WorldWideScience

Sample records for optimized femtosecond ultraviolet

  1. Corneal tissue interactions of a new 345 nm ultraviolet femtosecond laser.

    Science.gov (United States)

    Hammer, Christian M; Petsch, Corinna; Klenke, Jörg; Skerl, Katrin; Paulsen, Friedrich; Kruse, Friedrich E; Seiler, Theo; Menzel-Severing, Johannes

    2015-06-01

    To assess the suitability of a new 345 nm ultraviolet (UV) femtosecond laser for refractive surgery. Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany. Experimental study. Twenty-five porcine corneas were used for stromal flap or lamellar bed creation (stromal depth, 150 μm) and 15 rabbit corneas for lamellar bed creation near the endothelium. Ultraviolet femtosecond laser cutting-line morphology, gas formation, and keratocyte death rate were evaluated using light and electron microscopy and compared with a standard infrared (IR) femtosecond laser. Endothelial cell survival was examined after application of a laser cut near the endothelium. Flaps created by the UV laser were lifted easily. Gas formation was reduced 4.2-fold compared with the IR laser (P = .001). The keratocyte death rate near the interface was almost doubled; however, the death zone was confined to a region within 38 μm ± 10 (SD) along the cutting line. Histologically and ultrastructurally, a distinct and continuous cutting line was not found after UV femtosecond laser application if flap lifting was omitted and standard energy parameters were used. Instead, a regular pattern of vertical striations, presumably representing self-focusing induced regions of optical tissue breakdown, were identified. Lamellar bed creation with standard energy parameters 50 μm from the endothelium rendered the endothelial cells intact and viable. The new 345 nm femtosecond laser is a candidate for pending in vivo trials and future high-precision flap creation, intrastromal lenticule extraction, and ultrathin Descemet-stripping endothelial keratoplasty. Mr. Klenke and Ms. Skerl were paid employees of Wavelight GmbH when the study was performed. Dr. Seiler is a scientific consultant to Wavelight GmbH. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Broadening the applications of the atom probe technique by ultraviolet femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Hono, K., E-mail: kazuhiro.hono@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Ohkubo, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Chen, Y.M.; Kodzuka, M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Oh-ishi, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Li, F. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Kinno, T. [Corporate R and D Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582 (Japan); CREST, Japan Science and Technology Agency (Japan); Tomiya, S.; Kanitani, Y. [Advanced Materials Laboratory, Sony Corporation, Atsugi, Kanagawa 243-0021 (Japan)

    2011-05-15

    Laser assisted field evaporation using ultraviolet (UV) wavelength gives rise to better mass resolution and signal-to-noise ratio in atom probe mass spectra of metals, semiconductors and insulators compared to infrared and green lasers. Combined with the site specific specimen preparation techniques using the lift-out and annular Ga ion milling in a focused ion beam machine, a wide variety of materials including insulating oxides can be quantitatively analyzed by the three-dimensional atom probe using UV laser assisted field evaporation. After discussing laser irradiation conditions for optimized atom probe analyses, recent atom probe tomography results on oxides, semiconductor devices and grain boundaries of sintered magnets are presented. -- Research highlights: {yields} Application of ultraviolet (UV) femtosecond pulsed laser in a three dimensional atom probe (3DAP). {yields} Improved mass resolution and signal-to-noise ratio in atom probe mass spectra using UV laser. {yields} UV laser facilitates 3DAP analysis of insulating oxides. {yields} Quantitative analysis of wide variety of materials including insulating oxides using UV femotosecond laser.

  3. Ultraviolet-resonance femtosecond stimulated Raman study of the initial events in photoreceptor chromophore

    Directory of Open Access Journals (Sweden)

    Tahara T.

    2013-03-01

    Full Text Available Newly-developed ultraviolet-resonance femtosecond stimulated-Raman spectroscopy was utilized to study the initial structural evolution of photoactive yellow protein chromophore in solution. The obtained spectra changed drastically within 1 ps, demonstrating rapid in-plane deformations of the chromophore.

  4. Determination of Nerve Agent Metabolites by Ultraviolet Femtosecond Laser Ionization Mass Spectrometry.

    Science.gov (United States)

    Hamachi, Akifumi; Imasaka, Tomoko; Nakamura, Hiroshi; Li, Adan; Imasaka, Totaro

    2017-05-02

    Nerve agent metabolites, i.e., isopropyl methylphosphonic acid (IMPA) and pinacolyl methylphosphonic acid (PMPA), were derivatized by reacting them with 2,3,4,5,6-pentafluorobenzyl bromide (PFBBr) and were determined by mass spectrometry using an ultraviolet femtosecond laser emitting at 267 and 200 nm as the ionization source. The analytes of the derivatized compounds, i.e., IMPA-PFB and PMPA-PFB, contain a large side-chain, and molecular ions are very weak or absent in electron ionization mass spectrometry. The use of ultraviolet femtosecond laser ionization mass spectrometry, however, resulted in the formation of a molecular ion, even for compounds such as these that contain a highly bulky functional group. The signal intensity was larger at 200 nm due to resonance-enhanced two-photon ionization. In contrast, fragmentation was suppressed at 267 nm (nonresonant two-photon ionization) especially for PMPA-PFB, thus resulting in a lower background signal. This favorable result can be explained by the small excess energy in ionization at 267 nm and by the low-frequency vibrational mode of a bulky trimethylpropyl group in PMPA.

  5. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  6. Programmable femtosecond laser pulses in the ultraviolet

    International Nuclear Information System (INIS)

    Hacker, M.; Feurer, T.; Sauerbrey, R.; Lucza, T.; Szabo, G.

    2001-01-01

    Using a combination of a zero-dispersion compressor and spectrally compensated sum-frequency generation, we have produced amplitude-modulated femtosecond pulses in the UV at 200 nm. [copyright] 2001 Optical Society of America

  7. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy

    International Nuclear Information System (INIS)

    Lin, Ming-Fu; Neumark, Daniel M.; Gessner, Oliver; Leone, Stephen R.

    2014-01-01

    Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH 2 =CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C 2 H 3 Br, the formation of C 2 H 3 Br + ions in their ground (X ~ ) and first excited (A ~ ) states, the production of C 2 H 3 Br ++ ions, and the appearance of neutral Br ( 2 P 3/2 ) atoms by dissociative ionization. The formation of free Br ( 2 P 3/2 ) atoms occurs on a timescale of 330 ± 150 fs. The ionic A ~ state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the A ~ state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C 2 H 3 Br + (A ~ ) ions undergoes intramolecular vibrational energy redistribution followed by the C–Br bond dissociation. The C 2 H 3 Br + (X ~ ) products and the majority of the C 2 H 3 Br ++ ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy

  8. Bombyx mori silk protein films microprocessing with a nanosecond ultraviolet laser and a femtosecond laser workstation: theory and experiments

    Science.gov (United States)

    Lazare, S.; Sionkowska, A.; Zaborowicz, M.; Planecka, A.; Lopez, J.; Dijoux, M.; Louména, C.; Hernandez, M.-C.

    2012-01-01

    Laser microprocessing of several biopolymers from renewable resources is studied. Three proteinic materials were either extracted from the extracellular matrix like Silk Fibroin/Sericin and collagen, or coming from a commercial source like gelatin. All can find future applications in biomedical experimentation, in particular for cell scaffolding. Films of ˜hundred of microns thick were made by aqueous solution drying and laser irradiation. Attention is paid to the properties making them processable with two laser sources: the ultraviolet and nanosecond (ns) KrF (248 nm) excimer and the infrared and femtosecond (fs) Yb:KGW laser. The UV radiation is absorbed in a one-photon resonant process to yield ablation and the surface foaming characteristics of a laser-induced pressure wave. To the contrary, resonant absorption of the IR photons of the fs laser is not possible and does not take place. However, the high field of the intense I>˜1012 W/cm2 femtosecond laser pulse ionizes the film by the multiphoton absorption followed by the electron impact mechanism, yielding a dense plasma capable to further absorb the incident radiation of the end of the pulse. The theoretical model of this absorption is described in detail, and used to discuss the presented experimental effects (cutting, ablation and foaming) of the fs laser. The ultraviolet laser was used to perform simultaneous multiple spots experiments in which energetic foaming yields melt ejection and filament spinning. Airborne nanosize filaments "horizontally suspended by both ends" (0.25 μm diameter and 10 μm length) of silk biopolymer were observed upon irradiation with large fluences.

  9. Femtosecond tracking of carrier relaxation in germanium with extreme ultraviolet transient reflectivity

    Science.gov (United States)

    Kaplan, Christopher J.; Kraus, Peter M.; Ross, Andrew D.; Zürch, Michael; Cushing, Scott K.; Jager, Marieke F.; Chang, Hung-Tzu; Gullikson, Eric M.; Neumark, Daniel M.; Leone, Stephen R.

    2018-05-01

    Extreme ultraviolet (XUV) transient reflectivity around the germanium M4 ,5 edge (3 d core-level to valence transition) at 30 eV is advanced to obtain the transient dielectric function of crystalline germanium [100] on femtosecond to picosecond time scales following photoexcitation by broadband visible-to-infrared (VIS/NIR) pulses. By fitting the transient dielectric function, carrier-phonon induced relaxations are extracted for the excited carrier distribution. The measurements reveal a hot electron relaxation rate of 3.2 ±0.2 ps attributed to the X -L intervalley scattering and a hot hole relaxation rate of 600 ±300 fs ascribed to intravalley scattering within the heavy hole (HH) band, both in good agreement with previous work. An overall energy shift of the XUV dielectric function is assigned to a thermally induced band gap shrinkage by formation of acoustic phonons, which is observed to be on a timescale of 4-5 ps, in agreement with previously measured optical phonon lifetimes. The results reveal that the transient reflectivity signal at an angle of 66∘ with respect to the surface normal is dominated by changes to the real part of the dielectric function, due to the near critical angle of incidence of the experiment (66∘-70∘) for the range of XUV energies used. This work provides a methodology for interpreting XUV transient reflectivity near core-level transitions, and it demonstrates the power of the XUV spectral region for measuring ultrafast excitation dynamics in solids.

  10. Traveling wave deflector design for femtosecond streak camera

    International Nuclear Information System (INIS)

    Pei, Chengquan; Wu, Shengli; Luo, Duan; Wen, Wenlong; Xu, Junkai; Tian, Jinshou; Zhang, Minrui; Chen, Pin; Chen, Jianzhong; Liu, Rong

    2017-01-01

    In this paper, a traveling wave deflection deflector (TWD) with a slow-wave property induced by a microstrip transmission line is proposed for femtosecond streak cameras. The pass width and dispersion properties were simulated. In addition, the dynamic temporal resolution of the femtosecond camera was simulated by CST software. The results showed that with the proposed TWD a femtosecond streak camera can achieve a dynamic temporal resolution of less than 600 fs. Experiments were done to test the femtosecond streak camera, and an 800 fs dynamic temporal resolution was obtained. Guidance is provided for optimizing a femtosecond streak camera to obtain higher temporal resolution.

  11. Traveling wave deflector design for femtosecond streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan; Wu, Shengli [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Luo, Duan [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wen, Wenlong [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Xu, Junkai [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tian, Jinshou, E-mail: tianjs@opt.ac.cn [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China); Zhang, Minrui; Chen, Pin [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jianzhong [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Liu, Rong [Xi' an Technological University, Xi' an 710021 (China)

    2017-05-21

    In this paper, a traveling wave deflection deflector (TWD) with a slow-wave property induced by a microstrip transmission line is proposed for femtosecond streak cameras. The pass width and dispersion properties were simulated. In addition, the dynamic temporal resolution of the femtosecond camera was simulated by CST software. The results showed that with the proposed TWD a femtosecond streak camera can achieve a dynamic temporal resolution of less than 600 fs. Experiments were done to test the femtosecond streak camera, and an 800 fs dynamic temporal resolution was obtained. Guidance is provided for optimizing a femtosecond streak camera to obtain higher temporal resolution.

  12. Improvement of aluminum drilling efficiency and precision by shaped femtosecond laser

    International Nuclear Information System (INIS)

    Qi, Ying; Qi, Hongxia; Chen, Anmin; Hu, Zhan

    2014-01-01

    Highlights: • The ablation accuracy can be improved by the shaped femtosecond laser pulse. • The ablation rate can be improved by the shaped femtosecond laser pulse with higher laser fluence. • The results can be used to optimize femtosecond micromachining metal. - Abstract: Shaped femtosecond laser pulses with the plain phase (transform-limited pulse) and sine phase (A = 1.2566, T = 30, T = 10, and T = 5) were used to drill Al sheet in vacuum. Using different phase, the number of pulses required to drill through the sheet was different. With lower laser pulse energy, the ablation rate was the highest when plain phase (corresponding to transform limited pulse) was used. With higher laser energy, the optimized ablation rate can be achieved by increasing the time separation between the subpulses of pulse train produced from the sine phase function. And, with the shaped femtosecond laser, the diameter of ablation holes produced was smaller, the ablation precision was also improved. The results showed that shaped femtosecond laser pulse has great advantages in the context of femtosecond laser drilling

  13. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  14. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    International Nuclear Information System (INIS)

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.; Gaffney, Jim A.; Foord, Mark; Libby, Stephen B.; Jaron-Becker, Agnieskzka; Becker, Andreas; Plaja, Luis; Muranane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2015-01-01

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching - the constructive addition of x-ray waves from a large number of atoms - favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidt-limited pulse trains of ~100 attoseconds

  15. Whole life cycle of femtosecond ultraviolet filaments in water

    Science.gov (United States)

    Jarnac, Amélie; Tamosauskas, Gintaras; Majus, Donatas; Houard, Aurélien; Mysyrowicz, André; Couairon, Arnaud; Dubietis, Audrius

    2014-03-01

    We present measurements fully characterizing the whole life cycle of femtosecond pulses undergoing filamentation in water at 400 nm. The complete pulse dynamics is monitored by means of a four-dimensional mapping technique for the intensity distribution I (x,y,z,t) during the nonlinear interaction. Measured events (focusing or defocusing cycles, pulse splitting and replenishment, supercontinuum generation, conical emission, nonlinear absorption peaks) are mutually connected.The filament evolution from laser energy deposition in water, which is of paramount importance for a wide range of technological and medical applications, is interpreted in light of simulation results.

  16. Rabi oscillations in extreme ultraviolet ionization of atomic argon

    Science.gov (United States)

    Flögel, Martin; Durá, Judith; Schütte, Bernd; Ivanov, Misha; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-02-01

    We demonstrate Rabi oscillations in nonlinear ionization of argon by an intense femtosecond extreme ultraviolet (XUV) laser field produced by high-harmonic generation. We monitor the formation of A r2 + as a function of the time delay between the XUV pulse and an additional near-infrared (NIR) femtosecond laser pulse, and show that the population of an A r+* intermediate resonance exhibits strong modulations both due to an NIR laser-induced Stark shift and XUV-induced Rabi cycling between the ground state of A r+ and the A r+* excited state. Our experiment represents a direct experimental observation of a Rabi-cycling process in the XUV regime.

  17. Detection of polychlorinated biphenyls in transformer oils in Vietnam by multiphoton ionization mass spectrometry using a far-ultraviolet femtosecond laser as an ionization source.

    Science.gov (United States)

    Duong, Vu Thi Thuy; Duong, Vu; Lien, Nghiem Thi Ha; Imasaka, Tomoko; Tang, Yuanyuan; Shibuta, Shinpei; Hamachi, Akifumi; Hoa, Do Quang; Imasaka, Totaro

    2016-03-01

    Polychlorinated biphenyls (PCBs) in transformer and food oils were measured using gas chromatography combined with multiphoton ionization mass spectroscopy. An ultrashort laser pulse emitting in the far-ultraviolet region was utilized for efficient ionization of the analytes. Numerous signal peaks were clearly observed for a standard sample mixture of PCBs when the third and fourth harmonic emissions (267 and 200nm) of a femtosecond Ti:sapphire laser (800nm) were employed. The signal intensities were found to be greater when measured at 200nm compared with those measured at 267nm, providing lower detection limits especially for highly chlorinated PCBs at shorter wavelengths. After simple pretreatment using disposable columns, PCB congeners were measured and found to be present in the transformer oils used in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Time-resolved photoelectron imaging using a femtosecond UV laser and a VUV free-electron laser

    OpenAIRE

    Liu, S. Y.; Ogi, Yoshihiro; Fuji, Takao; Nishizawa, Kiyoshi; Horio, Takuya; Mizuno, Tomoya; Kohguchi, Hiroshi; Nagasono, Mitsuru; Togashi, Tadashi; Tono, Kensuke; Yabashi, Makina; Senba, Yasunori; Ohashi, Haruhiko; Kimura, Hiroaki; Ishikawa, Tetsuya

    2010-01-01

    A time-resolved photoelectron imaging using a femtosecond ultraviolet (UV) laser and a vacuum UV freeelectron laser is presented. Ultrafast internal conversion and intersystem crossing in pyrazine in a supersonic molecular beam were clearly observed in the time profiles of photoioinzation intensity and time-dependent photoelectron images.

  19. Self-compression of femtosecond deep-ultraviolet pulses by filamentation in krypton.

    Science.gov (United States)

    Adachi, Shunsuke; Suzuki, Toshinori

    2017-05-15

    We demonstrate self-compression of deep-ultraviolet (DUV) pulses by filamentation in krypton. In contrast to self-compression in the near-infrared, that in the DUV is associated with a red-shifted sub-pulse appearing in the pulse temporal profile. The achieved pulse width of 15 fs is the shortest among demonstrated sub-mJ deep-ultraviolet pulses.

  20. Chalcogen doping of silicon via intense femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Sheehy, Michael A.; Tull, Brian R.; Friend, Cynthia M.; Mazur, Eric

    2007-01-01

    We have previously shown that doping silicon with sulfur via femtosecond-laser irradiation leads to near-unity absorption of radiation from ultraviolet wavelengths to below band gap short-wave infrared wavelengths. Here, we demonstrate that doping silicon with two other group VI elements (chalcogens), selenium and tellurium, also leads to near-unity broadband absorption. A powder of the chalcogen dopant is spread on the silicon substrate and irradiated with femtosecond-laser pulses. We examine and compare the resulting morphology, optical properties, and chemical composition for each chalcogen-doped substrate before and after thermal annealing. Thermal annealing reduces the absorption of below band gap radiation by an amount that correlates with the diffusivity of the chalcogen dopant used to make the sample. We propose a mechanism for the absorption of below band gap radiation based on defects in the lattice brought about by the femtosecond-laser irradiation and the presence of a supersaturated concentration of chalcogen dopant atoms. The selenium and tellurium doped samples show particular promise for use in infrared photodetectors as they retain most of their infrared absorptance even after thermal annealing-a necessary step in many semiconductor device manufacturing processes

  1. Optimized Kα x-ray flashes from femtosecond-laser-irradiated foils

    International Nuclear Information System (INIS)

    Lu, W.; Nicoul, M.; Shymanovich, U.; Tarasevitch, A.; Zhou, P.; Sokolowski-Tinten, K.; Linde, D. von der; Masek, M.; Gibbon, P.; Teubner, U.

    2009-01-01

    We investigate the generation of ultrashort Kα pulses from plasmas produced by intense femtosecond p-polarized laser pulses on Copper and Titanium targets. Particular attention is given to the interplay between the angle of incidence of the laser beam on the target and a controlled prepulse. It is observed experimentally that the Kα yield can be optimized for correspondingly different prepulse and plasma scale-length conditions. For steep electron-density gradients, maximum yields can be achieved at larger angles. For somewhat expanded plasmas expected in the case of laser pulses with a relatively poor contrast, the Kα yield can be enhanced by using a near-normal-incidence geometry. For a certain scale-length range (between 0.1 and 1 times a laser wavelength) the optimized yield is scale-length independent. Physically this situation arises because of the strong dependence of collisionless absorption mechanisms - in particular resonance absorption - on the angle of incidence and the plasma scale length, giving scope to optimize absorption and hence the Kα yield. This qualitative description is supported by calculations based on the classical resonance absorption mechanism and by particle-in-cell simulations. Finally, the latter simulations also show that even for initially steep gradients, a rapid profile expansion occurs at oblique angles in which ions are pulled back toward the laser by hot electrons circulating at the front of the target. The corresponding enhancement in Kα yield under these conditions seen in the present experiment represents strong evidence for this suprathermal shelf formation effect.

  2. Enhanced stimulated Raman scattering by femtosecond ultraviolet plasma grating in water

    Science.gov (United States)

    Liu, Fengjiang; Yuan, Shuai; He, Boqu; Nan, Junyi; Khan, Abdul Qayyum; Ding, Liang'en; Zeng, Heping

    2018-02-01

    Efficient forward stimulated Raman scattering (SRS) was observed along 400-nm femtosecond (fs) laser filaments in water. SRS conversion dominated over self-phase modulation induced continuum generation as the input pulse energy was above 4 μJ (˜30 Pcr), implying that plasma in the aqueous filamentation channel played an important role in compensating for the group velocity walk-off between the pump and Stokes pulses. By overlapping two synchronous fs 400-nm filaments to form plasma grating in water, significant enhancement of SRS conversion was observed. Such a SRS enhancement originated from the ultrahigh plasma density in the intersection region of the preformed plasma grating.

  3. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

    Science.gov (United States)

    Stachs, Oliver; Schumacher, Silvia; Hovakimyan, Marine; Fromm, Michael; Heisterkamp, Alexander; Lubatschowski, Holger; Guthoff, Rudolf

    2009-11-01

    To evaluate a new method for visualizing femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Laser Zentrum Hannover e.V., Hannover, Germany. Lenses removed from porcine eyes were modified ex vivo by femtosecond laser pulses (wavelength 1040 nm, pulse duration 306 femtoseconds, pulse energy 1.0 to 2.5 microJ, repetition rate 100 kHz) to create defined planes at which lens fibers separate. The femtosecond laser pulses were delivered by a 3-dimension (3-D) scanning unit and transmitted by focusing optics (numerical aperture 0.18) into the lens tissue. Lens fiber orientation and femtosecond laser-induced microincisions were examined using a confocal laser scanning microscope (CLSM) based on a Rostock Cornea Module attached to a Heidelberg Retina Tomograph II. Optical sections were analyzed in 3-D using Amira software (version 4.1.1). Normal lens fibers showed a parallel pattern with diameters between 3 microm and 9 microm, depending on scanning location. Microincision visualization showed different cutting effects depending on pulse energy of the femtosecond laser. The effects ranged from altered tissue-scattering properties with all fibers intact to definite fiber separation by a wide gap. Pulse energies that were too high or overlapped too tightly produced an incomplete cutting plane due to extensive microbubble generation. The 3-D CLSM method permitted visualization and analysis of femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Thus, 3-D CLSM may help optimize femtosecond laser-based procedures in the treatment of presbyopia.

  4. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement

    Science.gov (United States)

    Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui

    2018-02-01

    An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.

  5. Extreme-Ultraviolet Vortices from a Free-Electron Laser

    Directory of Open Access Journals (Sweden)

    Primož Rebernik Ribič

    2017-08-01

    Full Text Available Extreme-ultraviolet vortices may be exploited to steer the magnetic properties of nanoparticles, increase the resolution in microscopy, and gain insight into local symmetry and chirality of a material; they might even be used to increase the bandwidth in long-distance space communications. However, in contrast to the generation of vortex beams in the infrared and visible spectral regions, production of intense, extreme-ultraviolet and x-ray optical vortices still remains a challenge. Here, we present an in-situ and an ex-situ technique for generating intense, femtosecond, coherent optical vortices at a free-electron laser in the extreme ultraviolet. The first method takes advantage of nonlinear harmonic generation in a helical undulator, producing vortex beams at the second harmonic without the need for additional optical elements, while the latter one relies on the use of a spiral zone plate to generate a focused, micron-size optical vortex with a peak intensity approaching 10^{14}  W/cm^{2}, paving the way to nonlinear optical experiments with vortex beams at short wavelengths.

  6. Femtosecond Laser Structuring in Optical Fiber and Transparent Films

    Directory of Open Access Journals (Sweden)

    Herman Peter R.

    2013-11-01

    Full Text Available Femtosecond laser processing is optimized for writing optical circuits, optical resonators, and microfluidic devices inside the cladding of single-mode optical fiber that couple efficiently with the fiber core waveguide. The laser processes open new directions towards Labon-a-Fiber.

  7. Suitable photo-resists for two-photon polymerization using femtosecond fiber lasers

    KAUST Repository

    Rajamanickam, V.P.; Ferrara, L.; Toma, A.; Proietti Zaccaria, R.; Das, G.; Di Fabrizio, Enzo M.; Liberale, Carlo

    2014-01-01

    We present suitable materials with good optical and mechanical properties, simple processing, efficient and optimized for two-photon polymerization (TPP) with femtosecond fiber lasers. We selected readily available acrylic monomer Bisphenol A

  8. Spectroscopic analysis of femtosecond laser-induced gas breakdown

    International Nuclear Information System (INIS)

    Hermann, J.; Bruneau, S.; Sentis, M.

    2004-01-01

    The plasma generated by the interaction of a femtosecond laser pulse with gas has been analyzed using time- and space-resolved emission spectroscopy. The laser beam has been focused with a microscope objective into different gases (air, Ar, He) at pressures ranging from 10 2 to 10 5 Pa. From the analysis of spectral line emission from ions and neutral atoms, the plasma parameters and the plasma composition have been determined as a function of time and space. Furthermore, the generation of fast electrons and/or VUV radiation by the femtosecond laser interaction with the gas was brought to the fore. From the time- and space-evolution of the plasma parameters, a rough estimation of initial values of electron density and refraction index in the focal volume has been performed. These results are compared to analysis of the laser beam transmitted by the plasma. The latter show that only a small fraction of the laser energy is absorbed by the plasma while the spatial distribution of the transmitted laser beam is strongly perturbed by the plasma, which acts like a defocusing lens. However, in ambient helium, the plasma defocusing is weak due to the high ionization potential of helium. The understanding of femtosecond laser-induced gas breakdown is useful for process optimization in femtosecond laser applications like micromachining or surface microanalysis, etc

  9. Ferroelectric domain engineering by focused infrared femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin; Shvedov, Vladlen; Sheng, Yan, E-mail: yan.sheng@anu.edu.au [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Karpinski, Pawel [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Wroclaw University of Technology, Wybrzeze Wyspianskiego, Wroclaw (Poland); Koynov, Kaloian [Max-Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany); Wang, Bingxia; Trull, Jose; Cojocaru, Crina [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Rambla Sant Nebridi, 08222 Terrassa, Barcelona (Spain); Krolikowski, Wieslaw [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Texas A& M University at Qatar, Doha (Qatar)

    2015-10-05

    We demonstrate infrared femtosecond laser-induced inversion of ferroelectric domains. This process can be realised solely by using tightly focused laser pulses without application of any electric field prior to, in conjunction with, or subsequent to the laser irradiation. As most ferroelectric crystals like LiNbO{sub 3}, LiTaO{sub 3}, and KTiOPO{sub 4} are transparent in the infrared, this optical poling method allows one to form ferroelectric domain patterns much deeper inside a ferroelectric crystal than by using ultraviolet light and hence can be used to fabricate practical devices. We also propose in situ diagnostics of the ferroelectric domain inversion process by monitoring the Čerenkov second harmonic signal, which is sensitive to the appearance of ferroelectric domain walls.

  10. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    Science.gov (United States)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  11. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    Science.gov (United States)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  12. Proton radiography using highpower femtosecond laser

    International Nuclear Information System (INIS)

    Choi, Chang Il

    2010-08-01

    A femtosecond laser emits pulses whose width is between few and few hundreds femtoseconds (10 -15 s). The production mechanism of the high energy protons generated by the femtosecond laser is not clear so far, but the technologies have been improving. The applications using the generated protons are the proton therapy, proton radiography, nuclear physics, security inspection, and so on. Especially in the radiography, the laser-generated protons are very useful to obtain high quality images of thin objects, because protons are able to penetrate an object following an almost straight path and give a depth distribution information of various elements in a subject. Since the laser-driven protons require lower cost and smaller facility than accelerator-based protons, the radiography using laser-driven protons have been of interest. In this research, we have performed the radiography experiments by using protons generated by the 100 TW titanium sapphire femtosecond laser facility of Advanced Photonics Research Institute (APRI) of Gwangju Institute of Science Technology (GIST). A CR-39 Solid State Nuclear Track Detector (SSNTD) has been used as radiography screen. The radiography digital images have been obtained by using an optical microscope and a CCD camera. Modulation Transfer Function (MTF) has been derived from analyzing the obtained images, and the spatial resolution of the images have been evaluated. And, we have performed the radiography experiments of monoenergetic proton from the Tandem Van de Graaff accelerator of Korea Institute of Geoscience and Mineral Resources (KIGAM). We have obtained and compared the radiography images from other proton production methods which are the laser and the accelerator, respectively. And also, we have found out the optimized chemical etching condition, in order to improve the spatial resolution of the radiography images. Finally, the evaluated maximum spatial resolution of the images are 2.09 μm

  13. [Alternatives to femtosecond laser technology: subnanosecond UV pulse and ring foci for creation of LASIK flaps].

    Science.gov (United States)

    Vogel, A; Freidank, S; Linz, N

    2014-06-01

    In refractive corneal surgery femtosecond (fs) lasers are used for creating LASIK flaps, dissecting lenticules and for astigmatism correction by limbal incisions. Femtosecond laser systems are complex and expensive and cutting precision is compromised by the large focal length associated with the commonly used infrared (IR) wavelengths. Based on investigations of the cutting dynamics, novel approaches for corneal dissection using ultraviolet A (UVA) picosecond (ps) pulses and ring foci from vortex beams are presented. Laser-induced bubble formation in corneal stroma was investigated by high-speed photography at 1-50 million frames/s. Using Gaussian and vortex beams of UVA pulses with durations between 200 and 850 ps the laser energy needed for easy removal of flaps created in porcine corneas was determined and the quality of the cuts by scanning electron microscopy was documented. Cutting parameters for 850 ps are reported also for rabbit eyes. The UV-induced and mechanical stress were evaluated for Gaussian and vortex beams. The results show that UVA picosecond lasers provide better cutting precision than IR femtosecond lasers, with similar processing times. Cutting energy decreases by >50 % when the laser pulse duration is reduced to 200 ps. Vortex beams produce a short, donut-shaped focus allowing efficient and precise dissection along the corneal lamellae which results in a dramatic reduction of the absorbed energy needed for cutting and of mechanical side effects as well as in less bubble formation in the cutting plane. A combination of novel approaches for corneal dissection provides the option to replace femtosecond lasers by compact UVA microchip laser technology. Ring foci are also of interest for femtosecond laser surgery, especially for improved lenticule excision.

  14. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  15. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  16. Research on spectrum broadening covering visible light of a fiber femtosecond optical frequency comb for absolute frequency measurement

    Science.gov (United States)

    Xing, Shuai; Wu, Tengfei; Li, Shuyi; Xia, Chuanqing; Han, Jibo; Zhang, Lei; Zhao, Chunbo

    2018-03-01

    As a bridge connecting microwave frequency and optical frequency, femtosecond laser has important significance in optical frequency measurement. Compared with the traditional Ti-sapphire femtosecond optical frequency comb, with the advantages of compact structure, strong anti-interference ability and low cost, the fiber femtosecond optical frequency comb has a wider application prospect. An experiment of spectrum broadening in a highly nonlinear photonic crystal fiber pumped by an Er-fiber mode-locked femtosecond laser is studied in this paper. Based on optical amplification and frequency doubling, the central wavelength of the output spectrum is 780nm and the average power is 232mW. With the femtosecond pulses coupled into two different photonic crystal fibers, the coverage of visible spectrum is up to 500nm-960nm. The spectral shape and width can be optimized by changing the polarization state for satisfying the requirments of different optical frequencies measurement.

  17. Generation of femtosecond laser pulses at 396 nm in K3B6O10Cl crystal

    International Nuclear Information System (INIS)

    Zhang Ning-Hua; Huang Hang-Dong; Tian Wen-Long; Zhu Jiang-Feng; Teng Hao; Fang Shao-Bo; Wei Zhi-Yi; Wu Hong-Ping; Pan Shi-Lie

    2016-01-01

    K 3 B 6 O 10 Cl (KBOC), a new nonlinear optical crystal, shows potential advantages for the generation of deep ultraviolet (UV) light compared with other borate crystals. In this paper we study for the first time the second harmonic generation (SHG) of a femtosecond Ti:sapphire amplifier with this crystal. Laser power is obtained to be as high as 220 mW at the central wavelength of 396 nm with a 1-mm-long crystal, and the maximum SHG conversion efficiency reaches 39.3%. The typical pulse duration is 83 fs. The results show that second harmonic (SH) conversion efficiency has the room to be further improved and that the new nonlinear crystal is very suited to generate the high efficiency deep ultraviolet laser radiation below 266 nm. (paper)

  18. Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry

    Science.gov (United States)

    Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2015-08-01

    Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.

  19. Cut-off scaling of high-harmonic generation driven by a femtosecond visible optical parametric amplifier

    International Nuclear Information System (INIS)

    Cirmi, Giovanni; Lai, Chien-Jen; Granados, Eduardo; Huang, Shu-Wei; Sell, Alexander; Hong, Kyung-Han; Moses, Jeffrey; Keathley, Phillip; Kärtner, Franz X

    2012-01-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 µJ energy at the 1 kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping other parameters (energy, duration and beam size) constant, we experimentally studied the scaling law of cut-off energy with the driver wavelength in helium. Our measurements show a λ 1.7+0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source, the high-order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ∼25 and ∼100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  20. Femtosecond pulse shaping using plasmonic snowflake nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Tok, Ruestue Umut; Sendur, Kuersat [Sabanci University, Orhanli-Tuzla, 34956, Istanbul (Turkey)

    2011-09-15

    We have theoretically demonstrated femtosecond pulse manipulation at the nanoscale using the plasmonic snowflake antenna's ability to localize light over a broad spectrum. To analyze the interaction of the incident femtosecond pulse with the plasmonic nanoantenna, we first decompose the diffraction limited incident femtosecond pulse into its spectral components. The interaction of each spectral component with the nanoantenna is analyzed using finite element technique. The time domain response of the plasmonic antenna is obtained using inverse Fourier transformation. It is shown that the rich spectral characteristics of the plasmonic snowflake nanoantenna allow manipulation of the femtosecond pulses over a wide spectrum. Light localization around the gap region of the nanoantenna is shown for femtosecond pulses. As the alignment of incident light polarization is varied, different antenna elements oscillate, which in turn creates a different spectrum and a distinct femtosecond response.

  1. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  2. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  3. [Crystalline lens photodisruption using femtosecond laser: experimental study].

    Science.gov (United States)

    Chatoux, O; Touboul, D; Buestel, C; Balcou, P; Colin, J

    2010-09-01

    The aim of this study was to analyze the interactions during femtosecond (fs) laser photodisruption in ex vivo porcine crystalline lenses and to study the parameters for laser interaction optimization. An experimental femtosecond laser was used. The laser characteristics were: 1030 nm wavelength; pulse duration, 400 fs; and numerical aperture, 0.13. Specific software was created to custom and monitor any type of photoablation pattern for treatment purposes. Porcine crystalline lenses were placed in an open sky holder filled with physiological liquid (BSS) covered by a glass plate. A numerical camera was associated with metrological software in order to magnify and quantify the results. Transmission electron microscopy (TEM) was performed on some samples to identify the microscopic plasma interactions with the lens. The optimization of parameters was investigated in terms of the optical breakdown threshold, the sizing of interactions, and the best pattern for alignments. More than 150 crystalline lenses of freshly enucleated pigs were treated. The optical breakdown threshold (OBT) was defined as the minimal energy level per pulse necessary to observe a physical interaction. In our study, the OBT varied according to the following parameters: the crystalline lens itself, varying from 4.2 to 7.6 μJ (mean, 5.1 μJ), and the depth of laser focus, varying up to 1 μJ, increasing in the depth of the tissue. Analyzing the distance between impacts, we observed that the closer the impacts were the less power was needed to create a clear well-drawn defect pattern (lines), i.e., with a 4-μJ optimized OBT, when the impacts were placed every 2 μm for the x,y directions and 60 μm for the z direction. Coalescent bubbles created by plasma formation always disappeared in less than 24h. The nonthermal effect of plasma and the innocuousness on surrounding tissues were proven by the TEM results. The crystalline lens photodisruption by the femtosecond laser seems an innovative

  4. Femtosecond induced transparency and absorption in the extreme ultraviolet by coherent coupling of the He 2s2p (1Po) and 2p2 (1Se) double excitation states with 800 nm light

    International Nuclear Information System (INIS)

    Loh, Z.-H.; Greene, C.H.; Leone, S.R.

    2007-01-01

    Femtosecond high-order harmonic transient absorption spectroscopy is used to observe electromagnetically induced transparency-like behavior as well as induced absorption in the extreme ultraviolet by laser dressing of the He 2s2p ( 1 P 0 ) and 2p 2 ( 1 S e ) double excitation states with an intense 800 nm field. Probing in the vicinity of the 1s 2 → 2s2p transition at 60.15 eV reveals the formation of an Autler-Townes doublet due to coherent coupling of the double excitation states. Qualitative agreement with the experimental spectra is obtained only when optical field ionization of both double excitation states into the N = 2 continuum is included in the theoretical model. Because the Fano q-parameter of the unperturbed probe transition is finite, the laser-dressed He atom exhibits both enhanced transparency and absorption at negative and positive probe energy detunings, respectively

  5. Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle

    Science.gov (United States)

    Zhu, G. P.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P.

    2009-02-01

    Wurtzite structural ZnO microneedles with hexagonal cross section were fabricated by vapor-phase transport method and an individual microneedle was employed as a lasing microcavity. Under excitation of a femtosecond pulse laser with 800 nm wavelength, the ultraviolet (UV) laser emission was obtained, which presented narrow linewidth and high Q value. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail. The results demonstrated that the UV laser originated from the whispering-gallery mode induced by two-photon absorption assisted by Rabi oscillation.

  6. Fiber laser-microscope system for femtosecond photodisruption of biological samples.

    Science.gov (United States)

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F Ömer; Eldeniz, Y Burak; Tazebay, Uygar H

    2012-03-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells.

  7. Determination of Pesticides by Gas Chromatography Combined with Mass Spectrometry Using Femtosecond Lasers Emitting at 267, 400, and 800 nm as the Ionization Source.

    Science.gov (United States)

    Yang, Xixiang; Imasaka, Tomoko; Imasaka, Totaro

    2018-04-03

    A standard sample mixture containing 51 pesticides was separated by gas chromatography (GC), and the constituents were identified by mass spectrometry (MS) using femtosecond lasers emitting at 267, 400, and 800 nm as the ionization source. A two-dimensional display of the GC/MS was successfully used for the determination of these compounds. A molecular ion was observed for 38 of the compounds at 267 nm and for 30 of the compounds at 800 nm, in contrast to 27 among 50 compounds when electron ionization was used. These results suggest that the ultraviolet laser is superior to the near-infrared laser for molecular weight determinations and for a more reliable analysis of these compounds. In order to study the conditions for optimal ionization, the experimental data were examined using the spectral properties (i.e., the excitation and ionization energies and absorption spectra for the neutral and ionized species) obtained by quantum chemical calculations. A few molecules remained unexplained by the currently reported rules, requiring additional rules for developing a full understanding of the femtosecond ionization process. The pesticides in the homogenized matrix obtained from kabosu ( citrus sphaerocarpa) were measured using lasers emitting at 267 and 800 nm. The pesticides were clearly separated and measured on the two-dimensional display, especially for the data measured at 267 nm, suggesting that this technique would have potential for use in the practical trace analysis of the pesticides in the environment.

  8. Phototransfection of mammalian cells using femtosecond laser pulses: optimization and applicability to stem cell differentiation

    CSIR Research Space (South Africa)

    Mthunzi, P

    2010-07-01

    Full Text Available phototransfection. Extending previous studies, we show that femtosecond lasers can be used to phototransfect a range of different cell lines, and specifically that this novel technology can also transfect mouse embryonic stem cell colonies with 25% efficiency...

  9. Femtosecond lasers for countermeasure applications

    NARCIS (Netherlands)

    Franssen, G.C.; Schleijpen, H.M.A.; Heuvel, J.C. van den; Buersing, H.; Eberle, B.; Walter, D.

    2009-01-01

    In recent years, much advance in the field of high-power femtosecond laser technology has been made. The high pulse power of femtosecond laser systems leads to various interesting phenomena, such as a very high power density and the formation of a plasma in the propagation medium, which is usually

  10. Femtosecond lasers for microsurgery of cornea

    International Nuclear Information System (INIS)

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E; Obidin, Aleksei Z; Shcherbakov, Ivan A

    2012-01-01

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting ∼400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 μJ. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 μm. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s -1 . At a stage of preliminary tests of the system, the Κ8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  11. Femtosecond lasers for microsurgery of cornea

    Energy Technology Data Exchange (ETDEWEB)

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E; Obidin, Aleksei Z; Shcherbakov, Ivan A

    2012-03-31

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  12. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  13. Evaluation of a 345 nm Femtosecond Laser for Corneal Surgery with Respect to Intraocular Radiation Hazard.

    Directory of Open Access Journals (Sweden)

    Johannes Menzel-Severing

    Full Text Available We report our findings from a preclinical safety study designed to assess potential side effects of corneal ultraviolet femtosecond laser treatment on lens and retina.Refractive lenticules (-5 dpt with a diameter of 6 mm were created in the right cornea of eight Dutch Belted rabbits. Radiant exposure was 0.5 J/cm² in two animals and 18 J/cm² in six animals. The presence of lens opacities was assessed prior to and up to six months following laser application using Scheimpflug images (Pentacam, Oculus and backscatter analysis (Opacity Lensmeter 702, Interzeag. Ganzfeld flash and flicker electroretinogram (ERG recordings were obtained from both eyes prior to and up to six weeks following laser application. At the study endpoint, retinas were examined by light microscopy.Independent of energy dose applied, no cataract formation could be observed clinically or with either of the two objective methods used. No changes in ERG recordings over time and no difference between treated and untreated eye were detected. Histologically, retinal morphology was preserved and retinal pigment epithelium as well as photoreceptor inner and outer segments appeared undamaged. Quantitative digital image analysis did not reveal cell loss in inner or outer nuclear layers.Our analysis confirms theoretical considerations suggesting that ultraviolet femtosecond laser treatment of the cornea is safe for intraocular tissues. Transmitted light including stray light induces no photochemical effects in lens or retina at energy levels much higher than required for the clinical purpose. These conclusions cannot be applied to eyes with pre-existing retinal damage, as these may be more vulnerable to light.

  14. Recent advances in femtosecond laser-assisted cataract surgery

    Directory of Open Access Journals (Sweden)

    Zhao-Jie Chu

    2013-07-01

    Full Text Available Perfect vision and fewer complications is our goal in cataract surgery, femtosecond laser-assisted cataract surgery hold the promise. Applications of femtosecond laser technology for capsulotomy, nuclear fragmentation and corneal incision in cataract surgery bring a new level of accuracy, reproducibility and predictability over the current cataract surgery. The femtosecond laser produces capsulotomies that are more precise, accurate, reproducible, and stronger than those created with the conventional manual technique, and further helps maintain proper positioning of the IOL. Femtosecond laser in nuclear fragmentation lead to a lower effective phacoemulsification time, and the corneal incision is more stable. But currently there are some complications and a clear learning curve associated with the use of femtosecond lasers for cataract surgery. The long-term safety and visual outcomes still need further investigation.

  15. Femtosecond phacoemulsification: the business and the medicine.

    Science.gov (United States)

    Uy, Harvey S; Edwards, Keith; Curtis, Nick

    2012-01-01

    PURPOSE FOR REVIEW: Phacoemulsification is the preferred method for cataract surgery in the developed world. The number of phacoemulsification procedures performed annually is expected to increase as the population ages. Femtosecond cataract surgery offers several surgical advantages over conventional phacoemulsification and has already attained commercial application in some countries. The purpose of this review is to outline the benefits, risks and commercial issues of femtosecond lasers as applied to cataract surgery. Cataract surgeons are adopting femtosecond technology to perform laser capsulotomy, lens fragmentation, clear cornea incisions and limbal relaxing incisions. Femtosecond lasers clearly perform these surgical steps with greater precision and reproducibility. Further benefits such as improved postoperative refractive results and reduced complication rates are being investigated. Commercial issues have invariably arisen such as cost of installation and operation, value proposition and return on investment. Femtosecond cataract surgery is an evolving procedure that can potentially lead to better and safer surgical outcomes. This review presents the currently available scientific evidence and discusses some of the relevant financial issues concerning this technology.

  16. Experimental evaluation of optimization method for developing ultraviolet barrier coatings

    Science.gov (United States)

    Gonome, Hiroki; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-01-01

    Ultraviolet (UV) barrier coatings can be used to protect many industrial products from UV attack. This study introduces a method of optimizing UV barrier coatings using pigment particles. The radiative properties of the pigment particles were evaluated theoretically, and the optimum particle size was decided from the absorption efficiency and the back-scattering efficiency. UV barrier coatings were prepared with zinc oxide (ZnO) and titanium dioxide (TiO2). The transmittance of the UV barrier coating was calculated theoretically. The radiative transfer in the UV barrier coating was modeled using the radiation element method by ray emission model (REM2). In order to validate the calculated results, the transmittances of these coatings were measured by a spectrophotometer. A UV barrier coating with a low UV transmittance and high VIS transmittance could be achieved. The calculated transmittance showed a similar spectral tendency with the measured one. The use of appropriate particles with optimum size, coating thickness and volume fraction will result in effective UV barrier coatings. UV barrier coatings can be achieved by the application of optical engineering.

  17. Laser-Induced Damage with Femtosecond Pulses

    Science.gov (United States)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  18. Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction

    Science.gov (United States)

    Minitti, M. P.; Budarz, J. M.; Kirrander, A.; Robinson, J. S.; Ratner, D.; Lane, T. J.; Zhu, D.; Glownia, J. M.; Kozina, M.; Lemke, H. T.; Sikorski, M.; Feng, Y.; Nelson, S.; Saita, K.; Stankus, B.; Northey, T.; Hastings, J. B.; Weber, P. M.

    2015-06-01

    Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-space representations of the evolving dynamics during a well-known chemical reaction and show a series of time-sorted structural snapshots produced by ultrafast time-resolved hard x-ray scattering. A computational analysis optimally matches the series of scattering patterns produced by the x rays to a multitude of potential reaction paths. In so doing, we have made a critical step toward the goal of viewing chemical reactions on femtosecond time scales, opening a new direction in studies of ultrafast chemical reactions in the gas phase.

  19. Ultrafast lattice dynamics in photoexcited nanostructures. Femtosecond X-ray diffraction with optimized evaluation schemes

    International Nuclear Information System (INIS)

    Schick, Daniel

    2013-01-01

    Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO 3 . Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO 3 . This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO 3 . In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the

  20. Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15

    Science.gov (United States)

    Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang

    2018-03-01

    This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.

  1. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  2. Generation of Femtosecond Electron and Photon Pulses

    CERN Document Server

    Thongbai, Chitrlada; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Rimjaem, Sakhorn; Saisut, Jatuporn; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    Femtosecond electron and photon pulses become a tool of interesting important to study dynamics at molecular or atomic levels. Such short pulses can be generated from a system consisting of an RF-gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The femtosecond electron pulses can be used directly or used as sources to produce electromagnetic radiation of equally short pulses by choosing certain kind of radiation pruduction processes. At the Fast Neutron Research Facility (Thailand), we are especially interested in production of radiation in Far-infrared and X-ray regime. In the far-infrared wavelengths which are longer than the femtosecond pulse length, the radiation is emitted coherently producing intense radiation. In the X-ray regime, development of femtosecond X-ray source is crucial for application in ultrafast science.

  3. Femtosecond laser refractive surgery: small-incision lenticule extraction vs. femtosecond laser-assisted LASIK.

    Science.gov (United States)

    Lee, Jimmy K; Chuck, Roy S; Park, Choul Yong

    2015-07-01

    Small-incision lenticule extraction (SMILE) is a novel technique devised to correct refractive errors. SMILE circumvents excimer laser photoablation of cornea, as the stromal lenticule cut by femtosecond laser is removed manually. Smaller incisions and preservation of anterior corneal biomechanical strength have been suggested as some of the advantages of SMILE over femtosecond laser-assisted LASIK (FS-LASIK). In this review, we compared previous published results of SMILE and FS-LASIK. The advantage, efficacy and safety of SMILE are compared with FS-LASIK. SMILE achieved similar efficacy, predictability and safety as FS-LASIK. Greater preservations of corneal biomechanical strength and corneal nerves were observed in SMILE when compared with LASIK or PRK. Additionally, the incidence of postoperative dry eye syndrome was found to be less problematic in SMILE than in FS-LASIK. SMILE is a promising new surgery for refractive error correction. Prospective and retrospective studies of SMILE have shown that results of SMILE are similar to FS-LASIK. With advances in femtosecond laser technology, SMILE may gain greater acceptance in the future.

  4. Femtosecond Non-Markovian Optical Dynamics in Solution

    NARCIS (Netherlands)

    Nibbering, Erik T.J.; Wiersma, Douwe A.; Duppen, Koos

    1991-01-01

    Femtosecond photon-echo experiments on sodium resorufin in dimethylsulfoxide at room temperature show that optical dephasing in solution is of non-Markovian character. A single Gauss-Markov stochastic modulation process is used to interpret both the femtosecond light-scattering results and the

  5. Femtosecond laser-induced herringbone patterns

    Science.gov (United States)

    Garcell, Erik M.; Lam, Billy; Guo, Chunlei

    2018-06-01

    Femtosecond laser-induced herringbone patterns are formed on copper (Cu). These novel periodic structures are created following s-polarized, large incident angle, femtosecond laser pulses. Forming as slanted and axially symmetric laser-induced periodic surface structures along the side walls of ablated channels, the result is a series of v-shaped structures that resemble a herringbone pattern. Fluence mapping, incident angle studies, as well as polarization studies have been conducted and provide a clear understanding of this new structure.

  6. Femtosecond laser induced phenomena in transparent solid materials

    DEFF Research Database (Denmark)

    Tan, D.Z.; Sharafudeen, K.N.; Yue, Yuanzheng

    2016-01-01

    solved, especially concerning the interaction of strong, ultra-short electromagnetic pulses with matter, and also because potential advanced technologies will emerge due to the impressive capability of the intense femtosecond laser to create new material structures and hence functionalities. When......The interaction of intense femtosecond laser pulses with transparent materials is a topic that has caused great interest of scientists over the past two decades. It will continue to be a fascinating field in the coming years. This is because many challenging fundamental problems have not been......–matter interaction, and fabricate various integrated micro-devices. In recent years we have witnessed exciting development in understanding and applying femtosecond laser induced phenomena in transparent materials. The interaction of femtosecond laser pulses with transparent materials relies on non...

  7. Precise measurement of a subpicosecond electron single bunch by the femtosecond streak camera

    International Nuclear Information System (INIS)

    Uesaka, M.; Ueda, T.; Kozawa, T.; Kobayashi, T.

    1998-01-01

    Precise measurement of a subpicosecond electron single bunch by the femtosecond streak camera is presented. The subpicosecond electron single bunch of energy 35 MeV was generated by the achromatic magnetic pulse compressor at the S-band linear accelerator of nuclear engineering research laboratory (NERL), University of Tokyo. The electric charge per bunch and beam size are 0.5 nC and the horizontal and vertical beam sizes are 3.3 and 5.5 mm (full width at half maximum; FWHM), respectively. Pulse shape of the electron single bunch is measured via Cherenkov radiation emitted in air by the femtosecond streak camera. Optical parameters of the optical measurement system were optimized based on much experiment and numerical analysis in order to achieve a subpicosecond time resolution. By using the optimized optical measurement system, the subpicosecond pulse shape, its variation for the differents rf phases in the accelerating tube, the jitter of the total system and the correlation between measured streak images and calculated longitudinal phase space distributions were precisely evaluated. This measurement system is going to be utilized in several subpicosecond analyses for radiation physics and chemistry. (orig.)

  8. Effects of femtosecond laser radiation on the skin

    International Nuclear Information System (INIS)

    Rogov, P Yu; Bespalov, V G

    2016-01-01

    A mathematical model of linear and nonlinear processes is presented occurring under the influence of femtosecond laser radiation on the skin. There was held an analysis and the numerical solution of an equation system describing the dynamics of the electron and phonon subsystems were received. The results can be used to determine the maximum permissible levels of energy generated by femtosecond laser systems and the establishment of Russian laser safety standards for femtosecond laser systems. (paper)

  9. Sub-micron-scale femtosecond laser ablation using a digital micromirror device

    International Nuclear Information System (INIS)

    Mills, B; Feinaeugle, M; Sones, C L; Eason, R W; Rizvi, N

    2013-01-01

    Commercial digital multimirror devices offer a cheap and effective alternative to more expensive spatial light modulators for ablation via beam shaping. Here we present femtosecond laser ablation using the digital multimirror device from an Acer C20 Pico Digital Light Projector and show ablation of complex features with feature sizes ranging from sub-wavelength (400 nm) up to ∼30 µm. Simulations are presented that have been used to optimize and understand the experimentally observed resolution. (paper)

  10. Extended ABCD matrix formalism for the description of femtosecond diffraction patterns; application to femtosecond digital in-line holography with anamorphic optical systems.

    Science.gov (United States)

    Brunel, Marc; Shen, Huanhuan; Coetmellec, Sebastien; Lebrun, Denis

    2012-03-10

    We present a new model to predict diffraction patterns of femtosecond pulses through complex optical systems. The model is based on the extension of an ABCD matrix formalism combined with generalized Huygens-Fresnel transforms (already used in the CW regime) to the femtosecond regime. The model is tested to describe femtosecond digital in-line holography experiments realized in situ through a cylindrical Plexiglas pipe. The model allows us to establish analytical relations that link the holographic reconstruction process to the experimental parameters of the pipe and of the incident beam itself. Simulations and experimental results are in good concordance. Femtosecond digital in-line holography is shown to allow significant coherent noise reduction, and this model will be particularly efficient to describe a wide range of optical geometries. More generally, the model developed can be easily used in any experiment where the knowledge of the precise evolution of femtosecond transverse patterns is required.

  11. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  12. Electron emission from a double-layer metal under femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuchang; Li, Suyu; Jiang, Yuanfei; Chen, Anmin, E-mail: amchen@jlu.edu.cn; Ding, Dajun; Jin, Mingxing, E-mail: mxjin@jlu.edu.cn

    2015-01-01

    In this paper we theoretically investigate electron emission during femtosecond laser ablation of single-layer metal (copper) and double-layer structures. The double-layer structure is composed of a surface layer (copper) and a substrate layer (gold or chromium). The calculated results indicate that the double-layer structure brings a change to the electron emission from the copper surface. Compared with the ablation of a single-layer, a double-layer structure may be helpful to decrease the relaxation time of the electron temperature, and optimize the electron emission by diminishing the tailing phenomenon under the same absorbed laser fluence. With the increase of the absorbed laser fluence, the effect of optimization becomes significant. This study provides a way to optimize the electron emission which can be beneficial to generate laser induced ultrafast electron pulse sources.

  13. Femtosecond all-optical parallel logic gates based on tunable saturable to reverse saturable absorption in graphene-oxide thin films

    International Nuclear Information System (INIS)

    Roy, Sukhdev; Yadav, Chandresh

    2013-01-01

    A detailed theoretical analysis of ultrafast transition from saturable absorption (SA) to reverse saturable absorption (RSA) has been presented in graphene-oxide thin films with femtosecond laser pulses at 800 nm. Increase in pulse intensity leads to switching from SA to RSA with increased contrast due to two-photon absorption induced excited-state absorption. Theoretical results are in good agreement with reported experimental results. Interestingly, it is also shown that increase in concentration results in RSA to SA transition. The switching has been optimized to design parallel all-optical femtosecond NOT, AND, OR, XOR, and the universal NAND and NOR logic gates

  14. Femtosecond laser based small incision lenticule extraction for moderate and high myopia

    DEFF Research Database (Denmark)

    Hjortdal, Jesper Østergaard; Asp, Sven; Ivarsen, Anders

    Femtosecond laser based small incision lenticule extraction for moderate and high myopia. Jesper Hjortdal, Sven Asp, Anders Ivarsen, Anders Vestergaard Department of Ophthalmology, Aarhus University Hospital, Denmark Purpose: ReLEx® smile is a new keratorefractive procedure whereby a stromal lent....... Refractive predictability, safety and patient satisfaction at 3 months seems equal to ReLEx flex and FS-LASIK. Optimizing laser energy settings and surgeon experience is important to minimize initial inferior results....

  15. Pico-femtosecond image-tube photography in quantum electronics

    International Nuclear Information System (INIS)

    Schelev, M Ya

    2001-01-01

    The possibility of experimental achievement of the time resolution of image-converter tubes (ICTs) corresponding to the theoretical limit of 10 fs is considered as applied to quantum electronics problems. A new generation of ICTs with a temporal resolution of 200 - 500 fs has been developed for recording femtosecond laser radiation. The entirely new devices based on time-analysing ICTs such as femtosecond photoelectronic diffractometers, have been created for studying the dynamics of phase transitions in substances using diffrac-tion of electrons with energies ranging from 20 to 40 keV. (femtosecond technologies)

  16. Imaging femtosecond laser-induced electronic excitation in glass

    International Nuclear Information System (INIS)

    Mao Xianglei; Mao, Samuel S.; Russo, Richard E.

    2003-01-01

    While substantial progress has been achieved in understanding laser ablation on the nanosecond and picosecond time scales, it remains a considerable challenge to elucidate the underlying mechanisms during femtosecond laser material interactions. We present experimental observations of electronic excitation inside a wide band gap glass during single femtosecond laser pulse (100 fs, 800 nm) irradiation. Using a femtosecond time-resolved imaging technique, we measured the evolution of a laser-induced electronic plasma inside the glass and calculated the electron number density to be on the order of 10 19 cm -3

  17. Femtosecond laser three-dimensional micro- and nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Koji, E-mail: ksugioka@riken.jp [RIKEN Center for Advanced Photonics, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Cheng, Ya, E-mail: ya.cheng@siom.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper

  18. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacherjee, Aditi, E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Attar, Andrew R., E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R., E-mail: srl@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH{sub 2} =CHCH{sub 2}I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground ({sup 2}P{sub 3/2}, I) and spin-orbit excited ({sup 2}P{sub 1/2}, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N{sub 4/5} edge (45–60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive n{sub I}σ{sup ∗}{sub C—I} excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ{sup ∗} states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ{sup ∗}(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs–65 fs and decay completely by 145 fs–185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic

  19. Femtosecond Photon-Counting Receiver

    Science.gov (United States)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  20. Scaling of black silicon processing time by high repetition rate femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Nava Giorgio

    2013-11-01

    Full Text Available Surface texturing of silicon substrates is performed by femtosecond laser irradiation at high repetition rates. Various fabrication parameters are optimized in order to achieve very high absorptance in the visible region from the micro-structured silicon wafer as compared to the unstructured one. A 70-fold reduction of the processing time is demonstrated by increasing the laser repetition rate from 1 kHz to 200 kHz. Further scaling up to 1 MHz can be foreseen.

  1. Preliminary observation of refractive cataract surgery assisted by femtosecond laser

    Directory of Open Access Journals (Sweden)

    Xiao-Li Wang

    2015-12-01

    Full Text Available AIM:To compare the differences of visual acuity and corneal astigmatism postoperatively between conventional refractive cataract surgery and that assisted by femtosecond laser.METHODS:Sixty patients(60 eyeswith age-related cataract and cornea astigmatism were divided into femtosecond group and conventional group randomly or voluntarily. The flat shaft, steep shaft and diopter of corneal astigmatism in patients in femtosecond group were inputted into the online vector calculators to get the location and width of the incision. Then femtosecond laser was used to make corneal releasing incision, the main and auxiliary incision. Phacoemulsification and aspheric multifocal intraocular lens implantation were undergone. Patients in conventional group received full-thickness relaxing incision by cornea paracentesis knife at the steepest meridian axis during phacoemulsification. Then aspheric multifocal intraocular lenses were implanted. Uncorrected distance visual acuity(UCDVA, uncorrected near visual acuity(UCNVAand cornea astigmatism were observed at 1d,1wk and 1mo postoperative. RESULTS:UCVA of patients in both groups was improved after the surgeries. UCDVA and UCNVA of femtosecond group were higher than those of conventional group, while the cornea astigmatism of femtosecond group was lower than that of conventional group.CONCLUSION:Refractile cataract surgery assisted by femtosecond laser canoffer better visual quality than conventional refractive cataract surgery because of lower cornea astigmatism and better visual acuity.

  2. Design and analysis of X-band femtosecond linac

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, M; Kozawa, T; Takeshita, A; Kobayashi, T; Ueda, T; Miya, K [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1997-03-01

    Femtosecond quantum phenomena research project is proposed at Nuclear Engineering Research Laboratory, University of Tokyo. The research facility consists of an X-band (11.424GHz) femtosecond electron linac, a femtosecond wavelength tunable laser, two S-band (2.856GHz) picosecond electron linacs and measuring equipments. Especially, we aim to generate a 100 fs (FWHM) electron single bunch with more than 1 nC at the X-band femtosecond linac. Ultrafast processes in radiation physics, chemistry, material science and microscopic electromagnetic phenomena are going to be analyzed there. Here the design and analysis of an X-band femtosecond linac is presented. The simulation of electron dynamics is carried out including magnetic pulse compression by using PARMELA and SUPERFISH. It is found by the simulation that the 600 ps (tail-to-tail) electron emission from a 200 kV thermionic gun can be bunched and compressed to 110 fs (FWHM) with the charge of 0.8 nC which gives 7.3 kA. We plan to use one high power X-band klystron which can supply 60 MW with more than 200 ns pulse duration. The flatness of plateau of the pulse should be 0.2% for stable ultrashort bunch generation. (author)

  3. Fabrication and Characterization of Linear and Nonlinear Photonic Devices in Fused Silica by Femtosecond Laser Writing

    Science.gov (United States)

    Ng, Jason Clement

    Femtosecond laser processing is a flexible, three-dimensional (3D) fabrication technique used to make integrated low-loss photonic devices in fused silica. My work expanded the suite of available optical devices through the design and optimization of linear optical components such as low-loss (70-nm spectral window. My work further complemented femtosecond laser processing with the development of nonlinear device capabilities. While thermal poling is a well known process, significant challenges had restricted the development of nonlinear devices in fused silica. The laser writing process would erase the induced nonlinearity (erasing) while a written waveguide core acted as a barrier to the thermal poling process (blocking). Using second harmonic (SH) microscopy, the effectiveness of thermal poling on laser-written waveguides was systematically analyzed leading to the technique of "double poling", which effectively overcomes the two challenges of erasing and blocking. In this new process the substrate is poled before and after waveguide writing to restore the induced nonlinearity within the vicinity of the waveguide to enable effective poling for inducing a second-order nonlinearity (SON) in fused silica. A new flexible, femtosecond laser based erasure process was also developed to enable quasi-phase matching and to form arbitrarily chirped gratings. Following this result, second harmonic generation (SHG) in a quasiphase-matched (QPM) femtosecond laser written waveguide device was demonstrated. SHG in a chirped QPM structure was also demonstrated to illustrate the flexibility of the femtosecond laser writing technique. These are the first demonstration of frequency doubling in an all-femtosecond-laser-written structure. A maximum SHG conversion efficiency of 1.3 +/- 0.1x10 -11/W-cm-2 was achieved for the fundamental wavelength of 1552.8 nm with a phase-matching bandwidth of 4.4 nm for a 10.0-mm-long waveguide. For a shorter sample, an effective SON of chi(2) = 0

  4. Characteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Chenrui Jing

    2016-12-01

    Full Text Available Simultaneous spatial and temporal focusing (SSTF of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses for femtosecond laser micromachining. Finally, we summarize all of the results and give a future perspective of this technique.

  5. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    Science.gov (United States)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  6. High incidence of rainbow glare after femtosecond laser assisted-LASIK using the upgraded FS200 femtosecond laser.

    Science.gov (United States)

    Zhang, Yu; Chen, Yue-Guo

    2018-03-05

    To compare the incidence of rainbow glare (RG) after femtosecond laser assisted-LASIK (FS-LASIK) using the upgraded FS200 femtosecond laser with different flap cut parameter settings. A consecutive series of 129 patients (255 eyes) who underwent FS-LASIK for correcting myopia and/or astigmatism using upgraded WaveLight FS200 femtosecond laser with the original settings was included in group A. Another consecutive series of 129 patients (255 eyes) who underwent FS-LASIK using upgraded WaveLight FS200 femtosecond laser with flap cut parameter settings changed (decreased pulse energy, spot and line separation) was included in group B. The incidence and fading time of RG, confocal microscopic image and postoperative clinical results were compared between the two groups. There were no differences between the two groups in age, baseline refraction, excimer laser ablation depth, postoperative uncorrected visual acuity and refraction. The incidence rate of RG in group A (35/255, 13.73%) was significantly higher than that in group B (4/255, 1.57%) (P  0.05).The confocal microscopic images showed wider laser spot spacing in group A than group B. The incidence of RG was significantly correlated with age and grouping (P laser with original flap cut parameter settings could increase the incidence of RG. The narrower grating size and lower pulse energy could ameliorate this side effect.

  7. Femtosecond laser machining for characterization of local mechanical properties of biomaterials: a case study on wood

    Science.gov (United States)

    Jakob, Severin; Pfeifenberger, Manuel J.; Hohenwarter, Anton; Pippan, Reinhard

    2017-12-01

    The standard preparation technique for micro-sized samples is focused ion beam milling, most frequently using Ga+ ions. The main drawbacks are the required processing time and the possibility and risks of ion implantation. In contrast, ultrashort pulsed laser ablation can process any type of material with ideally negligible damage to the surrounding volume and provides 4 to 6 orders of magnitude higher ablation rates than the ion beam technique. In this work, a femtosecond laser was used to prepare wood samples from spruce for mechanical testing at the micrometre level. After optimization of the different laser parameters, tensile and compressive specimens were produced from microtomed radial-tangential and longitudinal-tangential sections. Additionally, laser-processed samples were exposed to an electron beam prior to testing to study possible beam damage. The specimens originating from these different preparation conditions were mechanically tested. Advantages and limitations of the femtosecond laser preparation technique and the deformation and fracture behaviour of the samples are discussed. The results prove that femtosecond laser processing is a fast and precise preparation technique, which enables the fabrication of pristine biological samples with dimensions at the microscale.

  8. Femto-second pulses of synchrotron radiation

    International Nuclear Information System (INIS)

    Zholents, A.A.; Zolotorev, M.S.

    1995-07-01

    A method capable of producing femto-second pulses of synchrotron radiation is proposed. It is based on the interaction of femto-second light pulses with electrons in a storage ring. The application of the method to the generation of ultra-short x-ray pulses at the Advance Light Source of Lawrence Berkeley National Laboratory has been considered. The same method can also be used for extraction of electrons from a storage ring in ultra-short series of microbunches spaced by the periodicity of light wavelength

  9. A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography.

    Science.gov (United States)

    Terry, Mark A; Ousley, Paula J; Will, Brian

    2005-05-01

    The manual dissection technique for deep lamellar endothelial keratoplasty (DLEK) surgery is technically difficult and may not be smooth enough for consistently optimal postoperative vision. We evaluated the feasibility and efficacy of using a femtosecond laser to perform the dissections in the DLEK procedure. The Intralase femtosecond laser (with standard LASIK surgery spot settings) was used to create a 9.4-mm wide, 400-microm deep lamellar pocket dissection and a 5.0-mm wide side cut near-exit incision in 10 "recipient" whole cadaver eyes and in 10 "donor" cadaver corneal-scleral caps mounted onto an artificial anterior chamber. Recipient and donor disks were resected with special scissors, and the donor tissue was transplanted using the small incision (5.0-mm) DLEK technique. Topography of the recipient eyes was measured pre- and postlaser dissection, and the recipient and donor tissues were sent for scanning electron microscopy (SEM) analysis of the smoothness of the dissections. Successful lamellar dissections were obtained in all tissues. The mean recipient topographic corneal curvature postoperatively was 43.3 +/- 1.7 diopters, which was not a significant change from the preoperative curvature of 44.0 +/- 0.8 diopters (P = 0.430). The mean recipient topographic astigmatism postoperatively was 1.7 +/- 0.8 diopters, which was not a significant change from the preoperative recipient astigmatism of 1.6 +/- 0.7 diopters (P = 0.426). Comparison of the histology of the laser-formed stromal dissections by scanning electron microscopy, however, did not appear significantly better than histology after manual DLEK dissections in either the recipient or the donor tissues. A femtosecond laser can create the lamellar dissections for the DLEK procedure, making this procedure easier and faster. As in the manual technique, corneal topography is unchanged by this surgery. More work will need to be done, however, to optimize the laser settings to provide even smoother

  10. Femtosecond lasers as novel tool in dental surgery

    Science.gov (United States)

    Serbin, J.; Bauer, T.; Fallnich, C.; Kasenbacher, A.; Arnold, W. H.

    2002-09-01

    There is a proven potential of femtosecond lasers for medical applications like cornea shaping [1], ear surgery or dental surgery [2]. Minimal invasive treatment of carious tissue has become an increasingly important aspect in modern dentistry. State of the art methods like grinding using turbine-driven drills or ablation by Er:YAG lasers [3] generate mechanical and thermal stress, thus generating micro cracks of several tens of microns in the enamel [4]. These cracks are starting points for new carious attacks and have to be avoided for long term success of the dental treatment. By using femtosecond lasers (1 fs=10 -15 s) for ablating dental tissue, these drawbacks can be overcome. We have demonstrated that femtosecond laser ablation offers a tool for crack-free generation of cavities in dental tissue. Furthermore, spectral analysis of the laser induced plasma has been used to indicate carious oral tissue. Our latest results on femtosecond laser dentistry will be presented, demonstrating the great potential of this kind of laser technology in medicine.

  11. Analysis of Parent/Nitrated Polycyclic Aromatic Hydrocarbons in Particulate Matter 2.5 Based on Femtosecond Ionization Mass Spectrometry.

    Science.gov (United States)

    Itouyama, Noboru; Matsui, Taiki; Yamamoto, Shigekazu; Imasaka, Tomoko; Imasaka, Totaro

    2016-02-01

    Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m(3) for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m(3). Graphical Abstract ᅟ.

  12. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-01-01

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures

  13. Femtosecond spectroscopy of bacterial photosynthesis--towards an understanding of the most important energy conversion process on earth

    International Nuclear Information System (INIS)

    Zinth, W.; Hamm, P.; Arlt, T.; Wachtveitl, J.

    1996-01-01

    Reaction centers of bacterial photosynthesis are ideal systems to study photosynthetic energy conversion. Femtosecond spectroscopy has delivered extensive information on the molecular mechanisms of the primary electron transfer. The data show, that primary electron transfer is an ultrafast stepwise reaction, where the electron is transferred via closely spaced pigments with reaction times as fast as 0.9 ps and 3.5 ps. Experiments on mutated and modified reaction centers allow to determine the energetics of the various intermediates in the reaction center. Recently, femtosecond experiments with light pulses in the mid infrared have shown, that an additional fast process occurs on the 200 fs timescale in the initially excited special pair. Only afterwards the well established electron transfer reactions take place. This fast process may be of importance for the optimization of the primary reaction

  14. Femtosecond laser cataract surgery: technology and clinical practice.

    Science.gov (United States)

    Roberts, Timothy V; Lawless, Michael; Chan, Colin Ck; Jacobs, Mark; Ng, David; Bali, Shveta J; Hodge, Chris; Sutton, Gerard

    2013-03-01

    The recent introduction of femtosecond lasers to cataract surgery has generated much interest among ophthalmologists around the world. Laser cataract surgery integrates high-resolution anterior segment imaging systems with a femtosecond laser, allowing key steps of the procedure, including the primary and side-port corneal incisions, the anterior capsulotomy and fragmentation of the lens nucleus, to be performed with computer-guided laser precision. There is emerging evidence of reduced phacoemulsification time, better wound architecture and a more stable refractive result with femtosecond cataract surgery, as well as reports documenting an initial learning curve. This article will review the current state of technology and discuss our clinical experience. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  15. Construction of a femtosecond laser microsurgery system.

    Science.gov (United States)

    Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih

    2010-03-01

    Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d.

  16. Femtosecond laser materials processing

    International Nuclear Information System (INIS)

    Stuart, B.C.

    1997-01-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas

  17. Polarization control of multi-photon absorption under intermediate femtosecond laser field

    International Nuclear Information System (INIS)

    Cheng Wenjing; Liang Guo; Wu Ping; Liu Pei; Jia Tianqing; Sun Zhenrong; Zhang Shian

    2017-01-01

    It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light–matter interaction. Previous studies mainly focused on the multi-photon absorption control in the weak field. In this paper, we further explore the polarization control behavior of multi-photon absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the second-order perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect (e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and four-photon transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization. (paper)

  18. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  19. Suitable photo-resists for two-photon polymerization using femtosecond fiber lasers

    KAUST Repository

    Rajamanickam, V.P.

    2014-06-01

    We present suitable materials with good optical and mechanical properties, simple processing, efficient and optimized for two-photon polymerization (TPP) with femtosecond fiber lasers. We selected readily available acrylic monomer Bisphenol A ethoxylate diacrylate (BPA-EDA) with three different photo-initiators (PIs), isopropyl thioxanthone (ITX), 7-diethylamino-3-thenoylcoumarin (DETC), and 4,4′ bis(diethylamino) benzophenone (BDEB), since their absorption spectra match well with the laser wavelength at 780 nm. These PIs grant efficient radical generation, reactivity and high solubility in acrylic monomers. Finally, good optical and mechanical properties are demonstrated by the fabrication of different micro-structures.

  20. Femtosecond laser 3D micromachining for microfluidic and optofluidic applications

    CERN Document Server

    Sugioka, Koji

    2013-01-01

    Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensi

  1. Nanoflow electrospinning serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-01-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min −1 to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min −1 and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption

  2. Nanoflow electrospinning serial femtosecond crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Raymond G.; Laksmono, Hartawan [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kern, Jan [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Tran, Rosalie; Hattne, Johan [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Alonso-Mori, Roberto [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Lassalle-Kaiser, Benedikt [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Glöckner, Carina; Hellmich, Julia [Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin (Germany); Schafer, Donald W. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sellberg, Jonas [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stockholm University, S-106 91 Stockholm (Sweden); McQueen, Trevor A. [Stanford University, Stanford, CA 94025 (United States); Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Zwart, Petrus H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Glatzel, Pieter [European Synchrotron Radiation Facility, Grenoble (France); Milathianaki, Despina; White, William E. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Williams, Garth J.; Boutet, Sébastien [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Zouni, Athina [Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin (Germany); Messinger, Johannes [Umeå Universitet, Umeå (Sweden); Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bergmann, Uwe [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Yano, Junko; Yachandra, Vittal K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bogan, Michael J., E-mail: mbogan@slac.stanford.edu [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2012-11-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min{sup −1} to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min{sup −1} and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.

  3. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  4. Femtosecond Carrier Dynamics and Modelocking in Monolithic CPM Lasers. [SB1

    DEFF Research Database (Denmark)

    Brorson, S.D.; Bischoff, Svend; MØrk, J.

    1996-01-01

    Femtosecond pump-probe measurements of the dynamics in both forward- and reverse-biased semiconductor optical waveguides arepresented. Slow (nanosecond) as well as ultrafast (femtosecond) dynamics are observed in both kinds of structures....

  5. Avant-garde femtosecond laser writing

    OpenAIRE

    Kazansky, Peter G.; Beresna, Martynas; Shimotsuma, Yasuhiko; Hirao, Kazuyuki; Svirko, Yuri P.; Aktürk, Selcuk

    2010-01-01

    Recently discovered phenomena of quill and non-reciprocal femtosecond laser writing in glasses and crystals are reviewed. Common beliefs that laser writing does not change when reversing beam scan or propagation direction are challenged.

  6. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...

  7. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  8. Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses

    Science.gov (United States)

    An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng

    2018-05-01

    Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.

  9. Photodisruption in biological tissues using femtosecond laser pulses

    Science.gov (United States)

    Shen, Nan

    Transparent materials do not ordinarily absorb visible or near-infrared light. However, the intensity of a tightly focused femtosecond laser pulse is great enough that nonlinear absorption of the laser energy takes place in transparent materials, leading to optical breakdown and permanent material modification. Because the absorption process is nonlinear, absorption and material modification are confined to the extremely small focal volume. Optical breakdown in transparent or semi-transparent biological tissues depends on intensity rather than energy. As a result, focused femtosecond pulses induce optical breakdown with significantly less pulse energy than is required with longer pulses. The use of femtosecond pulses therefore minimizes the amount of energy deposited into the targeted region of the sample, minimizing mechanical and thermal effects that lead to collateral damage in adjacent tissues. We demonstrate photodisruptive surgery in animal skin tissue and single cells using 100-fs laser pulses. In mouse skin, we create surface incisions and subsurface cavities with much less collateral damage to the surrounding tissue than is produced with picosecond pulses. Using pulses with only a few nanojoules of energy obtained from an unamplified femtosecond oscillator, we destroy single mitochondria in live cells without affecting cell viability, providing insights into the structure of the mitochondrial network. An apparatus is constructed to perform subcellular surgery and multiphoton 3D laser scanning imaging simultaneously with a single laser and objective lens.

  10. Influence of wave-front curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water

    Science.gov (United States)

    Potemkin, F. V.; Mareev, E. I.; Smetanina, E. O.

    2018-03-01

    We demonstrate that using spatially divergent incident femtosecond 1240-nm laser pulses in water leads to an efficient supercontinuum generation in filaments. Optimal conditions were found when the focal plane is placed 100 -400 μ m before the water surface. Under sufficiently weak focusing conditions [numerical aperture (NA )laser pulses, the supercontinuum energy generated in divergent beams is higher than the supercontinuum energy generated in convergent beams. Analysis by means of the unidirectional pulse propagation equation shows a dramatic difference between filamentation scenarios of divergent and convergent beams, that explains corresponding features of the supercontinuum generation. Under strong focusing conditions (NA ⩾0.2 ) and high-energy laser pulses, the supercontinuum generation is suppressed for convergent beams in contrast to divergent beams that nevertheless are shown experimentally to allow supercontinuum generation. The presented technique of the supercontinuum generation in divergent beams in water is highly demanded in a development of femtosecond optical parametric amplifiers.

  11. Lattice dynamics of femtosecond laser-excited antimony

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Mahmoud Hanafy [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Bugayev, Aleksey [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States)

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron–phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  12. Femtosecond pulse shaping using the geometric phase.

    Science.gov (United States)

    Gökce, Bilal; Li, Yanming; Escuti, Michael J; Gundogdu, Kenan

    2014-03-15

    We demonstrate a femtosecond pulse shaper that utilizes polarization gratings to manipulate the geometric phase of an optical pulse. This unique approach enables circular polarization-dependent shaping of femtosecond pulses. As a result, it is possible to create coherent pulse pairs with orthogonal polarizations in a 4f pulse shaper setup, something until now that, to our knowledge, was only achieved via much more complex configurations. This approach could be used to greatly simplify and enhance the functionality of multidimensional spectroscopy and coherent control experiments, in which multiple coherent pulses are used to manipulate quantum states in materials of interest.

  13. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  14. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirscht, Julian

    2015-08-15

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  15. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    International Nuclear Information System (INIS)

    Hirscht, Julian

    2015-08-01

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  16. Ultraviolet Extensions

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra. Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form. The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue. What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms. The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials. The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of time. In fact, it is one of the

  17. Femtosecond and Subfemtosecond X-Ray Pulses from a SASE Based Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P

    2004-03-10

    We propose a novel method to generate femtosecond and sub-femtosecond photon pulses in a free electron laser by selectively spoiling the transverse emittance of the electron beam. Its merits are simplicity and ease of implementation. When the system is applied to the Linac Coherent Light Source, it can provide x-ray pulses the order of 1 femtosecond in duration containing about 1010 transversely coherent photons.

  18. Ultraviolet radiation, measurements and safety evaluations for radiation protection purposes

    International Nuclear Information System (INIS)

    Witew, B.; Fischer, P.G.

    1983-01-01

    In order to evaluate the effects of ultraviolet radiation, one has to study that photobiologically effective radiation which induces a just measurable threshold reaction. For practical radiation protection, one has to determine the permissible duration of exposure at the end of which the threshold reaction is induced. This time limit is derived by means of spectral measurements and determination of radiation intensity. Detrimental photobiological effects can be avoided, and favourable effects optimized, by observing the time limit. Thus these measurements are used to determine the threshold at which the desired effects of ultraviolet radiation will be accompanied by unwanted effects or damage to persons, as for instance in the use of ultraviolet radiation for operating room sterilization, arc welding work, or cosmetic purposes. (orig.) [de

  19. A higher-order-mode fiber delivery for Ti:Sapphire femtosecond lasers

    DEFF Research Database (Denmark)

    Jespersen, Kim Giessmann; Le, Tuan; Grüner-Nielsen, Lars Erik

    2010-01-01

    We report the first higher-order-mode fiber with anomalous dispersion at 800nm and demonstrate its potential in femtosecond pulse delivery for Ti:Sapphire femtosecond lasers. We obtain 125fs pulses after propagating a distance of 3.6 meters in solid-silica fiber. The pulses could be further...... compressed in a quartz rod to nearly chirp-free 110fs pulses. Femtosecond pulse delivery is achieved by launching the laser output directly into the delivery fiber without any pre-chirping of the input pulse. The demonstrated pulse delivery scheme suggests scaling to >20meters for pulse delivery in harsh...

  20. Fabrication of microstructures in aviation components with a femtosecond laser based on PZT scanning

    International Nuclear Information System (INIS)

    Yang, Xiaojun; Zhao, Wei; Li, Ming; Yang, Yong; Cheng, Guanghua; Zhao, Hualong; Li, Peng; Zhang, Huixing

    2013-01-01

    Thermal defects and low precision are the main disadvantages of fabricating micro-holes, irregular holes, and micro-slots in thermostable aviation materials. We demonstrate a manufacturing method employing a femtosecond laser and piezoelectric ceramic (PZT). The production process parameters were optimized according to the metallographic and dimensional accuracy of the microstructure, which was measured by phase-contrast microscopy and scanning electron microscopy. The limitations in a conventional aeroengine, such as in the recast layer, recrystallization, and micro-cracks, which degrade the performance and service life, were resolved with a simple, controllable, and commercial method. (paper)

  1. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization.

    Science.gov (United States)

    Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W L; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca

    2018-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.

  2. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    Science.gov (United States)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  3. [Astigmatic keratotomy with the femtosecond laser: correction of high astigmatisms after keratoplasty].

    Science.gov (United States)

    Kook, D; Bühren, J; Klaproth, O K; Bauch, A S; Derhartunian, V; Kohnen, T

    2011-02-01

    The purpose of this study was to evaluate a novel technique for the correction of postoperative astigmatism after penetrating keratoplasty with the use of the femtosecond laser creating astigmatic keratotomies (femto-AK) in the scope of a retrospective case series. Clinical data of ten eyes of nine patients with high residual astigmatism after penetrating keratoplasty undergoing paired femto-AK using a 60-kHz femtosecond laser (IntraLase™, AMO) were analyzed. A new software algorithm was used to create paired arcuate cuts deep into the donor corneal button with different cut angles. Target values were refraction, uncorrected visual acuity, best corrected visual acuity, topographic data (Orbscan®, Bausch & Lomb, Rochester, NY, USA), and corneal wavefront analysis using Visual Optics Lab (VOL)-Pro 7.14 Software (Sarver and Associates). Vector analysis was performed using the Holladay, Cravy and Koch formula. Statistical analysis was performed to detect significances between visits using Student's t test. All procedures were performed without any major complications. The mean follow-up was 13 months. The mean patient age was 48.7 years. The preoperative mean uncorrected visual acuity (logMAR) was 1.27, best corrected visual acuity 0.55, mean subjective cylinder -7.4 D, and mean topometric astigmatism 9.3 D. The postoperative mean uncorrected visual acuity (logMAR) was 1.12, best corrected visual acuity 0.47, mean subjective cylinder -4.1 D, and mean topometric astigmatism 6.5 D. Differences between corneal higher order aberrations showed a high standard deviation and were therefore not statistically significant. Astigmatic keratotomy using the femtosecond laser seems to be a safe and effective tool for the correction of higher corneal astigmatisms. Due to the biomechanical properties of the cornea and missing empirical data for the novel femto-AK technology, higher numbers of patients are necessary to develop optimal treatment nomograms.

  4. Optimal Wavelength Selection in Ultraviolet Spectroscopy for the Estimation of Toxin Reduction Ratio during Hemodialysis

    Directory of Open Access Journals (Sweden)

    Amir Ghanifar

    2016-06-01

    Full Text Available Introduction The concentration of substances, including urea, creatinine, and uric acid, can be used as an index to measure toxic uremic solutes in the blood during dialysis and interdialytic intervals. The on-line monitoring of toxin concentration allows for the clearance measurement of some low-molecular-weight solutes at any time during hemodialysis.The aim of this study was to determine the optimal wavelength for estimating the changes in urea, creatinine, and uric acid in dialysate, using ultraviolet (UV spectroscopy. Materials and Methods In this study, nine uremic patients were investigated, using on-line spectrophotometry. The on-line absorption measurements (UV radiation were performed with a spectrophotometer module, connected to the fluid outlet of the dialysis machine. Dialysate samples were obtained and analyzed, using standard biochemical methods. Optimal wavelengths for both creatinine and uric acid were selected by using a combination of genetic algorithms (GAs, i.e., GA-partial least squares (GA-PLS and interval partial least squares (iPLS. Results The Artifitial Neural Network (ANN sensitivity analysis determined the wavelengths of the UV band most suitable for estimating the concentration of creatinine and uric acid. The two optimal wavelengths were 242 and 252 nm for creatinine and 295 and 298 nm for uric acid. Conclusion It can be concluded that the reduction ratio of creatinine and uric acid (dialysis efficiency could be continuously monitored during hemodialysis by UV spectroscopy.Compared to the conventional method, which is particularly sensitive to the sampling technique and involves post-dialysis blood sampling, iterative measurements throughout the dialysis session can yield more reliable data.

  5. Porcine cadaver iris model for iris heating during corneal surgery with a femtosecond laser

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Wang, Jiang; Yan, Ying; Juhasz, Tibor; Kurtz, Ron

    2015-03-01

    Multiple femtosecond lasers have now been cleared for use for ophthalmic surgery, including for creation of corneal flaps in LASIK surgery. Preliminary study indicated that during typical surgical use, laser energy may pass beyond the cornea with potential effects on the iris. As a model for laser exposure of the iris during femtosecond corneal surgery, we simulated the temperature rise in porcine cadaver iris during direct illumination by the femtosecond laser. Additionally, ex-vivo iris heating due to femtosecond laser irradiation was measured with an infrared thermal camera (Fluke corp. Everett, WA) as a validation of the simulation.

  6. Femtosecond Synchronization of Laser Systems for the LCLS

    International Nuclear Information System (INIS)

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William

    2012-01-01

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  7. Inhibition of Escherichia coli respiratory enzymes by short visible femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Lu, Chieh-Han; Hsu, Yung-Yuan; Lin, Kung-Hsuan; Tsen, Kong-Thon; Kuan, Yung-Shu

    2014-01-01

    A visible femtosecond laser is shown to be capable of selectively inactivating a wide spectrum of microorganisms in a wavelength and pulse width dependent manner. However, the mechanism of how a visible femtosecond laser affects the viability of different microorganisms is still elusive. In this paper, the cellular surface properties, membrane integrity and metabolic rate of Escherichia coli (E. coli) irradiated by a visible femtosecond laser (λ = 415 nm, pulse width = 100 fs) with different exposure times were investigated. Our results showed that femtosecond laser treatment for 60 min led to cytoplasmic leakage, protein aggregation and alternation of the physical properties of the E. coli cell membrane. In comparison, a 10 min exposure of bacteria to femtosecond laser irradiation induced an immediate reduction of 75% in the glucose-dependent respiratory rate, while the cytoplasmic leakage was not detected. Results from enzymatic assays showed that oxidases and dehydrogenases involved in the E. coli respiratory chain exhibited divergent susceptibility after laser irradiation. This early commencement of respiratory inhibition after a short irradiation is presumed to have a dominant effect on the early stage of bacteria inactivation. (paper)

  8. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals

    Science.gov (United States)

    Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long

    2018-06-01

    Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.

  9. The art of femtosecond laser writing

    OpenAIRE

    Kazansky, Peter G.; Yang, Weijia; Shimotsuma, Yasuhiko; Hirao, Kazuyuki; Arai, Alan; Svirko, Yuri P.

    2009-01-01

    Common beliefs that laser writing does not change when reversing beam scan or propagation direction are challenged. Recently discovered phenomena of quill and non-reciprocal femtosecond laser writing in glasses and crystals are reviewed

  10. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    International Nuclear Information System (INIS)

    Martínez-Calderon, M.; Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M.

    2016-01-01

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm"2 were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  11. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Calderon, M., E-mail: mmcalderon@ceit.es [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M. [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2016-06-30

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm{sup 2} were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  12. Cutting NiTi with Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    L. Quintino

    2013-01-01

    Full Text Available Superelastic shape memory alloys are difficult to machine by thermal processes due to the facility for Ti oxidation and by mechanical processes due to their superelastic behavior. In this study, femtosecond lasers were tested to analyze the potential for machining NiTi since femtosecond lasers allow nonthermal processing of materials by ablation. The effect of processing parameters on machining depth was studied, and material removal rates were computed. Surfaces produced were analyzed under SEM which shows a resolidified thin layer with minimal heat affected zones. However, for high cutting speeds, that is, for short interaction times, this layer was not observed. A depletion of Ni was seen which may be beneficial in biomedical applications since Ni is known to produce human tissue reactions in biophysical environments.

  13. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2016-01-01

    systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond......We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  14. High power AlGaN ultraviolet light emitters

    Science.gov (United States)

    Shatalov, Max; Sun, Wenhong; Jain, Rakesh; Lunev, Alex; Hu, Xuhong; Dobrinsky, Alex; Bilenko, Yuri; Yang, Jinwei; Garrett, Gregory A.; Rodak, Lee E.; Wraback, Michael; Shur, Michael; Gaska, Remis

    2014-06-01

    We present the analysis of the external quantum efficiency in AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) on sapphire substrates and discuss factors affecting the output power of DUV LEDs. Performance of the LED is related to optimization of the device structure design and improvements of the epitaxial material quality.

  15. Femtosecond Optical Frequency Comb Technology Principle, Operation and Application

    CERN Document Server

    Ye, Jun

    2005-01-01

    Over the last few years, there has been a remarkable convergence among the fields of ultrafast optics, optical frequency metrology, and precision laser spectroscopy. This convergence has enabled unprecedented advances in control of the electric field of the pulses produced by femtosecond mode-locked lasers. The resulting spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as "femtosecond comb technology." They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. This book provides an introductory description of mode-locked lasers, the connection between time and frequency descriptions of their output and the physical origins of the electric field dynamics, together with an overview of applications of femtosecond comb technology. Individual chapters go into more detail on mode-locked laser development, spectral broadening in microstructure fiber, optical parametric ...

  16. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  17. Femtosecond frequency comb based distance measurement in air.

    Science.gov (United States)

    Balling, Petr; Kren, Petr; Masika, Pavel; van den Berg, S A

    2009-05-25

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The relative agreement for distance measurement in known laboratory conditions is better than 10(-7). According to the model, similar precision seems feasible even for long-distance measurement in air if conditions are sufficiently known. It is demonstrated that the relative width of the interferogram envelope even decreases with the measured length, and a fringe contrast higher than 90% could be obtained for kilometer distances in air, if optimal spectral width for that length and wavelength is used. The possibility of comb radiation delivery to the interferometer by an optical fiber is shown by model and experiment, which is important from a practical point of view.

  18. Structural changes in femtosecond laser modified regions inside fused silica

    International Nuclear Information System (INIS)

    Juodkazis, Saulius; Kohara, Shinji; Ohishi, Yasuo; Hirao, Norihisa; Vailionis, Arturas; Mizeikis, Vygantas; Saito, Akira; Rode, Andrei

    2010-01-01

    Structural characterization of photomodified microvolumes formed by tightly focused femtosecond laser pulses inside silica glass was carried out using synchrotron x-ray diffraction. The observed distinct separation between the O–O and Si–Si pair correlation peaks can be interpreted as a phase separation induced by microexplosions at the focal volume. The mechanisms of structural transitions induced by femtosecond laser pulses inside dielectrics are discussed

  19. Solar ultraviolet hazards

    International Nuclear Information System (INIS)

    Azmah Ali

    1995-01-01

    The paper discussed the following subjects: the sources of ultraviolet radiation, solar ultraviolet radiation definition, effects of over exposure to solar ultraviolet radiation, exposure limits and radiation protection of this radiation

  20. Femtosecond laser ablation and cutting technology on PMP foam

    International Nuclear Information System (INIS)

    Song Chengwei; Li Guo; Huang Yanhua; Du Kai; Yang Liang

    2013-01-01

    The femtosecond laser ablation results of PMP foam (density of 90 mg/cm 3 ) were analyzed. The laser pulses used for the study were 800 nm in wavelength, 50 fs in pulse duration and the repetition rate was 1000 Hz. The ablation threshold of the foam was 0.91 J/cm 2 when it was shot by 100 laser pulses. The impacts of laser power, the pulse number and the numerical aperture of the focusing objective on the crater diameter were obtained. In the same femtosecond laser machining system, comparing with the ablation shape into copper foil, the important factor causing the irregular shape of the ablation region was verified that there were many different sizes and randomly distributed pores inside PMP foam. The carbonation phenomenon was observed on the edge of the ablated areas when the sample was ablated using high laser power or/and more laser pulses. Thermal effect was considered to be the causes of the carbonation. A new method based on coupling laser beam to cut thickness greater than 1 mm film-foam with femtosecond laser was proposed. Using this method, the femtosecond laser cutting thickness was greater than 1.5 mm, the angle between the cutting side wall and the laser beam optical axis might be less than 5°, and the cutting surface was clean. (authors)

  1. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Bin; Chu Wei; Li Guihua; Zhang Haisu; Ni Jielei [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Gao Hui; Liu Weiwei [Institute of Modern Optics, Nankai University, Tianjin, 300071 (China); Yao Jinping; Cheng Ya; Xu Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chin, See Leang [Center for Optics, Photonics and Laser (COPL) and Department of Physics, Engineering Physics and Optics, Universite Laval, Quebec City, QC, G1V 0A6 (Canada)

    2011-12-15

    We demonstrate that the peak intensity in the filament core, which is inherently limited by the intensity clamping effect during femtosecond laser filamentation, can be significantly enhanced using spatiotemporally focused femtosecond laser pulses. In addition, the filament length obtained by spatiotemporally focused femtosecond laser pulses is {approx}25 times shorter than that obtained by a conventional focusing scheme, resulting in improved high spatial resolution.

  2. Ultraviolet sterilization

    International Nuclear Information System (INIS)

    Schenck, G.O.

    1987-01-01

    Artificial ultraviolet radiation sources can supply bactericidal energy in such a high dosage that in less than a second a higher degree of disinfection is accomplished than by sun irradiation in hours. Bacteria, viruses, phages, and organic micropollutants can be degraded by photochemical wet combustion down to and below detection limits of organic carbon. There are no known ultraviolet-resistant microorganisms. There are limitations to ultraviolet treatment which can often be overcome by adequate technical measures. Unlike other water purification processes, ultraviolet irradiation only exterminates living organisms. The radiation must be able to penetrate to the objects of the kill; in a dose large enough to kill, and long enough to kill and prevent new growth. Contrary to filters, ultraviolet flow-through reactors do not restrict free flow significantly. In contrast to distillation, ultraviolet irradiation imposes no phase changes to the water. Used as a sequence in ultrapure water systems, maintenance requirements are virtually nonexistent; because of the absence of dissolved and particulate matter in purified water, mechanical cleaning of the photoreactor chambers is not essential. The process is highly economical; energy consumption is low and supervision minimal. 103 refs., 45 figs., 15 tabs

  3. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, S; Kaepylae, E; Kellomaeki, M [Tampere University of Technology, Department of Biomedical Engineering, PO Box 692, 33101 Tampere (Finland); Terzaki, K; Fotakis, C; Farsari, M [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, 70013, Heraklion, Crete (Greece); Viitanen, J, E-mail: elli.kapyla@tut.fi [VTT Technical Research Centre of Finland, PO Box 1300, 33101 Tampere (Finland)

    2011-12-15

    This study reports the pico- and femtosecond laser-induced photocrosslinking of protein microstructures. The capabilities of a picosecond Nd:YAG laser to promote multiphoton excited crosslinking of proteins were evaluated by fabricating 2D and 3D microstructures of avidin, bovine serum albumin (BSA) and biotinylated bovine serum albumin (bBSA). The multiphoton absorption-induced photocrosslinking of proteins was demonstrated here for the first time with a non-toxic biomolecule flavin mononucleotide (FMN) as the photosensitizer. Sub-micrometer and micrometer scale structures were fabricated from several different compositions of protein and photosensitizer by varying the average laser power and scanning speed in order to determine the optimal process parameters for efficient photocrosslinking. In addition, the retention of ligand-binding ability of the crosslinked protein structures was shown by fluorescence imaging of immobilized biotin or streptavidin conjugated fluorescence labels. The surface topography and the resolution of the protein patterns fabricated with the Nd:YAG laser were compared to the results obtained with a femtosecond Ti:Sapphire laser. Quite similar grain characteristics and comparable feature sizes were achieved with both laser sources, which demonstrates the utility of the low-cost Nd:YAG microlaser for direct laser writing of protein microstructures.

  4. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity

    International Nuclear Information System (INIS)

    Turunen, S; Kaepylae, E; Kellomaeki, M; Terzaki, K; Fotakis, C; Farsari, M; Viitanen, J

    2011-01-01

    This study reports the pico- and femtosecond laser-induced photocrosslinking of protein microstructures. The capabilities of a picosecond Nd:YAG laser to promote multiphoton excited crosslinking of proteins were evaluated by fabricating 2D and 3D microstructures of avidin, bovine serum albumin (BSA) and biotinylated bovine serum albumin (bBSA). The multiphoton absorption-induced photocrosslinking of proteins was demonstrated here for the first time with a non-toxic biomolecule flavin mononucleotide (FMN) as the photosensitizer. Sub-micrometer and micrometer scale structures were fabricated from several different compositions of protein and photosensitizer by varying the average laser power and scanning speed in order to determine the optimal process parameters for efficient photocrosslinking. In addition, the retention of ligand-binding ability of the crosslinked protein structures was shown by fluorescence imaging of immobilized biotin or streptavidin conjugated fluorescence labels. The surface topography and the resolution of the protein patterns fabricated with the Nd:YAG laser were compared to the results obtained with a femtosecond Ti:Sapphire laser. Quite similar grain characteristics and comparable feature sizes were achieved with both laser sources, which demonstrates the utility of the low-cost Nd:YAG microlaser for direct laser writing of protein microstructures.

  5. High power AlGaN ultraviolet light emitters

    International Nuclear Information System (INIS)

    Shatalov, Max; Sun, Wenhong; Jain, Rakesh; Lunev, Alex; Hu, Xuhong; Dobrinsky, Alex; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis; Garrett, Gregory A; Rodak, Lee E; Wraback, Michael; Shur, Michael

    2014-01-01

    We present the analysis of the external quantum efficiency in AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) on sapphire substrates and discuss factors affecting the output power of DUV LEDs. Performance of the LED is related to optimization of the device structure design and improvements of the epitaxial material quality. (invited article)

  6. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  7. Geometrical Optimization Approach to Isomerization: Models and Limitations.

    Science.gov (United States)

    Chang, Bo Y; Shin, Seokmin; Engel, Volker; Sola, Ignacio R

    2017-11-02

    We study laser-driven isomerization reactions through an excited electronic state using the recently developed Geometrical Optimization procedure. Our goal is to analyze whether an initial wave packet in the ground state, with optimized amplitudes and phases, can be used to enhance the yield of the reaction at faster rates, driven by a single picosecond pulse or a pair of femtosecond pulses resonant with the electronic transition. We show that the symmetry of the system imposes limitations in the optimization procedure, such that the method rediscovers the pump-dump mechanism.

  8. Large-solid-angle illuminators for extreme ultraviolet lithography with laser plasmas

    International Nuclear Information System (INIS)

    Kubiak, G.D.; Tichenor, D.A.; Sweatt, W.C.; Chow, W.W.

    1995-06-01

    Laser Plasma Sources (LPSS) of extreme ultraviolet radiation are an attractive alternative to synchrotron radiation sources for extreme ultraviolet lithography (EUVL) due to their modularity, brightness, and modest size and cost. To fully exploit the extreme ultraviolet power emitted by such sources, it is necessary to capture the largest possible fraction of the source emission half-sphere while simultaneously optimizing the illumination stationarity and uniformity on the object mask. In this LDRD project, laser plasma source illumination systems for EUVL have been designed and then theoretically and experimentally characterized. Ellipsoidal condensers have been found to be simple yet extremely efficient condensers for small-field EUVL imaging systems. The effects of aberrations in such condensers on extreme ultraviolet (EUV) imaging have been studied with physical optics modeling. Lastly, the design of an efficient large-solid-angle condenser has been completed. It collects 50% of the available laser plasma source power at 14 nm and delivers it properly to the object mask in a wide-arc-field camera

  9. INTERACTION OF FEMTOSECOND LASER RADIATION WITH SKIN: MATHEMATICAL MODEL

    Directory of Open Access Journals (Sweden)

    Pavel Yu. Rogov

    2017-03-01

    Full Text Available The features of human skin response to the impact of femtosecond laser radiation were researched. The Monte–Carlo method was used for estimation of the radiation penetration depth into the skin cover. We used prevalent wavelength equal to 800 nm (for Ti: sapphire laser femtosecond systems. A mathematical model of heat transfer process was introduced based on the analytical solution of the system of equations describing the dynamics of the electron and phonon subsystems. An experiment was carried out to determine the threshold energy of biological tissue injury (chicken skin was used as a test object. The value of electronic subsystem relaxation time was determined from the experiment and is in keeping with literature data. The results of this work can be used to assess the maximum permissible exposure of laser radiation of different lengths that cause the damage of biological tissues, as well as for the formation of safe operation standards for femtosecond laser systems.

  10. Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis.

    Science.gov (United States)

    Fu, Gui-Ming; Li, Ru-Yi; Li, Kai-Min; Hu, Ming; Yuan, Xiao-Qiang; Li, Bin; Wang, Feng-Xue; Liu, Cheng-Mei; Wan, Yin

    2016-11-16

    This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.

  11. Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.

    Science.gov (United States)

    Dresp, Birgitta; Langley, Keith

    2006-03-01

    The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.

  12. Ultraviolet-A LED Based on Quantum-disks-in-AlGaN-nanowires - Optimization and Device Reliability

    KAUST Repository

    Janjua, Bilal

    2018-03-16

    Group-III nitride-based ultraviolet (UV) quantum-disks (Qdisks) nanowires (NWs) light-emitting diodes grown on silicon substrates offer a scalable, environment-friendly, compact, and low-cost solution for numerous applications such as solid-state lighting, spectroscopy, and biomedical. However, the internal quantum efficiency, injection efficiency, and extraction efficiency need to be further improved. The focus of this paper encompasses investigations based on structural optimization, device simulation, and device reliability. To optimize a UV-A (320-400 nm) device structure we utilize the self-assembled quantum-disk-NWs with varying quantum-disks thickness to study carrier separation in active-region and implement an improved p-contact-layer to increase output power. By simulation, we found a 100° improvement in the direct recombination rate for samples with thicker Qdisks thickness of 1.2 nm compared to the sample with 0.6 nm-thick Qdisks. Moreover, the sample with graded top Mg-doped AlGaN layer in conjunction with thin Mg-doped GaN layer shows 10° improvement in the output power compared to the samples with thicker top Mg-doped GaN absorbing contact layer. A fitting with ABC model revealed the increase in non-radiative recombination centers in the active region after a soft stress-test. This work aims to shed light on the research efforts required for furthering the UV NWs LED research for practical applications.

  13. Selective cell response on natural polymer bio-interfaces textured by femtosecond laser

    Science.gov (United States)

    Daskalova, A.; Trifonov, A.; Bliznakova, I.; Nathala, C.; Ajami, A.; Husinsky, W.; Declercq, H.; Buchvarov, I.

    2018-02-01

    This study reports on the evaluation of laser processed natural polymer-chitosan, which is under consideration as a biointerface used for temporary applications as skin and cartilage substitutes. It is employed for tissue engineering purposes, since it possesses a significant degree of biocompatibility and biodegradability. Chitosan-based thin films were processed by femtosecond laser radiation to enhance the surface properties of the material. Various geometry patterns were produced on polymer surfaces and employed to examine cellular adhesion and orientation. The topography of the modified zones was observed using scanning electron microscopy and confocal microscopy. Test of the material cytotoxicity was performed by evaluating the life/dead cell correlation. The obtained results showed that texturing with femtosecond laser pulses is appropriate method to initiate a predefined cellular response. Formation of surface modifications in the form of foams with an expansion of the material was created under laser irradiation with a number of applied laser pulses from N = 1-5. It is shown that irradiation with N > 5 results in disturbance of microfoam. Material characterization reveals a decrease in water contact angle values after laser irradiation of chitosan films. Consequently, changes in surface roughness of chitosan thin-film surface result in its functionalization. Cultivation of MC3T3 and ATMSC cells show cell orientational migration concerning different surface patterning. The influence of various pulse durations (varying from τ = 30-500 fs) over biofilms surface was examined regarding the evolution of surface morphology. The goal of this study was to define the optimal laser conditions (laser energy, number of applied pulses, and pulse duration) to alter surface wettability properties and porosity to improve material performance. The acquired set of results indicate the way to tune the surface properties to optimize cell-interface interaction.

  14. Femtosecond laser control of chemical reactions

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-08-31

    Full Text Available Femtosecond laser control of chemical reactions is made possible through the use of pulse-shaping techniques coupled to a learning algorithm feedback loop – teaching the laser pulse to control the chemical reaction. This can result in controllable...

  15. Development of a new picosecond pulse radiolysis system by using a femtosecond laser synchronized with a picosecond linac. A step to femtosecond pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoichi; Yamamoto, Tamotsu; Miki, Miyako; Seki, Shu; Okuda, Shuichi; Honda, Yoshihide; Kimura, Norio; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Ushida, Kiminori

    1997-03-01

    A new picosecond pulse radiolysis system by using a Ti sapphire femtosecond laser synchronized with a 20 ps electron pulse from the 38 MeV L-band linac has been developed for the research of the ultra fast reactions in primary processes of radiation chemistry. The timing jitter in the synchronization of the laser pulse with the electron pulse is less than several picosecond. The technique can be used in the next femtosecond pulse radiolysis. (author)

  16. Analysis and design of the ultraviolet warning optical system based on interference imaging

    Science.gov (United States)

    Wang, Wen-cong; Hu, Hui-jun; Jin, Dong-dong; Chu, Xin-bo; Shi, Yu-feng; Song, Juan; Liu, Jin-sheng; Xiao, Ting; Shao, Si-pei

    2017-10-01

    Ultraviolet warning technology is one of the important methods for missile warning. It provides a very effective way to detect the target for missile approaching alarm. With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. Compared to infrared warning, the ultraviolet warning has high efficiency and low false alarm rate. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge of missile warning technology. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. For the ultraviolet warning system, the optimal working waveband is 250 nm 280 nm (Solar Blind UV) due to the strong absorption of ozone layer. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes ultraviolet warning optical system based on interference imaging, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure includes a primary optical system, an ultraviolet reflector array, an ultraviolet imaging system and an ultraviolet interference imaging system. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm.A single pixel energy concentration is greater than 80%.

  17. Laser parameters, focusing optics, and side effects in femtosecond laser corneal surgery

    Science.gov (United States)

    Plamann, Karsten; Nuzzo, Valeria; Peyrot, Donald A.; Deloison, Florent; Savoldelli, Michèle; Legeais, Jean-Marc

    2008-02-01

    Nowadays, femtosecond lasers are routinely used in refractive eye surgery. Until recently, commercialised clinical systems were exclusively based on ytterbium or neodymium-doped solid state lasers emitting sub-picosecond pulses at a wavelength of about 1 μm and repetition rates of a few 10 kHz. These systems use pulse energies in the μJ range and focussing optics of NA = 0.3 to 0.5. Recent developments have provided a variety of alternative and equally viable approaches: systems are now available using nJ pulses at high numerical apertures and MHz repetition rates - an approach so far only used for femtosecond cell surgery - and fibre laser technology is now being used for femtosecond laser corneal surgery. Recent research has also provided more insight in side effects occurring in present systems: self focusing phenomena and so far unexplained periodical structures have been observed even at high numerical apertures (NA >> 0.5) and moderate pulse energies. The interaction of femtosecond laser pulses with strongly scattering tissue has been studied in view of extending the application of femtosecond lasers to keratoplasty for opaque corneas and to glaucoma surgery. The use of new laser wavelengths and adaptive optics has been proposed. Despite the reputation of femtosecond surgical systems for their precision, repeatability and the absence of secondary effects or complications, a closer examination reveals the presence of subtle phenomena which merit further investigation. We present three of these phenomena: the influence of optical aberration on the quality of the incision, the occurrence of filamentation effects, and the deposit of microscopic glass fragments when performing penetrating incisions.

  18. Optimization of broadband semiconductor chirped mirrors with genetic algorithm

    OpenAIRE

    Dems, M.; Wnuk, P.; Wasylczyk, P.; Zinkiewicz, L.; Wojcik-Jedlinska, A.; Reginski, K.; Hejduk, K.; Jasik, A.

    2016-01-01

    Genetic algorithm was applied for optimization of dispersion properties in semiconductor Bragg reflectors for applications in femtosecond lasers. Broadband, large negative group-delay dispersion was achieved in the optimized design: The group-delay dispersion (GDD) as large as −3500 fs2 was theoretically obtained over a 10-nm bandwidth. The designed structure was manufactured and tested, providing GDD −3320 fs2 over a 7-nm bandwidth. The mirror performance was ...

  19. Preliminary Design of a Femtosecond Oscilloscope

    CERN Document Server

    Gazazyan, Edmond D; Kalantaryan, Davit K; Laziev, Edouard; Margaryan, Amour

    2005-01-01

    The calculations on motion of electrons in a finite length electromagnetic field of linearly and circularly polarized laser beams have shown that one can use the transversal deflection of electrons on a screen at a certain distance after the interaction region for the measurement of the length and longitudinal particle distribution of femtosecond bunches. In this work the construction and preliminary parameters of various parts of a device that may be called femtosecond oscilloscope are considered. The influence of various factors, such as the energy spread and size of the electron bunches, are taken into account. For CO2 laser intensity 1016 W/cm2 and field free drift length 1m the deflection is 5.3 and 0.06 cm, while the few centimeters long interaction length between 2 mirrors requires assembling accuracy 6 mm and 1.3 micron for 20 MeV to 50 keV, respectively.

  20. Sorting on the basis of deformability of single cells in a femtosecond laser fabricated optofluidic device

    Science.gov (United States)

    Bragheri, F.; Paiè, P.; Yang, T.; Nava, G.; Martınez Vázquez, R.; Di Tano, M.; Veglione, M.; Minzioni, P.; Mondello, C.; Cristiani, I.; Osellame, R.

    2015-03-01

    Optical stretching is a powerful technique for the mechanical phenotyping of single suspended cells that exploits cell deformability as an inherent functional marker. Dual-beam optical trapping and stretching of cells is a recognized tool to investigate their viscoelastic properties. The optical stretcher has the ability to deform cells through optical forces without physical contact or bead attachment. In addition, it is the only method that can be combined with microfluidic delivery, allowing for the serial, high-throughput measurement of the optical deformability and the selective sorting of single specific cells. Femtosecond laser micromachining can fabricate in the same chip both the microfluidic channel and the optical waveguides, producing a monolithic device with a very precise alignment between the components and very low sensitivity to external perturbations. Femtosecond laser irradiation in a fused silica chip followed by chemical etching in hydrofluoric acid has been used to fabricate the microfluidic channels where the cells move by pressure-driven flow. With the same femtosecond laser source two optical waveguides, orthogonal to the microfluidic channel and opposing each other, have been written inside the chip. Here we present an optimized writing process that provides improved wall roughness of the micro-channels allowing high-quality imaging. In addition, we will show results on cell sorting on the basis of mechanical properties in the same device: the different deformability exhibited by metastatic and tumorigenic cells has been exploited to obtain a metastasis-cells enriched sample. The enrichment is verified by exploiting, after cells collection, fluorescence microscopy.

  1. Optimization of sulfamethoxazole degradation by TiO2/hydroxyapatite composite under ultraviolet irradiation using response surface methodology

    International Nuclear Information System (INIS)

    Chun, Suk Young; Kim, Ji Tae; Chang, Soon Woong; An, Sang Woo; Lee, Si Jin

    2014-01-01

    A titanium dioxide/hydroxyapatite/ultraviolet (TiO 2 /HAP/UV-A) system was used to remove sulfamethoxazole (SMX) from water in a second-order response surface methodology (RSM) experiment with a three-level Box-Behnken design (BBD) for optimization. The effects of both the primary and secondary interaction effects of three photocatalytic reaction variables were examined: the concentration of SMX (X 1 ), dose of TiO 2 /HAP composite (X 2 ), and UV intensity (X 3 ). The UV intensity and TiO 2 /HAP dose significantly influence the SMX and total organic carbon (TOC) removal (p<0.001). However, the SMX and TOC removal are enhanced with increasing TiO 2 /HAP dose up to certain levels, and further increases in the TiO 2 /HAP dose result in adverse effects due to hydroxyl radical scavenging at higher catalyst concentrations. Complete removal of SMX was achieved upon UV-A irradiation for 180 min. Under optimal conditions, 51.2% of the TOC was removed, indicating the formation of intermediate products during SMX degradation. The optimal ratio of SMX (mg L -1 ) to TiO 2 /HAP (g L -1 ) to UV (W/L) was 5.4145 mg L -1 to 1.4351 g L -1 to 18 W for both SMX and TOC removal. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for SMX and TOC removal of 99.89% and 51.01%, respectively

  2. High precision patterning of ITO using femtosecond laser annealing process

    International Nuclear Information System (INIS)

    Cheng, Chung-Wei; Lin, Cen-Ying

    2014-01-01

    Highlights: • We have reported a process of fabrication of crystalline indium tin oxide (c-ITO) patterns using femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching. • The experimental results have demonstrated that the ablation and crystallization threshold fluences of a-ITO thin film are well-defined, the line width of the c-ITO patterns is controllable. • Fast fabrication of the two parallel sub-micro (∼0.5 μm) c-ITO line patterns using a single femtosecond laser beam and a single scanning path can be achieved. • A long-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices. - Abstract: High precision patterning of crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching is demonstrated. In the proposed approach, the a-ITO thin film is selectively transformed into a c-ITO structure via a low heat affect zone and the well-defined thresholds (ablation and crystallization) supplied by the femtosecond laser pulse. The experimental results show that by careful control of the laser fluence above the crystallization threshold, c-ITO patterns with controllable line widths and ridge-free characteristics can be accomplished. By careful control of the laser fluence above the ablation threshold, fast fabrication of the two parallel sub-micro c-ITO line patterns using a single femtosecond laser beam and single scanning path can be achieved. Along-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices

  3. Cutting thin glass by femtosecond laser ablation

    Science.gov (United States)

    Shin, Hyesung; Kim, Dongsik

    2018-06-01

    The femtosecond laser ablation process for cutting thin aluminoborosilicate glass sheets of thickness 100 μm was investigated with emphasis on effective cutting speed (Veff) and mechanical strength of diced samples. The process parameters including the laser fluence (F), overlap ratio (r) of the laser beam and polarization direction were varied at a fixed pulse repetition rate f = 1 kHz to find the optimal process condition that maximizes Veff and edge strength. A three-point bending test was performed to evaluate the front-side and back-side bending (edge) strength of the laser-cut samples. Veff was proportional to F unless r exceeded a critical value, at which excessive energy began to be delivered at the same spot. The front-side edge strength was bigger than the back-side strength because of the back-side damages such as chipping. Good edge strength, as high as ∼280 MPa (front-side) and ∼230 MPa (back-side), was obtained at F = 19 J/m2, r = 0.99, with laser polarization vertical to the cutting path.

  4. Fabrication of a reinforced polymer microstructure using femtosecond laser material processing

    International Nuclear Information System (INIS)

    Alubaidy, M; Venkatakrishnan, K; Tan, B

    2010-01-01

    This paper presents a new method for the formation of microfeatures with reinforced polymer using femtosecond laser material processing. The femtosecond laser was used for the generation of a three-dimensional interweaved nanofiber and the construction of microfeatures, such as microchannels and voxels, through two-photon polymerization of a nanofiber-dispersed polymer resin. This new method has the potential of direct fabrication of reinforced micro/nanostructures.

  5. Inverse cutting of posterior lamellar corneal grafts by a femtosecond laser.

    Science.gov (United States)

    Hjortdal, Jesper; Nielsen, Esben; Vestergaard, Anders; Søndergaard, Anders

    2012-01-01

    Posterior lamellar grafting of the cornea has become the preferred technique for treatment of corneal endothelial dysfunction. Posterior lamellar grafts are usually cut by a micro-keratome or a femto-second laser after the epithelial side of the donor cornea has been applanated. This approach often results in variable central graft thickness in different grafts and an increase in graft thickness towards the periphery in every graft. The purpose of this study was to evaluate if posterior lamellar grafts can be prepared from the endothelial side by a femto-second laser, resulting in reproducible, thin grafts of even thickness. A CZM 500 kHz Visumax femto-second laser was used. Organ cultured donor grafts were mounted in an artifical anterior chamber with the endothelial side up and out. Posterior grafts of 7.8 mm diameter and 130 micron thickness were prepared by femto-second laser cutting. A standard DSAEK procedure was performed in 10 patients with Fuchs endothelial dystrophy. Patients were followed-up regularly and evaluated by measurement of complications, visual acuity, corneal thickness (Pentacam HR), and endothelial cell density. Femto-laser cutting of grafts and surgery was uncomplicated. Rebubbling was necessary in 5 of 10 cases (normally only in 1 of 20 cases). All grafts were attached and cleared up during the first few weeks. After six months, the average visual acuity was 0.30 (range: 0.16 to 0.50), corneal thickness was 0.58 mm (range 0.51 to 0.63), and endothelial cell density was 1.570 per sq. mm (range: 1.400 to 2.000 cells per sq. mm). The grafts were of uniform thickness, but substantial interface haze was present in most grafts. Posterior lamellar corneal grafts can be prepared from the endothelial side using a femto-second laser. All grafts were clear after 6 months with satisfying endothelial cell counts. Poor visual acuity caused by interface scatter was observed in most patients. Femto-second laser cutting parameters needs to be optimised to

  6. Selective bond breakage within the HOD molecule using optimized femtosecond ultraviolet laser pulses

    DEFF Research Database (Denmark)

    Tiwari, Ashwani Kumar; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2008-01-01

    With the HOD molecule initially in its vibrational ground state, we theoretically analyze the laser-induced control of the OD/OH branching ratio D+OH H+OD in the first absorption band. In the weak-field limit, any form of UV-pulse shaping control leads to a branching ratio larger than similar to 2...

  7. Moving picture recording and observation of femtosecond light pulse propagation using a rewritable holographic material

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiji; Takimoto, Tetsuya; Tosa, Kazuya; Kakue, Takashi [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Awatsuji, Yasuhiro, E-mail: awatsuji@kit.ac.jp [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Nishio, Kenzo [Advanced Technology Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Ura, Shogo [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Kubota, Toshihiro [Kubota Holography Laboratory, Corporation, Nishihata 34-1-609, Ogura, Uji 611-0042 (Japan)

    2011-08-01

    We succeeded in recording and observing femtosecond light pulse propagation as a form of moving picture by means of light-in-flight recording by holography using a rewritable holographic material, for the first time. We used a femtosecond pulsed laser whose center wavelength and duration were 800 nm and {approx}120 fs, respectively. A photo-conductor plastic hologram was used as a rewritable holographic material. The femtosecond light pulse was collimated and obliquely incident to the diffuser plate. The behavior of the cross-section between the collimated femtosecond light pulse and the diffuser plate was recorded on the photo-conductor plastic hologram. We experimentally obtained a spatially and temporally continuous moving picture of the femtosecond light pulse propagation for 58.3 ps. Meanwhile, we also investigated the rewritable performance of the photo-conductor plastic hologram. As a result, we confirmed that ten-time rewriting was possible for a photo-conductor plastic hologram.

  8. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  9. Simultaneous atomization and ionization of large organic molecules using femtosecond laser ablation

    International Nuclear Information System (INIS)

    Kurata-Nishimura, Mizuki; Tokanai, Fuyuki; Matsuo, Yukari; Kobayashi, Tohru; Kawai, Jun; Kumagai, Hiroshi; Midorikawa, Katsumi; Tanihata, Isao; Hayashizaki, Yoshihide

    2002-01-01

    We have experimentally demonstrated femtosecond laser ablation for simultaneous atomization and ionization (fs-SAI) of organic molecules on solid substrates. We find most of the constituent atoms of organic molecules are atomized and ionized non-resonantly by femtosecond laser ablation. This observation is in contrast with that for the photoionization of cyclic aromatic hydrocarbons by femtosecond laser in the gas phase where little fragmentation has been observed. Crucial contribution of ablation plasma of solid sample to fs-SAI process is suggested. The ratio of natural abundance of stable isotopes contained in sample molecules is well reproduced, which confirms fs-SAI can be applied to the quantitative chemical analysis of isotope-labeled large organic molecules

  10. Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation

    Science.gov (United States)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello

    1997-04-01

    We show that an interferometric correlation measurement with fs time resolution provides an unambiguous discrimination between coherent and incoherent emission after resonant femtosecond excitation. The experiment directly probes the most important difference between the two emissions, that is, the phase correlation with the excitation pulse. The comparison with cw frequency resolved measurements demonstrates that the relationship between coherent and incoherent emission is similar under femtosecond and steady-state excitation.

  11. Collection and spectral control of high-order harmonics generated with a 50 W high-repetition rate Ytterbium femtosecond laser system

    International Nuclear Information System (INIS)

    Cabasse, A; Hazera, Ch; Quintard, L; Cormier, E; Petit, S; Constant, E

    2016-01-01

    We generate high-order harmonics with a 50 W, Yb femtosecond fiber laser system operating at 100 kHz in a tight focusing configuration. We achieve a high photon flux even with pulses longer than 500 fs. We collect the diverging extreme ultraviolet (XUV) harmonic beam in a 35 mrad wide solid angle by using a spectrometer designed to handle the high thermal load under vacuum and refocus the XUV beam onto a detector where the beam is characterised or can alternatively be used for experiments. This setup is designed for a 50 eV XUV bandwidth and offers the possibility to perform XUV-IR pump probe experiments with both temporal and spectral resolution. The high-order harmonics were generated and optimized at 100 kHz by using several gas target geometries (a gas jet and a semi-infinite gas cell) and several gases (argon, krypton, xenon) that provide XUV beams with different characteristics. After the spectrometer and for high-order harmonic generation (HHG) in xenon, we detect more than 4 × 10 10 photons per second over four harmonics, that is a useful XUV power on target of 0.1 μW. This corresponds to the emission of more than 1 μW per harmonic at the source and we achieved a similar flux with both the semi-infinite cell and the jet. In addition, we observe a strong spectral selectivity when generating harmonics in a semi-infinite gas cell as few harmonics clearly dominate the neighbouring harmonics. We attribute this spectral selectivity to phase matching effects. (paper)

  12. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    Directory of Open Access Journals (Sweden)

    A. R. Bainbridge

    2016-03-01

    Full Text Available Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics.

  13. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching.

    Science.gov (United States)

    Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K

    2008-10-29

    A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.

  14. Differences in energy expenditure for conventional and femtosecond-assisted cataract surgery using 2 different phacoemulsification systems.

    Science.gov (United States)

    Yesilirmak, Nilufer; Diakonis, Vasilios F; Sise, Adam; Waren, Daniel P; Yoo, Sonia H; Donaldson, Kendall E

    2017-01-01

    To compare the mean cumulative dissipated energy (CDE) in patients having femtosecond laser-assisted or conventional phacoemulsification cataract surgery using 2 different phacoemulsification platforms. Bascom Palmer Eye Institute, Miami, Florida, USA. Prospective comparative nonrandomized clinical study. Consecutive patients were scheduled to have femtosecond laser-assisted cataract surgery with the Lensx laser or conventional phacoemulsification using an active-fluidics torsional platform (Centurion) or torsional platform (Infiniti). The mean CDE and cataract grade were recorded. The study comprised 570 eyes (570 patients). There was no statistically significant difference in mean age (P = .41, femtosecond group; P = .33, conventional group) or cataract grade (P = .78 and P = .45, respectively) between the active-fluidics and gravity-fluidics platforms. In femtosecond cases (145 eyes), the mean CDE (percent-seconds) was 5.18 ± 4.58 (SD) with active fluidics and 7.00 ± 6.85 with gravity fluidics; in conventional cases (425 eyes), the mean CDE was 7.77 ± 6.97 and 11.43 ± 9.12, respectively. In both femtosecond cases and conventional cases, the CDE was lower with the active-fluidics platform than with the gravity-fluidics platform (P = .029, femtosecond group; P < .001 conventional group). With both fluidics platforms, the mean CDE was significantly lower in the femtosecond group than in the conventional group (both P < .001). The active-fluidics phacoemulsification platform achieved lower CDE values than the gravity-fluidics platform for conventional cataract extraction. Femtosecond laser pretreatment with the active-fluidics platform further reduced CDE. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Anterior chamber gas bubble emergence pattern during femtosecond LASIK-flap creation.

    Science.gov (United States)

    Robert, Marie-Claude; Khreim, Nour; Todani, Amit; Melki, Samir A

    2015-09-01

    To characterise the emergence pattern of cavitation bubbles into the anterior chamber (AC) following femtosecond laser-assisted in situ keratomileusis (LASIK)-flap creation Retrospective review of patients undergoing femtosecond LASIK surgery at Boston Laser, a private refractive surgery practice in Boston, Massachusetts, between December 2008 and February 2014. Patient charts were reviewed to identify all cases with gas bubble migration into the AC. Surgical videos were examined and the location of bubble entry was recorded separately for right and left eyes. Five thousand one hundred and fifty-eight patients underwent femtosecond LASIK surgery. Air bubble migration into the AC, presumably via the Schlemm's canal and trabecular meshwork, occurred in 1% of cases. Patients with AC bubbles had an average age of 33±8 years with a measured LASIK flap thickness of 96±21 μm. The occurrence of gas bubbles impaired iris registration in 64% of cases. Gas bubbles appeared preferentially in the nasal or inferior quadrants for right (92% of cases) and left (100% of cases) eyes. This bubble emergence pattern is significantly different from that expected with a random distribution (p<0.0001) and did not seem associated with decentration of the femtosecond laser docking system. The migration of gas bubbles into the AC is a rare occurrence during femtosecond laser flap creation. The preferential emergence of gas bubbles into the nasal and inferior quadrants of the AC may indicate a distinctive anatomy of the nasal Schlemm's canal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  17. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  18. Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths

    Science.gov (United States)

    Barnes, Bryan M.; Zhou, Hui; Henn, Mark-Alexander; Sohn, Martin Y.; Silver, Richard M.

    2017-06-01

    The sizes of non-negligible defects in the patterning of a semiconductor device continue to decrease as the dimensions for these devices are reduced. These "killer defects" disrupt the performance of the device and must be adequately controlled during manufacturing, and new solutions are required to improve optics-based defect inspection. To this end, our group has reported [Barnes et al., Proc. SPIE 1014516 (2017)] our initial five-wavelength simulation study, evaluating the extensibility of defect inspection by reducing the inspection wavelength from a deep-ultraviolet wavelength to wavelengths in the vacuum ultraviolet and the extreme ultraviolet. In that study, a 47 nm wavelength yielded enhancements in the signal to noise (SNR) by a factor of five compared to longer wavelengths and in the differential intensities by as much as three orders-of-magnitude compared to 13 nm. This paper briefly reviews these recent findings and investigates the possible sources for these disparities between results at 13 nm and 47 nm wavelengths. Our in-house finite-difference time-domain code (FDTD) is tested in both two and three dimensions to determine how computational conditions contributed to the results. A modified geometry and materials stack is presented that offers a second viewpoint of defect detectability as functions of wavelength, polarization, and defect type. Reapplication of the initial SNR-based defect metric again yields no detection of a defect at λ = 13 nm, but additional image preprocessing now enables the computation of the SNR for λ = 13 nm simulated images and has led to a revised defect metric that allows comparisons at all five wavelengths.

  19. Use of the Femtosecond Lasers in Ophthalmology

    Directory of Open Access Journals (Sweden)

    Roszkowska Anna M

    2018-01-01

    Full Text Available Femtosecond laser (FSL is an infrared laser with a wavelength of 1053 nm. FS laser works producing photodisruption or photoionization of the optically transparent tissue such as cornea. Currently FS lasers have a wide range of applications in ophthalmic surgery. They are used above all in corneal surgery in refractive procedures and keratoplasty, and recently in cataract surgery. The use of the FSL in corneal refractive surgery includes LASIK flap creation, astigmatic keratotomy, Femtosecond Lenticule Extraction (FLEx, Small Incision Lenticule Extraction (SMILE and channels creation for implantation of the intrastromal corneal rings. As to the corneal grafting, the FS lasers are used in laser-assisted anterior and posterior lamellar keratoplasty and customized trephination in the penetrating keratoplasty. FS Laser Assisted Cataract Surgery (FLACS includes capsulorrhexis and nuclear fragmentation that enhance safety and efficacy of the procedure.

  20. Current status of femtosecond triplet Linacs 2000

    International Nuclear Information System (INIS)

    Uesaka, M.; Watanabe, T.; Kobayashi, T.

    2000-01-01

    Femtosecond Ultrafast Quantum Phenomenon Research Facility has been commissioned in 2000. It consists the femtosecond linac-laser synchronization system, the 12 TW 50 fs laser system and the analyzing system. Laser photocathode RF gun produced l kA = 7 nC / 7 ps for 250 μJ 267 nm laser irradiation, synchronization of 300 fs (rms) for minutes and l.9 ps (rms) for hours was established. Efforts to avoid such long-term drift are under way. This system is applied to subpico- and picosecond pulseradiolysis for radiation chemistry of water and supercritical water. Laser plasma linac works are under way to generate 20 MeV 10 fs electron bunch and ps ion beam using the 12 TW 50 fs laser. Further, the time-resolved X-ray diffraction is close to dynamic visualization of atomic motions. (author)

  1. Use of the Femtosecond Lasers in Ophthalmology

    Science.gov (United States)

    Roszkowska, Anna M.; Urso, Mario; Signorino, Alberto; Aragona, Pasquale

    2018-01-01

    Femtosecond laser (FSL) is an infrared laser with a wavelength of 1053 nm. FS laser works producing photodisruption or photoionization of the optically transparent tissue such as cornea. Currently FS lasers have a wide range of applications in ophthalmic surgery. They are used above all in corneal surgery in refractive procedures and keratoplasty, and recently in cataract surgery. The use of the FSL in corneal refractive surgery includes LASIK flap creation, astigmatic keratotomy, Femtosecond Lenticule Extraction (FLEx), Small Incision Lenticule Extraction (SMILE) and channels creation for implantation of the intrastromal corneal rings. As to the corneal grafting, the FS lasers are used in laser-assisted anterior and posterior lamellar keratoplasty and customized trephination in the penetrating keratoplasty. FS Laser Assisted Cataract Surgery (FLACS) includes capsulorrhexis and nuclear fragmentation that enhance safety and efficacy of the procedure.

  2. Femtosecond-laser assisted cell reprogramming

    Science.gov (United States)

    Breunig, Hans Georg; Uchugonova, Aisada; Batista, Ana; König, Karsten

    2017-02-01

    Femtosecond-laser pulses can assist to transfect cells by creating transient holes in the cell membrane, thus making them temporarily permeable for extraneous genetic material. This procedure offers the advantage of being completely "virus free" since no viruses are used for the delivery and integration of gene factors into the host genome and, thereby, avoiding serious side effects which so far prevent clinical application. Unfortunately, focusing of the laser radiation onto individual cell membranes is quite elaborate and time consuming. Regarding these obstacles, we briefly review two optical setups for fast, efficient and high throughput laser-assisted cell transfection based on femtosecond laser pulse excitation. The first setup aims at assisting the transfection of adherent cells. It comprises of a modified laser-scanning microscope with beamshaping optics as well as home-made software to automate the detection, targeting and laser-irradiation process. The second setup aims at laser-assisted transfection of non-adherent cells in suspension which move in a continuous flow through the laser focus region. The setup allows to address a large number of cells, however, with much lower transfection efficiency than the individual-cell targeting approach.

  3. High-precision cutting of polyimide film using femtosecond laser for the application in flexible electronics

    Science.gov (United States)

    Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.; Vartapetov, S. K.

    2018-01-01

    The experimental results of cutting a polyimide film on the optical glass substrate by means of femtosecond lasers are given. Two modes of laser cutting of this film without damages to a glass base are determined. The first is the photo graphitization using a high repetition rate femtosecond laser. The second is ablative, under the effect of femtosecond laser pulses with high energy and low repetition rate. Cutting of semiconductor chips formed on the polyimide film surface is successfully demonstrated.

  4. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  5. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    International Nuclear Information System (INIS)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-01-01

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  6. Beam wandering of femtosecond laser filament in air.

    Science.gov (United States)

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  7. In-line femtosecond common-path interferometer in reflection mode.

    Science.gov (United States)

    Chandezon, J; Rampnoux, J-M; Dilhaire, S; Audoin, B; Guillet, Y

    2015-10-19

    An innovative method to perform femtosecond time-resolved interferometry in reflection mode is proposed. The experiment consists in the combined use of a pump-probe setup and of a fully passive in-line femtosecond common-path interferometer. The originality of this interferometer relies on the use of a single birefringent crystal first to generate a pair of phase-locked pulses and second to recombine them to interfere. As predicted by analytical modeling, this interferometer measures the temporal derivative of the ultrafast changes of the complex optical reflection coefficient of the sample. Working conditions are illustrated through picosecond opto-acoustic experiments on a thin film.

  8. Optimization of sulfamethoxazole degradation by TiO{sub 2}/hydroxyapatite composite under ultraviolet irradiation using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Suk Young; Kim, Ji Tae; Chang, Soon Woong [Kyonggi University, Suwon (Korea, Republic of); An, Sang Woo [Hanyang University, Seoul (Korea, Republic of); Lee, Si Jin [Korea Environment Corporation, Incheon (Korea, Republic of)

    2014-06-15

    A titanium dioxide/hydroxyapatite/ultraviolet (TiO{sub 2}/HAP/UV-A) system was used to remove sulfamethoxazole (SMX) from water in a second-order response surface methodology (RSM) experiment with a three-level Box-Behnken design (BBD) for optimization. The effects of both the primary and secondary interaction effects of three photocatalytic reaction variables were examined: the concentration of SMX (X{sub 1}), dose of TiO{sub 2}/HAP composite (X{sub 2}), and UV intensity (X{sub 3}). The UV intensity and TiO{sub 2}/HAP dose significantly influence the SMX and total organic carbon (TOC) removal (p<0.001). However, the SMX and TOC removal are enhanced with increasing TiO{sub 2}/HAP dose up to certain levels, and further increases in the TiO{sub 2}/HAP dose result in adverse effects due to hydroxyl radical scavenging at higher catalyst concentrations. Complete removal of SMX was achieved upon UV-A irradiation for 180 min. Under optimal conditions, 51.2% of the TOC was removed, indicating the formation of intermediate products during SMX degradation. The optimal ratio of SMX (mg L{sup -1}) to TiO{sub 2}/HAP (g L{sup -1}) to UV (W/L) was 5.4145 mg L{sup -1} to 1.4351 g L{sup -1} to 18 W for both SMX and TOC removal. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for SMX and TOC removal of 99.89% and 51.01%, respectively.

  9. Experimental investigation on the spiral trepanning of K24 superalloy with femtosecond laser

    Science.gov (United States)

    Wang, Maolu; Yang, Lijun; Zhang, Shuai; Wang, Yang

    2018-05-01

    Film cooling holes are crucial for improving the performance of the aviation engine. In the paper, the processing of the film cooling holes on K24 superalloy by femtosecond laser is investigated. By comparing the three different drilling methods, the spiral trepanning method is chosen, and all the drilling experiments are carried out in this way. The experimental results show that the drilling of femtosecond laser pulses has distinct merits against that of the traditional long pulse laser, which can realize the "cold" processing with less recasting layer and less crack. The influence of each process parameter on roundness and taper, which are the important parameters to measure the quality of holes, is analyzed in detail, and the method to decrease it is proposed. To further reduce the recasting layer, the processing quality of the inner wall of the micro hole is investigated by scanning electron microscopy (SEM) equipped with energy disperse spectroscopy (EDS), the mechanism of the femtosecond laser interaction with K24 superalloy is further revealed. The investigation to the film hole machining by femtosecond laser has important practical significance.

  10. Development of a high power femtosecond laser

    CSIR Research Space (South Africa)

    Neethling, PH

    2010-10-01

    Full Text Available The Laser Research Institute and the CSIR National Laser Centre are developing a high power femtosecond laser system in a joint project with a phased approach. The laser system consists of an fs oscillator and a regenerative amplifier. An OPCPA...

  11. All-optical femtosecond switch using two-photon absorption

    International Nuclear Information System (INIS)

    Yavuz, D. D.

    2006-01-01

    Utilizing a two-photon absorption scheme in an alkali-metal vapor cell, we suggest a technique where a strong laser beam switches off another laser beam of different wavelength in femtosecond time scales

  12. Femtosecond Time-resolved Optical Polarigraphy (FTOP)

    International Nuclear Information System (INIS)

    Aoshima, S.; Fujimoto, M.; Hosoda, M.; Tsuchiya, Y.

    2000-01-01

    A novel time-resolved imaging technique named FTOP (Femtosecond Time-resolved Optical Polarigraphy) for visualizing the ultrafast propagation dynamics of intense light pulses in a medium has been proposed and demonstrated. Femtosecond snapshot images can be created with a high spatial resolution by imaging only the polarization components of the probe pulse; these polarization components change due to the instantaneous birefringence induced by the pump pulse in the medium. Ultrafast temporal changes in the two-dimensional spatial distribution of the optical pulse intensity were clearly visualized in consecutive images by changing the delay between the pump and probe. We observe that several filaments appear and then come together before the vacuum focus due to nonlinear effects in air. We also prove that filamentation dynamics such as the formation position and the propagation behavior are complex and are strongly affected by the pump energy. The results collected clearly show that this method FTOP succeeds for the first time in directly visualizing the ultrafast dynamics of the self-modulated nonlinear propagation of light. (author)

  13. High-Performance solar-blind flexible Deep-UV photodetectors based on quantum dots synthesized by femtosecond-laser ablation

    KAUST Repository

    Mitra, Somak

    2018-03-31

    High-performance deep ultraviolet (DUV) photodetectors operating at ambient conditions with < 280nm detection wavelengths are in high demand because of their potential applications in diverse fields. We demonstrate for the first time, high-performance flexible DUV photodetectors operating at ambient conditions based on quantum dots (QDs) synthesized by femtosecond-laser ablation in liquid (FLAL) technique. Our method is facile without complex chemical procedures, which allows large-scale cost-effective devices. This synthesis method is demonstrated to produce highly stable and reproducible ZnO QDs from zinc nitride target (Zn3N2) without any material degradation due to water and oxygen molecule species, allowing photodetectors operate at ambient conditions. Carbon-doped ZnO QD-based photodetector is capable of detecting efficiently in the DUV spectral region, down to 224nm, and exhibits high photo responsivity and stability. As fast response of DUV photodetector remains significant parameter for high-speed communication; we show fast-response QD-based DUV photodetector. Such surfactant-free synthesis by FLAL can lead to commercially available high-performance low-cost optoelectronic devices based on nanostructures for large scale applications.

  14. Development of a nomogram for femtosecond laser astigmatic keratotomy for astigmatism after keratoplasty.

    Science.gov (United States)

    St Clair, Ryan M; Sharma, Anushree; Huang, David; Yu, Fei; Goldich, Yakov; Rootman, David; Yoo, Sonia; Cabot, Florence; Jun, Jason; Zhang, Lijun; Aldave, Anthony J

    2016-04-01

    To develop a nomogram for femtosecond laser astigmatic keratotomy (AK) to treat post-keratoplasty astigmatism. Three academic medical centers. Retrospective interventional case series. A review of post-keratoplasty femtosecond laser AK was performed. Uncorrected (UDVA) and corrected (CDVA) distance visual acuities, manifest refraction, and keratometry were recorded preoperatively and 1, 3, 6, and 12 months postoperatively. The location, length, depth, and diameter of the AK incisions were recorded, and the surgically induced astigmatic correction was related to these variables using regression analysis. One hundred forty femtosecond laser AK procedures were performed after penetrating keratoplasty (PKP) (n = 129) or deep anterior lamellar keratoplasty (DALK) (n =11), with 89 procedures (80 PKP, 9 DALK) included in the analysis. The mean CDVA improved from 20/59 (0.47 logMAR ± 0.38 [SD]) preoperatively to 20/45 (0.35 ± 0.31 logMAR) postoperatively (P = .013) (n = 46). The mean keratometric astigmatism decreased from 8.26 ± 2.90 diopters (D) preoperatively to 3.62 ± 2.59 D postoperatively (P AK to treat post-keratoplasty astigmatism was generated using regression analysis. Femtosecond laser AK significantly improved UDVA and CDVA and significantly reduced keratometric astigmatism and refractive cylinder after keratoplasty. The nomogram generated should improve the accuracy of post-keratoplasty femtosecond laser AK. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK

    Directory of Open Access Journals (Sweden)

    Li-Kun Xia

    2015-08-01

    Full Text Available AIM: To compare refractive results, higher-order aberrations (HOAs, contrast sensitivity and dry eye after laser in situ keratomileusis (LASIK performed with a femtosecond laser versus a mechanical microkeratome for myopia and astigmatism.METHODS: In this prospective, non-randomized study, 120 eyes with myopia received a LASIK surgery with the VisuMax femtosecond laser for flap cutting, and 120 eyes received a conventional LASIK surgery with a mechanical microkeratome. Flap thickness, visual acuity, manifest refraction, contrast sensitivity function (CSF curves, HOAs and dry-eye were measured at 1wk; 1, 3, 6mo after surgery.RESULTS:At 6mo postoperatively, the mean central flap thickness in femtosecond laser procedure was 113.05±5.89 µm (attempted thickness 110 µm, and 148.36±21.24 µm (attempted thickness 140 µm in mechanical microkeratome procedure. An uncorrected distance visual acuity (UDVA of 4.9 or better was obtained in more than 98% of eyes treated by both methods, a gain in logMAR lines of corrected distance visual acuity (CDVA occurred in more than 70% of eyes treated by both methods, and no eye lost ≥1 lines of CDVA in both groups. The difference of the mean UDVA and CDVA between two groups at any time post-surgery were not statistically significant (P>0.05. The postoperative changes of spherical equivalent occurred markedly during the first month in both groups. The total root mean square values of HOAs and spherical aberrations in the femtosecond treated eyes were markedly less than those in the microkeratome treated eyes during 6mo visit after surgery (P<0.01. The CSF values of the femtosecond treated eyes were also higher than those of the microkeratome treated eyes at all space frequency (P<0.01. The mean ocular surface disease index scores in both groups were increased at 1wk, and recovered to preoperative level at 1mo after surgery. The mean tear breakup time (TBUT of the femtosecond treated eyes were markedly

  16. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK.

    Science.gov (United States)

    Xia, Li-Kun; Yu, Jie; Chai, Guang-Rui; Wang, Dang; Li, Yang

    2015-01-01

    To compare refractive results, higher-order aberrations (HOAs), contrast sensitivity and dry eye after laser in situ keratomileusis (LASIK) performed with a femtosecond laser versus a mechanical microkeratome for myopia and astigmatism. In this prospective, non-randomized study, 120 eyes with myopia received a LASIK surgery with the VisuMax femtosecond laser for flap cutting, and 120 eyes received a conventional LASIK surgery with a mechanical microkeratome. Flap thickness, visual acuity, manifest refraction, contrast sensitivity function (CSF) curves, HOAs and dry-eye were measured at 1wk; 1, 3, 6mo after surgery. At 6mo postoperatively, the mean central flap thickness in femtosecond laser procedure was 113.05±5.89 µm (attempted thickness 110 µm), and 148.36±21.24 µm (attempted thickness 140 µm) in mechanical microkeratome procedure. An uncorrected distance visual acuity (UDVA) of 4.9 or better was obtained in more than 98% of eyes treated by both methods, a gain in logMAR lines of corrected distance visual acuity (CDVA) occurred in more than 70% of eyes treated by both methods, and no eye lost ≥1 lines of CDVA in both groups. The difference of the mean UDVA and CDVA between two groups at any time post-surgery were not statistically significant (P>0.05). The postoperative changes of spherical equivalent occurred markedly during the first month in both groups. The total root mean square values of HOAs and spherical aberrations in the femtosecond treated eyes were markedly less than those in the microkeratome treated eyes during 6mo visit after surgery (P<0.01). The CSF values of the femtosecond treated eyes were also higher than those of the microkeratome treated eyes at all space frequency (P<0.01). The mean ocular surface disease index scores in both groups were increased at 1wk, and recovered to preoperative level at 1mo after surgery. The mean tear breakup time (TBUT) of the femtosecond treated eyes were markedly longer than those of the microkeratome

  17. One-year follow-up of femtosecond laser-assisted penetrating keratoplasty

    Directory of Open Access Journals (Sweden)

    Tan JCH

    2013-02-01

    Full Text Available Johnson Choon-Hwai Tan, Wee-Jin HengNational Healthcare Group Eye Institute, Tan Tock Seng Hospital, SingaporeBackground: The purpose of this report is to describe the initial outcomes of femtosecond laser-assisted penetrating keratoplasty.Methods: This retrospective surgical case series consisted of 10 eyes from 10 patients undergoing penetrating keratoplasty at a tertiary center. Femtosecond laser was used to perform a zig-square incision on the donor cornea with matched dimensions on the recipient cornea. Outcomes measured included: unaided visual acuity and best spectacle-corrected visual acuity preoperatively and at one, 3, 6, and 12 months postoperatively; manifest refractive and topographic astigmatism at 3, 6, and 12 months postoperatively; and endothelial cell density loss, calculated at the end of the one-year follow-up period.Results: At one-year follow-up, there was an improvement in unaided visual acuity from a mean preoperative logMAR of 1.67 to 0.44, and best spectacle-corrected visual acuity from a mean preoperative logMAR of 1.33 to 0.13. By postoperative month 3, mean manifest refractive and topographic astigmatism was 2.31 ± 1.41 D and 2.59 ± 1.57 D, respectively. The mean reduction in endothelial cell density was 20.7% after one year of follow-up.Conclusion: Femtosecond laser-assisted penetrating keratoplasty provided a good visual outcome and early visual rehabilitation due to precise graft-host alignment and reduced astigmatism in the early postoperative months.Keywords: penetrating keratoplasty, femtosecond laser-assisted keratoplasty

  18. Realignment process of actin stress fibers in single living cells studied by focused femtosecond laser irradiation

    OpenAIRE

    Yasukuni, Ryohei; Spitz, Jean-Alexis; Meallet-Renault, Rachel; Negishi, Takayuki; Tada, Takuji; Hosokawa, Yoichiroh; Asahi, Tsuyoshi; Shukunami, Chisa; Hiraki, Yuji; Masuhara, Hiroshi

    2007-01-01

    Three-dimensional dissection of a single actin stress fiber in a living cell was performed based on multi-photon absorption of a focused femtosecond laser pulse. The realignment process of an actin stress fiber was investigated after its direct cutting by a single-shot femtosecond laser pulse irradiation by high-speed transmission and fluorescence imaging methods. It was confirmed that mechanical force led by the femtosecond laser cutting propagates to entire cell through the cytockelton in a...

  19. Testing of a femtosecond pulse laser in outer space

    Science.gov (United States)

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  20. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers

    Science.gov (United States)

    Harmand, M.; Coffee, R.; Bionta, M. R.; Chollet, M.; French, D.; Zhu, D.; Fritz, D. M.; Lemke, H. T.; Medvedev, N.; Ziaja, B.; Toleikis, S.; Cammarata, M.

    2013-03-01

    Recently, few-femtosecond pulses have become available at hard X-ray free-electron lasers. Coupled with the available sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchronization between optical lasers and X-ray pulses continues to be challenging. We report a `measure-and-sort' approach, which achieves sub-10 fs root-mean-squared (r.m.s.) error measurement at hard X-ray FELs, far beyond the 100-200 fs r.m.s. jitter limitations. This timing diagnostic, now routinely available at the Linac Coherent Light Source (LCLS), is based on ultrafast free-carrier generation in optically transparent materials. Correlation between two independent measurements enables unambiguous demonstration of ~6 fs r.m.s. error in reporting the optical/X-ray delay, with single shot error suggesting the possibility of reaching few-femtosecond resolution.

  1. A Comparison of Different Operating Systems for Femtosecond Lasers in Cataract Surgery.

    Science.gov (United States)

    Wu, B M; Williams, G P; Tan, A; Mehta, J S

    2015-01-01

    The introduction of femtosecond lasers is potentially a major shift in the way we approach cataract surgery. The development of increasingly sophisticated intraocular lenses (IOLs), coupled with heightened patient expectation of high quality postsurgical visual outcomes, has generated the need for a more precise, highly reproducible and standardized method to carry out cataract operations. As femtosecond laser-assisted cataract surgery (FLACS) becomes more commonplace in surgical centers, further evaluation of the potential risks and benefits needs to be established, particularly in the medium/long term effects. Healthcare administrators will also have to weigh and balance out the financial costs of these lasers relative to the advantages they put forth. In this review, we provide an operational overview of three of five femtosecond laser platforms that are currently commercially available: the Catalys (USA), the Victus (USA), and the LDV Z8 (Switzerland).

  2. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    Science.gov (United States)

    Löhl, F.; Arsov, V.; Felber, M.; Hacker, K.; Jalmuzna, W.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Schmüser, P.; Schulz, S.; Szewinski, J.; Winter, A.; Zemella, J.

    2010-04-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  3. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    International Nuclear Information System (INIS)

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-01-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  4. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  5. Non-invasive bleaching of the human lens by femtosecond laser photolysis

    DEFF Research Database (Denmark)

    Kessel, L.; Eskildsen, Lars; Poel, Mike van der

    2010-01-01

    . Reducing blindness from cataract requires solutions that can be applied outside operating theatres. Cataract is a protein conformational disease characterized by accumulation of light absorbing, fluorescent and scattering protein aggregates. The aim of the study was to investigate whether these compounds...... by a non-invasive procedure based on femtosecond laser photolysis. Cataract is a disease associated with old age. At the current technological stage, lens aging is delayed but with a treatment covering the entire lens volume complete optical rejuvenation is expected. Thus, femtosecond photolysis has...

  6. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Shaheen, M.E.; Gagnon, J.E.; Fryer, B.J.

    2015-01-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66 Zn/ 63 Cu, 208 Pb/ 238 U, 232 Th/ 238 U, 66 Zn/ 232 Th and 66 Zn/ 208 Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to femtosecond laser ablation of NIST 610 and Brass

  7. Generation and characterization of atto second pulses

    International Nuclear Information System (INIS)

    Mairesse, Y.

    2005-07-01

    Atto-second pulse trains in the extreme ultraviolet range can be produced by high-order harmonic generation, by focusing an intense femtosecond pulse in a rare gas jet. In this thesis, we present a temporal characterization of this radiation on the femtosecond and atto-second timescales. By transposing a spectral interferometry technique commonly used in the infrared range (SPIDER), we make a complete single-shot characterization of the temporal profile of individual harmonics, on the femtosecond timescale. In a second part, we study experimentally the atto-second structure of the harmonic radiation, and demonstrate a temporal drift in the emission: the lowest harmonics are emitted before the highest ones. This chirp, which is directly related to the electron dynamics in the generation process, imposes a lower limit to the duration that can be achieved by increasing the spectral range. We show how generating conditions can be optimized in order to enhance the synchronization in the emission, and how atto-second pulses can be re-compressed. Last, we propose a new technique for the complete characterization of arbitrary atto-second pulses: FROGCRAB. This method would allow simultaneous measurements of the femtosecond and atto-second structures of the radiation, and thus a complete knowledge of the atto-second light source in the perspective of applications. (author)

  8. Femtosecond laser's application in the corneal surgery

    Directory of Open Access Journals (Sweden)

    Shu-Liang Wang

    2015-10-01

    Full Text Available With the rapid development over the past two decades,femtosecond(10-15slasers(FShas become a new application in ophthalmic surgery. As laser power is defined as energy delivered per unit time, decreasing the pulse duration to femtosecond level(100fsnot only increases the power delivered but also decreases the fluence threshold for laser induced optical breakdown. In ablating tissue, FS has an edge over nanosecond lasers as there is minimal collateral damage from shock waves and heat conduction during surgical ablation. Thus, application of FS has been widely spread, from flap creation for laser-assisted in situ keratomileusis(LASIKsurgery, cutting of donor and recipient corneas in keratoplasty, creation of pockets for intracorneal ring implantation. FS applied in keratoplasty is mainly used in making graft and recipient bed, and can exactly cut different tissue of keratopathy. FS can also cut partial tissue of cornea, even if it is under the moderate corneal macula and corneal edema condition.

  9. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  10. TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Thomas; Grapes, Michael D. [Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Zhang, Yong [Dept. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Lorenzo, Nicholas; Ligda, Jonathan; Schuster, Brian [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD 21005 (United States); Weihs, Timothy P. [Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2017-04-15

    To model mechanical properties of metals at high strain rates, it is important to visualize and understand their deformation at the nanoscale. Unlike post mortem Transmission Electron Microscopy (TEM), which allows one to analyze defects within samples before or after deformation, in situ TEM is a powerful tool that enables imaging and recording of deformation and the associated defect motion during mechanical loading. Unfortunately, all current in situ TEM mechanical testing techniques are limited to quasi-static strain rates. In this context, we are developing a new test technique that utilizes a rapid straining stage and the Dynamic TEM (DTEM) at the Lawrence Livermore National Laboratory (LLNL). The new straining stage can load samples in tension at strain rates as high as 4×10{sup 3}/s using two piezoelectric actuators operating in bending while the DTEM at LLNL can image in movie mode with a time resolution as short as 70 ns. Given the piezoelectric actuators are limited in force, speed, and displacement, we have developed a method for fabricating TEM samples with small cross-sectional areas to increase the applied stresses and short gage lengths to raise the applied strain rates and to limit the areas of deformation. In this paper, we present our effort to fabricate such samples from bulk materials. The new sample preparation procedure combines femtosecond laser machining and ion milling to obtain 300 µm wide samples with control of both the size and location of the electron transparent area, as well as the gage cross-section and length. - Highlights: • Tensile straining TEM specimens made by femtosecond laser machining and ion milling. • Accurate positioning of the electron transparent area within a controlled gauge region. • Optimization of femtosecond laser and ion milling parameters. • Fast production of numerous samples with a highly repeatable geometry.

  11. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    NARCIS (Netherlands)

    Meng, C.; Janssen, M.H.M.

    2015-01-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the

  12. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  13. Optimization of Reversed-Phase Peptide Liquid Chromatography Ultraviolet Mass Spectrometry Analyses Using an Automated Blending Methodology

    Science.gov (United States)

    Chakraborty, Asish B.; Berger, Scott J.

    2005-01-01

    The balance between chromatographic performance and mass spectrometric response has been evaluated using an automated series of experiments where separations are produced by the real-time automated blending of water with organic and acidic modifiers. In this work, the concentration effects of two acidic modifiers (formic acid and trifluoroacetic acid) were studied on the separation selectivity, ultraviolet, and mass spectrometry detector response, using a complex peptide mixture. Peptide retention selectivity differences were apparent between the two modifiers, and under the conditions studied, trifluoroacetic acid produced slightly narrower (more concentrated) peaks, but significantly higher electrospray mass spectrometry suppression. Trifluoroacetic acid suppression of electrospray signal and influence on peptide retention and selectivity was dominant when mixtures of the two modifiers were analyzed. Our experimental results indicate that in analyses where the analyzed components are roughly equimolar (e.g., a peptide map of a recombinant protein), the selectivity of peptide separations can be optimized by choice and concentration of acidic modifier, without compromising the ability to obtain effective sequence coverage of a protein. In some cases, these selectivity differences were explored further, and a rational basis for differentiating acidic modifier effects from the underlying peptide sequences is described. PMID:16522853

  14. Investigation of diffractive optical element femtosecond laser machining

    Energy Technology Data Exchange (ETDEWEB)

    Chabrol, Grégoire R., E-mail: g.chabrol@ecam-strasbourg.eu [ECAM Strasbourg-Europe, Espace Européen de l’entreprise, 2, rue de Madrid – 67300 SCHILTIGHEIM, CS. 20013, 67012 Strasbourg CEDEX (France); Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Ciceron, Adline [ECAM Strasbourg-Europe, Espace Européen de l’entreprise, 2, rue de Madrid – 67300 SCHILTIGHEIM, CS. 20013, 67012 Strasbourg CEDEX (France); Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Twardowski, Patrice; Pfeiffer, Pierre [Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Télécom Physique Strasbourg – Pôle API – 300 Bd Sébastien Brant – CS 10413, Illkirch Graffenstaden F 67400 (France); and others

    2016-06-30

    Highlights: • A method for rapid manufacturing of optical diffractive element in BK7 is proposed. • A binary grating in BK7 was successfully machined by femtosecond laser pulses. • Process relying on nonlinear absorption in the dielectric due to photoionization. • The binary grating was analysed by SEM and interferometric microscopy. • Simulations by Fourier modal method supported the measured diffractive efficiency. - Abstract: This paper presents an explorative study on the machining of diffractive optical elements (DOEs) in transparent materials using a femtosecond laser source. A simple form of DOE, a binary phase grating with a period of 20.85 μm (σ = 0.5 μm), a groove depth and width of 0.7 μm (σ = 0.2 μm) and 8.8 μm (σ = 0.5 μm) respectively, was successfully machined in BK7. The topographic characteristics were measured by white light interferometry and scanning electron microscopy (SEM). The processing was carried out on high precision stages with an ultrafast fibre laser (350 fs) emitting a 343 nm pulse focused onto the sample with a stationary microscope objective. A diffracted efficiency of 27%, obtained with a spectro goniometer, was corroborated by the theoretical results obtained by the Fourier modal method (FMM), taking into account the measured topographic values. These encouraging results demonstrate that high-speed femtosecond laser manufacturing of DOE in bulk glasses can be achieved, opening the way to rapid prototyping of multi-layered-DOEs.

  15. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    International Nuclear Information System (INIS)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-01-01

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus s intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications

  16. Femtosecond X-ray scattering in condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Korff Schmising, Clemens von

    2008-11-24

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  17. Femtosecond X-ray scattering in condensed matter

    International Nuclear Information System (INIS)

    Korff Schmising, Clemens von

    2008-01-01

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  18. UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing.

    Science.gov (United States)

    Hanada, Yasutaka; Sugioka, Koji; Midorikawa, Katsumi

    2010-01-18

    We have fabricated optical waveguides inside the UV-transparent polymer, CYTOP, by femtosecond laser direct writing for propagating UV light in biochip applications. Femtosecond laser irradiation is estimated to increase the refractive index of CYTOP by 1.7 x 10(-3) due to partial bond breaking in CYTOP. The waveguide in CYTOP has propagation losses of 0.49, 0.77, and 0.91 dB/cm at wavelengths of 632.8, 355, and 266 nm, respectively.

  19. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    International Nuclear Information System (INIS)

    Li, Jiang; Shi, Junkai; Xu, Baozhong; Xing, Qirong; Wang, Chingyue; Chai, Lu; Liu, Bowen; Hu, Minglie; Li, Yanfeng; Fedotov, Andrey B.; Zheltikov, Aleksei M.

    2014-01-01

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources

  20. Interaction of intense femtosecond laser pulses with high-Z solids

    International Nuclear Information System (INIS)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Yoshida, Masatake; Kondo, Kenichi

    2000-01-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, ∼20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  1. Temporal evolution of plasma density in femtosecond light filaments

    International Nuclear Information System (INIS)

    Wang Haitao; Fan Chengyu; Shen Hong; Qiao Chunhong; Zhang Jinghui; Zhang Pengfei; Ma Huimin; Xu Huiling

    2012-01-01

    By using a legible and comprehensive physical model describing the generation and evolvement of ion densities in the plasma channel induced by intense femtosecond laser pulse, the work studied the temporal evolution of the plasma densities in femtosecond light filaments. It shows that the contribution of the ionization of oxygen and nitrogen molecules to the total electron densities varies much for different laser pulse shapes, and the pulse shapes have more effects on the lifetime of the higher density plasma. It is necessary to control the pulse shape for efficient using of the plasma channel. Pulses of long duration and short wavelength can obtain a plasma channel with higher electron density, but the channel lifetime thoroughly depends on the later evolution of the self-guided channel. (authors)

  2. Mixture-fraction imaging at 1  kHz using femtosecond laser-induced fluorescence of krypton.

    Science.gov (United States)

    Richardson, Daniel R; Jiang, Naibo; Stauffer, Hans U; Kearney, Sean P; Roy, Sukesh; Gord, James R

    2017-09-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (TALIF) imaging measurements of krypton (Kr) are demonstrated to study mixing in gaseous flows. A measurement approach is presented in which observed Kr TALIF signals are 7 times stronger than the current state-of-the-art methodology. Fluorescence emission is compared for different gas pressures and excitation wavelengths, and the strongest fluorescence signals were observed when the excitation wavelength was tuned to 212.56 nm. Using this optimized excitation scheme, 1-kHz, single-laser-shot visualizations of unsteady flows and two-dimensional measurements of mixture fraction and scalar dissipation rate of a Kr-seeded jet are demonstrated.

  3. Femtosecond laser cutting of human corneas for the subbasal nerve plexus evaluation.

    Science.gov (United States)

    Kowtharapu, B S; Marfurt, C; Hovakimyan, M; Will, F; Richter, H; Wree, A; Stachs, O; Guthoff, R F

    2017-01-01

    Assessment of various morphological parameters of the corneal subbasal nerve plexus is a valuable method of documenting the structural and presumably functional integrity of the corneal innervation in health and disease. The aim of this work is to establish a rapid, reliable and reproducible method for visualization of the human corneal SBP using femtosecond laser cut corneal tissue sections. Trephined healthy corneal buttons were fixed and processed using TissueSurgeon-a femtosecond laser based microtome, to obtain thick tissue sections of the corneal epithelium and anterior stroma cut parallel to the ocular surface within approximately 15 min. A near infrared femtosecond laser was focused on to the cornea approximately 70-90 μm from the anterior surface to induce material separation using TissueSurgeon. The obtained corneal sections were stained following standard immunohistochemical procedures with anti-neuronal β-III tubulin antibody for visualization of the corneal nerves. Sections that contained the epithelium and approximately 20-30 μm of anterior stroma yielded excellent visualisation of the SBP with minimal optical interference from underlying stromal nerves. In conclusion, the results of this study have demonstrated that femtosecond laser cutting of the human cornea offers greater speed, ease and reliability than standard tissue preparation methods for obtaining high quality thick sections of the anterior cornea cut parallel to the ocular surface. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. Femtosecond frequency comb based distance measurement in air

    NARCIS (Netherlands)

    Balling, P.; Kren, P.; Masika, P.; van den Berg, S.A.

    2009-01-01

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The

  5. Femtosecond Fiber Lasers

    Science.gov (United States)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  6. Absorption spectra of localized surface plasmon resonance observed in an inline/picoliter spectrometer cell fabricated by a near ultraviolet femtosecond laser

    Science.gov (United States)

    Shiraishi, Masahiko; Nishiyama, Michiko; Watanabe, Kazuhiro; Kubodera, Shoichi

    2018-03-01

    Absorption spectra based on localized surface plasmon resonance (LSPR) were obtained with an inline/picoliter spectrometer cell. The spectrometer cell was fabricated into an optical glass fiber by focusing a near UV (NUV) femtosecond laser pulses at a wavelength of 400 nm with an energy of 30 μJ. The laser beam was focused from two directions opposite to each other to fabricate a through-hole spectrometer cell. A diameter of the cell was approximately 3 μm, and the length was approximately 62.5 μm, which was nearly equal to the core diameter of the optical fiber. Liquid solution of gold nanoparticles (GNPs) with a diameter of 5-10 nm was injected into the spectrometer cell with its volume of 0.4 pL. The absorption peak centered at 518 nm was observed. An increase of absorption associated with the increase of the number of nanoparticles was in agreement with the numerical calculation based on the Lambert-Beer law.

  7. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, M.E., E-mail: mshaheen73@science.tanta.edu.eg [Department of Physics, Faculty of Sciences, Tanta University, Tanta (Egypt); Gagnon, J.E.; Fryer, B.J. [Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using {sup 66}Zn/{sup 63}Cu, {sup 208}Pb/{sup 238}U, {sup 232}Th/{sup 238}U, {sup 66}Zn/{sup 232}Th and {sup 66}Zn/{sup 208}Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to

  8. Near-field-optical-microscopy studies of micro-modifications caused by femtosecond laser irradiation in lithium niobate crystals

    International Nuclear Information System (INIS)

    Lamela, J.; Jaque, D.; Rodenas, A.; Jaque, F.; Torchia, G.A.; Vazquez, J.R.; Mendez, C.; Roso, L.

    2008-01-01

    Near-field-optical-microscopy has been used to study the micro-modifications caused by femtosecond laser pulses focused at the surface and in the volume of lithium niobate crystals. We have found experimental evidence of the existence, close to femtosecond ablation craters, of periodic modifications in the surface reflectivity. In addition, the potential application of near-field-optical microscopy for the spatial location of permanent modifications caused by femtosecond pulses focused inside lithium niobate crystals has been also demonstrated. (orig.)

  9. Correlation functions formed by a femtosecond pulse interferometer

    NARCIS (Netherlands)

    Cui, M.; Bhattacharya, N.; Urbach, H.P.; Van den berg, S.A.

    2008-01-01

    We experimentally demonstrate that a stabilized femtosecond frequency comb can be applied as a tool for distance measurement. The scheme is based on optical interference between individual pulses in a Michelson type interferometer. The cross-correlation functions between individual pulses with a

  10. Rescue of Primary Incomplete Microkeratome Flap with Secondary Femtosecond Laser Flap in LASIK

    Directory of Open Access Journals (Sweden)

    E. A. Razgulyaeva

    2014-01-01

    Full Text Available For laser-assisted in situ keratomileusis (LASIK retreatments with a previous unsuccessful mechanical microkeratome-assisted surgery, some surgical protocols have been described as feasible, such as relifting of the flap or the creation of a new flap and even the change to a surface ablation procedure (photorefractive keratectomy (PRK. This case shows the use of femtosecond technology for the creation of a secondary flap to perform LASIK in a cornea with a primary incomplete flap obtained with a mechanical microkeratome. As we were unable to characterize the interface of the first partial lamellar cut, a thick flap was planned and created using a femtosecond laser platform. As the primary cut was very thick in the nasal quadrant, a piece of loose corneal tissue appeared during flap lifting which was fitted in its position and not removed. Despite this condition and considering the regularity of the new femtosecond laser cut, the treatment was uneventful. This case report shows the relevance of a detailed corneal analysis with an advanced imaging technique before performing a secondary flap in a cornea with a primary incomplete flap. The femtosecond laser technology seems to be an excellent tool to manage such cases successfully.

  11. Multi-Parameter Measurement in Unseeded Flows using Femtosecond Lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach is to use new turn-key femtosecond laser technology along with new high-speed CMOS camera technology to build a multi-parameter measurement system based...

  12. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    International Nuclear Information System (INIS)

    Hikov, Todor; Pecheva, Emilia; Petrov, Todor; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry. (paper)

  13. Profitability analysis of a femtosecond laser system for cataract surgery using a fuzzy logic approach.

    Science.gov (United States)

    Trigueros, José Antonio; Piñero, David P; Ismail, Mahmoud M

    2016-01-01

    To define the financial and management conditions required to introduce a femtosecond laser system for cataract surgery in a clinic using a fuzzy logic approach. In the simulation performed in the current study, the costs associated to the acquisition and use of a commercially available femtosecond laser platform for cataract surgery (VICTUS, TECHNOLAS Perfect Vision GmbH, Bausch & Lomb, Munich, Germany) during a period of 5y were considered. A sensitivity analysis was performed considering such costs and the countable amortization of the system during this 5y period. Furthermore, a fuzzy logic analysis was used to obtain an estimation of the money income associated to each femtosecond laser-assisted cataract surgery (G). According to the sensitivity analysis, the femtosecond laser system under evaluation can be profitable if 1400 cataract surgeries are performed per year and if each surgery can be invoiced more than $500. In contrast, the fuzzy logic analysis confirmed that the patient had to pay more per surgery, between $661.8 and $667.4 per surgery, without considering the cost of the intraocular lens (IOL). A profitability of femtosecond laser systems for cataract surgery can be obtained after a detailed financial analysis, especially in those centers with large volumes of patients. The cost of the surgery for patients should be adapted to the real flow of patients with the ability of paying a reasonable range of cost.

  14. Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium

    International Nuclear Information System (INIS)

    Emmert, Luke A.; Chinni, Rosemarie C.; Cremers, David A.; Jones, C. Randy; Rudolph, Wolfgang

    2011-01-01

    We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064 nm) and femtosecond Ti:sapphire (800 nm) laser pulses. The latter pulses produce short-lived and relatively cool plasmas in comparison to the longer pulses, and the spectra of neutral uranium atoms appear immediately after excitation. Evidence for nonequilibrium excitation with femtosecond pulses is found in the dependence of spectral line intensities on the pulse chirp.

  15. Occupational applications of ultraviolet radiation

    International Nuclear Information System (INIS)

    Eriksen, P.

    1987-01-01

    A large population of workers are exposed to ultraviolet radiation in various occupational environments which often necessitates protection. Since ultraviolet radiation may create other environmental problems an occupational hazard- and protection evaluation can be complicated. Threshold Limit Values adopted by the American Conference of Governmental Industrial Hygienists (ACGIH) on ultraviolet radiation are used in most countries as guidelines for risk assessment and control measures. This review addresses the levels of ultraviolet radiation met in occupational environments, its measurement and evaluation, and discusses different protection methods. Ultraviolet lasers are beginning to find their way into industrial processes but are still limited in number and they will not be covered here. Emphasis is on broad band incoherent radiation in high risk environments such as welding, and on the evaluation of protective eyewear, see-through curtains and plastics. Other occupational risks associated with the emission of ultraviolet radiation are discussed

  16. Surface processing: existing and potential applications of ultraviolet light.

    Science.gov (United States)

    Manzocco, Lara; Nicoli, Maria Cristina

    2015-01-01

    Solid foods represent optimal matrices for ultraviolet processing with effects well beyond nonthermal surface disinfection. UV radiation favors hormetic response in plant tissues and degradation of toxic compound on the product surface. Photoinduced reactions can also provide unexplored possibilities to steer structure and functionality of food biopolymers. The possibility to extensively exploit this technology will depend on availability of robust information about efficacious processing conditions and adequate strategies to completely and homogeneously process food surface.

  17. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  18. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2012-11-01

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  19. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  20. Femtosecond profiling of shaped x-ray pulses

    Science.gov (United States)

    Hoffmann, M. C.; Grguraš, I.; Behrens, C.; Bostedt, C.; Bozek, J.; Bromberger, H.; Coffee, R.; Costello, J. T.; DiMauro, L. F.; Ding, Y.; Doumy, G.; Helml, W.; Ilchen, M.; Kienberger, R.; Lee, S.; Maier, A. R.; Mazza, T.; Meyer, M.; Messerschmidt, M.; Schorb, S.; Schweinberger, W.; Zhang, K.; Cavalieri, A. L.

    2018-03-01

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fully suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. This achievement completes an important step toward future x-ray pulse shaping techniques.

  1. Femtosecond Nanofocusing with Full Optical Waveform Control

    International Nuclear Information System (INIS)

    Berweger, Samuel; Atkin, Joanna M.; Xu, Xiaoji G.; Olmon, Robert L.; Raschke, Markus Bernd

    2011-01-01

    The simultaneous nanometer spatial confinement and femtosecond temporal control of an optical excitation has been a long-standing challenge in optics. Previous approaches using surface plasmon polariton (SPP) resonant nanostructures or SPP waveguides have suffered from, for example, mode mismatch, or possible dependence on the phase of the driving laser field to achieve spatial localization. Here we take advantage of the intrinsic phase- and amplitude-independent nanofocusing ability of a conical noble metal tip with weak wavelength dependence over a broad bandwidth to achieve a 10 nm spatially and few-femtosecond temporally confined excitation. In combination with spectral pulse shaping and feedback on the second-harmonic response of the tip apex, we demonstrate deterministic arbitrary optical waveform control. In addition, the high efficiency of the nanofocusing tip provided by the continuous micro- to nanoscale mode transformation opens the door for spectroscopy of elementary optical excitations in matter on their natural length and time scales and enables applications from ultrafast nano-opto-electronics to single molecule quantum coherent control.

  2. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Balashov, S.P.; Chábera, P.; Imasheva, E.S.; Yartsev, A.; Sundström, V.; Lanyi, J.K.

    2009-01-01

    Roč. 96, č. 6 (2009), s. 2268-2277 ISSN 0006-3495 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : energy transfer * carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.390, year: 2009

  3. Innovative applications of femtosecond laser induced self-organized nanostructure

    International Nuclear Information System (INIS)

    Shimotsuma, Yasuhiko; Miura, Kiyotaka; Sakakura, Masaaki

    2015-01-01

    The nanostructure induced by the direct-writing of femtosecond-laser pulses can open a new opportunity to develop avant-garde devices such as a 5D optical storage, polarization imaging sensor, thermoelectric conversion elements. (author)

  4. Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers

    International Nuclear Information System (INIS)

    Amer, M.S.; El-Ashry, M.A.; Dosser, L.R.; Hix, K.E.; Maguire, J.F.; Irwin, Bryan

    2005-01-01

    Laser micromachining has proven to be a very successful tool for precision machining and microfabrication with applications in microelectronics, MEMS, medical device, aerospace, biomedical, and defense applications. Femtosecond (FS) laser micromachining is usually thought to be of minimal heat-affected zone (HAZ) local to the micromachined feature. The assumption of reduced HAZ is attributed to the absence of direct coupling of the laser energy into the thermal modes of the material during irradiation. However, a substantial HAZ is thought to exist when machining with lasers having pulse durations in the nanosecond (NS) regime. In this paper, we compare the results of micromachining a single crystal silicon wafer using a 150-femtosecond and a 30-nanosecond lasers. Induced stress and amorphization of the silicon single crystal were monitored using micro-Raman spectroscopy as a function of the fluence and pulse duration of the incident laser. The onset of average induced stress occurs at lower fluence when machining with the femtosecond pulse laser. Induced stresses were found to maximize at fluence of 44 J cm -2 and 8 J cm -2 for nanosecond and femtosecond pulsed lasers, respectively. In both laser pulse regimes, a maximum induced stress is observed at which point the induced stress begins to decrease as the fluence is increased. The maximum induced stress was comparable at 2.0 GPa and 1.5 GPa for the two lasers. For the nanosecond pulse laser, the induced amorphization reached a plateau of approximately 20% for fluence exceeding 22 J cm -2 . For the femtosecond pulse laser, however, induced amorphization was approximately 17% independent of the laser fluence within the experimental range. These two values can be considered nominally the same within experimental error. For femtosecond laser machining, some effect of the laser polarization on the amount of induced stress and amorphization was also observed

  5. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziani, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France); Delmotte, F., E-mail: Franck.Delmotte@InstitutOptique.fr [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Le Paven-Thivet, C. [Institut d' Electronique et de Télécommunications de Rennes (IETR) UMR-CNRS 6164, Université de Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex France (France); Meltchakov, E.; Jérome, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Roulliay, M. [Institut des Sciences Moléculaires d’Orsay UMR 8214, Univ Paris Sud, 91405 Orsay France (France); Bridou, F. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Gasc, K. [Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France)

    2014-02-03

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B{sub 4}C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source.

  6. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    International Nuclear Information System (INIS)

    Ziani, A.; Delmotte, F.; Le Paven-Thivet, C.; Meltchakov, E.; Jérome, A.; Roulliay, M.; Bridou, F.; Gasc, K.

    2014-01-01

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B 4 C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source

  7. High current table-top setup for femtosecond gas electron diffraction

    Directory of Open Access Journals (Sweden)

    Omid Zandi

    2017-07-01

    Full Text Available We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We present here a device that uses pulse compression to overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. The high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.

  8. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Chefonov, O V; Ovchinnikov, A V; Il'ina, I V; Agranat, M B

    2016-01-01

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulses with intensities 10 11 – 10 13 W cm -2 . (interaction of laser radiation with matter)

  9. Femtosecond laser pulse written Volume Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Richter Daniel

    2013-11-01

    Full Text Available Femtosecond laser pulses can be applied for structuring a wide range of ransparent materials. Here we want to show how to use this ability to realize Volume-Bragg-Gratings in various- mainly non-photosensitive - glasses. We will further present the characteristics of the realized gratings and a few elected applications that have been realized.

  10. Enhanced bioremediation of soil contaminated with viscous oil through microbial consortium construction and ultraviolet mutation.

    Science.gov (United States)

    Chen, Jing; Yang, Qiuyan; Huang, Taipeng; Zhang, Yongkui; Ding, Ranfeng

    2011-06-01

    This study focused on enhancing the bioremediation of soil contaminated with viscous oil by microorganisms and evaluating two strategies. Construction of microbial consortium and ultraviolet mutation were both effective applications in the remediation of soil contaminated with viscous oil. Results demonstrated that an interaction among the microorganisms existed and affected the biodegradation rate. Strains inoculated equally into the test showed the best remediation, and an optimal microbial consortium was achieved with a 7 days' degradation rate of 49.22%. On the other hand, the use of ultraviolet mutation increased one strain's degrading ability from 41.83 to 52.42% in 7 days. Gas chromatography and mass spectrum analysis showed that microbial consortium could treat more organic fractions of viscous oil, while ultraviolet mutation could be more effect on increasing one strain's degrading ability.

  11. Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y., E-mail: ding@slac.stanford.edu; Coffee, R.; Decker, F.-J.; Emma, P.; Field, C.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Behrens, C. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany); Helml, W. [Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany)

    2015-11-09

    Generation of femtosecond to sub-femtosecond pulses is attracting much attention in X-ray free-electron laser user community. One method is to use a slotted, emittance-spoiling foil which was proposed before (P. Emma et al., Phys. Rev. Lett. 92, 074801 (2004)) and has been widely used at the Linac Coherent Light Source. Direct experimental characterization of the slotted-foil performance was previously unfeasible due to a lack of appropriate diagnostics. With a recently installed X-band radio-frequency transverse deflector, we are able to characterize the electron bunch spoiling effect and X-ray pulse when using the slotted foil. We show that few-femtosecond X-ray pulses are generated with flexible control of the single-pulse duration or double-pulse separation with comparison to the theoretical model.

  12. Nanoflow electrospinning serial femtosecond crystallography

    Science.gov (United States)

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-01-01

    An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min−1 to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min−1 and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption. PMID:23090408

  13. Optical synchronization system for femtosecond X-ray sources

    Science.gov (United States)

    Wilcox, Russell B [El Cerrito, CA; Holzwarth, Ronald [Munich, DE

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  14. Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens

    Science.gov (United States)

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.

    2018-04-01

    Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.

  15. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  16. Primary processes of the electron-protic species coupling in pure aqueous phases: - femtosecond laser spectroscopy study; - quantum approach of the electron-water interaction

    International Nuclear Information System (INIS)

    Pommeret, Stanislas

    1991-01-01

    This thesis work deals with the coupling mechanisms between an electron, water molecules or protic species (hydronium ion, hydroxyl radical). Two complementary studies have been carry out in pure aqueous phases. The first one is concerned with the structural aspect of the hydrated electron which is studied via a semi-quantum approach Splitting Operator Method. The results indicates the importance of the second hydration shell in the localisation of an electron at 77 and 300 Kelvin. The second part of this work relates to the dynamic of the primary processes in light or heavy water at room temperature: the ion-molecule reaction, radical pair formation, geminate recombination of the hydrated electron with the hydronium ion and the hydroxyl radical. The dynamic of these reactions is studied by time resolved absorption spectroscopy from the near infrared to the near ultraviolet with a few tens femto-seconds temporal precision. The analysis of the primary processes takes into account the protic properties of water molecules. (author) [fr

  17. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  18. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.

    2013-01-09

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  19. On interaction of femtosecond laser pulses with cluster targets

    International Nuclear Information System (INIS)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I.

    2002-01-01

    The clusters heating through the femtosecond laser pulses is theoretically and experimentally studied. Both the process of the cluster target formation and results of the cluster plasma experimental studies through the emission X-ray spectroscopy methods are considered. The numerical model of clusters formation in the supersonic gaseous jet is proposed. It is shown that detailed studies on the two-phase gas-dynamic processes in the nozzle, forming the jet, make it possible to obtain spatial distributions of all cluster parameters, necessary for correct calculations of the clusters. The simple physical model of the plasma formation through the femtosecond laser method is proposed. It is shown that comparison of the observed X-ray spectra with the results of the detailed ion kinetics calculations, make it possible to determine the basic parameters of the formed plasma [ru

  20. Femtosecond laser-induced reduction in Eu-doped sodium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ki-Soo [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)]. E-mail: kslim@chungbuk.ac.kr; Lee, Sunkyun [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Trinh, Minh-Tuan [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Suk-Ho [Department of Physics and Basic Science Research Institute, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lee, Myeongkyu [Departent of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seoul 120-749 (Korea, Republic of); Hamilton, Douglas S. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Gibson, George N. [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2007-01-15

    In this work, we report permanent reduction of Eu{sup 3+} to Eu{sup 2+} in sodium borate glasses by irradiation of near-infrared femtosecond laser. Glass composition of sodium borate was 85B{sub 2}O{sub 3}-15Na{sub 2}O. The glasses were doped with 0.05, 0.1, and 0.5 mol% Eu{sub 2}O{sub 3}. Absorption and fluorescence dynamics were studied to investigate valence state change of europium ions and the energy transfer between Eu{sup 2+} and Eu{sup 3+} ions. As the femtosecond laser intensity or exposure time increases, the emission band at 400 nm becomes stronger. However, the photoreduction efficiency decreases as the dopant concentration increases. We discuss the photoreduction mechanism under multiphoton absorption.

  1. [Advantages and disadvantages of femtosecond laser assisted LASIK and SMILE].

    Science.gov (United States)

    Zhang, F J; Sun, M S

    2018-01-11

    With the development of excimer laser and femtosecond laser equipment, application of diversified and customized surgical decision in modern corneal refractive surgery has been an inevitable trend. However, how to make a personalized decision with an accurate surgical design to achieve better visual quality becomes the main focus in clinical applications. Small-incision lenticule extraction (SMILE) and femtosecond assisted laser in situ keratomileusis (FS-LASIK) have been commonly acknowledged as the mainstream of corneal refractive surgery for ametropia correction nowadays. Both methods have been verified by clinical practice for many years. This article compares and elaborates the different characteristics with advantages and disadvantages of the two methods so as to provide some reasonable treatment options for refractive surgery. (Chin J Ophthalmol, 2018, 54: 7-10) .

  2. Techniques of surface optical breakdown prevention for low-depths femtosecond waveguides writing

    International Nuclear Information System (INIS)

    Bukharin, M A; Skryabin, N N; Ganin, D V; Khudyakov, D V; Vartapetov, S.K.

    2016-01-01

    We demonstrated technique of direct femtosecond waveguide writing at record low depth (2-15 μm) under surface of lithium niobate, that play a key role in design of electrooptical modulators with low operating voltage. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light and non-thermal regime of inscription in contrast to widespread femtosecond writing technique at depths of tens micrometers or higher. Surface optical breakdown threshold was measured for both x- and z- cut crystals. Inscribed waveguides were examined for intrinsic microstructure. It also reported sharp narrowing of operating pulses energy range with writing depth under the surface of crystal, that should be taken in account when near-surface waveguides design. Novelty of the results consists in reduction of inscription depth under the surface of crystals that broadens applications of direct femtosecond writing technique to full formation of near-surface waveguides and postproduction precise geometry correction of near-surfaces optical integrated circuits produced with proton-exchanged technique. (paper)

  3. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching

    Science.gov (United States)

    Meng, Xiangwei; Chen, Feng; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-10-01

    We demonstrate a simple route to fabricate closed-packed infrared (IR) silicon microlens arrays (MLAs) based on femtosecond laser irradiation assisted by wet etching method. The fabricated MLAs show high fill factor, smooth surface and good uniformity. They can be used as optical devices for IR applications. The exposure and etching parameters are optimized to obtain reproducible microlens with hexagonal and rectangular arrangements. The surface roughness of the concave MLAs is only 56 nm. This presented method is a maskless process and can flexibly change the size, shape and the fill factor of the MLAs by controlling the experimental parameters. The concave MLAs on silicon can work in IR region and can be used for IR sensors and imaging applications.

  4. Direct welding of glass and metal by 1  kHz femtosecond laser pulses.

    Science.gov (United States)

    Zhang, Guodong; Cheng, Guanghua

    2015-10-20

    In the welding process between similar or dissimilar materials, inserting an intermediate layer and pressure assistance are usually thought to be necessary. In this paper, the direct welding between alumina-silicate glass and metal (aluminum, copper, and steel), under exposure from 1 kHz femtosecond laser pulses without any auxiliary processes, is demonstrated. The micron/nanometer-sized metal particles induced by laser ablation were considered to act as the adhesive in the welding process. The welding parameters were optimized by varying the pulse energy and the translation velocity of the sample. The shear joining strength characterized by a shear force testing equipment was as high as 2.34 MPa. This direct bonding technology has potential for applications in medical devices, sensors, and photovoltaic devices.

  5. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    Science.gov (United States)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  6. A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser

    Science.gov (United States)

    Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai

    2018-03-01

    An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.

  7. Surface texturing of sialon ceramic by femtosecond pulsed laser

    CSIR Research Space (South Africa)

    Tshabalala, Lerato C

    2017-01-01

    Full Text Available AlONSi(sub3)N(sub4) ceramic using the Ti: Sapphire Femtosecond laser system was investigated. Parametric analysis was conducted using surface drilling, unidirectional and cross-hatching machining procedures performed on the substrate at a varied power...

  8. Periodic refractive index modifications inscribed in polymer optical fibre by focussed IR femtosecond pulses

    DEFF Research Database (Denmark)

    Stecher, Matthias; Williams, Robert J.; Bang, Ole

    Focussed femtosecond laser pulses were used to inscribe a periodic array of modifications in the core of a polymer optical fibre. Structural and refractive-index modifications have been observed at different pulse energies using DIC microscopy.......Focussed femtosecond laser pulses were used to inscribe a periodic array of modifications in the core of a polymer optical fibre. Structural and refractive-index modifications have been observed at different pulse energies using DIC microscopy....

  9. Near-field enhanced femtosecond laser nano-drilling of glass substrate

    International Nuclear Information System (INIS)

    Zhou, Y.; Hong, M.H.; Fuh, J.Y.H.; Lu, L.; Lukyanchuk, B.S.; Wang, Z.B.

    2008-01-01

    Particle mask assisted near-field enhanced femtosecond laser nano-drilling of transparent glass substrate was demonstrated in this paper. A particle mask was fabricated by self-assembly of spherical 1 μm silica particles on the substrate surface. Then the samples were exposed to femtosecond laser (800 nm, 100 fs) and characterized by field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The nano-hole array was found on the glass surface. The hole sizes were measured from 200 to 300 nm with an average depth of 150 nm and increased with laser fluence. Non-linear triple-photon absorption and near-field enhancement were the main mechanisms of the nano-feature formation. Calculations based on Mie theory shows an agreement with experiment results. More debris, however, was found at high laser fluence. This can be attributed to the explosion of silica particles because the focusing point is inside the 1 μm particle. The simulation predicts that the focusing point will move outside the particle if the particle size increases. The experiment performed under 6.84 μm silica particles verified that no debris was formed. And for all the samples, no cracks were found on the substrate surface because of ultra-short pulse width of femtosecond laser. This method has potential applications in nano-patterning of transparent glass substrate for nano-structure device fabrication

  10. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Liu, Xiuli; Zhou, Wei; Zeng, Shaoqun

    2010-08-01

    Conventional stimulation techniques used in studies of astrocyte-to-neuron signaling are invasive or dependent on additional electrical devices or chemicals. Here, we applied photostimulation with a femtosecond laser to selectively stimulate astrocytes in the hippocampal neural network, and the neuronal responses were examined. The results showed that, after photostimulation, cell-specific astrocyte-to-neuron signaling was triggered; sometimes the neuronal responses were even synchronous. Since photostimulation with a femtosecond laser is noninvasive, agent-free, and highly precise, this method has been proved to be efficient in activating astrocytes for investigations of astrocytic functions in neural networks.

  11. Studies of nonlinear femtosecond pulse propagation in bulk materials

    Science.gov (United States)

    Eaton, Hilary Kaye

    2000-10-01

    Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This

  12. Femtosecond laser additive manufacturing of YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Bai, Shuang [PolarOnyx, Inc., San Jose, CA (United States)

    2017-04-15

    Laser additive manufacturing (LAM) of Yttria-Stabilized Zirconia (YSZ) is investigated using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. High-density (>99%) YSZ part with refined grain and increased hardness was obtained. Microstructure features of fabricated specimens were studied with SEM, EDX, the measured micro hardness is achieved as high as 18.84 GPa. (orig.)

  13. Multi-image mosaic with SIFT and vision measurement for microscale structures processed by femtosecond laser

    Science.gov (United States)

    Wang, Fu-Bin; Tu, Paul; Wu, Chen; Chen, Lei; Feng, Ding

    2018-01-01

    In femtosecond laser processing, the field of view of each image frame of the microscale structure is extremely small. In order to obtain the morphology of the whole microstructure, a multi-image mosaic with partially overlapped regions is required. In the present work, the SIFT algorithm for mosaic images was analyzed theoretically, and by using multiple images of a microgroove structure processed by femtosecond laser, a stitched image of the whole groove structure could be studied experimentally and realized. The object of our research concerned a silicon wafer with a microgroove structure ablated by femtosecond laser. First, we obtained microgrooves at a width of 380 μm at different depths. Second, based on the gray image of the microgroove, a multi-image mosaic with slot width and slot depth was realized. In order to improve the image contrast between the target and the background, and taking the slot depth image as an example, a multi-image mosaic was then realized using pseudo color enhancement. Third, in order to measure the structural size of the microgroove with the image, a known width streak ablated by femtosecond laser at 20 mW was used as a calibration sample. Through edge detection, corner extraction, and image correction for the streak images, we calculated the pixel width of the streak image and found the measurement ratio constant Kw in the width direction, and then obtained the proportional relationship between a pixel and a micrometer. Finally, circular spot marks ablated by femtosecond laser at 2 mW and 15 mW were used as test images, and proving that the value Kw was correct, the measurement ratio constant Kh in the height direction was obtained, and the image measurements for a microgroove of 380 × 117 μm was realized based on a measurement ratio constant Kw and Kh. The research and experimental results show that the image mosaic, image calibration, and geometric image parameter measurements for the microstructural image ablated by

  14. Drilling of Copper Using a Dual-Pulse Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    Chung-Wei Cheng

    2016-02-01

    Full Text Available The drilling of copper using a dual-pulse femtosecond laser with wavelength of 800 nm, pulse duration of 120 fs and a variable pulse separation time (0.1–150 ps is investigated theoretically. A one-dimensional two-temperature model with temperature-dependent material properties is considered, including dynamic optical properties and the thermal-physical properties. Rapid phase change and phase explosion models are incorporated to simulate the material ablation process. Numerical results show that under the same total laser fluence of 4 J/cm2, a dual-pulse femtosecond laser with a pulse separation time of 30–150 ps can increase the ablation depth, compared to the single pulse. The optimum pulse separation time is 85 ps. It is also demonstrated that a dual pulse with a suitable pulse separation time for different laser fluences can enhance the ablation rate by about 1.6 times.

  15. Femtosecond laser etching of dental enamel for bracket bonding.

    Science.gov (United States)

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  16. Fusion of blastomeres in mouse embryos under the action of femtosecond laser radiation. Efficiency of blastocyst formation and embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Osychenko, A A; Zalesskii, A D; Krivokharchenko, A S; Zhakhbazyan, A K; Nadtochenko, V A [N N Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Ryabova, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-05-31

    Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using the methods of femtosecond laser surgery is demonstrated. (extreme light fields and their applications)

  17. Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures

    International Nuclear Information System (INIS)

    Ibrahim, Mohamed; Yachandra, Vittal K.; Yano, Junko; Kern, Jan; Zouni, Athina; Technische Univ. Berlin

    2015-01-01

    In photosynthesis, photosystem II (PSII) is the multi-subunit membrane protein complex that catalyzes photo-oxidation of water into dioxygen through the oxygen evolving complex (OEC). To understand the water oxidation reaction, it is important to get structural information about the transient and intermediate states of the OEC in the dimeric PSII core complex (dPSIIcc). In recent times, femtosecond X-ray pulses from the free electron laser (XFEL) are being used to obtain X-ray diffraction (XRD) data of dPSIIcc microcrystals at room temperature that are free of radiation damage. In our experiments at the XFEL, we used an electrospun liquid microjet setup that requires microcrystals less than 40 μm in size. In this study, we explored various microseeding techniques to get a high yield of monodisperse uniform-sized microcrystals. Monodisperse microcrystals of dPSIIcc of uniform size were a key to improve the stability of the jet and the quality of XRD data obtained at the XFEL. This was evident by an improvement of the quality of the datasets obtained, from 6.5 Å, using crystals grown without the micro seeding approach, to 4.5 Å using crystals generated with the new method

  18. Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures.

    Science.gov (United States)

    Ibrahim, Mohamed; Chatterjee, Ruchira; Hellmich, Julia; Tran, Rosalie; Bommer, Martin; Yachandra, Vittal K; Yano, Junko; Kern, Jan; Zouni, Athina

    In photosynthesis, photosystem II (PSII) is the multi-subunit membrane protein complex that catalyzes photo-oxidation of water into dioxygen through the oxygen evolving complex (OEC). To understand the water oxidation reaction, it is important to get structural information about the transient and intermediate states of the OEC in the dimeric PSII core complex (dPSIIcc). In recent times, femtosecond X-ray pulses from the free electron laser (XFEL) are being used to obtain X-ray diffraction (XRD) data of dPSIIcc microcrystals at room temperature that are free of radiation damage. In our experiments at the XFEL, we used an electrospun liquid microjet setup that requires microcrystals less than 40 μ m in size. In this study, we explored various microseeding techniques to get a high yield of monodisperse uniform-sized microcrystals. Monodisperse microcrystals of dPSIIcc of uniform size were a key to improve the stability of the jet and the quality of XRD data obtained at the XFEL. This was evident by an improvement of the quality of the datasets obtained, from 6.5Å, using crystals grown without the micro seeding approach, to 4.5Å using crystals generated with the new method.

  19. Femtosecond all-polarization-maintaining fiber laser operating at 1028 nm

    DEFF Research Database (Denmark)

    Olsson, R.K.; Andersen, T.V.; Leick, Lasse

    2008-01-01

    We present an effective solution for an all-polarization-maintaining modelocked femtosecond fiber laser operating at the central wavelength of 1028 nm. The laser is based on an Yb-doped active fiber. Modelocking is enabled by a semiconductor saturable absorber mirror, and the central wavelength i...... is enforced by a fiber Bragg grating. The laser is self-starting and demonstrates excellent stability gainst Q-switching. Pulse energies reach 13 nJ at 34 MHz repetition rate. External compression leads to near transform-limited pulses of 140 fs.......We present an effective solution for an all-polarization-maintaining modelocked femtosecond fiber laser operating at the central wavelength of 1028 nm. The laser is based on an Yb-doped active fiber. Modelocking is enabled by a semiconductor saturable absorber mirror, and the central wavelength...

  20. Effects of emittance and space-charge in femtosecond bunch compression

    International Nuclear Information System (INIS)

    Kan, K.; Yang, J.; Kondoh, T.; Norizawa, K.; Yoshida, Y.

    2008-01-01

    Ultrashort electron bunches of the order of <100fs are essential for the study of ultrafast reactions and phenomena by means of time-resolved pump-probe experiments. In order to generate such an electron bunch, the effects of emittance, space-charge (SC) and coherent synchrotron radiation (CSR) on the bunch length in a femtosecond magnetic bunch compressor were studied theoretically. It was observed that the bunch length is dominated by the emittance, SC and CSR effects when the electron bunch is compressed into a femtosecond electron bunch. The increases in bunch length due to the transverse emittance, SC and CSR effects in the bunch compressor were 1.7 fs/mm mrad, 107 fs/nC and 72 fs/nC, respectively. Finally, the simulated bunch length was compared with the experimental results.

  1. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Hu, A.; Rybachuk, M.; Lu, Q.-B.; Duley, W. W.

    2007-01-01

    Microscopic phase transformation from graphite to sp-bonded carbon chains (carbyne) and nanodiamond has been induced by femtosecond laser pulses on graphite surface. UV/surface enhanced Raman scattering spectra and x-ray photoelectron spectra displayed the local synthesis of carbyne in the melt zone while nanocrystalline diamond and trans-polyacetylene chains form in the edge area of gentle ablation. These results evidence possible direct 'writing' of variable chemical bonded carbons by femtosecond laser pulses for carbon-based applications

  2. Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Rajyaguru, Chirag; Kubodera, Shoichi; Sasaki, Wataru; Yugami, Noboru; Kikuchi, Takashi; Kawata, Shigeo; Andreev, Alex

    2005-01-01

    A proof-of-principle experiment was demonstrated to optimize a Li-based microjet target coupled to dual subpicosecond laser pulses as a 13.5 nm soft x-ray emission source. An optimum pulse duration of 450 fs to achieve a maximum emission at 13.5 nm was well explained by the resonant absorption process. Utilization of dual femtosecond pulses revealed that the optimum pulse separation around 500 ps was necessary to achieve a maximum soft x-ray conversion efficiency of 0.2%, where plasma hydrodynamics could not be neglected. A one-fluid two-temperature hydrodynamic simulation reproduced this optimum pulse separation behavior

  3. Intacs for keratoconus and post-LASIK ectasia: mechanical versus femtosecond laser-assisted channel creation.

    Science.gov (United States)

    Carrasquillo, Karen G; Rand, Janet; Talamo, Jonathan H

    2007-09-01

    To evaluate the efficacy of intracorneal ring segments to treat keratoconus and post-laser in situ keratomileusis (LASIK) keratectasia implanted by using either mechanical dissection or a femtosecond laser. Thirty-three eyes of 29 patients had intracorneal ring segments implanted by using mechanical dissection (17 eyes) or a femtosecond laser (16 eyes). Mean follow-up was 10.3 months. Parameters assessed before and after surgery included uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refractive spherical equivalent (MRSE), refractive cylinder (RC), best contact lens-corrected visual acuity (BCLVA), and contact lens tolerance. Statistically significant changes occurred for all parameters when we analyzed all 33 eyes as 1 group. Mean UCVA LogMar values improved from 1.0 +/- 0.3 (20/200) to 0.6 +/- 0.4 (20/80) (P < 0.0005). Mean BSCVA changed from 0.3 +/- 0.2 (20/40) to 0.2 +/- 0.2 (20/30) (10%; P < 0.05), and MRSE from -9 +/- 4 to -7 +/- 4 D (P < 0.05; 20%). There was a decrease of 0.5 D or more of RC in 62% of eyes. BCLVA improved from 0.2 +/- 0.2 (20/30) to 0.1 +/- 0.1 (20/25) after surgery (P < 0.02). Contact lens tolerance improved in 81% of eyes. There was no statistically significant difference in outcomes between mechanical dissection and femtosecond laser-assisted techniques. However, although statistical power was adequate to detect changes in clinical parameters as a result of surgery, it was not sufficient to conclusively show such differences between surgical techniques. For mild to moderate cases of keratoconus and post-LASIK keratectasia, the use of a femtosecond laser for Intacs channel creation seems as effective as mechanical dissection. Future studies are warranted to further evaluate channel creation by a femtosecond laser.

  4. Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms.

    Science.gov (United States)

    Alqurashi, Tawfiq; Montelongo, Yunuen; Penchev, Pavel; Yetisen, Ali K; Dimov, Stefan; Butt, Haider

    2017-09-21

    Femtosecond laser ablation allows direct patterning of engineering materials in industrial settings without requiring multistage processes such as photolithography or electron beam lithography. However, femtosecond lasers have not been widely used to construct volumetric microphotonic devices and holograms with high reliability and cost efficiency. Here, a direct femtosecond laser writing process is developed to rapidly produce transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated holograms. The optical properties including light transmission, angle-dependent resolution, and light polarization effects for the microphotonic devices have been characterized. Varying the depth of the microgratings from 400 nm to 1.5 μm allowed the control over their transmission intensity profile. The optical properties of the 1D/2D gratings were validated through a geometrical theory of diffraction model involving 2D phase modulation. The produced Fresnel lenses had transmission efficiency of ∼60% at normal incidence and they preserved the polarization of incident light. The computer-generated holograms had an average transmission efficiency of 35% over the visible spectrum. These microphotonic devices had wettability resistance of contact angle ranging from 44° to 125°. These devices can be used in a variety of applications including wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices.

  5. Femtosecond laser writing of a flat-top interleaver via cascaded Mach-Zehnder interferometers.

    Science.gov (United States)

    Ng, Jason C; Li, Chengbo; Herman, Peter R; Qian, Li

    2012-07-30

    A flat-top interleaver consisting of cascaded Mach-Zehnder interferometers (MZIs) was fabricated in bulk glass by femtosecond laser direct writing. Spectral contrast ratios of greater than 15 dB were demonstrated over a 30 nm bandwidth for 3 nm channel spacing. The observed spectral response agreed well with a standard transfer matrix model generated from responses of individual optical components, demonstrating the possibility for multi-component optical design as well as sufficient process accuracy and fabrication consistency for femtosecond laser writing of advanced optical circuits in three dimensions.

  6. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  7. Femtosecond two-dimensional spectroscopy of molecular motion in liquids

    NARCIS (Netherlands)

    Steffen, T; Duppen, K.

    1996-01-01

    Intermolecular motion in CS2 and benzene is investigated by femtosecond nonresonant four- and six-wave mixing. Impulsive stimulated six-wave mixing yields new information on dephasing of coherent nuclear motion, not accessible from four-wave mixing experiments. The results cannot be modeled by two

  8. Femtosecond coherent emission from GaAs bulk microcavities

    Science.gov (United States)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello; Beltram, Fabio; Sorba, Lucia

    1999-02-01

    The emission from a λ/2 GaAs bulk microcavity resonantly excited by femtosecond pulses has been characterized by using an interferometric correlation technique. It is found that the emission is dominated by the coherent signal due to light elastically scattered by disorder, and that scattering is predominantly originated from the lower polariton branch.

  9. Optical cell cleaning with NIR femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  10. Optical Synchronization Systems for Femtosecond X-raySources

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Russell; Staples, John W.; Holzwarth, Ronald

    2004-05-09

    In femtosecond pump/probe experiments using short X-Ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error over 100 meter of glass fiber. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1 10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with a piezoelectric phase modulator. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range we will lock two single-frequency lasers separated by several tera Hertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  11. Optical Synchronization Systems for Femtosecond X-ray Sources

    International Nuclear Information System (INIS)

    Wilcox, Russell; Staples, John W.; Holzwarth, Ronald

    2004-01-01

    In femtosecond pump/probe experiments using short X-Ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error over 100 meter of glass fiber. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1 10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with a piezoelectric phase modulator. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range we will lock two single-frequency lasers separated by several tera Hertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes

  12. Femtosecond pulse radiolysis based on photocathode electron accelerator

    International Nuclear Information System (INIS)

    Yoshida, Y.; Yang, Jinfeng; Kondoh, T.; Kozawa, T.; Tagawa, S.

    2006-01-01

    Pulse radiolysis is a powerful tool for studying chemical kinetics and primary processes or reactions of radiation chemistry. In the pulse radiolysis, a short electron beam, which is almost produced by radio-frequency (RF) electron linear accelerator with energy from a few MeV to a few tens MeV, is used as an irradiative source. The electron-induced reactions or phenomena in matter are analyzed by a short-pulse analyzing light (e.g. synchronized lasers) with the time-resolved stroboscopic technique. The time resolution of pulse radiolysis is not only dependent on the electron bunch length, the analyzing light pulse width, the time jitter between the electron bunch and the analyzing light, but also determined by degradation due to the velocity difference between light and the electron in the sample because of the refractive index. In order to improve the time resolution into femtosecond time region, we have develop a new pulse radiolysis based on a concept of 'Equivalent Velocity Spectroscopy (EVS)' to avoid the degradation of the time resolution caused by the velocity difference between the light and the electron beam in sample. In EVS as shown in Fig.1, a femtosecond electron beam produced by a photocathode electron linear accelerator was used, and a synchronized femtosecond laser was used as the analyzing light source. The electron beam and the laser light were injected into sample with an angle (θ), which is determined by the refractive index (n) of the sample. The electron bunch was also rotated with a same angle to make an overlap of the electron bunch with the laser pulse. The degradation of the time resolution caused by the velocity difference between the light and the electron beam can be calculated as g(L)=L[n/c-1/(vcos θ)], where L is the optical path length and v is the velocity of the electron in sample (we can assume v=c for a few tens MeV electron beam).We can thus obtained g(L)=0 by adjusting the incident angle to cos θ=1/n. However, the rotation

  13. Femtosecond Electron Wave Packet Propagation and Diffraction: Towards Making the ``Molecular Movie"

    Science.gov (United States)

    Miller, R. J. Dwayne

    2003-03-01

    Time-resolved electron diffraction harbors great promise for achieving atomic resolution of the fastest chemical processes. The generation of sufficiently short electron pulses to achieve this real time view of a chemical reaction has been limited by problems in maintaining short electron pulses with realistic electron densities to the sample. The propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. This analyis shows that the redistribution of electrons inside the packet, arising from space-charge and dispersion contributions, changes the pulse envelope and leads to the development of a spatially linear axial velocity distribution. These results have been used in the design of femtosecond photoelectron guns with higher time resolution and novel electron-optical methods of pulse characterization that are approaching 100 fs timescales. Time-resolved diffraction studies with electron pulses of approximately 500 femtoseconds have focused on solid-liquid phase transitions under far from equilibrium conditions. This work gives a microscopic description of the melting process and illustrates the promise of atomically resolving transition state processes.

  14. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  15. Femtosecond laser-assisted keratoplasty in a child with corneal opacity:case report

    Directory of Open Access Journals (Sweden)

    E. Yu. Markova

    2014-01-01

    Full Text Available Corneal opacities are the fourth cause of blindness world-wide. Over the past two centuries, various corneal transplantation (i.e., keratoplasty methods have been developed and improved. Nowadays, femtolaserssisted keratoplasty is one of most promising techniques. Femtosecond laser have several advantages that provide additional surgical benefits. Among them, no thermal injury, the ability to cut deeply on a single plane and to perform various corneal profiles should be mentioned. In children, corneal disorders are of special importance while femtosecondassisted keraatoplasty case reports are rare. Here, we describe femtosecond laserssisted penetrating keratoplasty in a girl with a rough central corneal opacity.

  16. Femtosecond laser-assisted compared with standard cataract surgery for removal of advanced cataracts.

    Science.gov (United States)

    Hatch, Kathryn M; Schultz, Tim; Talamo, Jonathan H; Dick, H Burkhard

    2015-09-01

    To compare effective phacoemulsification time (EPT) for the removal of brunescent cataracts treated with femtosecond laser-assisted cataract surgery with standard cataract phacoemulsification techniques. Ruhr University Eye Hospital, Bochum, Germany. Comparative prospective case study. The Lens Opacities Classification System III (LOCS III) grading system was used to measure eyes divided into 4 groups having cataract surgery. Groups 1 and 2 contained eyes with LOCS III grade nuclear opalescence (NO) 3 cataracts treated with standard cataract surgery and femtosecond laser-assisted cataract surgery, respectively. Groups 3 and 4 contained brunescent cataracts, LOCS III grades NO5, treated with standard cataract surgery and femtosecond laser-assisted cataract surgery, respectively. There were 240 eyes, with 60 eyes in each group. The EPT in Group 1 ranged from 0.46 to 3.10 (mean 1.38); the EPT in all eyes in Group 2 was 0 (P Talamo, and Dick are consultants to Abbott Medical Optics, Inc. Dr. Schultz has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Trigger effect of infrared femtosecond laser irradiation on neoplasm in experimental cervical cancer

    Science.gov (United States)

    Gening, Tatyana; Voronova, Olga; Zolotovskii, Igor; Sysoliatin, Alexey; Dolgova, Dinara; Abakumova, Tatyana

    2013-02-01

    The present work discusses effect of infrared (IR) femtosecond laser irradiation on neoplasm of white mice with experimental cervical cancer- 5 (CC-5 on the 20th and 30th days after tumor transplantation). Tumor tissue was irradiated by femtosecond erbium doped fiber laser: the wavelength is 1.55 μm, average and peak powers are1,25 mW and 6kW, respectively, irradiation trials n=10. The average energy density (energy dose) on a tissue for two groups of animals was 0,24 J/cm2 and 0,36 J/cm2 for a single trial. Irradiation was followed by biochemical determination of LPO AOS parameters ("Lipid peroxidation-antioxidants" system): malondialdehyde (MDA), activity of superoxide dismutase (SOD), catalase and glutathione-reductase (GR), glutathione-S-transferase (GST). A subsequent morphological study of tumor tissue was performed. Mathematical analysis of data demonstrates a weak dependence of the studied parameters on energy dose. The latter implies the trigger effect of IR femtosecond laser irradiation on redox-dependent processes in neoplasm at experimental cervical cancer.

  18. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  19. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  20. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime

    Science.gov (United States)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-04-01

    The femtosecond-laser in situ keratomileusis procedure affords the opportunity to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses. Thereby the tissue cut is generated by a laser-induced optical breakdown in the cornea with ultra-short laser pulses in the near-infrared range. Compared to standard procedures such as photorefractive keratectomy and laser in-situ keratomileusis with the excimer laser, where the risk potential for the eye is low due to the complete absorption of ultraviolet irradiation from corneal tissue, only a certain amount of the pulse energy is deposited in the cornea during the fs-LASIK process. The remaining energy propagates through the eye and interacts with the retina and the strong absorbing tissue layers behind. The objective of the presented study was to determine and compare the retina damage thresholds during the fs-LASIK process simulated with two various laser systems in the CW- and fs-regime.

  1. Mercury Amalgam Diffusion in Human Teeth Probed Using Femtosecond LIBS.

    Science.gov (United States)

    Bello, Liciane Toledo; da Ana, Patricia Aparecida; Santos, Dário; Krug, Francisco José; Zezell, Denise Maria; Vieira, Nilson Dias; Samad, Ricardo Elgul

    2017-04-01

    In this work the diffusion of mercury and other elements from amalgam tooth restorations through the surrounding dental tissue (dentin) was evaluated using femtosecond laser-induced breakdown spectroscopy (fs-LIBS). To achieve this, seven deciduous and eight permanent extracted human molar teeth with occlusal amalgam restorations were half-sectioned and analyzed using pulses from a femtosecond laser. The measurements were performed from the amalgam restoration along the amalgam/dentin interface to the apical direction. It was possible to observe the presence of metallic elements (silver, mercury, copper and tin) emission lines, as well as dental constituent ones, providing fingerprints of each material and comparable data for checking the consistence of the results. It was also shown that the elements penetration depth values in each tooth are usually similar and consistent, for both deciduous and permanent teeth, indicating that all the metals diffuse into the dentin by the same mechanism. We propose that this diffusion mechanism is mainly through liquid dragging inside the dentin tubules. The mercury diffused further in permanent teeth than in deciduous teeth, probably due to the longer diffusion times due to the age of the restorations. It was possible to conclude that the proposed femtosecond-LIBS system can detect the presence of metals in the dental tissue, among the tooth constituent elements, and map the distribution of endogenous and exogenous chemical elements, with a spatial resolution that can be brought under 100 µm.

  2. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing

    International Nuclear Information System (INIS)

    Wang, Huan; Liu, Sen; Zhang, Yong-Lai; Wang, Jian-Nan; Wang, Lei; Xia, Hong; Chen, Qi-Dai; Sun, Hong-Bo; Ding, Hong

    2015-01-01

    We report controllable assembly of silver nanoparticles (Ag NPs) for patterning of silver microstructures. The assembly is induced by femtosecond laser direct writing (FsLDW). A tightly focused femtosecond laser beam is capable of trapping and driving Ag NPs to form desired micropatterns with a high resolution of ∼190 nm. Taking advantage of the ‘direct writing’ feature, three microelectrodes have been integrated with a microfluidic chip; two silver-based microdevices including a microheater and a catalytic reactor have been fabricated inside a microfluidic channel for chip functionalization. The FsLDW-induced programmable assembly of Ag NPs may open up a new way to the designable patterning of silver microstructures toward flexible fabrication and integration of functional devices. (focus issue paper)

  3. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser

    Science.gov (United States)

    Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an

    2018-06-01

    In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.

  4. Femtosecond refractive-index tailoring of an optical fiber and phase retrieval from far-field measurements

    DEFF Research Database (Denmark)

    Savolainen, Juha-Matti; Grüner-Nielsen, Lars; Kristensen, Poul

    2013-01-01

    A refractive-index change is written inside an optical fiber close to the end face by femtosecond laser light. The induced phase change is measured by analyzing the far-field intensity profiles before and after the irradiation.......A refractive-index change is written inside an optical fiber close to the end face by femtosecond laser light. The induced phase change is measured by analyzing the far-field intensity profiles before and after the irradiation....

  5. Photodetector of ultraviolet radiation

    International Nuclear Information System (INIS)

    Dorogan, V.; Branzari, V.; Vieru, T.; Manole, M.; Canter, V.

    2000-01-01

    The invention relates to photodetectors on base of semiconductors of ultraviolet radiation and may be used in optoelectronic system for determining the intensity and the dose of ultraviolet radiation emitted by the Sun or other sources. Summary of the invention consists in the fact that in the photodetector of ultraviolet radiation the superficial potential barrier is divided into two identical elements, electrically isolated each of the other, one of them being covered with a layer of transparent material for visible and infrared radiation and absorption the ultra violet radiation. The technical result consists in mutual compensation of visible and infrared components of the radiation spectrum

  6. Probing spin-vibronic dynamics using femtosecond X-ray spectroscopy

    DEFF Research Database (Denmark)

    Penfold, T. J.; Pápai, Mátyás Imre; Rozgonyi, T.

    2016-01-01

    Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the development of X-ray Free Electrons Lasers (X-FELs) and is opening new opportunities for the direct probing of femtosecond evolution of the nuclei, the electronic and spin degrees of freedom. In this contributi...

  7. Efficient femtosecond mid-infrared pulse generation by dispersivewave radiation in bulk lithium niobate crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm.......We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm....

  8. Future Directions in Ultraviolet Spectroscopy

    Science.gov (United States)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  9. Selective Deactivation of M13 Bacteriophage in E. Coli using Femtosecond Laser Pulses

    CSIR Research Space (South Africa)

    Molukanele, P

    2010-09-01

    Full Text Available Deactivation of M13 Bacteriophage in E. Coli using Femtosecond Laser Pulses P. Molukanele 1, 3, A. Du Plessis 1, T. Roberts 1, L. Botha 1, M. Khati 2,3, W. Campos 2, 3 1CSIR National Laser Centre, Femtosecond Science group, Pretoria, South Africa 2CSIR... that is about 1 ?m long and 5-6 nm in diameter. Its host Escherichia coli (E.coli), is approximately 2-6 ?m long and 1-1.5 ?m in diameter, see figure 1 below. Figure 1: Schematic representations of M13 bacteriophage and its host E.coli...

  10. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    International Nuclear Information System (INIS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-01-01

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F_t_h = 0.087 J/cm"2) than that for the femtosecond laser ablation of ABS (F_t_h = 1.576 J/cm"2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α"−"1 = 223 nm) than that for femtosecond laser ablation (α"−"1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas C=C bond is partially

  11. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Energy Technology Data Exchange (ETDEWEB)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F{sub th} = 0.087 J/cm{sup 2}) than that for the femtosecond laser ablation of ABS (F{sub th} = 1.576 J/cm{sup 2}), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α{sup −1} = 223 nm) than that for femtosecond laser ablation (α{sup −1} = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas

  12. Probing chirality with a femtosecond reaction microscope

    Directory of Open Access Journals (Sweden)

    Janssen M. H. M.

    2013-03-01

    Full Text Available Detection of molecular chirality with high sensitivity and selectivity is important for many analytical and practical applications. Photoionization has emerged as a very sensitive probe of chirality in molecules. We show here that a table top setup with a femtosecond laser and a single imaging detector for both photoelectrons and photoions enables detection of chirality up to 3 orders of magnitude better than the existing conventional absorption based techniques.

  13. Beam Characterizations at Femtosecond Electron Beam Facility

    CERN Document Server

    Rimjaem, Sakhorn; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Saisut, Jatuporn; Thongbai, Chitrlada; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond electron pulses. Theses short pulses are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed.

  14. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Congsen [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, National University of Defense Technology, Changsha 410073 (China); Janssen, Maurice H. M. [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  15. Visual quality analysis of femtosecond LASIK and iris location guided mechanical SBK for high myopia

    Directory of Open Access Journals (Sweden)

    Hong-Su Jiang

    2015-07-01

    Full Text Available AIM: To make a analysis of visual quality of iris location guided femtosecond laser assisted in situ keratomi(LASIKand iris location guided mechanical sub-bowman keratomileusis(SBKfor high myopia treatment. METHODS:Femtosecond LASIK(study groupwas performed in 102 eyes of 51 patients with high myopia and 70 eyes of 35 patients were received mechanical SBK(control groupfrom January to October 2013. The spherical refraction of all the patients was from -6.00~-9.50D. Best corrected visual acuity(BCVAof the patients was ≥1.0. Uncorrected visual acuity(UCVA, BCVA, thickness of cornea flap, contrast sensitivity function(CSFand senior ocular aberration were examined in these patients and follow-up was 1a. RESULTS: At 1a after surgery 94.1% UCVA in study group reached ≥1.0 and there was 94.3% in control group. There was no significant difference between two groups(P>0.05. Residual refraction of study group was -0.08±0.10 D and control group was -0.10±0.07 D. There was no significant difference of residual refraction between two groups(P>0.05. C12, C8 of senior ocular aberration and RMSH in study group was less than control group, amplification: 0.1642±0.0519 and 0.2229±0.0382(t=8.077, Pt=0.556, P>0.05. C8 was 0.0950±0.069 and 0.1858±0.095(t=7.261, Pt=12.801, PP>0.05.CONCLUSION: Femtosecond LASIK and mechanical SBK is effective for high myopia. Compared to mechanical SBK, femtosecond LASIK shows more advantages in the senior ocular aberration and visual quality. The cornea flap is more regular from central to peripheral area with femtosecond laser.

  16. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    Science.gov (United States)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-06-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  17. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    Science.gov (United States)

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94 μm), titanium:sapphire femtosecond laser system (λ=1700 nm), and Nd:glass femtosecond laser (λ=1053 nm). Bovine samples were ablated at fluences of 8 to 18 J/cm2 with the erbium:YAG laser, at a power of 300±15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  18. Cascaded quadratic soliton compression of high-power femtosecond fiber lasers in Lithium Niobate crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Wise, Frank W.

    2008-01-01

    The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....

  19. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse

    Directory of Open Access Journals (Sweden)

    J. Szlachetko

    2014-03-01

    Full Text Available Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s to femtoseconds (10−15 s and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS, we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

  20. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    Science.gov (United States)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  1. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    Science.gov (United States)

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  2. Femtosecond Laser-Inscripted Direct Ultrafast Fabrication of a DNA Distributor Using Microfluidics

    Directory of Open Access Journals (Sweden)

    Hojun Shin

    2017-10-01

    Full Text Available A femtosecond laser can be used for single or multiple writing processes to create sub 10-μm lines or holes directly without the use of masks. In this study, we characterized the depth and width of micro-channels created by femtosecond laser micro-scribing in polydimethylsiloxane (PDMS under various energy doses (1%, 5%, 10%, 15% and 20% and laser beam passes (5, 10 and 15. Based on a microfluidic simulation in a bio-application, a DNA distributor was designed and fabricated based on an energy dose of 5% and a laser beam pass of 5. The simulated depth and width of the micro-channels was 3.58 and 5.27 μm, respectively. The depth and width of the micro-channels were linearly proportional to the energy dose and the number of laser beam passes. In a DNA distribution experiment, a brighter fluorescent intensity for YOYO-1 Iodide with DNA was observed in the middle channels with longer DNA. In addition, the velocity was the lowest as estimated in the computational simulation. The polymer processability of the femtosecond laser and the bio-applicability of the DNA distributor were successfully confirmed. Therefore, a promising technique for the maskless fabrication of sub 10-μm bio-microfluidic channels was demonstrated.

  3. Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser

    Science.gov (United States)

    Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei

    2016-02-01

    We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).

  4. Colorizing metals with femtosecond laser pulses

    International Nuclear Information System (INIS)

    Vorobyev, A. Y.; Guo Chunlei

    2008-01-01

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz

  5. Inhibition of seagrass photosynthesis by ultraviolet-B radiation.

    Science.gov (United States)

    Trocine, R P; Rice, J D; Wells, G N

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.

  6. Femtosecond Multidimensional Imaging - Watching Chemistry from the Molecule's Point of View

    Science.gov (United States)

    Geßner, O.; Lee, A. M. D.; Chrysostom, E. t.-H.; Hayden, C. C.; Stolow, Albert

    Using Femtosecond Multidimensional Imaging we disentangle the complex neutral dissociation mechanism of the NO dimer. We characterize all electronic configurations from start to finish and directly observe the evolution of intramolecular vibrational energy redistribution (IVR).

  7. Inhibition of seagrass photosynthesis by ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Trocine, R.P.; Rice, J.D.; Wells, G.N.

    1981-01-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation

  8. Harmful effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children

  9. Initial evaluation of a femtosecond laser system in cataract surgery.

    Science.gov (United States)

    Chang, John S M; Chen, Ivan N; Chan, Wai-Man; Ng, Jack C M; Chan, Vincent K C; Law, Antony K P

    2014-01-01

    To report the early experience and complications during cataract surgery with a noncontact femtosecond laser system. Hong Kong Sanatorium and Hospital, Hong Kong Special Administrative Region, China. Retrospective case series. All patients had anterior capsulotomy or combined anterior capsulotomy and lens fragmentation using a noncontact femtosecond laser system (Lensar) before phacoemulsification. Chart and video reviews were performed retrospectively to determine the intraoperative complication rate. Risk factors associated with the complications were also analyzed. One hundred seventy eyes were included. Free-floating capsule buttons were found in 151 eyes (88.8%). No suction break occurred in any case. Radial anterior capsule tears occurred in 9 eyes (5.3%); they did not extend to the equator or posterior capsule. One eye (0.6%) had a posterior capsule tear. No capsular block syndrome developed, and no nuclei were dropped during irrigation/aspiration (I/A). Anterior capsule tags and miosis occurred in 4 eyes (2.4%) and 17 eyes (10.0%), respectively. Different severities of subconjunctival hemorrhages developed in 71 (43.8%) of 162 eyes after the laser procedure. The mean surgical time from the beginning to the end of suction was 6.72 minutes ± 4.57 (SD) (range 2 to 28 minutes). Cataract surgery with the noncontact femtosecond laser system was safe. No eye lost vision because of complications. Caution should be taken during phacoemulsification and I/A to avoid radial anterior capsule tears and posterior capsule tears. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    Science.gov (United States)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  11. Effect of ultraviolet exposure on mitochondrial respiratory system

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K [Kurume Univ., Fukuoka (Japan). School of Medicine

    1975-09-01

    To find the photodynamic effect of ultraviolet light on the mitochondrial respiratory chain, mitochondria were obtained from rat livers, and the suspension was exposed to an extensive ultraviolet light. The oxygen consumption was measured polarographically with a Clark oxygen electrode. The effect of ultraviolet exposure on the five states of respiratory control (Chance and Williams), the P/O ratio, and the respiratory control index in mitochondria was discussed. The ultraviolet light with a dose of 9.6 x 10/sup 6/ erg/cm/sup 2/ caused the oxidative phosphorylation in mitochondria to uncouple. The 2nd phosphorylation site of the respiratory chain was susceptible to ultraviolet exposure. The stimulation of latent ATPase activity in mitochondria following exposure was observed by increasing exposure of ultraviolet light. However, DNP-stimulated ATPase was found to be stable in activity. The uncoupling of the respiratory chain by ultraviolet exposure was not detected if the mitochondrial suspension was preincubated with bovine serum albumin before exposure. The changes in light absorption of the mitochondrial suspension were followed at 520 nm after exposure. A close correlation was found between the ultraviolet exposure and swelling in mitochondria. But, the reversing contraction was observed by adding ATP to the swelled mitochondria. The peroxide compound was formed in mitochondria irradiated with ultraviolet light. The amount of compounds formed was dependent on the radiant energy of ultraviolet light. The possible mechanisms involved in the photodynamic effect of ultraviolet light to the mitochondrial respiration system were discussed.

  12. Femtosecond study of self-trapped vibrational excitons in crystalline acetanilide

    DEFF Research Database (Denmark)

    Edler, J.; Hamm, Peter; Scott, Alwyn C.

    2002-01-01

    Femtosecond IR spectroscopy of delocalized NH excitations of crystalline acetanilide confirms that self-trapping in hydrogen-bonded peptide units exists and does stabilize the excitation. Two phonons with frequencies of 48 and 76 cm(-1) are identified as the major degrees of freedom that mediate...

  13. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    Science.gov (United States)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  14. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    Science.gov (United States)

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications.

  15. Statistical optimization of ultraviolet irradiate conditions for vitamin D₂ synthesis in oyster mushrooms (Pleurotus ostreatus using response surface methodology.

    Directory of Open Access Journals (Sweden)

    Wei-Jie Wu

    Full Text Available Response surface methodology (RSM was used to determine the optimum vitamin D2 synthesis conditions in oyster mushrooms (Pleurotus ostreatus. Ultraviolet B (UV-B was selected as the most efficient irradiation source for the preliminary experiment, in addition to the levels of three independent variables, which included ambient temperature (25-45°C, exposure time (40-120 min, and irradiation intensity (0.6-1.2 W/m2. The statistical analysis indicated that, for the range which was studied, irradiation intensity was the most critical factor that affected vitamin D2 synthesis in oyster mushrooms. Under optimal conditions (ambient temperature of 28.16°C, UV-B intensity of 1.14 W/m2, and exposure time of 94.28 min, the experimental vitamin D2 content of 239.67 µg/g (dry weight was in very good agreement with the predicted value of 245.49 µg/g, which verified the practicability of this strategy. Compared to fresh mushrooms, the lyophilized mushroom powder can synthesize remarkably higher level of vitamin D2 (498.10 µg/g within much shorter UV-B exposure time (10 min, and thus should receive attention from the food processing industry.

  16. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    International Nuclear Information System (INIS)

    Yao Risheng; Li Manman; Deng Shengsong; Hu Huajia; Wang Huai; Li Fenghe

    2012-01-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  17. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Science.gov (United States)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  18. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G; Garzella, D; Labat, M; Carre, B; Bougeard, M; Salieres, P; Merdji, H; Gobert, O [CEA Saclay, DSM, DRECAM, Serv. Photons Atomes Mol., F-91191 Gif sur Yvette, (France); Lambert, G; Hara, T; Tanikawa, T; Kitamura, H; Shintake, T; Tanaka, Y; Tahara, K [RIKEN SPring Centre, Harima Inst., Hyogo 679-5148, (Japan); Lambert, G; Labat, M; Chubar, O; Couprie, M E [Groupe Magnetisme et Insertion, Synchrotron Soleil, F-91192 Gif sur Yvette, (France); Hara, T; Kitamura, H; Shintake, T; Inoue, S; Tanaka, Y [XFEL Project Head Office, RIKEN, Hyogo 679-5148, (Japan)

    2008-07-01

    Conventional synchrotron radiation sources enable the structure of matter to be studied at near-atomic spatial resolution and picosecond temporal resolution. Free-electron lasers promise to extend this down to femtosecond timescales. The process by which free-electron lasers amplify synchrotron light-known as self-amplified spontaneous emission - is only partially temporally coherent, but this can be improved by seeding it with an external laser. Here we explore the use of seed light produced by high-order harmonic generation in a gas, covering wavelengths from the ultraviolet to soft X-rays. Using the SPring-8 Compact SASE Source test accelerator, we demonstrate an increase of three orders of magnitude in the intensity of the fundamental radiation at 160 nm, halving of the free-electron laser saturation length, and the generation of nonlinear harmonics at 54 nm and 32 nm. The low seed level used in this demonstration suggests that nonlinear harmonic schemes should enable the generation of fully coherent soft X-rays at wavelengths down to the so-called 'water window', vital for the study of biological samples. (authors)

  19. Photodetector of ultra-violet radiation

    International Nuclear Information System (INIS)

    Dorogan, V.; Vieru, T.; Coseac, V.; Chirita, F.

    1999-01-01

    The invention relates to photodetectors on the semiconductors base, in particular, to photodetectors of ultra-violet radiation and can be used in the optoelectronics systems for determining the intensity and dose of ultraviolet radiation emitted by the Sun and other sources. In the structure of the photodetector of ultraviolet radiation with a superficial potential barrier formed of semiconductors A 3 B 5 with the prohibited power width Eg 1 , solid solutions thereof with the prohibited power width Eg 2 and SnO 2 or ITO, in the semiconductors A 3 B 5 at a surface distance less than the absorption length of the visible radiation it is formed an isotype heterojunction between the semiconductors A 3 B 5 and solid solutions thereof with the prohibited power width Eg 2 > Eg 1 . The technical result consists in manufacturing of a photodetector sensitive solely to the ultraviolet radiation

  20. Selective ablation of dental enamel and dentin using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Lizarelli, R F Z; Costa, M M; Carvalho-Filho, E; Bagnato, V S; Nunes, F D

    2008-01-01

    The study of the interaction of intense laser light with matter, as well as transient response of atoms and molecules is very appropriated because of the laser energy concentration in a femtosecond optical pulses. The fundamental problem to be solved is to find tools and techniques which allow us to observe and manipulate on a femtosecond time scale the photonics events on and into the matter. Six third human extracted molars were exposed to a femtosecond Ti:Sapphire Q-switched and mode locked laser (Libra-S, Coherent, Palo Alto, CA, USA), emitting pulses with 70 fs width, radiation wavelength of 801 nm, at a constant pulse repetition rate of 1 KHz. The laser was operated at different power levels (70 to 400 mW) with constant exposition time of 10 seconds, at focused and defocused mode. Enamel and dentin surfaces were evaluated concerned ablation rate and morphological aspects under scanning electron microscopic. The results in this present experiment suggest that at the focused mode and under higher average power, enamel tissues present microcavities with higher depth and very precise edges, but, while dentin shows a larger melt-flushing, lower depth and melting and solidification aspect. In conclusion, it is possible to choose hard or soft ablation, under lower and higher average power, respectively, revealing different aspects of dental enamel and dentin, depending on the average power, fluence and distance from the focal point of the ultra-short pulse laser on the tooth surface

  1. Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiyan; Feng, Yuping [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); Nieto, Daniel [Microoptics and GRIN Optics Group, Applied Physics Department, University of Santiago de Compostela, E15782 Santiago de Compostela (Spain); García-Lecina, Eva [Unidad de Superficies Metálicas, IK4-CIDETEC, E20009 Donostia-San Sebastián Gipuzkoa (Spain); Mcdaniel, Clare [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); Díaz-Marcos, Jordi [Unitat de Tècniques Nanomètriques, Centres Científics i Tecnològics, Universitat de Barcelona, E08028 Barcelona (Spain); Flores-Arias, María Teresa [Microoptics and GRIN Optics Group, Applied Physics Department, University of Santiago de Compostela, E15782 Santiago de Compostela (Spain); O’Connor, Gerard M. [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); Baró, Maria Dolors [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); Pellicer, Eva, E-mail: eva.pellicer@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); and others

    2016-05-15

    Highlights: • Formation of ripples after femtosecond pulsed laser irradiation (FSPLI) of metallic glass was studied. • Magnetic patterning at the surface of non-ferromagnetic amorphous steel was induced by FSPLI. • The origin of the generated ferromagnetism is the laser-induced devitrification. - Abstract: Periodic ripple and nanoripple patterns are formed at the surface of amorphous steel after femtosecond pulsed laser irradiation (FSPLI). Formation of such ripples is accompanied with the emergence of a surface ferromagnetic behavior which is not initially present in the non-irradiated amorphous steel. The occurrence of ferromagnetic properties is associated with the laser-induced devitrification of the glassy structure to form ferromagnetic (α-Fe and Fe{sub 3}C) and ferrimagnetic [(Fe,Mn){sub 3}O{sub 4} and Fe{sub 2}CrO{sub 4}] phases located in the ripples. The generation of magnetic structures by FSPLI turns out to be one of the fastest ways to induce magnetic patterning without the need of any shadow mask. Furthermore, local variations of the adhesion force, wettability and nanomechanical properties are also observed and compared to those of the as-cast amorphous alloy. These effects are of interest for applications (e.g., biological, magnetic recording, etc.) where both ferromagnetism and tribological/adhesion properties act synergistically to optimize material performance.

  2. Femtosecond laser processing of active and passive devices for bio-MEMS

    NARCIS (Netherlands)

    Bellouard, Y.

    2013-01-01

    Femtosecond laser processing of glass has been proven to be an efficient tool for fabricating waveguides and microchannels. Here we show that monolithic integration in bio-Micro-Electro-Mechanical-Systems can be pushed forward by introducing additional functionalities.

  3. Ultraviolet light - nature's own disinfection process

    Energy Technology Data Exchange (ETDEWEB)

    Munkeberg, T [Thorolf Gregersen a/s, Oslo (Norway)

    1978-05-18

    Ultraviolet radiation from the sun is the means by which natural pollution products, as well as much of the smaller amount of pollution products produced by man, are converted and returned to the cycle of nature. Artificial ultraviolet radiation offers an optimum method for the disinfection of drinking water and can be used in the long term without undesireable effects on man or the enviromment. There is no evidence that ultraviolet irradiation leads to radiation resistant mutations of bacteria. The geometrical arrangement of ultraviolet disinfection units is described and the capacities of typical units is mentioned as being 600-800 m/sup 3/ /hr, though there is no reason why this should not be increased.

  4. Ultraviolet light - nature's own disinfection process

    International Nuclear Information System (INIS)

    Munkeberg, T.

    1978-01-01

    Ultraviolet radiation from the sun is the means by which natural pollution products, as well as much of the smaller amount of pollution products produced by man, are converted and returned to the cycle of nature. Artificial ultraviolet radiation offers an optimum method for the disinfection of drinking water and can be used in the long term without undesireable effects on man or the enviromment. There is no evidence that ultraviolet irradiation leads to radiation resistant mutations of bacteria. The geometrical arrangement of ultraviolet disinfection units is described and the capacities of typical units is mentioned as being 600-800 m 3 /hr, though there is no reason why this should not be increased. (JIW)

  5. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    Science.gov (United States)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  6. Optofluidic Microlasers based on Femtosecond Micromachining Technology

    Directory of Open Access Journals (Sweden)

    Simoni F.

    2017-08-01

    Full Text Available We present the different optofluidic lasers which have been realized using the Femtosecond Micromachining technique to fabricate the monolithic optofluidic structures in glass chips. We show how the great flexibility of this 3D technique allows getting different kind of optical cavities. The most recent devices fabricated by this technique as ring shaped and Fabry-Perot resonators show excellent emission performances.We also point out how the addition of the inkjet printing technique provides further opportunities in realizing optofluidic chips.

  7. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    International Nuclear Information System (INIS)

    Yuan, J H; Sang, X Z; Wu, Q; Yu, C X; Shen, X W; Wang, K R; Yan, B B; Teng, Y L; Farrell, G; Zhou, G Y; Xia, C M; Han, Y; Li, S G; Hou, L T

    2013-01-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1–3, the conversion efficiency η uv−v of 11% and bandwidth B uv−v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV–visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV–visible resonant Raman scattering. (letter)

  8. Effects of Femtosecond Terawatt Laser Pulses on Materials Similar to Porcine Skin

    National Research Council Canada - National Science Library

    Kumru, Semih S; Noojin, Gary D; Rockwell, Benjamin A

    2004-01-01

    As the laser technology advances and the availability of high power femtosecond pulsed laser systems increase, the urgency to have damage thresholds and ED50 data on these new laser systems becomes...

  9. Toward sub-femtosecond pump-probe experiments: a dispersionless autocorrelator with attosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Constant, E.; Mevel, E.; Zair, A.; Bagnoud, V.; Salin, F. [Bordeaux-1 Univ., Talence (FR). Centre Lasers Intenses et Applications (CELIA)

    2001-07-01

    We designed a dispersionless autocorrelator with a sub-femtosecond resolution suitable for the characterization of ultrashort X-UV pulses. We present a proof of feasibility experiment with 11 fs infrared pulses. (orig.)

  10. Moorfields technique of donor cornea mounting for femtosecond-assisted keratoplasty: use of viscoelastic in the artificial anterior chamber.

    Science.gov (United States)

    Iovieno, Alfonso; Chowdhury, Vivek; Stevens, Julian D; Maurino, Vincenzo

    2012-07-01

    Appropriate mounting and cutting of the donor sclero-corneal cap is often cumbersome during femtosecond laser-assisted keratoplasty. The authors describe a technique for donor cornea femtosecond laser cutting using ophthalmic viscoelastic devices. The donor sclero-corneal cap is mounted on the artificial anterior chamber using a dispersive ophthalmic viscoelastic device instead of saline solution. The chances of artificial anterior chamber pressure loss, inadequate applanation, and fluid leaks are consistently reduced with the use of dispersive ophthalmic viscoelastic devices. The speed of donor femtosecond laser cutting is increased. The viscosity and elasticity of dispersive ophthalmic viscoelastic devices greatly assist the procedure with regard to ease of applanation, corneal endothelium protection, and decreased distortion of the applanated cornea. Copyright 2012, SLACK Incorporated.

  11. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    Science.gov (United States)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  12. Femtosecond-assisted intracorneal ring segment complications in keratoconus: from novelty to expertise

    Directory of Open Access Journals (Sweden)

    Mounir A

    2018-05-01

    Full Text Available Amr Mounir, Gamal Radwan, Mahmoud Mohamed Farouk, Engy Mohamed Mostafa Department of Ophthalmology, Faculty of Medicine, Sohag University, Sohag, Egypt Objectives: To document the difference between complication rate in the early curve of practicing intracorneal stromal rings and after gaining experience. Patients and methods: A retrospective study of 623 eyes of 417 patients with keratoconus who underwent Keraring implantation using femtosecond laser for channel creation. Results: The main outcome measures were reported intraoperative and postoperative complications. The overall complication rate was 12.7% (79 eyes over the 4 years with 34 eyes in the first year (5.5% and six eyes in the fourth year (0.96%. Over the 4 years of our practice, intraoperative complications were 7.1% and postoperative complications were 5.6%. Yet, there was a significant difference in intraoperative complications between the first and the fourth year where it was 3.5% and 0.48%, respectively. This also applies to the postoperative complication rate, which decreased from 1.9% to 0.5% in the fourth year. Conclusion: Complications with femtosecond-assisted intracorneal stromal ring procedure can be reduced by experience, making this procedure a safe and effective means of treating keratoconus. Yet, there are some complications that cannot be avoided such as sterile keratitis. Keywords: femtosecond laser, intracorneal rings, Kerarings, keratoconus

  13. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos

    2017-01-01

    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluoresc...

  14. Femtosecond laser control of chemical reaction of carbon monoxide and hydrogen

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-09-01

    Full Text Available Femtosecond laser control of chemical reactions is made possible through the use of pulse-shaping techniques coupled to a learning algorithm feedback loop – teaching the laser pulse to control the chemical reaction. This can result in controllable...

  15. Femtosecond Laser Desorption of Thin Polymer Films from a Dielectric Surface

    Directory of Open Access Journals (Sweden)

    Mercadier L.

    2013-11-01

    Full Text Available We desorb polymer films from fused silica with a femtosecond laser and characterize the results by atomic force microscopy. Our study as a function of beam geometry and energy reveals two ways of achieving spatially controlled nanodesorption.

  16. Femtosecond pulse self-shortening in Kerr media: role of modulational instability in the spectrum formation

    Science.gov (United States)

    Grudtsyn, Ya. V.; Koribut, A. V.; Mikheev, L. D.; Trofimov, V. A.

    2018-04-01

    The mechanism of femtosecond pulse self-shortening in thin optical materials with Kerr nonlinearity is investigated. The experimentally observed spectral-angular distribution of the radiation intensity on the exit surface of a 1-mm-thick fused silica sample is compared with the results of numerical simulation based on solving the nonlinear Schrödinger equation for an electromagnetic wave with a transverse perturbation on the axis. Qualitative agreement between the calculated and experimental results confirms the hypothesis about the transient regime of multiple filamentation as a mechanism of femtosecond pulse self-shortening.

  17. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    Science.gov (United States)

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  18. Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2012-01-01

    in the development of all-fiber nonlinear-optical laser control schemes, which resulted in the demonstration of highly stable monolithic, i.e., not containing any free-space elements, lasers with direct fiber-end delivery of femtosecond pulses. This paper provides an overview of the progress in the development...... of such all-fiber mode-locked lasers based on Yb-fiber as gain medium, operating at the wavelength around 1 $\\mu$m, and delivering femtosecond pulses reaching tens of nanojoules of energy.......Operational and environmental stability of ultrafast laser systems is critical for their applications in practical biophotonics. Mode-locked fiber lasers show great promise in applications such as supercontinuum sources or multiphoton microscopy systems. Recently, substantial progress has been made...

  19. Extreme ultraviolet patterning of tin-oxo cages

    Science.gov (United States)

    Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.

    2017-07-01

    We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.

  20. Ultraviolet spectrophotometry of three LINERs

    Science.gov (United States)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  1. Ultraviolet safety assessments of insect light traps.

    Science.gov (United States)

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  2. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia.

    Science.gov (United States)

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (pbrackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.

  3. Comparative study of the dissociative ionization of 1,1,1-trichloroethane using nanosecond and femtosecond laser pulses

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-03-01

    Full Text Available , but different fragmentation patterns. A general trend is that when using femtosecond laser pulses for ionization, the parent molecular ion is observed but not for nanosecond laser ionization. There is also a fundamental interest in laser...-molecule interactions at the high intensities available from femtosecond lasers [12,13]. These papers describe the multiphoton ionization mechanisms termed ladder climbing and ladder switching, which explain the presence of parent molecular ion in ultrashort pulse...

  4. Femtosecond Pulse Characterization as Applied to One-Dimensional Photonic Band Edge Structures

    Science.gov (United States)

    Fork, Richard L.; Gamble, Lisa J.; Diffey, William M.

    1999-01-01

    The ability to control the group velocity and phase of an optical pulse is important to many current active areas of research. Electronically addressable one-dimensional photonic crystals are an attractive candidate to achieve this control. This report details work done toward the characterization of photonic crystals and improvement of the characterization technique. As part of the work, the spectral dependence of the group delay imparted by a GaAs/AlAs photonic crystal was characterized. Also, a first generation an electrically addressable photonic crystal was tested for the ability to electronically control the group delay. The measurement technique, using 100 femtosecond continuum pulses was improved to yield high spectral resolution (1.7 nanometers) and concurrently with high temporal resolution (tens of femtoseconds). Conclusions and recommendations based upon the work done are also presented.

  5. Femtosecond technology for science, industry and medicine

    International Nuclear Information System (INIS)

    Stingl, A.; Teraoka, Hiroshi

    2000-01-01

    Five years after introduction of the first ever prism less sub-20 Femtosecond oscillator, inventor of the chirped mirror technology are ranging from 10-fs-high power Oscillators with peak power levels up to MW regime, to ultra fast amplifier system in the GW regime, which became commercially available now. Advances in the optical and mechanical design yield highly compact and reliable laser systems ready to serve for scientific application as well as for real world application in diagnostics, medicine and micro-machining. (author)

  6. Femtosecond laser studies of ultrafast intramolecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, C. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  7. Nanosecond and femtosecond ablation of La0.6Ca0.4CoO3: a comparison between plume dynamics and composition of the films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Papadopoulou, E.; Anglos, D.

    2011-01-01

    Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited with nanosec......Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited...... and in a background pressure of 60 Pa of oxygen. The ns-induced plume in vacuum exhibits a spherical shape, while for femtosecond ablation the plume is more elongated along the expansion direction, but with similar velocities for ns and fs laser ablation. In the case of ablation in the background gas similar...

  8. FAINT NEAR-ULTRAVIOLET/FAR-ULTRAVIOLET STANDARDS FROM SWIFT/UVOT, GALEX, AND SDSS PHOTOMETRY

    International Nuclear Information System (INIS)

    Siegel, Michael H.; Hoversten, Erik A.; Roming, Peter W. A.; Brown, Peter

    2010-01-01

    At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of 11 new faint (u ∼ 17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer archives and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the near-infrared to the far-ultraviolet. These stars were chosen because they are known to be hot (20, 000 eff < 50, 000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraints on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all 11 passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.

  9. Femtosecond Light Source for Phase-Controlled Multiphoton Ionization

    International Nuclear Information System (INIS)

    Sokolov, A. V.; Walker, D. R.; Yavuz, D. D.; Yin, G. Y.; Harris, S. E.

    2001-01-01

    We describe a femtosecond Raman light source with more than an octave of optical bandwidth. We use this source to demonstrate phase control of multiphoton ionization under conditions where ionization requires eleven photons of the lowest frequency of the spectrum or five photons of the highest frequency. The nonlinearity of the photoionization process allows us to characterize the light source. Experiment-to-theory comparison implies generation of a near single-cycle waveform

  10. The Extreme Ultraviolet spectrometer on bard the Hisaki satellite

    Science.gov (United States)

    Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Kimura, T.; Yoshikawa, I.

    2017-12-01

    The extreme ultraviolet spectroscope EXCEED (EXtrem ultraviolet spetrosCope for ExosphEric Dynamics) on board the Hisaki satellite was launched in September 2013 from the Uchinoura space center, Japan. It is orbiting around the Earth with an orbital altitude of around 950-1150 km. This satellite is dedicated to and optimized for observing the atmosphere and magnetosphere of terrestrial planets such as Mercury, Venus, Mars, as well as Jupiter. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. Based on the after-launch calibration, the spectral resolution of EXCEED is found to be 0.3-0.5 nm FWHM (Full Width at Half Maximum) over the entire spectral band, and the spatial resolution is around 17". The evaluated effective area is larger than 1cm2. In this presentation, the basic concept of the instrument design and the observation technique are introduced. The current status of the spacecraft and its future observation plan are also shown.

  11. Key kinematic parameters in a low-loss power splitter written by femtosecond laser micromachining

    Science.gov (United States)

    Peyton, R.; Guarepi, V.; Videla, F.; Torchia, G. A.

    2018-05-01

    In this work we design, fabricate and characterize a 1  ×  2 Y-branch power splitter based on simplified coherent coupling. This device was constructed by type II waveguide structures inscribed by a direct femtosecond laser writing technique in x-cut lithium niobate crystal. First of all, a theoretical study that links the kinematic and writing fluence of the process is developed, which allows us to establish the design trade-off and justify the best geometry chosen. Then, the design was optimized and tested by using commercial software, resulting in a compact and low-loss photonic circuit. The efficiency of the proposed device is compared with two others: a curved and a straight splitter. Finally, the experimental results were compared with simulations and then a statistical analysis of multiple comparisons was also conducted, obtaining 3.7 dB  ±  0.1 dB insertion losses and 4.5% of the unbalanced coupling ratio.

  12. Towards non-sequential double ionization of Ne and Ar using a femtosecond laser oscillator.

    Science.gov (United States)

    Liu, Yunquan; Tschuch, Sebastian; Dürr, Martin; Rudenko, Artem; Moshammer, Robert; Ullrich, Joachim; Siegel, Martin; Morgner, Uwe

    2007-12-24

    We report on first proof-of-principles results on non-sequential double ionization of argon and neon achieved by using a newly developed long-cavity Ti:sapphire femtosecond oscillator with a pulse duration of 45 fs and a repetition of 6.2 MHz combined with a dedicated reaction microscope. Under optimized experimental conditions, peak intensities larger than 2.310(14) W/cm(2) have been achieved. Ion momentum distributions were recorded for both rare gases and show significantly different features for single as well as for double ionization. For single ionization of neon a spike of zero-momentum electrons is found when decreasing the laser intensity towards the lowest ionization rate we can measure which is attributed to a non-resonant ionization channel. As to double ionization, the longitudinal momentum distribution for Ne(2+) displays a clear double-hump structure whereas this feature is found to be smoothened out with a maximum at zero momentum for Ar(2+).

  13. Optical fiber link for transmission of 1-nJ femtosecond laser pulses at 1550 nm

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Olsson, Rasmus Kjelsmark; Buron, Jonas Christian Due

    2010-01-01

    We report on numerical and experimental characterization of the performance of a fiber link optimized for the delivery of sub-100-fs laser pulses at 1550 nm over several meters of fiber. We investigate the power handling capacity of the link, and demonstrate all-fiber delivery of 1-nJ pulses over...... a distance of 5.3 m. The fiber link consists of dispersion-compensating fiber (DCF) and standard single-mode fiber. The optical pulses at different positions in the fiber link are measured using frequency-resolved optical gating (FROG). The results are compared with numerical simulations of the pulse...... propagation based on the generalized nonlinear Schrödinger equation. The high input power capacity of the fiber link allows the splitting and distribution of femtosecond pulses to an array of fibers with applications in multi-channel fiber-coupled terahertz time-domain spectroscopy and imaging systems. We...

  14. Solar glint suppression in compact planetary ultraviolet spectrographs

    Science.gov (United States)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  15. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Rukosuyev, Maxym V.; Lee, Jason [Mechanical Engineering, University of Victoria (Canada); Cho, Seong Jin; Lim, Geunbae [Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Jun, Martin B.G., E-mail: mbgjun@uvic.ca [Mechanical Engineering, University of Victoria (Canada)

    2014-09-15

    Highlights: • Superhydrophobic surface patterns by femtosecond laser ablation in open air. • Micron scale ridge-like structure with superimposed submicron convex features. • Hydrophobic or even superhydrophobic behavior with no additional silanization. - Abstract: Hydrophobic surface properties are sought after in many areas of research, engineering, and consumer product development. Traditionally, hydrophobic surfaces are produced by using various types of coatings. However, introduction of foreign material onto the surface is often undesirable as it changes surface chemistry and cannot provide a long lasting solution (i.e. reapplication is needed). Therefore, surface modification by transforming the base material itself can be preferable in many applications. Femtosecond laser ablation is one of the methods that can be used to create structures on the surface that will exhibit hydrophobic behavior. The goal of the presented research was to create micro and nano-scale patterns that will exhibit hydrophobic properties with no additional post treatment. As a result, dual scale patterned structures were created on the surface of steel aluminum and tungsten carbide samples. Ablation was performed in the open air with no subsequent treatment. Resultant surfaces appeared to be strongly hydrophobic or even superhydrophobic with contact angle values of 140° and higher. In conclusion, the nature of surface hydrophobicity proved to be highly dependent on surface morphology as the base materials used are intrinsically hydrophilic. It was also proven that the hydrophobicity inducing structures could be manufactured using femtosecond laser machining in a single step with no subsequent post treatment.

  16. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation

    International Nuclear Information System (INIS)

    Rukosuyev, Maxym V.; Lee, Jason; Cho, Seong Jin; Lim, Geunbae; Jun, Martin B.G.

    2014-01-01

    Highlights: • Superhydrophobic surface patterns by femtosecond laser ablation in open air. • Micron scale ridge-like structure with superimposed submicron convex features. • Hydrophobic or even superhydrophobic behavior with no additional silanization. - Abstract: Hydrophobic surface properties are sought after in many areas of research, engineering, and consumer product development. Traditionally, hydrophobic surfaces are produced by using various types of coatings. However, introduction of foreign material onto the surface is often undesirable as it changes surface chemistry and cannot provide a long lasting solution (i.e. reapplication is needed). Therefore, surface modification by transforming the base material itself can be preferable in many applications. Femtosecond laser ablation is one of the methods that can be used to create structures on the surface that will exhibit hydrophobic behavior. The goal of the presented research was to create micro and nano-scale patterns that will exhibit hydrophobic properties with no additional post treatment. As a result, dual scale patterned structures were created on the surface of steel aluminum and tungsten carbide samples. Ablation was performed in the open air with no subsequent treatment. Resultant surfaces appeared to be strongly hydrophobic or even superhydrophobic with contact angle values of 140° and higher. In conclusion, the nature of surface hydrophobicity proved to be highly dependent on surface morphology as the base materials used are intrinsically hydrophilic. It was also proven that the hydrophobicity inducing structures could be manufactured using femtosecond laser machining in a single step with no subsequent post treatment

  17. Multiparameter Flowfield Measurements in High-Pressure, Cryogenic Environments Using Femtosecond Lasers

    Science.gov (United States)

    Burns, Ross A.; Danehy, Paul M.; Peters, Christopher J.

    2016-01-01

    Femtosecond laser electronic excitation tagging (FLEET) and Rayleigh scattering (RS) from a femtosecond laser are demonstrated in the NASA Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The measured signals from these techniques are examined for their thermodynamic dependencies in pure nitrogen. The FLEET signal intensity and signal lifetimes are found to scale primarily with the gas density, as does the RS signal. Several models are developed, which capture these physical behaviors. Notably, the FLEET and Rayleigh scattering intensities scale linearly with the flow density, while the FLEET signal decay rates are a more complex function of the thermodynamic state of the gas. The measurement of various flow properties are demonstrated using these techniques. While density was directly measured from the signal intensities and FLEET signal lifetime, temperature and pressure were measured using the simultaneous FLEET velocity measurements while assuming the flow had a constant total enthalpy. Measurements of density, temperature, and pressure from the FLEET signal are made with accuracies as high as 5.3 percent, 0.62 percent, and 6.2 percent, respectively, while precisions were approximately 10 percent, 0.26 percent, and 11 percent for these same quantities. Similar measurements of density from Rayleigh scattering showed an overall accuracy of 3.5 percent and a precision of 10.2 percent over a limited temperature range (T greater than 195 K). These measurements suggest a high degree of utility at using the femtosecond-laser based diagnostics for making multiparameter measurements in high-pressure, cryogenic environments such as large-scale TCT facilities.

  18. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Park, Peom

    2001-01-01

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 μW · s/cm 2 Win in 30 second relative to ultraviolet dose in time

  19. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We solve the three-dimensional time-dependent Schrödinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond...

  20. Complications of femtosecond laser corneal small incision lenticule extraction

    Directory of Open Access Journals (Sweden)

    Qing-Hong Lin

    2017-07-01

    Full Text Available AIM:To investigate the safety and complications of femtosecond laser corneal small incision lenticule extraction(SMILEprocedure and discuss the prevention and treatment.METHODS: We retrospectively studied the complications of 403 patients(799 eyeswith myopia and myopic astigmatism treated by SMILE.RESULTS: All the patients underwent the operation successfully. Only 1 case(1 eyesuffered from dark spot and changed to femtosecond laser-assisted LASIK(FS-LASIK, 5 cases(5 eyes, 0.6%suffered from the suction loss, 11 cases(17 eyes, 2.1%developed opaque bubble layer. All patients gained perfect uncorrected visual acuity(UCVA(20/20. The best corrected visual acuity(BCVAdid not decrease after operations. The incidence of haze and diffuse lamellar keratitis was low(0.3% and 0.4%, respectivelyand no other complications were observed. There was 9 eyes in 6 patients(1.1%found regression of refraction at 6mo after surgery, while the UCVA of rest patients reached 1.0 at 3mo after surgery.CONCLUSION: The SMILE procedure has high safety for myopia and myopic astigmatism. Effective prevention and management of the complications is the key to achieve the satisfactory visual acuity.

  1. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2007-12-01

    Full Text Available Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds relativistic electron bunches with relatively low (of the order of couple of percent energy spread. In this article we study the dynamics of such bunches in drift space (vacuum and in channel-guided laser wakefields. Analytical solutions were found for the transverse coordinate of an electron and for the bunch envelope in the wakefield in the case of arbitrary change in the energy. Our results show strong bunch dynamics already on a millimeter scale propagation distance both in plasma and in vacuum. When the bunch propagates in vacuum, its transverse sizes grow considerably; the same is observed for the normalized bunch emittance that worsens the focusability of the bunch. A scheme of two-stage laser wakefield accelerator with small drift space between the stages is proposed. It is found that fast longitudinal betatron phase mixing occurs in a femtosecond bunch when it propagates along the wakefield axis. When bunch propagates off axis, strong bunch decoherence and fast emittance degradation due to the finite bunch length was observed.

  2. Visible to Infrared Diamond Photonics Enabled by Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Belén Sotillo

    2017-02-01

    Full Text Available Diamond’s nitrogen-vacancy (NV centers show great promise in sensing applications and quantum computing due to their long electron spin coherence time and because they can be found, manipulated, and read out optically. An important step forward for diamond photonics would be connecting multiple diamond NVs together using optical waveguides. However, the inertness of diamond is a significant hurdle for the fabrication of integrated optics similar to those that revolutionized silicon photonics. In this work, we show the fabrication of optical waveguides in diamond, enabled by focused femtosecond high repetition rate laser pulses. By optimizing the geometry of the waveguide, we obtain single mode waveguides from the visible to the infrared. Additionally, we show the laser writing of individual NV centers within the bulk of diamond. We use µ-Raman spectroscopy to gain better insight on the stress and the refractive index profile of the optical waveguides. Using optically detected magnetic resonance and confocal photoluminescence characterization, high quality NV properties are observed in waveguides formed in various grades of diamond, making them promising for applications such as magnetometry, quantum information systems, and evanescent field sensors.

  3. 2 micron femtosecond fiber laser

    Science.gov (United States)

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  4. Ultraviolet Spectroscopy of Asteroid(4) Vesta

    Science.gov (United States)

    Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.

    2011-01-01

    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations

  5. Study of the ultrafast polarization dynamics in lithium borohydride by means of femtosecond X-ray diffraction

    International Nuclear Information System (INIS)

    Stingl, Johannes

    2013-01-01

    In this thesis the ultrafast electronic polarisation in the crystalline material lithium borohydride (LiBH 4 ) is examined. The material is excited by a femtosecond long optical pulse and scanned by a likewise short X-ray pulse. Using X-ray scattering the optically induced spatial rearrangement of electronic charge can be directly mapped with atomic spatial resolution. Copper K-alpha X-rays for the experiment are produced in a laboratory table-top laserplasma source with 1 kHz repetition rate. This radiation is then focused on a powdered sample. Debye-Scherrer rings produced from powder diffraction are collected on a large area detector and processed to yield intensity profiles. Using pump-probe technique the change in diffracted intensity, triggered by excitation with a femtosecond optical pulse is examined. The temporal resolution is given by the delay between pump and probe pulse. This way insight is gained into the dynamic electronic evolution of the system. Intensity changes can be correlated to changes in charge density in the relevant material to elucidate structural dynamics on the femtosecond time scale. Lithium borohydride was chosen since it displays necessary characteristics for the exploration of ultrafast electronic polarisation. Up to date there has been no spatially resolved research in the femtosecond regime elucidating this electronic phenomenon. This work presents the ultrafast resonse in Lithiumborhydrid (LiBH 4 ) to strong electronic fields with optical frequencies, which leads to charge relocation accompanied by electronic polarisation.

  6. Femtosecond-assisted keratopigmentation double tunnel technique in the management of a case of Urrets-Zavalia syndrome.

    Science.gov (United States)

    Alio, Jorge L; Rodriguez, Alejandra E; Toffaha, Bader T; El Aswad, A

    2012-09-01

    To describe the successful use of a double intrastromal tunnel femtosecond-assisted keratopigmentation technique to manage a case of unilateral Urrets-Zavalia syndrome. A 33-year-old man was referred with a history of trauma in his right eye due to a labor-related accident. Because of myopic anisometropia, he had been previously implanted with an angle-supported phakic intraocular lens. The patient presented iris atrophy and a fixed dilated pupil. He complained of severe and incapacitating photophobia, glare, and decreased vision. To obtain a complete iris replica, the surgery involved creation of double keratopigmented intrastromal tunnels using femtosecond laser and micronized mineral pigments. The deepest layer was stained black first and then the superficial layer was stained with a contoured greenish blue-gray color, which matched the contralateral eye. In the immediate postoperative period, the patient reported a complete elimination of photophobia associated with the corrected distance visual acuity improvement. A very adequate cosmetic outcome was also achieved. Stability was observed during the 12-month follow-up. A femtosecond-assisted keratopigmentation technique using 2 pigmented intrastromal tunnels to achieve an intracorneal pigmented replica of the iris was effective in improving the patient's severe visual function disability and cosmetic appearance. To the best of our knowledge, this is the first report of severe visual function disability caused by atrophic iris and a fixed dilated pupil treated with double intrastromal layers of keratopigmentation by means of femtosecond-created tunnels.

  7. Femtosecond few-cycle mid-infrared laser pulses

    DEFF Research Database (Denmark)

    Liu, Xing

    The few-cycle pulses of mid-infrared (mid-IR, wavelength 2-10 microns) have attracted increasing attention owing to their great potentials for high order harmonic generation, time-resolved spectroscopy, precision of cutting and biomedical science.In this thesis, mid-IR frequency conversion.......2 - 5.5 μm with only one fixed pump wavelength, a feature absent in Kerr media. Finally, we experimentally observe supercontinuum generation spanning 1.5 octaves, generated in a 10 mm long silicon-rich nitride waveguide pumped by 100 pJ femtosecond pulses from an erbium fiber laser. The waveguide has...

  8. Impact of the Femtosecond Laser in Line with the Femtosecond Laser-Assisted Cataract Surgery (FLACS) on the Anterior Chamber Characteristics in Comparison to the Manual Phacoemulsification.

    Science.gov (United States)

    Pahlitzsch, Milena; Torun, Necip; Pahlitzsch, Marie Luise; Klamann, Matthias K J; Gonnermann, Johannes; Bertelmann, Eckart; Pahlitzsch, Thomas

    2017-01-01

    To assess the alterations of the anterior chamber conditions including laser flare photometry after femtosecond laser-assisted cataract surgery (FLACS) compared to the manual phacoemulsification. Data of n=70 FLACS (mean age 67.2 ± 8.9 years) and n=40 manual phacoemulsification (mean age 69.5 ± 9.6 years) were analyzed. The procedures were performed by LenSx Alcon, USA, and Alcon Infiniti Vision System, USA. The following parameters were recorded: laser flare photometry (Kowa FM 700, Japan), anterior chamber (AC) depth, AC volume, AC angle (Pentacam, Oculus Inc., Germany), lens density, pupil diameter, endothelial cell count and pachymetry. The analysis was performed preoperatively, immediately after femtosecond laser procedure and one day postoperatively. Between FLACS and the phaco control group, there was a significant difference in the AC depth (p=0.023, 3.77 mm vs. 4.05 mm) one day postoperatively. The AC angle (p=0.016) showed a significant difference immediately after the femto laser treatment. The central and thinnest pachymetry and endothelial cell count did not show a significant difference between the two study cohorts (p=0.165, p=0.291, p=0.979). The phaco cohort (n=40) demonstrated a non-statistically significant difference in the flare photometry of 15.80 photons/ms one postoperative day compared to the FLACS group 26.62 photons/ms (p=0.322). In this study population, no evidence for an additive damage caused by the use of the femtosecond laser was demonstrated. Furthermore, no increase in the central and thinnest corneal thickness and no increased endothelial cell loss was demonstrated by the laser energy.

  9. Fiber inline Michelson interferometer fabricated by a femtosecond laser.

    Science.gov (United States)

    Yuan, Lei; Wei, Tao; Han, Qun; Wang, Hanzheng; Huang, Jie; Jiang, Lan; Xiao, Hai

    2012-11-01

    A fiber inline Michelson interferometer was fabricated by micromachining a step structure at the tip of a single-mode optical fiber using a femtosecond laser. The step structure splits the fiber core into two reflection paths and produces an interference signal. A fringe visibility of 18 dB was achieved. Temperature sensing up to 1000°C was demonstrated using the fabricated assembly-free device.

  10. Femtosecond photodissociation dynamics of I studied by ion imaging

    DEFF Research Database (Denmark)

    Larsen, J.J.; Bjerre, N.; Mørkbak, N.J.

    1998-01-01

    on imaging is employed to analyze the fragments from timed Coulomb explosion studies of femtosecond (fs) molecular dynamics. The technique provides high detection efficiency and direct recording of the two-dimensional velocity of all ionized fragments. We illustrate the approach by studying...... agreement with quantum mechanical wave packet simulations. We discuss the perspectives for extending the studies to photochemical reactions of small polyatomic molecules...

  11. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol; Park, Peom [Ajou Univ., Suwon (Korea, Republic of)

    2001-12-15

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 {mu}W {center_dot} s/cm{sup 2}Win in 30 second relative to ultraviolet dose in time.

  12. A novel inert crystal delivery medium for serial femtosecond crystallography

    Directory of Open Access Journals (Sweden)

    Chelsie E. Conrad

    2015-07-01

    Full Text Available Serial femtosecond crystallography (SFX has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, the structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.

  13. Femtosecond electron bunches, source and characterization

    International Nuclear Information System (INIS)

    Thongbai, C.; Kusoljariyakul, K.; Rimjaem, S.; Rhodes, M.W.; Saisut, J.; Thamboon, P.; Wichaisirimongkol, P.; Vilaithong, T.

    2008-01-01

    A femtosecond electron source has been developed at the Fast Neutron Research Facility (FNRF), Chiang Mai University, Thailand. So far, it has produced electron bunches as short as σ z ∼180 fs with (1-6)x10 8 electrons per microbunch. The system consists of an RF-gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. Coherent transition radiation emitted at wavelengths equal to and longer than the bunch length is used in a Michelson interferometer to determine the bunch length by autocorrelation technique. The experimental setup and results of the bunch length measurement are described

  14. Resveratrol anti-ultraviolet-induced guinea pig skin injury

    International Nuclear Information System (INIS)

    Li Wenxing; Zhao Ying

    2014-01-01

    Objective: To Estimate on the protection effect of Stilbene on skin damage induced by ultraviolet radiation. Methods: After the normal skin in guinea pig under the intervene of Resveratrol was irradiated with over- dose of ultraviolet rays (UVB and UVA), the samples in every group were matched and compared. Results: The skin tissue in the Resveratrol intervene group irradiated by ultraviolet rays didn't change obviously as compared with that in the self-control group. But, the damage skin tissue in the control group irradiated by ultraviolet did change significantly as compared with that in the Stilbene intervene group. Conclusion: Resveratrol is a good material to protect the skin from damage effect by ultraviolet radiation. (authors)

  15. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels

    International Nuclear Information System (INIS)

    Suriano, Raffaella; Kuznetsov, Arseniy; Eaton, Shane M.; Kiyan, Roman; Cerullo, Giulio; Osellame, Roberto; Chichkov, Boris N.; Levi, Marinella; Turri, Stefano

    2011-01-01

    This manuscript presents a study of physical and chemical properties of microchannels fabricated by femtosecond laser processing technology in thermoplastic polymeric materials, including poly(methyl methacrylate) (PMMA), polystyrene (PS) and cyclic olefin polymer (COP). By surface electron microscopy and optical profilometry, the dimensions of microchannels in the polymers were found to be easily tunable, with surface roughness values comparable to those obtained by standard prototyping techniques such as micromilling. Through colorimetric analysis and optical microscopy, PMMA was found to remain nearly transparent after ablation while COP and PS darkened significantly. Using infrared spectroscopy, the darkening in PS and COP was attributed to significant oxidation and dehydrogenation during laser ablation, unlike PMMA, which was found to degrade by a thermal depolymerization process. The more stable molecular structure of PMMA makes it the most viable thermoplastic polymer for femtosecond laser fabrication of microfluidic channels.

  16. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Spectroscopie résolue en temps par continuum femtoseconde Applications en neurobiologie

    Science.gov (United States)

    Ramstein, S.; Mottin, S.

    2003-06-01

    La spectroscopie résolue en temps utilisant un laser blanc femtoseconde est appliquée à la mesure in vivo des principaux absorbeurs du cerveau. Après génération adéquate du continuum de lumière blanche femtoseconde (50mW/[580-756nm] à 1Hz), cette source se propage dans la calvaria, les méninges et le cortex chez le rat anesthésié. La transmission est étudiée sur 7mm de distance entre l'impact laser et la fibre optique de collection. Le signal transmis est analysé dans la fenêtre 580-760nm, par un spectromètre couplé à une caméra à balayage de fente permettant la décorrélation de l'absorption et de la diffusion.

  18. Femtosecond (FS) laser vision correction procedure for moderate to high myopia

    DEFF Research Database (Denmark)

    Vestergaard, Anders Højslet; Ivarsen, Anders; Asp, Sven

    2013-01-01

    Purpose:  To present our initial clinical experience with ReLEx(®) flex (ReLEx) for moderate to high myopia. We compare efficacy, safety and corneal higher-order aberrations after ReLEx with femtosecond laser in situ keratomileusis (FS-LASIK). Methods:  Prospective study of ReLEx compared...... with a retrospective study of FS-LASIK. ReLEx is a new keratorefractive procedure, where a stromal lenticule is cut by a femtosecond laser and manually extracted. Forty patients were treated with ReLEx on both eyes. A comparable group of 41 FS-LASIK patients were retrospectively identified. Visual acuity, spherical...... equivalent (SE) and corneal tomography were measured before and 3 months after surgery. Results:  Preoperative SE averaged -7.50 ± 1.16 D (ReLEx) and -7.32 ± 1.09 D (FS-LASIK). For all eyes, mean corrected distance visual acuity remained unchanged in both groups. For eyes with emmetropia as target refraction...

  19. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ahsan, Md. Shamim; Dewanda, Fadia; Lee, Man Seop; Sekita, Hitoshi; Sumiyoshi, Tetsumi

    2013-01-01

    Highlights: ► We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. ► Periodic microstructures are printed on the glass surface for superhydrophobicity. ► The contact angle of water droplet on the microstructured glass surface is 155°. ► The transparency of superhydrophobic glass is higher than 77% in visible spectrum. ► We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152° to 155°. The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  20. Femtosecond dynamics of a spaser and unidirectional emission from a perfectly spherical nanoparticle

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2015-01-01

    We investigate the femtosecond dynamics of the spaser emission by combining ab-initio simulations and thermodynamic analysis. Interestingly, the emission is characterized by rotational evolution, opening to the generation of unidirectional emission

  1. Ultraviolet-radiation-curable paints

    Energy Technology Data Exchange (ETDEWEB)

    Grosset, A M; Su, W F.A.; Vanderglas, E

    1981-09-30

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures could be more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. Diffuse ultraviolet light can cure paints on three dimensional metal parts. In the uv curing process, the spectral output of radiation sources must complement the absorption spectra of pigments and photoactive agents. Photosensitive compounds, such as thioxanthones, can photoinitiate unsaturated resins, such as acrylated polyurethanes, by a free radical mechanism. Newly developed cationic photoinitiators, such as sulfonium or iodonium salts (the so-called onium salts) of complex metal halide anions, can be used in polymerization of epoxy paints by ultraviolet light radiation. One-coat enamels, topcoats, and primers have been developed which can be photoinitiated to produce hard, adherent films. This process has been tested in a laboratory scale unit by spray coating these materials on three-dimensional objects and passing them through a tunnel containing uv lamps.

  2. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    International Nuclear Information System (INIS)

    Zhang, Haisu; Tzortzakis, Stelios

    2016-01-01

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  3. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haisu [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion 71110 (Greece); Tzortzakis, Stelios, E-mail: stzortz@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion 71110 (Greece); Materials Science and Technology Department, University of Crete, 71003 Heraklion (Greece); Science Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar)

    2016-05-23

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  4. Tesla coil discharges guided by femtosecond laser filaments in air

    Science.gov (United States)

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-04-01

    A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  5. [Results of residual ametropia correction using CIRCLE technology after femtosecond laser SMILE surgery].

    Science.gov (United States)

    Kostin, O A; Rebrikov, S V; Ovchinnikov, A I; Stepanov, A A; Takhchidi, Kh P

    to evaluate functional results of reoperation performed according to the CIRCLE technology and using the VisuMax femtosecond laser and MEL-80 excimer laser in cases of regression of the refractive effect after SMILE surgery. We studied a group of post-SMILE patients. In those, who showed regression of the refractive effect at 1 year, reoperation was performed according to the CIRCLE technology and using the VisuMax femtosecond laser. The corneal flap was separated from the stromal bed and turned aside. Excimer laser ablation of the stromal bed was performed with the MEL 80 machine. The corneal flap was then placed back and rinsed from both sides. Uncorrected (UCVA) and corrected (BCVA) visual acuity as well as spherical equivalent (SE) were estimated before reoperation, on day 1, and at 1 month. After reoperation, BCVA and UCVA improved. Patient refraction became close to emmetropia. Specifically, UCVA was 0.23±0.18 at baseline (i.e. 1 year after SMILE) and 0.93±0.11 after the CIRCLE procedure (pstatistically significant - from 0.95±0.1 to 0.93±0.11 (p>0.05). Reoperation performed according to the CIRCLE technology and using the VisuMax femtosecond laser and MEL-80 excimer laser provides an increase in visual acuity in case of post-SMILE regression of the refractive effect.

  6. Ultraviolet light in the use of water disinfection

    International Nuclear Information System (INIS)

    Dabbagh, R.

    1999-01-01

    Ultraviolet light is an effective method in the use of water disinfection for swimming pools, potable water and industry required water. For many reasons Ultraviolet light and Ultraviolet compounded with chlorine (Ultraviolet/chlorine) has been brought to attention ed in resent years. In this research, a swimming pool water disinfection was carried out by means of a system with the use of a reactor which was made of stainless steel (SS-304) and with many another standards required. Operation of system was carried out at first in the pilot plant and then installation in essential water treatment integrated. Inactivation of pollution index, E. Coli or Total coliform and Pseudomonas aeroginosa studies with 6000,16000 and 30000 μW.s/cm 2 Ultraviolet dose and then in presence of 0.3,0.6,0.9 and 1.2 mg/1 free chlorine (Ultraviolet/chlorine). In swimming pools minimum free chlorine residual usually is 1.5 mg/1. Optimum Ultraviolet dose was 16000 μW.s/cm 2 attention to 50 percent Ultraviolet absorption ca sued to TSS,TDS and turbidity. In the Ultraviolet/chlorine system suitable rate was 16000μW.s/cm 2 Ultraviolet dose/0.6 mg/1 chlorine in the 2.4 * 10 5 CFU/100 ml for Total coliform and 3600 CFU/100 ml for Pseudomonas aeroginosa. Most probable number (MPN) estimated multiple tube fermentation technique. In this way the flow rate for system indicated about 240 cm 3 /s or 0.9 m 3 /h. The samples polluted for secondary pollution with 54000 CFU/100 ml for E. Coli and 1800 CFU/100ml Pseudomonas aeroginosa. The number of microbes decreased to zero duration after 45 minutes contact time in presence of free chlorine residual in samples. In practical conditions which that disinfectant system was installed in essential water treatment circuit under 1.4 atm hydraulic pressure no growth was seen for pollution index in disinfected water with Ultraviolet in microbial density about 840 CFU/100 ml for Total coliform and 12 CFU/100 ml for pseudomonas aeroginosa. Attention to lower

  7. Guiding of Long-Distance Electric Discharges by Combined Femtosecond and Nanosecond Pulses Emitted by Hybrid KrF Laser System

    Science.gov (United States)

    2014-01-30

    laser pulse initiated HV discharge with a time delay of tens nanoseconds – evidently it is developing due to an avalanche -like growth of electron...AFRL-AFOSR-UK-TR-2014-0040 Guiding of long-distance electric discharges by combined femtosecond and nanosecond pulses emitted by...and guiding electric discharge , KrF laser, femtosecond pulse , nanosecond pulse , filamentation, plasma channel, lightning control, laser control of

  8. 3D electrostatic actuator fabricated by non-ablative femtosecond laser exposure and chemical etching

    Directory of Open Access Journals (Sweden)

    Yang Tao

    2015-01-01

    Full Text Available We demonstrate the novel design of an electrostatic micro-actuator based on monolithic three-dimensional (3D shapes fabricated by non-ablative femtosecond laser exposure combined with chemical etching. Further, we present a single-scan stacking approach exploited in the fabrication of the 3D actuator to create crack-free, highcontrast, high fidelity and integrated micro-structures. Influential parameters: energy per pulse, polarization, scanning spacing and stacking directionwere systematically studied to predict and control the etching rate of 3D planes.Finally, we report the characterization of the actuator and its potential application in optomechanics to show a complete scenario of femtosecond laser machined integrated 3D micro-systems incorporating multiple functionalities.

  9. Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal

    International Nuclear Information System (INIS)

    Zhong Minjian; Guo Guanglei; Yang Junyi; Ma Ninghua; Ye Guo; Ma Hongliang; Guo Xiaodong; Li Ruxin

    2008-01-01

    This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250 kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragg-like grating is formed by moving the sample at a speed of 10 μm/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal

  10. Synchronisation of a femtosecond laser and a Q-switched laser to within 50 ps

    International Nuclear Information System (INIS)

    Katin, E V; Lozhkarev, V V; Palashov, O V; Khazanov, E A

    2003-01-01

    A Nd:YLF laser emitting 2-ns pulses synchronised with a femtosecond Cr:forsterite laser is built. The pulse duration and synchronisation are ensured by two Pockels cells, in which voltage pulses are synchronised with the femtosecond laser by fast emitter-coupled logic elements. One of the Pockels cells ensures Q-switching, while the other cuts a short pulse from a 15-ns Q-switched pulse. The experimental results show that the two-step scheme proposed for synchronisation of a Q-switched laser and a passively mode-locked laser provides quite simple and reliable synchronisation of these lasers with a jitter of a few tens of picoseconds. (control of laser radiation parameters)

  11. Femtosecond laser induced and controlled chemical reaction of carbon monoxide and hydrogen

    CSIR Research Space (South Africa)

    Du Plessis, A

    2011-07-01

    Full Text Available Results from experiments aimed at bimolecular chemical reaction control of CO and H2 at room temperature and pressure, without any catalyst, using shaped femtosecond laser pulses are presented. A stable reaction product (CO2) was measured after...

  12. Selective deactivation of M13 bacteriophage in E. Coli using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Molukanele, P

    2011-09-01

    Full Text Available Potential for the selective deactivation of viruses while leaving the sensitive material such as the host cell unharmed was studied using a femtosecond laser system, and preliminary results are reported....

  13. Development of a Polarimeter for Magnetic Field Measurements in the Ultraviolet

    Science.gov (United States)

    West, Edward; Porter, Jason; Davis, John; Gary, Allen; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the polarizing optics that are being developed for an ultraviolet magnetograph (SUMI) which will be flown on a sounding rocket payload. With a limited observing program, the polarizing optics were optimized to make simultaneous observation at two magnetic lines CIV (155nm) and MgII (280). This paper will give a brief overview of the SUMI instrument, will describe the polarimeter that will be used in the sounding rocket program and will present some of the measurements that have been made on the (SUMI) polarization optics.

  14. Inverse cutting of posterior lamellar corneal grafts by a femtosecond laser

    DEFF Research Database (Denmark)

    Hjortdal, Jesper; Nielsen, Esben; Vestergaard, Anders Højslet

    2012-01-01

    (range: 1.400 to 2.000 cells per sq. mm). The grafts were of uniform thickness, but substantial interface haze was present in most grafts. Conclusions: Posterior lamellar corneal grafts can be prepared from the endothelial side using a femto-second laser. All grafts were clear after 6 months...

  15. Whole-pattern fitting technique in serial femtosecond nanocrystallography

    Directory of Open Access Journals (Sweden)

    Ruben A. Dilanian

    2016-03-01

    Full Text Available Serial femtosecond X-ray crystallography (SFX has created new opportunities in the field of structural analysis of protein nanocrystals. The intensity and timescale characteristics of the X-ray free-electron laser sources used in SFX experiments necessitate the analysis of a large collection of individual crystals of variable shape and quality to ultimately solve a single, average crystal structure. Ensembles of crystals are commonly encountered in powder diffraction, but serial crystallography is different because each crystal is measured individually and can be oriented via indexing and merged into a three-dimensional data set, as is done for conventional crystallography data. In this way, serial femtosecond crystallography data lie in between conventional crystallography data and powder diffraction data, sharing features of both. The extremely small sizes of nanocrystals, as well as the possible imperfections of their crystallite structure, significantly affect the diffraction pattern and raise the question of how best to extract accurate structure-factor moduli from serial crystallography data. Here it is demonstrated that whole-pattern fitting techniques established for one-dimensional powder diffraction analysis can be feasibly extended to higher dimensions for the analysis of merged SFX diffraction data. It is shown that for very small crystals, whole-pattern fitting methods are more accurate than Monte Carlo integration methods that are currently used.

  16. Temperature effects on the geometry during the formation of micro-holes fabricated by femtosecond laser in PMMA

    Science.gov (United States)

    Zhang, Fan; Dong, Xinran; Yin, Kai; Song, Yuxin; Tian, Yaxiang; Wang, Cong; Duan, Ji'an

    2018-03-01

    In this study, the temperature effects on hole geometry of the PMMA during micro-holes drilling by femtosecond laser has been studied under various pulse energy and number of pulse. The laser-induced hole's diameter is considerably increased by 73% as the temperature rises from 20 °C to 90 °C. Remarkable enhancement in the removal volume of micro-hole is also observed under high temperature. The possible mechanism for such changes is discussed in detail on account of optical absorption enhancement and higher density of surface plasma. The atomic percentage of oxygen obviously increases with the increase of temperature, which is beneficial to femtosecond laser fabrication of PMMA micro-hole. The spatter area of micro-hole has been found to tremendously extend with the increase of temperature, which is due to recoil pressure effect. These results demonstrate that temperature plays a crucial role to tailor micro-hole fabrication by femtosecond laser.

  17. Error Analysis of 3D Metal Micromold Fabricated by Femtosecond Laser Cutting and Microelectric Resistance Slip Welding

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2013-01-01

    Full Text Available We used micro-double-staged laminated object manufacturing process (micro-DLOM to fabricate 3D micromold. Moreover, the error of the micro-DLOM was also studied. Firstly, we got the principle error of the micro-DLOM. Based on the mathematical expression, it can be deduced that the smaller the opening angle α and the steel foil thickness h are, the smaller the principle error δ is. Secondly, we studied the error of femtosecond laser cutting. Through the experimental results, we know that the error of femtosecond laser cutting is 0.5 μm under 110 mW femtosecond laser power, 100 μm/s cutting speed, and 0.75 μm dimension compensation. Finally, we researched the error of microelectric resistance slip welding. Based on the research results, we can know that the minimum error of microcavity mold in the height direction is only 0.22 μm when welding voltage is 0.21 V and the number of slip welding discharge is 160.

  18. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    Science.gov (United States)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  19. Measurements of transient electron density distributions by femtosecond X-ray diffraction

    International Nuclear Information System (INIS)

    Freyer, Benjamin

    2013-01-01

    This thesis concerns measurements of transient charge density maps by femtosecond X-ray diffraction. Different X-ray diffraction methods will be considered, particularly with regard to their application in femtosecond X-ray diffraction. The rotation method is commonly used in stationary X-ray diffraction. In the work in hand an X-ray diffraction experiment is demonstrated, which combines the method with ultrafast X-ray pulses. This experiment is the first implementation which makes use of the rotation method to map transient intensities of a multitude of Bragg reflections. As a prototype material Bismuth is used, which previously was studied frequently by femtosecond X-ray diffraction by measuring Bragg reflections successively. The experimental results of the present work are compared with the literature data. In the second part a powder-diffraction experiment will be presented, which is used to study the dynamics of the electron-density distribution on ultrafast time scales. The experiment investigates a transition metal complex after photoexcitation of the metal to ligand charge transfer state. Besides expected results, i. e. the change of the bond length between the metal and the ligand and the transfer of electronic charge from the metal to the ligand, a strong contribution of the anion to the charge transfer was found. Furthermore, the charge transfer has predominantly a cooperative character. That is, the excitation of a single complex causes an alteration of the charge density of several neighboring units. The results show that more than 30 transition-metal complexes and 60 anions contribute to the charge transfer. This collective response is a consequence of the strong coulomb interactions of the densely packed ions.

  20. An analysis of the repair processes in ultraviolet-irradiated Micrococcus luteus using purified ultraviolet-endonuclease

    International Nuclear Information System (INIS)

    Tomilin, N.V.; Zherebtsov, S.V.

    1982-01-01

    The measurement of the frequency of endonucleolytic incisions in ultraviolet-irradiated DNA serves as the test for the presence of pyrimidine dimers. In accordance with this approach, the lysates of three Micrococcus luteus strains containing radioactively labeled chromosomes were treated with purified M. luteus ultraviolet-endonuclease to trace segregation of dimers amongst parental and newly synthesized DNA and their removal during postreplication and excision DNA repair. A considerable proportion of the dimers in all strains tested proved to be insensitive to the action of exogenous incising enzyme. The use of chloramphenicol as an inhibitor of postirradiation protein synthesis in combination with ultraviolet-endonuclease treatment of DNA allowed to reveal at least two alternative pathways of postreplication repair: constitutively active recombinational pathway and inducible nonrecombinational one. (Auth.)

  1. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?

    OpenAIRE

    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center

    1992-01-01

    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  2. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  3. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  4. Stellar extreme ultraviolet astronomy

    International Nuclear Information System (INIS)

    Cash, W.C. Jr.

    1978-01-01

    The design, calibration, and launch of a rocket-borne imaging telescope for extreme ultraviolet astronomy are described. The telescope, which employed diamond-turned grazing incidence optics and a ranicon detector, was launched November 19, 1976, from the White Sands Missile Range. The telescope performed well and returned data on several potential stellar sources of extreme ultraviolet radiation. Upper limits ten to twenty times more sensitive than previously available were obtained for the extreme ultraviolet flux from the white dwarf Sirius B. These limits fall a factor of seven below the flux predicted for the star and demonstrate that the temperature of Sirius B is not 32,000 K as previously measured, but is below 30,000 K. The new upper limits also rule out the photosphere of the white dwarf as the source of the recently reported soft x-rays from Sirius. Two other white dwarf stars, Feige 24 and G191-B2B, were observed. Upper limits on the flux at 300 A were interpreted as lower limits on the interstellar hydrogen column densities to these stars. The lower limits indicate interstellar hydrogen densitites of greater than .02 cm -3 . Four nearby stars (Sirius, Procyon, Capella, and Mirzam) were observed in a search for intense low temperature coronae or extended chromospheres. No extreme ultraviolet radiation from these stars was detected, and upper limits to their coronal emisson measures are derived

  5. Ultraviolet Communication for Medical Applications

    Science.gov (United States)

    2015-06-01

    DEI procured several UVC phosphors and tested them with vacuum UV (VUV) excitation. Available emission peaks include: 226 nm, 230 nm, 234 nm, 242...SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet ( UV ...15. SUBJECT TERMS Non-line-of-sight (NLOS), networking, optical communication, plasma-shells, short range, ultraviolet ( UV ) light 16. SECURITY

  6. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.

    Science.gov (United States)

    Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N

    2016-09-23

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  7. Inactivation of mitochondrial ATPase by ultraviolet light

    International Nuclear Information System (INIS)

    Chavez, E.; Cuellar, A.

    1984-01-01

    The present work describes experiments that show that far-ultraviolet irradiation induce the inhibition of ATPase activity in both membrane-bound and soluble F1. It was also found that ultraviolet light promotes the release of tightly bound adenine nucleotides from F1-ATPase. Experiments carried out with submitochondrial particles indicate that succinate partially protects against these effects of ultraviolet light. Titration of sulfhydryl groups in both irradiated submitochondrial particles and soluble F1-ATPase indicates that a conformational change induced by photochemical modifications of amino acid residues appears involved in the inactivation of the enzyme. Finally, experiments are described which show that the tyrosine residue located in the active site of F1-ATPase is modified by ultraviolet irradiation

  8. Experimental generation of discrete ultraviolet wavelength by cascaded intermodal four-wave mixing in a multimode photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Mei, Chao; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Farrell, Gerald; Lu, Chao; Tam, Hwa Yaw; Wai, P K A

    2017-09-15

    In this Letter, we demonstrate experimentally for the first time, to the best of our knowledge, discrete ultraviolet (UV) wavelength generation by cascaded intermodal FWM when femtosecond pump pulses at 800 nm are launched into the deeply normal dispersion region of the fundamental guided mode of a multimode photonic crystal fiber (MPCF). For pump pulses at average input powers of P av =450, 550, and 650 mW, the first anti-Stokes waves are generated at the visible wavelength of 538.1 nm through intermodal phase matching between the fundamental and second-order guided mode of the MPCF. The first anti-Stokes waves generated then serve as the secondary pump for the next intermodal FWM process. The second anti-Stokes waves in the form of the third-order guided mode are generated at the UV wavelength of 375.8 nm. The maximum output power is above 10 mW for P av =650  mW. We also confirm that the influences of fiber bending and intermodal walk-offs on the cascaded intermodal FWM-based frequency conversion process are negligible.

  9. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878... tanning. (a) Identification. An ultraviolet lamp for tanning is a device that is a lamp (including a fixture) intended to provide ultraviolet radiation to tan the skin. See § 1040.20 of this chapter. (b...

  10. Comparison of characteristics of femtosecond laser-assisted anterior capsulotomy versus manual continuous curvilinear capsulorrhexis: A meta-analysis of 5-year results.

    Science.gov (United States)

    Ali, Muhammad Hassaan; Ullah, Samee; Javaid, Usman; Javaid, Mamoona; Jamal, Samreen; Butt, Nadeem Hafeez

    2017-10-01

    To perform a meta-analysis on the precision and safety of femtosecond laser-assisted anterior capsulotomy versus conventional manual continuous curvilinear capsulorrhexis. This meta-analysis was conducted from February 2010 to November 2014. Literature search on PubMed, Google Scholar, ExcerptaMedica database and Cochrane Library was done to identify randomised controlled trials and case-control studies. SPSS 20 was used for data analysis. Of the 10 articles included, there were 3(30%) randomised controlled trials and 7(70%) non-randomised controlled trials. The meta-analysis was based on a total of 2,882eyes. Of them, 1,498(51.97%) underwent femtosecond laser-assisted capsulotomy and 1,384(48.02%) underwent manual continuous curvilinear capsulorrhexis. The diameter of the capsulotomy and the rates of anterior capsule tear showed no statistical difference between the femtosecond laser group and the manual capsulorrhexis group (p=0.29 and p=0.68). In terms of circularity of capsulotomy, femtosecond laser group had a more significant advantage than the manual capsulorrhexis group (pmanual continuous curvilinear capsulorrhexis.

  11. Ultraviolet safety assessments of insect light traps

    OpenAIRE

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315?400?nm), ?black-light,? electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV ?Black-light? ILTs were measured at...

  12. Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers

    International Nuclear Information System (INIS)

    Eich, S.; Stange, A.; Carr, A.V.; Urbancic, J.; Popmintchev, T.; Wiesenmayer, M.; Jansen, K.; Ruffing, A.; Jakobs, S.; Rohwer, T.; Hellmann, S.; Chen, C.; Matyba, P.; Kipp, L.; Rossnagel, K.; Bauer, M.; Murnane, M.M.; Kapteyn, H.C.; Mathias, S.; Aeschlimann, M.

    2014-01-01

    Highlights: • We present a scheme to generate high intensity XUV pulses from HHG with variable time-bandwidth product. • Shorter-wavelength driven high-harmonic XUV trARPES provides higher photon flux and increased energy resolution. • High-quality high-harmonic XUV trARPES data with sub 150 meV energy and sub 30 fs time resolution is presented. - Abstract: Time- and angle-resolved photoemission spectroscopy (trARPES) using femtosecond extreme ultraviolet high harmonics has recently emerged as a powerful tool for investigating ultrafast quasiparticle dynamics in correlated-electron materials. However, the full potential of this approach has not yet been achieved because, to date, high harmonics generated by 800 nm wavelength Ti:Sapphire lasers required a trade-off between photon flux, energy and time resolution. Photoemission spectroscopy requires a quasi-monochromatic output, but dispersive optical elements that select a single harmonic can significantly reduce the photon flux and time resolution. Here we show that 400 nm driven high harmonic extreme-ultraviolet trARPES is superior to using 800 nm laser drivers since it eliminates the need for any spectral selection, thereby increasing photon flux and energy resolution to <150 meV while preserving excellent time resolution of about 30 fs

  13. Formation and metastable decomposition of unprotonated ammonia cluster ions upon femtosecond ionization

    International Nuclear Information System (INIS)

    Buzza, S.A.; Wei, S.; Purnell, J.; Castleman, A.W. Jr.

    1995-01-01

    The formation and metastable dissociation mechanism of unprotonated ammonia cluster ions, (NH 3 ) + n , produced by multiphoton ionization (MPI) at 624 nm and a nominal pulse width of 350 fs, are investigated through a reflectron time-of-flight (TOF) mass spectrometric technique. Detection of the unprotonated ions after femtosecond and nanosecond multiphoton ionization under various intensity conditions is explained. The role of the energy of the ionizing photons, and the observation of these ions after femtosecond MPI is examined. The formation of the unprotonated series is found to be a function of intensity in the case of ionization on the nanosecond time scale, but not so for the femtosecond time domain. The results can be explained in terms of ionization mechanisms and ionizing pulse durations. The findings of the present study suggest that the unprotonated ions are trapped behind the barrier to intracluster proton transfer and/or concomitant NH 2 loss. The studies of metastable decomposition also reveal that the unprotonated ammonia cluster ions dissociate in the field-free region of the TOF by losing an NH 2 radical rather than via the evaporative loss of NH 3 as occurs for protonated clusters. Additionally, isotopic investigations of the unimolecular decay reveal a strong dependence on the conditions of cluster formation. The cluster formation condition dependence of the unimolecular decay is further investigated by altering formation temperatures and observing the consequences reflected by changes in the spontaneous metastable decay rate constant. This is a unique example of a cluster system whose metastable dissociation does not obey an evaporative ensemble model

  14. Al nanogrid electrode for ultraviolet detectors.

    Science.gov (United States)

    Ding, G; Deng, J; Zhou, L; Gan, Q; Hwang, J C M; Dierolf, V; Bartoli, F J; Mazuir, C; Schoenfeld, W V

    2011-09-15

    Optical properties of Al nanogrids of different pitches and gaps were investigated both theoretically and experimentally. Three-dimensional finite-difference time-domain simulation predicted that surface plasmons at the air/Al interface would enhance ultraviolet transmission through the subwavelength gaps of the nanogrid, making it an effective electrode on GaN-based photodetectors to compensate for the lack of transparent electrode and high p-type doping. The predicted transmission enhancement was verified by confocal scanning optical microscopy performed at 365 nm. The quality of the nanogrids fabricated by electron-beam lithography was verified by near-field scanning optical microscopy and scanning electron microscopy. Based on the results, the pitch and gap of the nanogrids can be optimized for the best trade-off between electrical conductivity and optical transmission at different wavelengths. Based on different cutoff wavelengths, the nanogrids can also double as a filter to render photodetectors solar-blind.

  15. Systematic investigation of resonance-induced single-harmonic enhancement in the extreme-ultraviolet range

    International Nuclear Information System (INIS)

    Ganeev, R. A.; Bom, L. B. Elouga; Kieffer, J.-C.; Ozaki, T.

    2007-01-01

    We demonstrate the intensity enhancement of single harmonics in high-order harmonic generation from laser plasma. We identified several targets (In, Sn, Sb, Cr, and Mn) that demonstrate resonance-induced enhancement of single harmonic, that are spectrally close to ionic transitions with strong oscillator strengths. We optimized and obtained enhancements of the 13th, 17th, 21st, 29th, and 33rd harmonics from the above targets, by varying the chirp of the 800 nm wavelength femtosecond laser. We also observe harmonic enhancement by using frequency-doubled pump laser (400 nm wavelength). For Mn plasma pumped by the 400 nm wavelength laser, the maximum order of the enhanced harmonic observed was the 17th order (λ=23.5 nm), which corresponds to the highest photon energy (52.9 eV) reported for an enhanced single harmonic

  16. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Thorsten

    2017-05-15

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  17. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    International Nuclear Information System (INIS)

    Lamb, Thorsten

    2017-05-01

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  18. Pollen DNA repair after treatment with the mutagens 4-nitroquinoline-1-oxide, ultraviolet and near-ultraviolet irradiation, and boron dependence of repair

    International Nuclear Information System (INIS)

    Jackson, J.F.; Linskens, H.F.; Katholieke Universiteit Nijmegen

    1979-01-01

    Irradiation of dry, mature pollen from Petuna hybrida with near-ultraviolet light from an erythemal-sunlamp gave rise to a repair-like, unscheduled DNA synthesis during the early stages of in vitro germination. Like that brought about by far-ultraviolet light from a germicidal lamp, this DNA synthesis is enhanced by hydroxyurea added to the germination medium, and reduced by photoreactivating light given after ultraviolet irradiation and before germination begins. It is concluded that pollen, often receiving considerable exposure to sunlight, has, in addition to the protection afforded by the ultraviolet filtering effects of yellow pigments, also the capacity to repair ultraviolet produced changes in DNA, by both photoreactivation and dark repair processes. (orig./AJ) [de

  19. Femtosecond laser induced crystallization and permanent relief grating structures in amorphous inorganic (In2O3+1 wt % TiO2) films

    International Nuclear Information System (INIS)

    Katayama, Shigeru; Tsutsumi, Naoto; Nakamura, Toshitaka; Horiike, Mika; Hirao, Kazuyuki

    2002-01-01

    This letter presents an investigation of crystalline relief grating structures induced by irradiation of near-infrared femtosecond laser pulses on an amorphous inorganic (In 2 O 3 +1 wt % TiO 2 ) film. The shapes of crystallized relief structures were sensitive to the scanning rate and the focused point height of irradiation, and the optimized irradiation condition gave cone-shaped cross section structures. Selective wet etching on unirradiated amorphous regions using a 3% hydrochloric acid solution could make sharper relief grating structures of crystalline regions. Diffraction efficiency of the relief grating structures with Au coating was measured, and it was confirmed that first-order diffraction, efficiencies were approximately 40% and 20% for etched and nonetched samples, respectively

  20. [Hybrid (femtosecond laser-assisted) phaco surgery and the state of the macula].

    Science.gov (United States)

    Avetisov, K S; Bol'shunov, A V; Avetisov, S E; Yusef, Y N; Ivanov, M N; Sobol, E N; Sakalova, E D

    The review covers different aspects of the impact of femtosecond laser-assisted cataract surgery on the state of the macular zone of the retina. Literature search has revealed inconsistency of the published data and indicated the need for a more detailed study of this problem.

  1. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    Science.gov (United States)

    Tandon, S. N.; Subramaniam, Annapurni; Girish, V.; Postma, J.; Sankarasubramanian, K.; Sriram, S.; Stalin, C. S.; Mondal, C.; Sahu, S.; Joseph, P.; Hutchings, J.; Ghosh, S. K.; Barve, I. V.; George, K.; Kamath, P. U.; Kathiravan, S.; Kumar, A.; Lancelot, J. P.; Leahy, D.; Mahesh, P. K.; Mohan, R.; Nagabhushana, S.; Pati, A. K.; Kameswara Rao, N.; Sreedhar, Y. H.; Sreekumar, P.

    2017-09-01

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300-1800 Å), and the other for the near-ultraviolet (NUV) channel (2000-3000 Å) and the visible (VIS) channel (3200-5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  2. Laser assisted bioprinting using a femtosecond laser with and without a gold transductive layer: a parametric study

    Science.gov (United States)

    Desrus, H.; Chassagne, B.; Catros, S.; Artiges, C.; Devillard, R.; Petit, S.; Deloison, F.; Fricain, J. C.; Guillemot, F.; Kling, R.

    2016-03-01

    Experimental results of femtosecond Laser Assisted Bioprinting (LAB) are reported on. Two set-up, used to print different model bioinks and keratinocytes cells line HaCaT, were studied: first one was using a femtosecond laser with low pulse energy and an absorbing gold layer, whereas the second one used high pulse energy enabling the removal of the absorbing layer. Printed drop diameter and resulting height of the bioink jet are then quantified as a function of the LAB parameters such as laser energy, focus spot location or numerical aperture.

  3. Formation of quasi-periodic nano- and microstructures on silicon surface under IR and UV femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Golosov, E V; Kolobov, Yu R; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Novoselov, Yurii N; Seleznev, L V; Sinitsyn, D V

    2011-01-01

    Quasi-periodic nano- and microstructures have been formed on silicon surface using IR ( λ ≈ 744 nm) and UV ( λ ≈ 248 nm) femtosecond laser pulses. The influence of the incident energy density and the number of pulses on the structured surface topology has been investigated. The silicon nanostructurisation thresholds have been determined for the above-mentioned wavelengths. Modulation of the surface relief at the doubled spatial frequency is revealed and explained qualitatively. The periods of the nanostructures formed on the silicon surface under IR and UV femtosecond laser pulses are comparatively analysed and discussed.

  4. High-efficiency diode-pumped femtosecond Yb:YAG ceramic laser

    DEFF Research Database (Denmark)

    Zhou, Binbin; Wei, Z.Y.; Zou, Y.W.

    2010-01-01

    A highly efficient diode-end-pumped femtosecond Yb:yttrium aluminum garnet (YAG) ceramic laser was demonstrated. Pumped by a 968 nm fiber-coupled diode laser, 1.9 W mode-locked output power at a repetition rate of 64.27 MHz was obtained with 3.5 W absorbed pump power, corresponding to a slope...... efficiency of 76%. Our measurement showed that the pulse duration was 418 fs with the central wavelength of 1048 nm....

  5. A passion for precision - from the ultrafast to the ultraslow

    International Nuclear Information System (INIS)

    Haensch, T.W.

    2005-01-01

    Full text: Femtosecond laser optical frequency comb synthesizers have become the established tool for measuring the frequency of light with extreme precision. By permitting phase-coherent comparisons of optical and microwave frequencies, they can serve as the clockwork for ultraprecise optical atomic clocks. Applications to laser spectroscopy of atomic hydrogen permit stringent tests of basic laws of quantum physics. Such experiments can yield accurate values of fundamental constants, and they may reveal slow changes of fundamental constants with the evolution of the universe. Laser frequency comb techniques can also control the light phase of femtosecond laser pulses, thus advancing the frontier of ultrafast science from the femtosecond to the attosecond regime. High harmonic generation with intense femtosecond pulses may extend frequency comb techniques to the extreme ultraviolet and soft x-ray regime, conquering new territory for precision laser spectroscopy and fundamental measurements. (author)

  6. ULTRAVIOLET TECHNOLOGY FOR FOOD PRESERVATION

    OpenAIRE

    Guedes, AMM; Novello, D; Mendes, GMD; Cristianini, M

    2009-01-01

    ULTRAVIOLET TECHNOLOGY FOR FOOD PRESERVATION This literature review article had as objective to gather information about ultraviolet (UV) technology utilization on the food industry, its effects and potential application. Aspects as the origin, concept and applications of the technology on the equipment industry and running mechanisms were approached. The application of UV radiation on food decontamination is still little used due its low penetration, but it is known that it can be easily app...

  7. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The cal......We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses....... The calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...

  8. Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water

    International Nuclear Information System (INIS)

    Maximova, Ksenia; Aristov, Andrei; Sentis, Marc; Kabashin, Andrei V

    2015-01-01

    We report a size-controllable synthesis of stable aqueous solutions of ultrapure low-size-dispersed Au nanoparticles by methods of femtosecond laser fragmentation from preliminary formed colloids. Such approach makes possible the tuning of mean nanoparticle size between a few nm and several tens of nm under the size dispersion lower than 70% by varying the fluence of pumping radiation during the fragmentation procedure. The efficient size control is explained by 3D geometry of laser fragmentation by femtosecond laser-induced white light super-continuum and plasma-related phenomena. Despite the absence of any protective ligands, the nanoparticle solutions demonstrate exceptional stability due to electric repulsion effect associated with strong negative charging of formed nanoparticles. Stable aqueous solutions of bare gold nanoparticles present a unique object with a variety of potential applications in catalysis, surface-enhanced Raman spectroscopy, photovoltaics, biosensing and biomedicine. (paper)

  9. X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses

    Science.gov (United States)

    Alkhimova, M. A.; Faenov, A. Ya; Pikuz, T. A.; Skobelev, I. Yu; Pikuz, S. A.; Nishiuchi, M.; Sakaki, H.; Pirozhkov, A. S.; Sagisaka, S.; Dover, N. P.; Kondo, Ko; Ogura, K.; Fukuda, Y.; Kiriyama, H.; Esirkepov, T.; Bulanov, S. V.; Andreev, A.; Kando, M.; Zhidkov, A.; Nishitani, K.; Miyahara, T.; Watanabe, Y.; Kodama, R.; Kondo, K.

    2018-01-01

    We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ˜ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7-2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.2×1021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.

  10. Wave-length-modulated femtosecond stimulated raman spectroscopy-approach towards automatic data processing

    NARCIS (Netherlands)

    Kloz, M.; van Grondelle, R.; Kennis, J.T.M.

    2011-01-01

    A new wavelength modulator based on a custom-made chopper blade and a slit placed in the Fourier plane of a pulse shaper was used to detect explicitly the first derivative of the time-resolved femtosecond stimulated Raman spectroscopy (FSRS) signals. This approach resulted in an unprecedented

  11. Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber

    Science.gov (United States)

    Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.

    2017-03-01

    Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.

  12. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Md. Shamim, E-mail: shamim@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Electronics and Communication Engineering Discipline, School of Science, Engineering and Technology, Khulna University, Khulna-9208 (Bangladesh); Dewanda, Fadia, E-mail: fdewanda@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Man Seop, E-mail: leems1502@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sekita, Hitoshi, E-mail: sekita@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan); Sumiyoshi, Tetsumi, E-mail: sumiy@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. Black-Right-Pointing-Pointer Periodic microstructures are printed on the glass surface for superhydrophobicity. Black-Right-Pointing-Pointer The contact angle of water droplet on the microstructured glass surface is 155 Degree-Sign . Black-Right-Pointing-Pointer The transparency of superhydrophobic glass is higher than 77% in visible spectrum. Black-Right-Pointing-Pointer We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152 Degree-Sign to 155 Degree-Sign . The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  13. Radiation chemistry and advanced polymer materials studied by picosecond pulse radiolysis combined with femtosecond laser

    International Nuclear Information System (INIS)

    Tagawa, S.; Yoshida, Y.; Miki, M.; Yamamoto, T.; Ushida, K.; Izumi, Y.

    1996-01-01

    We have synchronized a single picosecond MeV electron pulse from L-band linear accelerator (linac) of The Institute of Scientific and Industrial Research of Osaka University to a single femtosecond laser pulse of Ti:Sapphire laser. It is an essential technique for the future femtosecond pulse radiolysis and is also applied to many kinds of combined application of more than two different beams from accelerators in very short time range. Radiation chemistry and new type of polymers have been studied by LL (laser-linac) twin picosecond pulse radiolysis. Especially the early events in radiation chemistry such as geminate recombination processes of electrons and radical cations are have been studied in both liquids and solids. (author)

  14. Femtosecond dynamics of a spaser and unidirectional emission from a perfectly spherical nanoparticle

    KAUST Repository

    Gongora, J. S. Totero

    2015-01-01

    We investigate the femtosecond dynamics of the spaser emission by combining ab-initio simulations and thermodynamic analysis. Interestingly, the emission is characterized by rotational evolution, opening to the generation of unidirectional emission from perfectly spherical nanoparticles. © OSA 2015.

  15. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, S. N. [Inter-University Center for Astronomy and Astrophysics, Pune (India); Subramaniam, Annapurni; Sankarasubramanian, K.; Sriram, S.; Stalin, C. S.; Mondal, C.; Sahu, S.; Joseph, P.; Barve, I. V.; George, K.; Kamath, P. U.; Kathiravan, S.; Kumar, A.; Lancelot, J. P.; Mahesh, P. K. [Indian Institute of Astrophysics, Koramangala II Block, Bangalore-560034 (India); Girish, V. [ISRO Satellite Centre, HAL Airport Road, Bangalore 560017 (India); Postma, J.; Leahy, D. [University of Calgary, 2500 University Drive NW, Calgary, Alberta Canada (Canada); Hutchings, J. [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Ghosh, S. K., E-mail: purni@iiap.res.in [National Centre for Radio Astrophysics, Pune (India); and others

    2017-09-01

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300–1800 Å), and the other for the near-ultraviolet (NUV) channel (2000–3000 Å) and the visible (VIS) channel (3200–5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  16. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available This presentation is about the photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses. It outlines the background on embryonic stem cells (ES) and phototransfection....

  17. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  18. Ultraviolet radiation therapy and UVR dose models

    International Nuclear Information System (INIS)

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed

  19. Direct writing of sub-wavelength ripples on silicon using femtosecond laser at high repetition rate

    International Nuclear Information System (INIS)

    Xie, Changxin; Li, Xiaohong; Liu, Kaijun; Zhu, Min; Qiu, Rong; Zhou, Qiang

    2016-01-01

    Graphical abstract: - Highlights: • The NSRs and DSRs are obtained on silicon surface. • With increasing direct writing speed, the NSRs suddenly changes and becomes the DSRs. • We develop a Sipe–Drude interference theory by considering the thermal excitation. - Abstract: The near sub-wavelength and deep sub-wavelength ripples on monocrystalline silicon were formed in air by using linearly polarized and high repetition rate femtosecond laser pulses (f = 76 MHz, λ = 800 nm, τ = 50 fs). The effects of laser pulse energy, direct writing speed and laser polarization on silicon surface morphology are studied. When the laser pulse energy is 2 nJ/pulse and the direct writing speed varies from 10 to 25 mm/s, the near sub-wavelength ripples (NSRs) with orientation perpendicular to the laser polarization are generated. While the direct writing speed reaches 30 mm/s, the direction of the obtained deep sub-wavelength ripples (DSRs) suddenly changes and becomes parallel to the laser polarization, rarely reported so far for femtosecond laser irradiation of silicon. Meanwhile, we extend the Sipe–Drude interference theory by considering the thermal excitation, and numerically calculate the efficacy factor for silicon irradiated by femtosecond laser pulses. The revised Sipe–Drude interference theoretical results show good agreement with the periods and orientations of sub-wavelength ripples.

  20. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

    Science.gov (United States)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2014-10-01

    Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

  1. Femtosecond Near Edge X-ray Absorption Measurement of the VO2 Phase Transition

    International Nuclear Information System (INIS)

    Cavalleri, A.; Chong, H.H.W.; Fourmaux, S.; Glover, T.E.; Heimann, P.A; Kieffer, J.C.; Padmore, H.A.; Schoenlein, R.W.

    2004-01-01

    The authors measure the insulator-to-metal transition in VO 2 using femtosecond Near-Edge X-ray Absorption. Sliced pulses of synchrotron radiation are used to detect the photo-induced dynamics at the 516-eV Vanadium L 3 edge

  2. Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching

    NARCIS (Netherlands)

    Lenssen, B.L.K.; Bellouard, Y.

    2012-01-01

    Femtosecond laser manufacturing combined with chemical etching has recently emerged as a flexible platform for fabricating three-dimensional devices and integrated optical elements in glass substrates. Here, we demonstrate an optically transparent micro-actuator fabricated out of a single piece of

  3. Some aspects of vacuum ultraviolet radiation physics

    CERN Document Server

    Damany, Nicole; Vodar, Boris

    2013-01-01

    Some Aspects of Vacuum Ultraviolet Radiation Physics presents some data on the state of research in vacuum ultraviolet radiation in association with areas of physics. Organized into four parts, this book begins by elucidating the optical properties of solids in the vacuum ultraviolet region (v.u.v.), particularly the specific methods of determination of optical constants in v.u.v., the properties of metals, and those of ionic insulators. Part II deals with molecular spectroscopy, with emphasis on the spectra of diatomic and simple polyatomic molecules, paraffins, and condensed phases. Part III

  4. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography.

    Science.gov (United States)

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-12-01

    Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.

  5. Photofragmentation of colloidal solutions of gold nanoparticles under femtosecond laser pulses in IR and visible ranges

    International Nuclear Information System (INIS)

    Danilov, P A; Zayarnyi, D A; Ionin, A A; Kudryashov, S I; Makarov, S V; Rudenko, A A; Saraeva, I N; Yurovskikh, V I; Lednev, V N; Pershin, S M

    2015-01-01

    The specific features of photofragmentation of sols of gold nanoparticles under focused femtosecond laser pulses in IR (1030 nm) and visible (515 nm) ranges is experimentally investigated. A high photofragmentation efficiency of nanoparticles in the waist of a pulsed laser beam in the visible range (at moderate radiation scattering) is demonstrated; this efficiency is related to the excitation of plasmon resonance in nanoparticles on the blue shoulder of its spectrum, in contrast to the regime of very weak photofragmentation in an IR-laser field of comparable intensity. Possible mechanisms of femtosecond laser photofragmentation of gold nanoparticles are discussed. (extreme light fields and their applications)

  6. Coherent Femtosecond Spectroscopy and Nonlinear Optical Imaging on the Nanoscale

    Science.gov (United States)

    Kravtsov, Vasily

    Optical properties of many materials and macroscopic systems are defined by ultrafast dynamics of electronic, vibrational, and spin excitations localized on the nanoscale. Harnessing these excitations for material engineering, optical computing, and control of chemical reactions has been a long-standing goal in science and technology. However, it is challenging due to the lack of spectroscopic techniques that can resolve processes simultaneously on the nanometer spatial and femtosecond temporal scales. This thesis describes the fundamental principles, implementation, and experimental demonstration of a novel type of ultrafast microscopy based on the concept of adiabatic plasmonic nanofocusing. Simultaneous spatio-temporal resolution on a nanometer-femtosecond scale is achieved by using a near-field nonlinear optical response induced by ultrafast surface plasmon polaritons nanofocused on a metal tip. First, we study the surface plasmon response in metallic structures and evaluate its prospects and limitations for ultrafast near-field microscopy. Through plasmon emission-based spectroscopy, we investigate dephasing times and interplay between radiative and non-radiative decay rates of localized plasmons and their modification due to coupling. We identify a new regime of quantum plasmonic coupling, which limits the achievable spatial resolution to several angstroms but at the same time provides a potential channel for generating ultrafast electron currents at optical frequencies. Next, we study propagation of femtosecond wavepackets of surface plasmon polaritons on a metal tip. In time-domain interferometric measurements we detect group delays that correspond to slowing of the plasmon polaritons down to 20% of the speed of light at the tip apex. This provides direct experimental verification of the plasmonic nanofocusing mechanism and suggests enhanced nonlinear optical interactions at the tip apex. We then measure a plasmon-generated third-order nonlinear optical

  7. Femtosecond fluorescence upconversion spectroscopy of vapor-deposited tris(8-hydroxyquinoline) aluminum films.

    NARCIS (Netherlands)

    Humbs, W.; Zhang, H.; Glasbeek, M.

    2000-01-01

    Abstract Vapor-deposited Alq3 is used as the green emitting layer in a class of organic light-emitting diodes. In this paper, the time dependence of the fluorescence from thin Alq3 films has been studied by means of the femtosecond fluorescence upconversion technique. From the temporally resolved

  8. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yoshizawa M.

    2013-03-01

    Full Text Available Ultrafast structural evolution in photoactive yellow protein (PYP is studied by femtosecond stimulated Raman spectroscopy. A comparison between wild-type PYP and E46Q mutant reveals that the hydrogen-bonding network surrounding the chromophore of PYP is immediately rearranged in the electronic excited state.

  9. Ultraviolet Imaging Telescope images of the reflection nebula NGC 7023 - Derivation of ultraviolet scattering properties of dust grains

    Science.gov (United States)

    Witt, Adolf N.; Petersohn, Jens K.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    The Ultraviolet Imaging Telescope as part of the Astro-1 mission, was used to obtain high-resolution surface brightness distribution data in six ultraviolet wavelength bands for the bright reflection nebula NGC 7023. From the quantitative comparison of the measured surface brightness gradients ratios of nebular to stellar flux, and detail radial surface brightness profiles with corresponding data from the visible, two major conclusions results: (1) the scattering in the near- and far-ultraviolet in this nebula is more strongly forward-directed than in the visible; (2) the dust albedo in the ultraviolet for wavelengths not less than 140 nm is identical to that in the visible, with the exception of the 220 nm bump in the extinction curve. In the wavelengths region of the bump, the albedo is reduced by 25 to 30 percent in comparison with wavelengths regions both shorter and longer. This lower albedo is expected, if the bump is a pure absorption feature.

  10. Optotransfection of mammalian cells based on a femtosecond laser and facilitated by gold nanorods

    International Nuclear Information System (INIS)

    Ma, Zili; Chan, Kam T; Wang, Jianfang; Kong, Siu K; He, Sailing

    2013-01-01

    The optotransfection of cells based on a femtosecond laser has attracted much attention owing to its high transfection efficiency and high cell viability since its first report by Konig. However, the low throughput in the original method also limits its use in practical applications. Gold nanoparticles (GNPs) have been reported to function as local receivers of light to relax the requirement of accurate optical alignment for the optotransfection of single cells. However, the visible light used in such work is not suitable for penetrating deep tissues in certain applications. In this study, we employed gold nanorods (GNRs) and an infrared femtosecond laser at the wavelength of 980 nm to realize optotransfection of cells with GFP. It was found that the surface coating of GNRs exhibited a significant effect on the process of cell permeabilization. (paper)

  11. Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, Venkatram; Ji Wei [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Goh, Bee Min; Loh, Kian Ping; Xu Qinghua, E-mail: chmxqh@nus.edu.sg, E-mail: phyjiwei@nus.edu.sg [Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore)

    2010-10-15

    A water soluble conjugated thiophene polymer, sodium salt of poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (TPP), and graphene oxide (GO) composite film (GO-TPP) device was prepared. Transient photoconductivity measurements were carried out on the GO-TPP composite film using 150 ns laser pulses of 527 nm wavelength. Highly efficient photocurrent generation was observed from the GO-TPP film. The relationships of the film photoconductivity, photocurrent decay time and electron decay times with the incident light intensity were investigated. The photoconductive gain of the film was determined to be greater than 40% and to be independent of the light intensity. Furthermore, the femtosecond nonlinear optical properties of the GO-TPP film were measured using 800 nm femtosecond laser pulses and the composite film exhibited high nonlinear absorption and nonlinear refraction coefficients.

  12. Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite

    International Nuclear Information System (INIS)

    Nalla, Venkatram; Ji Wei; Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Goh, Bee Min; Loh, Kian Ping; Xu Qinghua

    2010-01-01

    A water soluble conjugated thiophene polymer, sodium salt of poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (TPP), and graphene oxide (GO) composite film (GO-TPP) device was prepared. Transient photoconductivity measurements were carried out on the GO-TPP composite film using 150 ns laser pulses of 527 nm wavelength. Highly efficient photocurrent generation was observed from the GO-TPP film. The relationships of the film photoconductivity, photocurrent decay time and electron decay times with the incident light intensity were investigated. The photoconductive gain of the film was determined to be greater than 40% and to be independent of the light intensity. Furthermore, the femtosecond nonlinear optical properties of the GO-TPP film were measured using 800 nm femtosecond laser pulses and the composite film exhibited high nonlinear absorption and nonlinear refraction coefficients.

  13. Femtosecond single electron bunch generation by rotating longitudinal bunch phase space in magnetic field

    International Nuclear Information System (INIS)

    Yang, J.; Kondoh, T.; Kan, K.; Kozawa, T.; Yoshida, Y.; Tagawa, S.

    2006-01-01

    A femtosecond (fs) electron bunching was observed in a photoinjector with a magnetic compressor by rotating the bunch in longitudinal phase space. The bunch length was obtained by measuring Cherenkov radiation of the electron beam with a femtosecond streak camera technique. A single electron bunch with rms bunch length of 98 fs was observed for a 32 MeV electron beam at a charge of 0.17 nC. The relative energy spread and the normalized transverse emittance of the electron beam were 0.2% and 3.8 mm-mrad, respectively. The effect of space charge on the bunch compression was investigated experimentally for charges from 0.17 to 1.25 nC. The dependences of the relative energy spread and the normalized beam transverse emittance on the bunch charge were measured

  14. Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer

    Directory of Open Access Journals (Sweden)

    M. Shevelev

    2017-10-01

    Full Text Available The interest in producing ultrashort electron bunches has risen sharply among scientists working on the design of high-gradient wakefield accelerators. One attractive approach generating electron bunches is to illuminate a photocathode with a train of femtosecond laser pulses. In this paper we describe the design and testing of a laser system for an rf gun based on a commercial titanium-sapphire laser technology. The technology allows the production of four femtosecond laser pulses with a continuously variable pulse delay. We also use the designed system to demonstrate the experimental generation of an electron microbunch train obtained by illuminating a cesium-telluride semiconductor photocathode. We use conventional diagnostics to characterize the electron microbunches produced and confirm that it may be possible to control the main parameter of an electron microbunch train.

  15. Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer

    Science.gov (United States)

    Shevelev, M.; Aryshev, A.; Terunuma, N.; Urakawa, J.

    2017-10-01

    The interest in producing ultrashort electron bunches has risen sharply among scientists working on the design of high-gradient wakefield accelerators. One attractive approach generating electron bunches is to illuminate a photocathode with a train of femtosecond laser pulses. In this paper we describe the design and testing of a laser system for an rf gun based on a commercial titanium-sapphire laser technology. The technology allows the production of four femtosecond laser pulses with a continuously variable pulse delay. We also use the designed system to demonstrate the experimental generation of an electron microbunch train obtained by illuminating a cesium-telluride semiconductor photocathode. We use conventional diagnostics to characterize the electron microbunches produced and confirm that it may be possible to control the main parameter of an electron microbunch train.

  16. Penetrating and Intrastromal Corneal Arcuate Incisions in Rabbit and Human Cadaver Eyes: Manual Diamond Blade and Femtosecond Laser-Created Incisions.

    Science.gov (United States)

    Gray, Brad; Binder, Perry S; Huang, Ling C; Hill, Jim; Salvador-Silva, Mercedes; Gwon, Arlene

    2016-07-01

    To compare morphologic differences between freehand diamond or femtosecond laser-assisted penetrating and intrastromal arcuate incisions. Freehand diamond blade, corneal arcuate incisions (180° apart, 60° arc lengths) and 150 kHz femtosecond laser (80% scheimpflug pachymetry depth corneal thickness) arcuate incisions were performed in rabbits. Intrastromal arcuate incisions (100 μm above Descemet's membrane, 100 μm below epithelium) were performed in rabbit corneas (energy 1.2 μJ, spot line separation 3 × 3 μm, 90° side cut angle). Eyes were examined by slit lamp and light microscopy up to 47 days post-procedure. Freehand diamond blade penetrating incisions, and femtosecond laser penetrating and intrastromal arcuate incisions (energy 1.8 μJ, spot line separation 2 × 2 μm) were performed in cadaver eyes. Optical coherence tomography was performed immediately after surgery and the corneas were fixed for light scanning and transmission electron microscopy. The rabbit model showed anterior stromal inflammation with epithelial hyperplasia in penetrating blade and laser penetrating wounds. The laser intrastromal and penetrating incisions showed localized constriction of the stromal layers of the cornea near the wound. In cadaver eyes, penetrating wound morphology was similar between blade and laser whereas intrastromal wounds did not affect the cornea above or below incisions. Penetrating femtosecond laser arcuate incisions have more predictable and controlled outcomes shown by less post-operative scarring than incisions performed with a diamond blade. Intrastromal incisions do not affect uncut corneal layers as demonstrated by histopathology. The femtosecond laser has significant advantages in its ability to make intrastromal incisions which are not achievable by traditional freehand or mechanical diamond blades.

  17. Analysis of low-energy and high-frequency femtosecond laser for the construction of deep anterior donor corneal lamellae

    Directory of Open Access Journals (Sweden)

    Gustavo Victor

    2014-04-01

    Full Text Available Purpose: To evaluate the efficacy and reliability of a low-energy femtosecond laser with a high repetition rate for construction of deep anterior donor corneal lamellae. Methods: This was a prospective laboratory investigation. Twenty-five human corneal buttons were femtosecond laser cut to create thick anterior lamellae (diameter, 10mm; thickness, 500µm. The laser cuts were made using an LDV® femtosecond laser in a Ziemer® anterior chamber. To obtain a better edge, the lamellae were trephined with an 8mm trephine (Katena®. The central corneal thickness and the anterior lamellae were measured using a Mitutoyo® thickness gauge with an accuracy of 0.001mm. Results: The central thickness of the 25 corneas ranged from 500 to 705µm (mean, 584 ± 51µm. The thickness of the anterior lamellae ranged from 420 to 480µm (mean, 455 ± 12.7µm. The anterior lamellae diameters were 7.90 ± 0.1mm, and all laser cuts were round. The lamellar interfaces appeared regular by surgical microscopy. There were no cases of inter-lamellar adhesion. Conclusion: The LDV® femtosecond laser appears to be a safe and reliable instrument for cutting deep anterior lamellae from donor corneoscleral buttons. Minimal variation in donor lamellar depth with the laser will be useful for creating donor corneal tissue for deeper anterior lamellar keratoplasty or endothelial keratoplasty surgery or both from a single donor cornea.

  18. High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4 laser

    Science.gov (United States)

    Liu, Shan-De; Dong, Lu-Lu; Zheng, Li-He; Berkowski, Marek; Su, Liang-Bi; Ren, Ting-Qi; Peng, Yan-Dong; Hou, Jia; Zhang, Bai-Tao; He, Jing-Liang

    2016-07-01

    A high optical quality Nd:SrLaAlO4 (Nd:SLA) crystal was grown using the Czochralski method and showed broad fluorescence spectrum with a full width at half maximum value of 34 nm, which is beneficial for generating femtosecond laser pulses. A stable diode-pumped passively mode-locked femtosecond Nd:SLA laser with 458 fs pulse duration was achieved for the first time at a central wavelength of 1077.9 nm. The average output power of the continuous-wave mode-locked laser was 520 mW and the repetition rate was 78.5 MHz.

  19. Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals - State of the Art

    Science.gov (United States)

    Bharatish, A.; Soundarapandian, S.

    2018-04-01

    Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.

  20. Outdoor ultraviolet exposure of children and adolescents

    International Nuclear Information System (INIS)

    Diffey, B.L.; Gibson, C.J.

    1996-01-01

    The weekday and weekend outdoor ultraviolet exposure of young people from primary and secondary schools in three geographically distinct regions of England was determined over a 3-month period in summer. Ultraviolet exposure was measured using personal film badges worn by each young person and time spent outdoors, in hourly intervals, assessed using exposure records. In each area a class of 9-10 year-old children from a primary school and a class of 14-15-year-old adolescents from a secondary school took part, giving a total of 180 subjects. We found that primary school children received higher outdoor ultraviolet exposure than young people in secondary schools, and geographical differences in exposure could not be accounted for solely by differences in ambient ultraviolet. There was little difference between the exposure of males and females. Children and adolescents did not behave as homogeneous groups with regard to exposure. (Author)

  1. [The pros and cons of femtosecond laser-assisted cataract surgery].

    Science.gov (United States)

    Li, Z H; Ye, Z

    2016-02-01

    Femtosecond laser-assisted cataract surgery (FLACS) is known as an innovative new technology. Compared with traditional surgical approach, FLACS is more accurate, more predictable and less energy used. However, in the current stage of development, there still may be intraoperative and postoperative complications, or even serious complications. FLACS has obvious advantages in certain surgical steps, but there are still clear disadvantages, so it still cannot completely replace the traditional phacoemulsification surgery.

  2. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Li, Xian-Feng [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng-Yun [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Tie, Shao-Long [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-28

    Highlights: • Titanium oxide nanowires with a feature width as narrow as ∼20 nm were induced on a titanium surface by using femtosecond laser pulses at 400 nm. • An evolution of the surface structure from a high spatial frequency laser-induced periodic structure parallel to the laser polarization to a low spatial frequency one perpendicular to the laser polarization was observed with increasing irradiation pulse number. • The formation of the titanium oxide nanowires was confirmed by the energy dispersive spectroscopy measurements and the evolution of the surface structure was successfully interpreted by using the efficacy factor theory. - Abstract: The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO{sub 2} parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO{sub 2} in this direction. Periodically aligned TiO{sub 2} nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  3. Biological applications of ultraviolet free-electron lasers

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated

  4. Self-referenced coherent diffraction x-ray movie of Ångstrom- and femtosecond-scale atomic motion

    International Nuclear Information System (INIS)

    Glownia, J. M.; Natan, A.; Cryan, J. P.; Hartsock, R.; Kozina, M.

    2016-01-01

    Time-resolved femtosecond x-ray diffraction patterns from laser-excited molecular iodine are used to create a movie of intramolecular motion with a temporal and spatial resolution of 30 fs and 0.3 Å. This high fidelity is due to interference between the nonstationary excitation and the stationary initial charge distribution. The initial state is used as the local oscillator for heterodyne amplification of the excited charge distribution to retrieve real-space movies of atomic motion on ångstrom and femtosecond scales. This x-ray interference has not been employed to image internal motion in molecules before. In conclusion, coherent vibrational motion and dispersion, dissociation, and rotational dephasing are all clearly visible in the data, thereby demonstrating the stunning sensitivity of heterodyne methods.

  5. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    Science.gov (United States)

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  6. Generation of Femtosecond Laser-Cut Decellularized Corneal Lenticule Using Hypotonic Trypsin-EDTA Solution for Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Man-Il Huh

    2018-01-01

    Full Text Available Purpose. To establish an optimized and standardized protocol for the development of optimal scaffold for bioengineering corneal substitutes, we used femtosecond laser to process human corneal tissue into stromal lenticules and studied to find the most efficient decellularization method among various reagents with different tonicities. Methods. The decellularization efficacy of several agents (0.1%, 0.25%, and 0.5% of Triton X-100, SDS, and trypsin-EDTA (TE, resp. with different tonicities was evaluated. Of all protocols, the decellularization methods, which efficiently removed nuclear materials examined as detected by immunofluorescent staining, were quantitatively tested for sample DNA and glycosaminoglycan (GAG contents, recellularization efficacy, and biocompatibilities. Results. 0.5% SDS in hypertonic and isotonic buffer, 0.25% TE in hypotonic buffer, and 0.5% TE in all tonicities completely decellularized the corneal lenticules. Of the protocols, decellularization with hypotonic 0.25 and 0.5% TE showed the lowest DNA contents, while the GAG content was the highest. Furthermore, the recellularization efficacy of the hypotonic TE method was better than that of the SDS-based method. Hypotonic TE-treated decellularized corneal lenticules (DCLs were sufficiently transparent and biocompatible. Conclusion. We generated an ideal protocol for DCLs using a novel method. Furthermore, it is possible to create a scaffold using a bioengineered corneal substitute.

  7. Ultrafast Holographic Image Recording by Single Shot Femtosecond Spectral Hole Burning

    National Research Council Canada - National Science Library

    Rebane, Aleksander

    2001-01-01

    .... This allowed us to record image holograms with 150-fs duration pulses without need to accumulate the SHB effect from many exposures. Results of this research show that it is possible to perform optical recording of data in frequency-domain on ultrafast time scale. These results can be used also as a new diagnostic tool for femtosecond dynamics in various ultrafast optical interactions.

  8. Ultraviolet Behavior of N = 8 Supergravity

    International Nuclear Information System (INIS)

    Dixon, Lance J.

    2010-01-01

    In these lectures the author describes the remarkable ultraviolet behavior of N = 8 supergravity, which through four loops is no worse than that of N = 4 super-Yang-Mills theory (a finite theory). I also explain the computational tools that allow multi-loop amplitudes to be evaluated in this theory - the KLT relations and the unitarity method - and sketch how ultraviolet divergences are extracted from the amplitudes.

  9. Ultraviolet extinction in M-supergiant circumstellar envelopes

    International Nuclear Information System (INIS)

    Buss, R.H. Jr.; Snow, T.P. Jr.

    1986-01-01

    Using International Ultraviolet (IUS) archival low-dispersion spectra, ultraviolet spectral extinctions were derived for the circumstellar envelopes of two M supergiants: HD 60414 and HD 213310. The observed stellar systems belong to a class of widely-separated spectroscopic binaries that are called VV Cephei stars. The total extinction was calculated by dividing the reddened fluxes with unreddened comparison fluxes of similar stars (g B2.5 for HD 213310 and a normalized s+B3 for HD 60414) from the reference atlas. After substracting the interstellar extinctions, which were estimated from the E(B-V) reddening of nearby stars, the resultant circumstellar extinctions were normalized at about 3.5 inverse microns. Not only is the 2175 A extinction bump absent in the circumstellar extinctions, but the far-ultraviolet extinction rise is also absent. The rather flat, ultraviolet extinction curves were interpreted as signatures of a population of noncarbonaceous, oxygen-rich grains with diameters larger than the longest observed wavelength

  10. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Science.gov (United States)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  11. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China)

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  12. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    International Nuclear Information System (INIS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S 2 to S 1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S 2 state to the vibrationally hot S 1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S 1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding

  13. Femtosecond self-reconfiguration of laser-induced plasma patterns in dielectrics

    Science.gov (United States)

    Déziel, Jean-Luc; Dubé, Louis J.; Messaddeq, Sandra H.; Messaddeq, Younès; Varin, Charles

    2018-05-01

    Laser-induced modification of transparent solids by intense femtosecond laser pulses allows fast integration of nanophotonic and nanofluidic devices with controlled optical properties. Experimental observations suggest that the local and dynamic nature of the interactions between light and the transient plasma plays an important role during fabrication. Current analytical models neglect these aspects and offer limited coverage of nanograting formation on dielectric surfaces. In this paper, we present a self-consistent dynamic treatment of the plasma buildup and its interaction with light within a three-dimensional electromagnetic framework. The main finding of this work is that local light-plasma interactions are responsible for the reorientation of laser-induced periodic plasma patterns with respect to the incident light polarization, when a certain energy density threshold is reached. Plasma reconfiguration occurs within a single laser pulse, on a femtosecond time scale. Moreover, we show that the reconfigured subwavelength plasma structures actually grow into the bulk of the sample, which agrees with the experimental observations of self-organized volume nanogratings. We find that mode coupling of the incident and transversely scattered light with the periodic plasma structures is sufficient to initiate the growth and self-organization of the pattern inside the medium with a characteristic half-wavelength periodicity.

  14. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-01-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca 2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging

  15. Ultraviolet fire detector

    Science.gov (United States)

    Turnage, J. E.; Linford, R. M. F.; Cornish, S. D.

    1976-01-01

    System is capable of detecting ultraviolet light emitted by match size flame at distance of 10 ft. System is not affected by high energy or particulate radiation and is therefore particularly suited for applications around nuclear plants and X-ray equipment.

  16. Topology optimization for optical microlithography with partially coherent illumination

    DEFF Research Database (Denmark)

    Zhou, Mingdong; Lazarov, Boyan Stefanov; Sigmund, Ole

    2017-01-01

    in microlithography/nanolithography. The key steps include (i) modeling the physical inputs of the fabrication process, including the ultraviolet light illumination source and the mask, as the design variables in optimization and (ii) applying physical filtering and heaviside projection for topology optimization......This article revisits a topology optimization design approach for micro-manufacturing and extends it to optical microlithography with partially coherent illumination. The solution is based on a combination of two technologies, the topology optimization and the proximity error correction....... Meanwhile, the performance of the device is optimized and robust with respect to process variations, such as dose/photo-resist variations and lens defocus. A compliant micro-gripper design example is considered to demonstrate the applicability of this approach....

  17. Prompt and delayed Coulomb explosion of doubly ionized hydrogen chloride molecules in intense femtosecond laser fields

    Science.gov (United States)

    Ma, Junyang; Li, Hui; Lin, Kang; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Li, Hanxiao; Sun, Fenghao; Qiang, Junjie; Lu, Peifen; Gong, Xiaochun; Zeng, Heping; Wu, Jian

    2018-06-01

    We experimentally investigate the dissociative double ionization of hydrogen chloride (HCl) molecules in intense femtosecond laser pulses. In addition to the prompt dissociation channels which occur on femtosecond timescales, long-lived hydrogen chloride dications which Coulomb-explode in flight towards the detector are clearly identified in the photoion-photoion coincidence spectrum. Different pathways leading to these prompt and delayed dissociation channels involving various bound and repulsive states of the HCl dication are discussed based on the observed kinetic energy release and momentum distributions. Our results indicate that the specific features of the HCl dication potential energy curves are responsible for the generation of the delayed fragmentation channels, which are expected to be general processes for the hydrogen halides.

  18. Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft

    Science.gov (United States)

    Hanser, F. A.; Sellers, B.; Briehl, D. C.

    1978-01-01

    An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.

  19. Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching

    International Nuclear Information System (INIS)

    Chen, Tao; Pan, An; Li, Cunxia; Si, Jinhai; Hou, Xun

    2015-01-01

    Highlights: • We studied morphologies of silicon grooves fabricated by laser irradiation and wet etching. • We found nano-ripple structures formed on the groove sidewall. • Formations of nano-ripples were due to the formation of standing wave and nanoplanes. • Remaining debris on the groove bottom was removed by KOH etching. - Abstract: Morphologies of high-aspect-ratio silicon grooves fabricated by using femtosecond laser irradiation and selective chemical etching of hydrofluoric acid (HF) were studied. Oxygen was deeply doped into silicon under femtosecond laser irradiation in air, and then the oxygen-doped regions were removed by HF etching to form high-aspect-ratio grooves. After HF etching, periodic nano-ripples which were induced in silicon by femtosecond laser were observed on the groove sidewalls. The ripple orientation was perpendicular or parallel to the laser propagation direction (z direction), which depended on the relative direction between the laser polarization direction and the scanning direction. The formation of nano-ripples with orientations perpendicular to z direction could be attributed to the standing wave generated by the interference of the incident light and the reflected light in z direction. The formation of nano-ripples with orientations parallel to z direction could be attributed to the formation of self-organized periodic nanoplanes (bulk nanogratings) induced by femtosecond laser inside silicon. Materials in the tail portion of laser-induced oxygen doping (LIOD) regions were difficult to be etched by HF solution due to low oxygen concentration. The specimen was etched further in KOH solution to remove remaining materials in LIOD regions and all-silicon grooves were fabricated

  20. Characterization and modulation of femtosecond laser pulse

    International Nuclear Information System (INIS)

    Dorrer, Christophe

    1999-01-01

    This work brings some solutions to the characterization and control of femtosecond laser pulses. Spectral interferometry has been extensively studied; whereas this is a rather old technique, it has found new specific applications to short pulses. Several important points concerning the experimental implementation of this technique are treated. Sources of errors have been tracked and simple solutions have been found to enhance its reliability. A recently demonstrated technique for the complete characterization of short pulses has been used to characterize short pulses from Chirped Pulse Amplification Systems. This transposition of shearing interferometry to the optical frequency domain, known as Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPlDER), is conceptually very interesting: for example, the inversion from the experimental data to the electric field to be characterized is completely algebraic. A reliable tool for the characterization and optimization of Chirped pulse amplification systems has been built on this principle. This is the first single-shot real-time characterization implementation of this technique. An improvement of the method has also allowed the first single-shot real-time characterization of a short pulse using a single mono-dimensional integrative detector and an algebraic inversion of the experimental data. The control of these pulses is also of prior interest. Through a collaboration with Thomson CSF-LCR, the demonstration of the use of an optically addressed light valve at the Fourier plane of a zero-dispersion line for spectral phase modulation has been made. This device allows a high-resolution control of the spectral phase of a short pulse. It is a well-adapted tool for the correction of the residual spectral phase, at the output of Chirped Pulse Amplification systems and the temporal synthesis of shaped pulses for specific experiments. (author) [fr