael; Rybak, Karin; Klein, Gunnar; Butter, Christian; Klemm, Hanno; Schomburg, Rolf; Siebermair, Johannes; Israel, Carsten; Sinha, Anil-Martin; Drexler, Helmut

    2011-01-01

    Aims The Optimization of Heart Failure Management using OptiVol Fluid Status Monitoring and CareLink (OptiLink HF) study is designed to investigate whether OptiVol fluid status monitoring with an automatically generated wireless CareAlert notification via the CareLink Network can reduce all-cause death and cardiovascular hospitalizations in an HF population, compared with standard clinical assessment. Methods Patients with newly implanted or replacement cardioverter-defibrillator devices with or without cardiac resynchronization therapy, who have chronic HF in New York Heart Association class II or III and a left ventricular ejection fraction ≤35% will be eligible to participate. Following device implantation, patients are randomized to either OptiVol fluid status monitoring through CareAlert notification or regular care (OptiLink ‘on' vs. ‘off'). The primary endpoint is a composite of all-cause death or cardiovascular hospitalization. It is estimated that 1000 patients will be required to demonstrate superiority of the intervention group to reduce the primary outcome by 30% with 80% power. Conclusion The OptiLink HF study is designed to investigate whether early detection of congestion reduces mortality and cardiovascular hospitalization in patients with chronic HF. The study is expected to close recruitment in September 2012 and to report first results in May 2014. ClinicalTrials.gov Identifier: NCT00769457 PMID:21555324

  8. The Optimal Structure of the National Economy as a Guarantee of Sustainable Development of a State

    Directory of Open Access Journals (Sweden)

    Karintseva Oleksandra I.

    2018-03-01

    Full Text Available The article considers the theoretical essence of the category “national economy” in a narrow and broad sense and identifies its following features: versatility of the links between its structural elements and their integrity; hierarchy of the structure of the national economy, dynamism, openness. The main trend of development of the national economy, which is manifested in the transformation processes, is determined. The following transformation processes of the national economy are identified: system-forming, system-affirming, system-reproducing. Theories of structural transformation of the national economy are considered. There determined relations that characterize the reproductive structure of the national economy: between the main stages of the movement of the aggregate social product; between the forms of the aggregate social product according to the natural-material composition; between elements and forms of the aggregate social product by a functional role; between the constituent parts of social production; between the replacement of the means of production used and the newly created products. Based on the data of the World Bank on the structure of the gross added value of groups of countries in terms of income and regional characteristics in the context of individual spheres, the practical analysis of the structure of the national economy in different countries is carried out. It is established that for the last five years the trend of development of enterprises in the sphere of services has grown.

  9. Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States

    Science.gov (United States)

    2016-08-12

    tailoring approach paths to minimize a weighted objective firnctions based on airwake disturbances, tacking performance, and power consumption . Fuhre...2.4.3.2 Outer Loop DI controller The translational motion of helicopter in horizontal plane can be approximated by the following linear state...helicopter maneuverability  Trajectories are as short as possible to minimize approach time  Trajectories are friendly in saving power consumption and

  10. Optimization of culture conditions for tannase production by Aspergillus sp. gm4 in solid state fermentation

    OpenAIRE

    Souza, Patrícia Nirlane da Costa; Universidade Federal de Lavras; Maia, Natália da Costa; Universidade Federal de Lavras; Guimarães, Luís Henrique Souza; Universidade de São Paulo; Resende, Mário Lúcio Vilela de; Universidade Federal de Lavras; Cardoso, Patrícia Gomes; Universidade Federal de Lavras

    2015-01-01

    The production of tannase by Aspergillus sp. GM4 under solid-state fermentation (SSF)  was investigated using different vegetables leaves such as mango, jamun, coffee and agricultural residues such as coffee husks, rice husks and wheat bran. Among substrates used jamun leaves yielded high tannase production. The Plackett-Burman design was conducted to evaluate the effects of 12 independent variables on the production of tannase under SSF using jamun leaves as substrate. Among these variables,...

  11. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  12. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    International Nuclear Information System (INIS)

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    Highlights: • Gel electrolyte is prepared and used in electric double layer capacitor. • Insertion of boron crosslinks into GO agglomerates opens channels for ion migration. • Solid supercapacitors show excellent specific capacitance and cycle stability. • Nanocomposite electrolyte shows better thermal stability and mechanical properties. - Abstract: A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs

  13. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu

    2014-06-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  14. Bench-Scale Synthetic Optimization of 1,2-bis(2-aminophenylthio)ethane (APO-Link) Used in the Production of APO-BMI Resin

    Energy Technology Data Exchange (ETDEWEB)

    Hilary Wheeler; Crystal Densmore

    2007-07-31

    The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).

  15. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications.

    Science.gov (United States)

    Pahwa, Mrinal; Kusner, Matthew; Hacker, Carl D; Bundy, David T; Weinberger, Kilian Q; Leuthardt, Eric C

    2015-01-01

    Previous studies suggest stable and robust control of a brain-computer interface (BCI) can be achieved using electrocorticography (ECoG). Translation of this technology from the laboratory to the real world requires additional methods that allow users operate their ECoG-based BCI autonomously. In such an environment, users must be able to perform all tasks currently performed by the experimenter, including manually switching the BCI system on/off. Although a simple task, it can be challenging for target users (e.g., individuals with tetraplegia) due to severe motor disability. In this study, we present an automated and practical strategy to switch a BCI system on or off based on the cognitive state of the user. Using a logistic regression, we built probabilistic models that utilized sub-dural ECoG signals from humans to estimate in pseudo real-time whether a person is awake or in a sleep-like state, and subsequently, whether to turn a BCI system on or off. Furthermore, we constrained these models to identify the optimal anatomical and spectral parameters for delineating states. Other methods exist to differentiate wake and sleep states using ECoG, but none account for practical requirements of BCI application, such as minimizing the size of an ECoG implant and predicting states in real time. Our results demonstrate that, across 4 individuals, wakeful and sleep-like states can be classified with over 80% accuracy (up to 92%) in pseudo real-time using high gamma (70-110 Hz) band limited power from only 5 electrodes (platinum discs with a diameter of 2.3 mm) located above the precentral and posterior superior temporal gyrus.

  16. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications.

    Directory of Open Access Journals (Sweden)

    Mrinal Pahwa

    Full Text Available Previous studies suggest stable and robust control of a brain-computer interface (BCI can be achieved using electrocorticography (ECoG. Translation of this technology from the laboratory to the real world requires additional methods that allow users operate their ECoG-based BCI autonomously. In such an environment, users must be able to perform all tasks currently performed by the experimenter, including manually switching the BCI system on/off. Although a simple task, it can be challenging for target users (e.g., individuals with tetraplegia due to severe motor disability. In this study, we present an automated and practical strategy to switch a BCI system on or off based on the cognitive state of the user. Using a logistic regression, we built probabilistic models that utilized sub-dural ECoG signals from humans to estimate in pseudo real-time whether a person is awake or in a sleep-like state, and subsequently, whether to turn a BCI system on or off. Furthermore, we constrained these models to identify the optimal anatomical and spectral parameters for delineating states. Other methods exist to differentiate wake and sleep states using ECoG, but none account for practical requirements of BCI application, such as minimizing the size of an ECoG implant and predicting states in real time. Our results demonstrate that, across 4 individuals, wakeful and sleep-like states can be classified with over 80% accuracy (up to 92% in pseudo real-time using high gamma (70-110 Hz band limited power from only 5 electrodes (platinum discs with a diameter of 2.3 mm located above the precentral and posterior superior temporal gyrus.

  17. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    DEFF Research Database (Denmark)

    Koestel, J. K.; Nørgaard, Trine; Loung, N. M.

    2013-01-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables......, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field...... to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column...

  18. Scaling analysis of the optimized effective potentials for the multiplet states of multivalent 3d ions

    International Nuclear Information System (INIS)

    Hamamoto, N; Satoko, C

    2006-01-01

    We apply the optimized effective potential method (OPM) to the multivalent 3d n (n = 2, ..., 8) ions; M ν+ (ν = 2, ..., 8). The total energy functional is approximated by the single-configuration Hartree-Fock. The exchange potential for the average energy configuration is decomposed into the potentials derived from F 2 (3d, 3d) and F 4 (3d, 3d) Slater integrals. To investigate properties of the density-functional potential, we have checked the scaling properties of several physical quantities such as the density, the 3d orbital and these potentials. We find that the potentials of the Slater integrals do not have the scaling property. Instead, the weighted potential V i (r) of an ion i, which is the potential of the Slater integrals times the 3d-orbital density, satisfies the scaling property q 3d i V i (r) ∼ q 3d j λ 4 V j (λr) where q i 3d is the occupation number of the 3d-orbital R 3d (r) for ion i. Furthermore, the weighted potential can be approximated by the ion-independent functional of the 3d-orbital density c k R 8/3 3d (r)/q 3d where c 2 = 0.366 and c 4 0.223. This suggests that the weighted potential can be expressed as a functional of the 3d-orbital density

  19. Optimal periodic inspection of a deterioration process with sequential condition states

    International Nuclear Information System (INIS)

    Kallen, M.J.; Noortwijk, J.M. van

    2006-01-01

    The condition of components subject to visual inspections is often evaluated on a discrete scale. If at each inspection a decision is made to do nothing or to perform preventive or corrective maintenance, the proposed decision model allows us to determine the optimal time between periodic inspections, such that the expected average costs per unit of time are minimized. The model which describes the uncertain condition over time is based on a Markov process with sequential phases. The key quantities involved in the model are the probabilities of having to perform either preventive or corrective maintenance before or after an inspection. The costs functions for two scenarios are presented: a scenario in which failure is immediately detected without the need to perform an inspection and a scenario in which failure is only detected by inspection of the object. Analytical results for a special case and algorithmic results for a broad class of Markov processes are derived. The model is illustrated using an application to the periodic inspection of road bridges

  20. High Spatial Resolution of Atmospheric Particle Mixing State and Its Links to Particle Evolution in a Metropolitan Area

    Science.gov (United States)

    Ye, Q.; Gu, P.; Li, H.; Robinson, E. S.; Apte, J.; Sullivan, R. C.; Robinson, A. L.; Presto, A. A.; Donahue, N.

    2017-12-01

    Traditional air quality studies in urban areas have mostly relied on very few monitoring locations either at urban background sites or at roadside sites.However, air pollution is highly complex and dynamic and will undergo complicated transformations. Therefore, results from one or two monitoring sites may not be sufficient to address the spatial gradients of pollutants and their evolution after atmosphere processing on a local scale. Our study, as part of the Center for Air, Climate, and Energy Solutions, performed stratified mobile sampling of atmospheric particulate matter with high spatial resolution to address intra-city variability of atmospheric particle composition and mixing state. A suite of comprehensive real-time instrumentations including a state-of-the-art aerosol mass spectrometer with single particle measurement capability are deployed on the mobile platform. Our sampling locations covered a wide variety of places with substantial differences in emissions and land use types including tunnels, inter-state highways, commercial areas, residential neighborhood, parks, as well as locations upwind and downwind of the city center. Our results show that particles from traffic emissions and restaurant cookings are two major contributors to fresh particles in the urban environment. In addition, there are large spatial variabilities of source-specific particles and we identify the relevant physicochemical processes governing transformation of particle composition, size and mixing state. We also combine our results with demographic data to study population exposure to particles of specific sources. This work will help evaluate the performance of existing modeling tools for air quality and population exposure studies.

  1. U.S. Citizen Children of Undocumented Parents: The Link Between State Immigration Policy and the Health of Latino Children.

    Science.gov (United States)

    Vargas, Edward D; Ybarra, Vickie D

    2017-08-01

    We examine Latino citizen children in mixed-status families and how their physical health status compares to their U.S. citizen, co-ethnic counterparts. We also examine Latino parents' perceptions of state immigration policy and its implications for child health status. Using the 2015 Latino National Health and Immigration Survey (n = 1493), we estimate a series of multivariate ordered logistic regression models with mixed-status family and perceptions of state immigration policy as primary predictors. We find that mixed-status families report worse physical health for their children as compared to their U.S. citizen co-ethnics. We also find that parental perceptions of their states' immigration status further exacerbate health disparities between families. These findings have implications for scholars and policy makers interested in immigrant health, family wellbeing, and health disparities in complex family structures. They contribute to the scholarship on Latino child health and on the erosion of the Latino immigrant health advantage.

  2. Optimizing survivability of multi-state systems with multi-level protection by multi-processor genetic algorithm

    International Nuclear Information System (INIS)

    Levitin, Gregory; Dai Yuanshun; Xie Min; Leng Poh, Kim

    2003-01-01

    In this paper we consider vulnerable systems which can have different states corresponding to different combinations of available elements composing the system. Each state can be characterized by a performance rate, which is the quantitative measure of a system's ability to perform its task. Both the impact of external factors (stress) and internal causes (failures) affect system survivability, which is determined as probability of meeting a given demand. In order to increase the survivability of the system, a multi-level protection is applied to its subsystems. This means that a subsystem and its inner level of protection are in their turn protected by the protection of an outer level. This double-protected subsystem has its outer protection and so forth. In such systems, the protected subsystems can be destroyed only if all of the levels of their protection are destroyed. Each level of protection can be destroyed only if all of the outer levels of protection are destroyed. We formulate the problem of finding the structure of series-parallel multi-state system (including choice of system elements, choice of structure of multi-level protection and choice of protection methods) in order to achieve a desired level of system survivability by the minimal cost. An algorithm based on the universal generating function method is used for determination of the system survivability. A multi-processor version of genetic algorithm is used as optimization tool in order to solve the structure optimization problem. An application example is presented to illustrate the procedure presented in this paper

  3. Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.

    2001-06-01

    The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.

  4. Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Todd Travis; Barnes, Charles Marshall; Lauerhass, Lance; Taylor, Dean Dalton

    2001-06-01

    The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from "road tests" that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.

  5. Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste

    International Nuclear Information System (INIS)

    Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.

    2001-01-01

    The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment

  6. An optimization study of solid-state fermentation: xanthophylls extraction from marigold flowers.

    Science.gov (United States)

    Luis, Navarrete-Bolaños José; Hugo, Jiménez-Islas; Enrique, Botello-Alvarez; Ramiro, Rico-Martínez; Octavio, Paredes-López

    2004-09-01

    Marigold flowers are the main natural source of xanthophylls, and marigold saponified extract is used as an additive in several food and pharmaceutical industries. In this work, the use of a solid-state fermentation (ensilage) process for increasing the yield of xanthophylls extracted from fermented marigold flowers was examined. The process consisted of a mixed culture of three microorganisms (Flavobacterium IIb, Acinetobacter anitratus, and Rhizopus nigricans), part of the normal microbiota associated with the marigold flower. These microorganisms had been previously isolated, and were identified as relevant for the ensilage process due to their capacity to produce cellulolytic enzymes. Based on experimental design strategies, optimum operation values were determined for aeration, moisture, agitation, and marigold-to-inoculum ratio in the proposed solid-state fermentation equipment, leading to a xanthophylls yield of 17.8-g/kg dry weight. The optimum achieved represents a 65% increase with respect to the control. HPLC analysis indicated conservation of extracted oleoresin. Based on the experimental results, interactions were identified that could be associated with the heat and mass-transfer reactions taking place within the bioreactor. The insight gained allows conditions that limit growth and metabolic activity to be avoided.

  7. Exploring the dynamic links between microbial ecology and redox state of the hyporheic zone: insight from flume experiments

    Science.gov (United States)

    Kaufman, M.; Cardenas, M. B.; Stegen, J.; Graham, E.; Cook, P. L. M.; Kessler, A. J.

    2017-12-01

    The hyporheic zone (HZ) provides key ecosystem services such as heavy metal sequestration, nutrient uptake and consumption, and habitat for a diverse collection of ecologically and commercially important species. Microbes are responsible for many of the chemical transformations in the HZ. These microbe populations are intimately linked to redox conditions, and recent work has shown that redox conditions in the HZ can be highly dynamic. Here we investigate the dynamic coupling between surface flow conditions, hyporheic redox conditions, and the hyporheic microbiome. Our window into this world is a large experimental flume (5m x 0.7m x 0.3m), prepared and incubated in a way that is relatively common to hyporheic zone research, without a strong attempt to impose a specific microbial community structure. We use computer-controlled flow combined with sand bedforms within the flume to generate a pattern of oxic and anoxic sediment zones, from which we collected sediment and water samples. Dissolved oxygen was mapped with a large planar optode. The samples were analyzed for microbial community composition through 16S rRNA gene sequencing. We compare the population structure between oxic and anoxic zones, showing that the presence of oxygen in the HZ is a strong predictor of microbial composition. Additionally, we compare both the oxic and anoxic community structure from the flume to those of samples taken from natural environments, showing both interesting similarities and differences. In the future, we plan to use time-series sampling to observe the response times of microbial communities subjected to dynamic surface channel flow and redox conditions. This work will yield greater understanding of the role that dynamic rivers play in microbe-provided ecosystem services.

  8. Possible links between extreme levels of space weather changes and human health state in middle latitudes: direct and indirect indicators

    Science.gov (United States)

    Safaraly-Oghlu Babayev, Elchin

    The Sun is the main driver of space weather. The possibility that solar activity variations and related changes in the Earth's magnetosphere can affect human life and health has been debated for many decades. This problem is being studied extensively in the late 20th and early 21st centuries and it is still being contradictory in some cases. The relations between space weather changes and the human health have global implications, but they are especially significant for habitants living at high geomagnetic latitudes where the geomagnetic disturbances have larger amplitudes. Nevertheless, the relevant researches are also important for humans living at any geomagnetic latitudes with different levels of geomagnetic activity; recent researches show that weak geomagnetic disturbances can also have adverse effects. Unfortunately, limited comparison of results of investigations on possible effects to humans from geomagnetic activity exists between studies conducted in high, middle and low latitudes. Knowledge about the relationship between solar and geomagnetic activity and the human health would allow to get better prepared beforehand for any future geomagnetic event and its impacts anywhere. For these purposes there are conducted collaborative (jointly with scientists from Israel, Bulgaria, Russia and Belgium) and cross-disciplinary space weather studies in the Azerbaijan National Academy of Sciences for revealing possible effects of solar, geomagnetic and cosmic ray variability on certain technological, biological and ecological systems in different phases of solar cycle 23. This paper describes some recently obtained results of the complex (theoretical, experimental and statistical) studies of influence of the periodical and aperiodical changes of solar, geomagnetic and cosmic ray activities upon human cardio-health state as well as human physiological and psycho-emotional state. It also covers the conclusions of studies on influence of violent solar events and severe

  9. Understanding the link between state and trait aspects of self-esteem in a social context

    OpenAIRE

    中嶋, 夕湖; 下斗米, 淳; 岡本, 祐子

    2015-01-01

    As people experience various events in everyday life, their assessment of emotion and of self-changes. In recent years, research has increasingly focused on individual fluctuation of short-term emotions as a means of explaining changes in self-esteem. In this study, an association between trait self-esteem (TSE), i.e., self-esteem as a characteristic, and state self-esteem (SSE), the type of self-esteem that is alterable by daily events were examined. Every day for one week, 61 students (23 m...

  10. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    Science.gov (United States)

    Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.

    2013-02-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.

  11. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  12. Optimal location of centralized biodigesters for small dairy farms: A case study from the United States

    Directory of Open Access Journals (Sweden)

    Deep Mukherjee

    2015-06-01

    Full Text Available Anaerobic digestion technology is available for converting livestock waste to bio-energy, but its potential is far from fully exploited in the United States because the technology has a scale effect. Utilization of the centralized anaerobic digester (CAD concept could make the technology economically feasible for smaller dairy farms. An interdisciplinary methodology to determine the cost minimizing location, size, and number of CAD facilities in a rural dairy region with mostly small farms is described. This study employs land suitability analysis, operations research model and Geographical Information System (GIS tools to evaluate the environmental, social, and economic constraints in selecting appropriate sites for CADs in Windham County, Connecticut. Results indicate that overall costs are lower if the CADs are of larger size and are smaller in number.

  13. Optimizing the use of the "state-of-the-art" performance criteria.

    Science.gov (United States)

    Haeckel, Rainer; Wosniok, Werner; Streichert, Thomas

    2015-05-01

    The organizers of the first EFLM Strategic Conference "Defining analytical performance goals" identified three models for defining analytical performance goals in laboratory medicine. Whereas the highest level of model 1 (outcome studies) is difficult to implement, the other levels are more or less based on subjective opinions of experts, with models 2 (based on biological variation) and 3 (defined by the state-of-the-art) being more objective. A working group of the German Society of Clinical Chemistry and Laboratory Medicine (DGKL) proposes a combination of models 2 and 3 to overcome some disadvantages inherent to both models. In the new model, the permissible imprecision is not defined as a constant proportion of biological variation but by a non-linear relationship between permissible analytical and biological variation. Furthermore, the permissible imprecision is referred to the target quantity value. The biological variation is derived from the reference interval, if appropriate, after logarithmic transformation of the reference limits.

  14. CURRENT STATE OF POPULATION OF GAME MAMMALS HABITING SHELKOVSKOY DISTRICT OF CHECHNYA AND WAYS FOR OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    A. M. Batkhiyev

    2015-01-01

    Full Text Available Aim. The goal of the research is that: to identify the taxonomic composition of game species and make full list of species to assess the current state of populations and resources to carry out eco-faunistic analysis of the distribution of game mammals habiting Shelkovskiy district of Chechnya. Methods. We used mapping techniques, various methods of census forms and scientific processing of the collected material, systematic and bioecological analysis. Results. As a result, we have identified 5 ecological complexes and characterized them by distribution on the identified and described natural habitats. We have made an inventory of species, identified conditions of rare species and determined their status. Biometric data has been obtained for a number of species; their biological and ecological features have been described. We also identified the species composition of game mammals and their spatial distribution of habitats. The differentiation of species in ecological groups has been carried out. Data has been obtained on the number of nine major types for the period of 2012-2013, and their characteristics. We have made an estimation of ecological and economic potential of resources of game mammals of the study area. Conclusions. Based on the analysis of the results we can make a judgment about the level of biodiversity of species of game mammals of the studied area, the current state of their number and possible use for commercial, sports and recreational purposes. We propose specific measures such as the use of existing biological resources i.e. species of mammals, as well as the creation of new protected areas as a form of preserving and increasing the number of mammals in the area. The research results can be useful for monitoring and creating specially protected natural reservations, protection of endangered species. The findings have implications for the organization of hunting economy to increase the number of game animals. 

  15. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation.

    Science.gov (United States)

    Singh, Satbir; Bajaj, Bijender Kumar

    2016-10-02

    Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728 U ml(-1)), which was followed by gram husk (714 U ml(-1)), mustard cake (680 U ml(-1)), and soybean meal (653 U ml(-1)). Plackett-Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020 U ml(-1)). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes.

  16. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State

    Science.gov (United States)

    2018-01-01

    We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT).1−5 Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron–photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron–photon systems in quantum cavities. PMID:29594185

  17. Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation.

    Science.gov (United States)

    Rodríguez de Olmos, A; Bru, E; Garro, M S

    2015-03-02

    The use of solid fermentation substrate (SSF) has been appreciated by the demand for natural and healthy products. Lactic acid bacteria and bifidobacteria play a leading role in the production of novel functional foods and their behavior is practically unknown in these systems. Soy is an excellent substrate for the production of functional foods for their low cost and nutritional value. The aim of this work was to optimize different parameters involved in solid state fermentation (SSF) using selected lactic cultures to improve soybean substrate as a possible strategy for the elaboration of new soy food with enhanced functional and nutritional properties. Soy flour and selected lactic cultures were used under different conditions to optimize the soy SSF. The measured responses were bacterial growth, free amino acids and β-glucosidase activity, which were analyzed by applying response surface methodology. Based on the proposed statistical model, different fermentation conditions were raised by varying the moisture content (50-80%) of the soy substrate and temperature of incubation (31-43°C). The effect of inoculum amount was also investigated. These studies demonstrated the ability of selected strains (Lactobacillus paracasei subsp. paracasei and Bifidobacterium longum) to grow with strain-dependent behavior on the SSF system. β-Glucosidase activity was evident in both strains and L. paracasei subsp. paracasei was able to increase the free amino acids at the end of fermentation under assayed conditions. The used statistical model has allowed the optimization of fermentation parameters on soy SSF by selected lactic strains. Besides, the possibility to work with lower initial bacterial amounts to obtain results with significant technological impact was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Identification of Plasma Parameters and Optimization of Magnetic Sensors in the Superconducting Steady-State Tokamak-1 Using Neural Networks

    International Nuclear Information System (INIS)

    Sengupta, A.; Ranjan, P.

    2001-01-01

    In this paper, we examine the possibility of using a multilayered feedforward neural network to extract tokamak plasma parameters from magnetic measurements as an improvement over the traditional methodology of function parametrization. It is also used to optimize the number and locations of the magnetic diagnostics designed for the tokamak. This work has been undertaken with the specific purpose of application of the neural network technique to the newly designed (and currently under fabrication) Superconducting Steady-State Tokamak-1 (SST-1). The magnetic measurements will be utilized to achieve real-time control of plasma shape, position, and some global profiles. A trained neural network is tested, and the results of parameter identification are compared with function parametrization. Both techniques appear well suited for the purpose, but a definite improvement with neural networks is observed. Although simulated measurements are used in this work, confidence regarding the network performance with actual experimental data is ensured by testing the network's noise tolerance with Gaussian noise of up to 10%. Finally, three possible methods of ranking the diagnostics in decreasing order of importance are suggested, and the neural network is used to optimize the number and locations of the magnetic sensors designed for SST-1. The results from the three methods are compared with one another and also with function parametrization. Magnetic probes within the plasma-facing side of the outboard limiter have been ranked high. Function parametrization and one of the neural network methods show a distinct tendency to favor the probes in the remote regions of the vacuum vessel, proving the importance of redundancy. Fault tolerance of the optimized network is tested. The results obtained should, in the long run, help in the decision regarding the final effective set of magnetic diagnostics to be used in SST-1 for reconstruction of the control parameters

  19. Disparities in health, poverty, incarceration, and social justice among racial groups in the United States: a critical review of evidence of close links with neoliberalism.

    Science.gov (United States)

    Nkansah-Amankra, Stephen; Agbanu, Samuel Kwami; Miller, Reuben Jonathan

    2013-01-01

    Problems of poverty, poor health, and incarceration are unevenly distributed among racial and ethnic minorities in the United States. We argue that this is due, in part, to the ascendance of United States-style neoliberalism, a prevailing political and economic doctrine that shapes social policy, including public health and anti-poverty intervention strategies. Public health research most often associates inequalities in health outcomes, poverty, and incarceration with individual and cultural risk factors. Contextual links to structural inequality and the neoliberal doctrine animating state-sanctioned interventions are given less attention. The interrelationships among these are not clear in the extant literature. Less is known about public health and incarceration. Thus, the authors describe the linkages between neoliberalism, public health, and criminal justice outcomes. We suggest that neoliberalism exacerbates racial disparities in health, poverty, and incarceration in the United States. We conclude by calling for a new direction in public health research that advances a pro-poor public health agenda to improve the general well-being of disadvantaged groups.

  20. Tadalafil inclusion in microporous silica as effective dissolution enhancer: optimization of loading procedure and molecular state characterization.

    Science.gov (United States)

    Mehanna, Mohammed M; Motawaa, Adel M; Samaha, Magda W

    2011-05-01

    Tadalafil is an efficient drug used to treat erectile dysfunction characterized by poor water solubility, which has a negative influence on its bioavailability. Utilization of microporous silica represents an effective and facile technology to increase the dissolution rate of poorly soluble drugs. Our strategy involved directly introducing tadalafil as guest molecule into microporous silica as host material by incipient wetness impregnation method. To optimize tadalafil inclusion, response surface methodology (RSM) using 3(3) factorial design was utilized. Furthermore, to investigate the molecular state of tadalafil, Fourier-transform infrared spectroscopy, differential scanning calorimetery, thermal gravimetrical analysis, nitrogen adsorption, and powder X-ray diffraction (PXRD) were carried out. The results obtained pointed out that the quantity of microporous silica was the predominant factor that increased the loading efficiency. For the optimized formula, the loading efficiency was 42.50 wt %. Adsorption-desorption experiments indicated that tadalafil has been introduced into the micropores. Powder XRD and differential scanning calorimetry analyses revealed that tadalafil is arranged in amorphous form. In addition, the dissolution rate of tadalafil from the microporous silica was faster than that of free drug. Amorphous tadalafil occluded in microporous silica did not crystallize over 3 months. These findings contributed in opening a new strategy concerning the utilization of porous silica for the dissolution rate enhancement. Copyright © 2010 Wiley-Liss, Inc.

  1. Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis.

    Science.gov (United States)

    Fu, Gui-Ming; Li, Ru-Yi; Li, Kai-Min; Hu, Ming; Yuan, Xiao-Qiang; Li, Bin; Wang, Feng-Xue; Liu, Cheng-Mei; Wan, Yin

    2016-11-16

    This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.

  2. Towards Real-Time Maneuver Detection: Automatic State and Dynamics Estimation with the Adaptive Optimal Control Based Estimator

    Science.gov (United States)

    Lubey, D.; Scheeres, D.

    Tracking objects in Earth orbit is fraught with complications. This is due to the large population of orbiting spacecraft and debris that continues to grow, passive (i.e. no direct communication) and data-sparse observations, and the presence of maneuvers and dynamics mismodeling. Accurate orbit determination in this environment requires an algorithm to capture both a system's state and its state dynamics in order to account for mismodelings. Previous studies by the authors yielded an algorithm called the Optimal Control Based Estimator (OCBE) - an algorithm that simultaneously estimates a system's state and optimal control policies that represent dynamic mismodeling in the system for an arbitrary orbit-observer setup. The stochastic properties of these estimated controls are then used to determine the presence of mismodelings (maneuver detection), as well as characterize and reconstruct the mismodelings. The purpose of this paper is to develop the OCBE into an accurate real-time orbit tracking and maneuver detection algorithm by automating the algorithm and removing its linear assumptions. This results in a nonlinear adaptive estimator. In its original form the OCBE had a parameter called the assumed dynamic uncertainty, which is selected by the user with each new measurement to reflect the level of dynamic mismodeling in the system. This human-in-the-loop approach precludes real-time application to orbit tracking problems due to their complexity. This paper focuses on the Adaptive OCBE, a version of the estimator where the assumed dynamic uncertainty is chosen automatically with each new measurement using maneuver detection results to ensure that state uncertainties are properly adjusted to account for all dynamic mismodelings. The paper also focuses on a nonlinear implementation of the estimator. Originally, the OCBE was derived from a nonlinear cost function then linearized about a nominal trajectory, which is assumed to be ballistic (i.e. the nominal optimal

  3. Investigation of s stressed-strained state and optimization of the T-15 facility electromagnetic system design

    International Nuclear Information System (INIS)

    Vaulina, I.G.; Gusev, S.V.; Monoszon, N.A.; Sivkova, G.N.; Spirchenko, Yu.V.; Chvartatskij, R.V.; Churakov, G.F.

    1982-01-01

    The results of investigation of a stressed-strained state (SSS) of superconducting coils of toroidal field (TFSC) of the T-15 facility are presented. The TFSC SSS dependence on the forces acting in the coil plane is reduced to solving the plane problem of the elasticity theory. The problem is solved by the finite element method according to a specially developed program. The TFSC SSS dependence on the action of tilting forces is studied by the structural mechanics method. A refined rod theory taking into account shear strain of the rod cross-section in the direction perpendicular to its axis is used. A comparative analysis of different versions of the TFSC design is carried out. A TFSC design optimized over the SSS is chosen. It is used in constructing the electromagnetic system of the T-15 facility

  4. A two-state comparative implementation of peer-support intervention to link veterans to health-related services after incarceration: a study protocol.

    Science.gov (United States)

    Simmons, Molly M; Fincke, Benjamin G; Drainoni, Mari-Lynn; Kim, Bo; Byrne, Tom; Smelson, David; Casey, Kevin; Ellison, Marsha L; Visher, Christy; Blue-Howells, Jessica; McInnes, D Keith

    2017-09-12

    Approximately 600,000 persons are released from prison annually in the United States. Relatively few receive sufficient re-entry services and are at risk for unemployment, homelessness, poverty, substance abuse relapse and recidivism. Persons leaving prison who have a mental illness and/or a substance use disorder are particularly challenged. This project aims to create a peer mentor program to extend the reach and effectiveness of reentry services provided by the Department of Veterans' Affairs (VA). We will implement a peer support for reentry veterans sequentially in two states. Our outcome measures are 1) fidelity of the intervention, 2) linkage to VA health care and, 3) continued engagement in health care. The aims for this project are as follows: (1) Conduct contextual analysis to identify VA and community reentry resources, and describe how reentry veterans use them. (2) Implement peer-support, in one state, to link reentry veterans to Veterans' Health Administration (VHA) primary care, mental health, and SUD services. (3) Port the peer-support intervention to another, geographically, and contextually different state. This intervention involves a 2-state sequential implementation study (Massachusetts, followed by Pennsylvania) using a Facilitation Implementation strategy. We will conduct formative and summative analyses, including assessment of fidelity, and a matched comparison group to evaluate the intervention's outcomes of veteran linkage and engagement in VHA health care (using health care utilization measures). The study proceeds in 3 phases. We anticipate that a peer support program will be effective at improving the reentry process for veterans, particularly in linking them to health, mental health, and SUD services and helping them to stay engaged in those services. It will fill a gap by providing veterans with access to a trusted individual, who understands their experience as a veteran and who has experienced justice involvement. The outputs from

  5. Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices

    Science.gov (United States)

    Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong

    2017-06-01

    Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.

  6. Optimization of xylanase production by Mucor indicus, Mucor hiemalis, and Rhizopus oryzae through solid state fermentation

    Directory of Open Access Journals (Sweden)

    Sanaz Behnam

    2016-03-01

    Full Text Available Introduction: Xylan is the main hemicellulosic polymer in a number of lignocelluloses which can be hydrolyzed by xylanolytic enzymes. One of the main ways for enzymes production is solid state fermentation (SSF. The ability of three fungal strains (Mucor indicus, Mucor hiemalis, and Rhizopus oryzae for xylanase production on wheat bran by SSF was investigated. Materials and methods: The effects of cultivation temperature, medium moisture content, and cultivation time on the enzyme production were investigated. Experiments were designed with an orthogonal central composite design on three variables using response surface methodology (RSM. Analysis of variance was applied and the enzyme production was expressed with a mathematical equation as a function of the three factors. The optimum operating conditions for the enzyme production was obtained. Results: For xylanase production by M. indicus, M. hiemalis and R. oryzae the optimum temperatures were 40.0, 43.4 and 43.4ºC respectively. These values were 49.8, 54.2 and 71.8% for moisture percent and 51.3, 53.2 and 53.5 h for cultivation time. The highest enzyme activities per g of dry substrate (gds were 43.1, 43.8 and 25.9 U/gds for M. indicus, M. hiemalis and R. oryzae respectively. Discussion and conclusion: All the fungi were able to produce xylanase. Maximum xylanase production was predicted by M. indicus and M. hiemalis at similar optimum conditions, while R. oryzae produced relatively lower xylanase activity even at the best condition. 

  7. Technical Note: Linking climate change and downed woody debris decomposition across forests of the eastern United States

    Science.gov (United States)

    Russell, Matthew B.; Woodall, Christopher W.; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.

    2014-01-01

    Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years, depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics in addition to a traditional emphasis on live-tree demographics.

  8. Development and Characterization of Chitosan Cross-Linked With Tripolyphosphate as a Sustained Release Agent in Tablets, Part I: Design of Experiments and Optimization.

    Science.gov (United States)

    Pinto, Colin A; Saripella, Kalyan K; Loka, Nikhil C; Neau, Steven H

    2018-04-01

    Certain issues with the use of particles of chitosan (Ch) cross-linked with tripolyphosphate (TPP) in sustained release formulations include inefficient drug loading, burst drug release, and incomplete drug release. Acetaminophen was added to Ch:TPP particles to test for advantages of drug addition extragranularly over drug addition made during cross-linking. The influences of Ch concentration, Ch:TPP ratio, temperature, ionic strength, and pH were assessed. Design of experiments allowed identification of factors and 2-factor interactions that have significant effects on average particle size and size distribution, yield, zeta potential, and true density of the particles, as well as drug release from the directly compressed tablets. Statistical model equations directed production of a control batch that minimized span, maximized yield, and targeted a t 50 of 90 min (sample A); sample B that differed by targeting a t 50 of 240-300 min to provide sustained release; and sample C that differed from sample B by maximizing span. Sample B maximized yield and provided its targeted t 50 and the smallest average particle size, with the higher zeta potential and the lower span of samples B and C. Extragranular addition of a drug to Ch:TPP particles achieved 100% drug loading, eliminated a burst drug release, and can accomplish complete drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex.

    Science.gov (United States)

    Chen, Yu-Chen; Xia, Wenqing; Chen, Huiyou; Feng, Yuan; Xu, Jin-Jing; Gu, Jian-Ping; Salvi, Richard; Yin, Xindao

    2017-05-01

    The phantom sound of tinnitus is believed to be triggered by aberrant neural activity in the central auditory pathway, but since this debilitating condition is often associated with emotional distress and anxiety, these comorbidities likely arise from maladaptive functional connections to limbic structures such as the amygdala and hippocampus. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant effective connectivity of the amygdala and hippocampus in tinnitus patients and to determine the relationship with tinnitus characteristics. Chronic tinnitus patients (n = 26) and age-, sex-, and education-matched healthy controls (n = 23) were included. Both groups were comparable for hearing level. Granger causality analysis utilizing the amygdala and hippocampus as seed regions were used to investigate the directional connectivity and the relationship with tinnitus duration or distress. Relative to healthy controls, tinnitus patients demonstrated abnormal directional connectivity of the amygdala and hippocampus, including primary and association auditory cortex, and other non-auditory areas. Importantly, scores on the Tinnitus Handicap Questionnaires were positively correlated with increased connectivity from the left amygdala to left superior temporal gyrus (r = 0.570, P = 0.005), and from the right amygdala to right superior temporal gyrus (r = 0.487, P = 0.018). Moreover, enhanced effective connectivity from the right hippocampus to left transverse temporal gyrus was correlated with tinnitus duration (r = 0.452, P = 0.030). The results showed that tinnitus distress strongly correlates with enhanced effective connectivity that is directed from the amygdala to the auditory cortex. The longer the phantom sensation, the more likely acute tinnitus becomes permanently encoded by memory traces in the hippocampus. Hum Brain Mapp 38:2384-2397, 2017. © 2017 Wiley Periodicals, Inc.

  10. Named Entity Linking Algorithm

    Directory of Open Access Journals (Sweden)

    M. F. Panteleev

    2017-01-01

    Full Text Available In the tasks of processing text in natural language, Named Entity Linking (NEL represents the task to define and link some entity, which is found in the text, with some entity in the knowledge base (for example, Dbpedia. Currently, there is a diversity of approaches to solve this problem, but two main classes can be identified: graph-based approaches and machine learning-based ones. Graph and Machine Learning approaches-based algorithm is proposed accordingly to the stated assumptions about the interrelations of named entities in a sentence and in general.In the case of graph-based approaches, it is necessary to solve the problem of identifying an optimal set of the related entities according to some metric that characterizes the distance between these entities in a graph built on some knowledge base. Due to limitations in processing power, to solve this task directly is impossible. Therefore, its modification is proposed. Based on the algorithms of machine learning, an independent solution cannot be built due to small volumes of training datasets relevant to NEL task. However, their use can contribute to improving the quality of the algorithm. The adaptation of the Latent Dirichlet Allocation model is proposed in order to obtain a measure of the compatibility of attributes of various entities encountered in one context.The efficiency of the proposed algorithm was experimentally tested. A test dataset was independently generated. On its basis the performance of the model was compared using the proposed algorithm with the open source product DBpedia Spotlight, which solves the NEL problem.The mockup, based on the proposed algorithm, showed a low speed as compared to DBpedia Spotlight. However, the fact that it has shown higher accuracy, stipulates the prospects for work in this direction.The main directions of development were proposed in order to increase the accuracy of the system and its productivity.

  11. Solid state and solution photoluminescence properties of a novel meso–meso-linked porphyrin dimer Schiff base ligand and its metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Tümer, Mehmet, E-mail: mtumer@ksu.edu.tr; Ali Güngör, S.; Raşit Çiftaslan, A.

    2016-02-15

    We prepared novel meso-meso linked 4-bromo-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (HL) and its Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II) transition metal complexes. Structural characterizations of the ligand (HL) and its metal complexes were done by the spectroscopic and analytical methods. The electronic absorption and photoluminescence spectra of the ligand, its metal complexes and the metal salts used for preparing of the complexes were investigated in the solid and solution state. The emission and excitation data of the CuCl{sub 2}·2H{sub 2}O in both solid and the solution state were obsrved in the longest wavelenght. On the other hand, the emission value of the ZnCl{sub 2} salt was shown at the shortest wavelenght. The emission values of the [LCu{sub 4}Cl{sub 3}(H{sub 2}O){sub 2}]H{sub 2}O and LPt{sub 4}Cl{sub 3} complexes in the solid state are bigger than the other metal salts. The ligand and its metal complexes show the very interesting absorption spectral properties in the solid state. Metal complexes have less number Q bands in the solid state. The electrochemical properties of the ligand and its metal complexes were investigated and found that they show the reversible or irreversible redox processes at the different scan rates. Thermal properties of the compopunds were investigated in the 20–900 °C temperature range.

  12. Examination of the Link Between Medication Adherence and Use of Mail-Order Pharmacies in Chronic Disease States.

    Science.gov (United States)

    Fernandez, Elena V; McDaniel, Jennifer A; Carroll, Norman V

    2016-11-01

    Higher medication adherence is associated with positive health outcomes, including reduction in hospitalizations and costs, and many interventions have been implemented to increase patient adherence. To determine whether patients experience higher medication adherence by using mail-order or retail pharmacies. Articles pertaining to retail and mail-order pharmacies and medication adherence were collected from 3 literature databases: MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and International Pharmaceutical Abstracts (IPA). Searches were created for each database and articles were compiled. Articles were screened for exclusion factors, and final articles (n=15) comparing medication adherence in patients utilizing mail and retail pharmacies were analyzed. For each study, various factors were identified including days supply, patients' out-of-pocket costs, prior adherence behavior, therapeutic class, measure of adherence, limitations, and results. Studies were then categorized by disease state, and relevant information from each study was compared and contrasted. The majority of studies-14 out of the 15 reviewed-supported higher adherence through the mail-order dispensing channel rather than through retail pharmacies. There are a number of reasons for the differences in adherence between the channels. Study patients who used mail-order pharmacies were more likely to have substantially higher prior adherence behavior, socioeconomic status, and days supply of medicines received and were likely to be offered financial incentives to use mail-order. The few studies that attempted to statistically control for these factors also found that patients using mail-order services were more adherent but the size of the differences was smaller. The extent to which these results indicate an inherent adherence advantage of mail-order pharmacy (as distinct from adherence benefits due to greater days supply, lower copays, or more adherent patients

  13. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules.

    Science.gov (United States)

    Cellesi, F; Weber, W; Fussenegger, M; Hubbell, J A; Tirelli, N

    2004-12-20

    Fully synthetic polymers were used for the preparation of hydrogel beads and capsules, in a processing scheme that, originally designed for calcium alginate, was adapted to a "tandem" process, that is the combination a physical gelation with a chemical cross-linking. The polymers feature a Tetronic backbone (tetra armed Pluronics), which exhibits a reverse thermal gelation in water solutions within a physiological range of temperatures and pHs. The polymers bear terminal reactive groups that allow for a mild, but effective chemical cross-linking. Given an appropriate temperature jump, the thermal gelation provides a hardening kinetics similar to that of alginate. With slower kinetics, the chemical cross-linking then develops an irreversible and elastic gel structure, and determines its transport properties. In the present article this process has been optimized for the production of monodisperse, high elastic, hydrogel microbeads, and liquid-core microcapsules. We also show the feasibility of the use of liquid-core microcapsules in cell encapsulation. In preliminary experiments, CHO cells have been successfully encapsulated preserving their viability during the process and after incubation. The advantages of this process are mainly in the use of synthetic polymers, which provide great flexibility in the molecular design. This, in principle, allows for a precise tailoring of mechanical and transport properties and of bioactivity of the hydrogels, and also for a precise control in material purification.

  14. Operative Links

    DEFF Research Database (Denmark)

    Wistoft, Karen; Højlund, Holger

    2012-01-01

    educational goals, learning content, or value clarification. Health pedagogy is often a matter of retrospective rationalization rather than the starting point of planning. Health and risk behaviour approaches override health educational approaches. Conclusions: Operational links between health education......, health professionalism, and management strategies pose the foremost challenge. Operational links indicates cooperative levels that facilitate a creative and innovative effort across traditional professional boundaries. It is proposed that such links are supported by network structures, shared semantics...

  15. Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box-Behnken design.

    Science.gov (United States)

    Awad, Ghada E A; Helal, Mohamed M I; Danial, Enas N; Esawy, Mona A

    2014-01-01

    Phytase production by Penicillium purpurogenum GE1 isolated from soil around bean root nodules was investigated by solid state fermentation (SSF) using mixed substrates consisted of corn cob and corn bran. The SSF conditions were optimized by using one-variable-at-a-time strategy. The optimum conditions for phytase production were at 27 °C, pH 8 and 66% moisture content. The study of different carbon and nitrogen sources revealed that glucose and peptone registered the highest enzyme productivity (92 ± 5.6 U/g ds, 125 ± 4.9 U/g ds). Among different surfactants, maximum phytase productivity was observed with Tween 80 at 0.001 concentrations (170 ± 4.2 U/g ds). A Box-Behnken design was employed to investigate the optimization of the most significant variables affecting the enzyme production. Maximal phytase production was detected after the addition of (g/5 g ds): 0.75 glucose, 0.375 peptone and 0, 01 tween 80. This result represented an improvement in phytase production of 2.6 folds when compared to that previously obtained using the basal medium under the same cultivation conditions. The generated model was found to be very adequate for phytase production (90% accuracy) as the experimental value was 444 ± 3.5 U/g ds compared to 401 U/g ds for the predicted value. In brief, the production of phytase using corn cob and corn bran is a novel and cheap way for the production of this important enzyme and opens a new way for researchers to discover and explore this arena.

  16. Optimization for steady-state and hybrid operations of ITER by using scaling models of divertor heat load

    International Nuclear Information System (INIS)

    Murakami, Yoshiki; Itami, Kiyoshi; Sugihara, Masayoshi; Fujieda, Hirobumi.

    1992-09-01

    Steady-state and hybrid mode operations of ITER are investigated by 0-D power balance calculations assuming no radiation and charge-exchange cooling in divertor region. Operation points are optimized with respect to divertor heat load which must be reduced to the level of ignition mode (∼5 MW/m 2 ). Dependence of the divertor heat load on the variety of the models, i.e., constant-χ model, Bohm-type-χ model and JT-60U empirical scaling model, is also discussed. The divertor heat load increases linearly with the fusion power (P FUS ) in all models. The possible highest fusion power much differs for each model with an allowable divertor heat load. The heat load evaluated by constant-χ model is, for example, about 1.8 times larger than that by Bohm-type-χ model at P FUS = 750 MW. Effect of reduction of the helium accumulation, improvements of the confinement capability and the current-drive efficiency are also investigated aiming at lowering the divertor heat load. It is found that NBI power should be larger than about 60 MW to obtain a burn time longer than 2000 s. The optimized operation point, where the minimum divertor heat load is achieved, does not depend on the model and is the point with the minimum-P FUS and the maximum-P NBI . When P FUS = 690 MW and P NBI = 110 MW, the divertor heat load can be reduced to the level of ignition mode without impurity seeding if H = 2.2 is achieved. Controllability of the current-profile is also discussed. (J.P.N.)

  17. Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box–Behnken design

    Science.gov (United States)

    Awad, Ghada E.A.; Helal, Mohamed M.I.; Danial, Enas N.; Esawy, Mona A.

    2013-01-01

    Phytase production by Penicillium purpurogenum GE1 isolated from soil around bean root nodules was investigated by solid state fermentation (SSF) using mixed substrates consisted of corn cob and corn bran. The SSF conditions were optimized by using one-variable–at-a-time strategy. The optimum conditions for phytase production were at 27 °C, pH 8 and 66% moisture content. The study of different carbon and nitrogen sources revealed that glucose and peptone registered the highest enzyme productivity (92 ± 5.6 U/g ds, 125 ± 4.9 U/g ds). Among different surfactants, maximum phytase productivity was observed with Tween 80 at 0.001 concentrations (170 ± 4.2 U/g ds). A Box–Behnken design was employed to investigate the optimization of the most significant variables affecting the enzyme production. Maximal phytase production was detected after the addition of (g/5 g ds): 0.75 glucose, 0.375 peptone and 0, 01 tween 80. This result represented an improvement in phytase production of 2.6 folds when compared to that previously obtained using the basal medium under the same cultivation conditions. The generated model was found to be very adequate for phytase production (90% accuracy) as the experimental value was 444 ± 3.5 U/g ds compared to 401 U/g ds for the predicted value. In brief, the production of phytase using corn cob and corn bran is a novel and cheap way for the production of this important enzyme and opens a new way for researchers to discover and explore this arena. PMID:24596503

  18. Methodological framework for economical and controllable design of heat exchanger networks: Steady-state analysis, dynamic simulation, and optimization

    International Nuclear Information System (INIS)

    Masoud, Ibrahim T.; Abdel-Jabbar, Nabil; Qasim, Muhammad; Chebbi, Rachid

    2016-01-01

    Highlights: • HEN total annualized cost, heat recovery, and controllability are considered in the framework. • Steady-state and dynamic simulations are performed. • Effect of bypass on total annualized cost and controllability is reported. • Optimum bypass fractions are found from closed and open-loop efforts. - Abstract: The problem of interaction between economic design and control system design of heat exchanger networks (HENs) is addressed in this work. The controllability issues are incorporated in the classical design of HENs. A new methodological framework is proposed to account for both economics and controllability of HENs. Two classical design methods are employed, namely, Pinch and superstructure designs. Controllability measures such as relative gain array (RGA) and singular value decomposition (SVD) are used. The proposed framework also presents a bypass placement strategy for optimal control of the designed network. A case study is used to test the applicability of the framework and to assess both economics and controllability. The results indicate that the superstructure design is more economical and controllable compared to the Pinch design. The controllability of the designed HEN is evaluated using Aspen-HYSYS closed-loop dynamic simulator. In addition, a sensitivity analysis is performed to study the effect of bypass fractions on the total annualized cost and controllability of the designed HEN. The analysis shows that increasing any bypass fraction increases the total annualized cost. However, the trend with the total annualized cost was not observed with respect to the control effort manifested by minimizing the integral of the squared errors (ISE) between the controlled stream temperatures and their targets (set-points). An optimal ISE point is found at a certain bypass fraction, which does not correspond to the minimal total annualized cost. The bypass fractions are validated via open-loop simulation and the additional cooling and

  19. Diagnostic specificity of the African swine fever virus antibody detection enzyme-linked immunosorbent assay in feral and domestic pigs in the United States.

    Science.gov (United States)

    Bergeron, H C; Glas, P S; Schumann, K R

    2017-12-01

    African swine fever (ASF) is a highly contagious haemorrhagic disease of pigs that has the potential to cause mortality nearing 100% in naïve animals. While an outbreak of ASF in the United States' pig population (domestic and feral) has never been reported, an introduction of the disease has the potential to cause devastation to the pork industry and food security. During the recovery phase of an outbreak, an antibody detection diagnostic assay would be required to prove freedom of disease within the previously infected zone and eventually nationwide. Animals surviving an ASF infection would be considered carriers and could be identified through the persistence of ASF viral antibodies. These antibodies would demonstrate exposure to the disease and not vaccination, as there is no ASF vaccine available. A well-established commercial enzyme-linked immunosorbent assay (ELISA) detects antibodies against ASF virus (ASFV), but the diagnostic specificity of the assay had not been determined using serum samples from the pig population of the United States. This study describes an evaluation of the World Organization for Animal Health (OIE)-recommended Ingezim PPA COMPAC ELISA using a comprehensive cohort (n = 1791) of samples collected in the United States. The diagnostic specificity of the assay was determined to be 99.4% (95% confidence interval (CI): [98.9, 99.7]). The result of this study fills a gap in understanding the performance of the Ingezim PPA COMPAC ELISA in the ASF naïve pig population of the United States. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  20. Study on optimal conditions and adsorption kinetics of copper from water by collodion membrane cross-linked poly-γ-glutamic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiangting; Wang, Aiyin; Li, Guoxing; Dong, Xinjiao; Wu, Mingjiang [Wenzhou University, Wenzhou (China); Zheng, Xiaojie [Wenzhou Vocational College of Technology and Science, Wenzhou (China)

    2013-06-15

    Poly-γ-glutamic acid (γ-PGA) is a novel polyamino acid formed through microorganism fermentation and biosynthesis. In the present test, membrane (PGA-C) formation by γ-PGA and collodion was performed by using 0.1% glutaraldehyde as a cross-linking agent. A study was conducted on the PGA-C adsorption of Cu{sup 2+}, specifically the related adsorption equilibrium and kinetics, desorption and regeneration. The results show that with an initial solution pH=5.5 and at 318 K, the static adsorption isotherm behavior of PGA-C is in compliance with the Langmuir model and is beneficial to the adsorption of the metal. Meanwhile, with the reaction lasting for 30min, adsorption equilibrium was reached with a maximum adsorption capacity up to 7.431 mg/g. The entire reaction process follows the pseudo-second-order kinetics. By using PGA-C, good regeneration results were obtained after adsorption-generation-adsorption cycling with an HCl solution (0.1 mol/L) as regeneration liquid.

  1. Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics.

    Science.gov (United States)

    Prinz, Jan-Hendrik; Chodera, John D; Pande, Vijay S; Swope, William C; Smith, Jeremy C; Noé, Frank

    2011-06-28

    Parallel tempering (PT) molecular dynamics simulations have been extensively investigated as a means of efficient sampling of the configurations of biomolecular systems. Recent work has demonstrated how the short physical trajectories generated in PT simulations of biomolecules can be used to construct the Markov models describing biomolecular dynamics at each simulated temperature. While this approach describes the temperature-dependent kinetics, it does not make optimal use of all available PT data, instead estimating the rates at a given temperature using only data from that temperature. This can be problematic, as some relevant transitions or states may not be sufficiently sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further, the comparison of temperature-dependent properties can suffer from the false assumption that data collected from different temperatures are uncorrelated. We propose here a strategy in which, by a simple modification of the PT protocol, the harvested trajectories can be reweighted, permitting data from all temperatures to contribute to the estimated kinetic model. The method reduces the statistical uncertainty in the kinetic model relative to the single temperature approach and provides estimates of transition probabilities even for transitions not observed at the temperature of interest. Further, the method allows the kinetics to be estimated at temperatures other than those at which simulations were run. We illustrate this method by applying it to the generation of a Markov model of the conformational dynamics of the solvated terminally blocked alanine peptide.

  2. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    Science.gov (United States)

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  3. Biophysical and Socioeconomic State and Links of Deltaic Areas Vulnerable to Climate Change: Volta (Ghana, Mahanadi (India and Ganges-Brahmaputra-Meghna (India and Bangladesh

    Directory of Open Access Journals (Sweden)

    Ignacio Cazcarro

    2018-03-01

    Full Text Available We examine the similarities and differences of specific deltaic areas in parallel, under the project DEltas, vulnerability and Climate Change: Migration and Adaptation (DECCMA. The main reason for studying Deltas is their potential vulnerability to climate change and sea level rise, which generates important challenges for livelihoods. We provide insights into the current socioeconomic and biophysical states of the Volta Delta (Ghana, Mahanadi Delta (India and Ganges-Brahmaputra-Meghna (India and Bangladesh. Hybrid methods of input-output (IO construction are used to develop environmentally extended IO models for comparing the economic characteristics of these delta regions with the rest of the country. The main sources of data for regionalization were country level census data, statistics and economic surveys and data on consumption, trade, agricultural production and fishing harvests. The Leontief demand-driven model is used to analyze land use in the agricultural sector of the Delta and to track the links with final demand. In addition, the Hypothetical Extraction Method is used to evaluate the importance of the hypothetical disappearance of a sector (e.g., agriculture. The results show that, in the case of the Indian deltas, more than 60% of the cropland and pasture land is devoted to satisfying demands from regions outside the delta. While in the case of the Bangladeshi and Ghanaian deltas, close to 70% of the area harvested is linked to internal demand. The results also indicate that the services, trade and transportation sectors represent 50% of the GDP in the deltas. Still, agriculture, an activity directly exposed to climate change, plays a relevant role in the deltas’ economies—we have estimated that the complete disappearance of this activity would entail GDP losses ranging from 18 to 32%.

  4. Impact of In-Service Training and Staff Development on Workers' Job Performance and Optimal Productivity in Public Secondary Schools in Osun State, Nigeria

    Science.gov (United States)

    Fejoh, Johnson; Faniran, Victoria Loveth

    2016-01-01

    This study investigated the impact of in-service training and staff development on workers' job performance and optimal productivity in public secondary schools in Osun State, Nigeria. The study used the ex-post-facto research design. Three research questions and three hypotheses were generated and tested using questionnaire items adapted from…

  5. Optimization of the confinement energy of quantum-wire states in T-shaped GaAs/AlxGa1-xAs structures

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Gislason, Hannes; Hvam, Jørn Märcher

    1996-01-01

    We report on an optimization of the wire confinement energies of the confined electronic states at the T-shaped intersection of GaAs and AlxGa1-xAs quantum wells. These structures can be produced by the cleaved edge overgrowth technique. We present an analytical model for the confinement to give ...

  6. Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    Science.gov (United States)

    Broussard, J. R.; Halyo, N.

    1984-01-01

    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

  7. Parvovirus B19 infections in state of Rio de Janeiro, Brasil: 526 sera analyzed by IgM-enzyme-linked immunosorbent assay and polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    MCL Mendonça

    2005-12-01

    Full Text Available In this study were analyzed 526 sera; the patients aged from two days to 65 years old presenting exanthema, which was the most frequent symptom observed, besides fever, adenomegaly, and arthralgia. These sera were negative by enzyme-linked immunosorbent assay (IgM-ELISA for either rubella (495, toxoplasma (41, cytomegalovirus (12, measles (40, dengue (56, and they were submitted to nested polymerase chain reaction (PCR for B19 DNA and commercial IgM-ELISA for B19. In 39 abortion cases, IgM or DNA were not detected, therefore they were not took into account for analysis. Specific DNA and IgM were detected respectively in 71 (14.5% and IgM in 62 (12.7% sera from 487 sera analyzed. IgM and DNA were simultaneously detected in 43 (8.8%, while agreement among the results by PCR and IgM-ELISA was observed in 440 (90.4%. The sera were collected from January 1999 to December 2000, most of them in 1999 (325, during winter and spring. The major number of clinical cases was observed in the age group from one to ten years old. IgM or DNA were detected in 23 from 51 municipal districts of the state of Rio de Janeiro, where the samples were collected.

  8. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  9. Reverse line blot probe design and polymerase chain reaction optimization for bloodmeal analysis of ticks from the eastern United States.

    Science.gov (United States)

    Scott, M C; Harmon, J R; Tsao, J I; Jones, C J; Hickling, G J

    2012-05-01

    Determining the host preference of vector ticks is vital to elucidating the eco-epidemiology of the diseases they spread. Detachment of ticks from captured hosts can provide evidence of feeding on those host species, but only for those species that are feasible to capture. Recently developed, highly sensitive molecular assays show great promise in allowing host selection to be determined from minute traces of host DNA that persist in recently molted ticks. Using methods developed in Europe as a starting-point, we designed 12S rDNA mitochondrial gene probes suitable for use in a reverse line blot (RLB) assay of ticks feeding on common host species in the eastern United States. This is the first study to use the 12S mitochondrial gene in a RLB bloodmeal assay in North America. The assay combines conventional PCR with a biotin-labeled primer and reverse line blots that can be stripped and rehybridized up to 20 times, making the method less expensive and more straightforward to interpret than previous methods of tick bloodmeal identification. Probes were designed that target the species, genus, genus group, family, order, or class of eight reptile, 13 birds, and 32 mammal hosts. After optimization, the RLB assay correctly identified the current hostspecies for 99% of ticks [Amblyomma americanum (L.) and eight other ixodid tick species] collected directly from known hosts. The method identified previous-host DNA for approximately half of all questing ticks assayed. Multiple bloodmeal determinations were obtained in some instances from feeding and questing ticks; this pattern is consistent with previous RLB studies but requires further investigation. Development of this probe library, suitable for eastern U.S. ecosystems, opens new avenues for eco-epidemiological investigations of this region's tick-host systems.

  10. Steady-state configuration and tension calculations of marine cables under complex currents via separated particle swarm optimization

    Science.gov (United States)

    Xu, Xue-song

    2014-12-01

    Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simple currents. To obtain the numerical results, the usual Newton-Raphson iteration is often adopted, but its stability depends on the initial guessed solution to the governing equations. To improve the stability of numerical calculation, this paper proposed separated the particle swarm optimization, in which the variables are separated into several groups, and the dimension of search space is reduced to facilitate the particle swarm optimization. Via the separated particle swarm optimization, these governing nonlinear equations can be solved successfully with any initial solution, and the process of numerical calculation is very stable. For the calculations of cable configuration and tension of marine cables under complex currents, the proposed separated swarm particle optimization is more effective than the other particle swarm optimizations.

  11. Comprehensive Energy Assessment: EE and RE Project Optimization Modeling for United States Pacific Command (USPACOM) American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance

    Energy Technology Data Exchange (ETDEWEB)

    Brigantic, Robert T.; Papatyi, Anthony F.; Perkins, Casey J.

    2010-09-30

    This report summarizes a study and corresponding model development conducted in support of the United States Pacific Command (USPACOM) as part of the Federal Energy Management Program (FEMP) American Reinvestment and Recovery Act (ARRA). This research was aimed at developing a mathematical programming framework and accompanying optimization methodology in order to simultaneously evaluate energy efficiency (EE) and renewable energy (RE) opportunities. Once developed, this research then demonstrated this methodology at a USPACOM installation - Camp H.M. Smith, Hawaii. We believe this is the first time such an integrated, joint EE and RE optimization methodology has been constructed and demonstrated.

  12. GPS Imaging suggests links between climate, magmatism, seismicity, and tectonics in the Sierra Nevada-Long Valley Caldera-Walker Lane system, western United States

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.; Smith, K.

    2017-12-01

    The Walker Lane is a region of complex active crustal transtension in the western Great Basin of the western United States, accommodating about 20% of the 50 mm/yr relative motion between the Pacific and North American plates. The Long Valley caldera lies in the central Walker Lane in eastern California, adjacent to the eastern boundary of the Sierra Nevada/Great Valley microplate, and experiences intermittent inflation, uplift, and volcanic unrest from the magma chamber that resides at middle crustal depths. Normal and transform faults accommodating regional tectonic transtension pass by and through the caldera, complicating the interpretation of the GPS-measured strain rate field, estimates of fault slip rates, and seismic hazard. Several dozen continuously recording GPS stations measure strain and uplift in the area with mm precision. They observe that the most recent episode of uplift at Long Valley began in mid-2011, continuing until late 2016, raising the surface by 100 mm in 6 years. The timing of the initiation of uplift coincides with the beginning of severe drought in California. Furthermore, the timing of a recent pause in uplift coincides with the very wet 2016-2017 winter, which saw approximately double normal snow pack. In prior studies, we showed that the timing of changes in geodetically measured uplift rate of the Sierra Nevada coincides with the timing of drought conditions in California, suggesting a link between hydrological loading and Sierra Nevada elevation. Here we take the analysis three steps further to show that changes in Sierra Nevada uplift rate coincide in time with 1) enhanced inflation at the Long Valley caldera, 2) shifts in the patterns and rates of horizontal tensor strain rate, and 3) seismicity patterns in the central Walker Lane. We use GPS solutions from the Nevada Geodetic Laboratory and the new GPS Imaging technique to produce robust animations of the time variable strain and uplift fields. The goals of this work are to

  13. Operative Links

    DEFF Research Database (Denmark)

    Wistoft, Karen; Højlund, Holger

    2012-01-01

    and have been the object of great expectations concerning the ability to incorporate health concerns into every welfare area through health promotion strategies. The paper draws on results and analyses of a collective research project funded by the Danish National Research Council and carried out...... links' that indicate cooperative levels which facilitate a creative and innovative effort in disease prevention and health promotion targeted at children and adolescents - across traditional professional boundaries. It is proposed that such links are supported by network structures, shared semantics...

  14. State estimation bias induced by optimization under uncertainty and error cost asymmetry is likely reflected in perception.

    Science.gov (United States)

    Shimansky, Y P

    2011-05-01

    It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.

  15. Towards Optimal Power Management of Hybrid Electric Vehicles in Real-Time: A Review on Methods, Challenges, and State-Of-The-Art Solutions

    Directory of Open Access Journals (Sweden)

    Ahmed M. Ali

    2018-02-01

    Full Text Available In light of increasing alerts about limited energy sources and environment degradation, it has become essential to search for alternatives to thermal engine-based vehicles which are a major source of air pollution and fossil fuel depletion. Hybrid electric vehicles (HEVs, encompassing multiple energy sources, are a short-term solution that meets the performance requirements and contributes to fuel saving and emission reduction aims. Power management methods such as regulating efficient energy flow to the vehicle propulsion, are core technologies of HEVs. Intelligent power management methods, capable of acquiring optimal power handling, accommodating system inaccuracies, and suiting real-time applications can significantly improve the powertrain efficiency at different operating conditions. Rule-based methods are simply structured and easily implementable in real-time; however, a limited optimality in power handling decisions can be achieved. Optimization-based methods are more capable of achieving this optimality at the price of augmented computational load. In the last few years, these optimization-based methods have been under development to suit real-time application using more predictive, recognitive, and artificial intelligence tools. This paper presents a review-based discussion about these new trends in real-time optimal power management methods. More focus is given to the adaptation tools used to boost methods optimality in real-time. The contribution of this work can be identified in two points: First, to provide researchers and scholars with an overview of different power management methods. Second, to point out the state-of-the-art trends in real-time optimal methods and to highlight promising approaches for future development.

  16. Optimal interpolation schemes to constrain pmPM2.5 in regional modeling over the United States

    Science.gov (United States)

    Sousan, Sinan Dhia Jameel

    This thesis presents the use of data assimilation with optimal interpolation (OI) to develop atmospheric aerosol concentration estimates for the United States at high spatial and temporal resolutions. Concentration estimates are highly desirable for a wide range of applications, including visibility, climate, and human health. OI is a viable data assimilation method that can be used to improve Community Multiscale Air Quality (CMAQ) model fine particulate matter (PM2.5) estimates. PM2.5 is the mass of solid and liquid particles with diameters less than or equal to 2.5 µm suspended in the gas phase. OI was employed by combining model estimates with satellite and surface measurements. The satellite data assimilation combined 36 x 36 km aerosol concentrations from CMAQ with aerosol optical depth (AOD) measured by MODIS and AERONET over the continental United States for 2002. Posterior model concentrations generated by the OI algorithm were compared with surface PM2.5 measurements to evaluate a number of possible data assimilation parameters, including model error, observation error, and temporal averaging assumptions. Evaluation was conducted separately for six geographic U.S. regions in 2002. Variability in model error and MODIS biases limited the effectiveness of a single data assimilation system for the entire continental domain. The best combinations of four settings and three averaging schemes led to a domain-averaged improvement in fractional error from 1.2 to 0.97 and from 0.99 to 0.89 at respective IMPROVE and STN monitoring sites. For 38% of OI results, MODIS OI degraded the forward model skill due to biases and outliers in MODIS AOD. Surface data assimilation combined 36 × 36 km aerosol concentrations from the CMAQ model with surface PM2.5 measurements over the continental United States for 2002. The model error covariance matrix was constructed by using the observational method. The observation error covariance matrix included site representation that

  17. Computational intelligence, medicine and biology selected links

    CERN Document Server

    Zaitseva, Elena

    2015-01-01

    This book contains an interesting and state-of the art collection of chapters presenting several examples of attempts to developing modern tools utilizing computational intelligence in different real life problems encountered by humans. Reasoning, prediction, modeling, optimization, decision making, etc. need modern, soft and intelligent algorithms, methods and methodologies to solve, in the efficient ways, problems appearing in human activity. The contents of the book is divided into two parts. Part I, consisting of four chapters, is devoted to selected links of computational intelligence, medicine, health care and biomechanics. Several problems are considered: estimation of healthcare system reliability, classification of ultrasound thyroid images, application of fuzzy logic to measure weight status and central fatness, and deriving kinematics directly from video records. Part II, also consisting of four chapters, is devoted to selected links of computational intelligence and biology. The common denominato...

  18. Scandinavian links

    DEFF Research Database (Denmark)

    Matthiessen, Christian Wichmann; Knowles, Richard D.

    2014-01-01

    are impressive mega structures spanning international waterways. These waterways between the Baltic Sea and the North Sea have played major roles in history. The length of each of the crossings are around 20 km. The fixed links closes gaps between the Scandinavian and European motorway and rail networks...

  19. Set optimization and applications the state of the art : from set relations to set-valued risk measures

    CERN Document Server

    Heyde, Frank; Löhne, Andreas; Rudloff, Birgit; Schrage, Carola

    2015-01-01

    This volume presents five surveys with extensive bibliographies and six original contributions on set optimization and its applications in mathematical finance and game theory. The topics range from more conventional approaches that look for minimal/maximal elements with respect to vector orders or set relations, to the new complete-lattice approach that comprises a coherent solution concept for set optimization problems, along with existence results, duality theorems, optimality conditions, variational inequalities and theoretical foundations for algorithms. Modern approaches to scalarization methods can be found as well as a fundamental contribution to conditional analysis. The theory is tailor-made for financial applications, in particular risk evaluation and [super-]hedging for market models with transaction costs, but it also provides a refreshing new perspective on vector optimization. There is no comparable volume on the market, making the book an invaluable resource for researchers working in vector o...

  20. Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress.

    Science.gov (United States)

    Weston, Andrew J; Dunlap, Walter C; Beltran, Victor H; Starcevic, Antonio; Hranueli, Daslav; Ward, Malcolm; Long, Paul F

    2015-03-01

    Shipboard experiments were each performed over a 2 day period to examine the proteomic response of the symbiotic coral Acropora microphthalma exposed to acute conditions of high temperature/low light or high light/low temperature stress. During these treatments, corals had noticeably bleached. The photosynthetic performance of residual algal endosymbionts was severely impaired but showed signs of recovery in both treatments by the end of the second day. Changes in the coral proteome were determined daily and, using recently available annotated genome sequences, the individual contributions of the coral host and algal endosymbionts could be extracted from these data. Quantitative changes in proteins relevant to redox state and calcium metabolism are presented. Notably, expression of common antioxidant proteins was not detected from the coral host but present in the algal endosymbiont proteome. Possible roles for elevated carbonic anhydrase in the coral host are considered: to restore intracellular pH diminished by loss of photosynthetic activity, to indirectly limit intracellular calcium influx linked with enhanced calmodulin expression to impede late-stage symbiont exocytosis, or to enhance inorganic carbon transport to improve the photosynthetic performance of algal symbionts that remain in hospite. Protein effectors of calcium-dependent exocytosis were present in both symbiotic partners. No caspase-family proteins associated with host cell apoptosis, with exception of the autophagy chaperone HSP70, were detected, suggesting that algal loss and photosynthetic dysfunction under these experimental conditions were not due to host-mediated phytosymbiont destruction. Instead, bleaching occurred by symbiont exocytosis and loss of light-harvesting pigments of algae that remain in hospite. These proteomic data are, therefore, consistent with our premise that coral endosymbionts can mediate their own retention or departure from the coral host, which may manifest as

  1. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans

    Science.gov (United States)

    Zhang, Xinxing; Jones, Rachel A.; Bruner, Steven D.; Butcher, Rebecca A.

    2016-01-01

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state. PMID:27551084

  2. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Xinxing; Li, Kunhua; Jones, Rachel A; Bruner, Steven D; Butcher, Rebecca A

    2016-09-06

    Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state.

  3. SECARB Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Koperna, George J. [Advanced Resources International, Inc., Arlington, VA (United States); Pashin, Jack [Oklahoma State Univ., Stillwater, OK (United States); Walsh, Peter [Univ. of Alabama, Birmingham, AL (United States)

    2017-10-30

    for the region and provide modern day analogues. Stability of the caprock over several test parameters was conducted by UAB to yield comprehensive measurements on long term stability of caprocks. The detailed geologic model of the full earth volume from surface thru the Donovan oil reservoir is incorporated into a state-of-the-art reservoir simulation conducted by the University of Alabama at Birmingham (UAB) to explore optimization of CO2 injection and storage under different characterizations of reservoir flow properties. The application of a scaled up geologic modeling and reservoir simulation provides a proof of concept for the large scale volumetric modeling of CO2 injection and storage the subsurface.

  4. Optimization of Phasor Measurement Unit (PMU Placement in Supervisory Control and Data Acquisition (SCADA-Based Power System for Better State-Estimation Performance

    Directory of Open Access Journals (Sweden)

    Mohammad Shoaib Shahriar

    2018-03-01

    Full Text Available Present-day power systems are mostly equipped with conventional meters and intended for the installation of highly accurate phasor measurement units (PMUs to ensure better protection, monitoring and control of the network. PMU is a deliberate choice due to its unique capacity in providing accurate phasor readings of bus voltages and currents. However, due to the high expense and a requirement for communication facilities, the installation of a limited number of PMUs in a network is common practice. This paper presents an optimal approach to selecting the locations of PMUs to be installed with the objective of ensuring maximum accuracy of the state estimation (SE. The optimization technique ensures that the critical locations of the system will be covered by PMU meters which lower the negative impact of bad data on state-estimation performance. One of the well-known intelligent optimization techniques, the genetic algorithm (GA, is used to search for the optimal set of PMUs. The proposed technique is compared with a heuristic approach of PMU placement. The weighted least square (WLS, with a modified Jacobian to deal with the phasor quantities, is used to compute the estimation accuracy. IEEE 30-bus and 118-bus systems are used to demonstrate the suggested technique.

  5. Capital optimization: linking investment with strategic intent.

    Science.gov (United States)

    Fine, Allan; Bacchetti, J Alex

    2004-01-01

    With operating margins showing some improvement in 2003, Y2K being a distant memory, and many critical capital investment decisions delayed as long as possible, hospitals have been on a relative spending spree, building new facilities, renovating operating rooms and inpatient units, and investing in new medical and information technologies. However, with pressure on both cost and revenue expected to continue, if not increase, this spending spree may be short-lived, and hospitals must improve their capital planning efforts; align them with their mission, vision, and strategies; and ensure that capital is available when unplanned or even expected needs arise. This article explores some of the challenges that hospitals face in their capital planning efforts and, more importantly, suggests the necessity for hospitals to integrate capital and strategic planning. Capital planning must be driven by an organization's strategies; however, we also argue that an organization's ability to execute its strategies is highly dependent on the existence of a cohesive capital prioritization and planning process. In this article, we explore a number of issues critical to developing a comprehensive capital plan, including estimating capital costs, evaluating and designing strategies to contend with risk, saving for the proverbial "rainy day," and recognizing the role and value of philanthropy, while challenging some conventional thinking of hospital executives with respect to investment, growth, and planning.

  6. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models.

    Science.gov (United States)

    Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert

    2011-08-25

    Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

  7. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models

    Directory of Open Access Journals (Sweden)

    Sorribas Albert

    2011-08-01

    Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

  8. Sequential Optimization Methods for Augmentation of Marine Enzymes Production in Solid-State Fermentation: l-Glutaminase Production a Case Study.

    Science.gov (United States)

    Sathish, T; Uppuluri, K B; Veera Bramha Chari, P; Kezia, D

    There is an increased l-glutaminase market worldwide due to its relevant industrial applications. Salt tolerance l-glutaminases play a vital role in the increase of flavor of different types of foods like soya sauce and tofu. This chapter is presenting the economically viable l-glutaminases production in solid-state fermentation (SSF) by Aspergillus flavus MTCC 9972 as a case study. The enzyme production was improved following a three step optimization process. Initially mixture design (MD) (augmented simplex lattice design) was employed to optimize the solid substrate mixture. Such solid substrate mixture consisted of 59:41 of wheat bran and Bengal gram husk has given higher amounts of l-glutaminase. Glucose and l-glutamine were screened as a finest additional carbon and nitrogen sources for l-glutaminase production with help of Plackett-Burman Design (PBD). l-Glutamine also acting as a nitrogen source as well as inducer for secretion of l-glutaminase from A. flavus MTCC 9972. In the final step of optimization various environmental and nutritive parameters such as pH, temperature, moisture content, inoculum concentration, glucose, and l-glutamine levels were optimized through the use of hybrid feed forward neural networks (FFNNs) and genetic algorithm (GA). Through sequential optimization methods MD-PBD-FFNN-GA, the l-glutaminase production in SSF could be improved by 2.7-fold (453-1690U/g). © 2016 Elsevier Inc. All rights reserved.

  9. Optimal set values of zone modeling in the simulation of a walking beam type reheating furnace on the steady-state operating regime

    International Nuclear Information System (INIS)

    Yang, Zhi; Luo, Xiaochuan

    2016-01-01

    Highlights: • The adjoint equation is introduced to the PDE optimal control problem. • Lipschitz continuity for the gradient of the cost functional is derived. • The simulation time and iterations reduce by a large margin in the simulations. • The model validation and comparison are made to verify the proposed math model. - Abstract: In this paper, this study proposed a new method to solve the PDE optimal control problem by introducing the adjoint problem to the optimization model, which was used to get the reference values for the optimal furnace zone temperatures and the optimal temperature distribution of steel slabs in the reheating furnace on the steady-state operating regime. It was proved that the gradient of the cost functional could be written via the weak solution of this adjoint problem and then Lipschitz continuity of the gradient was derived. Model validation and comparison between the mathematics model and the experiment results indicated that the present heat transfer model worked well for the prediction of thermal behavior about a slab in the reheating furnace. Iterations and simulation time had shown a significant decline in the simulations of 20MnSi slab, and it was shown by numerical simulations for 0.4 m thick slabs that the proposed method was better applied in the medium and heavy plate plant, leading to better performance in terms of productivity, energy efficiency and other features of reheating furnaces.

  10. System and economic optimization problems of NPPs and its ideology

    International Nuclear Information System (INIS)

    Klimenko, A.V.; Mironovich, V.L.

    2016-01-01

    The iterative circuit design of optimization of system of links of nuclear fuel and energy complex (NFEC) is presented in the paper. Problems of system optimization of links NFEC as functional of NPP optimization are indicated and investigated [ru

  11. Optimal traffic control in highway transportation networks using linear programming

    KAUST Repository

    Li, Yanning; Canepa, Edward S.; Claudel, Christian G.

    2014-01-01

    of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can

  12. The Probabilistic Structure of Quantum Theory as Originating from Optimal Observation in the Face of the Observer's Lack of Knowledge of his Own State

    Science.gov (United States)

    Aerts, Sven

    2014-03-01

    One of the problems facing any attempt to understand quantum theory is that the theory does not seem to offer an explanation of the way the probabilities arise. Moreover, it is a commonly held view that no such explanation is compatible with the mathematical structure of quantum theory, i.e. that the theory is inherently indeterministic, simply because nature is like that. We propose an abstract formalisation of the observation of a system in which the interaction between the system and the observer deterministically produces one of n possible outcomes. If the observer consistently manages to realize the outcome which maximizes the likelihood ratio that the outcome was inferred from the state of the system under study (and not from his own state), he will be called optimal. The probability for a repeated measurement on an ensemble of identical system states, is then derived as a measure over observer states. If the state of the system is a statistical mixture, the optimal observer produces an unbiased estimate of the components of the mixture. In case the state space is a complex Hilbert space, the resulting probability is equal to the one given by the Born rule. The proposal offers a concise interpretation for the meaning of the occurrence of a specific outcome as the unique outcome that, relative to the state of the system, is least dependent on the state of the observer. We note that a similar paradigm is used in the literature of perception to explain optical illusions in human visual perception. We argue that the result strengthens Helmholtz's view that all observation, is in fact a form a inference.

  13. Cross-disciplinary links in environmental systems science: Current state and claimed needs identified in a meta-review of process models.

    Science.gov (United States)

    Ayllón, Daniel; Grimm, Volker; Attinger, Sabine; Hauhs, Michael; Simmer, Clemens; Vereecken, Harry; Lischeid, Gunnar

    2018-05-01

    Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model intercomparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than

  14. Optimism/pessimism and health-related quality of life during pregnancy across three continents: a matched cohort study in China, Ghana, and the United States

    Directory of Open Access Journals (Sweden)

    Calhoun Cecilia

    2009-09-01

    Full Text Available Abstract Background Little is known about how optimism/pessimism and health-related quality of life compare across cultures. Methods Three samples of pregnant women in their final trimester were recruited from China, Ghana, and the United States (U.S.. Participants completed a survey that included the Life Orientation Test - Revised (LOT-R, an optimism/pessimism measure, the Short Form 12 (SF-12, a quality of life measure, and questions addressing health and demographic factors. A three-country set was created for analysis by matching women on age, gestational age at enrollment, and number of previous pregnancies. Anovas with post-hoc pairwise comparisons were used to compare results across the cohorts. Multivariate regression analysis was used to create a model to identify those variables most strongly associated with optimism/pessimism. Results LOT-R scores varied significantly across cultures in these samples, with Ghanaian pregnant women being the most optimistic and least pessimistic and Chinese pregnant women being the least optimistic overall and the least pessimistic in subscale analysis. Four key variables predicted approximately 20% of the variance in overall optimism scores: country of origin (p = .006, working for money (p = .05; level of education (p = .002, and ever being treated for emotional issues with medication (p Conclusion This research raises important questions regarding what it is about country of origin that so strongly influences optimism/pessimism among pregnant women. Further research is warranted exploring underlying conceptualization of optimism/pessimism and health related quality of life across countries.

  15. Software for the grouped optimal aggregation technique

    Science.gov (United States)

    Brown, P. M.; Shaw, G. W. (Principal Investigator)

    1982-01-01

    The grouped optimal aggregation technique produces minimum variance, unbiased estimates of acreage and production for countries, zones (states), or any designated collection of acreage strata. It uses yield predictions, historical acreage information, and direct acreage estimate from satellite data. The acreage strata are grouped in such a way that the ratio model over historical acreage provides a smaller variance than if the model were applied to each individual stratum. An optimal weighting matrix based on historical acreages, provides the link between incomplete direct acreage estimates and the total, current acreage estimate.

  16. Optimal oxygen feeding policy to maximize the production of Maleic anhydride in unsteady state fixed bed catalytic reactors

    Directory of Open Access Journals (Sweden)

    E. Ali

    2017-07-01

    Full Text Available The effect of different oxygen feeding scenarios in a fixed bed reactor for the production of Maleic anhydride (MA is studied. Two reactor configurations were examined. In the first configuration, a cross flow reactor (CFR with 4 discrete feeding points is considered. Another configuration is the conventional packed-bed reactor (PBR with a single feed. Nonlinear Model Predictive Controller (NLMPC was used as optimal controller to operate the CFR in dynamic mode and to optimize the multiple feed dosages in order to enhance the MA yield. The simulation results indicated that different combinations of the four feed ratios can operate the reactor at the best value for the yield provided the first feeding point is kept as low as possible. For the packed bed reactor configuration, a single oxygen feed is considered and is optimized transiently by NLMPC. The simulation outcomes showed that the reactor performance in terms of the produced MA mole fraction can also be enhanced to the same magnitude obtained by CFR configuration. This improvement requires decreasing the oxygen ratio in the reactor single feed by 70%.

  17. Numerical solution of the state-delayed optimal control problems by a fast and accurate finite difference θ-method

    Science.gov (United States)

    Hajipour, Mojtaba; Jajarmi, Amin

    2018-02-01

    Using the Pontryagin's maximum principle for a time-delayed optimal control problem results in a system of coupled two-point boundary-value problems (BVPs) involving both time-advance and time-delay arguments. The analytical solution of this advance-delay two-point BVP is extremely difficult, if not impossible. This paper provides a discrete general form of the numerical solution for the derived advance-delay system by applying a finite difference θ-method. This method is also implemented for the infinite-time horizon time-delayed optimal control problems by using a piecewise version of the θ-method. A matrix formulation and the error analysis of the suggested technique are provided. The new scheme is accurate, fast and very effective for the optimal control of linear and nonlinear time-delay systems. Various types of finite- and infinite-time horizon problems are included to demonstrate the accuracy, validity and applicability of the new technique.

  18. A study on optimal control of the aero-propulsion system acceleration process under the supersonic state

    Directory of Open Access Journals (Sweden)

    Fengyong Sun

    2017-04-01

    Full Text Available In order to solve the aero-propulsion system acceleration optimal problem, the necessity of inlet control is discussed, and a fully new aero-propulsion system acceleration process control design including the inlet, engine, and nozzle is proposed in this paper. In the proposed propulsion system control scheme, the inlet, engine, and nozzle are simultaneously adjusted through the FSQP method. In order to implement the control scheme design, an aero-propulsion system component-level model is built to simulate the inlet working performance and the matching problems between the inlet and engine. Meanwhile, a stabilizing inlet control scheme is designed to solve the inlet control problems. In optimal control of the aero-propulsion system acceleration process, the inlet is an emphasized control unit in the optimal acceleration control system. Two inlet control patterns are discussed in the simulation. The simulation results prove that by taking the inlet ramp angle as an active control variable instead of being modulated passively, acceleration performance could be obviously enhanced. Acceleration objectives could be obtained with a faster acceleration time by 5%.

  19. Optimization of three-dimensional triple IR fast spoiled gradient recalled acquisition in the steady state (FSPGR) to decrease vascular artifact at 3.0 Tesla

    International Nuclear Information System (INIS)

    Fujiwara, Yasuhiro; Fukuya, Yuko; Yamaguchi, Isao; Matsuda, Tsuyoshi; Ishimori, Yoshiyuki; Yamada, Kazuhiro; Kimura, Hirohiko; Miyati, Tosiaki

    2006-01-01

    The purpose of this study was to decrease vascular artifacts caused by the in-flow effect in three-dimensional inversion recovery prepared fast spoiled gradient recalled acquisition in the steady state (3D IR FSPGR) at 3.0 Tesla. We developed 3D triple IR (3IR) FSPGR and examined the signal characteristics of the new sequence. We have optimized scan parameters based on simulation, phantom, and in-vivo studies. As a result, optimized parameters (1st TI=600 ms, 3rd TI=500 ms) successfully have produced the vessel signal at more than 40% reduction, while gray-white matter contrast was preserved. Moreover, the reduced artifact was also confirmed by visual inspection of the in-vivo images for which this condition was used. Thus, 3D 3IR FSPGR was a useful sequence for the acquisition of T1-weighted images at 3.0 Tesla. (author)

  20. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... the main factors in the spread of HIV infection in the United States. Drugs can change the ... about the link between drug misuse and HIV infection. It contains information for young people, parents and ...

  1. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... of HIV infection in the United States. Drugs can change the way the brain works, disrupting the ... linked and referred to as "HIV/AIDS." HIV can be transferred between people if an infected person's ...

  2. Optimization of the solid-state fermentation and properties of a polysaccharide from Paecilomyces cicadae (Miquel Samson and its antioxidant activities in vitro.

    Directory of Open Access Journals (Sweden)

    Xueyong Ren

    Full Text Available The culture conditions for the yield of a polysaccharide (PCPS produced by Paecilomyces cicadae (Miquel Samson on solid-state fermentation were investigated using response surface methodology (RSM. Plackett-Burman design (PBD was applied to screen out significant factors, followed by the paths of steepest ascent to move to the nearest region of maximum response. Then Box-Behnken design (BBD was conducted to optimize the final levels of the culture conditions. After analyzing the regression equation and the response surface contour plots, relative humidity 56.07%, inoculum 13.51 mL/100 g and temperature 27.09°C were found to be the optimal key parameters for PCPS production. The maximum predicted yield of PCPS was 10.76 mg/g under the optimized conditions. The resulting PCPS (FPCPS generated at optimal conditions was purified by chromatography column and found to be composed of mannose (43.2%, rhamnose (32.1%, xylose (14.5% and arabinose (10.2%. Based on the size exclusion chromatography combined with multi-angle laser light scattering (SEC-MALLS analysis, FPCPS adopted a Gaussian coil conformation in 0.1 M NaNO3 solution with 3.75 × 10(6 g/mol of the weight-average molar mass (Mw and 41.1 nm of the root-mean square radius (Rg(2z (1/2. Furthermore, both of the polysaccharides were revealed to have strong antioxidant activities by evaluating in DPPH radical, superoxide radicals and hydroxyl radical assay. These data suggest the polysaccharides of Paecilomyces cicadae (Miquel Samson produced by solid-state fermentation could be explored as potential natural antioxidants.

  3. Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data

    Science.gov (United States)

    Shanlei Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter V. Caldwell; Kai Duan; Yang Zhang

    2016-01-01

    Quantifying the potential impacts of climatechange on water yield and ecosystem productivity is essential to developing sound watershed restoration plans, andecosystem adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and StressIndex, WaSSI) with WRF (Weather Research and Forecasting Model) using dynamically downscaled...

  4. An Application Of Facility Location Models With Hotspot Analysis For Optimal Location Of Abattoir Bio-Energy Plant In Anambra State Of Nigeria

    Directory of Open Access Journals (Sweden)

    E. C. Chukwuma

    2015-08-01

    Full Text Available Poor waste management strategy in abattoir in the the study area has needs a major attention considering it negative impacts on man land and water. Sitting of centralized biogas plant in a strategic location in the state would be the major means of combating the environmental challenges of increase in abattoir waste generation as result of population explosion in the state. This study investigates optimal location for sitting central abattoir waste treatment facility in Anambra State of Nigeria using facility location models with hotspot analysis in GIS environment. The result of the study shows that Using centre of gravity model the central location was estimated to be at Xc Yc 6.900953016 6.110157865. Based on inadequacy of the model hotspot analysis operation was done the hotspot analysis delineated clusters of abattoirs significantly higher in bio-wastes production than the overall study area. The hotspot analysis shows that the West regions of the study area has many abattoir that is classified as hotspot abattoirs. Using the hotspot abattoirs as proposed sites for load-distance model three abattoirs were identified as proposed sites- Obosi slaugher house Nkpor Private slaughter house and Oye-olise Ogbunike slaugher house. Their load distance values are 17250.40058 16299.24005 and 18210.14631 respectively. The optimal location for construction of central abattoir bio-waste treatment facility based on the application of these location facility models and hotspot analysis is Nkpor private slaughter house or its environs.

  5. Chemical disorder influence on magnetic state of optimally-doped La0.7Ca0.3MnO3

    Science.gov (United States)

    Rozenberg, E.; Auslender, M.; Shames, A. I.; Jung, G.; Felner, I.; Tsindlekht, M. I.; Mogilyansky, D.; Sominski, E.; Gedanken, A.; Mukovskii, Ya. M.; Gorodetsky, G.

    2011-10-01

    X-band electron magnetic resonance and dc/ac magnetic measurements have been employed to study the effects of chemical disorder on magnetic ordering in bulk and nanometer-sized single crystals and bulk ceramics of optimally-doped La0.7Ca0.3MnO3 manganite. The magnetic ground state of bulk samples appeared to be ferromagnetic with the lower Curie temperature and higher magnetic homogeneity in the vicinity of the ferromagnetic-paramagnetic phase transition in the crystal, as compared with those characteristics in the ceramics. The influence of technological driven "macroscopic" fluctuations of Ca-dopant level in crystal and "mesoscopic" disorder within grain boundary regions in ceramics was proposed to be responsible for these effects. Surface spin disorder together with pronounced inter-particle interactions within agglomerated nano-sample results in well defined core/shell spin configuration in La0.7Ca0.3MnO3 nano-crystals. The analysis of the electron paramagnetic resonance data enlightened the reasons for the observed difference in the magnetic order. Lattice effects dominate the first-order nature of magnetic phase transition in bulk samples. However, mesoscale chemical disorder seems to be responsible for the appearance of small ferromagnetic polarons in the paramagnetic state of bulk ceramics. The experimental results and their analysis indicate that a chemical/magnetic disorder has a strong impact on the magnetic state even in the case of mostly stable optimally hole-doped manganites.

  6. Linking unlinkability

    NARCIS (Netherlands)

    Brusó, Mayla; Chatzikokolakis, Konstantinos; Etalle, Sandro; den Hartog, Jeremy

    Unlinkability is a privacy property of crucial importance for several systems (such as RFID or voting systems). Informally, unlinkability states that, given two events/items in a system, an attacker is not able to infer whether they are related to each other. However, in the literature we find

  7. сисOptimization of the state information policy of Ukraine in the conditions of contemporary modernization processes

    Directory of Open Access Journals (Sweden)

    E. O. Romanenko

    2014-10-01

    Today in Ukraine is a strategic document that at the national level to govern the main priorities, directions, principles, principles and ways of realization of the State policy on implementing its information and communication functions. Moreover the communicative component state is not clearly separated from the information, and therefore does not have the proper conceptual, technological and functional software, also destablzacjno affects the livelihoods of its public sector.

  8. Parameter optimization, sensitivity, and uncertainty analysis of an ecosystem model at a forest flux tower site in the United States

    Science.gov (United States)

    Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende

    2014-01-01

    Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.

  9. Optimizing detectability

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    HPLC is useful for trace and ultratrace analyses of a variety of compounds. For most applications, HPLC is useful for determinations in the nanogram-to-microgram range; however, detection limits of a picogram or less have been demonstrated in certain cases. These determinations require state-of-the-art capability; several examples of such determinations are provided in this chapter. As mentioned before, to detect and/or analyze low quantities of a given analyte at submicrogram or ultratrace levels, it is necessary to optimize the whole separation system, including the quantity and type of sample, sample preparation, HPLC equipment, chromatographic conditions (including column), choice of detector, and quantitation techniques. A limited discussion is provided here for optimization based on theoretical considerations, chromatographic conditions, detector selection, and miscellaneous approaches to detectability optimization. 59 refs

  10. Optimal traffic control in highway transportation networks using linear programming

    KAUST Repository

    Li, Yanning

    2014-06-01

    This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.

  11. Current Leads, Links and Buses

    CERN Document Server

    Ballarino, A

    2014-01-01

    Electrical transfer from a room temperature power source to a superconducting system is done via conventional or superconducting current leads and superconducting buses or links. The principles of optimization of these devices are presented, with emphasis on the cryogenic, electrical, and superconductor related aspects that drive choices for a system.

  12. Current Leads, Links and Buses

    Energy Technology Data Exchange (ETDEWEB)

    Ballarino, A [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Electrical transfer from a room temperature power source to a superconducting system is done via conventional or superconducting current leads and superconducting buses or links. The principles of optimization of these devices are presented, with emphasis on the cryogenic, electrical, and superconductor related aspects that drive choices for a system.

  13. Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation.

    Science.gov (United States)

    Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia

    2012-01-01

    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.

  14. Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Dhouha Ghribi

    2012-01-01

    Full Text Available During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size. Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.

  15. Optimization method to branch-and-bound large SBO state spaces under dynamic probabilistic risk assessment via use of LENDIT scales and S2R2 sets

    International Nuclear Information System (INIS)

    Nielsen, Joseph; Tokuhiro, Akira; Khatry, Jivan; Hiromoto, Robert

    2014-01-01

    Traditional probabilistic risk assessment (PRA) methods have been developed to evaluate risk associated with complex systems; however, PRA methods lack the capability to evaluate complex dynamic systems. In these systems, time and energy scales associated with transient events may vary as a function of transition times and energies to arrive at a different physical state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. Unfortunately DPRA methods introduce issues associated with combinatorial explosion of states. In order to address this combinatorial complexity, a branch-and-bound optimization technique is applied to the DPRA formalism to control the combinatorial state explosion. In addition, a new characteristic scaling metric (LENDIT – length, energy, number, distribution, information and time) is proposed as linear constraints that are used to guide the branch-and-bound algorithm to limit the number of possible states to be analyzed. The LENDIT characterization is divided into four groups or sets – 'state, system, resource and response' (S2R2) – describing reactor operations (normal and off-normal). In this paper we introduce the branch-and-bound DPRA approach and the application of LENDIT scales and S2R2 sets to a station blackout (SBO) transient. (author)

  16. A quantum logic network for implementing optimal symmetric universal and phase-covariant telecloning of a bipartite entangled state

    International Nuclear Information System (INIS)

    Meng Fanyu; Zhu Aidong

    2008-01-01

    A quantum logic network to implement quantum telecloning is presented in this paper. The network includes two parts: the first part is used to create the telecloning channel and the second part to teleport the state. It can be used not only to implement universal telecloning for a bipartite entangled state which is completely unknown, but also to implement the phase-covariant telecloning for one that is partially known. Furthermore, the network can also be used to construct a tele-triplicator. It can easily be implemented in experiment because only single- and two-qubit operations are used in the network.

  17. Unequally distributed psychological assets: are there social disparities in optimism, life satisfaction, and positive affect?

    Science.gov (United States)

    Boehm, Julia K; Chen, Ying; Williams, David R; Ryff, Carol; Kubzansky, Laura D

    2015-01-01

    Socioeconomic status is associated with health disparities, but underlying psychosocial mechanisms have not been fully identified. Dispositional optimism may be a psychosocial process linking socioeconomic status with health. We hypothesized that lower optimism would be associated with greater social disadvantage and poorer social mobility. We also investigated whether life satisfaction and positive affect showed similar patterns. Participants from the Midlife in the United States study self-reported their optimism, satisfaction, positive affect, and socioeconomic status (gender, race/ethnicity, education, occupational class and prestige, income). Social disparities in optimism were evident. Optimistic individuals tended to be white and highly educated, had an educated parent, belonged to higher occupational classes with more prestige, and had higher incomes. Findings were generally similar for satisfaction, but not positive affect. Greater optimism and satisfaction were also associated with educational achievement across generations. Optimism and life satisfaction are consistently linked with socioeconomic advantage and may be one conduit by which social disparities influence health.

  18. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 1. Theory

    Science.gov (United States)

    Graham, Wendy D.; Tankersley, Claude D.

    1994-05-01

    Stochastic methods are used to analyze two-dimensional steady groundwater flow subject to spatially variable recharge and transmissivity. Approximate partial differential equations are developed for the covariances and cross-covariances between the random head, transmissivity and recharge fields. Closed-form solutions of these equations are obtained using Fourier transform techniques. The resulting covariances and cross-covariances can be incorporated into a Bayesian conditioning procedure which provides optimal estimates of the recharge, transmissivity and head fields given available measurements of any or all of these random fields. Results show that head measurements contain valuable information for estimating the random recharge field. However, when recharge is treated as a spatially variable random field, the value of head measurements for estimating the transmissivity field can be reduced considerably. In a companion paper, the method is applied to a case study of the Upper Floridan Aquifer in NE Florida.

  19. Scientific and Technical Cooperation Between National Academy of Sciences of Ukraine and Kyiv City State Administration: Cautious Optimism

    Directory of Open Access Journals (Sweden)

    Zahorodniy, A.G.

    2015-01-01

    Full Text Available The experience of scientific and technical cooperation between National Academy of Sciences of Ukraine and Kyiv City State Administration is summarized. Brief description of innovative projects approved for implementation in 2015 on the introduction of the elaborations of the institutions of NAS of Ukraine into the urban economy is presented.

  20. Optimized design of polarizers with low ohmic loss and any polarization state for the 28 GHz QUEST ECH/ECCD system

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Toru Ii, E-mail: tsujimura.tohru@nifs.ac.jp [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292 (Japan); Idei, Hiroshi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Kubo, Shin; Kobayashi, Sakuji [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292 (Japan)

    2017-01-15

    Highlights: • Ohmic loss was calculated on the grooved mirror surface in simulated polarizers. • Polarizers with a low ohmic loss feature were optimally designed for 28 GHz. • Smooth rounded-rectangular grooves were made by mechanical machining. • The designed polarizers can realize all polarization states. - Abstract: In a high-power long-pulse millimeter-wave transmission line for electron cyclotron heating and current drive (ECH/ECCD), the ohmic loss on the grooved mirror surface of polarizers is one of the important issues for reducing the transmission loss. In this paper, the ohmic loss on the mirror surface is evaluated in simulated real-scale polarizer miter bends for different groove parameters under a linearly-polarized incident wave excitation. The polarizers with low ohmic loss are optimally designed for a new 28 GHz transmission line on the QUEST spherical tokamak. The calculated optimum ohmic loss is restricted to only less than 1.5 times as large as the theoretical loss for a copper flat mirror at room temperature. The copper rounded-rectangular grooves of the polarizers were relatively easy to make smooth in mechanical machining and the resultant surface roughness was not more than 0.15 μm, which is only 0.38 times as large as the skin depth. The combination of the designed elliptical polarizer and the polarization rotator can also realize any polarization state of the reflected wave.