WorldWideScience

Sample records for optimized automated single-cell

  1. Automated Single Cell Data Decontamination Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, Kristin [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Pati, Amrita [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  2. Optimization of genetic analysis for single cell

    Directory of Open Access Journals (Sweden)

    hussein mouawia

    2012-12-01

    Full Text Available The molecular genetic analysis of microdissected cells by laser, a method for selecting a starting material of pure DNA or RNA uncontaminated. Our study focuses on technical pre-PCR (polymerase chain reaction for the amplification of DNA from a single cell (leukocyte isolated from human blood after laser microdissection and aims to optimize the yield of DNA extracted of this cell to be amplified without errors and provide reliable genetic analyzes. This study has allowed us to reduce the duration of cell lysis in order to perform the step of expanding genomic PEP (primer extension preamplification directly after lysis the same day and the quality of genomic amplification and eliminate purification step of the product PEP, step with a risk of contamination and risk of loss of genetic material related to manipulation. This approach has shown that the combination of at least 3 STR (short tandem repeat markers for genetic analysis of single cell improves the efficiency and accuracy of PCR and minimizes the loss of allele (allele drop out; ADO. This protocol can be applied to large scale and an effective means suitable for genetic testing for molecular diagnostic from isolated single cell (cancerous - fetal.

  3. RoboSCell: An automated single cell arraying and analysis instrument

    KAUST Repository

    Sakaki, Kelly

    2009-09-09

    Single cell research has the potential to revolutionize experimental methods in biomedical sciences and contribute to clinical practices. Recent studies suggest analysis of single cells reveals novel features of intracellular processes, cell-to-cell interactions and cell structure. The methods of single cell analysis require mechanical resolution and accuracy that is not possible using conventional techniques. Robotic instruments and novel microdevices can achieve higher throughput and repeatability; however, the development of such instrumentation is a formidable task. A void exists in the state-of-the-art for automated analysis of single cells. With the increase in interest in single cell analyses in stem cell and cancer research the ability to facilitate higher throughput and repeatable procedures is necessary. In this paper, a high-throughput, single cell microarray-based robotic instrument, called the RoboSCell, is described. The proposed instrument employs a partially transparent single cell microarray (SCM) integrated with a robotic biomanipulator for in vitro analyses of live single cells trapped at the array sites. Cells, labeled with immunomagnetic particles, are captured at the array sites by channeling magnetic fields through encapsulated permalloy channels in the SCM. The RoboSCell is capable of systematically scanning the captured cells temporarily immobilized at the array sites and using optical methods to repeatedly measure extracellular and intracellular characteristics over time. The instrument\\'s capabilities are demonstrated by arraying human T lymphocytes and measuring the uptake dynamics of calcein acetoxymethylester-all in a fully automated fashion. © 2009 Springer Science+Business Media, LLC.

  4. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip.

    Science.gov (United States)

    Cheng, Yu-Heng; Chen, Yu-Chih; Brien, Riley; Yoon, Euisik

    2016-10-07

    Recent research suggests that cancer stem-like cells (CSCs) are the key subpopulation for tumor relapse and metastasis. Due to cancer plasticity in surface antigen and enzymatic activity markers, functional tumorsphere assays are promising alternatives for CSC identification. To reliably quantify rare CSCs (1-5%), thousands of single-cell suspension cultures are required. While microfluidics is a powerful tool in handling single cells, previous works provide limited throughput and lack automatic data analysis capability required for high-throughput studies. In this study, we present the scaling and automation of high-throughput single-cell-derived tumor sphere assay chips, facilitating the tracking of up to ∼10 000 cells on a chip with ∼76.5% capture rate. The presented cell capture scheme guarantees sampling a representative population from the bulk cells. To analyze thousands of single-cells with a variety of fluorescent intensities, a highly adaptable analysis program was developed for cell/sphere counting and size measurement. Using a Pluronic® F108 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) coating on polydimethylsiloxane (PDMS), a suspension culture environment was created to test a controversial hypothesis: whether larger or smaller cells are more stem-like defined by the capability to form single-cell-derived spheres. Different cell lines showed different correlations between sphere formation rate and initial cell size, suggesting heterogeneity in pathway regulation among breast cancer cell lines. More interestingly, by monitoring hundreds of spheres, we identified heterogeneity in sphere growth dynamics, indicating the cellular heterogeneity even within CSCs. These preliminary results highlight the power of unprecedented high-throughput and automation in CSC studies.

  5. Single-cell bacteria growth monitoring by automated DEP-facilitated image analysis.

    Science.gov (United States)

    Peitz, Ingmar; van Leeuwen, Rien

    2010-11-07

    Growth monitoring is the method of choice in many assays measuring the presence or properties of pathogens, e.g. in diagnostics and food quality. Established methods, relying on culturing large numbers of bacteria, are rather time-consuming, while in healthcare time often is crucial. Several new approaches have been published, mostly aiming at assaying growth or other properties of a small number of bacteria. However, no method so far readily achieves single-cell resolution with a convenient and easy to handle setup that offers the possibility for automation and high throughput. We demonstrate these benefits in this study by employing dielectrophoretic capturing of bacteria in microfluidic electrode structures, optical detection and automated bacteria identification and counting with image analysis algorithms. For a proof-of-principle experiment we chose an antibiotic susceptibility test with Escherichia coli and polymyxin B. Growth monitoring is demonstrated on single cells and the impact of the antibiotic on the growth rate is shown. The minimum inhibitory concentration as a standard diagnostic parameter is derived from a dose-response plot. This report is the basis for further integration of image analysis code into device control. Ultimately, an automated and parallelized setup may be created, using an optical microscanner and many of the electrode structures simultaneously. Sufficient data for a sound statistical evaluation and a confirmation of the initial findings can then be generated in a single experiment.

  6. Automated single-cell motility analysis on a chip using lensfree microscopy

    Science.gov (United States)

    Pushkarsky, Ivan; Lyb, Yunbo; Weaver, Westbrook; Su, Ting-Wei; Mudanyali, Onur; Ozcan, Aydogan; di Carlo, Dino

    2014-04-01

    Quantitative cell motility studies are necessary for understanding biophysical processes, developing models for cell locomotion and for drug discovery. Such studies are typically performed by controlling environmental conditions around a lens-based microscope, requiring costly instruments while still remaining limited in field-of-view. Here we present a compact cell monitoring platform utilizing a wide-field (24 mm2) lensless holographic microscope that enables automated single-cell tracking of large populations that is compatible with a standard laboratory incubator. We used this platform to track NIH 3T3 cells on polyacrylamide gels over 20 hrs. We report that, over an order of magnitude of stiffness values, collagen IV surfaces lead to enhanced motility compared to fibronectin, in agreement with biological uses of these structural proteins. The increased throughput associated with lensfree on-chip imaging enables higher statistical significance in observed cell behavior and may facilitate rapid screening of drugs and genes that affect cell motility.

  7. Automated transportation of single cells using robot-tweezer manipulation system.

    Science.gov (United States)

    Hu, Songyu; Sun, Dong

    2011-08-01

    Manipulation of biological cells becomes increasingly important in biomedical engineering to address challenge issues in cell-cell interaction, drug discovery, and tissue engineering. Significant demand for both accuracy and productivity in cell manipulation highlights the need for automated cell transportation with integrated robotics and micro/nano manipulation technologies. Optical tweezers, which use highly focused low-power laser beams to trap and manipulate particles at micro/nanoscale, have emerged as an essential tool for manipulating single cells. In this article, we propose to use a robot-tweezer manipulation system to solve the problem of automatic transportation of biological cells, where optical tweezers function as special robot end effectors. Dynamics equation of the cell in optical tweezers is analyzed. A closed-loop controller is designed for transporting and positioning cells. Experiments are performed on live cells to demonstrate the effectiveness of the proposed approach in effective cell positioning. Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.

  8. Automated Chemotactic Sorting and Single-cell Cultivation of Microbes using Droplet Microfluidics

    Science.gov (United States)

    Dong, Libing; Chen, Dong-Wei; Liu, Shuang-Jiang; Du, Wenbin

    2016-04-01

    We report a microfluidic device for automated sorting and cultivation of chemotactic microbes from pure cultures or mixtures. The device consists of two parts: in the first part, a concentration gradient of the chemoeffector was built across the channel for inducing chemotaxis of motile cells; in the second part, chemotactic cells from the sample were separated, and mixed with culture media to form nanoliter droplets for encapsulation, cultivation, enumeration, and recovery of single cells. Chemotactic responses were assessed by imaging and statistical analysis of droplets based on Poisson distribution. An automated procedure was developed for rapid enumeration of droplets with cell growth, following with scale-up cultivation on agar plates. The performance of the device was evaluated by the chemotaxis assays of Escherichia coli (E. coli) RP437 and E. coli RP1616. Moreover, enrichment and isolation of non-labelled Comamonas testosteroni CNB-1 from its 1:10 mixture with E. coli RP437 was demonstrated. The enrichment factor reached 36.7 for CNB-1, based on its distinctive chemotaxis toward 4-hydroxybenzoic acid. We believe that this device can be widely used in chemotaxis studies without necessarily relying on fluorescent labelling, and isolation of functional microbial species from various environments.

  9. Statistical optimization of single-cell production from Taxus cuspidata plant cell aggregates.

    Science.gov (United States)

    Gaurav, Vishal; Roberts, Susan C

    2011-01-01

    Flow-cytometric characterization of plant cell culture growth and metabolism at the single-cell level is a method superior to traditional culture average measurements for collecting population information. Investigation of culture heterogeneity and production variability by obtaining information about different culture subpopulations is crucial for optimizing bio-processes for enhanced productivity. Obtaining high yields of intact and viable single cells from aggregated plant cell cultures is an enabling criterion for their analysis and isolation using high-throughput flow cytometric methods. The critical parameters affecting the enzymatic isolation of single cells from aggregated Taxus cuspidata plant cell suspensions were optimized using response-surface methodology and factorial central composite design. Using a design of experiments approach, the output response single-cell yield (SCY, percentage of cell clusters containing only a single cell) was optimized. Optimal conditions were defined for the independent parameters cellulase concentration, pectolyase Y-23 concentration, and centrifugation speed to be 0.045% (w/v), 0.7% (w/v), and 1200 × g, respectively. At these optimal conditions, the model predicted a maximum SCY of 48%. The experimental data exhibited a 72% increase over previously attained values and additionally validated the model predictions. More than 99% of the isolated cells were viable and suitable for rapid analysis through flow cytometry, thus enabling the collection of population information from cells that accurately represent aggregated suspensions. These isolated cells can be further studied to gain insight into both growth and secondary metabolite production, which can be used for bio-process optimization.

  10. CalQuo: automated, simultaneous single-cell and population-level quantification of global intracellular Ca2+ responses

    Science.gov (United States)

    Fritzsche, Marco; Fernandes, Ricardo A.; Colin-York, Huw; Santos, Ana M.; Lee, Steven F.; Lagerholm, B. Christoffer; Davis, Simon J.; Eggeling, Christian

    2015-11-01

    Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines.

  11. Automated Chemotactic Sorting and Single-cell Cultivation of Microbes using Droplet Microfluidics

    National Research Council Canada - National Science Library

    Dong, Libing; Chen, Dong-Wei; Liu, Shuang-Jiang; Du, Wenbin

    2016-01-01

    ...; in the second part, chemotactic cells from the sample were separated, and mixed with culture media to form nanoliter droplets for encapsulation, cultivation, enumeration, and recovery of single cells...

  12. Single-cell qPCR on dispersed primary pituitary cells -an optimized protocol

    Directory of Open Access Journals (Sweden)

    Haug Trude M

    2010-11-01

    Full Text Available Abstract Background The incidence of false positives is a potential problem in single-cell PCR experiments. This paper describes an optimized protocol for single-cell qPCR measurements in primary pituitary cell cultures following patch-clamp recordings. Two different cell harvesting methods were assessed using both the GH4 prolactin producing cell line from rat, and primary cell culture from fish pituitaries. Results Harvesting whole cells followed by cell lysis and qPCR performed satisfactory on the GH4 cell line. However, harvesting of whole cells from primary pituitary cultures regularly produced false positives, probably due to RNA leakage from cells ruptured during the dispersion of the pituitary cells. To reduce RNA contamination affecting the results, we optimized the conditions by harvesting only the cytosol through a patch pipette, subsequent to electrophysiological experiments. Two important factors proved crucial for reliable harvesting. First, silanizing the patch pipette glass prevented foreign extracellular RNA from attaching to charged residues on the glass surface. Second, substituting the commonly used perforating antibiotic amphotericin B with β-escin allowed efficient cytosol harvest without loosing the giga seal. Importantly, the two harvesting protocols revealed no difference in RNA isolation efficiency. Conclusion Depending on the cell type and preparation, validation of the harvesting technique is extremely important as contaminations may give false positives. Here we present an optimized protocol allowing secure harvesting of RNA from single cells in primary pituitary cell culture following perforated whole cell patch clamp experiments.

  13. Optimization of single-cell electroporation protocol for forced gene expression in primary neuronal cultures.

    Science.gov (United States)

    Nishikawa, Shin; Hirashima, Naohide; Tanaka, Masahiko

    2014-09-01

    The development and function of the central nervous system (CNS) are realized through interactions between many neurons. To investigate cellular and molecular mechanisms of the development and function of the CNS, it is thus crucial to be able to manipulate the gene expression of single neurons in a complex cell population. We recently developed a technique for gene silencing by introducing small interfering RNA into single neurons in primary CNS cultures using single-cell electroporation. However, we had not succeeded in forced gene expression by introducing expression plasmids using single-cell electroporation. In the present study, we optimized the experimental conditions to enable the forced expression of green fluorescent protein (GFP) in cultured cerebellar Purkinje neurons using single-cell electroporation. We succeeded in strong GFP expression in Purkinje neurons by increasing the inside diameter of micropipettes or by making the size of the original plasmid smaller by digestion and cyclizing it by ligation. Strong GFP expression in Purkinje neurons electroporated under the optimal conditions continued to be observed for more than 25 days after electroporation. Thus, this technique could be used for forced gene expression in single neurons to investigate cellular and molecular mechanisms of the development, function, and disease of the CNS.

  14. acdc - Automated Contamination Detection and Confidence estimation for single-cell genome data.

    Science.gov (United States)

    Lux, Markus; Krüger, Jan; Rinke, Christian; Maus, Irena; Schlüter, Andreas; Woyke, Tanja; Sczyrba, Alexander; Hammer, Barbara

    2016-12-20

    A major obstacle in single-cell sequencing is sample contamination with foreign DNA. To guarantee clean genome assemblies and to prevent the introduction of contamination into public databases, considerable quality control efforts are put into post-sequencing analysis. Contamination screening generally relies on reference-based methods such as database alignment or marker gene search, which limits the set of detectable contaminants to organisms with closely related reference species. As genomic coverage in the tree of life is highly fragmented, there is an urgent need for a reference-free methodology for contaminant identification in sequence data. We present acdc, a tool specifically developed to aid the quality control process of genomic sequence data. By combining supervised and unsupervised methods, it reliably detects both known and de novo contaminants. First, 16S rRNA gene prediction and the inclusion of ultrafast exact alignment techniques allow sequence classification using existing knowledge from databases. Second, reference-free inspection is enabled by the use of state-of-the-art machine learning techniques that include fast, non-linear dimensionality reduction of oligonucleotide signatures and subsequent clustering algorithms that automatically estimate the number of clusters. The latter also enables the removal of any contaminant, yielding a clean sample. Furthermore, given the data complexity and the ill-posedness of clustering, acdc employs bootstrapping techniques to provide statistically profound confidence values. Tested on a large number of samples from diverse sequencing projects, our software is able to quickly and accurately identify contamination. Results are displayed in an interactive user interface. Acdc can be run from the web as well as a dedicated command line application, which allows easy integration into large sequencing project analysis workflows. Acdc can reliably detect contamination in single-cell genome data. In addition to

  15. Automated three-dimensional single cell phenotyping of spindle dynamics, cell shape, and volume

    CERN Document Server

    Plumb, Kemp; Pelletier, Vincent; Kilfoil, Maria L

    2015-01-01

    We present feature finding and tracking algorithms in 3D in living cells, and demonstrate their utility to measure metrics important in cell biological processes. We developed a computational imaging hybrid approach that combines automated three-dimensional tracking of point-like features with surface determination from which cell (or nuclear) volume, shape, and planes of interest can be extracted. After validation, we applied the technique to real space context-rich dynamics of the mitotic spindle, and cell volume and its relationship to spindle length, in dividing living cells. These methods are additionally useful for automated segregation of pre-anaphase and anaphase spindle populations in budding yeast. We found that genetic deletion of the yeast kinesin-5 mitotic motor cin8 leads to large mother and daughter cells that were indistinguishable based on size, and that in those cells the spindle length becomes uncorrelated with cell size. The technique can be used to visualize and quantify tracked feature c...

  16. Manifold Based Optimization for Single-Cell 3D Genome Reconstruction.

    Directory of Open Access Journals (Sweden)

    Jonas Paulsen

    2015-08-01

    Full Text Available The three-dimensional (3D structure of the genome is important for orchestration of gene expression and cell differentiation. While mapping genomes in 3D has for a long time been elusive, recent adaptations of high-throughput sequencing to chromosome conformation capture (3C techniques, allows for genome-wide structural characterization for the first time. However, reconstruction of "consensus" 3D genomes from 3C-based data is a challenging problem, since the data are aggregated over millions of cells. Recent single-cell adaptations to the 3C-technique, however, allow for non-aggregated structural assessment of genome structure, but data suffer from sparse and noisy interaction sampling. We present a manifold based optimization (MBO approach for the reconstruction of 3D genome structure from chromosomal contact data. We show that MBO is able to reconstruct 3D structures based on the chromosomal contacts, imposing fewer structural violations than comparable methods. Additionally, MBO is suitable for efficient high-throughput reconstruction of large systems, such as entire genomes, allowing for comparative studies of genomic structure across cell-lines and different species.

  17. Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates.

    Science.gov (United States)

    Shi, Handuo; Colavin, Alexandre; Lee, Timothy K; Huang, Kerwyn Casey

    2017-02-01

    Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.

  18. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.

    Science.gov (United States)

    Nakamura, Tsuyoshi; Omasa, Takeshi

    2015-09-01

    Therapeutic antibodies are commonly produced by high-expressing, clonal and recombinant Chinese hamster ovary (CHO) cell lines. Currently, CHO cells dominate as a commercial production host because of their ease of use, established regulatory track record, and safety profile. CHO-K1SV is a suspension, protein-free-adapted CHO-K1-derived cell line employing the glutamine synthetase (GS) gene expression system (GS-CHO expression system). The selection of high-producing mammalian cell lines is a crucial step in process development for the production of therapeutic antibodies. In general, cloning by the limiting dilution method is used to isolate high-producing monoclonal CHO cells. However, the limiting dilution method is time consuming and has a low probability of monoclonality. To minimize the duration and increase the probability of obtaining high-producing clones with high monoclonality, an automated single cell-based clone selector, the ClonePix FL system, is available. In this study, we applied the high-throughput ClonePix FL system for cell line development using CHO-K1SV cells and investigated efficient conditions for single cell-based clone selection. CHO-K1SV cell growth at the pre-picking stage was improved by optimizing the formulation of semi-solid medium. The efficiency of picking and cell growth at the post-picking stage was improved by optimization of the plating time without decreasing the diversity of clones. The conditions for selection, including the medium formulation, were the most important factors for the single cell-based clone selection system to construct a high-producing CHO cell line.

  19. Automation enhancements in multidisciplinary design optimization

    Science.gov (United States)

    Wujek, Brett Alan

    The process of designing complex systems has necessarily evolved into one which includes the contributions and interactions of multiple disciplines. To date, the Multidisciplinary Design Optimization (MDO) process has been addressed mainly from the standpoint of algorithm development, with the primary concerns being effective and efficient coordination of disciplinary activities, modification of conventional optimization methods, and the utility of approximation techniques toward this goal. The focus of this dissertation is on improving the efficiency of MDO algorithms through the automation of common procedures and the development of improved methods to carry out these procedures. In this research, automation enhancements are made to the MDO process in three different areas: execution, sensitivity analysis and utility, and design variable move-limit management. A framework is developed along with a graphical user interface called NDOPT to automate the setup and execution of MDO algorithms in a research environment. The technology of automatic differentiation (AD) is utilized within various modules of MDO algorithms for fast and accurate sensitivity calculation, allowing for the frequent use of updated sensitivity information. With the use of AD, efficiency improvements are observed in the convergence of system analyses and in certain optimization procedures since gradient-based methods, traditionally considered cost-prohibitive, can be employed at a more reasonable expense. Finally, a method is developed to automatically monitor and adjust design variable move-limits for the approximate optimization process commonly used in MDO algorithms. With its basis in the well established and probably convergent trust region approach, the Trust region Ratio Approximation method (TRAM) developed in this research accounts for approximation accuracy and the sensitivity of the model error to the design space in providing a flexible move-limit adjustment factor. Favorable results

  20. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  1. Simulation, Control and Optimization of Single Cell Protein Production in a U-Loop Reactor

    DEFF Research Database (Denmark)

    2012-01-01

    In 2011, the world population passed 7 billions inhabitants. While this number witnesses the success of humankind on earth, it also rises among other things questions about food supply. Declining live stock in the wild, rising price of energy combined with climatic change give a new economic...... report simulation results. In addition we design and compare dierent regulatory control systems for regulation of SCP production in the U-Loop reactor. The purpose of the regulatory control systems is to keep the process at a steady state and to reject disturbances. We design and implement such control...... systems based upon PID and MPC technology. In particular, we design these control systems such that they can be used as the regulatory layer in a process control hierarchy and enable resilient transition from one operating point to another. The optimal operating points are determined by the real...

  2. Optimization of single-cell-protein production from cassava starch using Schwanniomyces castellii.

    Science.gov (United States)

    Hongpattarakere, T; H-Kittikun, A

    1995-11-01

    Schwanniomyces castellii B5285 grew faster and produced greater biomass and higher protein yield than either S. alluvius ATCC 26074 or S. alluvius 81Y when these amylolytic yeasts were grown with 2% (w/v) cassava starch as sole C source. With 0.5% (w/v) glutamate as N source, S. castellii reached 7.12 g cell dry mass/l, with a protein yield of 6.4 g/100 g starch. The optimal agitation speed, aeration rate and pH for growth of this yeast in a fermenter were 400 rev/min, 1.67 vol./vol.min. and 5.0, respectively. Tween 80 at 0.1% increased cell dry mass to 8.90 g/l, cell yield to 44 g/100 g starch and protein yield to 7.4 g/100 g starch.

  3. Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess.

    Science.gov (United States)

    Hezarjaribi, Mehrnoosh; Ardestani, Fatemeh; Ghorbani, Hamid Reza

    2016-08-01

    Saccharomyces cerevisiae PTCC5269 growth was evaluated to specify an optimum culture medium to reach the highest protein production. Experiment design was conducted using a fraction of the full factorial methodology, and signal to noise ratio was used for results analysis. Maximum cell of 8.84 log (CFU/mL) was resulted using optimized culture composed of 0.3, 0.15, 1, and 50 g L(-1) of ammonium sulfate, iron sulfate, glycine, and glucose, respectively at 300 rpm and 35 °C. Glycine concentration (39.32 % contribution) and glucose concentration (36.15 % contribution) were determined as the most effective factors on the biomass production, while Saccharomyces cerevisiae growth had showed the least dependence on ammonium sulfate (5.2 % contribution) and iron sulfate (19.28 % contribution). The most interaction was diagnosed between ammonium sulfate and iron sulfate concentrations with interaction severity index of 50.71 %, while the less one recorded for glycine and glucose concentration was equal to 8.12 %. An acceptable consistency of 84.26 % was obtained between optimum theoretical cell numbers determined by software of 8.91 log (CFU/mL), and experimentally measured one at optimal condition confirms the suitability of the applied method. High protein content of 44.6 % using optimum culture suggests that Saccharomyces cerevisiae is a good commercial case for single cell protein production.

  4. Automated Cache Performance Analysis And Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-23

    While there is no lack of performance counter tools for coarse-grained measurement of cache activity, there is a critical lack of tools for relating data layout to cache behavior to application performance. Generally, any nontrivial optimizations are either not done at all, or are done ”by hand” requiring significant time and expertise. To the best of our knowledge no tool available to users measures the latency of memory reference instructions for partic- ular addresses and makes this information available to users in an easy-to-use and intuitive way. In this project, we worked to enable the Open|SpeedShop performance analysis tool to gather memory reference latency information for specific instructions and memory ad- dresses, and to gather and display this information in an easy-to-use and intuitive way to aid performance analysts in identifying problematic data structures in their codes. This tool was primarily designed for use in the supercomputer domain as well as grid, cluster, cloud-based parallel e-commerce, and engineering systems and middleware. Ultimately, we envision a tool to automate optimization of application cache layout and utilization in the Open|SpeedShop performance analysis tool. To commercialize this soft- ware, we worked to develop core capabilities for gathering enhanced memory usage per- formance data from applications and create and apply novel methods for automatic data structure layout optimizations, tailoring the overall approach to support existing supercom- puter and cluster programming models and constraints. In this Phase I project, we focused on infrastructure necessary to gather performance data and present it in an intuitive way to users. With the advent of enhanced Precise Event-Based Sampling (PEBS) counters on recent Intel processor architectures and equivalent technology on AMD processors, we are now in a position to access memory reference information for particular addresses. Prior to the introduction of PEBS counters

  5. Automated Sensitivity Analysis of Interplanetary Trajectories for Optimal Mission Design

    Science.gov (United States)

    Knittel, Jeremy; Hughes, Kyle; Englander, Jacob; Sarli, Bruno

    2017-01-01

    This work describes a suite of Python tools known as the Python EMTG Automated Trade Study Application (PEATSA). PEATSA was written to automate the operation of trajectory optimization software, simplify the process of performing sensitivity analysis, and was ultimately found to out-perform a human trajectory designer in unexpected ways. These benefits will be discussed and demonstrated on sample mission designs.

  6. Automated Cache Performance Analysis And Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-23

    While there is no lack of performance counter tools for coarse-grained measurement of cache activity, there is a critical lack of tools for relating data layout to cache behavior to application performance. Generally, any nontrivial optimizations are either not done at all, or are done ”by hand” requiring significant time and expertise. To the best of our knowledge no tool available to users measures the latency of memory reference instructions for partic- ular addresses and makes this information available to users in an easy-to-use and intuitive way. In this project, we worked to enable the Open|SpeedShop performance analysis tool to gather memory reference latency information for specific instructions and memory ad- dresses, and to gather and display this information in an easy-to-use and intuitive way to aid performance analysts in identifying problematic data structures in their codes. This tool was primarily designed for use in the supercomputer domain as well as grid, cluster, cloud-based parallel e-commerce, and engineering systems and middleware. Ultimately, we envision a tool to automate optimization of application cache layout and utilization in the Open|SpeedShop performance analysis tool. To commercialize this soft- ware, we worked to develop core capabilities for gathering enhanced memory usage per- formance data from applications and create and apply novel methods for automatic data structure layout optimizations, tailoring the overall approach to support existing supercom- puter and cluster programming models and constraints. In this Phase I project, we focused on infrastructure necessary to gather performance data and present it in an intuitive way to users. With the advent of enhanced Precise Event-Based Sampling (PEBS) counters on recent Intel processor architectures and equivalent technology on AMD processors, we are now in a position to access memory reference information for particular addresses. Prior to the introduction of PEBS counters

  7. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.

    Science.gov (United States)

    Sweeney, Michael W; Kabouris, John C

    2016-10-01

    A review of the literature published in 2015 on topics relating to water resource recovery facilities (WRRF) in the areas of modeling, automation, measurement and sensors and optimization of wastewater treatment (or water resource reclamation) is presented.

  8. Optimization based automated curation of metabolic reconstructions

    Directory of Open Access Journals (Sweden)

    Maranas Costas D

    2007-06-01

    Full Text Available Abstract Background Currently, there exists tens of different microbial and eukaryotic metabolic reconstructions (e.g., Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis with many more under development. All of these reconstructions are inherently incomplete with some functionalities missing due to the lack of experimental and/or homology information. A key challenge in the automated generation of genome-scale reconstructions is the elucidation of these gaps and the subsequent generation of hypotheses to bridge them. Results In this work, an optimization based procedure is proposed to identify and eliminate network gaps in these reconstructions. First we identify the metabolites in the metabolic network reconstruction which cannot be produced under any uptake conditions and subsequently we identify the reactions from a customized multi-organism database that restores the connectivity of these metabolites to the parent network using four mechanisms. This connectivity restoration is hypothesized to take place through four mechanisms: a reversing the directionality of one or more reactions in the existing model, b adding reaction from another organism to provide functionality absent in the existing model, c adding external transport mechanisms to allow for importation of metabolites in the existing model and d restore flow by adding intracellular transport reactions in multi-compartment models. We demonstrate this procedure for the genome- scale reconstruction of Escherichia coli and also Saccharomyces cerevisiae wherein compartmentalization of intra-cellular reactions results in a more complex topology of the metabolic network. We determine that about 10% of metabolites in E. coli and 30% of metabolites in S. cerevisiae cannot carry any flux. Interestingly, the dominant flow restoration mechanism is directionality reversals of existing reactions in the respective models. Conclusion We have proposed systematic methods to identify and

  9. Automated firewall analytics design, configuration and optimization

    CERN Document Server

    Al-Shaer, Ehab

    2014-01-01

    This book provides a comprehensive and in-depth study of automated firewall policy analysis for designing, configuring and managing distributed firewalls in large-scale enterpriser networks. It presents methodologies, techniques and tools for researchers as well as professionals to understand the challenges and improve the state-of-the-art of managing firewalls systematically in both research and application domains. Chapters explore set-theory, managing firewall configuration globally and consistently, access control list with encryption, and authentication such as IPSec policies. The author

  10. When Phase Contrast Fails: ChainTracer and NucTracer, Two ImageJ Methods for Semi-Automated Single Cell Analysis Using Membrane or DNA Staining

    NARCIS (Netherlands)

    Syvertsson, S.; Vischer, N.O.E.; Gao, Y.; Hamoen, L.W.

    2016-01-01

    Within bacterial populations, genetically identical cells often behave differently. Single-cell measurement methods are required to observe this heterogeneity. Flow cytometry and fluorescence light microscopy are the primary methods to do this. However, flow cytometry requires reasonably strong fluo

  11. Optimized and Automated design of Plasma Diagnostics for Additive Manufacture

    Science.gov (United States)

    Stuber, James; Quinley, Morgan; Melnik, Paul; Sieck, Paul; Smith, Trevor; Chun, Katherine; Woodruff, Simon

    2016-10-01

    Despite having mature designs, diagnostics are usually custom designed for each experiment. Most of the design can be now be automated to reduce costs (engineering labor, and capital cost). We present results from scripted physics modeling and parametric engineering design for common optical and mechanical components found in many plasma diagnostics and outline the process for automated design optimization that employs scripts to communicate data from online forms through proprietary and open-source CAD and FE codes to provide a design that can be sent directly to a printer. As a demonstration of design automation, an optical beam dump, baffle and optical components are designed via an automated process and printed. Supported by DOE SBIR Grant DE-SC0011858.

  12. Controller Design Automation for Aeroservoelastic Design Optimization of Wind Turbines

    NARCIS (Netherlands)

    Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.

    2010-01-01

    The purpose of this paper is to integrate the controller design of wind turbines with structure and aerodynamic analysis and use the final product in the design optimization process (DOP) of wind turbines. To do that, the controller design is automated and integrated with an aeroelastic simulation

  13. Self-optimizing approach for automated laser resonator alignment

    Science.gov (United States)

    Brecher, C.; Schmitt, R.; Loosen, P.; Guerrero, V.; Pyschny, N.; Pavim, A.; Gatej, A.

    2012-02-01

    Nowadays, the assembly of laser systems is dominated by manual operations, involving elaborate alignment by means of adjustable mountings. From a competition perspective, the most challenging problem in laser source manufacturing is price pressure, a result of cost competition exerted mainly from Asia. From an economical point of view, an automated assembly of laser systems defines a better approach to produce more reliable units at lower cost. However, the step from today's manual solutions towards an automated assembly requires parallel developments regarding product design, automation equipment and assembly processes. This paper introduces briefly the idea of self-optimizing technical systems as a new approach towards highly flexible automation. Technically, the work focuses on the precision assembly of laser resonators, which is one of the final and most crucial assembly steps in terms of beam quality and laser power. The paper presents a new design approach for miniaturized laser systems and new automation concepts for a robot-based precision assembly, as well as passive and active alignment methods, which are based on a self-optimizing approach. Very promising results have already been achieved, considerably reducing the duration and complexity of the laser resonator assembly. These results as well as future development perspectives are discussed.

  14. Automated Design Framework for Synthetic Biology Exploiting Pareto Optimality.

    Science.gov (United States)

    Otero-Muras, Irene; Banga, Julio R

    2017-07-21

    In this work we consider Pareto optimality for automated design in synthetic biology. We present a generalized framework based on a mixed-integer dynamic optimization formulation that, given design specifications, allows the computation of Pareto optimal sets of designs, that is, the set of best trade-offs for the metrics of interest. We show how this framework can be used for (i) forward design, that is, finding the Pareto optimal set of synthetic designs for implementation, and (ii) reverse design, that is, analyzing and inferring motifs and/or design principles of gene regulatory networks from the Pareto set of optimal circuits. Finally, we illustrate the capabilities and performance of this framework considering four case studies. In the first problem we consider the forward design of an oscillator. In the remaining problems, we illustrate how to apply the reverse design approach to find motifs for stripe formation, rapid adaption, and fold-change detection, respectively.

  15. Statistical design and optimization of single cell oil production from sugarcane bagasse hydrolysate by an oleaginous yeast Rhodotorula sp. IIP-33 using response surface methodology.

    Science.gov (United States)

    Bandhu, Sheetal; Dasgupta, Diptarka; Akhter, Jawed; Kanaujia, Pankaj; Suman, Sunil K; Agrawal, Deepti; Kaul, Savita; Adhikari, Dilip K; Ghosh, Debashish

    2014-01-01

    Single cell oil production from sugarcane bagasse hydrolysate by oleaginous yeast Rhodotorula sp. IIP-33 was analyzed using a two stage statistical design approach based on Response Surface Methodology. Variables like pentose sugar, (NH4)2SO4, KH2PO4, yeast extract, pH and temperature were found to influence lipid production significantly. Under optimized condition in a shake flask, yield of lipid was 2.1199 g with fat coefficient of 7.09 which also resembled ~99% similarity to model predicted lipid production. In this paper we are presenting optimized results for production of non polar lipid which could be later deoxygenated into hydrocarbon. A qualitative analyses of selective lipid samples yielded a varying distribution of free acid ranging from C6 to C18, majoring C16:0, C18:0 and C18:1 under different fermentation conditions.

  16. Towards Automated Design, Analysis and Optimization of Declarative Curation Workflows

    Directory of Open Access Journals (Sweden)

    Tianhong Song

    2014-10-01

    Full Text Available Data curation is increasingly important. Our previous work on a Kepler curation package has demonstrated advantages that come from automating data curation pipelines by using workflow systems. However, manually designed curation workflows can be error-prone and inefficient due to a lack of user understanding of the workflow system, misuse of actors, or human error. Correcting problematic workflows is often very time-consuming. A more proactive workflow system can help users avoid such pitfalls. For example, static analysis before execution can be used to detect the potential problems in a workflow and help the user to improve workflow design. In this paper, we propose a declarative workflow approach that supports semi-automated workflow design, analysis and optimization. We show how the workflow design engine helps users to construct data curation workflows, how the workflow analysis engine detects different design problems of workflows and how workflows can be optimized by exploiting parallelism.

  17. When Phase Contrast Fails: ChainTracer and NucTracer, Two ImageJ Methods for Semi-Automated Single Cell Analysis Using Membrane or DNA Staining.

    Science.gov (United States)

    Syvertsson, Simon; Vischer, Norbert O E; Gao, Yongqiang; Hamoen, Leendert W

    2016-01-01

    Within bacterial populations, genetically identical cells often behave differently. Single-cell measurement methods are required to observe this heterogeneity. Flow cytometry and fluorescence light microscopy are the primary methods to do this. However, flow cytometry requires reasonably strong fluorescence signals and is impractical when bacteria grow in cell chains. Therefore fluorescence light microscopy is often used to measure population heterogeneity in bacteria. Automatic microscopy image analysis programs typically use phase contrast images to identify cells. However, many bacteria divide by forming a cross-wall that is not detectable by phase contrast. We have developed 'ChainTracer', a method based on the ImageJ plugin ObjectJ. It can automatically identify individual cells stained by fluorescent membrane dyes, and measure fluorescence intensity, chain length, cell length, and cell diameter. As a complementary analysis method we developed 'NucTracer', which uses DAPI stained nucleoids as a proxy for single cells. The latter method is especially useful when dealing with crowded images. The methods were tested with Bacillus subtilis and Lactococcus lactis cells expressing a GFP-reporter. In conclusion, ChainTracer and NucTracer are useful single cell measurement methods when bacterial cells are difficult to distinguish with phase contrast.

  18. Automated Multivariate Optimization Tool for Energy Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P. G.; Griffith, B. T.; Long, N.; Torcellini, P. A.; Crawley, D.

    2006-07-01

    Building energy simulations are often used for trial-and-error evaluation of ''what-if'' options in building design--a limited search for an optimal solution, or ''optimization''. Computerized searching has the potential to automate the input and output, evaluate many options, and perform enough simulations to account for the complex interactions among combinations of options. This paper describes ongoing efforts to develop such a tool. The optimization tool employs multiple modules, including a graphical user interface, a database, a preprocessor, the EnergyPlus simulation engine, an optimization engine, and a simulation run manager. Each module is described and the overall application architecture is summarized.

  19. Weighted Constraint Satisfaction for Smart Home Automation and Optimization

    Directory of Open Access Journals (Sweden)

    Noel Nuo Wi Tay

    2016-01-01

    Full Text Available Automation of the smart home binds together services of hardware and software to provide support for its human inhabitants. The rise of web technologies offers applicable concepts and technologies for service composition that can be exploited for automated planning of the smart home, which can be further enhanced by implementation based on service oriented architecture (SOA. SOA supports loose coupling and late binding of devices, enabling a more declarative approach in defining services and simplifying home configurations. One such declarative approach is to represent and solve automated planning through constraint satisfaction problem (CSP, which has the advantage of handling larger domains of home states. But CSP uses hard constraints and thus cannot perform optimization and handle contradictory goals and partial goal fulfillment, which are practical issues smart environments will face if humans are involved. This paper extends this approach to Weighted Constraint Satisfaction Problem (WCSP. Branch and bound depth first search is used, where its lower bound is estimated by bacterial memetic algorithm (BMA on a relaxed version of the original optimization problem. Experiments up to 16-step planning of home services demonstrate the applicability and practicality of the approach, with the inclusion of local search for trivial service combinations in BMA that produces performance enhancements. Besides, this work aims to set the groundwork for further research in the field.

  20. Automated parameterization of intermolecular pair potentials using global optimization techniques

    Science.gov (United States)

    Krämer, Andreas; Hülsmann, Marco; Köddermann, Thorsten; Reith, Dirk

    2014-12-01

    In this work, different global optimization techniques are assessed for the automated development of molecular force fields, as used in molecular dynamics and Monte Carlo simulations. The quest of finding suitable force field parameters is treated as a mathematical minimization problem. Intricate problem characteristics such as extremely costly and even abortive simulations, noisy simulation results, and especially multiple local minima naturally lead to the use of sophisticated global optimization algorithms. Five diverse algorithms (pure random search, recursive random search, CMA-ES, differential evolution, and taboo search) are compared to our own tailor-made solution named CoSMoS. CoSMoS is an automated workflow. It models the parameters' influence on the simulation observables to detect a globally optimal set of parameters. It is shown how and why this approach is superior to other algorithms. Applied to suitable test functions and simulations for phosgene, CoSMoS effectively reduces the number of required simulations and real time for the optimization task.

  1. Optimization of Single Cell Protein Production by Candida utilis Using Juice Extracted from Pineapple Waste through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Rosma, A.

    2005-01-01

    Full Text Available Response surface methodology was applied to optimize protein content in Candida utilis grown in pineapple waste medium. A three-level full factorial design was used to develop a quantitative interpretation of mathematical models between the two variables studied, inoculum size 2.0-10.0% (v/v and total soluble solids in medium (1-5 Brix at 30 h fermentation time. Yeast cells were harvested, ruptured mechanically and the soluble extract was freeze-dried for determination of protein, vitamin-B, 5'-ribonucleotide and total sugar content. Maximum protein content in the yeast 66.61% (w/w was obtained from the predicted optimum inoculum size of 7.83% (v/v and Brix level of 3.02. Highest level of biomass, vitamin-B, 5'-ribonucleotide and total sugar content within the experimental region increased 216.8%, 17.5%, 38.0% and 60.8% respectively after optimization. A verification experiment, conducted at optimized protein content conditions produced values that were close to the predicted values, indicating the reliability of the model used.

  2. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis

    DEFF Research Database (Denmark)

    Mistrik, Martin; Oplustilova, Lenka; Lukas, Jiri

    2009-01-01

    by environmental or metabolic genotoxic insults is critical for contemporary biomedicine. The available physical, flow cytometry and sophisticated scanning approaches to DNA damage estimation each have some drawbacks such as insufficient sensitivity, limitation to analysis of cells in suspension, or high costs...... and demand for trained personnel. Here we present an option how to transform a regular fluorescence microscope and personal computer with common software into a functional alternative to high-throughput screening devices. In two detailed protocols we introduce a new semi-automatic procedure allowing for very...... sensitive, quantitative, rapid and simple fluorescence image analysis in thousands of adherent cells per day. Sensitive DNA breakage estimation through analysis of phosphorylated histone H2AX (gamma-H2AX), and homologous recombination (HR) assessed by a new RPA/Rad51 dual-marker approach illustrate...

  3. Automated assay optimization with integrated statistics and smart robotics.

    Science.gov (United States)

    Taylor, P B; Stewart, F P; Dunnington, D J; Quinn, S T; Schulz, C K; Vaidya, K S; Kurali, E; Lane, T R; Xiong, W C; Sherrill, T P; Snider, J S; Terpstra, N D; Hertzberg, R P

    2000-08-01

    The transition from manual to robotic high throughput screening (HTS) in the last few years has made it feasible to screen hundreds of thousands of chemical entities against a biological target in less than a month. This rate of HTS has increased the visibility of bottlenecks, one of which is assay optimization. In many organizations, experimental methods are generated by therapeutic teams associated with specific targets and passed on to the HTS group. The resulting assays frequently need to be further optimized to withstand the rigors and time frames inherent in robotic handling. Issues such as protein aggregation, ligand instability, and cellular viability are common variables in the optimization process. The availability of robotics capable of performing rapid random access tasks has made it possible to design optimization experiments that would be either very difficult or impossible for a person to carry out. Our approach to reducing the assay optimization bottleneck has been to unify the highly specific fields of statistics, biochemistry, and robotics. The product of these endeavors is a process we have named automated assay optimization (AAO). This has enabled us to determine final optimized assay conditions, which are often a composite of variables that we would not have arrived at by examining each variable independently. We have applied this approach to both radioligand binding and enzymatic assays and have realized benefits in both time and performance that we would not have predicted a priori. The fully developed AAO process encompasses the ability to download information to a robot and have liquid handling methods automatically created. This evolution in smart robotics has proven to be an invaluable tool for maintaining high-quality data in the context of increasing HTS demands.

  4. An optimized method for automated analysis of algal pigments by HPLC

    NARCIS (Netherlands)

    van Leeuwe, M. A.; Villerius, L. A.; Roggeveld, J.; Visser, R. J. W.; Stefels, J.

    2006-01-01

    A recent development in algal pigment analysis by high-performance liquid chromatography (HPLC) is the application of automation. An optimization of a complete sampling and analysis protocol applied specifically in automation has not yet been performed. In this paper we show that automation can only

  5. An optimized method for automated analysis of algal pigments by HPLC

    NARCIS (Netherlands)

    van Leeuwe, M. A.; Villerius, L. A.; Roggeveld, J.; Visser, R. J. W.; Stefels, J.

    2006-01-01

    A recent development in algal pigment analysis by high-performance liquid chromatography (HPLC) is the application of automation. An optimization of a complete sampling and analysis protocol applied specifically in automation has not yet been performed. In this paper we show that automation can only

  6. Automating Initial Guess Generation for High Fidelity Trajectory Optimization Tools

    Science.gov (United States)

    Villa, Benjamin; Lantoine, Gregory; Sims, Jon; Whiffen, Gregory

    2013-01-01

    Many academic studies in spaceflight dynamics rely on simplified dynamical models, such as restricted three-body models or averaged forms of the equations of motion of an orbiter. In practice, the end result of these preliminary orbit studies needs to be transformed into more realistic models, in particular to generate good initial guesses for high-fidelity trajectory optimization tools like Mystic. This paper reviews and extends some of the approaches used in the literature to perform such a task, and explores the inherent trade-offs of such a transformation with a view toward automating it for the case of ballistic arcs. Sample test cases in the libration point regimes and small body orbiter transfers are presented.

  7. Single Cell Oncogenesis

    Science.gov (United States)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.

  8. Automated magnetic divertor design for optimal power exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, Maarten

    2017-07-01

    The so-called divertor is the standard particle and power exhaust system of nuclear fusion tokamaks. In essence, the magnetic configuration hereby 'diverts' the plasma to a specific divertor structure. The design of this divertor is still a key issue to be resolved to evolve from experimental fusion tokamaks to commercial power plants. The focus of this dissertation is on one particular design requirement: avoiding excessive heat loads on the divertor structure. The divertor design process is assisted by plasma edge transport codes that simulate the plasma and neutral particle transport in the edge of the reactor. These codes are computationally extremely demanding, not in the least due to the complex collisional processes between plasma and neutrals that lead to strong radiation sinks and macroscopic heat convection near the vessel walls. One way of improving the heat exhaust is by modifying the magnetic confinement that governs the plasma flow. In this dissertation, automated design of the magnetic configuration is pursued using adjoint based optimization methods. A simple and fast perturbation model is used to compute the magnetic field in the vacuum vessel. A stable optimal design method of the nested type is then elaborated that strictly accounts for several nonlinear design constraints and code limitations. Using appropriate cost function definitions, the heat is spread more uniformly over the high-heat load plasma-facing components in a practical design example. Furthermore, practical in-parts adjoint sensitivity calculations are presented that provide a way to an efficient optimization procedure. Results are elaborated for a fictituous JET (Joint European Torus) case. The heat load is strongly reduced by exploiting an expansion of the magnetic flux towards the solid divertor structure. Subsequently, shortcomings of the perturbation model for magnetic field calculations are discussed in comparison to a free boundary equilibrium (FBE) simulation

  9. Digital Microfluidics for Manipulation and Analysis of a Single Cell

    Directory of Open Access Journals (Sweden)

    Jie-Long He

    2015-09-01

    Full Text Available The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF, the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed.

  10. Optimizing a Drone Network to Deliver Automated External Defibrillators.

    Science.gov (United States)

    Boutilier, Justin J; Brooks, Steven C; Janmohamed, Alyf; Byers, Adam; Buick, Jason E; Zhan, Cathy; Schoellig, Angela P; Cheskes, Sheldon; Morrison, Laurie J; Chan, Timothy C Y

    2017-03-02

    Background -Public access defibrillation programs can improve survival after out-of-hospital cardiac arrest (OHCA), but automated external defibrillators (AEDs) are rarely available for bystander use at the scene. Drones are an emerging technology that can deliver an AED to the scene of an OHCA for bystander use. We hypothesize that a drone network designed with the aid of a mathematical model combining both optimization and queuing can reduce the time to AED arrival. Methods -We applied our model to 53,702 OHCAs that occurred in the eight regions of the Toronto Regional RescuNET between January 1st 2006 and December 31st 2014. Our primary analysis quantified the drone network size required to deliver an AED one, two, or three minutes faster than historical median 911 response times for each region independently. A secondary analysis quantified the reduction in drone resources required if RescuNET was treated as one large coordinated region. Results -The region-specific analysis determined that 81 bases and 100 drones would be required to deliver an AED ahead of median 911 response times by three minutes. In the most urban region, the 90th percentile of the AED arrival time was reduced by 6 minutes and 43 seconds relative to historical 911 response times in the region. In the most rural region, the 90th percentile was reduced by 10 minutes and 34 seconds. A single coordinated drone network across all regions required 39.5% fewer bases and 30.0% fewer drones to achieve similar AED delivery times. Conclusions -An optimized drone network designed with the aid of a novel mathematical model can substantially reduce the AED delivery time to an OHCA event.

  11. Development of An Optimization Method for Determining Automation Rate in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Kim, Jong Hyun [KEPCO, Ulsan (Korea, Republic of)

    2014-08-15

    Since automation was introduced in various industrial fields, it has been known that automation provides positive effects like greater efficiency and fewer human errors, and negative effect defined as out-of-the-loop (OOTL). Thus, before introducing automation in nuclear field, the estimation of the positive and negative effects of automation on human operators should be conducted. In this paper, by focusing on CPS, the optimization method to find an appropriate proportion of automation is suggested by integrating the suggested cognitive automation rate and the concepts of the level of ostracism. The cognitive automation rate estimation method was suggested to express the reduced amount of human cognitive loads, and the level of ostracism was suggested to express the difficulty in obtaining information from the automation system and increased uncertainty of human operators' diagnosis. The maximized proportion of automation that maintains the high level of attention for monitoring the situation is derived by an experiment, and the automation rate is estimated by the suggested automation rate estimation method. It is expected to derive an appropriate inclusion proportion of the automation system avoiding the OOTL problem and having maximum efficacy at the same time.

  12. Automation of sample preparation for mass cytometry barcoding in support of clinical research: protocol optimization.

    Science.gov (United States)

    Nassar, Ala F; Wisnewski, Adam V; Raddassi, Khadir

    2017-03-01

    Analysis of multiplexed assays is highly important for clinical diagnostics and other analytical applications. Mass cytometry enables multi-dimensional, single-cell analysis of cell type and state. In mass cytometry, the rare earth metals used as reporters on antibodies allow determination of marker expression in individual cells. Barcode-based bioassays for CyTOF are able to encode and decode for different experimental conditions or samples within the same experiment, facilitating progress in producing straightforward and consistent results. Herein, an integrated protocol for automated sample preparation for barcoding used in conjunction with mass cytometry for clinical bioanalysis samples is described; we offer results of our work with barcoding protocol optimization. In addition, we present some points to be considered in order to minimize the variability of quantitative mass cytometry measurements. For example, we discuss the importance of having multiple populations during titration of the antibodies and effect of storage and shipping of labelled samples on the stability of staining for purposes of CyTOF analysis. Data quality is not affected when labelled samples are stored either frozen or at 4 °C and used within 10 days; we observed that cell loss is greater if cells are washed with deionized water prior to shipment or are shipped in lower concentration. Once the labelled samples for CyTOF are suspended in deionized water, the analysis should be performed expeditiously, preferably within the first hour. Damage can be minimized if the cells are resuspended in phosphate-buffered saline (PBS) rather than deionized water while waiting for data acquisition.

  13. Optimizing ELISAs for precision and robustness using laboratory automation and statistical design of experiments.

    Science.gov (United States)

    Joelsson, Daniel; Moravec, Phil; Troutman, Matthew; Pigeon, Joseph; DePhillips, Pete

    2008-08-20

    Transferring manual ELISAs to automated platforms requires optimizing the assays for each particular robotic platform. These optimization experiments are often time consuming and difficult to perform using a traditional one-factor-at-a-time strategy. In this manuscript we describe the development of an automated process using statistical design of experiments (DOE) to quickly optimize immunoassays for precision and robustness on the Tecan EVO liquid handler. By using fractional factorials and a split-plot design, five incubation time variables and four reagent concentration variables can be optimized in a short period of time.

  14. Single-cell transcriptome analysis of endometrial tissue

    Science.gov (United States)

    Krjutškov, K.; Katayama, S.; Saare, M.; Vera-Rodriguez, M.; Lubenets, D.; Samuel, K.; Laisk-Podar, T.; Teder, H.; Einarsdottir, E.; Salumets, A.; Kere, J.

    2016-01-01

    STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. WHAT IS KNOWN ALREADY Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols for human endometrium have not been described. STUDY DESIGN, SIZE, DURATION The frozen-thawed endometrial biopsies were fluorescence-activated cell sorted (FACS) to distinguish CD13-positive stromal and CD9-positive epithelial cells and single-cell transcriptome analysis performed from biopsied tissues without culturing the cells. We studied gene transcription, applying a modern and efficient RNA-seq protocol. In parallel, endometrial stromal cells were cultured and global expression profiles were compared with uncultured cells. PARTICIPANTS/MATERIALS, SETTING, METHODS For method validation, we used two endometrial biopsies, one from mid-secretory phase (Day 21, LH+8) and another from late-secretory phase (Day 25). The samples underwent single-cell FACS sorting, single-cell RNA-seq library preparation and Illumina sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Here we present a complete pipeline for single-cell gene-expression studies, from clinical sampling to statistical data analysis. Tissue manipulation, starting from disaggregation and cell-type-specific labelling and ending with single-cell automated sorting, is managed within 90 min at low temperature to minimize changes in the gene expression profile. The single living stromal and epithelial cells were sorted using CD13- and CD9-specific antibodies, respectively. Of the 8622 detected genes, 2661 were more active in cultured stromal cells than in biopsy cells. In the comparison of biopsy versus cultured cells, 5603

  15. An Automated DAKOTA and VULCAN-CFD Framework with Application to Supersonic Facility Nozzle Flowpath Optimization

    Science.gov (United States)

    Axdahl, Erik L.

    2015-01-01

    Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.

  16. Review of Automated Design and Optimization of MEMS

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Fan, Zhun; Bolognini, Francesca

    2007-01-01

    In recent years MEMS saw a very rapid development. Although many advances have been reached, due to the multiphysics nature of MEMS, their design is still a difficult task carried on mainly by hand calculation. In order to help to overtake such difficulties, attempts to automate MEMS design were...

  17. Toward an Integrated Framework for Automated Development and Optimization of Online Advertising Campaigns

    OpenAIRE

    Thomaidou, Stamatina; Vazirgiannis, Michalis; Liakopoulos, Kyriakos

    2012-01-01

    Creating and monitoring competitive and cost-effective pay-per-click advertisement campaigns through the web-search channel is a resource demanding task in terms of expertise and effort. Assisting or even automating the work of an advertising specialist will have an unrivaled commercial value. In this paper we propose a methodology, an architecture, and a fully functional framework for semi- and fully- automated creation, monitoring, and optimization of cost-efficient pay-per-click campaigns ...

  18. Single Cell Physiology

    Science.gov (United States)

    Neveu, Pierre; Sinha, Deepak Kumar; Kettunen, Petronella; Vriz, Sophie; Jullien, Ludovic; Bensimon, David

    The possibility to control at specific times and specific places the activity of biomolecules (enzymes, transcription factors, RNA, hormones, etc.) is opening up new opportunities in the study of physiological processes at the single cell level in a live organism. Most existing gene expression systems allow for tissue specific induction upon feeding the organism with exogenous inducers (e.g., tetracycline). Local genetic control has earlier been achieved by micro-injection of the relevant inducer/repressor molecule, but this is an invasive and possibly traumatic technique. In this chapter, we present the requirements for a noninvasive optical control of the activity of biomolecules and review the recent advances in this new field of research.

  19. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.

    Directory of Open Access Journals (Sweden)

    Ruud G J Detert Oude Weme

    Full Text Available Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET. Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM. For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.

  20. Simulation-Based Optimization for Storage Allocation Problem of Outbound Containers in Automated Container Terminals

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    2015-01-01

    Full Text Available Storage allocation of outbound containers is a key factor of the performance of container handling system in automated container terminals. Improper storage plans of outbound containers make QC waiting inevitable; hence, the vessel handling time will be lengthened. A simulation-based optimization method is proposed in this paper for the storage allocation problem of outbound containers in automated container terminals (SAPOBA. A simulation model is built up by Timed-Colored-Petri-Net (TCPN, used to evaluate the QC waiting time of storage plans. Two optimization approaches, based on Particle Swarm Optimization (PSO and Genetic Algorithm (GA, are proposed to form the complete simulation-based optimization method. Effectiveness of this method is verified by experiment, as the comparison of the two optimization approaches.

  1. Microfluidics for single cell analysis

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant

    Isolation and manipulation of single cells have gained an increasing interest from researchers because of the heterogeneity of cells from the same cell culture. Single cell analysis can ensure a better understanding of differences between individual cells and potentially solve a variety of clinic...

  2. Automated Optimization of Walking Parameters for the Nao Humanoid Robot

    NARCIS (Netherlands)

    Girardi, N.; Kooijman, C.; Wiggers, A.J.; Visser, A.

    2013-01-01

    This paper describes a framework for optimizing walking parameters for a Nao humanoid robot. In this case an omnidirectional walk is learned. The parameters are learned in simulation with an evolutionary approach. The best performance was obtained for a combination of a low mutation rate and a high

  3. ORDER-PICKING OPTIMIZATION FOR AUTOMATED PICKING SYSTEM WITH PARALLEL DISPENSERS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the characteristics of parallel dispensers in automated picking system, an order-picking optimization problem is presented. Firstly, the working principle of parallel dispensers is introduced, which implies the time cost of picking each order is influenced by the order-picking sequence. So the order-picking optimization problem can be classified as a dynamic traveling salesman problem (TSP). Then a mathematical model of the problem is established and an improved max-min ant system (MMAS) is adopted to solve the model. The improvement includes two aspects. One is that the initial assignment of ants depends on a probabilistic formula instead of a random deployment; the other is that the heuristic factor is expressed by the extra picking time of each order instead of the total. At last, an actual simulation is made on an automated picking system with parallel dispensers. The simulation results proved the optimization value and the validity of improvement on MMAS.

  4. Automation for pattern library creation and in-design optimization

    Science.gov (United States)

    Deng, Rock; Zou, Elain; Hong, Sid; Wang, Jinyan; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua; Huang, Jason

    2015-03-01

    contain remedies built in so that fixing happens either automatically or in a guided manner. Building a comprehensive library of patterns is a very difficult task especially when a new technology node is being developed or the process keeps changing. The main dilemma is not having enough representative layouts to use for model simulation where pattern locations can be marked and extracted. This paper will present an automatic pattern library creation flow by using a few known yield detractor patterns to systematically expand the pattern library and generate optimized patterns. We will also look at the specific fixing hints in terms of edge movements, additive, or subtractive changes needed during optimization. Optimization will be shown for both the digital physical implementation and custom design methods.

  5. Single Cell Electrical Characterization Techniques.

    Science.gov (United States)

    Mansor, Muhammad Asraf; Ahmad, Mohd Ridzuan

    2015-06-04

    Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell's electrical states especially in single cell analysis (SCA). In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell's electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed.

  6. Optimization of a filter-lysis protocol to purify rat testicular homogenates for automated spermatid counting.

    Science.gov (United States)

    Pacheco, Sara E; Anderson, Linnea M; Boekelheide, Kim

    2012-01-01

    Quantifying testicular homogenization-resistant spermatid heads (HRSH) is a powerful indicator of spermatogenesis. These counts have traditionally been performed manually using a hemocytometer, but this method can be time consuming and biased. We aimed to develop a protocol to reduce debris for the application of automated counting, which would allow for efficient and unbiased quantification of rat HRSH. We developed a filter-lysis protocol that effectively removes debris from rat testicular homogenates. After filtering and lysing the homogenates, we found no statistical differences between manual (classic and filter-lysis) and automated (filter-lysis) counts using 1-way analysis of variance with Bonferroni's multiple comparison test. In addition, Pearson's correlation coefficients were calculated to compare the counting methods, and there was a strong correlation between the classic manual counts and the filter-lysis manual (r = 0.85, P = .002) and the filter-lysis automated (r = 0.89, P = .0005) counts. We also tested the utility of the automated method in a low-dose exposure model known to decrease HRSH. Adult Fischer 344 rats exposed to 0.33% 2,5-hexanedione in the drinking water for 12 weeks demonstrated decreased body (P = .02) and testes (P = .002) weights. In addition, there was a significant reduction in the number of HRSH per testis (P = .002) when compared to controls. A filterlysis protocol was optimized to purify rat testicular homogenates for automated HRSH counts. Automated counting systems yield unbiased data and can be applied to detect changes in the testis after low-dose toxicant exposure.

  7. A Novel Optimization Tool for Automated Design of Integrated Circuits based on MOSGA

    Directory of Open Access Journals (Sweden)

    Maryam Dehbashian

    2011-11-01

    Full Text Available In this paper a novel optimization method based on Multi-Objective Gravitational Search Algorithm (MOGSA is presented for automated design of analog integrated circuits. The recommended method firstly simulates a selected circuit using a simulator and then simulated results are optimized by MOGSA algorithm. Finally this process continues to meet its optimum result. The main programs of the proposed method have been implemented in MATLAB while analog circuits are simulated by HSPICE software. To show the capability of this method, its proficiency will be examined in the optimization of analog integrated circuits design. In this paper, an analog circuit sizing scheme -Optimum Automated Design of a Temperature independent Differential Op-amp using Widlar Current Source- is illustrated as a case study. The computer results obtained from implementing this method indicate that the design specifications are closely met. Moreover, according to various design criteria, this tool by proposing a varied set of answers can give more options to designers to choose a desirable scheme among other suggested results. MOGSA, the proposal algorithm, introduces a novel method in multi objective optimization on the basis of Gravitational Search Algorithm in which the concept of “Pareto-optimality” is used to determine “non-dominated” positions as well as an external repository to keep these positions. To ensure the accuracy of MOGSA performance, this algorithm is validated using several standard test functions from some specialized literatures. Final results indicate that our method is highly competitive with current multi objective optimization algorithms.

  8. Determination of the Optimized Automation Rate considering Effects of Automation on Human Operators in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of); Kim, Jong Hyun [KEPCO International Nuclear Graduate School, Seosaeng (Korea, Republic of); Kim, Man Cheol [Chung-Ang University, Seoul (Korea, Republic of)

    2015-05-15

    Automation refers to the use of a device or a system to perform a function previously performed by a human operator. It is introduced to reduce the human errors and to enhance the performance in various industrial fields, including the nuclear industry. However, these positive effects are not always achieved in complex systems such as nuclear power plants (NPPs). An excessive introduction of automation can generate new roles for human operators and change activities in unexpected ways. As more automation systems are accepted, the ability of human operators to detect automation failures and resume manual control is diminished. This disadvantage of automation is called the Out-of-the- Loop (OOTL) problem. We should consider the positive and negative effects of automation at the same time to determine the appropriate level of the introduction of automation. Thus, in this paper, we suggest an estimation method to consider the positive and negative effects of automation at the same time to determine the appropriate introduction of automation. This concept is limited in that it does not consider the effects of automation on human operators. Thus, a new estimation method for automation rate was suggested to overcome this problem.

  9. Introduction: why analyze single cells?

    Science.gov (United States)

    Di Carlo, Dino; Tse, Henry Tat Kwong; Gossett, Daniel R

    2012-01-01

    Powerful methods in molecular biology are abundant; however, in many fields including hematology, stem cell biology, tissue engineering, and cancer biology, data from tools and assays that analyze the average signals from many cells may not yield the desired result because the cells of interest may be in the minority-their behavior masked by the majority-or because the dynamics of the populations of interest are offset in time. Accurate characterization of samples with high cellular heterogeneity may only be achieved by analyzing single cells. In this chapter, we discuss the rationale for performing analyses on individual cells in more depth, cover the fields of study in which single-cell behavior is yielding new insights into biological and clinical questions, and speculate on how single-cell analysis will be critical in the future.

  10. Single Cell Electrical Characterization Techniques

    Directory of Open Access Journals (Sweden)

    Muhammad Asraf Mansor

    2015-06-01

    Full Text Available Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell’s electrical states especially in single cell analysis (SCA. In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell’s electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed.

  11. Single Cell Isolation and Analysis

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2016-10-01

    Full Text Available Increasing evidence shows that the heterogeneity of individual cells within a genetically identical population can be critical to their peculiar function and fate. Conventional cell based assays mainly analysis the average responses from a population cells, while the difference within individual cells may often be masked. The cell size, RNA transcripts and protein expression level are quite different within individual cells and these variations are key point to answer the problems in cancer, neurobiology, stem cell biology, immunology and developmental biology. To better understand the cell-to-cell variations, the single cell analysis can provide much more detailed information which may be helpful for therapeutic decisions in an increasingly personalized medicine. In this review, we will focus on the recent development in single cell analysis, including methods used in single cell isolation, analysis and some application examples. The review provides the historical background to single cell analysis, discusses limitations, and current and future possibilities in this exciting field of research.

  12. Single cell electroporation on chip

    NARCIS (Netherlands)

    Valero, Ana

    2006-01-01

    In this thesis the results of the development of microfluidic cell trap devices for single cell electroporation are described, which are to be used for gene transfection. The performance of two types of Lab-on-a-Chip trapping devices was tested using beads and cells, whereas the functionality for si

  13. Automated Software Testing Using Metahurestic Technique Based on An Ant Colony Optimization

    CERN Document Server

    Srivastava, Praveen Ranjan

    2011-01-01

    Software testing is an important and valuable part of the software development life cycle. Due to time, cost and other circumstances, exhaustive testing is not feasible that's why there is a need to automate the software testing process. Testing effectiveness can be achieved by the State Transition Testing (STT) which is commonly used in real time, embedded and web-based type of software systems. Aim of the current paper is to present an algorithm by applying an ant colony optimization technique, for generation of optimal and minimal test sequences for behavior specification of software. Present paper approach generates test sequence in order to obtain the complete software coverage. This paper also discusses the comparison between two metaheuristic techniques (Genetic Algorithm and Ant Colony optimization) for transition based testing

  14. The optimization of total laboratory automation by simulation of a pull-strategy.

    Science.gov (United States)

    Yang, Taho; Wang, Teng-Kuan; Li, Vincent C; Su, Chia-Lo

    2015-01-01

    Laboratory results are essential for physicians to diagnose medical conditions. Because of the critical role of medical laboratories, an increasing number of hospitals use total laboratory automation (TLA) to improve laboratory performance. Although the benefits of TLA are well documented, systems occasionally become congested, particularly when hospitals face peak demand. This study optimizes TLA operations. Firstly, value stream mapping (VSM) is used to identify the non-value-added time. Subsequently, batch processing control and parallel scheduling rules are devised and a pull mechanism that comprises a constant work-in-process (CONWIP) is proposed. Simulation optimization is then used to optimize the design parameters and to ensure a small inventory and a shorter average cycle time (CT). For empirical illustration, this approach is applied to a real case. The proposed methodology significantly improves the efficiency of laboratory work and leads to a reduction in patient waiting times and increased service level.

  15. Plant single-cell and single-cell-type metabolomics.

    Science.gov (United States)

    Misra, Biswapriya B; Assmann, Sarah M; Chen, Sixue

    2014-10-01

    In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Automated in-situ optimization of bimorph mirrors at Diamond Light Source

    Science.gov (United States)

    Sutter, John P.; Alcock, Simon G.; Sawhney, Kawal J. S.

    2011-09-01

    Bimorph mirrors are used on many synchrotron beamlines to focus or collimate light. They are highly adaptable because not only their overall figure but also their local slope errors can be corrected. However, the optimization procedure is complex. At Diamond Light Source, highly repeatable and accurate pencil beam measurements are used to determine a mirror's slope errors. These data are then used by automated scripts to calculate the necessary corrections. This procedure may be applied to any type of active mirror, but for hard X-ray mirrors, diffraction from the slits must be considered.

  17. RootGraph: a graphic optimization tool for automated image analysis of plant roots.

    Science.gov (United States)

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J

    2015-11-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions.

  18. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods

    CERN Document Server

    Suleimanov, Yury V

    2015-01-01

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation single- and double-ended transition-state optimization algorithms - the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the possibility of discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.

  19. Automation of Optimized Gabor Filter Parameter Selection for Road Cracks Detection

    Directory of Open Access Journals (Sweden)

    Haris Ahmad Khan

    2016-03-01

    Full Text Available Automated systems for road crack detection are extremely important in road maintenance for vehicle safety and traveler’s comfort. Emerging cracks in roads need to be detected and accordingly repaired as early as possible to avoid further damage thus reducing rehabilitation cost. In this paper, a robust method for Gabor filter parameters optimization for automatic road crack detection is discussed. Gabor filter has been used in previous literature for similar applications. However, there is a need for automatic selection of optimized Gabor filter parameters due to variation in texture of roads and cracks. The problem of change of background, which in fact is road texture, is addressed through a learning process by using synthetic road crack generation for Gabor filter parameter tuning. Tuned parameters are then tested on real cracks and a thorough quantitative analysis is performed for performance evaluation.

  20. Optimal Control and Coordination of Connected and Automated Vehicles at Urban Traffic Intersections

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue J. [Boston University; Malikopoulos, Andreas [ORNL; Cassandras, Christos G. [Boston University

    2016-01-01

    We address the problem of coordinating online a continuous flow of connected and automated vehicles (CAVs) crossing two adjacent intersections in an urban area. We present a decentralized optimal control framework whose solution yields for each vehicle the optimal acceleration/deceleration at any time in the sense of minimizing fuel consumption. The solu- tion, when it exists, allows the vehicles to cross the intersections without the use of traffic lights, without creating congestion on the connecting road, and under the hard safety constraint of collision avoidance. The effectiveness of the proposed solution is validated through simulation considering two intersections located in downtown Boston, and it is shown that coordination of CAVs can reduce significantly both fuel consumption and travel time.

  1. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods.

    Science.gov (United States)

    Suleimanov, Yury V; Green, William H

    2015-09-08

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms--the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.

  2. Automated ARGET ATRP Accelerates Catalyst Optimization for the Synthesis of Thiol-Functionalized Polymers.

    Science.gov (United States)

    Siegwart, Daniel J; Leiendecker, Matthias; Langer, Robert; Anderson, Daniel G

    2012-02-14

    Conventional synthesis of polymers by ATRP is relatively low throughput, involving iterative optimization of conditions in an inert atmosphere. Automated, high-throughput controlled radical polymerization was developed to accelerate catalyst optimization and production of disulfide-functionalized polymers without the need of an inert gas. Using ARGET ATRP, polymerization conditions were rapidly identified for eight different monomers, including the first ARGET ATRP of 2-(diethylamino)ethyl methacrylate and di(ethylene glycol) methyl ether methacrylate. In addition, butyl acrylate, oligo(ethylene glycol) methacrylate 300 and 475, 2-(dimethylamino)ethyl methacrylate, styrene, and methyl methacrylate were polymerized using bis(2-hydroxyethyl) disulfide bis(2-bromo-2-methylpropionate) as the initiator, tris(2-pyridylmethyl)amine as the ligand, and tin(II) 2-ethylhexanoate as the reducing agent. The catalyst and reducing agent concentration was optimized specifically for each monomer, and then a library of polymers was synthesized systematically using the optimized conditions. The disulfide-functionalized chains could be cleaved to two thiol-terminated chains upon exposure to dithiothreitol, which may have utility for the synthesis of polymer bioconjugates. Finally, we demonstrated that these new conditions translated perfectly to conventional batch polymerization. We believe the methods developed here may prove generally useful to accelerate the systematic optimization of a variety of chemical reactions and polymerizations.

  3. Aircraft wing structural design optimization based on automated finite element modelling and ground structure approach

    Science.gov (United States)

    Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan

    2016-01-01

    An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.

  4. Multi-objective Genetic Algorithm for System Identification and Controller Optimization of Automated Guided Vehicle

    Directory of Open Access Journals (Sweden)

    Xing Wu

    2011-07-01

    Full Text Available This paper presents a multi-objective genetic algorithm (MOGA with Pareto optimality and elitist tactics for the control system design of automated guided vehicle (AGV. The MOGA is used to identify AGV driving system model and optimize its servo control system sequentially. In system identification, the model identified by least square method is adopted as an evolution tutor who selects the individuals having balanced performances in all objectives as elitists. In controller optimization, the velocity regulating capability required by AGV path tracking is employed as decision-making preferences which select Pareto optimal solutions as elitists. According to different objectives and elitist tactics, several sub-populations are constructed and they evolve concurrently by using independent reproduction, neighborhood mutation and heuristic crossover. The lossless finite precision method and the multi-objective normalized increment distance are proposed to keep the population diversity with a low computational complexity. Experiment results show that the cascaded MOGA have the capability to make the system model consistent with AGV driving system both in amplitude and phase, and to make its servo control system satisfy the requirements on dynamic performance and steady-state accuracy in AGV path tracking.

  5. Optimal Solution for VLSI Physical Design Automation Using Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    I. Hameem Shanavas

    2014-01-01

    Full Text Available In Optimization of VLSI Physical Design, area minimization and interconnect length minimization is an important objective in physical design automation of very large scale integration chips. The objective of minimizing the area and interconnect length would scale down the size of integrated chips. To meet the above objective, it is necessary to find an optimal solution for physical design components like partitioning, floorplanning, placement, and routing. This work helps to perform the optimization of the benchmark circuits with the above said components of physical design using hierarchical approach of evolutionary algorithms. The goal of minimizing the delay in partitioning, minimizing the silicon area in floorplanning, minimizing the layout area in placement, minimizing the wirelength in routing has indefinite influence on other criteria like power, clock, speed, cost, and so forth. Hybrid evolutionary algorithm is applied on each of its phases to achieve the objective. Because evolutionary algorithm that includes one or many local search steps within its evolutionary cycles to obtain the minimization of area and interconnect length. This approach combines a hierarchical design like genetic algorithm and simulated annealing to attain the objective. This hybrid approach can quickly produce optimal solutions for the popular benchmarks.

  6. Magnetic levitation of single cells.

    Science.gov (United States)

    Durmus, Naside Gozde; Tekin, H Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-07-14

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine.

  7. Single-Cell Genomics for Virology.

    Science.gov (United States)

    Ciuffi, Angela; Rato, Sylvie; Telenti, Amalio

    2016-05-04

    Single-cell sequencing technologies, i.e., single cell analysis followed by deep sequencing investigate cellular heterogeneity in many biological settings. It was only in the past year that single-cell sequencing analyses has been applied in the field of virology, providing new ways to explore viral diversity and cell response to viral infection, which are summarized in the present review.

  8. Plug-and-play monitoring and performance optimization for industrial automation processes

    CERN Document Server

    Luo, Hao

    2017-01-01

    Dr.-Ing. Hao Luo demonstrates the developments of advanced plug-and-play (PnP) process monitoring and control systems for industrial automation processes. With aid of the so-called Youla parameterization, a novel PnP process monitoring and control architecture (PnP-PMCA) with modularized components is proposed. To validate the developments, a case study on an industrial rolling mill benchmark is performed, and the real-time implementation on a laboratory brushless DC motor is presented. Contents PnP Process Monitoring and Control Architecture Real-Time Configuration Techniques for PnP Process Monitoring Real-Time Configuration Techniques for PnP Performance Optimization Benchmark Study and Real-Time Implementation Target Groups Researchers and students of Automation and Control Engineering Practitioners in the area of Industrial and Production Engineering The Author Hao Luo received the Ph.D. degree at the Institute for Automatic Control and Complex Systems (AKS) at the University of Duisburg-Essen, Germany, ...

  9. An Automated Tool for Optimization of FMS Scheduling With Meta Heuristic Approach

    Directory of Open Access Journals (Sweden)

    A. V. S. Sreedhar Kumar

    2014-03-01

    Full Text Available The evolutions of manufacturing systems have reflected the need and requirement of the market which varies from time to time. Flexible manufacturing systems have contributed a lot to the development of efficient manufacturing process and production of variety of customized limited volume products as per the market demand based on customer needs. Scheduling of FMS is a crucial operation in maximizing throughput, reducing the wastages and increasing the overall efficiency of the manufacturing process. The dynamic nature of the Flexible Manufacturing Systems makes them unique and hence a generalized solution for scheduling is difficult to be abstracted. Any Solution for optimizing the scheduling should take in to account a multitude of parameters before proposing any solution. The primary objective of the proposed research is to design a tool to automate the optimization of scheduling process by searching for solution in the search spaces using Meta heuristic approaches. The research also validates the use of reward as means for optimizing the scheduling by including it as one of the parameters in the Combined Objective Function.

  10. AUTOMATING SELECTION OF OPTIMAL PACKET SCHEDULING DURING VOIP-TRAFFIC TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Yuliya A. Balakshina

    2016-11-01

    Full Text Available The usage of various packet scheduling disciplines in computer networking devices as a mechanism to ensure the quality of service is described. Stages for selection of necessary parameters values of packet scheduling during VoIP-traffic transmission in computer networks are defined. VoIP-traffic was set as a research object because there are strict requirements of VoIP-applications to the network transmission parameters. With the aid of training and experimental simulation system the numerous experiments for parameters selection of the most common packet scheduling disciplines were carried out (FIFO, WFQ, non-preemptive priority queueing. The example that illustrates the ability to adjust the weighting coefficients of WFQ packet scheduling discipline is presented. Approximate analytical dependences are obtained and they will significantly reduce system administrators’ efforts to assess and modify the parameters of packet scheduling in network devices. A method of automating selection of the optimal packet scheduling discipline is formulated.

  11. Optimization and validation of an automated voltammetric stripping technique for ultratrace metal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monticelli, D. [Dipartimento di Scienze Chimiche e Ambientali, Universita degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy)]. E-mail: damiano.monticelli@uninsubria.it; Ciceri, E. [Dipartimento di Scienze Chimiche e Ambientali, Universita degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy); Dossi, C. [Dipartimento di Scienze Chimiche e Ambientali, Universita degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy)

    2007-07-02

    A new automated batch method for the determination of ultratrace metals (nanogram per liter level) was developed and validated. Instrumental and chemical parameters affecting the performance of the method were carefully assessed and optimized. A wide range of voltammetric methods under different chemical conditions were tested. Cadmium, lead and copper were determined by anodic stripping voltammetry (ASV), while nickel, cobalt, rhodium and uranium by adsorptive cathodic stripping voltammetry (AdCSV). The figures of merit of all of these methods were determined: very good precision and accuracy were achieved, e.g. relative percentage standard deviation in the 4-13% for ASV and 2-5% for AdCSV. The stripping methods were applied to the determination of cadmium, lead, copper, nickel, cobalt, rhodium and uranium in lake water samples and the results were found to be comparable with ICP-MS data.

  12. Single-cell force spectroscopy.

    Science.gov (United States)

    Helenius, Jonne; Heisenberg, Carl-Philipp; Gaub, Hermann E; Muller, Daniel J

    2008-06-01

    The controlled adhesion of cells to each other and to the extracellular matrix is crucial for tissue development and maintenance. Numerous assays have been developed to quantify cell adhesion. Among these, the use of atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) has recently been established. This assay permits the adhesion of living cells to be studied in near-physiological conditions. This implementation of AFM allows unrivaled spatial and temporal control of cells, as well as highly quantitative force actuation and force measurement that is sufficiently sensitive to characterize the interaction of single molecules. Therefore, not only overall cell adhesion but also the properties of single adhesion-receptor-ligand interactions can be studied. Here we describe current implementations and applications of SCFS, as well as potential pitfalls, and outline how developments will provide insight into the forces, energetics and kinetics of cell-adhesion processes.

  13. Inkjet-like printing of single-cells.

    Science.gov (United States)

    Yusof, Azmi; Keegan, Helen; Spillane, Cathy D; Sheils, Orla M; Martin, Cara M; O'Leary, John J; Zengerle, Roland; Koltay, Peter

    2011-07-21

    Cell sorting and separation techniques are essential tools for cell biology research and for many diagnostic and therapeutic applications. For many of these applications, it is imperative that heterogeneous populations of cells are segregated according to their cell type and that individual cells can be isolated and analysed. We present a novel technique to isolate single cells encapsulated in a picolitre sized droplet that are then deposited by inkjet-like printing at defined locations for downstream genomic analysis. The single-cell-manipulator (SCM) developed for this purpose consists of a dispenser chip to print cells contained in a free flying droplet, a computer vision system to detect single-cells inside the dispenser chip prior to printing, and appropriate automation equipment to print single-cells onto defined locations on a substrate. This technique is spatially dynamic, enabling cell printing on a wide range of commonly used substrates such as microscope slides, membranes and microtiter plates. Demonstration experiments performed using the SCM resulted in a printing efficiency of 87% for polystyrene microbeads of 10 μm size. When the SCM was applied to a cervical cancer cell line (HeLa), a printing efficiency of 87% was observed and a post-SCM cell viability rate of 75% was achieved.

  14. Design And Modeling An Automated Digsilent Power System For Optimal New Load Locations

    Directory of Open Access Journals (Sweden)

    Mohamed Saad

    2015-08-01

    Full Text Available Abstract The electric power utilities seek to take advantage of novel approaches to meet growing energy demand. Utilities are under pressure to evolve their classical topologies to increase the usage of distributed generation. Currently the electrical power engineers in many regions of the world are implementing manual methods to measure power consumption for farther assessment of voltage violation. Such process proved to be time consuming costly and inaccurate. Also demand response is a grid management technique where retail or wholesale customers are requested either electronically or manually to reduce their load. Therefore this paper aims to design and model an automated power system for optimal new load locations using DPL DIgSILENT Programming Language. This study is a diagnostic approach that assists system operator about any voltage violation cases that would happen during adding new load to the grid. The process of identifying the optimal bus bar location involves a complicated calculation of the power consumptions at each load bus As a result the DPL program would consider all the IEEE 30 bus internal networks data then a load flow simulation will be executed. To add the new load to the first bus in the network. Therefore the developed model will simulate the new load at each available bus bar in the network and generate three analytical reports for each case that captures the overunder voltage and the loading elements among the grid.

  15. CCAST: a model-based gating strategy to isolate homogeneous subpopulations in a heterogeneous population of single cells.

    Directory of Open Access Journals (Sweden)

    Benedict Anchang

    2014-07-01

    Full Text Available A model-based gating strategy is developed for sorting cells and analyzing populations of single cells. The strategy, named CCAST, for Clustering, Classification and Sorting Tree, identifies a gating strategy for isolating homogeneous subpopulations from a heterogeneous population of single cells using a data-derived decision tree representation that can be applied to cell sorting. Because CCAST does not rely on expert knowledge, it removes human bias and variability when determining the gating strategy. It combines any clustering algorithm with silhouette measures to identify underlying homogeneous subpopulations, then applies recursive partitioning techniques to generate a decision tree that defines the gating strategy. CCAST produces an optimal strategy for cell sorting by automating the selection of gating markers, the corresponding gating thresholds and gating sequence; all of these parameters are typically manually defined. Even though CCAST is optimized for cell sorting, it can be applied for the identification and analysis of homogeneous subpopulations among heterogeneous single cell data. We apply CCAST on single cell data from both breast cancer cell lines and normal human bone marrow. On the SUM159 breast cancer cell line data, CCAST indicates at least five distinct cell states based on two surface markers (CD24 and EPCAM and provides a gating sorting strategy that produces more homogeneous subpopulations than previously reported. When applied to normal bone marrow data, CCAST reveals an efficient strategy for gating T-cells without prior knowledge of the major T-cell subtypes and the markers that best define them. On the normal bone marrow data, CCAST also reveals two major mature B-cell subtypes, namely CD123+ and CD123- cells, which were not revealed by manual gating but show distinct intracellular signaling responses. More generally, the CCAST framework could be used on other biological and non-biological high dimensional data

  16. Single cell electroporation using proton beam fabricated biochips

    Science.gov (United States)

    Homhuan, S.; Zhang, B.; Sheu, F.-S.; Bettiol, A. A.; Watt, F.

    2010-05-01

    We report the design and fabrication of a novel single cell electroporation biochip fabricated by the Proton Beam Writing technique (PBW), a new technique capable of direct-writing high-aspect-ratio nano and microstructures. The biochip features nickel micro-electrodes with straight-side walls between which individual cells are positioned. By applying electrical impulses across the electrodes, SYTOX® Green nucleic acid stain is incorporated into mouse neuroblastoma (N2a) cells. When the stain binds with DNA inside the cell nucleus, green fluorescence is observed upon excitation from a halogen lamp. Three parameters; electric field strength, pulse duration, and the number of pulses have been considered and optimized for the single cell electroporation. The results show that our biochip gives successfully electroporated cells . This single cell electroporation system represents a promising method for investigating the introduction of a wide variety of fluorophores, nanoparticles, quantum dots, DNAs and proteins into cells.

  17. Raman activated cell ejection for isolation of single cells.

    Science.gov (United States)

    Wang, Yun; Ji, Yuetong; Wharfe, Emma S; Meadows, Roger S; March, Peter; Goodacre, Royston; Xu, Jian; Huang, Wei E

    2013-11-19

    We have optimized a Raman microscope to obtain a single cell Raman spectrum (SCRS) with 0.1 s acquisition time. SCRS with such short acquisition time has sufficient discriminatory ability and spectral reproducibility to differentiate cells incorporated with (13)C and (15)N and to classify five different types of bacteria isolated from the oral cavity. We also developed Raman activated cell ejection (RACE) that is assisted by laser induced forward transfer (LIFT). We have shown, for the first time, that the single cells of interest can be identified and then accurately isolated from complex microbial communities based on their SCRS. This approach can be used to sort single cells of target traits from complex samples (e.g., biofilms, soils, sludge, tissues).

  18. Understanding Innovation Engines: Automated Creativity and Improved Stochastic Optimization via Deep Learning.

    Science.gov (United States)

    Nguyen, A; Yosinski, J; Clune, J

    2016-01-01

    The Achilles Heel of stochastic optimization algorithms is getting trapped on local optima. Novelty Search mitigates this problem by encouraging exploration in all interesting directions by replacing the performance objective with a reward for novel behaviors. This reward for novel behaviors has traditionally required a human-crafted, behavioral distance function. While Novelty Search is a major conceptual breakthrough and outperforms traditional stochastic optimization on certain problems, it is not clear how to apply it to challenging, high-dimensional problems where specifying a useful behavioral distance function is difficult. For example, in the space of images, how do you encourage novelty to produce hawks and heroes instead of endless pixel static? Here we propose a new algorithm, the Innovation Engine, that builds on Novelty Search by replacing the human-crafted behavioral distance with a Deep Neural Network (DNN) that can recognize interesting differences between phenotypes. The key insight is that DNNs can recognize similarities and differences between phenotypes at an abstract level, wherein novelty means interesting novelty. For example, a DNN-based novelty search in the image space does not explore in the low-level pixel space, but instead creates a pressure to create new types of images (e.g., churches, mosques, obelisks, etc.). Here, we describe the long-term vision for the Innovation Engine algorithm, which involves many technical challenges that remain to be solved. We then implement a simplified version of the algorithm that enables us to explore some of the algorithm's key motivations. Our initial results, in the domain of images, suggest that Innovation Engines could ultimately automate the production of endless streams of interesting solutions in any domain: for example, producing intelligent software, robot controllers, optimized physical components, and art.

  19. Automated selection of the optimal cardiac phase for single-beat coronary CT angiography reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Stassi, D.; Ma, H.; Schmidt, T. G., E-mail: taly.gilat-schmidt@marquette.edu [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201 (United States); Dutta, S.; Soderman, A.; Pazzani, D.; Gros, E.; Okerlund, D. [GE Healthcare, Waukesha, Wisconsin 53188 (United States)

    2016-01-15

    Purpose: Reconstructing a low-motion cardiac phase is expected to improve coronary artery visualization in coronary computed tomography angiography (CCTA) exams. This study developed an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. The algorithm uses prospectively gated, single-beat, multiphase data made possible by wide cone-beam imaging. The proposed algorithm differs from previous approaches because the optimal phase is identified based on vessel image quality (IQ) directly, compared to previous approaches that included motion estimation and interphase processing. Because there is no processing of interphase information, the algorithm can be applied to any sampling of image phases, making it suited for prospectively gated studies where only a subset of phases are available. Methods: An automated algorithm was developed to select the optimal phase based on quantitative IQ metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. The algorithm performance was evaluated using two observer studies. Fourteen single-beat cardiac CT exams (Revolution CT, GE Healthcare, Chalfont St. Giles, UK) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Pairwise inter-reader and reader-algorithm agreement was evaluated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC) between the reader and algorithm-selected phases. A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three

  20. Mass Spectrometric Method for Analyzing Metabolites in Yeast with Single Cell Sensitivity

    NARCIS (Netherlands)

    Amantonico, Andrea; Oh, Joo Yeon; Sobek, Jens; Heinemann, Matthias; Zenobi, Renato

    2008-01-01

    Getting a look-in: An optimized MALDI-MS procedure has been developed to detect endogenous primary metabolites directly in the cell extract. A detection limit corresponding to metabolites from less than a single cell has been attained, opening the door to single-cell metabolomics by mass spectrometr

  1. Single cell isolation process with laser induced forward transfer.

    Science.gov (United States)

    Deng, Yu; Renaud, Philippe; Guo, Zhongning; Huang, Zhigang; Chen, Ying

    2017-01-01

    A viable single cell is crucial for studies of single cell biology. In this paper, laser-induced forward transfer (LIFT) was used to isolate individual cell with a closed chamber designed to avoid contamination and maintain humidity. Hela cells were used to study the impact of laser pulse energy, laser spot size, sacrificed layer thickness and working distance. The size distribution, number and proliferation ratio of separated cells were statistically evaluated. Glycerol was used to increase the viscosity of the medium and alginate were introduced to soften the landing process. The role of laser pulse energy, the spot size and the thickness of titanium in energy absorption in LIFT process was theoretically analyzed with Lambert-Beer and a thermal conductive model. After comprehensive analysis, mechanical damage was found to be the dominant factor affecting the size and proliferation ratio of the isolated cells. An orthogonal experiment was conducted, and the optimal conditions were determined as: laser pulse energy, 9 μJ; spot size, 60 μm; thickness of titanium, 12 nm; working distance, 700 μm;, glycerol, 2% and alginate depth, greater than 1 μm. With these conditions, along with continuous incubation, a single cell could be transferred by the LIFT with one shot, with limited effect on cell size and viability. LIFT conducted in a closed chamber under optimized condition is a promising method for reliably isolating single cells.

  2. Computer-automated multi-disciplinary analysis and design optimization of internally cooled turbine blades

    Science.gov (United States)

    Martin, Thomas Joseph

    This dissertation presents the theoretical methodology, organizational strategy, conceptual demonstration and validation of a fully automated computer program for the multi-disciplinary analysis, inverse design and optimization of convectively cooled axial gas turbine blades and vanes. Parametric computer models of the three-dimensional cooled turbine blades and vanes were developed, including the automatic generation of discretized computational grids. Several new analysis programs were written and incorporated with existing computational tools to provide computer models of the engine cycle, aero-thermodynamics, heat conduction and thermofluid physics of the internally cooled turbine blades and vanes. A generalized information transfer protocol was developed to provide the automatic mapping of geometric and boundary condition data between the parametric design tool and the numerical analysis programs. A constrained hybrid optimization algorithm controlled the overall operation of the system and guided the multi-disciplinary internal turbine cooling design process towards the objectives and constraints of engine cycle performance, aerodynamic efficiency, cooling effectiveness and turbine blade and vane durability. Several boundary element computer programs were written to solve the steady-state non-linear heat conduction equation inside the internally cooled and thermal barrier-coated turbine blades and vanes. The boundary element method (BEM) did not require grid generation inside the internally cooled turbine blades and vanes, so the parametric model was very robust. Implicit differentiations of the BEM thermal and thereto-elastic analyses were done to compute design sensitivity derivatives faster and more accurately than via explicit finite differencing. A factor of three savings of computer processing time was realized for two-dimensional thermal optimization problems, and a factor of twenty was obtained for three-dimensional thermal optimization problems

  3. Model of Stochastic Automation Asymptotically Optimal Behavior for Inter-budget Regulation

    Directory of Open Access Journals (Sweden)

    Elena D. Streltsova

    2013-01-01

    Full Text Available This paper is focused on the topical issue of inter-budget control in the structure ↔ by applying econometric models. To create the decision-making model, mathematical tool of the theory of stochastic automation, operating in random environments was used. On the basis of the application of this mathematical tool, the adaptive training economic and mathematical model, able to adapt to the environment, maintained by the income from the payment of federal and regional taxes and fees, payable to the budget of the constituent entity of the RF and paid to the budget of a lower level in the form of budget regulation was developed. The authors have developed the structure of the machine, described its behavior in a random environment and introduced the expression for the final probabilities of machine in each of its states. The behavioral aspect of the machine by means of a mathematically rigorous proof of the theorem on the feasibility of behavior and the asymptotic optimality of the proposed design of the machine were presented.

  4. Paramfit: automated optimization of force field parameters for molecular dynamics simulations.

    Science.gov (United States)

    Betz, Robin M; Walker, Ross C

    2015-01-15

    The generation of bond, angle, and torsion parameters for classical molecular dynamics force fields typically requires fitting parameters such that classical properties such as energies and gradients match precalculated quantum data for structures that scan the value of interest. We present a program, Paramfit, distributed as part of the AmberTools software package that automates and extends this fitting process, allowing for simplified parameter generation for applications ranging from single molecules to entire force fields. Paramfit implements a novel combination of a genetic and simplex algorithm to find the optimal set of parameters that replicate either quantum energy or force data. The program allows for the derivation of multiple parameters simultaneously using significantly fewer quantum calculations than previous methods, and can also fit parameters across multiple molecules with applications to force field development. Paramfit has been applied successfully to systems with a sparse number of structures, and has already proven crucial in the development of the Assisted Model Building with Energy Refinement Lipid14 force field.

  5. Single-cell analysis - Methods and protocols

    OpenAIRE

    Carlo Alberto Redi

    2013-01-01

    This is certainly a timely volume in the Methods in molecular biology series: we already entered the synthetic biology era and thus we need to be aware of the new methodological advances able to fulfill the new and necessary needs for biologists, biotechnologists and nano-biotechnologists. Notably, among these, the possibility to perform single cell analysis allow researchers to capture single cell responses....

  6. On the implementation of an automated acoustic output optimization algorithm for subharmonic aided pressure estimation.

    Science.gov (United States)

    Dave, J K; Halldorsdottir, V G; Eisenbrey, J R; Merton, D A; Liu, J B; Machado, P; Zhao, H; Park, S; Dianis, S; Chalek, C L; Thomenius, K E; Brown, D B; Forsberg, F

    2013-04-01

    Incident acoustic output (IAO) dependent subharmonic signal amplitudes from ultrasound contrast agents can be categorized into occurrence, growth or saturation stages. Subharmonic aided pressure estimation (SHAPE) is a technique that utilizes growth stage subharmonic signal amplitudes for hydrostatic pressure estimation. In this study, we developed an automated IAO optimization algorithm to identify the IAO level eliciting growth stage subharmonic signals and also studied the effect of pulse length on SHAPE. This approach may help eliminate the problems of acquiring and analyzing the data offline at all IAO levels as was done in previous studies and thus, pave the way for real-time clinical pressure monitoring applications. The IAO optimization algorithm was implemented on a Logiq 9 (GE Healthcare, Milwaukee, WI) scanner interfaced with a computer. The optimization algorithm stepped the ultrasound scanner from 0% to 100% IAO. A logistic equation fitting function was applied with the criterion of minimum least squared error between the fitted subharmonic amplitudes and the measured subharmonic amplitudes as a function of the IAO levels and the optimum IAO level was chosen corresponding to the inflection point calculated from the fitted data. The efficacy of the optimum IAO level was investigated for in vivo SHAPE to monitor portal vein (PV) pressures in 5 canines and was compared with the performance of IAO levels, below and above the optimum IAO level, for 4, 8 and 16 transmit cycles. The canines received a continuous infusion of Sonazoid microbubbles (1.5 μl/kg/min; GE Healthcare, Oslo, Norway). PV pressures were obtained using a surgically introduced pressure catheter (Millar Instruments, Inc., Houston, TX) and were recorded before and after increasing PV pressures. The experiments showed that optimum IAO levels for SHAPE in the canines ranged from 6% to 40%. The best correlation between changes in PV pressures and in subharmonic amplitudes (r=-0.76; p=0

  7. Optimization of automated radiosynthesis of [18F]AV-45: a new PET imaging agent for Alzheimer's disease.

    Science.gov (United States)

    Liu, Yajing; Zhu, Lin; Plössl, Karl; Choi, Seok Rye; Qiao, Hongwen; Sun, Xiaotao; Li, Song; Zha, Zhihao; Kung, Hank F

    2010-11-01

    Accumulation of β-amyloid (Aβ) aggregates in the brain is linked to the pathogenesis of Alzheimer's disease (AD). Imaging probes targeting these Aβ aggregates in the brain may provide a useful tool to facilitate the diagnosis of AD. Recently, [(18)F]AV-45 ([(18)F]5) demonstrated high binding to the Aβ aggregates in AD patients. To improve the availability of this agent for widespread clinical application, a rapid, fully automated, high-yield, cGMP-compliant radiosynthesis was necessary for production of this probe. We report herein an optimal [(18)F]fluorination, de-protection condition and fully automated radiosynthesis of [(18)F]AV-45 ([(18)F]5) on a radiosynthesis module (BNU F-A2). The preparation of [(18)F]AV-45 ([(18)F]5) was evaluated under different conditions, specifically by employing different precursors (-OTs and -Br as the leaving group), reagents (K222/K(2)CO(3) vs. tributylammonium bicarbonate) and deprotection in different acids. With optimized conditions from these experiments, the automated synthesis of [(18)F]AV-45 ([(18)F]5) was accomplished by using a computer-programmed, standard operating procedure, and was purified on an on-line solid-phase cartridge (Oasis HLB). The optimized reaction conditions were successfully implemented to an automated nucleophilic fluorination module. The radiochemical purity of [(18)F]AV-45 ([(18)F]5) was >95%, and the automated synthesis yield was 33.6 ± 5.2% (no decay corrected, n=4), 50.1 ± 7.9% (decay corrected) in 50 min at a quantity level of 10-100 mCi (370-3700 MBq). Autoradiography studies of [(18)F]AV-45 ([(18)F]5) using postmortem AD brain and Tg mouse brain sections in the presence of different concentration of "cold" AV-136 showed a relatively low inhibition of in vitro binding of [(18)F]AV-45 ([(18)F]5) to the Aβ plaques (IC50=1-4 μM, a concentration several order of magnitude higher than the expected pseudo carrier concentration in the brain). Solid-phase extraction purification and improved

  8. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Chen, Ken Chung [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Stomatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan 70403 (China); Shen, Steve G. F.; Yan, Jin [Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Lee, Philip K. M.; Chow, Ben [Hong Kong Dental Implant and Maxillofacial Centre, Hong Kong, China 999077 (China); Liu, Nancy X. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China 100050 (China); Xia, James J. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 (United States); Department of Surgery (Oral and Maxillofacial Surgery), Weill Medical College, Cornell University, New York, New York 10065 (United States); Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul, 136701 (Korea, Republic of)

    2014-04-15

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  9. Moving Toward an Optimal and Automated Geospatial Network for CCUS Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Brendan Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-05

    Modifications in the global climate are being driven by the anthropogenic release of greenhouse gases (GHG) including carbon dioxide (CO2) (Middleton et al. 2014). CO2 emissions have, for example, been directly linked to an increase in total global temperature (Seneviratne et al. 2016). Strategies that limit CO2 emissions—like CO2 capture, utilization, and storage (CCUS) technology—can greatly reduce emissions by capturing CO2 before it is released to the atmosphere. However, to date CCUS technology has not been developed at a large commercial scale despite several promising high profile demonstration projects (Middleton et al. 2015). Current CCUS research has often focused on capturing CO2 emissions from coal-fired power plants, but recent research at Los Alamos National Laboratory (LANL) suggests focusing CCUS CO2 capture research upon industrial sources might better encourage CCUS deployment. To further promote industrial CCUS deployment, this project builds off current LANL research by continuing the development of a software tool called SimCCS, which estimates a regional system of transport to inject CO2 into sedimentary basins. The goal of SimCCS, which was first developed by Middleton and Bielicki (2009), is to output an automated and optimal geospatial industrial CCUS pipeline that accounts for industrial source and sink locations by estimating a Delaunay triangle network which also minimizes topographic and social costs (Middleton and Bielicki 2009). Current development of SimCCS is focused on creating a new version that accounts for spatial arrangements that were not available in the previous version. This project specifically addresses the issue of non-unique Delaunay triangles by adding additional triangles to the network, which can affect how the CCUS network is calculated.

  10. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  11. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA

    Science.gov (United States)

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-07-01

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.

  12. Semi-automated tandem mass spectrometric (MS/MS) triple quadrupole operating parameter optimization for high-throughput MS/MS detection workflows.

    Science.gov (United States)

    Geddes, Kristin; Adamson, Gary; Dube, Neal; Crathern, Susan; King, Richard C

    2009-05-01

    This paper describes an automated workflow for the determination of selected reaction monitoring (SRM) transitions and optimum mass spectrometric (MS) instrument parameters. The approach uses a Nanomate from Advion Biosciences for automated infusion of small amounts of sample in combination with Automaton optimization software from Sciex. The results are stored in the Analyst software Compound Database for automated acquisition method building. Comparisons are presented between the more traditional optimization methods of manual flow injection optimization, Autotune infusion optimization, Automaton flow injection optimization and the Nanomate-Automaton optimization approach. Data is also presented to show that acquisition methods developed on the Sciex model API3000 instrument can be effectively transferred to the Sceix API4000 and API5000 model instruments. Copyright (c) 2009 John Wiley & Sons, Ltd.

  13. Single cell analysis: the new frontier in 'Omics'

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Bodovitz, Steven

    2010-01-14

    Cellular heterogeneity arising from stochastic expression of genes, proteins, and metabolites is a fundamental principle of cell biology, but single cell analysis has been beyond the capabilities of 'Omics' technologies. This is rapidly changing with the recent examples of single cell genomics, transcriptomics, proteomics, and metabolomics. The rate of change is expected to accelerate owing to emerging technologies that range from micro/nanofluidics to microfabricated interfaces for mass spectrometry to third- and fourth-generation automated DNA sequencers. As described in this review, single cell analysis is the new frontier in Omics, and single cell Omics has the potential to transform systems biology through new discoveries derived from cellular heterogeneity.

  14. Epigenetics reloaded: the single-cell revolution.

    Science.gov (United States)

    Bheda, Poonam; Schneider, Robert

    2014-11-01

    Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Single cell enzyme diagnosis on the chip

    DEFF Research Database (Denmark)

    Jensen, Sissel Juul; Harmsen, Charlotte; Nielsen, Mette Juul

    2013-01-01

    Conventional diagnosis based on ensemble measurements often overlooks the variation among cells. Here, we present a droplet-microfluidics based platform to investigate single cell activities. Adopting a previously developed isothermal rolling circle amplification-based assay, we demonstrate detec...

  16. Pseudotime estimation: deconfounding single cell time series

    OpenAIRE

    John E Reid; Wernisch, Lorenz

    2016-01-01

    Motivation: Repeated cross-sectional time series single cell data confound several sources of variation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progression at different rates. Time series from single cell assays are particularly susceptible to confounding as the measurements are not averaged over populations of cells. When several genes are assayed in parallel these effects can be estimated and corrected for under certain smoothness assumptions o...

  17. Single-cell analysis - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-06-01

    Full Text Available This is certainly a timely volume in the Methods in molecular biology series: we already entered the synthetic biology era and thus we need to be aware of the new methodological advances able to fulfill the new and necessary needs for biologists, biotechnologists and nano-biotechnologists. Notably, among these, the possibility to perform single cell analysis allow researchers to capture single cell responses....

  18. Single-cell analysis in cancer genomics

    Science.gov (United States)

    Saadatpour, Assieh; Lai, Shujing; Guo, Guoji; Yuan, Guo-Cheng

    2017-01-01

    Genetic changes and environmental differences result in cellular heterogeneity among cancer cells within the same tumor, thereby complicating treatment outcomes. Recent advances in single-cell technologies have opened new avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell types, measure mutation rates, and, ultimately, guide diagnosis and treatment. In this paper, we review the recent single-cell technological and computational advances at the genomic, transcriptomic, and proteomic levels, and discuss their applications in cancer research. PMID:26450340

  19. Optimization of RNA Purification and Analysis for Automated, Pre-Symptomatic Disease Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, A; Nasarabadi, S; Milanovich, F

    2005-06-28

    When diagnosing disease, time is often a more formidable enemy than the pathogen itself. Current detection methods rely primarily on post-symptomatic protein production (i.e. antibodies), which does not occur in noticeable levels until several weeks after infection. As such, a major goal among researchers today is to expedite pre-symptomatic disease recognition and treatment. Since most pathogens are known to leave a unique signature on the genetic expression of the host, one potential diagnostic tool is host mRNA. In my experiments, I examined several methods of isolating RNA and reading its genetic sequence. I first used two types of reverse transcriptase polymerase chain reactions (using commercial RNA) and examined the resultant complementary DNA through gel electrophoresis. I then proceeded to isolate and purify whole RNA from actual human monocytes and THP-1 cells using several published methods, and examined gene expression on the RNA itself. I compared the two RT-PCR methods and concluded that a double step RT-PCR is superior to the single step method. I also compared the various techniques of RNA isolation by examining the yield and purity of the resultant RNA. Finally, I studied the level of cellular IL-8 and IL-1 gene expression, two genes involved in the human immune response, which can serve as a baseline for future genetic comparison with LPS-exposed cells. Based on the results, I have determined which conditions and procedures are optimal for RNA isolation, RT-PCR, and RNA yield assessment. The overall goal of my research is to develop a flow-through system of RNA analysis, whereby blood samples can be collected and analyzed for disease prior to the onset of symptoms. The Pathomics group hopes to automate this process by removing the human labor factor, thereby decreasing the procedure's cost and increasing its availability to the general population. Eventually, our aim is to have an autonomous diagnostic system based on RNA analysis that would

  20. Optimization of RNA Purification and Analysis for Automated, Pre-Symptomatic Disease Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, A; Nasarabadi, S; Milanovich, F

    2005-06-28

    When diagnosing disease, time is often a more formidable enemy than the pathogen itself. Current detection methods rely primarily on post-symptomatic protein production (i.e. antibodies), which does not occur in noticeable levels until several weeks after infection. As such, a major goal among researchers today is to expedite pre-symptomatic disease recognition and treatment. Since most pathogens are known to leave a unique signature on the genetic expression of the host, one potential diagnostic tool is host mRNA. In my experiments, I examined several methods of isolating RNA and reading its genetic sequence. I first used two types of reverse transcriptase polymerase chain reactions (using commercial RNA) and examined the resultant complementary DNA through gel electrophoresis. I then proceeded to isolate and purify whole RNA from actual human monocytes and THP-1 cells using several published methods, and examined gene expression on the RNA itself. I compared the two RT-PCR methods and concluded that a double step RT-PCR is superior to the single step method. I also compared the various techniques of RNA isolation by examining the yield and purity of the resultant RNA. Finally, I studied the level of cellular IL-8 and IL-1 gene expression, two genes involved in the human immune response, which can serve as a baseline for future genetic comparison with LPS-exposed cells. Based on the results, I have determined which conditions and procedures are optimal for RNA isolation, RT-PCR, and RNA yield assessment. The overall goal of my research is to develop a flow-through system of RNA analysis, whereby blood samples can be collected and analyzed for disease prior to the onset of symptoms. The Pathomics group hopes to automate this process by removing the human labor factor, thereby decreasing the procedure's cost and increasing its availability to the general population. Eventually, our aim is to have an autonomous diagnostic system based on RNA analysis that would

  1. Optimizing lighting, thermal performance, and energy production of building facades by using automated blinds and PV cells

    Science.gov (United States)

    Alzoubi, Hussain Hendi

    Energy consumption in buildings has recently become a major concern for environmental designers. Within this field, daylighting and solar energy design are attractive strategies for saving energy. This study seeks the integrity and the optimality of building envelopes' performance. It focuses on the transparent parts of building facades, specifically, the windows and their shading devices. It suggests a new automated method of utilizing solar energy while keeping optimal solutions for indoor daylighting. The method utilizes a statistical approach to produce mathematical equations based on physical experimentation. A full-scale mock-up representing an actual office was built. Heat gain and lighting levels were measured empirically and correlated with blind angles. Computational methods were used to estimate the power production from photovoltaic cells. Mathematical formulas were derived from the results of the experiments; these formulas were utilized to construct curves as well as mathematical equations for the purpose of optimization. The mathematical equations resulting from the optimization process were coded using Java programming language to enable future users to deal with generic locations of buildings with a broader context of various climatic conditions. For the purpose of optimization by automation under different climatic conditions, a blind control system was developed based on the findings of this study. This system calibrates the blind angles instantaneously based upon the sun position, the indoor daylight, and the power production from the photovoltaic cells. The functions of this system guarantee full control of the projected solar energy on buildings' facades for indoor lighting and heat gain. In winter, the system automatically blows heat into the space, whereas it expels heat from the space during the summer season. The study showed that the optimality of building facades' performance is achievable for integrated thermal, energy, and lighting

  2. Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks

    Science.gov (United States)

    Eckstein, Miguel P.; Bartroff, Jay L.; Abbey, Craig K.; Whiting, James S.; Bochud, Francois O.

    2003-03-01

    We compared the ability of three model observers (nonprewhitening matched filter with an eye filter, Hotelling and channelized Hotelling) in predicting the effect of JPEG and wavelet-Crewcode image compression on human visual detection of a simulated lesion in single frame digital x-ray coronary angiograms. All three model observers predicted the JPEG superiority present in human performance, although the nonprewhitening matched filter with an eye filter (NPWE) and the channelized Hotelling models were better predictors than the Hotelling model. The commonly used root mean square error and related peak signal to noise ratio metrics incorrectly predicted a JPEG inferiority. A particular image discrimination/perceptual difference model correctly predicted a JPEG advantage at low compression ratios but incorrectly predicted a JPEG inferiority at high compression ratios. In the second part of the paper, the NPWE model was used to perform automated simulated annealing optimization of the quantization matrix of the JPEG algorithm at 25:1 compression ratio. A subsequent psychophysical study resulted in improved human detection performance for images compressed with the NPWE optimized quantization matrix over the JPEG default quantization matrix. Together, our results show how model observers can be successfully used to perform automated evaluation and optimization of diagnostic performance in clinically relevant visual tasks using real anatomic backgrounds.

  3. Technologies for Single-Cell Isolation.

    Science.gov (United States)

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-07-24

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  4. Technologies for Single-Cell Isolation

    Directory of Open Access Journals (Sweden)

    Andre Gross

    2015-07-01

    Full Text Available The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting respectively Flow cytometry (33% usage, laser microdissection (17%, manual cell picking (17%, random seeding/dilution (15%, and microfluidics/lab-on-a-chip devices (12% are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  5. Optimized and Automated Radiosynthesis of [18F]DHMT for Translational Imaging of Reactive Oxygen Species with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2016-12-01

    Full Text Available Reactive oxygen species (ROS play important roles in cell signaling and homeostasis. However, an abnormally high level of ROS is toxic, and is implicated in a number of diseases. Positron emission tomography (PET imaging of ROS can assist in the detection of these diseases. For the purpose of clinical translation of [18F]6-(4-((1-(2-fluoroethyl-1H-1,2,3-triazol-4-ylmethoxyphenyl-5-methyl-5,6-dihydrophenanthridine-3,8-diamine ([18F]DHMT, a promising ROS PET radiotracer, we first manually optimized the large-scale radiosynthesis conditions and then implemented them in an automated synthesis module. Our manual synthesis procedure afforded [18F]DHMT in 120 min with overall radiochemical yield (RCY of 31.6% ± 9.3% (n = 2, decay-uncorrected and specific activity of 426 ± 272 GBq/µmol (n = 2. Fully automated radiosynthesis of [18F]DHMT was achieved within 77 min with overall isolated RCY of 6.9% ± 2.8% (n = 7, decay-uncorrected and specific activity of 155 ± 153 GBq/µmol (n = 7 at the end of synthesis. This study is the first demonstration of producing 2-[18F]fluoroethyl azide by an automated module, which can be used for a variety of PET tracers through click chemistry. It is also the first time that [18F]DHMT was successfully tested for PET imaging in a healthy beagle dog.

  6. Push-through direct injection NMR: an optimized automation method applied to metabolomics

    Science.gov (United States)

    There is a pressing need to increase the throughput of NMR analysis in fields such as metabolomics and drug discovery. Direct injection (DI) NMR automation is recognized to have the potential to meet this need due to its suitability for integration with the 96-well plate format. ...

  7. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuanpeng Janet, E-mail: yphuang@cabm.rutgers.edu; Mao, Binchen; Xu, Fei; Montelione, Gaetano T., E-mail: gtm@rutgers.edu [Rutgers, The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (United States)

    2015-08-15

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD–NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases {sup 15}N–{sup 1}H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD–NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta.

  8. Sampling techniques for single-cell electrophoresis.

    Science.gov (United States)

    Cecala, Christine; Sweedler, Jonathan V

    2012-07-07

    Cells are extraordinarily complex, containing thousands of different analytes with concentrations spanning at least nine orders of magnitude. Analyzing single cells instead of tissue homogenates provides unique insights into cell-to-cell heterogeneity and aids in distinguishing normal cells from pathological ones. The high sensitivity and low sample consumption of capillary and on-chip electrophoresis, when integrated with fluorescence, electrochemical, and mass spectrometric detection methods, offer an ideal toolset for examining single cells and even subcellular organelles; however, the isolation and loading of such small samples into these devices is challenging. Recent advances have addressed this issue by interfacing a variety of enhanced mechanical, microfluidic, and optical sampling techniques to capillary and on-chip electrophoresis instruments for single-cell analyses.

  9. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-11-01

    Full Text Available Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications.

  10. Studies of the Ecophysiology of Single Cells in Microbial Communities by (Quantitative) Microautoradiography and Fluorescence In Situ Hybridization (MAR-FISH)

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    Microautoradiography (MAR) in combination with fluorescence in situ hybridization (FISH) is a powerful method of obtaining information about the ecophysiology of probe-defined single cells in mixed microbial communities. The incorporation of radiolabelled substrates can be quantified by automated...

  11. Single cell adhesion assay using computer controlled micropipette.

    Directory of Open Access Journals (Sweden)

    Rita Salánki

    Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a

  12. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.

    Science.gov (United States)

    Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov

    2015-08-01

    Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.

  13. Towards an Automated Pipeline for the Translation and Optimization of Geospatial Data for Virtual Environments

    Science.gov (United States)

    2008-12-01

    clearly observed in the game industry ( Introversion , 2008). Currently there are many tools available to assist in automating the production of large...Maya, there is the option to embed in it more abstract- level information that can be used by the artificial intelligence (AI) or human user within...Graphics and Interactive Techniques, Melbourne, Australia, February 11 – 14. Introversion Software, 2008: Procedural Content Generation. http

  14. Exploring symbioses by single-cell genomics.

    Science.gov (United States)

    Kamke, Janine; Bayer, Kristina; Woyke, Tanja; Hentschel, Ute

    2012-08-01

    Single-cell genomics has advanced the field of microbiology from the analysis of microbial metagenomes where information is "drowning in a sea of sequences," to recognizing each microbial cell as a separate and unique entity. Single-cell genomics employs Phi29 polymerase-mediated whole-genome amplification to yield microgram-range genomic DNA from single microbial cells. This method has now been applied to a handful of symbiotic systems, including bacterial symbionts of marine sponges, insects (grasshoppers, termites), and vertebrates (mouse, human). In each case, novel insights were obtained into the functional genomic repertoire of the bacterial partner, which, in turn, led to an improved understanding of the corresponding host. Single-cell genomics is particularly valuable when dealing with uncultivated microorganisms, as is still the case for many bacterial symbionts. In this review, we explore the power of single-cell genomics for symbiosis research and highlight recent insights into the symbiotic systems that were obtained by this approach.

  15. Optimizing object-based image analysis for semi-automated geomorphological mapping

    NARCIS (Netherlands)

    Anders, N.; Smith, M.; Seijmonsbergen, H.; Bouten, W.; Hengl, T.; Evans, I.S.; Wilson, J.P.; Gould, M.

    2011-01-01

    Object-Based Image Analysis (OBIA) is considered a useful tool for analyzing high-resolution digital terrain data. In the past, both segmentation and classification parameters were optimized manually by trial and error. We propose a method to automatically optimize classification parameters for incr

  16. Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions.

    Directory of Open Access Journals (Sweden)

    Vasanthan Maruthapillai

    Full Text Available In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face and change in marker distance (change in distance between the original and new marker positions, were used to extract three statistical features (mean, variance, and root mean square from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.

  17. Automated Gravimetric Calibration to Optimize the Accuracy and Precision of TECAN Freedom EVO Liquid Handler.

    Science.gov (United States)

    Bessemans, Laurent; Jully, Vanessa; de Raikem, Caroline; Albanese, Mathieu; Moniotte, Nicolas; Silversmet, Pascal; Lemoine, Dominique

    2016-10-01

    High-throughput screening technologies are increasingly integrated into the formulation development process of biopharmaceuticals. The performance of liquid handling systems is dependent on the ability to deliver accurate and precise volumes of specific reagents to ensure process quality. We have developed an automated gravimetric calibration procedure to adjust the accuracy and evaluate the precision of the TECAN Freedom EVO liquid handling system. Volumes from 3 to 900 µL using calibrated syringes and fixed tips were evaluated with various solutions, including aluminum hydroxide and phosphate adjuvants, β-casein, sucrose, sodium chloride, and phosphate-buffered saline. The methodology to set up liquid class pipetting parameters for each solution was to split the process in three steps: (1) screening of predefined liquid class, including different pipetting parameters; (2) adjustment of accuracy parameters based on a calibration curve; and (3) confirmation of the adjustment. The run of appropriate pipetting scripts, data acquisition, and reports until the creation of a new liquid class in EVOware was fully automated. The calibration and confirmation of the robotic system was simple, efficient, and precise and could accelerate data acquisition for a wide range of biopharmaceutical applications.

  18. Single cell microfluidics for systems oncology

    Science.gov (United States)

    Fan, Rong

    2012-02-01

    The singular term ``cancer'' is never one kind of disease, but deceivingly encompasses a large number of heterogeneous disease states, which makes it impossible to completely treat cancer using a generic approach. Rather systems approaches are urgently required to assess cancer heterogeneity, stratify patients and enable the most effective, individualized treatment. The heterogeneity of tumors at the single cell level is reflected by the hierarchical complexity of the tumor microenvironment. To identify all the cellular components, including both tumor and infiltrating immune cells, and to delineate the associated cell-to-cell signaling network that dictates tumor initiation, progression and metastasis, we developed a single cell microfluidics chip that can analyze a panel of proteins that are potentially associated inter-cellular signaling network in tumor microenvironment from hundreds of single cells in parallel. This platform integrates two advanced technologies -- microfluidic single cell handling and ultra-high density protein array. This device was first tested for highly multiplexed profiling of secreted proteins including tumor-immune signaling molecules from monocytic leukemia cells. We observed profound cellular heterogeneity with all functional phenotypes quantitatively identified. Correlation analysis further indicated the existence of an intercellular cytokine network in which TNFα-induced secondary signaling cascades further increased functional cellular diversity. It was also exploited to evaluate polyfunctionality of tumor antigen-specific T cells from melanoma patients being treated with adoptive T cell transfer immunotherapy. This platform could be further extended to analyze both solid tumor cells (e.g. human lung carcinoma cells) and infiltrating immune cells (e.g. macrophages) so as to enable systems analysis of the complex tumor microenvironment from small amounts of clinical specimens, e.g. skinny needle biopsies. Thus, it could potentially

  19. Single cell-resolution western blotting.

    Science.gov (United States)

    Kang, Chi-Chih; Yamauchi, Kevin A; Vlassakis, Julea; Sinkala, Elly; Duncombe, Todd A; Herr, Amy E

    2016-08-01

    This protocol describes how to perform western blotting on individual cells to measure cell-to-cell variation in protein expression levels and protein state. Like conventional western blotting, single-cell western blotting (scWB) is particularly useful for protein targets that lack selective antibodies (e.g., isoforms) and in cases in which background signal from intact cells is confounding. scWB is performed on a microdevice that comprises an array of microwells molded in a thin layer of a polyacrylamide gel (PAG). The gel layer functions as both a molecular sieving matrix during PAGE and a blotting scaffold during immunoprobing. scWB involves five main stages: (i) gravity settling of cells into microwells; (ii) chemical lysis of cells in each microwell; (iii) PAGE of each single-cell lysate; (iv) exposure of the gel to UV light to blot (immobilize) proteins to the gel matrix; and (v) in-gel immunoprobing of immobilized proteins. Multiplexing can be achieved by probing with antibody cocktails and using antibody stripping/reprobing techniques, enabling detection of 10+ proteins in each cell. We also describe microdevice fabrication for both uniform and pore-gradient microgels. To extend in-gel immunoprobing to gels of small pore size, we describe an optional gel de-cross-linking protocol for more effective introduction of antibodies into the gel layer. Once the microdevice has been fabricated, the assay can be completed in 4-6 h by microfluidic novices and it generates high-selectivity, multiplexed data from single cells. The technique is relevant when direct measurement of proteins in single cells is needed, with applications spanning the fundamental biosciences to applied biomedicine.

  20. Automated Identification of the Heart Wall Throughout the Entire Cardiac Cycle Using Optimal Cardiac Phase for Extracted Features

    Science.gov (United States)

    Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2011-07-01

    In most methods for evaluation of cardiac function based on echocardiography, the heart wall is currently identified manually by an operator. However, this task is very time-consuming and suffers from inter- and intraobserver variability. The present paper proposes a method that uses multiple features of ultrasonic echo signals for automated identification of the heart wall region throughout an entire cardiac cycle. In addition, the optimal cardiac phase to select a frame of interest, i.e., the frame for the initiation of tracking, was determined. The heart wall region at the frame of interest in this cardiac phase was identified by the expectation-maximization (EM) algorithm, and heart wall regions in the following frames were identified by tracking each point classified in the initial frame as the heart wall region using the phased tracking method. The results for two subjects indicate the feasibility of the proposed method in the longitudinal axis view of the heart.

  1. Analysis of mitochondria isolated from single cells.

    Science.gov (United States)

    Johnson, Ryan D; Navratil, Marian; Poe, Bobby G; Xiong, Guohua; Olson, Karen J; Ahmadzadeh, Hossein; Andreyev, Dmitry; Duffy, Ciarán F; Arriaga, Edgar A

    2007-01-01

    Bulk studies are not suitable to describe and study cell-to-cell variation, which is of high importance in biological processes such as embryogenesis, tissue differentiation, and disease. Previously, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was used to measure the properties of organelles isolated from millions of cells. As such, these bulk measurements reported average properties for the organelles of cell populations. Similar measurements for organelles released from single cells would be highly relevant to describe the subcellular variations among cells. Toward this goal, here we introduce an approach to analyze the mitochondria released from single mammalian cells. Osteosarcoma 143B cells are labeled with either the fluorescent mitochondrion-specific 10-N-nonyl acridine orange (NAO) or via expression of the fluorescent protein DsRed2. Subsequently, a single cell is introduced into the CE-LIF capillary where the organelles are released by a combined treatment of digitonin and trypsin. After this treatment, an electric field is applied and the released organelles electromigrate toward the LIF detector. From an electropherogram, the number of detected events per cell, their individual electrophoretic mobilities, and their individual fluorescence intensities are calculated. The results obtained from DsRed2 labeling, which is retained in intact mitochondria, and NAO labeling, which labels all mitochondria, are the basis for discussion of the strengths and limitations of this single-cell approach.

  2. Emerging single-cell technologies in immunology.

    Science.gov (United States)

    Herderschee, Jacobus; Fenwick, Craig; Pantaleo, Giuseppe; Roger, Thierry; Calandra, Thierry

    2015-07-01

    During evolution, the immune system has diversified to protect the host from the extremely wide array of possible pathogens. Until recently, immune responses were dissected by use of global approaches and bulk tools, averaging responses across samples and potentially missing particular contributions of individual cells. This is a strongly limiting factor, considering that initial immune responses are likely to be triggered by a restricted number of cells at the vanguard of host defenses. The development of novel, single-cell technologies is a major innovation offering great promise for basic and translational immunology with the potential to overcome some of the limitations of traditional research tools, such as polychromatic flow cytometry or microscopy-based methods. At the transcriptional level, much progress has been made in the fields of microfluidics and single-cell RNA sequencing. At the protein level, mass cytometry already allows the analysis of twice as many parameters as flow cytometry. In this review, we explore the basis and outcome of immune-cell diversity, how genetically identical cells become functionally different, and the consequences for the exploration of host-immune defense responses. We will highlight the advantages, trade-offs, and potential pitfalls of emerging, single-cell-based technologies and how they provide unprecedented detail of immune responses.

  3. GPRS and Bluetooth Based Devices/Mobile Connectivity Shifting From Manual To Automation For Performance Optimization

    Directory of Open Access Journals (Sweden)

    Nazia Bibi

    2011-09-01

    Full Text Available Many companies/organizations are trying to move towards automation and provide their workers with the internet facility on their mobile in order to carry out their routine tasks to save time and resources. The proposed system is based on GPRS technology aims to provide a solution to problem faced in carryout routine tasks considering mobility. The system is designed in a way that facilitates Workers/field staff get updates on their mobile phone regarding tasks at hand. This System is beneficial in a sense that it saves resources in term of time, human resources and cuts down the paper work. The proposed system has been developed in view of research study conducted in the software development and telecom industry and provides a high end solution to the customers/fieldworkers that use GPRS technology for transactions updates of databases.

  4. New strategies for medical data mining, part 3: automated workflow analysis and optimization.

    Science.gov (United States)

    Reiner, Bruce

    2011-02-01

    The practice of evidence-based medicine calls for the creation of "best practice" guidelines, leading to improved clinical outcomes. One of the primary factors limiting evidence-based medicine in radiology today is the relative paucity of standardized databases. The creation of standardized medical imaging databases offer the potential to enhance radiologist workflow and diagnostic accuracy through objective data-driven analytics, which can be categorized in accordance with specific variables relating to the individual examination, patient, provider, and technology being used. In addition to this "global" database analysis, "individual" radiologist workflow can be analyzed through the integration of electronic auditing tools into the PACS. The combination of these individual and global analyses can ultimately identify best practice patterns, which can be adapted to the individual attributes of end users and ultimately used in the creation of automated evidence-based medicine workflow templates.

  5. Optimizing Automated Classification of Periodic Variable Stars in New Synoptic Surveys

    CERN Document Server

    Long, James P; Rice, John A; Richards, Joseph W; Bloom, Joshua S

    2012-01-01

    Efficient and automated classification of periodic variable stars is becoming increasingly important as the scale of astronomical surveys grows. Several recent papers have used methods from machine learning and statistics to construct classifiers on databases of labeled, multi--epoch sources with the intention of using these classifiers to automatically infer the classes of unlabeled sources from new surveys. However, the same source observed with two different synoptic surveys will generally yield different derived metrics (features) from the light curve. Since such features are used in classifiers, this survey-dependent mismatch in feature space will typically lead to degraded classifier performance. In this paper we show how and why feature distributions change using OGLE and \\textit{Hipparcos} light curves. To overcome survey systematics, we apply a method, \\textit{noisification}, which attempts to empirically match distributions of features between the labeled sources used to construct the classifier and...

  6. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    Science.gov (United States)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  7. An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI.

    Directory of Open Access Journals (Sweden)

    Nathan W Churchill

    Full Text Available BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the "pipeline" significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard "fixed" preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (<3 minutes each, demonstrating that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour correlations in relatively small datasets.

  8. An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI.

    Science.gov (United States)

    Churchill, Nathan W; Spring, Robyn; Afshin-Pour, Babak; Dong, Fan; Strother, Stephen C

    2015-01-01

    BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the "pipeline") significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard "fixed" preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (<3 minutes each), demonstrating that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour correlations in relatively small datasets.

  9. Single-cell Raman spectroscopy of irradiated tumour cells

    Science.gov (United States)

    Matthews, Quinn

    This work describes the development and application of a novel combination of single-cell Raman spectroscopy (RS), automated data processing, and principal component analysis (PCA) for investigating radiation induced biochemical responses in human tumour cells. The developed techniques are first validated for the analysis of large data sets (˜200 spectra) obtained from single cells. The effectiveness and robustness of the automated data processing methods is demonstrated, and potential pitfalls that may arise during the implementation of such methods are identified. The techniques are first applied to investigate the inherent sources of spectral variability between single cells of a human prostate tumour cell line (DU145) cultured in vitro. PCA is used to identify spectral differences that correlate with cell cycle progression and the changing confluency of a cell culture during the first 3-4 days after sub-culturing. Spectral variability arising from cell cycle progression is (i) expressed as varying intensities of protein and nucleic acid features relative to lipid features, (ii) well correlated with known biochemical changes in cells as they progress through the cell cycle, and (iii) shown to be the most significant source of inherent spectral variability between cells. This characterization provides a foundation for interpreting spectral variability in subsequent studies. The techniques are then applied to study the effects of ionizing radiation on human tumour cells. DU145 cells are cultured in vitro and irradiated to doses between 15 and 50 Gy with single fractions of 6 MV photons from a medical linear accelerator. Raman spectra are acquired from irradiated and unirradiated cells, up to 5 days post-irradiation. PCA is used to distinguish radiation induced spectral changes from inherent sources of spectral variability, such as those arising from cell cycle. Radiation induced spectral changes are found to correlate with both the irradiated dose and the

  10. SU-E-J-130: Automating Liver Segmentation Via Combined Global and Local Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dengwang; Wang, Jie [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong (China); Kapp, Daniel S.; Xing, Lei [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: The aim of this work is to develop a robust algorithm for accurate segmentation of liver with special attention paid to the problems with fuzzy edges and tumor. Methods: 200 CT images were collected from radiotherapy treatment planning system. 150 datasets are selected as the panel data for shape dictionary and parameters estimation. The remaining 50 datasets were used as test images. In our study liver segmentation was formulated as optimization process of implicit function. The liver region was optimized via local and global optimization during iterations. Our method consists five steps: 1)The livers from the panel data were segmented manually by physicians, and then We estimated the parameters of GMM (Gaussian mixture model) and MRF (Markov random field). Shape dictionary was built by utilizing the 3D liver shapes. 2)The outlines of chest and abdomen were located according to rib structure in the input images, and the liver region was initialized based on GMM. 3)The liver shape for each 2D slice was adjusted using MRF within the neighborhood of liver edge for local optimization. 4)The 3D liver shape was corrected by employing SSR (sparse shape representation) based on liver shape dictionary for global optimization. Furthermore, H-PSO(Hybrid Particle Swarm Optimization) was employed to solve the SSR equation. 5)The corrected 3D liver was divided into 2D slices as input data of the third step. The iteration was repeated within the local optimization and global optimization until it satisfied the suspension conditions (maximum iterations and changing rate). Results: The experiments indicated that our method performed well even for the CT images with fuzzy edge and tumors. Comparing with physician delineated results, the segmentation accuracy with the 50 test datasets (VOE, volume overlap percentage) was on average 91%–95%. Conclusion: The proposed automatic segmentation method provides a sensible technique for segmentation of CT images. This work is

  11. Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons.

    Science.gov (United States)

    Rumbell, Timothy H; Draguljić, Danel; Yadav, Aniruddha; Hof, Patrick R; Luebke, Jennifer I; Weaver, Christina M

    2016-08-01

    Conductance-based compartment modeling requires tuning of many parameters to fit the neuron model to target electrophysiological data. Automated parameter optimization via evolutionary algorithms (EAs) is a common approach to accomplish this task, using error functions to quantify differences between model and target. We present a three-stage EA optimization protocol for tuning ion channel conductances and kinetics in a generic neuron model with minimal manual intervention. We use the technique of Latin hypercube sampling in a new way, to choose weights for error functions automatically so that each function influences the parameter search to a similar degree. This protocol requires no specialized physiological data collection and is applicable to commonly-collected current clamp data and either single- or multi-objective optimization. We applied the protocol to two representative pyramidal neurons from layer 3 of the prefrontal cortex of rhesus monkeys, in which action potential firing rates are significantly higher in aged compared to young animals. Using an idealized dendritic topology and models with either 4 or 8 ion channels (10 or 23 free parameters respectively), we produced populations of parameter combinations fitting the target datasets in less than 80 hours of optimization each. Passive parameter differences between young and aged models were consistent with our prior results using simpler models and hand tuning. We analyzed parameter values among fits to a single neuron to facilitate refinement of the underlying model, and across fits to multiple neurons to show how our protocol will lead to predictions of parameter differences with aging in these neurons.

  12. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    NARCIS (Netherlands)

    Borot, Maxence; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-01-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance.

  13. An Optimized Clustering Approach for Automated Detection of White Matter Lesions in MRI Brain Images

    Directory of Open Access Journals (Sweden)

    M. Anitha

    2012-04-01

    Full Text Available Settings White Matter lesions (WMLs are small areas of dead cells found in parts of the brain. In general, it is difficult for medical experts to accurately quantify the WMLs due to decreased contrast between White Matter (WM and Grey Matter (GM. The aim of this paper is to
    automatically detect the White Matter Lesions which is present in the brains of elderly people. WML detection process includes the following stages: 1. Image preprocessing, 2. Clustering (Fuzzy c-means clustering, Geostatistical Possibilistic clustering and Geostatistical Fuzzy clustering and 3.Optimization using Particle Swarm Optimization (PSO. The proposed system is tested on a database of 208 MRI images. GFCM yields high sensitivity of 89%, specificity of 94% and overall accuracy of 93% over FCM and GPC. The clustered brain images are then subjected to Particle Swarm Optimization (PSO. The optimized result obtained from GFCM-PSO provides sensitivity of 90%, specificity of 94% and accuracy of 95%. The detection results reveals that GFCM and GFCMPSO better localizes the large regions of lesions and gives less false positive rate when compared to GPC and GPC-PSO which captures the largest loads of WMLs only in the upper ventral horns of the brain.

  14. SWANS: A Prototypic SCALE Criticality Sequence for Automated Optimization Using the SWAN Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, E.

    2001-01-11

    SWANS is a new prototypic analysis sequence that provides an intelligent, semi-automatic search for the maximum k{sub eff} of a given amount of specified fissile material, or of the minimum critical mass. It combines the optimization strategy of the SWAN code with the composition-dependent resonance self-shielded cross sections of the SCALE package. For a given system composition arrived at during the iterative optimization process, the value of k{sub eff} is as accurate and reliable as obtained using the CSAS1X Sequence of SCALE-4.4. This report describes how SWAN is integrated within the SCALE system to form the new prototypic optimization sequence, describes the optimization procedure, provides a user guide for SWANS, and illustrates its application to five different types of problems. In addition, the report illustrates that resonance self-shielding might have a significant effect on the maximum k{sub eff} value a given fissile material mass can have.

  15. Automated Design of Synthetic Cell Classifier Circuits Using a Two-Step Optimization Strategy.

    Science.gov (United States)

    Mohammadi, Pejman; Beerenwinkel, Niko; Benenson, Yaakov

    2017-02-22

    Cell classifiers are genetic logic circuits that transduce endogenous molecular inputs into cell-type-specific responses. Designing classifiers that achieve optimal differential response between specific cell types is a hard computational problem because it involves selection of endogenous inputs and optimization of both biochemical parameters and a logic function. To address this problem, we first derive an optimal set of biochemical parameters with the largest expected differential response over a diverse set of logic circuits, and second, we use these parameters in an evolutionary algorithm to select circuit inputs and optimize the logic function. Using this approach, we design experimentally feasible microRNA-based circuits capable of perfect discrimination for several real-world cell-classification tasks. We also find that under realistic cell-to-cell variation, circuit performance is comparable to standard cross-validation performance estimates. Our approach facilitates the generation of candidate circuits for experimental testing in therapeutic settings that require precise cell targeting, such as cancer therapy.

  16. Process optimization and biocompatibility of cell carriers suitable for automated magnetic manipulation.

    Science.gov (United States)

    Krejci, I; Piana, C; Howitz, S; Wegener, T; Fiedler, S; Zwanzig, M; Schmitt, D; Daum, N; Meier, K; Lehr, C M; Batista, U; Zemljic, S; Messerschmidt, J; Franzke, J; Wirth, M; Gabor, F

    2012-03-01

    There is increasing demand for automated cell reprogramming in the fields of cell biology, biotechnology and the biomedical sciences. Microfluidic-based platforms that provide unattended manipulation of adherent cells promise to be an appropriate basis for cell manipulation. In this study we developed a magnetically driven cell carrier to serve as a vehicle within an in vitro environment. To elucidate the impact of the carrier on cells, biocompatibility was estimated using the human adenocarcinoma cell line Caco-2. Besides evaluation of the quality of the magnetic carriers by field emission scanning electron microscopy, the rate of adherence, proliferation and differentiation of Caco-2 cells grown on the carriers was quantified. Moreover, the morphology of the cells was monitored by immunofluorescent staining. Early generations of the cell carrier suffered from release of cytotoxic nickel from the magnetic cushion. Biocompatibility was achieved by complete encapsulation of the nickel bulk within galvanic gold. The insulation process had to be developed stepwise and was controlled by parallel monitoring of the cell viability. The final carrier generation proved to be a proper support for cell manipulation, allowing proliferation of Caco-2 cells equal to that on glass or polystyrene as a reference for up to 10 days. Functional differentiation was enhanced by more than 30% compared with the reference. A flat, ferromagnetic and fully biocompatible carrier for cell manipulation was developed for application in microfluidic systems. Beyond that, this study offers advice for the development of magnetic cell carriers and the estimation of their biocompatibility.

  17. Optimization and Quality Control of Automated Quantitative Mineralogy Analysis for Acid Rock Drainage Prediction

    Directory of Open Access Journals (Sweden)

    Robert Pooler

    2017-01-01

    Full Text Available Low ore-grade waste samples from the Codelco Andina mine that were analyzed in an environmental and mineralogical test program for acid rock drainage prediction, revealed inconsistencies between the quantitative mineralogical data (QEMSCAN® and the results of geochemical characterizations by atomic absorption spectroscopy (AAS, LECO® furnace, and sequential extractions. For the QEMSCAN® results, biases were observed in the proportions of pyrite and calcium sulfate minerals detected. An analysis of the results indicated that the problems observed were likely associated with polished section preparation. Therefore, six different sample preparation protocols were tested and evaluated using three samples from the previous study. One of the methods, which involved particle size reduction and transverse section preparation, was identified as having the greatest potential for correcting the errors observed in the mineralogical analyses. Further, the biases in the quantities of calcium sulfate minerals detected were reduced through the use of ethylene glycol as a polishing lubricant. It is recommended that the sample preparation methodology described in this study be used in order to accurately quantify percentages of pyrite and calcium sulfate minerals in environmental mineralogical studies which use automated mineralogical analysis.

  18. The scheme of combined application of optimization and simulation models for formation of an optimum structure of an automated control system of space systems

    Science.gov (United States)

    Chernigovskiy, A. S.; Tsarev, R. Yu; Nikiforov, A. Yu; Zelenkov, P. V.

    2016-11-01

    With the development of automated control systems of space systems, there are new classes of spacecraft that requires improvement of their structure and expand their functions. When designing the automated control system of space systems occurs various tasks such as: determining location of elements and subsystems in the space, hardware selection, the distribution of the set of functions performed by the system units, all of this under certain conditions on the quality of control and connectivity of components. The problem of synthesis of structure of automated control system of space systems formalized using discrete variables at various levels of system detalization. A sequence of tasks and stages of the formation of automated control system of space systems structure is developed. The authors have developed and proposed a scheme of the combined implementation of optimization and simulation models to ensure rational distribution of functions between the automated control system complex and the rest of the system units. The proposed approach allows to make reasonable hardware selection, taking into account the different requirements for the operation of automated control systems of space systems.

  19. Software integration for automated stability analysis and design optimization of a bearingless rotor blade

    Science.gov (United States)

    Gunduz, Mustafa Emre

    Many government agencies and corporations around the world have found the unique capabilities of rotorcraft indispensable. Incorporating such capabilities into rotorcraft design poses extra challenges because it is a complicated multidisciplinary process. The concept of applying several disciplines to the design and optimization processes may not be new, but it does not currently seem to be widely accepted in industry. The reason for this might be the lack of well-known tools for realizing a complete multidisciplinary design and analysis of a product. This study aims to propose a method that enables engineers in some design disciplines to perform a fairly detailed analysis and optimization of a design using commercially available software as well as codes developed at Georgia Tech. The ultimate goal is when the system is set up properly, the CAD model of the design, including all subsystems, will be automatically updated as soon as a new part or assembly is added to the design; or it will be updated when an analysis and/or an optimization is performed and the geometry needs to be modified. Designers and engineers will be involved in only checking the latest design for errors or adding/removing features. Such a design process will take dramatically less time to complete; therefore, it should reduce development time and costs. The optimization method is demonstrated on an existing helicopter rotor originally designed in the 1960's. The rotor is already an effective design with novel features. However, application of the optimization principles together with high-speed computing resulted in an even better design. The objective function to be minimized is related to the vibrations of the rotor system under gusty wind conditions. The design parameters are all continuous variables. Optimization is performed in a number of steps. First, the most crucial design variables of the objective function are identified. With these variables, Latin Hypercube Sampling method is used

  20. Microfabricated devices for single cell analysis

    Science.gov (United States)

    Gao, Yuanfang

    BioMEMS or lab-on-a-chip technology is promising technology and enables the possibility of microchip devices with higher throughput or better performance for single cell analysis. We have designed and fabricated microdevices for single cell analysis, with impedance based device for fast cell screening and microchannel based flow systems for high throughput, high time resolution quantal exocytosis measurement with automatic cell positioning and reusability. The automatic cell positioning is realized by differential forces of fluidic dynamics. Microelectrodes are patterned at automatic trap positions for electrochemical detection quantal release of hormones like catecholamines secreted by cells. We also developed diamond-like carbon (DLC) microelectrodes onto chip device for low noise exocytosis measurement. The DLC microelectrodes were deposited by magnetron sputtering process with nitrogen doping and a bottom ITO conductive layer. Test results show the developed DLC can detect exocytosis with low noise and a stable background current which are comparable to that of carbon-fiber electrodes. They are batch producible at low cost and can realize high-throughput on-chip measurement of quantal exocytosis. The technology developed in this research can have wide ranging applications in fields such as electrophysiology, cell based sensors, high throughput screening of new drug development.

  1. Single molecule and single cell epigenomics.

    Science.gov (United States)

    Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D

    2015-01-15

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Pseudotime estimation: deconfounding single cell time series.

    Science.gov (United States)

    Reid, John E; Wernisch, Lorenz

    2016-10-01

    Repeated cross-sectional time series single cell data confound several sources of variation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progression at different rates. Time series from single cell assays are particularly susceptible to confounding as the measurements are not averaged over populations of cells. When several genes are assayed in parallel these effects can be estimated and corrected for under certain smoothness assumptions on cell progression. We present a principled probabilistic model with a Bayesian inference scheme to analyse such data. We demonstrate our method's utility on public microarray, nCounter and RNA-seq datasets from three organisms. Our method almost perfectly recovers withheld capture times in an Arabidopsis dataset, it accurately estimates cell cycle peak times in a human prostate cancer cell line and it correctly identifies two precocious cells in a study of paracrine signalling in mouse dendritic cells. Furthermore, our method compares favourably with Monocle, a state-of-the-art technique. We also show using held-out data that uncertainty in the temporal dimension is a common confounder and should be accounted for in analyses of repeated cross-sectional time series. Our method is available on CRAN in the DeLorean package. john.reid@mrc-bsu.cam.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  3. Automation of reverse engineering process in aircraft modeling and related optimization problems

    Science.gov (United States)

    Li, W.; Swetits, J.

    1994-01-01

    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for

  4. Achievements and challenges in automated parameter, shape and topology optimization for divertor design

    Science.gov (United States)

    Baelmans, M.; Blommaert, M.; Dekeyser, W.; Van Oevelen, T.

    2017-03-01

    Plasma edge transport codes play a key role in the design of future divertor concepts. Their long simulation times in combination with a large number of control parameters turn the design into a challenging task. In aerodynamics and structural mechanics, adjoint-based optimization techniques have proven successful to tackle similar design challenges. This paper provides an overview of achievements and remaining challenges with these techniques for complex divertor design. It is shown how these developments pave the way for fast sensitivity analysis and improved design from different perspectives.

  5. Automated optimization of measurement setups for the inspection of specular surfaces

    Science.gov (United States)

    Kammel, Soeren

    2002-02-01

    Specular surfaces are used in a wide variety of industrial and consumer products like varnished or chrome plated parts of car bodies, dies or molds. Defects of these parts reduce the quality regarding their visual appearance and/or their technical performance. Even defects that are only about 1 micrometer deep can lead to a rejection during quality control. Deflectometric techniques are an adequate approach to recognize and measure defects on specular surfaces, because the principle of measurement of these methods mimics the behavior of a human observer inspecting the surface. With these methods, the specular object is considered as a part of the optical system. Not the object itself but the surrounding that is reflected by the specular surface is observed in order to obtain information about the object. This technique has proven sensitive for slope and topography measurement. Inherited from the principle of measurement, especially surface parts with high curvature need a special illumination which surrounds the object under inspection to guarantee that light from any direction is reflected onto the sensor. Thus the design of a specific measurement setup requires a substantial engineering effort. To avoid the time consuming process of building, testing and redesigning the measurement setup, a system to simulate and automatically optimize the setup has been developed. Based on CAD data of the object under inspection and a model of the optical system, favorable realizations of the shape, the position and the pattern of the lighting device are determined. In addition, optimization of other system parameters, such as object position and distance relative to the camera, is performed. Finally, constraints are imposed to ascertain the feasibility of illumination system construction.

  6. Polyelectrolyte Multilayers: Towards Single Cell Studies

    Directory of Open Access Journals (Sweden)

    Dmitry Volodkin

    2014-05-01

    Full Text Available Single cell analysis (SCA is nowadays recognized as one of the key tools for diagnostics and fundamental cell biology studies. The Layer-by-layer (LbL polyelectrolyte assembly is a rather new but powerful technique to produce multilayers. It allows to model the extracellular matrix in terms of its chemical and physical properties. Utilization of the multilayers for SCA may open new avenues in SCA because of the triple role of the multilayer film: (i high capacity for various biomolecules; (ii natural mimics of signal molecule diffusion to a cell and (iii cell patterning opportunities. Besides, light-triggered release from multilayer films offers a way to deliver biomolecules with high spatio-temporal resolution. Here we review recent works showing strong potential to use multilayers for SCA and address accordingly the following issues: biomolecule loading, cell patterning, and light-triggered release.

  7. Electrochemical nanoprobes for single-cell analysis.

    Science.gov (United States)

    Actis, Paolo; Tokar, Sergiy; Clausmeyer, Jan; Babakinejad, Babak; Mikhaleva, Sofya; Cornut, Renaud; Takahashi, Yasufumi; López Córdoba, Ainara; Novak, Pavel; Shevchuck, Andrew I; Dougan, Jennifer A; Kazarian, Sergei G; Gorelkin, Petr V; Erofeev, Alexander S; Yaminsky, Igor V; Unwin, Patrick R; Schuhmann, Wolfgang; Klenerman, David; Rusakov, Dmitri A; Sviderskaya, Elena V; Korchev, Yuri E

    2014-01-28

    The measurement of key molecules in individual cells with minimal disruption to the biological milieu is the next frontier in single-cell analyses. Nanoscale devices are ideal analytical tools because of their small size and their potential for high spatial and temporal resolution recordings. Here, we report the fabrication of disk-shaped carbon nanoelectrodes whose radius can be precisely tuned within the range 5-200 nm. The functionalization of the nanoelectrode with platinum allowed the monitoring of oxygen consumption outside and inside a brain slice. Furthermore, we show that nanoelectrodes of this type can be used to impale individual cells to perform electrochemical measurements within the cell with minimal disruption to cell function. These nanoelectrodes can be fabricated combined with scanning ion conductance microscopy probes, which should allow high resolution electrochemical mapping of species on or in living cells.

  8. Kinetics of virus production from single cells.

    Science.gov (United States)

    Timm, Andrea; Yin, John

    2012-03-01

    The production of virus by infected cells is an essential process for the spread and persistence of viral diseases, the effectiveness of live-viral vaccines, and the manufacture of viruses for diverse applications. Yet despite its importance, methods to precisely measure virus production from cells are lacking. Most methods test infected-cell populations, masking how individual cells behave. Here we measured the kinetics of virus production from single cells. We combined simple steps of liquid-phase infection, serial dilution, centrifugation, and harvesting, without specialized equipment, to track the production of virus particles from BHK cells infected with vesicular stomatitis virus. Remarkably, cell-to-cell differences in latent times to virus release were within a factor of two, while production rates and virus yields spanned over 300-fold, highlighting an extreme diversity in virus production for cells from the same population. These findings have fundamental and technological implications for health and disease.

  9. AN OPTIMIZATION-BASED HEURISTIC FOR A CAPACITATED LOT-SIZING MODEL IN AN AUTOMATED TELLER MACHINES NETWORK

    Directory of Open Access Journals (Sweden)

    Supatchaya Chotayakul

    2013-01-01

    Full Text Available This research studies a cash inventory problem in an ATM Network to satisfy customer’s cash needs over multiple periods with deterministic demand. The objective is to determine the amount of money to place in Automated Teller Machines (ATMs and cash centers for each period over a given time horizon. The algorithms are designed as a multi-echelon inventory problem with single-item capacitated lot-sizing to minimize total costs of running ATM network. In this study, we formulate the problem as a Mixed Integer Program (MIP and develop an approach based on reformulating the model as a shortest path formulation for finding a near-optimal solution of the problem. This reformulation is the same as the traditional model, except the capacity constraints, inventory balance constraints and setup constraints related to the management of the money in ATMs are relaxed. This new formulation gives more variables and constraints, but has a much tighter linear relaxation than the original and is faster to solve for short term planning. Computational results show its effectiveness, especially for large sized problems.

  10. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs.

  11. Automated Sperm Head Detection Using Intersecting Cortical Model Optimised by Particle Swarm Optimization

    Science.gov (United States)

    Tan, Weng Chun; Mat Isa, Nor Ashidi

    2016-01-01

    In human sperm motility analysis, sperm segmentation plays an important role to determine the location of multiple sperms. To ensure an improved segmentation result, the Laplacian of Gaussian filter is implemented as a kernel in a pre-processing step before applying the image segmentation process to automatically segment and detect human spermatozoa. This study proposes an intersecting cortical model (ICM), which was derived from several visual cortex models, to segment the sperm head region. However, the proposed method suffered from parameter selection; thus, the ICM network is optimised using particle swarm optimization where feature mutual information is introduced as the new fitness function. The final results showed that the proposed method is more accurate and robust than four state-of-the-art segmentation methods. The proposed method resulted in rates of 98.14%, 98.82%, 86.46% and 99.81% in accuracy, sensitivity, specificity and precision, respectively, after testing with 1200 sperms. The proposed algorithm is expected to be implemented in analysing sperm motility because of the robustness and capability of this algorithm. PMID:27632581

  12. Preparation of single cells from aggregated Taxus suspension cultures for population analysis.

    Science.gov (United States)

    Naill, Michael C; Roberts, Susan C

    2004-06-30

    A method for the isolation of single plant cells from Taxus suspension cultures has been developed for the analysis of single cells via rapid throughput techniques such as flow cytometry. Several cell wall specific enzymes, such as pectinase, pectolyase Y-23, macerozyme, Driselase(R), and cellulase were tested for efficacy in producing single cell suspensions. The method was optimized for single cell yield, viability, time, and representivity of aggregated cell cultures. The best combination for single cell isolation was found to be 0.5% (w/v) pectolyase Y-23 and 0.04% (w/v) cellulase. High viability (>95%) and high yields of single cell aggregates (>90%) were obtained following 4 hours of digestion for four separate Taxus cell lines. In addition, methyl jasmonate elicitation (200 microM) was found to have no effect on three of the four tested Taxus lines. Isolated single cells were statistically similar to untreated cell cultures for peroxidase activity (model cell wall protein) and paclitaxel content (secondary metabolite produced in Taxus cell cultures). In comparison, protoplasts showed marked changes in both peroxidase activity and paclitaxel content as compared to untreated cultures. The use of flow cytometry was demonstrated with isolated cells that were found to have > 99% viability upon staining with fluorescein diacetate. The development of a method for the isolation of single plant cells will allow the study of population dynamics and culture variability on a single cell level for the development of population models of plant cell cultures and secondary metabolism. Copyright 2004 Wiley Periodicals, Inc.

  13. Optimization of automated radiosynthesis of [{sup 18}F]AV-45: a new PET imaging agent for Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yajing; Zhu Lin [Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, 100875 (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19014 (United States); Ploessl, Karl [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19014 (United States); Choi, Seok Rye [Avid Radiopharmaceuticals Inc., Philadelphia, PA 19014 (United States); Qiao Hongwen; Sun Xiaotao; Li Song [Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, 100875 (China); Zha Zhihao [Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, 100875 (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19014 (United States); Kung, Hank F., E-mail: kunghf@sunmac.spect.upenn.ed [Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, 100875 (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19014 (United States)

    2010-11-15

    Introduction: Accumulation of {beta}-amyloid (A{beta}) aggregates in the brain is linked to the pathogenesis of Alzheimer's disease (AD). Imaging probes targeting these A{beta} aggregates in the brain may provide a useful tool to facilitate the diagnosis of AD. Recently, [{sup 18}F]AV-45 ([{sup 18}F]5) demonstrated high binding to the A{beta} aggregates in AD patients. To improve the availability of this agent for widespread clinical application, a rapid, fully automated, high-yield, cGMP-compliant radiosynthesis was necessary for production of this probe. We report herein an optimal [{sup 18}F]fluorination, de-protection condition and fully automated radiosynthesis of [{sup 18}F]AV-45 ([{sup 18}F]5) on a radiosynthesis module (BNU F-A2). Methods: The preparation of [{sup 18}F]AV-45 ([{sup 18}F]5) was evaluated under different conditions, specifically by employing different precursors (-OTs and -Br as the leaving group), reagents (K222/K{sub 2}CO{sub 3} vs. tributylammonium bicarbonate) and deprotection in different acids. With optimized conditions from these experiments, the automated synthesis of [{sup 18}F]AV-45 ([{sup 18}F]5) was accomplished by using a computer-programmed, standard operating procedure, and was purified on an on-line solid-phase cartridge (Oasis HLB). Results: The optimized reaction conditions were successfully implemented to an automated nucleophilic fluorination module. The radiochemical purity of [{sup 18}F]AV-45 ([{sup 18}F]5) was >95%, and the automated synthesis yield was 33.6{+-}5.2% (no decay corrected, n=4), 50.1{+-}7.9% (decay corrected) in 50 min at a quantity level of 10-100 mCi (370-3700 MBq). Autoradiography studies of [{sup 18}F]AV-45 ([{sup 18}F]5) using postmortem AD brain and Tg mouse brain sections in the presence of different concentration of 'cold' AV-136 showed a relatively low inhibition of in vitro binding of [{sup 18}F]AV-45 ([{sup 18}F]5) to the A{beta} plaques (IC50=1-4 {mu}M, a concentration several

  14. PHASE I SINGLE CELL ELECTROLYZER TEST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J; Timothy Steeper, T

    2008-08-05

    This document reports the results of Phase I Single Cell testing of an SO{sub 2}-Depolarized Water Electrolyzer. Testing was performed primarily during the first quarter of FY 2008 at the Savannah River National Laboratory (SRNL) using an electrolyzer cell designed and built at SRNL. Other facility hardware were also designed and built at SRNL. This test further advances this technology for which work began at SRNL in 2005. This research is valuable in achieving the ultimate goal of an economical hydrogen production process based on the Hybrid Sulfur (HyS) Cycle. The focus of this work was to conduct single cell electrolyzer tests to further develop the technology of SO{sub 2}-depolarized electrolysis as part of the HyS Cycle. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by water-splitting. Like all other sulfur-based cycles, HyS utilizes the high temperature thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both thermodynamic efficiency and hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. The anode and cathode are formed by spraying platinum containing catalyst on both sides of a Proton Exchange Membrane (PEM). In most testing the material of the PEM was NafionR. The electrolyzer cell active area can be as large as 54.8 cm{sup 2}. Feed to the anode of the electrolyzer is a sulfuric acid solution containing sulfur dioxide. The partial pressure of sulfur dioxide could be varied in the

  15. Reliable single cell array CGH for clinical samples.

    Directory of Open Access Journals (Sweden)

    Zbigniew T Czyż

    Full Text Available BACKGROUND: Disseminated cancer cells (DCCs and circulating tumor cells (CTCs are extremely rare, but comprise the precursors cells of distant metastases or therapy resistant cells. The detailed molecular analysis of these cells may help to identify key events of cancer cell dissemination, metastatic colony formation and systemic therapy escape. METHODOLOGY/PRINCIPAL FINDINGS: Using the Ampli1™ whole genome amplification (WGA technology and high-resolution oligonucleotide aCGH microarrays we optimized conditions for the analysis of structural copy number changes. The protocol presented here enables reliable detection of numerical genomic alterations as small as 0.1 Mb in a single cell. Analysis of single cells from well-characterized cell lines and single normal cells confirmed the stringent quantitative nature of the amplification and hybridization protocol. Importantly, fixation and staining procedures used to detect DCCs showed no significant impact on the outcome of the analysis, proving the clinical usability of our method. In a proof-of-principle study we tracked the chromosomal changes of single DCCs over a full course of high-dose chemotherapy treatment by isolating and analyzing DCCs of an individual breast cancer patient at four different time points. CONCLUSIONS/SIGNIFICANCE: The protocol enables detailed genome analysis of DCCs and thereby assessment of the clonal evolution during the natural course of the disease and under selection pressures. The results from an exemplary patient provide evidence that DCCs surviving selective therapeutic conditions may be recruited from a pool of genomically less advanced cells, which display a stable subset of specific genomic alterations.

  16. The potential of single-cell profiling in plants.

    Science.gov (United States)

    Efroni, Idan; Birnbaum, Kenneth D

    2016-04-05

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized cellular responses to environmental inputs. Single-cell experimental outputs require different analytical approaches compared with pooled cell profiles and new tools tailored to single-cell assays are being developed. Here, we highlight promising new single-cell profiling approaches, their limitations as applied to plants, and their potential to address fundamental questions in plant biology.

  17. Single-cell transcriptome analysis of endometrial tissue

    OpenAIRE

    Krjutškov, K.; Katayama, S .; Saare, M; Vera-Rodriguez, M.; Lubenets, D.; Samuel, K.; Laisk-Podar, T.; Teder, H.; Einarsdottir, E.; Salumets, A.; Kere, J.

    2016-01-01

    STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. WHAT IS KNOWN ALREADY Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols fo...

  18. Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.

    Science.gov (United States)

    Macaulay, Iain C; Teng, Mabel J; Haerty, Wilfried; Kumar, Parveen; Ponting, Chris P; Voet, Thierry

    2016-11-01

    Parallel sequencing of a single cell's genome and transcriptome provides a powerful tool for dissecting genetic variation and its relationship with gene expression. Here we present a detailed protocol for G&T-seq, a method for separation and parallel sequencing of genomic DNA and full-length polyA(+) mRNA from single cells. We provide step-by-step instructions for the isolation and lysis of single cells; the physical separation of polyA(+) mRNA from genomic DNA using a modified oligo-dT bead capture and the respective whole-transcriptome and whole-genome amplifications; and library preparation and sequence analyses of these amplification products. The method allows the detection of thousands of transcripts in parallel with the genetic variants captured by the DNA-seq data from the same single cell. G&T-seq differs from other currently available methods for parallel DNA and RNA sequencing from single cells, as it involves physical separation of the DNA and RNA and does not require bespoke microfluidics platforms. The process can be implemented manually or through automation. When performed manually, paired genome and transcriptome sequencing libraries from eight single cells can be produced in ∼3 d by researchers experienced in molecular laboratory work. For users with experience in the programming and operation of liquid-handling robots, paired DNA and RNA libraries from 96 single cells can be produced in the same time frame. Sequence analysis and integration of single-cell G&T-seq DNA and RNA data requires a high level of bioinformatics expertise and familiarity with a wide range of informatics tools.

  19. Single-cell analysis: Advances and future perspectives

    Directory of Open Access Journals (Sweden)

    Emir Hodzic

    2016-11-01

    Full Text Available The last several years have seen rapid development of technologies and methods that permit a detailed analysis of the genome and transcriptome of a single cell. Recent evidence from studies of single cells reveals that each cell type has a distinct lineage and function. The lineage and stage of development of each cell determine how they respond to each other and the environment. Experimental approaches that utilize single-cell analysis are effective means to understand how cell networks work in concert to coordinate a response at the population level; recent progress in single-cell analysis is offering a glimpse at the future.

  20. Laser tweezers Raman spectroscopy of single cells

    Science.gov (United States)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  1. Single cell genomics of subsurface microorganisms

    Science.gov (United States)

    Stepanauskas, R.; Onstott, T. C.; Lau, C.; Kieft, T. L.; Woyke, T.; Rinke, C.; Sczyrba, A.; van Heerden, E.

    2012-12-01

    Recent studies have revealed unexpected abundance and diversity of microorganisms in terrestrial and marine subsurface, providing new perspectives over their biogeochemical significance, evolution, and the limits of life. The now commonly used research tools, such as metagenomics and PCR-based gene surveys enabled cultivation-unbiased analysis of genes encoded by natural microbial communities. However, these methods seldom provide direct evidence for how the discovered genes are organized inside genomes and from which organisms do they come from. Here we evaluated the feasibility of an alternative, single cell genomics approach, in the analysis of subsurface microbial community composition, metabolic potential and microevolution at the Sanford Underground Research Facility (SURF), South Dakota, and the Witwaterstrand Basin, South Africa. We successfully recovered genomic DNA from individual microbial cells from multiple locations, including ultra-deep (down to 3,500 m) and low-biomass (down to 10^3 cells mL^-1) fracture water. The obtained single amplified genomes (SAGs) from SURF contained multiple representatives of the candidate divisions OP3, OP11, OD1 and uncharacterized archaea. By sequencing eight of these SAGs, we obtained the first genome content information for these phylum-level lineages that do not contain a single cultured representative. The Witwaterstrand samples were collected from deep fractures, biogeochemical dating of which suggests isolation from tens of thousands to tens of millions of years. Thus, these fractures may be viewed as "underground Galapagos", a natural, long-term experiment of microbial evolution within well-defined temporal and spatial boundaries. We are analyzing multiple SAGs from these environments, which will provide detailed information about adaptations to life in deep subsurface, mutation rates, selective pressures and gene flux within and across microbial populations.

  2. Single cell mechanics of keratinocyte cells.

    Science.gov (United States)

    Lulevich, Valentin; Yang, Hsin-ya; Isseroff, R Rivkah; Liu, Gang-yu

    2010-11-01

    Keratinocytes represent the major cell type of the uppermost layer of human skin, the epidermis. Using AFM-based single cell compression, the ability of individual keratinocytes to resist external pressure and global rupturing forces is investigated and compared with various cell types. Keratinocytes are found to be 6-70 times stiffer than other cell types, such as white blood, breast epithelial, fibroblast, or neuronal cells, and in contrast to other cell types they retain high mechanic strength even after the cell's death. The absence of membrane rupturing peaks in the force-deformation profiles of keratinocytes and their high stiffness during a second load cycle suggests that their unique mechanical resistance is dictated by the cytoskeleton. A simple analytical model enables the quantification of Young's modulus of keratinocyte cytoskeleton, as high as 120-340 Pa. Selective disruption of the two major cytoskeletal networks, actin filaments and microtubules, does not significantly affect keratinocyte mechanics. F-actin is found to impact cell deformation under pressure. During keratinocyte compression, the plasma membrane stretches to form peripheral blebs. Instead of blebbing, cells with depolymerized F-actin respond to pressure by detaching the plasma membrane from the cytoskeleton underneath. On the other hand, the compression force of keratinocytes expressing a mutated keratin (cell line, KEB-7) is 1.6-2.2 times less than that for the control cell line that has normal keratin networks. Therefore, we infer that the keratin intermediate filament network is responsible for the extremely high keratinocyte stiffness and resilience. This could manifest into the rugged protective nature of the human epidermis.

  3. Real time assays for quantifying cytotoxicity with single cell resolution.

    Directory of Open Access Journals (Sweden)

    Sonny C Hsiao

    Full Text Available A new live cell-based assay platform has been developed for the determination of complement dependent cytotoxicity (CDC, antibody dependent cellular cytotoxicity (ADCC, and overall cytotoxicity in human whole blood. In these assays, the targeted tumor cell populations are first labeled with fluorescent Cell Tracker dyes and immobilized using a DNA-based adhesion technique. This allows the facile generation of live cell arrays that are arranged arbitrarily or in ordered rectilinear patterns. Following the addition of antibodies in combination with serum, PBMCs, or whole blood, cell death within the targeted population can be assessed by the addition of propidium iodide (PI as a viability probe. The array is then analyzed with an automated microscopic imager. The extent of cytotoxicity can be quantified accurately by comparing the number of surviving target cells to the number of dead cells labeled with both Cell Tracker and PI. Excellent batch-to-batch reproducibility has been achieved using this method. In addition to allowing cytotoxicity analysis to be conducted in real time on a single cell basis, this new assay overcomes the need for hazardous radiochemicals. Fluorescently-labeled antibodies can be used to identify individual cells that bear the targeted receptors, but yet resist the CDC and ADCC mechanisms. This new approach also allows the use of whole blood in cytotoxicity assays, providing an assessment of antibody efficacy in a highly relevant biological mixture. Given the rapid development of new antibody-based therapeutic agents, this convenient assay platform is well-poised to streamline the drug discovery process significantly.

  4. Validation of noise models for single-cell transcriptomics

    NARCIS (Netherlands)

    Grün, Dominic; Kester, Lennart; van Oudenaarden, Alexander

    2014-01-01

    Single-cell transcriptomics has recently emerged as a powerful technology to explore gene expression heterogeneity among single cells. Here we identify two major sources of technical variability: sampling noise and global cell-to-cell variation in sequencing efficiency. We propose noise models to co

  5. Analysis of the Optimal Duration of Behavioral Observations Based on an Automated Continuous Monitoring System in Tree Swallows (Tachycineta bicolor: Is One Hour Good Enough?

    Directory of Open Access Journals (Sweden)

    Ádám Z Lendvai

    Full Text Available Studies of animal behavior often rely on human observation, which introduces a number of limitations on sampling. Recent developments in automated logging of behaviors make it possible to circumvent some of these problems. Once verified for efficacy and accuracy, these automated systems can be used to determine optimal sampling regimes for behavioral studies. Here, we used a radio-frequency identification (RFID system to quantify parental effort in a bi-parental songbird species: the tree swallow (Tachycineta bicolor. We found that the accuracy of the RFID monitoring system was similar to that of video-recorded behavioral observations for quantifying parental visits. Using RFID monitoring, we also quantified the optimum duration of sampling periods for male and female parental effort by looking at the relationship between nest visit rates estimated from sampling periods with different durations and the total visit numbers for the day. The optimum sampling duration (the shortest observation time that explained the most variation in total daily visits per unit time was 1h for both sexes. These results show that RFID and other automated technologies can be used to quantify behavior when human observation is constrained, and the information from these monitoring technologies can be useful for evaluating the efficacy of human observation methods.

  6. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments

    Science.gov (United States)

    Sachs, Christian Carsten; Grünberger, Alexander; Helfrich, Stefan; Probst, Christopher; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina

    2016-01-01

    Background Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool. Results We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks. Conclusion Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso. PMID:27661996

  7. Single-cell Transcriptome Study as Big Data

    Institute of Scientific and Technical Information of China (English)

    Pingjian Yu; Wei Lin

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteris-tics of scRNA-seq data and primary objectives of single-cell studies.

  8. The potential of single-cell profiling in plants

    OpenAIRE

    Efroni, Idan; Birnbaum, Kenneth D

    2016-01-01

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized ce...

  9. Single-cell Transcriptome Study as Big Data

    Science.gov (United States)

    Yu, Pingjian; Lin, Wei

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720

  10. Single Nanowire Probe for Single Cell Endoscopy and Sensing

    Science.gov (United States)

    Yan, Ruoxue

    adaptable to average bio-lab environment. These probes are mechanically robust and flexible and can withstand repeated bending and deformation without significant deterioration in optical performance, which offers an ideal instrumental platform for out subsequent effort of using these nanoprobes in chemical sensing as well as single cell endoscopy and spot delivery. Parameters affecting the coupling efficiency and output power of the nanoprobe were studied and chemical etched of single mode fiber with small cone angle was established to be optimized for highly effective optical nanoprobes. The versatility of the nanoprobe design was first tested by transforming the nanowire probe into a pH sensor with near-field photopolymerization of a copolymer containing pH sensitive dye on the tip of the nanowire. The pH-sensitive nanoprobe was able to report the pH difference in micro-droplets containing buffer solution with the excitation of light waveguided on the nanoprobe with internal calibration, fast response time and good photostability and reversibility. Such nanoprobe sensors are ideal for high definition spatial and temporal sensing of concentration profile, especially for the kinetic processes in single cell studies for which chemical probes of minute sizes and fast response are desired. The nanoprobe was then applied into spot cargo delivery and in-situ single cell endoscopy. It was demonstrated that nanowire-based optical probe can deliver payloads into the cell with a high spatiotemporal precision, guide and confine visible light into intracellular compartments selectively and detect optical signals from the subcellular regions with high spatial resolution. The nanoprobe was proven to be biocompatible and non-invasive. The effective optical coupling between the fiber optics and the nanowire enables highly localized excitation and detection, limiting the probe volume to the close proximity of the nanowire. None the less, this versatile technique does not rely on any

  11. Using the ARTMO toolbox for automated retrieval of biophysical parameters through radiative transfer model inversion: Optimizing LUT-based inversion

    Science.gov (United States)

    Verrelst, J.; Rivera, J. P.; Leonenko, G.; Alonso, L.; Moreno, J.

    2012-04-01

    Radiative transfer (RT) modeling plays a key role for earth observation (EO) because it is needed to design EO instruments and to develop and test inversion algorithms. The inversion of a RT model is considered as a successful approach for the retrieval of biophysical parameters because of being physically-based and generally applicable. However, to the broader community this approach is considered as laborious because of its many processing steps and expert knowledge is required to realize precise model parameterization. We have recently developed a radiative transfer toolbox ARTMO (Automated Radiative Transfer Models Operator) with the purpose of providing in a graphical user interface (GUI) essential models and tools required for terrestrial EO applications such as model inversion. In short, the toolbox allows the user: i) to choose between various plant leaf and canopy RT models (e.g. models from the PROSPECT and SAIL family, FLIGHT), ii) to choose between spectral band settings of various air- and space-borne sensors or defining own sensor settings, iii) to simulate a massive amount of spectra based on a look up table (LUT) approach and storing it in a relational database, iv) to plot spectra of multiple models and compare them with measured spectra, and finally, v) to run model inversion against optical imagery given several cost options and accuracy estimates. In this work ARTMO was used to tackle some well-known problems related to model inversion. According to Hadamard conditions, mathematical models of physical phenomena are mathematically invertible if the solution of the inverse problem to be solved exists, is unique and depends continuously on data. This assumption is not always met because of the large number of unknowns and different strategies have been proposed to overcome this problem. Several of these strategies have been implemented in ARTMO and were here analyzed to optimize the inversion performance. Data came from the SPARC-2003 dataset

  12. Single-cell transcriptomics enters the age of mass production

    NARCIS (Netherlands)

    Junker, Jan Philipp; van Oudenaarden, Alexander

    2015-01-01

    Two publications in the current issue of Cell introduce novel methods for high-throughput single-cell transcriptomics by using droplet microfluidics and sophisticated barcoding schemes for transcriptional profiling of thousands of individual cells.

  13. Atomic force microscopy for the examination of single cell rheology.

    Science.gov (United States)

    Okajima, Takaharu

    2012-11-01

    Rheological properties of living cells play important roles in regulating their various biological functions. Therefore, measuring cell rheology is crucial for not only elucidating the relationship between the cell mechanics and functions, but also mechanical diagnosis of single cells. Atomic force microscopy (AFM) is becoming a useful technique for single cell diagnosis because it allows us to measure the rheological properties of adherent cells at any region on the surface without any modifications. In this review, we summarize AFM techniques for examining single cell rheology in frequency and time domains. Recent applications of AFM for investigating the statistical analysis of single cell rheology in comparison to other micro-rheological techniques are reviewed, and we discuss what specificity and universality of cell rheology are extracted using AFM.

  14. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  15. Droplet microfluidics--a tool for single-cell analysis.

    Science.gov (United States)

    Joensson, Haakan N; Andersson Svahn, Helene

    2012-12-03

    Droplet microfluidics allows the isolation of single cells and reagents in monodisperse picoliter liquid capsules and manipulations at a throughput of thousands of droplets per second. These qualities allow many of the challenges in single-cell analysis to be overcome. Monodispersity enables quantitative control of solute concentrations, while encapsulation in droplets provides an isolated compartment for the single cell and its immediate environment. The high throughput allows the processing and analysis of the tens of thousands to millions of cells that must be analyzed to accurately describe a heterogeneous cell population so as to find rare cell types or access sufficient biological space to find hits in a directed evolution experiment. The low volumes of the droplets make very large screens economically viable. This Review gives an overview of the current state of single-cell analysis involving droplet microfluidics and offers examples where droplet microfluidics can further biological understanding.

  16. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    . Staphylococci adhere stronger on fresh glass than on hydrophilic glass, while the weaker adhesion by P. fluorescens was similar on both types of glass. These results confirmed the importance of surface hydrophobicity in bacterial adhesion. This study has demonstrated that single-cell force spectroscopy allows...... be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  17. Functional Insights into Sponge Microbiology by Single Cell Genomics

    KAUST Repository

    Hentschel, Ute

    2011-04-09

    Marine Sponges (Porifera) are known to harbor enormous amounts of microorganisms with members belonging to at least 30 different bacterial phyla including several candidate phyla and both archaeal lineages. Here, we applied single cell genomics to the mic

  18. THE APPLICATION OF AUTOMATED CORRELATION OPTIMIZED WARPING TO THE QUALITY EVALUATION OF Radix Puerariae thomsonii: CORRECTING RETENTION TIME SHIFT IN THE CHROMATOGRAPHIC FINGERPRINTS

    Directory of Open Access Journals (Sweden)

    Long Jiao

    2015-01-01

    Full Text Available The application of automated correlation optimized warping (ACOW to the correction of retention time shift in the chromatographic fingerprints of Radix Puerariae thomsonii (RPT was investigated. Twenty-seven samples were extracted from 9 batches of RPT products. The fingerprints of the 27 samples were established by the HPLC method. Because there is a retention time shift in the established fingerprints, the quality of these samples cannot be correctly evaluated by using similarity estimation and principal component analysis (PCA. Thus, the ACOW method was used to align these fingerprints. In the ACOW procedure, the warping parameters, which have a significant influence on the alignment result, were optimized by an automated algorithm. After correcting the retention time shift, the quality of these RPT samples was correctly evaluated by similarity estimation and PCA. It is demonstrated that ACOW is a practical method for aligning the chromatographic fingerprints of RPT. The combination of ACOW, similarity estimation, and PCA is shown to be a promising method for evaluating the quality of Traditional Chinese Medicine.

  19. Recent Trends on Micro/Nanofluidic Single Cell Electroporation

    Directory of Open Access Journals (Sweden)

    Tuhin Subhra Santra

    2013-09-01

    Full Text Available The behaviors of cell to cell or cell to environment with their organelles and their intracellular physical or biochemical effects are still not fully understood. Analyzing millions of cells together cannot provide detailed information, such as cell proliferation, differentiation or different responses to external stimuli and intracellular reaction. Thus, single cell level research is becoming a pioneering research area that unveils the interaction details in high temporal and spatial resolution among cells. To analyze the cellular function, single cell electroporation can be conducted by employing a miniaturized device, whose dimension should be similar to that of a single cell. Micro/nanofluidic devices can fulfill this requirement for single cell electroporation. This device is not only useful for cell lysis, cell to cell fusion or separation, insertion of drug, DNA and antibodies inside single cell, but also it can control biochemical, electrical and mechanical parameters using electroporation technique. This device provides better performance such as high transfection efficiency, high cell viability, lower Joule heating effect, less sample contamination, lower toxicity during electroporation experiment when compared to bulk electroporation process. In addition, single organelles within a cell can be analyzed selectively by reducing the electrode size and gap at nanoscale level. This advanced technique can deliver (in/out biomolecules precisely through a small membrane area (micro to nanoscale area of the single cell, known as localized single cell membrane electroporation (LSCMEP. These articles emphasize the recent progress in micro/nanofluidic single cell electroporation, which is potentially beneficial for high-efficient therapeutic and delivery applications or understanding cell to cell interaction.

  20. Methods, Challenges and Potentials of Single Cell RNA-seq

    OpenAIRE

    Daniel Hebenstreit

    2012-01-01

    RNA-sequencing (RNA-seq) has become the tool of choice for transcriptomics. Several recent studies demonstrate its successful adaption to single cell analysis. This allows new biological insights into cell differentiation, cell-to-cell variation and gene regulation, and how these aspects depend on each other. Here, I review the current single cell RNA-seq (scRNA-seq) efforts and discuss experimental protocols, challenges and potentials.

  1. Single cell transcriptome analysis using next generation sequencing.

    OpenAIRE

    Blattner, M.

    2010-01-01

    The heterogeneity of tissues, especially in cancer research, is a central issue in transcriptome analysis. In recent years, research has primarily focused on the development of methods for single cell analysis. Single cell analysis aims at gaining (novel) insights into biological processes of healthy and diseased cells. Some of the challenges in transcriptome analysis concern low abundance of sample starting material, necessary sample amplification steps and subsequent analysis. In this study...

  2. Methods, challenges and potentials of single cell RNA-seq

    OpenAIRE

    Hebenstreit, Daniel

    2012-01-01

    RNA-sequencing (RNA-seq) has become the tool of choice for transcriptomics. Several recent studies demonstrate its successful adaption to single cell analysis. This allows new biological insights into cell differentiation, cell-to-cell variation and gene regulation, and how these aspects depend on each other. Here, I review the current single cell RNA-seq (scRNA-seq) efforts and discuss experimental protocols, challenges and potentials.

  3. Single Cell Analysis: From Technology to Biology and Medicine.

    Science.gov (United States)

    Pan, Xinghua

    2014-01-01

    Single-cell analysis heralds a new era that allows "omics" analysis, notably genomics, transcriptomics, epigenomics and proteomics at the single-cell level. It enables the identification of the minor subpopulations that may play a critical role in a biological process of a population of cells, which conventionally are regarded as homogeneous. It provides an ultra-sensitive tool to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. It also facilitates the clinical investigation of patients when a very low quantity or a single cell is available for analysis, such as noninvasive prenatal diagnosis and cancer screening, and genetic evaluation for in vitro fertilization. Within a few short years, single-cell analysis, especially whole genomic sequencing and transcriptomic sequencing, is becoming robust and broadly accessible, although not yet a routine practice. Here, with single cell RNA-seq emphasized, an overview of the discipline, progresses, and prospects of single-cell analysis and its applications in biology and medicine are given with a series of logic and theoretical considerations.

  4. Single cell analysis of normal and leukemic hematopoiesis.

    Science.gov (United States)

    Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J

    2017-09-07

    The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.

  5. Alleviating the Collision States and Fleet Optimization by Introducing a New Generation of Automated Guided Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Parham Azimi

    2011-01-01

    Full Text Available The aim of the current research is to propose a new generation of automated guided vehicle systems for alleviating the collision states in material handling systems where the automated guided vehicles movements are allowed to be both unidirectional and bidirectional. The objective function is to maximize the average annual profit in an FMS system using a simulation method. Despite several researches done in this field, this criterion has been studied rarely. The current study includes some new changes in AGV design for preventing some common problems such as congestions and deadlocks based on real profits/costs analysis in a flexible manufacturing system. For this reason, some experiments have been carried out to study the effects of several empty vehicle dispatching rules on average annual profit. The results show that the proposed framework is efficient and robust enough for industrial environments.

  6. From a co-production design to an integrated single-cell biorefinery.

    Science.gov (United States)

    Liang, Quanfeng; Qi, Qingsheng

    2014-11-15

    Engineering microorganisms capable of accumulating multiple products are sometimes attractive because they yield several advantages in balancing the in vivo metabolic flux and restoring the optimal cell physiology. With the development of metabolic engineering and synthetic biology, numerous strategies for minimizing the substrate waste, optimizing the product portfolios, and maximizing the product yield in co-production systems have been designed and applied. This paper reviewed the recent developments in this field and discussed the challenges that may be encountered during the scaling up of the co-production systems. Finally, the importance of product portfolios and biorefinery strategy of single-cell in co-production processes was proposed.

  7. A polymeric micro total analysis system for single-cell analysis

    Science.gov (United States)

    Lai, Hsuan-Hong

    The advancement of microengineering has enabled the manipulation and analysis of single cells, which is critical in understanding the molecular mechanisms underlying the basic physiological functions from the point of view of modern biologists. Unfortunately, analysis of single cells remains challenging from a technical perspective, mainly because of the miniature nature of the cell and the high throughput requirements of the analysis. Lab-on-a-chip (LOC) emerges as a research field that shows great promise in this perspective. We have demonstrated a micro total analysis system (mu-TAS) combining chip-based electrophoretic separation, fluorescence detection, and a pulsed Nd:YAG laser cell lysis system, in a Poly(dimethylsiloxane) (PDMS) microfluidic analytical platform for the implementation of single-cell analysis. To accomplish the task, a polymeric microfluidic device was fabricated and UV graft polymerization surface modification techniques were used. To optimize the conditions for the surface treatment techniques, the modified surfaces of PDMS were characterized using AIR-IR spectrum and sessile water drop contact angle measurements, and in-channel surfaces were characterized by their electroosmotic flow mobility. Accurate single-cell analysis relies on rapid cell lysis and therefore an optical measure of fast cell lysis was implemented and optimized in a microscopic station. The influences of pulse energy and the location of the laser beam with respect to the cell in the microchannel were explored. The observation from the cell disruption experiments suggested that the cell lysis was enabled mainly via a thermo-mechanical instead of a plasma-mediated mechanism. Finally, after chip-based electrophoresis and a laser-induced fluorescence (LIF) detection system were incorporated with the laser lysis system in a microfluidic analytical station, a feasibility demonstration of single-cell analysis was implemented. The analytical platform exhibited the capability of

  8. Microfluidic single-cell whole-transcriptome sequencing.

    Science.gov (United States)

    Streets, Aaron M; Zhang, Xiannian; Cao, Chen; Pang, Yuhong; Wu, Xinglong; Xiong, Liang; Yang, Lu; Fu, Yusi; Zhao, Liang; Tang, Fuchou; Huang, Yanyi

    2014-05-13

    Single-cell whole-transcriptome analysis is a powerful tool for quantifying gene expression heterogeneity in populations of cells. Many techniques have, thus, been recently developed to perform transcriptome sequencing (RNA-Seq) on individual cells. To probe subtle biological variation between samples with limiting amounts of RNA, more precise and sensitive methods are still required. We adapted a previously developed strategy for single-cell RNA-Seq that has shown promise for superior sensitivity and implemented the chemistry in a microfluidic platform for single-cell whole-transcriptome analysis. In this approach, single cells are captured and lysed in a microfluidic device, where mRNAs with poly(A) tails are reverse-transcribed into cDNA. Double-stranded cDNA is then collected and sequenced using a next generation sequencing platform. We prepared 94 libraries consisting of single mouse embryonic cells and technical replicates of extracted RNA and thoroughly characterized the performance of this technology. Microfluidic implementation increased mRNA detection sensitivity as well as improved measurement precision compared with tube-based protocols. With 0.2 M reads per cell, we were able to reconstruct a majority of the bulk transcriptome with 10 single cells. We also quantified variation between and within different types of mouse embryonic cells and found that enhanced measurement precision, detection sensitivity, and experimental throughput aided the distinction between biological variability and technical noise. With this work, we validated the advantages of an early approach to single-cell RNA-Seq and showed that the benefits of combining microfluidic technology with high-throughput sequencing will be valuable for large-scale efforts in single-cell transcriptome analysis.

  9. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European

  10. A landscape lake flow pattern design approach based on automated CFD simulation and parallel multiple objective optimization.

    Science.gov (United States)

    Guo, Hao; Tian, Yimei; Shen, Hailiang; Wang, Yi; Kang, Mengxin

    A design approach for determining the optimal flow pattern in a landscape lake is proposed based on FLUENT simulation, multiple objective optimization, and parallel computing. This paper formulates the design into a multi-objective optimization problem, with lake circulation effects and operation cost as two objectives, and solves the optimization problem with non-dominated sorting genetic algorithm II. The lake flow pattern is modelled in FLUENT. The parallelization aims at multiple FLUENT instance runs, which is different from the FLUENT internal parallel solver. This approach: (1) proposes lake flow pattern metrics, i.e. weighted average water flow velocity, water volume percentage of low flow velocity, and variance of flow velocity, (2) defines user defined functions for boundary setting, objective and constraints calculation, and (3) parallels the execution of multiple FLUENT instances runs to significantly reduce the optimization wall-clock time. The proposed approach is demonstrated through a case study for Meijiang Lake in Tianjin, China.

  11. Single-cell regulome data analysis by SCRAT.

    Science.gov (United States)

    Ji, Zhicheng; Zhou, Weiqiang; Ji, Hongkai

    2017-09-15

    Emerging single-cell technologies (e.g. single-cell ATAC-seq, DNase-seq or ChIP-seq) have made it possible to assay regulome of individual cells. Single-cell regulome data are highly sparse and discrete. Analyzing such data is challenging. User-friendly software tools are still lacking. We present SCRAT, a Single-Cell Regulome Analysis Toolbox with a graphical user interface, for studying cell heterogeneity using single-cell regulome data. SCRAT can be used to conveniently summarize regulatory activities according to different features (e.g. gene sets, transcription factor binding motif sites, etc.). Using these features, users can identify cell subpopulations in a heterogeneous biological sample, infer cell identities of each subpopulation, and discover distinguishing features such as gene sets and transcription factors that show different activities among subpopulations. SCRAT is freely available at https://zhiji.shinyapps.io/scrat as an online web service and at https://github.com/zji90/SCRAT as an R package. hji@jhu.edu. Supplementary data are available at Bioinformatics online.

  12. Electrical impedance tomographic imaging of a single cell electroporation.

    Science.gov (United States)

    Meir, Arie; Rubinsky, Boris

    2014-06-01

    A living cell placed in a high strength electric field, can undergo a process known as electroporation. It is believed that during electroporation nano-scale defects (pores) occur in the membrane of the cell, causing dramatic changes to the permeability of its membrane. Electroporation is an important technique in biotechnology and medicine and numerous methods are being developed to improve the understanding and use of the technology. We propose to extend the toolbox available for studying electroporation by generating impedance distribution images of the cell as it undergoes electroporation using Electrical Impedance Tomography (EIT). To investigate the feasibility of this concept, we develop a mathematical model of the process of electroporation in a single cell and of EIT of the process and show simulation results of a computer-based finite element model (FEM). Our work is an attempt to develop a new imaging tool for visualizing electroporation in a single cell, offering a different temporal and spatial resolution compared to the state of the art, which includes bulk measurements of electrical properties during single cell electroporation, patch clamp and voltage clamp measurement in single cells and optical imaging with colorimetric dyes during single cell electroporation. This paper is a preliminary theoretic feasibility study.

  13. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  14. The Use of Evolutionary Approaches to Understand Single Cell Genomes

    Directory of Open Access Journals (Sweden)

    Haiwei eLuo

    2015-03-01

    Full Text Available The vast majority of environmental bacteria and archaea remain uncultivated, yet their genome sequences are rapidly becoming available through single cell sequencing technologies. Reconstructing metabolism is one common way to make use of genome sequences of ecologically important bacteria, but molecular evolutionary analysis is another approach that, while currently underused, can reveal important insights into the function of these uncultivated microbes in nature. Because genome sequences from single cells are often incomplete, metabolic reconstruction based on genome content can be compromised. However, this problem does not necessarily impede the use of phylogenomic and population genomic approaches that are based on patterns of polymorphisms and substitutions at nucleotide and amino acid sites. These approaches explore how various evolutionary forces act to assemble genetic diversity within and between lineages. In this mini-review, I present examples illustrating the benefits of analyzing single cell genomes using evolutionary approaches.

  15. Wishbone identifies bifurcating developmental trajectories from single-cell data.

    Science.gov (United States)

    Setty, Manu; Tadmor, Michelle D; Reich-Zeliger, Shlomit; Angel, Omer; Salame, Tomer Meir; Kathail, Pooja; Choi, Kristy; Bendall, Sean; Friedman, Nir; Pe'er, Dana

    2016-06-01

    Recent single-cell analysis technologies offer an unprecedented opportunity to elucidate developmental pathways. Here we present Wishbone, an algorithm for positioning single cells along bifurcating developmental trajectories with high resolution. Wishbone uses multi-dimensional single-cell data, such as mass cytometry or RNA-Seq data, as input and orders cells according to their developmental progression, and it pinpoints bifurcation points by labeling each cell as pre-bifurcation or as one of two post-bifurcation cell fates. Using 30-channel mass cytometry data, we show that Wishbone accurately recovers the known stages of T-cell development in the mouse thymus, including the bifurcation point. We also apply the algorithm to mouse myeloid differentiation and demonstrate its generalization to additional lineages. A comparison of Wishbone to diffusion maps, SCUBA and Monocle shows that it outperforms these methods both in the accuracy of ordering cells and in the correct identification of branch points.

  16. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells

    Directory of Open Access Journals (Sweden)

    Spyros Darmanis

    2016-01-01

    Full Text Available Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell’s phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment.

  17. Massively parallel digital transcriptional profiling of single cells

    Science.gov (United States)

    Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.

    2017-01-01

    Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601

  18. Tunable Single-Cell Extraction for Molecular Analyses.

    Science.gov (United States)

    Guillaume-Gentil, Orane; Grindberg, Rashel V; Kooger, Romain; Dorwling-Carter, Livie; Martinez, Vincent; Ossola, Dario; Pilhofer, Martin; Zambelli, Tomaso; Vorholt, Julia A

    2016-07-14

    Because of cellular heterogeneity, the analysis of endogenous molecules from single cells is of significant interest and has major implications. While micromanipulation or cell sorting followed by cell lysis is already used for subsequent molecular examinations, approaches to directly extract the content of living cells remain a challenging but promising alternative to achieving non-destructive sampling and cell-context preservation. Here, we demonstrate the quantitative extraction from single cells with spatiotemporal control using fluidic force microscopy. We further present a comprehensive analysis of the soluble molecules withdrawn from the cytoplasm or the nucleus, including the detection of enzyme activities and transcript abundances. This approach has uncovered the ability of cells to withstand extraction of up to several picoliters and opens opportunities to study cellular dynamics and cell-cell communication under physiological conditions at the single-cell level.

  19. Optimal installation locations for automated external defibrillators in Taipei 7-Eleven stores: using GIS and a genetic algorithm with a new stirring operator.

    Science.gov (United States)

    Huang, Chung-Yuan; Wen, Tzai-Hung

    2014-01-01

    Immediate treatment with an automated external defibrillator (AED) increases out-of-hospital cardiac arrest (OHCA) patient survival potential. While considerable attention has been given to determining optimal public AED locations, spatial and temporal factors such as time of day and distance from emergency medical services (EMSs) are understudied. Here we describe a geocomputational genetic algorithm with a new stirring operator (GANSO) that considers spatial and temporal cardiac arrest occurrence factors when assessing the feasibility of using Taipei 7-Eleven stores as installation locations for AEDs. Our model is based on two AED conveyance modes, walking/running and driving, involving service distances of 100 and 300 meters, respectively. Our results suggest different AED allocation strategies involving convenience stores in urban settings. In commercial areas, such installations can compensate for temporal gaps in EMS locations when responding to nighttime OHCA incidents. In residential areas, store installations can compensate for long distances from fire stations, where AEDs are currently held in Taipei.

  20. Imaging of anticancer drug action in single cells.

    Science.gov (United States)

    Miller, Miles A; Weissleder, Ralph

    2017-06-23

    Imaging is widely used in anticancer drug development, typically for whole-body tracking of labelled drugs to different organs or to assess drug efficacy through volumetric measurements. However, increasing attention has been drawn to pharmacology at the single-cell level. Diverse cell types, including cancer-associated immune cells, physicochemical features of the tumour microenvironment and heterogeneous cell behaviour all affect drug delivery, response and resistance. This Review summarizes developments in the imaging of in vivo anticancer drug action, with a focus on microscopy approaches at the single-cell level and translational lessons for the clinic.

  1. Single-cell analysis tools for drug discovery and development.

    Science.gov (United States)

    Heath, James R; Ribas, Antoni; Mischel, Paul S

    2016-03-01

    The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed.

  2. Single cell transcriptomic analysis of prostate cancer cells.

    Science.gov (United States)

    Welty, Christopher J; Coleman, Ilsa; Coleman, Roger; Lakely, Bryce; Xia, Jing; Chen, Shu; Gulati, Roman; Larson, Sandy R; Lange, Paul H; Montgomery, Bruce; Nelson, Peter S; Vessella, Robert L; Morrissey, Colm

    2013-02-16

    The ability to interrogate circulating tumor cells (CTC) and disseminated tumor cells (DTC) is restricted by the small number detected and isolated (typically <10). To determine if a commercially available technology could provide a transcriptomic profile of a single prostate cancer (PCa) cell, we clonally selected and cultured a single passage of cell cycle synchronized C4-2B PCa cells. Ten sets of single, 5-, or 10-cells were isolated using a micromanipulator under direct visualization with an inverted microscope. Additionally, two groups of 10 individual DTC, each isolated from bone marrow of 2 patients with metastatic PCa were obtained. RNA was amplified using the WT-Ovation™ One-Direct Amplification System. The amplified material was hybridized on a 44K Whole Human Gene Expression Microarray. A high stringency threshold, a mean Alexa Fluor® 3 signal intensity above 300, was used for gene detection. Relative expression levels were validated for select genes using real-time PCR (RT-qPCR). Using this approach, 22,410, 20,423, and 17,009 probes were positive on the arrays from 10-cell pools, 5-cell pools, and single-cells, respectively. The sensitivity and specificity of gene detection on the single-cell analyses were 0.739 and 0.972 respectively when compared to 10-cell pools, and 0.814 and 0.979 respectively when compared to 5-cell pools, demonstrating a low false positive rate. Among 10,000 randomly selected pairs of genes, the Pearson correlation coefficient was 0.875 between the single-cell and 5-cell pools and 0.783 between the single-cell and 10-cell pools. As expected, abundant transcripts in the 5- and 10-cell samples were detected by RT-qPCR in the single-cell isolates, while lower abundance messages were not. Using the same stringency, 16,039 probes were positive on the patient single-cell arrays. Cluster analysis showed that all 10 DTC grouped together within each patient. A transcriptomic profile can be reliably obtained from a single cell using

  3. Single-cell epigenomics: techniques and emerging applications.

    Science.gov (United States)

    Schwartzman, Omer; Tanay, Amos

    2015-12-01

    Epigenomics is the study of the physical modifications, associations and conformations of genomic DNA sequences, with the aim of linking these with epigenetic memory, cellular identity and tissue-specific functions. While current techniques in the field are characterizing the average epigenomic features across large cell ensembles, the increasing interest in the epigenetics within complex and heterogeneous tissues is driving the development of single-cell epigenomics. We review emerging single-cell methods for capturing DNA methylation, chromatin accessibility, histone modifications, chromosome conformation and replication dynamics. Together, these techniques are rapidly becoming a powerful tool in studies of cellular plasticity and diversity, as seen in stem cells and cancer.

  4. Functionalized nanopipettes: toward label-free, single cell biosensors.

    Science.gov (United States)

    Actis, Paolo; Mak, Andy C; Pourmand, Nader

    2010-08-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms.

  5. A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS.

    Science.gov (United States)

    Herrmann, A J; Techritz, S; Jakubowski, N; Haase, A; Luch, A; Panne, U; Mueller, L

    2017-05-21

    High lateral resolution of metal detection in single cells by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) demands powerful staining methods. In this work different staining procedures for the single cell analysis with LA-ICP-MS were optimized. An iridium intercalator was utilized to stain the cell nuclei whereas the whole cell was stained by the use of maleimido-mono-amide-DOTA (mDOTA) complexing lanthanide(iii) ions. The content of the artificially introduced metals per cell was quantified using a matrix matched calibration approach based on cellulose membranes onto which standards were spotted by a microarray spotter. Absolute metal stain amounts in the range of 2.34 to 9.81 femtomole per cell were determined. The metal staining procedures allow direct identification and visualization of single cells and their cell compartments by element microscopy without the use of bright field images of the sample.

  6. Warehouse automation

    OpenAIRE

    Pogačnik, Jure

    2017-01-01

    An automated high bay warehouse is commonly used for storing large number of material with a high throughput. In an automated warehouse pallet movements are mainly performed by a number of automated devices like conveyors systems, trolleys, and stacker cranes. From the introduction of the material to the automated warehouse system to its dispatch the system requires no operator input or intervention since all material movements are done automatically. This allows the automated warehouse to op...

  7. Development of a platform for single cell genomics using convex lens-induced confinement.

    Science.gov (United States)

    Mahshid, Sara; Ahamed, Mohammed Jalal; Berard, Daniel; Amin, Susan; Sladek, Robert; Leslie, Sabrina R; Reisner, Walter

    2015-07-21

    We demonstrate a lab-on-a-chip that combines micro/nano-fabricated features with a Convex Lens-Induced Confinement (CLIC) device for the in situ analysis of single cells. A complete cycle of single cell analysis was achieved that includes: cell trapping, cell isolation, lysis, protein digestion, genomic DNA extraction and on-chip genomic DNA linearization. The ability to dynamically alter the flow-cell dimensions using the CLIC method was coupled with a flow-control mechanism for achieving efficient cell trapping, buffer exchange, and loading of long DNA molecules into nanofluidic arrays. Finite element simulation of fluid flow gives rise to optimized design parameters for overcoming the high hydraulic resistance present in the micro/nano-confinement region. By tuning design parameters such as the pressure gradient and CLIC confinement, an efficient on-chip single cell analysis protocol can be obtained. We demonstrate that we can extract Mbp long genomic DNA molecules from a single human lybphoblastoid cell and stretch these molecules in the nanochannels for optical interrogation.

  8. Fluorescence-based tools for single-cell approaches in food microbiology.

    Science.gov (United States)

    Bridier, A; Hammes, F; Canette, A; Bouchez, T; Briandet, R

    2015-11-20

    The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. Heterogeneity appears now as an intrinsic and multi-origin feature of microbial populations and is a major determinant of their beneficial or detrimental functional properties. The understanding of the molecular and cellular mechanisms behind the behavior of bacteria in microbial communities requires therefore observations at the single-cell level in order to overcome "averaging" effects inherent to traditional global approaches. Recent advances in the development of fluorescence-based approaches dedicated to single-cell analysis provide the opportunity to study microbial communities with an unprecedented level of resolution and to obtain detailed insights on the cell structure, metabolism activity, multicellular behavior and bacterial interactions in complex communities. These methods are now increasingly applied in the field of food microbiology in different areas ranging from research laboratories to industry. In this perspective, we reviewed the main fluorescence-based tools used for single-cell approaches and their concrete applications with specific focus on food microbiology.

  9. High-content single-cell analysis on-chip using a laser microarray scanner.

    Science.gov (United States)

    Zhou, Jing; Wu, Yu; Lee, Sang-Kwon; Fan, Rong

    2012-12-07

    High-content cellomic analysis is a powerful tool for rapid screening of cellular responses to extracellular cues and examination of intracellular signal transduction pathways at the single-cell level. In conjunction with microfluidics technology that provides unique advantages in sample processing and precise control of fluid delivery, it holds great potential to transform lab-on-a-chip systems for high-throughput cellular analysis. However, high-content imaging instruments are expensive, sophisticated, and not readily accessible. Herein, we report on a laser scanning cytometry approach that exploits a bench-top microarray scanner as an end-point reader to perform rapid and automated fluorescence imaging of cells cultured on a chip. Using high-content imaging analysis algorithms, we demonstrated multiplexed measurements of morphometric and proteomic parameters from all single cells. Our approach shows the improvement of both sensitivity and dynamic range by two orders of magnitude as compared to conventional epifluorescence microscopy. We applied this technology to high-throughput analysis of mesenchymal stem cells on an extracellular matrix protein array and characterization of heterotypic cell populations. This work demonstrates the feasibility of a laser microarray scanner for high-content cellomic analysis and opens up new opportunities to conduct informative cellular analysis and cell-based screening in the lab-on-a-chip systems.

  10. Single-cell analysis reveals gene-expression heterogeneity in syntrophic dual-culture of Desulfovibrio vulgaris with Methanosarcina barkeri

    Science.gov (United States)

    Qi, Zhenhua; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2014-12-01

    Microbial syntrophic metabolism has been well accepted as the heart of how methanogenic and other anaerobic microbial communities function. In this work, we applied a single-cell RT-qPCR approach to reveal gene-expression heterogeneity in a model syntrophic system of Desulfovibrio vulgaris and Methanosarcina barkeri, as compared with the D. vulgaris monoculture. Using the optimized primers and single-cell analytical protocol, we quantitatively determine gene-expression levels of 6 selected target genes in each of the 120 single cells of D. vulgaris isolated from its monoculture and dual-culture with M. barkeri. The results demonstrated very significant cell-to-cell gene-expression heterogeneity for the selected D. vulgaris genes in both the monoculture and the syntrophic dual-culture. Interestingly, no obvious increase in gene-expression heterogeneity for the selected genes was observed for the syntrophic dual-culture when compared with its monoculture, although the community structure and cell-cell interactions have become more complicated in the syntrophic dual-culture. In addition, the single-cell RT-qPCR analysis also provided further evidence that the gene cluster (DVU0148-DVU0150) may be involved syntrophic metabolism between D. vulgaris and M. barkeri. Finally, the study validated that single-cell RT-qPCR analysis could be a valuable tool in deciphering gene functions and metabolism in mixed-cultured microbial communities.

  11. Scalable Automated Model Search

    Science.gov (United States)

    2014-05-20

    of processing. 6. FUTURE WORK We note that these optimizations are just the tip of the iceberg in solving this problem faster. Advanced model ...Scalable Automated Model Search Evan Sparks Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No...2014 to 00-00-2014 4. TITLE AND SUBTITLE Scalable Automated Model Search 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  12. Modelling Morphogenesis: From Single Cells to Crawling Slugs

    NARCIS (Netherlands)

    Savill, N.J.; Hogeweg, P.

    2002-01-01

    We present a three-dimensional hybrid cellular automata (CA)/partial differential equation (PDE) model that allows for the study of morphogenesis in simple cellular systems. We apply the model to the cellular slime mold Dictyostelium discoideum "from single cells to crawling slug". Using simple loca

  13. Single-cell LEP-type cavity on measurement stand

    CERN Multimedia

    1982-01-01

    A single-cell cavity, made of copper, with tapered connectors for impedance measurements. It was used as a model of LEP-type superconducting cavities, to investigate impedance and higher-order modes and operated at around 600 MHz (the LEP acceleration frequency was 352.2 MHz). See 8202500.

  14. Signatures of nonlinearity in single cell noise-induced oscillations

    NARCIS (Netherlands)

    Thomas, P.; Straube, A.V.; Timmer, J.; Fleck, C.; Grima, R.

    2013-01-01

    A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power

  15. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Felix Schmidt

    2016-06-01

    Full Text Available Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1 single cell isolation (e.g., by laser-capture microdissection, fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase, and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems. Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients.

  16. Research highlights: microfluidic-enabled single-cell epigenetics.

    Science.gov (United States)

    Dhar, Manjima; Khojah, Reem; Tay, Andy; Di Carlo, Dino

    2015-11-07

    Individual cells are the fundamental unit of life with diverse functions from metabolism to motility. In multicellular organisms, a single genome can give rise to tremendous variability across tissues at the single-cell level due to epigenetic differences in the genes that are expressed. Signals from the local environment or a history of signals can drive these variations, and tissues have many cell types that play separate roles. This epigenetic heterogeneity is of biological importance in normal functions such as tissue morphogenesis and can contribute to development or resistance of cancer, or other disease states. Therefore, an improved understanding of variations at the single cell level are fundamental to understanding biology and developing new approaches to combating disease. Traditional approaches to characterize epigenetic modifications of chromatin or the transcriptome of cells have often focused on blended responses of many cells in a tissue; however, such bulk measures lose spatial and temporal differences that occur from cell to cell, and cannot uncover novel or rare populations of cells. Here we highlight a flurry of recent activity to identify the mRNA profiles from thousands of single-cells as well as chromatin accessibility and histone marks on single to few hundreds of cells. Microfluidics and microfabrication have played a central role in the range of new techniques, and will likely continue to impact their further development towards routine single-cell epigenetic analysis.

  17. Integral Equation Solution for Biopotentials of Single Cells

    Science.gov (United States)

    Klee, Maurice; Plonsey, Robert

    1972-01-01

    A Fredholm integral equation of the second type is developed for the biopotentials of single cells. Two singularities arise in the numerical solution of this integral equation and methods for handling them are presented. The problem of a spherical cell in an applied uniform field is used to illustrate the technique. PMID:4655666

  18. Signatures of nonlinearity in single cell noise-induced oscillations

    NARCIS (Netherlands)

    Thomas, P.; Straube, A.V.; Timmer, J.; Fleck, C.; Grima, R.

    2013-01-01

    A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power spec

  19. Single cell metastatic phenotyping using pulsed nanomechanical indentations

    Science.gov (United States)

    Babahosseini, Hesam; Strobl, Jeannine S.; Agah, Masoud

    2015-09-01

    The existing approach to characterize cell biomechanical properties typically utilizes switch-like models of mechanotransduction in which cell responses are analyzed in response to a single nanomechanical indentation or a transient pulsed stress. Although this approach provides effective descriptors at population-level, at a single-cell-level, there are significant overlaps in the biomechanical descriptors of non-metastatic and metastatic cells which precludes the use of biomechanical markers for single cell metastatic phenotyping. This study presents a new promising marker for biosensing metastatic and non-metastatic cells at a single-cell-level using the effects of a dynamic microenvironment on the biomechanical properties of cells. Two non-metastatic and two metastatic epithelial breast cell lines are subjected to a pulsed stresses regimen exerted by atomic force microscopy. The force-time data obtained for the cells revealed that the non-metastatic cells increase their resistance against deformation and become more stiffened when subjected to a series of nanomechanical indentations. On the other hand, metastatic cells become slightly softened when their mechanical microenvironment is subjected to a similar dynamical changes. This distinct behavior of the non-metastatic and metastatic cells to the pulsed stresses paradigm provided a signature for single-cell-level metastatic phenotyping with a high confidence level of ∼95%.

  20. Single-cell Analysis of Lambda Immunity Regulation

    DEFF Research Database (Denmark)

    Bæk, Kristoffer Torbjørn; Svenningsen, Sine Lo; Eisen, Harvey

    2003-01-01

    We have examined expression of the ¿cI operon in single cells via a rexgfp substitution. Although average fluorescence agreed with expectations for expression of ¿-repressor, fluorescence fluctuated greatly from cell-to-cell. Fluctuations in repressor concentration are not predicted by previous m...

  1. Parameter Extraction for PSpice Models by means of an Automated Optimization Tool – An IGBT model Study Case

    DEFF Research Database (Denmark)

    Suárez, Carlos Gómez; Reigosa, Paula Diaz; Iannuzzo, Francesco;

    2016-01-01

    An original tool for parameter extraction of PSpice models has been released, enabling a simple parameter identification. A physics-based IGBT model is used to demonstrate that the optimization tool is capable of generating a set of parameters which predicts the steady-state and switching behavio...

  2. ProDeGe: A Computational Protocol for fully Automated Decontamination of Genomic Data

    Energy Technology Data Exchange (ETDEWEB)

    2015-12-01

    The Single Cell Data Decontamination Pipeline is a fully-automated software tool which classifies unscreened contigs from single cell datasets through a combination of homology and feature-based methodologies using the organism's nucleotide sequences and known NCBI taxonomony. The software is freely available to download and install, and can be run on any system.

  3. Simulation of Large Scale Automation Process Control Process Optimization Scheduling Model%大型自动化过程控制流程优化调度模型仿真

    Institute of Scientific and Technical Information of China (English)

    任铭

    2015-01-01

    传统的过程控制和作业调度方法采用基于多线程集群聚类的任务调度方法,对多用户、多任务的大型自动化过程控制的调度性能不好.提出基于主特征支配集分簇提取的大型自动化过程控制流程优化调度模型.构建大型自动化过程控制模型,进行优化控制目标函数构建,实现控制流程的优化调度模型改进,最后通过仿真实验进行了性能验证.仿真结果表明,该算法能优化自动化过程控制流程,在提高生产效率,优化工业自动化过程控制方面具有重要应用价值.%Traditional process control and job scheduling method based on multi-threading set clustering task scheduling method, large automation of users, the task scheduling performance of process control is bad. Put forward based on the char-acteristics of dominating sets clumps and extraction of large automation process control process optimization scheduling model. Building large automation process control model for optimal control objective function building, to achieve the opti-mal scheduling model of control process improvements, the performance verification by simulation experiment. The simula-tion results show that the algorithm can optimize the automation process control process, to improve the production effi-ciency, optimize the industrial automation process control has important application value.

  4. Slotting optimization of automated storage and retrieval system (AS/RS) for efficient delivery of parts in an assembly shop using genetic algorithm: A case Study

    Science.gov (United States)

    Yue, L.; Guan, Z.; He, C.; Luo, D.; Saif, U.

    2017-06-01

    In recent years, the competitive pressure on manufacturing companies shifted them from mass production to mass customization to produce large variety of products. It is a great challenge for companies nowadays to produce customized mixed flow mode of production to meet customized demand on time. Due to large variety of products, the storage system to deliver variety of products to production lines influences on the timely production of variety of products, as investigated from by simulation study of an inefficient storage system of a real Company, in the current research. Therefore, current research proposed a slotting optimization model with mixed model sequence to assemble in consideration of the final flow lines to optimize whole automated storage and retrieval system (AS/RS) and distribution system in the case company. Current research is aimed to minimize vertical height of centre of gravity of AS/RS and total time spent for taking the materials out from the AS/RS simultaneously. Genetic algorithm is adopted to solve the proposed problem and computational result shows significant improvement in stability and efficiency of AS/RS as compared to the existing method used in the case company.

  5. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater.

    Science.gov (United States)

    Yu, Dawei; Liu, Jibao; Sui, Qianwen; Wei, Yuansong

    2016-03-01

    Control of organic loading rate (OLR) is essential for anaerobic digestion treating high COD wastewater, which would cause operation failure by overload or less efficiency by underload. A novel biogas-pH automation control strategy using the combined gas-liquor phase monitoring was developed for an anaerobic membrane bioreactor (AnMBR) treating high COD (27.53 g·L(-1)) starch wastewater. The biogas-pH strategy was proceeded with threshold between biogas production rate >98 Nml·h(-1) preventing overload and pH>7.4 preventing underload, which were determined by methane production kinetics and pH titration of methanogenesis slurry, respectively. The OLR and the effluent COD were doubled as 11.81 kgCOD·kgVSS(-1)·d(-1) and halved as 253.4 mg·L(-1), respectively, comparing with a constant OLR control strategy. Meanwhile COD removal rate, biogas yield and methane concentration were synchronously improved to 99.1%, 312 Nml·gCODin(-1) and 74%, respectively. Using the biogas-pH strategy, AnMBR formed a "pH self-regulation ternary buffer system" which seizes carbon dioxide and hence provides sufficient buffering capacity.

  6. Automated tracing of open-field coronal structures for an optimized large-scale magnetic field reconstruction

    Science.gov (United States)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2014-12-01

    Solar Probe Plus and Solar Orbiter will provide detailed measurements in the inner heliosphere magnetically connected with the topologically complex and eruptive solar corona. Interpretation of these measurements will require accurate reconstruction of the large-scale coronal magnetic field. In a related presentation by S. Jones et al., we argue that such reconstruction can be performed using photospheric extrapolation methods constrained by white-light coronagraph images. Here, we present the image-processing component of this project dealing with an automated segmentation of fan-like coronal loop structures. In contrast to the existing segmentation codes designed for detecting small-scale closed loops in the vicinity of active regions, we focus on the large-scale geometry of the open-field coronal features observed at significant radial distances from the solar surface. The coronagraph images used for the loop segmentation are transformed into a polar coordinate system and undergo radial detrending and initial noise reduction. The preprocessed images are subject to an adaptive second order differentiation combining radial and azimuthal directions. An adjustable thresholding technique is applied to identify candidate coronagraph features associated with the large-scale coronal field. A blob detection algorithm is used to extract valid features and discard noisy data pixels. The obtained features are interpolated using higher-order polynomials which are used to derive empirical directional constraints for magnetic field extrapolation procedures based on photospheric magnetograms.

  7. Hydrothermal simulation of a fractured carbonate reservoir in southern Italy and automated detections of optimal positions for geothermal doublet installations

    Science.gov (United States)

    Niederau, Jan; Gomez, Sergio; Ebigbo, Anozie; Inversi, Barbara; Marquart, Gabriele; Scrocca, Davide

    2015-04-01

    In this work, we present the results of hydrothermal simulations for assessing the geothermal potential of a fractured carbonate reservoir in Campania (Guardia Lombardi). Local surface heat flows of up to 90 mW/m² suggest that this area is a potential medium-enthalpy geothermal reservoir. The targeted reservoir rocks are fractured shallow-water carbonates (Jurassic to Cretaceous) of the Apulia Platform. During the Apennine orogeny, those carbonates were affected by at least two tectonic phases: Thrust-related folding of the carbonate platform due to compression followed by extension which caused major normal faulting. Based on seismic interpretation, a discretized structural model is set up, comprising the reservoir unit and the overlying sedimentary cover. The model comprises an area of 42 km × 28 km and extends to a depth of about six kilometers. Results of calibrated hydrothermal reservoir simulations suggest that free convection occurs in some parts of the reservoir. For assessing optimal locations for potential hydrothermal doublet systems, a tool was developed which uses the results of the reservoir simulationsin combination with predefined constraints. Those constraints or minimum requirements consider: a) minimum temperature for operating the doublet system, b) minimum matrix permeability allowing for a pumping rate of 40 L/s, and c) social constraints (location of cities or conservation areas, where the construction of a potential geothermal energy plant would be problematic). The optimization tool ranks possible doublet system locations by evaluating an objective function for the minimum requirements. Those locations are further used to extract smaller models from the big reservoir model and simulate the operation of a hypothetical geothermal doublet system. By assessing the optimized results, an optimal location of a geothermal energy plant would produce water with a temperature of 163 °C from a depth of almost 4 km.

  8. DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening

    Directory of Open Access Journals (Sweden)

    Villoutreix Bruno O

    2009-11-01

    Full Text Available Abstract Background Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Results Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. Conclusion DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  9. Accounting Automation

    OpenAIRE

    Laynebaril1

    2017-01-01

    Accounting Automation   Click Link Below To Buy:   http://hwcampus.com/shop/accounting-automation/  Or Visit www.hwcampus.com Accounting Automation” Please respond to the following: Imagine you are a consultant hired to convert a manual accounting system to an automated system. Suggest the key advantages and disadvantages of automating a manual accounting system. Identify the most important step in the conversion process. Provide a rationale for your response. ...

  10. Home Automation

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

  11. An Automated Treatment Plan Quality Control Tool for Intensity-Modulated Radiation Therapy Using a Voxel-Weighting Factor-Based Re-Optimization Algorithm.

    Science.gov (United States)

    Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura

    2016-01-01

    Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be

  12. Systematic review automation technologies

    Science.gov (United States)

    2014-01-01

    Systematic reviews, a cornerstone of evidence-based medicine, are not produced quickly enough to support clinical practice. The cost of production, availability of the requisite expertise and timeliness are often quoted as major contributors for the delay. This detailed survey of the state of the art of information systems designed to support or automate individual tasks in the systematic review, and in particular systematic reviews of randomized controlled clinical trials, reveals trends that see the convergence of several parallel research projects. We surveyed literature describing informatics systems that support or automate the processes of systematic review or each of the tasks of the systematic review. Several projects focus on automating, simplifying and/or streamlining specific tasks of the systematic review. Some tasks are already fully automated while others are still largely manual. In this review, we describe each task and the effect that its automation would have on the entire systematic review process, summarize the existing information system support for each task, and highlight where further research is needed for realizing automation for the task. Integration of the systems that automate systematic review tasks may lead to a revised systematic review workflow. We envisage the optimized workflow will lead to system in which each systematic review is described as a computer program that automatically retrieves relevant trials, appraises them, extracts and synthesizes data, evaluates the risk of bias, performs meta-analysis calculations, and produces a report in real time. PMID:25005128

  13. Single cell analysis contemporary research and clinical applications

    CERN Document Server

    Cossarizza, Andrea

    2017-01-01

    This book highlights the current state of the art in single cell analysis, an area that involves many fields of science – from clinical hematology, functional analysis and drug screening, to platelet and microparticle analysis, marine biology and fundamental cancer research. This book brings together an eclectic group of current applications, all of which have a significant impact on our current state of knowledge. The authors of these chapters are all pioneering researchers in the field of single cell analysis. The book will not only appeal to those readers more focused on clinical applications, but also those interested in highly technical aspects of the technologies. All of the technologies identified utilize unique applications of photon detection systems.

  14. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    Science.gov (United States)

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties.

  15. Bioreporters: gfp versus lux revisited and single-cell response.

    Science.gov (United States)

    Kohlmeier, Stefanie; Mancuso, Matthew; Tecon, Robin; Harms, Hauke; van der Meer, Jan Roelof; Wells, Mona

    2007-03-15

    Genetically engineered organisms expressing spectroscopically active reporter molecules in response to chemical effectors display great potential as living transducers in sensing applications. Green fluorescent protein (gfp gene) bioreporters have distinct advantages over luminescent couterparts (lux gene), including applicability at the single-cell level, but are typically less sensitive. Here we describe a gfp-bearing bioreporter that is sensitive to naphthalene (a poorly water soluble pollutant behaving like a large class of hydrophobic compounds), is suitable for use in chemical assays and bioavailability studies, and has detection limits comparable to lux-bearing bioreporters for higher efficiency detection strategies. Simultaneously, we find that the exploitation of population response data from single-cell analysis is not an algorithmic conduit to enhanced signal detection and hence lower effector detection limits, as normally assumed. The assay reported functions to equal effect with or without biocide.

  16. Single-cell model of prokaryotic cell cycle.

    Science.gov (United States)

    Abner, Kristo; Aaviksaar, Tõnis; Adamberg, Kaarel; Vilu, Raivo

    2014-01-21

    One of the recognized prokaryotic cell cycle theories is Cooper-Helmstetter (CH) theory which relates start of DNA replication to particular (initiation) cell mass, cell growth and division. Different aspects of this theory have been extensively studied in the past. In the present study CH theory was applied at single cell level. Universal equations were derived for different cell parameters (cell mass and volume, surface area, DNA amount and content) depending on constructivist cell cycle parameters (unit mass, replication and division times, cell age, cell cycle duration) based on selected growth laws of cell mass (linear, exponential). The equations derived can be integrated into single-cell models for the analysis and design of bacterial cells. © 2013 Published by Elsevier Ltd.

  17. Genetic interaction mapping with microfluidic-based single cell sequencing

    Science.gov (United States)

    Haliburton, John R.; Shao, Wenjun; Deutschbauer, Adam; Arkin, Adam; Abate, Adam R.

    2017-01-01

    Genetic interaction mapping is useful for understanding the molecular basis of cellular decision making, but elucidating interactions genome-wide is challenging due to the massive number of gene combinations that must be tested. Here, we demonstrate a simple approach to thoroughly map genetic interactions in bacteria using microfluidic-based single cell sequencing. Using single cell PCR in droplets, we link distinct genetic information into single DNA sequences that can be decoded by next generation sequencing. Our approach is scalable and theoretically enables the pooling of entire interaction libraries to interrogate multiple pairwise genetic interactions in a single culture. The speed, ease, and low-cost of our approach makes genetic interaction mapping viable for routine characterization, allowing the interaction network to be used as a universal read out for a variety of biology experiments, and for the elucidation of interaction networks in non-model organisms. PMID:28170417

  18. Shrink-induced single-cell plastic microwell array.

    Science.gov (United States)

    Lew, Valerie; Nguyen, Diep; Khine, Michelle

    2011-12-01

    The ability to interrogate and track single cells over time in a high-throughput format would provide critical information for fundamental biological understanding of processes and for various applications, including drug screening and toxicology. We have developed an ultrarapid and simple method to create single-cell wells of controllable diameter and depth with commodity shrink-wrap film and tape. Using a programmable CO(2) laser, we cut hole arrays into the tape. The tape then serves as a shadow mask to selectively etch wells into commodity shrink-wrap film by O(2) plasma. When the shrink-wrap film retracts upon briefly heating, high-aspect plastic microwell arrays with diameters down to 20 μm are readily achieved. We calibrated the loading procedure with fluorescent microbeads. Finally, we demonstrate the utility of the wells by loading fluorescently labeled single human embryonic stem cells into the wells.

  19. Emergent collective chemotaxis without single-cell gradient sensing

    CERN Document Server

    Camley, Brian A; Levine, Herbert; Rappel, Wouter-Jan

    2015-01-01

    Many eukaryotic cells chemotax, sensing and following chemical gradients. However, even if single cells do not chemotax significantly, small clusters may still follow a gradient; this behavior is observed in neural crest cells and during border cell migration in Drosophila, but its origin remains puzzling. Here, we study this "collective guidance" analytically and computationally. We show collective chemotaxis can exist without single-cell chemotaxis if contact inhibition of locomotion (CIL), where cells polarize away from cell-cell contact, is regulated by the chemoattractant. We present explicit formulas for how cluster velocity and chemotactic index depend on the number and organization of cells in the cluster. Pairs of cells will have velocities that are strongly dependent on the cell pair's orientation: this provides a simple test for the presence of collective guidance in neural crest cells and other systems. We also study cluster-level adaptation, amplification, and cohesion via co-attraction.

  20. Single cell induced optical confinement in biological lasers

    Science.gov (United States)

    Karl, M.; Dietrich, C. P.; Schubert, M.; Samuel, I. D. W.; Turnbull, G. A.; Gather, M. C.

    2017-03-01

    Biological single cell lasers have shown great potential for fundamental research and next generation sensing applications. In this study, the potential of fluorescent biological cells as refractive index landscapes and active optical elements is investigated using a combined Fourier- and hyperspectral imaging technique. We show that the refractive index contrast between cell and surrounding leads to 3D confinement of photons inside living cells. The Fourier- and real-space emission characteristics of these biological lasers are closely related and can be predicted from one another. Investigations of the lasing threshold for different energy and momentum position in Fourier-space give insight into the fundamental creation of longitudinal and transverse lasing modes within the cell. These findings corroborate the potential of living biological materials for precision engineering of photonic structures and may pave the way towards low threshold polariton lasing from single cells.

  1. Femtosecond laser fabrication of optofluidic devices for single cell manipulation

    Directory of Open Access Journals (Sweden)

    Bragheri Francesca

    2015-01-01

    Full Text Available In this work we fabricate and validate two optofludic devices for the manipulation and analysis of single cells. The chips are fabricated by femtosecond laser micromachining exploiting the 3D capabilities of the technique and the inherent perfect alignment between microfluidic channels and optical networks. Both devices have been validated by probing the mechanical properties of different cancer cell lines, which are expected to show different elasticity because of their different metastatic potential.

  2. Single-Cell Transcriptomics Bioinformatics and Computational Challenges

    OpenAIRE

    Lana Garmire; Olivier Bertrand Poirion; Xun Zhu; Travers Ching

    2016-01-01

    The emerging single-cell RNA-Seq (scRNA-Seq) technology holds the promise to revolutionize our understanding of diseases and associated biological processes at an unprecedented resolution. It opens the door to reveal the intercellular heterogeneity and has been employed to a variety of applications, ranging from characterizing cancer cells subpopulations to elucidating tumor resistance mechanisms. Parallel to improving experimental protocols to deal with technological issues, deriving new ana...

  3. Reversed graph embedding resolves complex single-cell trajectories.

    Science.gov (United States)

    Qiu, Xiaojie; Mao, Qi; Tang, Ying; Wang, Li; Chawla, Raghav; Pliner, Hannah A; Trapnell, Cole

    2017-10-01

    Single-cell trajectories can unveil how gene regulation governs cell fate decisions. However, learning the structure of complex trajectories with multiple branches remains a challenging computational problem. We present Monocle 2, an algorithm that uses reversed graph embedding to describe multiple fate decisions in a fully unsupervised manner. We applied Monocle 2 to two studies of blood development and found that mutations in the genes encoding key lineage transcription factors divert cells to alternative fates.

  4. Mie scatter corrections in single cell infrared microspectroscopy.

    Science.gov (United States)

    Konevskikh, Tatiana; Lukacs, Rozalia; Blümel, Reinhold; Ponossov, Arkadi; Kohler, Achim

    2016-06-23

    Strong Mie scattering signatures hamper the chemical interpretation and multivariate analysis of the infrared microscopy spectra of single cells and tissues. During recent years, several numerical Mie scatter correction algorithms for the infrared spectroscopy of single cells have been published. In the paper at hand, we critically reviewed existing algorithms for the correction of Mie scattering and suggest improvements. We developed an iterative algorithm based on Extended Multiplicative Scatter Correction (EMSC), for the retrieval of pure absorbance spectra from highly distorted infrared spectra of single cells. The new algorithm uses the van de Hulst approximation formula for the extinction efficiency employing a complex refractive index. The iterative algorithm involves the establishment of an EMSC meta-model. While existing iterative algorithms for the correction of resonant Mie scattering employ three independent parameters for establishing a meta-model, we could decrease the number of parameters from three to two independent parameters, which reduced the calculation time for the Mie scattering curves for the iterative EMSC meta-model by a factor of 10. Moreover, by employing the Hilbert transform for evaluating the Kramers-Kronig relations based on a FFT algorithm in Matlab, we further improved the speed of the algorithm by a factor of 100. For testing the algorithm we simulate distorted apparent absorbance spectra by utilizing the exact theory for the scattering of infrared light at absorbing spheres, taking into account the high numerical aperture of infrared microscopes employed for the analysis of single cells and tissues. In addition, the algorithm was applied to measured absorbance spectra of single lung cancer cells.

  5. Production strategies and applications of microbial single cell oils

    OpenAIRE

    Katrin Ochsenreither; Claudia Glück; Timo Stressler; Lutz Fischer; Christoph Syldatk

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a pr...

  6. Microwave-induced thermogenetic activation of single cells

    Energy Technology Data Exchange (ETDEWEB)

    Safronov, N. A. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Fedotov, I. V. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V. [M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997 (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Zheltikov, A. M. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Kurchatov Institute National Research Center, Moscow 123182 (Russian Federation)

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  7. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  8. [Technological advances in single-cell genomic analyses].

    Science.gov (United States)

    Pan, Xing-Hua; Zhu, Hai-Ying; Marjani, Sadie L

    2011-01-01

    The technological progress of the genomics has transformed life science research. The main objectives of genomics are sequencing of new genomes and genome-wide identification of the function and the interaction of genes and their products. The recently developed second generation or next generation sequencing platforms and DNA microarray technology are immensely important and powerful tools for functional genomic analyses. However, their application is limited by the requirement of sufficient amounts of high quality nucleic acid samples. Therefore, when only a single cell or a very small number of cells are available or are preferred, the whole genomic sequencing or functional genomic objectives cannot be achieved conventionally and require a robust amplification method. This review highlights DNA amplification technologies and summarizes the strategies currently utilized for whole genome sequencing of a single cell, with specific focus on studies investigating microorganisms; An outline for targeted re-sequencing enabling the analysis of larger genomes is also provided. Furthermore, the review presents the emerging functional genomic applications using next-generation sequencing or microarray analysis to examine genome-wide transcriptional profile, chromatin modification and other types of protein-DNA binding profile, and CpG methylation mapping in a single cell or a very low quantity of cells. The nature of these technologies and their prospects are also addressed.

  9. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  10. Hydrodynamic Cell Trapping for High Throughput Single-Cell Applications

    Directory of Open Access Journals (Sweden)

    Amin Abbaszadeh Banaeiyan

    2013-12-01

    Full Text Available The possibility to conduct complete cell assays under a precisely controlled environment while consuming minor amounts of chemicals and precious drugs have made microfluidics an interesting candidate for quantitative single-cell studies. Here, we present an application-specific microfluidic device, cellcomb, capable of conducting high-throughput single-cell experiments. The system employs pure hydrodynamic forces for easy cell trapping and is readily fabricated in polydimethylsiloxane (PDMS using soft lithography techniques. The cell-trapping array consists of V-shaped pockets designed to accommodate up to six Saccharomyces cerevisiae (yeast cells with the average diameter of 4 μm. We used this platform to monitor the impact of flow rate modulation on the arsenite (As(III uptake in yeast. Redistribution of a green fluorescent protein (GFP-tagged version of the heat shock protein Hsp104 was followed over time as read out. Results showed a clear reverse correlation between the arsenite uptake and three different adjusted low = 25 nL min−1, moderate = 50 nL min−1, and high = 100 nL min−1 flow rates. We consider the presented device as the first building block of a future integrated application-specific cell-trapping array that can be used to conduct complete single cell experiments on different cell types.

  11. Practical, microfabrication-free device for single-cell isolation.

    Directory of Open Access Journals (Sweden)

    Liang-I Lin

    Full Text Available Microfabricated devices have great potential in cell-level studies, but are not easily accessible for the broad biology community. This paper introduces the Microscale Oil-Covered Cell Array (MOCCA as a low-cost device for high throughput single-cell analysis that can be easily produced by researchers without microengineering knowledge. Instead of using microfabricated structures to capture cells, MOCCA isolates cells in discrete aqueous droplets that are separated by oil on patterned hydrophilic areas across a relatively more hydrophobic substrate. The number of randomly seeded Escherichia coli bacteria in each discrete droplet approaches single-cell levels. The cell distribution on MOCCA is well-fit with Poisson distribution. In this pioneer study, we created an array of 900-picoliter droplets. The total time needed to seed cells in approximately 3000 droplets was less than 10 minutes. Compared to traditional microfabrication techniques, MOCCA dramatically lowers the cost of microscale cell arrays, yet enhances the fabrication and operational efficiency for single-cell analysis.

  12. Single-cell tracking with a reversing flow cytometer.

    Science.gov (United States)

    Sitton, Greg; Srienc, Friedrich

    2011-01-01

    We have developed an instrument based on a flow cytometer platform that is capable of tracking individual, suspended cells over extended time periods. The instrument repeatedly moves in a capillary the same volume segment of fluid containing tens to hundreds of suspended cells through the focal point of a laser. Individual cells are then tracked based on the timing of when they cross the laser, and cell properties are measured as in a conventional flow cytometer. Because cells are repeatedly measured the single-cell rates of change can be determined. The developed instrumentation was applied to measure the variability of ABC transporter activity in a population of human cancer cells and the temperature dependence of constitutively expressed Gfp in yeast. A wide range of transport rates can be observed in the cancer cell population while the single-cell Gfp fluorescence in yeast shows pronounced oscillations in response to temperature shifts. These observations are not detectable at the population level. Therefore, such measurements are useful for investigating cell function as they reveal how variable properties of single cells change over time.

  13. Single-cell printing based on impedance detection.

    Science.gov (United States)

    Schoendube, J; Wright, D; Zengerle, R; Koltay, P

    2015-01-01

    Label-free isolation of single cells is essential for the growing field of single-cell analysis. Here, we present a device which prints single living cells encapsulated in free-flying picoliter droplets. It combines inkjet printing and impedance flow cytometry. Droplet volume can be controlled in the range of 500 pl-800 pl by piezo actuator displacement. Two sets of parallel facing electrodes in a 50 μm × 55 μm channel are applied to measure the presence and velocity of a single cell in real-time. Polystyrene beads with <5% variation in diameter generated signal variations of 12%-17% coefficients of variation. Single bead efficiency (i.e., printing events with single beads vs. total number of printing events) was 73% ± 11% at a throughput of approximately 9 events/min. Viability of printed HeLa cells and human primary fibroblasts was demonstrated by culturing cells for at least eight days.

  14. Single-cell-precision microplasma-induced cancer cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Xiao Tan

    Full Text Available The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure.

  15. Influence of advanced room -and building automation and optimized operation control on the energy efficiency of buildings; Einfluss moderner Raum- und Gebaeudeautomation und optimierter Betriebsfuehrung auf die Energieeffizienz von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, P.; Peters, B.; Becker, M. [Hochschule Biberach (Germany). Fachgebiet Gebaeudeautomation

    2008-07-01

    There is an increasing awareness of using our energy resources more efficiently which also leads to the finding of the importance of energy-efficient building services and operation. Unfortunately, we often restrict ourselves looking only at the costs of the investment itself instead of taking into account also the costs during the long time of building operation. In particular this is an obvious fact to decisions of investments for room and building automation equipment. However, building automation and control systems (BACS) deliver high potentials for energy savings with regard to the ongoing operation of a building. Thus, in accordance with sustainable building design, it is extremely important to understand buildings in their entirety and to look at their building facilities in an integral way. This article discusses the energy potentials of building automation and control and how the potentials can be calculated and increased. Further more, it will be presented which tools are needed for an optimized building operation management. (orig.)

  16. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS using composite organic-inorganic nanoparticles (COINs.

    Directory of Open Access Journals (Sweden)

    Catherine M Shachaf

    Full Text Available BACKGROUND: Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. METHODOLOGY/PRINCIPAL FINDINGS: To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer. Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701 and Stat6 (Y641, with results comparable to flow cytometry. CONCLUSIONS/SIGNIFICANCE: Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  17. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers.

  18. Optimal Installation Locations for Automated External Defibrillators in Taipei 7-Eleven Stores: Using GIS and a Genetic Algorithm with a New Stirring Operator

    Directory of Open Access Journals (Sweden)

    Chung-Yuan Huang

    2014-01-01

    Full Text Available Immediate treatment with an automated external defibrillator (AED increases out-of-hospital cardiac arrest (OHCA patient survival potential. While considerable attention has been given to determining optimal public AED locations, spatial and temporal factors such as time of day and distance from emergency medical services (EMSs are understudied. Here we describe a geocomputational genetic algorithm with a new stirring operator (GANSO that considers spatial and temporal cardiac arrest occurrence factors when assessing the feasibility of using Taipei 7-Eleven stores as installation locations for AEDs. Our model is based on two AED conveyance modes, walking/running and driving, involving service distances of 100 and 300 meters, respectively. Our results suggest different AED allocation strategies involving convenience stores in urban settings. In commercial areas, such installations can compensate for temporal gaps in EMS locations when responding to nighttime OHCA incidents. In residential areas, store installations can compensate for long distances from fire stations, where AEDs are currently held in Taipei.

  19. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis

    Directory of Open Access Journals (Sweden)

    Na Wen

    2016-07-01

    Full Text Available This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1 prototype demonstration of single-cell encapsulation in microfluidic droplets; (2 technical improvements of single-cell encapsulation in microfluidic droplets; (3 microfluidic droplets enabling single-cell proteomic analysis; (4 microfluidic droplets enabling single-cell genomic analysis; and (5 integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.

  20. Full design automation of multi-state RNA devices to program gene expression using energy-based optimization.

    Directory of Open Access Journals (Sweden)

    Guillermo Rodrigo

    Full Text Available Small RNAs (sRNAs can operate as regulatory agents to control protein expression by interaction with the 5' untranslated region of the mRNA. We have developed a physicochemical framework, relying on base pair interaction energies, to design multi-state sRNA devices by solving an optimization problem with an objective function accounting for the stability of the transition and final intermolecular states. Contrary to the analysis of the reaction kinetics of an ensemble of sRNAs, we solve the inverse problem of finding sequences satisfying targeted reactions. We show here that our objective function correlates well with measured riboregulatory activity of a set of mutants. This has enabled the application of the methodology for an extended design of RNA devices with specified behavior, assuming different molecular interaction models based on Watson-Crick interaction. We designed several YES, NOT, AND, and OR logic gates, including the design of combinatorial riboregulators. In sum, our de novo approach provides a new paradigm in synthetic biology to design molecular interaction mechanisms facilitating future high-throughput functional sRNA design.

  1. Full Design Automation of Multi-State RNA Devices to Program Gene Expression Using Energy-Based Optimization

    Science.gov (United States)

    Majer, Eszter; Daròs, José-Antonio; Jaramillo, Alfonso

    2013-01-01

    Small RNAs (sRNAs) can operate as regulatory agents to control protein expression by interaction with the 5′ untranslated region of the mRNA. We have developed a physicochemical framework, relying on base pair interaction energies, to design multi-state sRNA devices by solving an optimization problem with an objective function accounting for the stability of the transition and final intermolecular states. Contrary to the analysis of the reaction kinetics of an ensemble of sRNAs, we solve the inverse problem of finding sequences satisfying targeted reactions. We show here that our objective function correlates well with measured riboregulatory activity of a set of mutants. This has enabled the application of the methodology for an extended design of RNA devices with specified behavior, assuming different molecular interaction models based on Watson-Crick interaction. We designed several YES, NOT, AND, and OR logic gates, including the design of combinatorial riboregulators. In sum, our de novo approach provides a new paradigm in synthetic biology to design molecular interaction mechanisms facilitating future high-throughput functional sRNA design. PMID:23935479

  2. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity.

    Science.gov (United States)

    Ariza de Schellenberger, Angela; Kratz, Harald; Farr, Tracy D; Löwa, Norbert; Hauptmann, Ralf; Wagner, Susanne; Taupitz, Matthias; Schnorr, Jörg; Schellenberger, Eyk A

    2016-01-01

    Sensitive cell detection by magnetic resonance imaging (MRI) is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP) and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP) designed by our department for magnetic particle imaging (MPI) with discontinued Resovist(®) regarding their suitability for detection of single mesenchymal stem cells (MSC) by MRI. We achieved an average intracellular nanoparticle (NP) load of >10 pg Fe per cell without the use of transfection agents. NP loading did not lead to significantly different results in proliferation, colony formation, and multilineage in vitro differentiation assays in comparison to controls. MRI allowed single-cell detection using VSOP, MCP, and Resovist(®) in conjunction with high-resolution T2*-weighted imaging at 7 T with postprocessing of phase images in agarose cell phantoms and in vivo after delivery of 2,000 NP-labeled MSC into mouse brains via the left carotid artery. With optimized labeling conditions, a detection rate of ~45% was achieved; however, the experiments were limited by nonhomogeneous NP loading of the MSC population. Attempts should be made to achieve better cell separation for homogeneous NP loading and to thus improve NP-uptake-dependent biocompatibility studies and cell detection by MRI and future MPI. Additionally, using a 7 T MR imager equipped with a cryocoil resulted in approximately two times higher detection. In conclusion, we established labeling conditions for new high-relaxivity MCP, VSOP, and Resovist(®) for improved MRI of MSC with single-cell sensitivity.

  3. Sequential injection analysis for automation of the Winkler methodology, with real-time SIMPLEX optimization and shipboard application

    Energy Technology Data Exchange (ETDEWEB)

    Horstkotte, Burkhard; Tovar Sanchez, Antonio; Duarte, Carlos M. [Department of Global Change Research, IMEDEA (CSIC-UIB) Institut Mediterrani d' Estudis Avancats, Miquel Marques 21, 07190 Esporles (Spain); Cerda, Victor, E-mail: Victor.Cerda@uib.es [University of the Balearic Islands, Department of Chemistry Carreterra de Valldemossa km 7.5, 07011 Palma de Mallorca (Spain)

    2010-01-25

    A multipurpose analyzer system based on sequential injection analysis (SIA) for the determination of dissolved oxygen (DO) in seawater is presented. Three operation modes were established and successfully applied onboard during a research cruise in the Southern ocean: 1st, in-line execution of the entire Winkler method including precipitation of manganese (II) hydroxide, fixation of DO, precipitate dissolution by confluent acidification, and spectrophotometric quantification of the generated iodine/tri-iodide (I{sub 2}/I{sub 3}{sup -}), 2nd, spectrophotometric quantification of I{sub 2}/I{sub 3}{sup -} in samples prepared according the classical Winkler protocol, and 3rd, accurate batch-wise titration of I{sub 2}/I{sub 3}{sup -} with thiosulfate using one syringe pump of the analyzer as automatic burette. In the first mode, the zone stacking principle was applied to achieve high dispersion of the reagent solutions in the sample zone. Spectrophotometric detection was done at the isobestic wavelength 466 nm of I{sub 2}/I{sub 3}{sup -}. Highly reduced consumption of reagents and sample compared to the classical Winkler protocol, linear response up to 16 mg L{sup -1} DO, and an injection frequency of 30 per hour were achieved. It is noteworthy that for the offline protocol, sample metering and quantification with a potentiometric titrator lasts in general over 5 min without counting sample fixation, incubation, and glassware cleaning. The modified SIMPLEX methodology was used for the simultaneous optimization of four volumetric and two chemical variables. Vertex calculation and consequent application including in-line preparation of one reagent was carried out in real-time using the software AutoAnalysis. The analytical system featured high signal stability, robustness, and a repeatability of 3% RSD (1st mode) and 0.8% (2nd mode) during shipboard application.

  4. First-Stage Development and Validation of a Web-Based Automated Dietary Modeling Tool: Using Constraint Optimization Techniques to Streamline Food Group and Macronutrient Focused Dietary Prescriptions for Clinical Trials

    Science.gov (United States)

    Morrison, Evan; Sullivan, Emma; Dam, Hoa Khanh

    2016-01-01

    Background Standardizing the background diet of participants during a dietary randomized controlled trial is vital to trial outcomes. For this process, dietary modeling based on food groups and their target servings is employed via a dietary prescription before an intervention, often using a manual process. Partial automation has employed the use of linear programming. Validity of the modeling approach is critical to allow trial outcomes to be translated to practice. Objective This paper describes the first-stage development of a tool to automatically perform dietary modeling using food group and macronutrient requirements as a test case. The Dietary Modeling Tool (DMT) was then compared with existing approaches to dietary modeling (manual and partially automated), which were previously available to dietitians working within a dietary intervention trial. Methods Constraint optimization techniques were implemented to determine whether nonlinear constraints are best suited to the development of the automated dietary modeling tool using food composition and food consumption data. Dietary models were produced and compared with a manual Microsoft Excel calculator, a partially automated Excel Solver approach, and the automated DMT that was developed. Results The web-based DMT was produced using nonlinear constraint optimization, incorporating estimated energy requirement calculations, nutrition guidance systems, and the flexibility to amend food group targets for individuals. Percentage differences between modeling tools revealed similar results for the macronutrients. Polyunsaturated fatty acids and monounsaturated fatty acids showed greater variation between tools (practically equating to a 2-teaspoon difference), although it was not considered clinically significant when the whole diet, as opposed to targeted nutrients or energy requirements, were being addressed. Conclusions Automated modeling tools can streamline the modeling process for dietary intervention trials

  5. Single-cell analyses of circulating tumor cells

    Institute of Scientific and Technical Information of China (English)

    Xi-Xi Chen; Fan Bai

    2015-01-01

    Circulating tumor cells (CTCs) are a population of tumor cells mediating metastasis, which results in most of the cancer related deaths. hTe number of CTCs in the peripheral blood of patients is rare, and many platforms have been launched for detection and enrichment of CTCs. Enumeration of CTCs has already been used as a prognosis marker predicting the survival rate of cancer patients. Yet CTCs should be more potential. Studies on CTCs at single cell level may help revealing the underlying mechanism of tumorigenesis and metastasis. Though far from developed, this area of study holds much promise in providing new clinical application and deep understanding towards metastasis and cancer development.

  6. Gravity research on plants: use of single cell experimental models

    Directory of Open Access Journals (Sweden)

    Youssef eChebli

    2011-09-01

    Full Text Available Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided.

  7. Single cell analytic tools for drug discovery and development

    Science.gov (United States)

    Heath, James R.; Ribas, Antoni; Mischel, Paul S.

    2016-01-01

    The genetic, functional, or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development.1-3 In cancers, heterogeneity may be essential for tumor stability,4 but its precise role in tumor biology is poorly resolved. This challenges the design of accurate disease models for use in drug development, and can confound the interpretation of biomarker levels, and of patient responses to specific therapies. The complex nature of heterogeneous tissues has motivated the development of tools for single cell genomic, transcriptomic, and multiplex proteomic analysis. We review these tools, assess their advantages and limitations, and explore their potential applications in drug discovery and development. PMID:26669673

  8. Single cell array impedance analysis in a microfluidic device

    Science.gov (United States)

    Altinagac, Emre; Taskin, Selen; Kizil, Huseyin

    2016-10-01

    Impedance analysis of single cells is presented in this paper. Following the separation of a target cell type by dielectrophoresis in our previous work, this paper focuses on capturing the cells as a single array and performing impedance analysis to point out the signature difference between each cell type. Lab-on-a-chip devices having a titanium interdigitated electrode layer on a glass substrate and a PDMS microchannel are fabricated to capture each cell in a single form and perform impedance analysis. HCT116 (homosapiens colon colorectal carcin) and HEK293 (human embryonic kidney) cells are used in our experiments.

  9. Automated Integrated Analog Filter Design Issues

    OpenAIRE

    2015-01-01

    An analysis of modern automated integrated analog circuits design methods and their use in integrated filter design is done. Current modern analog circuits automated tools are based on optimization algorithms and/or new circuit generation methods. Most automated integrated filter design methods are only suited to gmC and switched current filter topologies. Here, an algorithm for an active RC integrated filter design is proposed, that can be used in automated filter designs. The algorithm is t...

  10. High-throughput microfluidic device for single cell analysis using multiple integrated soft lithographic pumps.

    Science.gov (United States)

    Patabadige, Damith E W; Mickleburgh, Tom; Ferris, Lorin; Brummer, Gage; Culbertson, Anne H; Culbertson, Christopher T

    2016-05-01

    The ability to accurately control fluid transport in microfluidic devices is key for developing high-throughput methods for single cell analysis. Making small, reproducible changes to flow rates, however, to optimize lysis and injection using pumps external to the microfluidic device are challenging and time-consuming. To improve the throughput and increase the number of cells analyzed, we have integrated previously reported micropumps into a microfluidic device that can increase the cell analysis rate to ∼1000 cells/h and operate for over an hour continuously. In order to increase the flow rates sufficiently to handle cells at a higher throughput, three sets of pumps were multiplexed. These pumps are simple, low-cost, durable, easy to fabricate, and biocompatible. They provide precise control of the flow rate up to 9.2 nL/s. These devices were used to automatically transport, lyse, and electrophoretically separate T-Lymphocyte cells loaded with Oregon green and 6-carboxyfluorescein. Peak overlap statistics predicted the number of fully resolved single-cell electropherograms seen. In addition, there was no change in the average fluorescent dye peak areas indicating that the cells remained intact and the dyes did not leak out of the cells over the 1 h analysis time. The cell lysate peak area distribution followed that expected of an asynchronous steady-state population of immortalized cells.

  11. Whole-Body Profiling of Cancer Metastasis with Single-Cell Resolution

    Directory of Open Access Journals (Sweden)

    Shimpei I. Kubota

    2017-07-01

    Full Text Available Stochastic and proliferative events initiated from a single cell can disrupt homeostatic balance and lead to fatal disease processes such as cancer metastasis. To overcome metastasis, it is necessary to detect and quantify sparsely distributed metastatic cells throughout the body at early stages. Here, we demonstrate that clear, unobstructed brain/body imaging cocktails and computational analysis (CUBIC-based cancer (CUBIC-cancer analysis with a refractive index (RI-optimized protocol enables comprehensive cancer cell profiling of the whole body and organs. We applied CUBIC-cancer analysis to 13 mouse models using nine cancer cell lines and spatiotemporal quantification of metastatic cancer progression at single-cell resolution. CUBIC-cancer analysis suggests that the epithelial-mesenchymal transition promotes not only extravasation but also cell survival at metastatic sites. CUBIC-cancer analysis is also applicable to pharmacotherapeutic profiling of anti-tumor drugs. CUBIC-cancer analysis is compatible with in vivo bioluminescence imaging and 2D histology. We suggest that a scalable analytical pipeline with these three modalities may contribute to addressing currently incurable metastatic diseases.

  12. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity

    Directory of Open Access Journals (Sweden)

    Ariza de Schellenberger A

    2016-04-01

    Full Text Available Angela Ariza de Schellenberger,1 Harald Kratz,1 Tracy D Farr,2,3 Norbert Löwa,4 Ralf Hauptmann,1 Susanne Wagner,1 Matthias Taupitz,1 Jörg Schnorr,1 Eyk A Schellenberger1 1Department of Radiology, 2Department of Experimental Neurology, Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany; 3School of Life Sciences, University of Nottingham, Medical School, Nottingham, UK; 4Department of Biomagnetic Signals, Physikalisch-Technische Bundesanstalt Berlin, Berlin, Germany Abstract: Sensitive cell detection by magnetic resonance imaging (MRI is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP designed by our department for magnetic particle imaging (MPI with discontinued Resovist® regarding their suitability for detection of single mesenchymal stem cells (MSC by MRI. We achieved an average intracellular nanoparticle (NP load of >10 pg Fe per cell without the use of transfection agents. NP loading did not lead to significantly different results in proliferation, colony formation, and multilineage in vitro differentiation assays in comparison to controls. MRI allowed single-cell detection using VSOP, MCP, and Resovist® in conjunction with high-resolution T2*-weighted imaging at 7 T with postprocessing of phase images in agarose cell phantoms and in vivo after delivery of 2,000 NP-labeled MSC into mouse brains via the left carotid artery. With optimized labeling conditions, a detection rate of ~45% was achieved; however, the experiments were limited by nonhomogeneous NP loading of the MSC population. Attempts should be made to achieve better cell separation for homogeneous NP loading and to thus improve NP

  13. Stochastic models of transcription: from single molecules to single cells.

    Science.gov (United States)

    Sanchez, Alvaro; Choubey, Sandeep; Kondev, Jane

    2013-07-15

    Genes in prokaryotic and eukaryotic cells are typically regulated by complex promoters containing multiple binding sites for a variety of transcription factors leading to a specific functional dependence between regulatory inputs and transcriptional outputs. With increasing regularity, the transcriptional outputs from different promoters are being measured in quantitative detail in single-cell experiments thus providing the impetus for the development of quantitative models of transcription. We describe recent progress in developing models of transcriptional regulation that incorporate, to different degrees, the complexity of multi-state promoter dynamics, and its effect on the transcriptional outputs of single cells. The goal of these models is to predict the statistical properties of transcriptional outputs and characterize their variability in time and across a population of cells, as a function of the input concentrations of transcription factors. The interplay between mathematical models of different regulatory mechanisms and quantitative biophysical experiments holds the promise of elucidating the molecular-scale mechanisms of transcriptional regulation in cells, from bacteria to higher eukaryotes. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Single-cell analysis of endothelial morphogenesis in vivo.

    Science.gov (United States)

    Yu, Jianxin A; Castranova, Daniel; Pham, Van N; Weinstein, Brant M

    2015-09-01

    Vessel formation has been extensively studied at the tissue level, but the difficulty in imaging the endothelium with cellular resolution has hampered study of the morphogenesis and behavior of endothelial cells (ECs) in vivo. We are using endothelial-specific transgenes and high-resolution imaging to examine single ECs in zebrafish. By generating mosaics with transgenes that simultaneously mark endothelial nuclei and membranes we are able to definitively identify and study the morphology and behavior of individual ECs during vessel sprouting and lumen formation. Using these methods, we show that developing trunk vessels are composed of ECs of varying morphology, and that single-cell analysis can be used to quantitate alterations in morphology and dynamics in ECs that are defective in proper guidance and patterning. Finally, we use single-cell analysis of intersegmental vessels undergoing lumen formation to demonstrate the coexistence of seamless transcellular lumens and single or multicellular enclosed lumens with autocellular or intercellular junctions, suggesting that heterogeneous mechanisms contribute to vascular lumen formation in vivo. The tools that we have developed for single EC analysis should facilitate further rigorous qualitative and quantitative analysis of EC morphology and behavior in vivo. © 2015. Published by The Company of Biologists Ltd.

  15. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  16. Single cell genomic quantification by non-fluorescence nonlinear microscopy

    Science.gov (United States)

    Kota, Divya; Liu, Jing

    2017-02-01

    Human epidermal growth receptor 2 (Her2) is a gene which plays a major role in breast cancer development. The quantification of Her2 expression in single cells is limited by several drawbacks in existing fluorescence-based single molecule techniques, such as low signal-to-noise ratio (SNR), strong autofluorescence and background signals from biological components. For rigorous genomic quantification, a robust method of orthogonal detection is highly desirable and we demonstrated it by two non-fluorescent imaging techniques -transient absorption microscopy (TAM) and second harmonic generation (SHG). In TAM, gold nanoparticles (AuNPs) are chosen as an orthogonal probes for detection of single molecules which gives background-free quantifications of single mRNA transcript. In SHG, emission from barium titanium oxide (BTO) nanoprobes was demonstrated which allows stable signal beyond the autofluorescence window. Her2 mRNA was specifically labeled with nanoprobes which are conjugated with antibodies or oligonucleotides and quantified at single copy sensitivity in the cancer cells and tissues. Furthermore, a non-fluorescent super-resolution concept, named as second harmonic super-resolution microscopy (SHaSM), was proposed to quantify individual Her2 transcripts in cancer cells beyond the diffraction limit. These non-fluorescent imaging modalities will provide new dimensions in biomarker quantification at single molecule sensitivity in turbid biological samples, offering a strong cross-platform strategy for clinical monitoring at single cell resolution.

  17. Single-Cell Transcriptomics of the Human Endocrine Pancreas.

    Science.gov (United States)

    Wang, Yue J; Schug, Jonathan; Won, Kyoung-Jae; Liu, Chengyang; Naji, Ali; Avrahami, Dana; Golson, Maria L; Kaestner, Klaus H

    2016-10-01

    Human pancreatic islets consist of multiple endocrine cell types. To facilitate the detection of rare cellular states and uncover population heterogeneity, we performed single-cell RNA sequencing (RNA-seq) on islets from multiple deceased organ donors, including children, healthy adults, and individuals with type 1 or type 2 diabetes. We developed a robust computational biology framework for cell type annotation. Using this framework, we show that α- and β-cells from children exhibit less well-defined gene signatures than those in adults. Remarkably, α- and β-cells from donors with type 2 diabetes have expression profiles with features seen in children, indicating a partial dedifferentiation process. We also examined a naturally proliferating α-cell from a healthy adult, for which pathway analysis indicated activation of the cell cycle and repression of checkpoint control pathways. Importantly, this replicating α-cell exhibited activated Sonic hedgehog signaling, a pathway not previously known to contribute to human α-cell proliferation. Our study highlights the power of single-cell RNA-seq and provides a stepping stone for future explorations of cellular heterogeneity in pancreatic endocrine cells. © 2016 by the American Diabetes Association.

  18. In vivo lipidomics using single-cell Raman spectroscopy.

    Science.gov (United States)

    Wu, Huawen; Volponi, Joanne V; Oliver, Ann E; Parikh, Atul N; Simmons, Blake A; Singh, Seema

    2011-03-01

    We describe a method for direct, quantitative, in vivo lipid profiling of oil-producing microalgae using single-cell laser-trapping Raman spectroscopy. This approach is demonstrated in the quantitative determination of the degree of unsaturation and transition temperatures of constituent lipids within microalgae. These properties are important markers for determining engine compatibility and performance metrics of algal biodiesel. We show that these factors can be directly measured from a single living microalgal cell held in place with an optical trap while simultaneously collecting Raman data. Cellular response to different growth conditions is monitored in real time. Our approach circumvents the need for lipid extraction and analysis that is both slow and invasive. Furthermore, this technique yields real-time chemical information in a label-free manner, thus eliminating the limitations of impermeability, toxicity, and specificity of the fluorescent probes common in currently used protocols. Although the single-cell Raman spectroscopy demonstrated here is focused on the study of the microalgal lipids with biofuel applications, the analytical capability and quantitation algorithms demonstrated are applicable to many different organisms and should prove useful for a diverse range of applications in lipidomics.

  19. Microfluidic single-cell analysis for systems immunology.

    Science.gov (United States)

    Junkin, Michael; Tay, Savaş

    2014-04-07

    The immune system constantly battles infection and tissue damage, but exaggerated immune responses lead to allergies, autoimmunity and cancer. Discrimination of self from foreign and the fine-tuning of immunity are achieved by information processing pathways, whose regulatory mechanisms are little understood. Cell-to-cell variability and stochastic molecular interactions result in diverse cellular responses to identical signaling inputs, casting doubt on the reliability of traditional population-averaged analyses. Furthermore, dynamic molecular and cellular interactions create emergent properties that change over multiple time scales. Understanding immunity in the face of complexity and noisy dynamics requires time-dependent analysis of single-cells in a proper context. Microfluidic systems create precisely defined microenvironments by controlling fluidic and surface chemistries, feature sizes, geometries and signal input timing, and thus enable quantitative multi-parameter analysis of single cells. Such qualities allow observable dynamic environments approaching in vivo levels of biological complexity. Seamless parallelization of functional units in microfluidic devices allows high-throughput measurements, an essential feature for statistically meaningful analysis of naturally variable biological systems. These abilities recapitulate diverse scenarios such as cell-cell signaling, migration, differentiation, antibody and cytokine production, clonal selection, and cell lysis, thereby enabling accurate and meaningful study of immune behaviors in vitro.

  20. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  1. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  2. Cell tracing dyes significantly change single cell mechanics.

    Science.gov (United States)

    Lulevich, Valentin; Shih, Yi-Ping; Lo, Su Hao; Liu, Gang-Yu

    2009-05-07

    Cell tracing dyes are very frequently utilized in cellular biology research because they provide highly sensitive fluorescent tags that do not compromise cellular functions such as growth and proliferation. In many investigations concerning cellular adhesion and mechanics, fluorescent dyes have been employed with the assumption of little impact on the results. Using the single cell compression technique developed by our team, the single cell mechanics of MDA-MB-468 and MLC-SV40 cells were investigated as a function of dye uptake. Cell tracing dyes increase living cell stiffness 3-6 times and cell-to-probe adhesion up to 7 times. These results suggest a more significant effect than toxins, such as thrombin. A simple analytical model was derived to enable the extraction of the Young's moduli of the cell membrane and cytoskeleton from the force-deformation profiles measured for individual cells. The increase in Young's modulus of the membrane is 3-7 times, which is more significant than that of the cytoskeleton (1.1-3.4 times). We propose that changes in cell mechanics upon the addition of fluorescent tracing dye are primarily due to the incorporation of amphiphilic dye molecules into the cellular plasma membrane, which increases the lateral interaction among phospholipid chains and thus enhances their rigidity and adhesion.

  3. Efficient automated one-step synthesis of 2-[{sup 18}F]fluoroethylcholine for clinical imaging: optimized reaction conditions and improved quality controls of different synthetic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Asti, Mattia [Nuclear Medicine Department, Santa Maria Nuova Hospital, Reggio Emilia (Italy)], E-mail: asti.mattia@asmn.re.it; Farioli, Daniela; Iori, Michele; Guidotti, Claudio; Versari, Annibale; Salvo, Diana [Nuclear Medicine Department, Santa Maria Nuova Hospital, Reggio Emilia (Italy)

    2010-04-15

    [{sup 18}F]-labelled choline analogues, such as 2-[{sup 18}F]fluoroethylcholine ({sup 18}FECH), have suggested to be a new class of choline derivatives highly useful for the imaging of prostate and brain tumours. In fact, tumour cells with enhanced proliferation rate usually exhibit an improved choline uptake due to the increased membrane phospholipids biosynthesis. The aim of this study was the development of a high yielding synthesis of {sup 18}FECH. The possibility of shortening the synthesis time by reacting all the reagents in a convenient and rapid one-step reaction was specially considered. Methods: {sup 18}FECH was synthesized by reacting [{sup 18}F]fluoride with 1,2-bis(tosyloxy)ethane and N,N-dimethylaminoethanol. The synthesis was carried out using both a one- and a two-step reaction in order to compare the two procedures. The effects on the radiochemical yield and purity by using different [{sup 18}F]fluoride phase transfer catalysts, reagents amounts and purification methods were assessed. Quality controls on the final products were performed by means of radio-thin-layer chromatography, gas chromatography and high-performance liquid chromatography equipped with conductimetric, ultraviolet and radiometric detectors. Results: In the optimized experimental conditions, {sup 18}FECH was synthesized with a radiochemical yield of 43{+-}3% and 48{+-}1% (not corrected for decay) when the two-step or the one-step approach were used, respectively. The radiochemical purity was higher than 99% regardless of the different synthetic pathways or purification methods adopted. The main chemical impurity was due to N,N-dimethylmorpholinium. The identity of this impurity in {sup 18}FECH preparations was not previously reported. Conclusion: An improved two-step and an innovative one-step reaction for synthesizing {sup 18}FECH in a high yield were reported. The adaptation of a multistep synthesis to a single step process, opens further possibilities for simpler and more

  4. Library Automation

    OpenAIRE

    Dhakne, B. N.; Giri, V. V.; Waghmode, S. S.

    2010-01-01

    New technologies library provides several new materials, media and mode of storing and communicating the information. Library Automation reduces the drudgery of repeated manual efforts in library routine. By use of library automation collection, Storage, Administration, Processing, Preservation and communication etc.

  5. Optimism

    Science.gov (United States)

    Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.

    2010-01-01

    Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998

  6. Design and simulation of a new type of 500 MHz single-cell superconducting RF cavity

    Institute of Scientific and Technical Information of China (English)

    LU Chang-Wang; ZHANG Zhi-Gang; ZHENG Xiang; WEI Ye-Long; YU Hai-Bo; LI Zheng; XU Kai; LIU Jian-Fei; HOU Hong-Tao; MA Zhen-Yu; MAO Dong-Qing; FENG Zi-Qiang; ZHAO Shen-Jie; LUO Chen; ZHAO Yu-Bin

    2012-01-01

    This paper illustrates the design and simulation of a unique 500 MHz single-cell superconducting radio frequency cavity with a fluted beam pipe and a coaxial-type fundamental power coupler.The simulation results show that the cavity has a high r/Q value,a low peak surface field and a large beam aperture,so it can be a candidate cavity for high current accelerators.With the help of a fluted beam tube,almost all the higher order modes can propagate out of the cavity,especially the first two dipole modes,TE111 and TM110,and the first higher monopole mode,TM011.The external quality factor of the coaxial fundamental power coupler is optimized to 1.2× 105,which will be useful when it is applied in the light source storage ring.

  7. Quantitative characterization of single cells by use of immunocytochemistry combined with multiplex LA-ICP-MS.

    Science.gov (United States)

    Mueller, Larissa; Herrmann, Antje J; Techritz, Sandra; Panne, Ulrich; Jakubowski, Norbert

    2017-05-01

    Actual research demonstrates that LA-ICP-MS is capable of being used as an imaging tool with cellular resolution. The aim of this investigation was the method development for LA-ICP-MS to extend the versatility to quantitative and multiplexing imaging of single eukaryotic cells. For visualization of individual cells selected, lanthanide-labeled antibodies were optimized for immuno-imaging of single cells with LA-ICP-MS. The molar content of the artificial introduced labels per cell was quantified using self-made nitrocellulose-coated slides for matrix-matched calibration and calculated amounts were in the range of 3.1 to 17.8 atmol per cell. Furthermore, the quantification strategy allows a conversion of 2D intensity profiles based on counts per second (cps) to quantitative 2D profiles representing the molar amount of the artificial introduced elemental probes per pixel for each individual cell. Graphical abstract ᅟ.

  8. Automated Peritoneal Dialysis Prescriptions for Enhancing Sodium and Fluid Removal: A Predictive Analysis of Optimized, Patient-Specific Dwell Times for the Day Period

    Science.gov (United States)

    Akonur, Alp; Guest, Steven; Sloand, James A.; Leypoldt, John K.

    2013-01-01

    ♦ Background: Remaining edema-free is a challenge for many automated peritoneal dialysis (APD) patients, especially those with fast (“high”) transport characteristics. Although increased use of peritoneal dialysis (PD) solutions with high glucose concentrations may improve volume control, frequent use of such solutions is undesirable. ♦ Methods: We used the 3-pore kinetic model to evaluate 4 alternative therapy prescriptions for the APD day exchange in anuric patients with high, high-average, and low-average transport characteristics. Four prescriptions were modeled: Therapy 1: Optimal, individualized dwell times with a dry periodTherapy 2: Use of a midday exchangeTherapy 3: Use of an icodextrin-containing dialysate during a 14-hour dwellTherapy 4: Use of optimal, individualized dwell times, followed by an icodextrin dwell to complete the daytime period The alternative therapies were compared with a reference standard therapy using glucose solution during a 14-hour dwell. The nighttime prescription was identical in all cases (10 L over 10 hours), and all glucose solutions contained 2.27% glucose. Net ultrafiltration (UF), sodium removal (NaR), total carbohydrate (CHO) absorption, and weekly urea Kt/V for a 24-hour period were computed and compared. ♦ Results: The UF and NaR were substantially higher with therapy 1 than with standard therapy (1034 mL vs 621 mL and 96 mmol vs 51 mmol respectively), without significant changes in CHO absorption or urea Kt/V. However, therapy 1 resulted in reduced β2-microglobulin clearance (0.74 mL/min vs 0.89 mL/min with standard therapy). Compared with therapy 1, therapy 2 improved UF and NaR (1062 mL vs 1034 mL and 99 mmol vs 96 mmol); however, that improvement is likely not clinically significant. Therapy 2 also resulted in a higher Kt/V (2.07 vs 1.72), but at the expense of higher glucose absorption (difference: 42 g). The UF and NaR were highest with a long icodextrin-containing daytime dwell either preceded by a

  9. Optimization

    CERN Document Server

    Pearce, Charles

    2009-01-01

    Focuses on mathematical structure, and on real-world applications. This book includes developments in several optimization-related topics such as decision theory, linear programming, turnpike theory, duality theory, convex analysis, and queuing theory.

  10. Nitrogen assimilation by single cells in hot springs

    Science.gov (United States)

    Poret-peterson, A. T.; Romaniello, S. J.; Bose, M.; Williams, P.; Elser, J. J.; Shock, E.; Anbar, A. D.; Hartnett, H. E.

    2012-12-01

    Microorganisms drive biogeochemical cycles and require nutrients, such as ammonium and nitrate, to function. As a result, following nutrient flows provides opportunities to study how microbial activity influences ecosystem-level processes. Most past measurements of microbial nutrient uptake rely on bulk measurements, which are informative but provide little information about heterogeneity among community members involved in elemental transformations, nor about possible effects of physiological state or taxonomic identity. Since microbial communities tend to be phylogenetically and physiologically diverse, it is reasonable to expect that community members will respond differently to nutrient addition. Here, we examine nitrogen assimilation (via addition of 15N-labeled ammonium or nitrate) in Yellowstone hot spring microbial communities. Using the NanoSIMS, we imaged cells at a very high spatial resolution (nanometer scale) necessary to determine 15N enrichments in single micron-sized cells. We compare the N isotopic enrichments observed in single cells to that determined in bulk sediments by standard isotope ratio mass spectrometry. NanoSIMS imaging of 56 individual cells from sediments of an acidic hot spring (pH 4.7, T=67oC) incubated with 15N-ammonium shows that about two-thirds of the cells (38) exhibited 15N-enrichment. Most cells had 15N enrichments from 0.39 to 0.91 atom %, while some cells were much more significantly enriched. Bulk analyses of sediments show that ammonium assimilation and nitrate assimilation readily occurred at this spring. These findings show that microbes in this hot spring may differentially take up ammonium, which may arise from a number of factors including differences in cellular N requirements, growth rates, and the ability to transport ammonium. This work represents some of the first single-cell isotopic measurements from an extreme environment. Efforts are underway to image sediment samples from other hot springs and to pair Nano

  11. Automation or De-automation

    Science.gov (United States)

    Gorlach, Igor; Wessel, Oliver

    2008-09-01

    In the global automotive industry, for decades, vehicle manufacturers have continually increased the level of automation of production systems in order to be competitive. However, there is a new trend to decrease the level of automation, especially in final car assembly, for reasons of economy and flexibility. In this research, the final car assembly lines at three production sites of Volkswagen are analysed in order to determine the best level of automation for each, in terms of manufacturing costs, productivity, quality and flexibility. The case study is based on the methodology proposed by the Fraunhofer Institute. The results of the analysis indicate that fully automated assembly systems are not necessarily the best option in terms of cost, productivity and quality combined, which is attributed to high complexity of final car assembly systems; some de-automation is therefore recommended. On the other hand, the analysis shows that low automation can result in poor product quality due to reasons related to plant location, such as inadequate workers' skills, motivation, etc. Hence, the automation strategy should be formulated on the basis of analysis of all relevant aspects of the manufacturing process, such as costs, quality, productivity and flexibility in relation to the local context. A more balanced combination of automated and manual assembly operations provides better utilisation of equipment, reduces production costs and improves throughput.

  12. Emergent collective chemotaxis without single-cell gradient sensing

    Science.gov (United States)

    Camley, Brian A.; Zimmermann, Juliane; Levine, Herbert; Rappel, Wouter-Jan

    2016-01-01

    Many eukaryotic cells chemotax, sensing and following chemical gradients. However, experiments have shown that even under conditions when single cells cannot chemotax, small clusters may still follow a gradient. This behavior has been observed in neural crest cells, in lymphocytes, and during border cell migration in Drosophila, but its origin remains puzzling. Here, we propose a new mechanism underlying this “collective guidance”, and study a model based on this mechanism both analytically and computationally. Our approach posits that contact inhibition of locomotion (CIL), where cells polarize away from cell-cell contact, is regulated by the chemoattractant. Individual cells must measure the mean attractant value, but need not measure its gradient, to give rise to directional motility for a cell cluster. We present analytic formulas for how cluster velocity and chemotactic index depend on the number and organization of cells in the cluster. The presence of strong orientation effects provides a simple test for our theory of collective guidance. PMID:26991203

  13. Single-cell technologies in molecular marine studies

    KAUST Repository

    Kodzius, Rimantas

    2015-01-24

    Middle Eastern countries are experiencing a renaissance, with heavy investment in both in infrastructure and science. King Abdullah University of Science and Technology (KAUST) is a new and modern university in Saudi Arabia. At the Computational Bioscience Research Center (CBRC) we are working on exploring the Red Sea and beyond, collaborating with Japanese and other research centers. We are using the environment to collect and analyze the microorganisms present. The platform being established at CBRC allows to process samples in a pipeline. The pipeline components consist of sample collection, processing and sequencing, following the in silico analysis, determining the gene functions, identifying the organisms. The genomes of microorganisms of interest are targeted modified by genome editing technology such as CRISPR and desired properties are selected by single cell instrumentation. The final output is to identify valuable microorganisms with production of bio-energy, nutrients, the food and fine chemicals.

  14. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis

    Science.gov (United States)

    Weng, Shinuo; Shao, Yue; Chen, Weiqiang; Fu, Jianping

    2016-09-01

    Mechanical homeostasis--a fundamental process by which cells maintain stable states under environmental perturbations--is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs). Here, we show that single-cell mechanical homeostasis is collectively driven by the distinct, graduated dynamics (rheostasis) of subcellular cytoskeleton tension and FAs. Such rheostasis involves a mechanosensitive pattern wherein ground states of cytoskeleton tension and FA determine their distinct reactive paths through either relaxation or reinforcement. Pharmacological perturbations of the cytoskeleton and molecularly modulated integrin catch-slip bonds biased the rheostasis and induced non-homeostasis of FAs, but not of cytoskeleton tension, suggesting a unique sensitivity of FAs in regulating homeostasis. Theoretical modelling revealed myosin-mediated cytoskeleton contractility and catch-slip-bond-like behaviours in FAs and the cytoskeleton as sufficient and necessary mechanisms for quantitatively recapitulating mechanosensitive rheostasis. Our findings highlight the previously underappreciated physical nature of the mechanical homeostasis of cells.

  15. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie;

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain...... walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain...

  16. High resolution ultrasound and photoacoustic imaging of single cells.

    Science.gov (United States)

    Strohm, Eric M; Moore, Michael J; Kolios, Michael C

    2016-03-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  17. Single cell genome analysis of an uncultured heterotrophic stramenopile

    Science.gov (United States)

    Roy, Rajat S.; Price, Dana C.; Schliep, Alexander; Cai, Guohong; Korobeynikov, Anton; Yoon, Hwan Su; Yang, Eun Chan; Bhattacharya, Debashish

    2014-04-01

    A broad swath of eukaryotic microbial biodiversity cannot be cultivated in the lab and is therefore inaccessible to conventional genome-wide comparative methods. One promising approach to study these lineages is single cell genomics (SCG), whereby an individual cell is captured from nature and genome data are produced from the amplified total DNA. Here we tested the efficacy of SCG to generate a draft genome assembly from a single sample, in this case a cell belonging to the broadly distributed MAST-4 uncultured marine stramenopiles. Using de novo gene prediction, we identified 6,996 protein-encoding genes in the MAST-4 genome. This genetic inventory was sufficient to place the cell within the ToL using multigene phylogenetics and provided preliminary insights into the complex evolutionary history of horizontal gene transfer (HGT) in the MAST-4 lineage.

  18. MICROORGANISMS: A MARVELOUS SOURCE OF SINGLE CELL PROTEINS

    Directory of Open Access Journals (Sweden)

    Agam Nangul

    2013-08-01

    Full Text Available The increasing global population living below the poverty line is driving the scientific community to search for non-conventional protein sources that can replace conventional expensive ones. Microbial proteins, or single-cell protein (SCP, represent a potential future nutrient source for human food and animal feed. These microbial proteins can be grown rapidly on substrates with minimum dependence on soil, water and climate conditions. They can be produced from algae, fungi and bacteria the chief sources of SCP. It is convenient to use microorganisms for production of SCP as they grow rapidly and have high protein content. Industrially, they can be produced from algal biomass, yeast, fungi. There are several other ways of getting SCP as well. Despite numerous advantages of SCP, they have disadvantages and toxic effects too, especially related to mycotoxins and bacterial toxins.

  19. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  20. Genome wide copy number analysis of single cells

    Science.gov (United States)

    Baslan, Timour; Kendall, Jude; Rodgers, Linda; Cox, Hilary; Riggs, Mike; Stepansky, Asya; Troge, Jennifer; Ravi, Kandasamy; Esposito, Diane; Lakshmi, B.; Wigler, Michael; Navin, Nicholas; Hicks, James

    2016-01-01

    Summary Copy number variation (CNV) is increasingly recognized as an important contributor to phenotypic variation in health and disease. Most methods for determining CNV rely on admixtures of cells, where information regarding genetic heterogeneity is lost. Here, we present a protocol that allows for the genome wide copy number analysis of single nuclei isolated from mixed populations of cells. Single nucleus sequencing (SNS), combines flow sorting of single nuclei based on DNA content, whole genome amplification (WGA), followed by next generation sequencing to quantize genomic intervals in a genome wide manner. Multiplexing of single cells is discussed. Additionally, we outline informatic approaches that correct for biases inherent in the WGA procedure and allow for accurate determination of copy number profiles. All together, the protocol takes ~3 days from flow cytometry to sequence-ready DNA libraries. PMID:22555242

  1. Entrainment of heterogeneous glycolytic oscillations in single cells

    CERN Document Server

    Gustavsson, A -K; Mehlig, B; Goksör, M

    2015-01-01

    Cell signaling, gene expression, and metabolism are affected by cell-cell heterogeneity and random changes in the environment. The effects of such fluctuations on cell signaling and gene expression have recently been studied intensively using single-cell experiments. In metabolism heterogeneity may be particularly important because it may affect synchronisation of metabolic oscillations, an important example of cell-cell communication. This synchronisation is notoriously difficult to describe theoretically as the example of glycolytic oscillations shows: neither is the mechanism of glycolytic synchronisation understood nor the role of cell-cell heterogeneity. To pin down the mechanism and to assess its robustness and universality we have experimentally investigated the entrainment of glycolytic oscillations in individual yeast cells by periodic external perturbations. We find that oscillatory cells synchronise through phase shifts and that the mechanism is insensitive to cell heterogeneity (robustness) and si...

  2. Production Strategies and Applications of Microbial Single Cell Oils

    Science.gov (United States)

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty

  3. Production Strategies and Applications of Microbial Single Cell Oils.

    Science.gov (United States)

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty

  4. Production strategies and applications of microbial single cell oils

    Directory of Open Access Journals (Sweden)

    Katrin Ochsenreither

    2016-10-01

    Full Text Available Polyunsaturated fatty acids (PUFAs of the -3 and -6 class (e.g. -linolenic acid, linoleic acid are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF or solid state fermentation (SSF. The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g. medium, pH-value, temperature, aeration, nitrogen source. From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids

  5. Contact-free single-cell cultivation by negative dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Magnus S; Uhlig, Katja [Fraunhofer Institute for Biomedical Engineering (IBMT), Am Muehlenberg 13, 14476 Potsdam (Germany); Schnelle, Thomas [Zimmermann and Partner, European Patent Attorneys, Oranienburger Strasse 90, 10178 Berlin (Germany); Mueller, Torsten [JPK Instruments AG, Aufgang C, Haus 2, Bouchestrasse 12, 12435 Berlin (Germany)], E-mail: magnus.jaeger@ibmt.fraunhofer.de

    2008-09-07

    In parallel to recent progress of high-content analysis in cell biology, negative dielectrophoresis (nDEP) has continuously evolved as a potent tool for contact-free manipulation and investigation of single cells. As such, it can be especially beneficial for the handling of rare and valuable cells, e.g. in stem cell research, immunology and autologous therapy. Current nDEP applications are mainly based on flow-through systems where a small volume or single cells are pumped through microfluidic channels and analysed in seconds to minutes. Such short-term electric field exposures were repeatedly shown to be physiologically harmless. Conditions, however, might change in longer experiments when damages may accumulate. Therefore, we focus on potential limits to long-term nDEP application, with yeast serving as a model organism. Cells are reported to be successfully cultivated over several hours while suspended contact-freely in cell medium by nDEP. From comparisons of the cell division in nDEP structures under different electric conditions, conclusions are drawn with respect to which parameters govern the possible stress on the cells and how to avoid it. Firstly, the observed frequency dependence hints at an influence of the membrane polarization. Secondly, the inhibition of proliferation at high voltages is found to be overcome by external cooling of the microchips. This implies thermal effects on the cells. The warming is further examined by infrared (IR) thermometry. Despite its inherent drawbacks, IR provides a quick and easy method of determining the temperature of microfluidic systems without interfering local probes or reporter substances.

  6. High resolution microfluidic single cell transcriptional profiling reveals clinically relevant subtypes among human stem cell populations commonly utilized in cell-based therapies

    Directory of Open Access Journals (Sweden)

    Robert C. Rennert

    2016-03-01

    Full Text Available Stem cell therapies can promote neural repair and regeneration, yet controversy regarding optimal cell source and mechanism of action has slowed clinical translation, potentially due to undefined cellular heterogeneity. Single cell resolution is needed to identify clinically relevant subpopulations with the highest therapeutic relevance. We combine single cell microfluidic analysis with advanced computational modeling to study for the first time two common sources for cell-based therapies, human NSCs and MSCs. This methodology has the potential to logically inform cell source decisions for any clinical application.

  7. A Blind Antenna Selection Scheme for Single-Cell Uplink Massive MIMO

    KAUST Repository

    Elkhalil, Khalil

    2017-02-09

    This paper considers the uplink of a single-cell large-scale multiple-input multiple output (MIMO) system in which m mono-antenna users communicate with a base station (BS) outfitted by n antennas. We assume that the number of antennas at the BS and that of users take large values, as envisioned by large-scale MIMO systems. This allows for high spectral efficiency gains but obviously comes at the cost of higher complexity, a fact that becomes all the more critical as the number of antennas grows large. To solve this issue is to choose a subset of the available n antennas. The subset must be carefully chosen to achieve the best performance. However, finding the optimal subset of antennas is usually a difficult task, requiring one to solve a high dimensional combinatorial optimization problem. In this paper, we approach this problem in two ways. The first one consists in solving a convex relaxation of the problem using standard convex optimization tools. The second technique solves the problem using a greedy approach. The main advantages of the greedy approach lies in its wider scope, in that, unlike the first approach, it can be applied irrespective of the considered performance criterion. As an outcome of this feature, we show that the greedy approach can be applied even when only the channel statistics are available at the BS, which provides blind way to perform antenna selection.

  8. MicroBioRobots for single cell manipulation

    Science.gov (United States)

    Sakar, Mahmut Selman

    One of the great challenges in nano and micro scale science and engineering is the independent manipulation of biological cells and small man-made objects with active sensing. For such biomedical applications as single cell manipulation, telemetry, and localized targeted delivery of chemicals, it is important to fabricate microstructures that can be powered and controlled without a tether in fluidic environments. These microstructures can be used to develop microrobots that have the potential to make existing therapeutic and diagnostic procedures less invasive. Actuation can be realized using various different organic and inorganic methods. Previous studies explored different forms of actuation and control with microorganisms. Bacteria, in particular, offer several advantages as controllable microactuators: they draw chemical energy directly from their environment, they are genetically modifiable, and they are scalable and configurable in the sense that any number of bacteria can be selectively patterned. Additionally, the study of bacteria inspires inorganic schemes of actuation and control. For these reasons, we chose to employ bacteria while controlling their motility using optical and electrical stimuli. In the first part of the thesis, we demonstrate a biointegrated approach by introducing MicroBioRobots (MBRs). MBRs are negative photosensitive epoxy (SU8) microfabricated structures with typical feature sizes ranging from 1-100 mum coated with a monolayer of the swarming Serratia marcescens . The adherent bacterial cells naturally coordinate to propel the microstructures in fluidic environments which we call Self-Actuation. First, we demonstrate the control of MBRs using self-actuation, DC electric fields and ultra-violet radiation and develop an experimentally-validated mathematical model for the MBRs. This model allows us to to steer the MBR to any position and orientation in a planar micro channel using visual feedback and an inverted microscope. Examples

  9. Validation of Flow Cytometry and Magnetic Bead-Based Methods to Enrich CNS Single Cell Suspensions for Quiescent Microglia.

    Science.gov (United States)

    Volden, T A; Reyelts, C D; Hoke, T A; Arikkath, J; Bonasera, S J

    2015-12-01

    Microglia are resident mononuclear phagocytes within the CNS parenchyma that intimately interact with neurons and astrocytes to remodel synapses and extracellular matrix. We briefly review studies elucidating the molecular pathways that underlie microglial surveillance, activation, chemotaxis, and phagocytosis; we additionally place these studies in a clinical context. We describe and validate an inexpensive and simple approach to obtain enriched single cell suspensions of quiescent parenchymal and perivascular microglia from the mouse cerebellum and hypothalamus. Following preparation of regional CNS single cell suspensions, we remove myelin debris, and then perform two serial enrichment steps for cells expressing surface CD11b. Myelin depletion and CD11b enrichment are both accomplished using antigen-specific magnetic beads in an automated cell separation system. Flow cytometry of the resultant suspensions shows a significant enrichment for CD11b(+)/CD45(+) cells (perivascular microglia) and CD11b(+)/CD45(-) cells (parenchymal microglia) compared to starting suspensions. Of note, cells from these enriched suspensions minimally express Aif1 (aka Iba1), suggesting that the enrichment process does not evoke significant microglial activation. However, these cells readily respond to a functional challenge (LPS) with significant changes in the expression of molecules specifically associated with microglia. We conclude that methods employing a combination of magnetic-bead based sorting and flow cytometry produce suspensions highly enriched for microglia that are appropriate for a variety of molecular and cellular assays.

  10. Single-cell measurements of IgE-mediated FcεRI signaling using an integrated microfluidic platform.

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    Full Text Available Heterogeneity in responses of cells to a stimulus, such as a pathogen or allergen, can potentially play an important role in deciding the fate of the responding cell population and the overall systemic response. Measuring heterogeneous responses requires tools capable of interrogating individual cells. Cell signaling studies commonly do not have single-cell resolution because of the limitations of techniques used such as Westerns, ELISAs, mass spectrometry, and DNA microarrays. Microfluidics devices are increasingly being used to overcome these limitations. Here, we report on a microfluidic platform for cell signaling analysis that combines two orthogonal single-cell measurement technologies: on-chip flow cytometry and optical imaging. The device seamlessly integrates cell culture, stimulation, and preparation with downstream measurements permitting hands-free, automated analysis to minimize experimental variability. The platform was used to interrogate IgE receptor (FcεRI signaling, which is responsible for triggering allergic reactions, in RBL-2H3 cells. Following on-chip crosslinking of IgE-FcεRI complexes by multivalent antigen, we monitored signaling events including protein phosphorylation, calcium mobilization and the release of inflammatory mediators. The results demonstrate the ability of our platform to produce quantitative measurements on a cell-by-cell basis from just a few hundred cells. Model-based analysis of the Syk phosphorylation data suggests that heterogeneity in Syk phosphorylation can be attributed to protein copy number variations, with the level of Syk phosphorylation being particularly sensitive to the copy number of Lyn.

  11. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.

    Science.gov (United States)

    Hu, Yongli; Hase, Takeshi; Li, Hui Peng; Prabhakar, Shyam; Kitano, Hiroaki; Ng, See Kiong; Ghosh, Samik; Wee, Lawrence Jin Kiat

    2016-12-22

    The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate the complex biology of a heterogeneous population of cells, one at a time. However, till date, there has not been a suitable computational methodology for the analysis of such intricate deluge of data, in particular techniques which will aid the identification of the unique transcriptomic profiles difference between the different cellular subtypes. In this paper, we describe the novel methodology for the analysis of single-cell RNA-seq data, obtained from neocortical cells and neural progenitor cells, using machine learning algorithms (Support Vector machine (SVM) and Random Forest (RF)). Thirty-eight key transcripts were identified, using the SVM-based recursive feature elimination (SVM-RFE) method of feature selection, to best differentiate developing neocortical cells from neural progenitor cells in the SVM and RF classifiers built. Also, these genes possessed a higher discriminative power (enhanced prediction accuracy) as compared commonly used statistical techniques or geneset-based approaches. Further downstream network reconstruction analysis was carried out to unravel hidden general regulatory networks where novel interactions could be further validated in web-lab experimentation and be useful candidates to be targeted for the treatment of neuronal developmental diseases. This novel approach reported for is able to identify transcripts, with reported neuronal involvement, which optimally differentiate neocortical cells and neural progenitor cells. It is believed to be extensible and applicable to other single-cell RNA-seq expression profiles like that of the study of the cancer progression and treatment within a highly heterogeneous tumour.

  12. The role of nanotechnology in single-cell detection: a review.

    Science.gov (United States)

    Wang, Changling; Zhang, Yuxiang; Xia, Mingdian; Zhu, Xingxi; Qi, Shitao; Shen, Huaqiang; Liu, Tiebing; Tang, Liming

    2014-10-01

    Biological processes in single cells, such as signal transduction, DNA duplication, and protein synthesis and trafficking, occur in subcellular compartments at nanoscale level. Achieving high spatial-temporal resolution, high sensitivity, and high specificity in single-cell detection poses a great challenge. Nanotechnology, which has been widely applied in the fields of medicine, electronics, biomaterials, and energy production, has the potential to provide solutions for single-cell detection. Here we present a review of the use of nanotechnology in single-cell detection over the past two decades. First, we review the main areas of scientific interest, including morphology, ion concentration, DNA, RNA, protein, intracellular temperature, elements, and mechanical properties. Second, four categories of application of nanotechnology to single-cell detection are described: nanomanipulation, nanodevices, nanomaterials as labels, and nano Secondary ion mass spectrometry. Finally, the prospects and future trends in single-cell detection and analysis are discussed.

  13. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing.

    Science.gov (United States)

    Cusanovich, Darren A; Daza, Riza; Adey, Andrew; Pliner, Hannah A; Christiansen, Lena; Gunderson, Kevin L; Steemers, Frank J; Trapnell, Cole; Shendure, Jay

    2015-05-22

    Technical advances have enabled the collection of genome and transcriptome data sets with single-cell resolution. However, single-cell characterization of the epigenome has remained challenging. Furthermore, because cells must be physically separated before biochemical processing, conventional single-cell preparatory methods scale linearly. We applied combinatorial cellular indexing to measure chromatin accessibility in thousands of single cells per assay, circumventing the need for compartmentalization of individual cells. We report chromatin accessibility profiles from more than 15,000 single cells and use these data to cluster cells on the basis of chromatin accessibility landscapes. We identify modules of coordinately regulated chromatin accessibility at the level of single cells both between and within cell types, with a scalable method that may accelerate progress toward a human cell atlas.

  14. Single cell viability and impact of heating by laser absorption.

    Science.gov (United States)

    Wetzel, Franziska; Rönicke, Susanne; Müller, Karla; Gyger, Markus; Rose, Daniel; Zink, Mareike; Käs, Josef

    2011-09-01

    Optical traps such as tweezers and stretchers are widely used to probe the mechanical properties of cells. Beyond their large range of applications, the use of infrared laser light in optical traps causes significant heating effects in the cell. This study investigated the effect of laser-induced heating on cell viability. Common viability assays are not very sensitive to damages caused in short periods of time or are not practicable for single cell analysis. We used cell spreading, a vital ability of cells, as a new sensitive viability marker. The optical stretcher, a two beam laser trap, was used to simulate heat shocks that cells typically experience during measurements in optical traps. The results show that about 60% of the cells survived heat shocks without vital damage at temperatures of up to 58 ± 2°C for 0.5 s. By varying the duration of the heat shocks, it was shown that 60% of the cells stayed viable when exposed to 48 ± 2°C for 5 s.

  15. An RF input coupler for a superconducting single cell cavity

    Energy Technology Data Exchange (ETDEWEB)

    Fechner, B.; Ouchi, Nobuo; Kusano, Joichi; Mizumoto, Motoharu; Mukugi, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Krawczyk, F.

    1999-03-01

    Japan Atomic Energy Research Institute proposes a high intensity proton accelerator for the Neutron Science Project. A superconducting linac is a main option for the high energy part of the accelerator. Design and development work for the superconducting accelerating cavities (resonant frequency of 600 MHz) is in progress. Superconducting cavities have an advantage of very high accelerating efficiency because RF wall loss is very small and much of the RF power fed to the cavity is consumed for the beam acceleration. On the other hand, an RF input coupler for the superconducting cavity has to be matched to the beam loading. Therefore, estimation of coupling coefficient or external quality factor (Qext) of the RF input coupler is important for the design of the couplers. In this work, Qext`s were calculated by the electromagnetic analysis code (MAFIA) and were compared with those by the measurements. A {beta} (ratio of the particle velocity to the light velocity) = 0.5 single-cell cavity with either axial coupler or side coupler was used in this work. In the experiments, a model cavity made by copper is applied. Both 2- and 3-dimensional calculations were performed in the axial coupler geometry and the results were compared. The agreements between calculated and measured values are good and this method for calculation of Qext is confirmed to be proper for the design of the RF input couplers. (author)

  16. Postictal single-cell firing patterns in the hippocampus.

    Science.gov (United States)

    Zhou, Jun-Li; Lenck-Santini, Pierre-Pascal; Holmes, Gregory L

    2007-04-01

    Patients with epilepsy have varying degrees of postictal impairment including confusion and amnesia. This impairment adds substantially to the disease burden of epilepsy. However, the mechanism responsible for postictal cognitive impairment is unclear. The purpose of this study was to study single-cell firing patterns in hippocampal cells after spontaneous seizures in rats previously subjected to status epilepticus. In this study, we monitored place cells and interneurons in the CA1 region of the hippocampus before and after spontaneous seizures in six epileptic rats with a history of status epilepticus. Place cells fire action potentials when the animal is in a specific location in space, the so-called place field. Place cell function correlates well with performance in tasks of visual-spatial memory and appears to be an excellent surrogate measure of spatial memory. Twelve spontaneous seizures were recorded. After the seizures, a marked decrease in firing rate of action potentials from place cells was noted, whereas interneuron firing was unchanged. In addition, when place cell firing fields persisted or returned, they had aberrant firing fields with reduced coherence and information content. In addition to postictal suppression of firing patterns, seizures led to the emergence of firing fields in previously silent cells, demonstrating a postictal remapping of the hippocampus. These findings demonstrate that postictal alterations in behavior are not due solely to reduced neuronal firing. Rather, the postictal period is characterized by robust and dynamic changes in cell-firing patterns resulting in remapping of the hippocampal map.

  17. T Cell Fate at the Single-Cell Level.

    Science.gov (United States)

    Buchholz, Veit R; Schumacher, Ton N M; Busch, Dirk H

    2016-05-20

    T cell responses display two key characteristics. First, a small population of epitope-specific naive T cells expands by several orders of magnitude. Second, the T cells within this proliferating population take on diverse functional and phenotypic properties that determine their ability to exert effector functions and contribute to T cell memory. Recent technological advances in lineage tracing allow us for the first time to study these processes in vivo at single-cell resolution. Here, we summarize resulting data demonstrating that although epitope-specific T cell responses are reproducibly similar at the population level, expansion potential and diversification patterns of the offspring derived from individual T cells are highly variable during both primary and recall immune responses. In spite of this stochastic response variation, individual memory T cells can serve as adult stem cells that provide robust regeneration of an epitope-specific tissue through population averaging. We discuss the relevance of these findings for T cell memory formation and clinical immunotherapy.

  18. Gravity perception and signal transduction in single cells

    Science.gov (United States)

    Block, I.; Wolke, A.; Briegleb, W.; Ivanova, K.

    Cellular signal processing in multi-, as well as in unicellular organisms, has to rely on fundamentally similar mechanisms. Free-living single cells often use the gravity vector for their spatial orientation (gravitaxis) and show distinct gravisensitivities. In this investigation the gravisensitive giant ameboid cell Physarum polycephalum (Myxomycetes, acellular slime molds) is used. Its gravitaxis and the modulation of its intrinsic rhythmic contraction activity by gravity was demonstrated in 180 °turn experiments and in simulated, as well as in actual, near-weightlessness studies (fast-rotating clinostat; Spacelab D1, IML-1). The stimulus perception was addressed in an IML-2 experiment, which provided information on the gravireceptor itself by the determination of the cell's acceleration-sensitivity threshold. Ground-based experiments designed to elucidate the subsequent steps in signal transduction leading to a motor response, suggest that an acceleration stimulus induces changes in the level of second messenger, adenosine 3',5'-cyclic monophosphate (cAMP), indicating also that the acceleration-stimulus signal transduction chain of Physarum uses an ubiquitous second messenger pathway.

  19. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  20. Tumour Heterogeneity: The Key Advantages of Single-Cell Analysis

    Science.gov (United States)

    Tellez-Gabriel, Marta; Ory, Benjamin; Lamoureux, Francois; Heymann, Marie-Francoise; Heymann, Dominique

    2016-01-01

    Tumour heterogeneity refers to the fact that different tumour cells can show distinct morphological and phenotypic profiles, including cellular morphology, gene expression, metabolism, motility, proliferation and metastatic potential. This phenomenon occurs both between tumours (inter-tumour heterogeneity) and within tumours (intra-tumour heterogeneity), and it is caused by genetic and non-genetic factors. The heterogeneity of cancer cells introduces significant challenges in using molecular prognostic markers as well as for classifying patients that might benefit from specific therapies. Thus, research efforts for characterizing heterogeneity would be useful for a better understanding of the causes and progression of disease. It has been suggested that the study of heterogeneity within Circulating Tumour Cells (CTCs) could also reflect the full spectrum of mutations of the disease more accurately than a single biopsy of a primary or metastatic tumour. In previous years, many high throughput methodologies have raised for the study of heterogeneity at different levels (i.e., RNA, DNA, protein and epigenetic events). The aim of the current review is to stress clinical implications of tumour heterogeneity, as well as current available methodologies for their study, paying specific attention to those able to assess heterogeneity at the single cell level. PMID:27999407

  1. Single Cell Traction Microscopy within 3D Collagen Matrices

    Science.gov (United States)

    Wu, Mingming

    2014-03-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, our current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D traction force microscopy, in which cells are cultured on a flat substrate. It is now clear that what we learn about cellular behavior on a 2D substrate does not always apply to cells embedded within a 3D biomatrix. 3D traction microscopy is emerging for mapping traction fields of single cells embedded in 3D gel, but current methods cannot account for the fibrous and nonlinear properties of collagen gel. In this talk, I will present a forward computation algorithm that we have developed for 3D cell traction measurements within collagen gels. The application of this technology to understanding cancer migration and invasion will be discussed. This work is supported by the National Center for Research Resources (5R21RR025801-03, NIH) and the National Institute of General Medical Sciences (8 R21 GM103388-03,NIH), and the Cornell Center on the Microenvironment & Metastasis.

  2. Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Dürr, Oliver; Sick, Beate

    2016-10-01

    Deep learning methods are currently outperforming traditional state-of-the-art computer vision algorithms in diverse applications and recently even surpassed human performance in object recognition. Here we demonstrate the potential of deep learning methods to high-content screening-based phenotype classification. We trained a deep learning classifier in the form of convolutional neural networks with approximately 40,000 publicly available single-cell images from samples treated with compounds from four classes known to lead to different phenotypes. The input data consisted of multichannel images. The construction of appropriate feature definitions was part of the training and carried out by the convolutional network, without the need for expert knowledge or handcrafted features. We compare our results against the recent state-of-the-art pipeline in which predefined features are extracted from each cell using specialized software and then fed into various machine learning algorithms (support vector machine, Fisher linear discriminant, random forest) for classification. The performance of all classification approaches is evaluated on an untouched test image set with known phenotype classes. Compared to the best reference machine learning algorithm, the misclassification rate is reduced from 8.9% to 6.6%.

  3. Direct cell lysis for single-cell gene expression profiling

    Directory of Open Access Journals (Sweden)

    David eSvec

    2013-11-01

    Full Text Available The interest to analyze single and few cell samples is rapidly increasing. Numerous extraction protocols to purify nucleic acids are available, but most of them compromise severely on yield to remove contaminants and are therefore not suitable for the analysis of samples containing small numbers of transcripts only. Here, we evaluate 17 direct cell lysis protocols for transcript yield and compatibility with downstream reverse transcription quantitative real-time PCR. Four endogenously expressed genes are assayed together with RNA and DNA spikes in the samples. We found bovine serum albumin (BSA to be the best lysis agent, resulting in efficient cell lysis, high RNA stability and enhanced reverse transcription efficiency. Furthermore, we found direct cell lysis with BSA superior to standard column based extraction methods, when analyzing from 1 up to 512 mammalian cells. In conclusion, direct cell lysis protocols based on BSA can be applied with most cell collection methods and are compatible with most analytical workflows to analyze single cells as well as samples composed of small numbers of cells.

  4. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2015-04-01

    Full Text Available This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1 early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2 microfluidic impedance flow cytometry with enhanced sensitivity; (3 microfluidic impedance and optical flow cytometry for single-cell analysis and (4 integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  5. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-04-29

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  6. Automated analysis of images acquired with electronic portal imaging device during delivery of quality assurance plans for inversely optimized arc therapy

    DEFF Research Database (Denmark)

    Fredh, Anna; Korreman, Stine; Rosenschöld, Per Munck af

    2010-01-01

    This work presents an automated method for comprehensively analyzing EPID images acquired for quality assurance of RapidArc treatment delivery. In-house-developed software has been used for the analysis and long-term results from measurements on three linacs are presented....

  7. Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy

    Science.gov (United States)

    Mazo-Vargas, Anyimilehidi; Park, Heungwon; Aydin, Mert; Buchler, Nicolas E.

    2014-01-01

    Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15–20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression. PMID:25232010

  8. Epithelial monolayer culture system for real-time single-cell analyses.

    Science.gov (United States)

    Seo, Jong Bae; Moody, Mark; Koh, Duk-Su

    2014-01-01

    Abstract Many epithelial cells form polarized monolayers under in vivo and in vitro conditions. Typically, epithelial cells are cultured for differentiation on insert systems where cells are plated on a porous filter membrane. Although the cultured monolayers have been a standard system to study epithelial physiology, there are some limits: The epithelial cells growing inside the commercial inserts are not optimal to visualize directly through lenses on inverted microscopes. The cell images are optically distorted and background fluorescence is bright due to the filter membrane positioned between the cells and the lens. In addition, the cells are not easily accessible by electrodes due to the presence of tall side walls. Here, we present the design, fabrication, and practical applications of an improved system for analysis of polarized epithelial monolayers. This new system allows (1) direct imaging of cells without an interfering filter membrane, (2) electrophysiological measurements, and (3) detection of apical secretion with minimal dilution. Therefore, our culture method is optimized to study differentiated epithelial cells at the single-cell and subcellular levels, and can be extended to other cell types with minor modifications.

  9. Raman spectra of single cell from gastrointestinal cancer patients

    Institute of Scientific and Technical Information of China (English)

    Xun-Ling Yan; Rui-Xin Dong; Lei Zhang; Xue-Jun Zhang; Zong-Wang Zhang

    2005-01-01

    AIM: To explore the difference between cancer cells and normal cells, we investigated the Raman spectra of singlecells from gastrointestinal cancer patients. METHODS: All samples were obtained from 30 diagnosed as gastrointestinal cancer patients. The flesh tumor specimen is located in the center of tumor tissue, while the normal ones were 5 cm away from the outside tumor section. The imprint was put under the microscope and a single cell was chosen for Raman measurement. All spectra were collected at confocal Raman micro-spectroscopy (British Renishaw) with NIR 780 nm laser.RESULTS: We measured the Raman spectra of several cells from gastrointestinal cancer patients. The result shows that there exists the strong line at 1 002/cm with less half-width assigned to the phenylalanine in several cells. The Raman lines of white cell were lower and less, while those of red cell were not only higher in intensity and more abundant, but also had a parti cular C-N breathing stretching band of pyrrole ring at 1 620-1 540/cm. The line at 1 084/cm assigned to phosphate backbone of DNA became obviously weaker in cancer cell. The Raman spectra of stomach cancer cells were similar to those of normal cells, but the Raman intensity of cancer cells was much lower than that of normal cells, and even some lines disappear. The lines of enteric cancer cells became weaker than spectra above and many lines disappeared, and the cancer cells in different position had different fluorescence intensity.CONCLUSION: The Raman spectra of several cells from cancer patients show that the structural changes of cancer cells happen and many bonds rupture so that the biological function of cells are lost. The results indicate that Raman spectra can offer the experiment basis for the cancer diagnosis and treatment.

  10. Single-cell level analysis of megakaryocyte growth and development.

    Science.gov (United States)

    Leysi-Derilou, Younes; Duchesne, Carl; Garnier, Alain; Pineault, Nicolas

    2012-04-01

    Several fundamental questions regarding cell growth and development can be answered by recording and analyzing the history of cells and their progeny. Herein, long-term and large-field live cell imaging was used to study the process of megakaryopoiesis at the single cell level (n = 9300) from human CD34+ cord blood (CB) in the presence of thrombopoietin (TPO) or the cytokine cocktail BS1 with or without nicotinamide (NIC). Comparative analyses revealed that the cocktail BS1 increased the mitotic and proplatelet rate of diploid and polyploid cells, respectively. Conversely, only NIC treatment increased the endomitotic rate of megakaryocytes (MKs) leading to the formation of CB-MKs with ploidy level frequently observed with BM-MKs. However, NIC failed to enhance platelet production. Rather, a 7- and 31-fold reduction in proplatelet formation was observed in tetraploid and octaploid CB-MKs, respectively, and ex vivo platelet production output was reduced by half due to a reduction in MK output in NIC cultures. Unexpectedly, a significant fraction of di- and polyploid CB-MKs were seen to undergo complete proplatelet regression. Though rare (cells that could at times resume normal development. The cell tracking data was then used to investigate the impact of "developmental fate" and ploidy on cell cycling time, and to identify potential developmental patterns. These analyses revealed that cell fate and ploidy level have major impacts on the cell cycling time of the cells, and that four recurrent cell lineage patterns could be identified for CD34+ cells undergoing MK differentiation.

  11. Single-cell census of mechanosensitive channels in living bacteria.

    Directory of Open Access Journals (Sweden)

    Maja Bialecka-Fornal

    Full Text Available Bacteria are subjected to a host of different environmental stresses. One such insult occurs when cells encounter changes in the osmolarity of the surrounding media resulting in an osmotic shock. In recent years, a great deal has been learned about mechanosensitive (MS channels which are thought to provide osmoprotection in these circumstances by opening emergency release valves in response to membrane tension. However, even the most elementary physiological parameters such as the number of MS channels per cell, how MS channel expression levels influence the physiological response of the cells, and how this mean number of channels varies from cell to cell remain unanswered. In this paper, we make a detailed quantitative study of the expression of the mechanosensitive channel of large conductance (MscL in different media and at various stages in the growth history of bacterial cultures. Using both quantitative fluorescence microscopy and quantitative Western blots our study complements earlier electrophysiology-based estimates and results in the following key insights: i the mean number of channels per cell is much higher than previously estimated, ii measurement of the single-cell distributions of such channels reveals marked variability from cell to cell and iii the mean number of channels varies under different environmental conditions. The regulation of MscL expression displays rich behaviors that depend strongly on culturing conditions and stress factors, which may give clues to the physiological role of MscL. The number of stress-induced MscL channels and the associated variability have far reaching implications for the in vivo response of the channels and for modeling of this response. As shown by numerous biophysical models, both the number of such channels and their variability can impact many physiological processes including osmoprotection, channel gating probability, and channel clustering.

  12. Inferring single-cell gene expression mechanisms using stochastic simulation

    Science.gov (United States)

    Daigle, Bernie J.; Soltani, Mohammad; Petzold, Linda R.; Singh, Abhyudai

    2015-01-01

    Motivation: Stochastic promoter switching between transcriptionally active (ON) and inactive (OFF) states is a major source of noise in gene expression. It is often implicitly assumed that transitions between promoter states are memoryless, i.e. promoters spend an exponentially distributed time interval in each of the two states. However, increasing evidence suggests that promoter ON/OFF times can be non-exponential, hinting at more complex transcriptional regulatory architectures. Given the essential role of gene expression in all cellular functions, efficient computational techniques for characterizing promoter architectures are critically needed. Results: We have developed a novel model reduction for promoters with arbitrary numbers of ON and OFF states, allowing us to approximate complex promoter switching behavior with Weibull-distributed ON/OFF times. Using this model reduction, we created bursty Monte Carlo expectation-maximization with modified cross-entropy method (‘bursty MCEM2’), an efficient parameter estimation and model selection technique for inferring the number and configuration of promoter states from single-cell gene expression data. Application of bursty MCEM2 to data from the endogenous mouse glutaminase promoter reveals nearly deterministic promoter OFF times, consistent with a multi-step activation mechanism consisting of 10 or more inactive states. Our novel approach to modeling promoter fluctuations together with bursty MCEM2 provides powerful tools for characterizing transcriptional bursting across genes under different environmental conditions. Availability and implementation: R source code implementing bursty MCEM2 is available upon request. Contact: absingh@udel.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573914

  13. Single cell analysis of yeast replicative aging using a new generation of microfluidic device.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available A major limitation to yeast aging study has been the inability to track mother cells and observe molecular markers during the aging process. The traditional lifespan assay relies on manual micro-manipulation to remove daughter cells from the mother, which is laborious, time consuming, and does not allow long term tracking with high resolution microscopy. Recently, we have developed a microfluidic system capable of retaining mother cells in the microfluidic chambers while removing daughter cells automatically, making it possible to observe fluorescent reporters in single cells throughout their lifespan. Here we report the development of a new generation of microfluidic device that overcomes several limitations of the previous system, making it easier to fabricate and operate, and allowing functions not possible with the previous design. The basic unit of the device consists of microfluidic channels with pensile columns that can physically trap the mother cells while allowing the removal of daughter cells automatically by the flow of the fresh media. The whole microfluidic device contains multiple independent units operating in parallel, allowing simultaneous analysis of multiple strains. Using this system, we have reproduced the lifespan curves for the known long and short-lived mutants, demonstrating the power of the device for automated lifespan measurement. Following fluorescent reporters in single mother cells throughout their lifespan, we discovered a surprising change of expression of the translation elongation factor TEF2 during aging, suggesting altered translational control in aged mother cells. Utilizing the capability of the new device to trap mother-daughter pairs, we analyzed mother-daughter inheritance and found age dependent asymmetric partitioning of a general stress response reporter between mother and daughter cells.

  14. Automation in biological crystallization

    Science.gov (United States)

    Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen

    2014-01-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074

  15. Automation in biological crystallization.

    Science.gov (United States)

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  16. Automating Finance

    Science.gov (United States)

    Moore, John

    2007-01-01

    In past years, higher education's financial management side has been riddled with manual processes and aging mainframe applications. This article discusses schools which had taken advantage of an array of technologies that automate billing, payment processing, and refund processing in the case of overpayment. The investments are well worth it:…

  17. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing

    DEFF Research Database (Denmark)

    Hou, Yong; Wu, Kui; Shi, Xulian;

    2015-01-01

    BACKGROUND: Single-cell resequencing (SCRS) provides many biomedical advances in variations detection at the single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used for WGA: multiple displacement amplification (MDA), degenerate-oligonucleoti...

  18. Single Cell Microgel Based Modular Bioinks for Uncoupled Cellular Micro- and Macroenvironments.

    Science.gov (United States)

    Kamperman, Tom; Henke, Sieger; van den Berg, Albert; Shin, Su Ryon; Tamayol, Ali; Khademhosseini, Ali; Karperien, Marcel; Leijten, Jeroen

    2017-02-01

    Modular bioinks based on single cell microgels within distinct injectable prepolymers enable uncoupling of biomaterials' micro- and macroenvironments. These inks allow biofabrication of 3D constructs that recapitulate the multiscale modular design of native tissues with a single cell resolution. This approach represents a major step forward in endowing engineered constructs with the multifunctionality that underlies the behavior of native tissues.

  19. Single Cell Microgel Based Modular Bioinks for Uncoupled Cellular Micro- and Macrenvironments

    NARCIS (Netherlands)

    Kamperman, T.; Henke, S.J.; Berg, van den A.; Shin, S.R.; Tamayol, A.; Khademhosseini, A.; Karperien, H.B.J.; Leijten, J.C.H.

    2016-01-01

    Modular bioinks based on single cell microgels within distinct injectable prepolymers enable uncoupling of biomaterials' micro- and macroenvironments. These inks allow biofabrication of 3D constructs that recapitulate the multiscale modular design of native tissues with a single cell resolution. Thi

  20. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    2012-01-01

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it po

  1. Application of an automation system and a supervisory control and data acquisition (SCADA) system for the optimal operation of a membrane adsorption hybrid system.

    Science.gov (United States)

    Smith, P J; Vigneswaran, S; Ngo, H H; Nguyen, H T; Ben-Aim, R

    2006-01-01

    The application of automation and supervisory control and data acquisition (SCADA) systems to municipal water and wastewater treatment plants is rapidly increasing. However, the application of these systems is less frequent in the research and development phases of emerging treatment technologies used in these industries. This study involved the implementation of automation and a SCADA system to the submerged membrane adsorption hybrid system for use in a semi-pilot scale research project. An incremental approach was used in the development of the automation and SCADA systems, leading to the development of two new control systems. The first system developed involved closed loop control of the backwash initiation, based upon a pressure increase, leading to productivity improvements as the backwash is only activated when required, not at a fixed time. This system resulted in a 40% reduction in the number of backwashes required and also enabled optimised operations under unsteady concentrations of wastewater. The second system developed involved closed loop control of the backwash duration, whereby the backwash was terminated when the pressure reached a steady state. This system resulted in a reduction of the duration of the backwash of up to 25% and enabled optimised operations as the foulant build-up within the reactor increased.

  2. Unravelling biology and shifting paradigms in cancer with single-cell sequencing.

    Science.gov (United States)

    Baslan, Timour; Hicks, James

    2017-08-24

    The fundamental operative unit of a cancer is the genetically and epigenetically innovative single cell. Whether proliferating or quiescent, in the primary tumour mass or disseminated elsewhere, single cells govern the parameters that dictate all facets of the biology of cancer. Thus, single-cell analyses provide the ultimate level of resolution in our quest for a fundamental understanding of this disease. Historically, this quest has been hampered by technological shortcomings. In this Opinion article, we argue that the rapidly evolving field of single-cell sequencing has unshackled the cancer research community of these shortcomings. From furthering an elemental understanding of intra-tumoural genetic heterogeneity and cancer genome evolution to illuminating the governing principles of disease relapse and metastasis, we posit that single-cell sequencing promises to unravel the biology of all facets of this disease.

  3. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    Science.gov (United States)

    Yu, Miao; Chen, Zongzheng; Xiang, Cheng; Liu, Bo; Xie, Handi; Qin, Kairong

    2016-06-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  4. Characterizing exogenous mRNA delivery, trafficking, cytoplasmic release and RNA-protein correlations at the level of single cells.

    Science.gov (United States)

    Kirschman, Jonathan L; Bhosle, Sushma; Vanover, Daryll; Blanchard, Emmeline L; Loomis, Kristin H; Zurla, Chiara; Murray, Kathryn; Lam, Blaine C; Santangelo, Philip J

    2017-07-07

    The use of synthetic messenger ribonucleic acid (mRNA) to express specific proteins is a highly promising therapeutic and vaccine approach that avoids many safety issues associated with viral or DNA-based systems. However, in order to optimize mRNA designs and delivery, technology advancements are required to study fundamental mechanisms of mRNA uptake and localization at the single-cell and tissue level. Here, we present a single RNA sensitive fluorescent labeling method which allows us to label and visualize synthetic mRNA without significantly affecting function. This approach enabled single cell characterization of mRNA uptake and release kinetics from endocytic compartments, the measurement of mRNA/protein correlations, and motivated the investigation of mRNA induced cellular stress, all important mechanisms influencing protein production. In addition, we demonstrated this approach can facilitate near-infrared imaging of mRNA localization in vivo and in ex-vivo tissue sections, which will facilitate mRNA trafficking studies in pre-clinical models. Overall, we demonstrate the ability to study fundamental mechanisms necessary to optimize delivery and therapeutic strategies, in order to design the next generation of novel mRNA therapeutics and vaccines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. 基于萤火虫算法的自动化仓储货位优化分配研究%Slotting allocation optimization of automated warehouse based on firefly algorithm

    Institute of Scientific and Technical Information of China (English)

    朱靖; 章瑶易; 贺青

    2016-01-01

    为解决自动化仪表仓储系统货位优化问题,提出一种基于萤火虫算法的仓储货位优化方法,以仓储货位入库的时间为目标函数,利用最小时间法实现货位的最优分配,通过实际的案例,验证了萤火虫算法在立体表库货位优化中的有效性。%In order to solve the problem of the allotting allocation optimization in automated instrument warehouse sys-tem, improve the efficiency of storage system, this paper proposes the warehouse optimization method based on the firefly algorithm, which takes the storage location time as objective function, and adopts least time to achieve optimal allocation.The relevant case analysis verified the effectiveness of firefly algorithm in three-dimensional slotting opti-mization.

  6. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell.

    Science.gov (United States)

    Nagano, Takashi; Lubling, Yaniv; Yaffe, Eitan; Wingett, Steven W; Dean, Wendy; Tanay, Amos; Fraser, Peter

    2015-12-01

    Hi-C is a powerful method that provides pairwise information on genomic regions in spatial proximity in the nucleus. Hi-C requires millions of cells as input and, as genome organization varies from cell to cell, a limitation of Hi-C is that it only provides a population average of genome conformations. We developed single-cell Hi-C to create snapshots of thousands of chromatin interactions that occur simultaneously in a single cell. To adapt Hi-C to single-cell analysis, we modified the protocol to include in-nucleus ligation. This enables the isolation of single nuclei carrying Hi-C-ligated DNA into separate tubes, followed by reversal of cross-links, capture of biotinylated ligation junctions on streptavidin-coated magnetic beads and PCR amplification of single-cell Hi-C libraries. The entire laboratory protocol can be carried out in 1 week, and although we have demonstrated its use in mouse T helper (TH1) cells, it should be applicable to any cell type or species for which standard Hi-C has been successful. We also developed an analysis pipeline to filter noise and assess the quality of data sets in a few hours. Although the interactome maps produced by single-cell Hi-C are sparse, the data provide useful information to understand cellular variability in nuclear genome organization and chromosome structure. Standard wet and dry laboratory skills in molecular biology and computational analysis are required.

  7. A Single-Cell Transcriptome Atlas of the Human Pancreas.

    Science.gov (United States)

    Muraro, Mauro J; Dharmadhikari, Gitanjali; Grün, Dominic; Groen, Nathalie; Dielen, Tim; Jansen, Erik; van Gurp, Leon; Engelse, Marten A; Carlotti, Francoise; de Koning, Eelco J P; van Oudenaarden, Alexander

    2016-10-26

    To understand organ function, it is important to have an inventory of its cell types and of their corresponding marker genes. This is a particularly challenging task for human tissues like the pancreas, because reliable markers are limited. Hence, transcriptome-wide studies are typically done on pooled islets of Langerhans, obscuring contributions from rare cell types and of potential subpopulations. To overcome this challenge, we developed an automated platform that uses FACS, robotics, and the CEL-Seq2 protocol to obtain the transcriptomes of thousands of single pancreatic cells from deceased organ donors, allowing in silico purification of all main pancreatic cell types. We identify cell type-specific transcription factors and a subpopulation of REG3A-positive acinar cells. We also show that CD24 and TM4SF4 expression can be used to sort live alpha and beta cells with high purity. This resource will be useful for developing a deeper understanding of pancreatic biology and pathophysiology of diabetes mellitus. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Heating automation

    OpenAIRE

    Tomažič, Tomaž

    2013-01-01

    This degree paper presents usage and operation of peripheral devices with microcontroller for heating automation. The main goal is to make a quality system control for heating three house floors and with that, increase efficiency of heating devices and lower heating expenses. Heat pump, furnace, boiler pump, two floor-heating pumps and two radiator pumps need to be controlled by this system. For work, we have chosen a development kit stm32f4 - discovery with five temperature sensors, LCD disp...

  9. Automation Security

    OpenAIRE

    Mirzoev, Dr. Timur

    2014-01-01

    Web-based Automated Process Control systems are a new type of applications that use the Internet to control industrial processes with the access to the real-time data. Supervisory control and data acquisition (SCADA) networks contain computers and applications that perform key functions in providing essential services and commodities (e.g., electricity, natural gas, gasoline, water, waste treatment, transportation) to all Americans. As such, they are part of the nation s critical infrastructu...

  10. Marketing automation

    OpenAIRE

    Raluca Dania TODOR

    2017-01-01

    The automation of the marketing process seems to be nowadays, the only solution to face the major changes brought by the fast evolution of technology and the continuous increase in supply and demand. In order to achieve the desired marketing results, businessis have to employ digital marketing and communication services. These services are efficient and measurable thanks to the marketing technology used to track, score and implement each campaign. Due to the...

  11. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.

    Directory of Open Access Journals (Sweden)

    Alex Rosenberg

    Full Text Available The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.

  12. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.

    Science.gov (United States)

    Yang, Andrian; Troup, Michael; Lin, Peijie; Ho, Joshua W K

    2017-03-01

    Single-cell RNA-seq (scRNA-seq) is increasingly used in a range of biomedical studies. Nonetheless, current RNA-seq analysis tools are not specifically designed to efficiently process scRNA-seq data due to their limited scalability. Here we introduce Falco, a cloud-based framework to enable paralellization of existing RNA-seq processing pipelines using big data technologies of Apache Hadoop and Apache Spark for performing massively parallel analysis of large scale transcriptomic data. Using two public scRNA-seq datasets and two popular RNA-seq alignment/feature quantification pipelines, we show that the same processing pipeline runs 2.6-145.4 times faster using Falco than running on a highly optimized standalone computer. Falco also allows users to utilize low-cost spot instances of Amazon Web Services, providing a ∼65% reduction in cost of analysis. Falco is available via a GNU General Public License at https://github.com/VCCRI/Falco/. j.ho@victorchang.edu.au. Supplementary data are available at Bioinformatics online.

  13. Modeling of Integrated Nanoneedle-Microfluidic System for Single Cell Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Salma Abdullah Binsilm

    2016-12-01

    Full Text Available In this research, a finite element study on a nanoneedle-microfluidic system for single cell temperature measurement is presented. The nanoneedle design and electrical and mechanical characterization are analyzed, in which tungsten is used as the sensing material. A rectangular shaped sensor with a gap of 10.8 µm showed to give the same current density distribution within the nanoneedle, and a 90 nm2 cross-sectional area showed to cause minimum damage to the cell. Furthermore, the current showed to have a positive temperature coefficient of resistance (TCR with an increase in the temperature, and the nanoneedle showed to be able to resist ramp force up to 22.5 μN before failure. Electrical measurement on yeast cell showed that the nanoneedle was independent of the cell conductivity. The nanoneedle proved to be able to measure temperature with a current difference of 50 nA and a resolution of 0.02 °C in 10 ms. A Y-shaped microchannel was proposed and the microchannel cross-sectional area was optimized to be 63 μm2 and a flow rate of 24.6 pL/min allowed successful cell penetration causing minimal damage to the cell.

  14. Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity.

    Science.gov (United States)

    Davison, Michelle; Hall, Eric; Zare, Richard; Bhaya, Devaki

    2015-10-01

    Cyanobacteria have played a crucial role in the history of early earth and continue to be instrumental in shaping our planet, yet applications of cutting edge technology have not yet been widely used to explore cyanobacterial diversity. To provide adequate background, we briefly review current sequencing technologies and their innovative uses in genomics and metagenomics. Next, we focus on current cell capture technologies and the challenges of using them with cyanobacteria. We illustrate the utility in coupling breakthroughs in DNA amplification with cell capture platforms, with an example of microfluidic isolation and subsequent targeted amplicon sequencing from individual terrestrial thermophilic cyanobacteria. Single cells of thermophilic, unicellular Synechococcus sp. JA-2-3-B'a(2-13) (Syn OS-B') were sorted in a microfluidic device, lysed, and subjected to whole genome amplification by multiple displacement amplification. We amplified regions from specific CRISPR spacer arrays, which are known to be highly diverse, contain semi-palindromic repeats which form secondary structure, and can be difficult to amplify. Cell capture, lysis, and genome amplification on a microfluidic device have been optimized, setting a stage for further investigations of individual cyanobacterial cells isolated directly from natural populations.

  15. Automated High Throughput Drug Target Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, B

    2005-02-18

    The molecular structures of drug target proteins and receptors form the basis for 'rational' or structure guided drug design. The majority of target structures are experimentally determined by protein X-ray crystallography, which as evolved into a highly automated, high throughput drug discovery and screening tool. Process automation has accelerated tasks from parallel protein expression, fully automated crystallization, and rapid data collection to highly efficient structure determination methods. A thoroughly designed automation technology platform supported by a powerful informatics infrastructure forms the basis for optimal workflow implementation and the data mining and analysis tools to generate new leads from experimental protein drug target structures.

  16. Automated Integrated Analog Filter Design Issues

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2015-07-01

    Full Text Available An analysis of modern automated integrated analog circuits design methods and their use in integrated filter design is done. Current modern analog circuits automated tools are based on optimization algorithms and/or new circuit generation methods. Most automated integrated filter design methods are only suited to gmC and switched current filter topologies. Here, an algorithm for an active RC integrated filter design is proposed, that can be used in automated filter designs. The algorithm is tested by designing an integrated active RC filter in a 65 nm CMOS technology.

  17. QSpec: online control and data analysis system for single-cell Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Lihui Ren

    2014-06-01

    Full Text Available Single-cell phenotyping is critical to the success of biological reductionism. Raman-activated cell sorting (RACS has shown promise in resolving the dynamics of living cells at the individual level and to uncover population heterogeneities in comparison to established approaches such as fluorescence-activated cell sorting (FACS. Given that the number of single-cells would be massive in any experiment, the power of Raman profiling technique for single-cell analysis would be fully utilized only when coupled with a high-throughput and intelligent process control and data analysis system. In this work, we established QSpec, an automatic system that supports high-throughput Raman-based single-cell phenotyping. Additionally, a single-cell Raman profile database has been established upon which data-mining could be applied to discover the heterogeneity among single-cells under different conditions. To test the effectiveness of this control and data analysis system, a sub-system was also developed to simulate the phenotypes of single-cells as well as the device features.

  18. Fluidic Logic Used in a Systems Approach to Enable Integrated Single-cell Functional Analysis

    Directory of Open Access Journals (Sweden)

    Naveen Ramalingam

    2016-09-01

    Full Text Available The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide-spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based Integrated Fluidic Circuit (IFC that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to a variety of stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.

  19. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  20. Towards high-throughput single cell/clone cultivation and analysis.

    Science.gov (United States)

    Lindström, Sara; Larsson, Rolf; Svahn, Helene Andersson

    2008-03-01

    In order to better understand cellular processes and behavior, a controlled way of studying high numbers of single cells and their clone formation is greatly needed. Numerous ways of ordering single cells into arrays have previously been described, but platforms in which each cell/clone can be addressed to an exact position in the microplate, cultivated for weeks and treated separately in a high-throughput manner have until now been missing. Here, a novel microplate developed for high-throughput single cell/clone cultivation and analysis is presented. Rapid single cell seeding into microwells, using conventional flow cytometry, allows several thousands of single cells to be cultivated, short-term (72 h) or long-term (10-14 days), and analyzed individually. By controlled sorting of individual cells to predefined locations in the microplate, analysis of single cell heterogeneity and clonogenic properties related to drug sensitivity can be accomplished. Additionally, the platform requires remarkably low number of cells, a major advantage when screening limited amounts of patient cell samples. By seeding single cells into the microplate it is possible to analyze the cells for over 14 generations, ending up with more than 10 000 cells in each well. Described here is a proof-of-concept on compartmentalization and cultivation of thousands of individual cells enabling heterogeneity analysis of various cells/clones and their response to different drugs.

  1. A microfluidic dual-well device for high-throughput single-cell capture and culture.

    Science.gov (United States)

    Lin, Ching-Hui; Hsiao, Yi-Hsing; Chang, Hao-Chen; Yeh, Chuan-Feng; He, Cheng-Kun; Salm, Eric M; Chen, Chihchen; Chiu, Ing-Ming; Hsu, Chia-Hsien

    2015-07-21

    In vitro culture of single cells facilitates biological studies by deconvoluting complications from cell population heterogeneity. However, there is still a lack of simple yet high-throughput methods to perform single cell culture experiments. In this paper, we report the development and application of a microfluidic device with a dual-well (DW) design concept for high-yield single-cell loading (~77%) in large microwells (285 and 485 μm in diameter) which allowed for cell spreading, proliferation and differentiation. The increased single-cell loading yield is achieved by using sets of small microwells termed "capture-wells" and big microwells termed "culture-wells" according to their utilities for single-cell capture and culture, respectively. This novel device architecture allows the size of the "culture" microwells to be flexibly adjusted without affecting the single-cell loading efficiency making it useful for cell culture applications as demonstrated by our experiments of KT98 mouse neural stem cell differentiation, A549 and MDA-MB-435 cancer cell proliferation, and single-cell colony formation assay with A549 cells in this paper.

  2. Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes.

    Science.gov (United States)

    Dusny, Christian; Schmid, Andreas

    2015-06-01

    Life is based on the cell as the elementary replicative and self-sustaining biological unit. Each single cell constitutes an independent and highly dynamic system with a remarkable individuality in a multitude of physiological traits and responses to environmental fluctuations. However, with traditional population-based cultivation set-ups, it is not possible to decouple inherent stochastic processes and extracellular contributions to phenotypic individuality for two central reasons: the lack of environmental control and the occlusion of single-cell dynamics by the population average. With microfluidic single-cell analysis as a new cell assay format, these issues can now be addressed, enabling cultivation and time-resolved analysis of single cells in precisely manipulable extracellular environments beyond the bulk. In this article, we explore the interplay of cellular physiology and environment at a single-cell level. We review biological basics that govern the functional state of the cell and put them in context with physical fundamentals that shape the extracellular environment. Furthermore, the significance of single-cell growth rates as pivotal descriptors for global cellular physiology is discussed and highlighted by selected studies. These examples illustrate the unique opportunities of microfluidic single-cell cultivation in combination with growth rate analysis, addressing questions of fundamental bio(techno)logical interest.

  3. Study of Phospholipids in Single Cells Using an Integrated Microfluidic Device Combined with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    Science.gov (United States)

    Xie, Weiyi; Gao, Dan; Jin, Feng; Jiang, Yuyang; Liu, Hongxia

    2015-07-21

    Single-cell trapping and high-throughput mass spectrometry analysis remain challenging now. Current technologies for single-cell analysis have several limitations, such as throughput, space resolution, and multicomponent analysis. In this study, we demonstrate, for the first time, the combination of microfluidic chip and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for high-throughput and automatic single-cell phospholipids analysis. A microwell-array-based microfluidic chip was designed and fabricated for cell array formation on an indium tin oxide (ITO)-coated glass slide. Mass spectrometry imaging measurement with 25 μm pixel size was performed with a MALDI ion source. Eight phospholipids in a single A549 cell were detected, and their structures were further identified by MS/MS spectra. Selected ion images were generated with a bin width of Δm/z ± 0.005. The selected ion images and optical images of the cell array showed excellent correlation, and mass spectrometry information on phospholipids from 1-3 cells was extracted automatically by selecting pixels with the same fixed interval between microwells on the chip. The measurement and data extraction could be processed in several minutes to achieve a high-throughput analysis. Through the optimization of different microwell sizes and different matrices, this method showed potential for the analysis of other metabolites or metabolic changes at the single-cell level.

  4. Bioluminescence Microscopy as a Method to Measure Single Cell Androgen Receptor Activity Heterogeneous Responses to Antiandrogens

    Science.gov (United States)

    Jain, Pallavi; Neveu, Bertrand; Velot, Lauriane; Wu, Lily; Fradet, Yves; Pouliot, Frédéric

    2016-01-01

    Cancer cell heterogeneity is well-documented. Therefore, techniques to monitor single cell heterogeneous responses to treatment are needed. We developed a highly translational and quantitative bioluminescence microscopy method to measure single cell androgen receptor (AR) activity modulation by antiandrogens from fluid biopsies. We showed that this assay can detect heterogeneous cellular response to drug treatment and that the sum of single cell AR activity can mirror the response in the whole cell population. This method may thus be used to monitor heterogeneous dynamic treatment responses in cancer cells. PMID:27678181

  5. Effects of sample treatments on genome recovery via single-cell genomics

    Energy Technology Data Exchange (ETDEWEB)

    Clingenpeel, Scott [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Schwientek, Patrick [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Hugenholtz, Philip [Univ. of Queensland, Brisbane (Australia); Woyke, Tanja [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2014-06-13

    It is known that single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we demonstrate that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing.

  6. Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots

    Science.gov (United States)

    Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki

    2016-10-01

    Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.

  7. Single-cell analysis and isolation for microbiology and biotechnology: methods and applications.

    Science.gov (United States)

    Ishii, Satoshi; Tago, Kanako; Senoo, Keishi

    2010-05-01

    Various single-cell isolation techniques, including dilution, micromanipulation, flow cytometry, microfluidics, and compartmentalization, have been developed. These techniques can be used to cultivate previously uncultured microbes, to assess and monitor cell physiology and function, and to screen for novel microbiological products. Various other techniques, such as viable staining, in situ hybridization, and those using autofluorescence proteins, are frequently combined with these single-cell isolation techniques depending on the purpose of the study. In this review article, we summarize currently available single-cell isolation techniques and their applications, when used in combination with other techniques, in microbiological and biotechnological studies.

  8. Every cell is special : genome-wide studies add a new dimension to single-cell biology

    NARCIS (Netherlands)

    Junker, Jan Philipp; van Oudenaarden, Alexander

    2014-01-01

    Single-cell analyses have provided invaluable insights into studying heterogenity, signaling, and stochastic gene expression. Recent technological advances now open the door to genome-wide single-cell studies.

  9. Automated urinalysis.

    Science.gov (United States)

    Carlson, D A; Statland, B E

    1988-09-01

    Many sources of variation affect urinalysis testing. These are due to physiologic changes in the patient, therapeutic interventions, and collection, transportation, and storage of urine specimens. There are problems inherent to the manual performance of this high-volume test. Procedures are poorly standardized across the United States, and even within the same laboratory there can be significant technologist-to-technologist variability. The methods used can perturb the specimen so that recovery of analytes is less than 100 per cent in the aliquot examined. The absence of significant automation of the entire test, with the one exception of the Yellow IRIS, is unusual in the clinical laboratory setting, where most other hematology and chemistry testing has been fully automated. Our evaluation of the Yellow IRIS found that this system is an excellent way to improve the quality of the results and thereby physician acceptance. There is a positive impact for those centers using this instrument, both for the laboratory and for the hospital.

  10. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    DEFF Research Database (Denmark)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni

    2016-01-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental ap...

  11. Essentials of single-cell analysis concepts, applications and future prospects

    CERN Document Server

    Santra, Tuhin

    2016-01-01

    This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in acad...

  12. Culture of isolated single cells from Taxus suspensions for the propagation of superior cell populations.

    Science.gov (United States)

    Naill, Michael C; Roberts, Susan C

    2005-11-01

    Single cells isolated from aggregated Taxus cuspidata cultures via enzymatic digestion were grown in suspension culture. High seeding density (4 x 10(5 )cells/ml) and the addition of cell-free conditioned medium were essential for growth. Doubling the concentration of the nutrients [ascorbic acid (150 g/l), glutamine (6.25 mM: ), and citric acid (150 g/l)] had no effect on single cell growth or viability. A specific growth rate of 0.11 days(-1) was achieved, which is similar to the observed growth rate of aggregated Taxus suspensions. The biocide, Plant Preservative Mixture, added at 0.2% (v/v) to all single cell cultures to prevent microbial contamination, had no significant effect on growth or viability. Following cell sorting, single cell cultures can be used to establish new cell lines for biotechnology applications or provide cells for further study.

  13. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses.

    Science.gov (United States)

    Das, Jayajit

    2016-03-08

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq

    Science.gov (United States)

    Tirosh, Itay; Izar, Benjamin; Prakadan, Sanjay M.; Wadsworth, Marc H.; Treacy, Daniel; Trombetta, John J.; Rotem, Asaf; Rodman, Christopher; Lian, Christine; Murphy, George; Fallahi-Sichani, Mohammad; Dutton-Regester, Ken; Lin, Jia-Ren; Cohen, Ofir; Shah, Parin; Lu, Diana; Genshaft, Alex S.; Hughes, Travis K.; Ziegler, Carly G. K.; Kazer, Samuel W.; Gaillard, Aleth; Kolb, Kellie E.; Villani, Alexandra-Chloé; Johannessen, Cory M.; Andreev, Aleksandr Y.; Van Allen, Eliezer M.; Bertagnolli, Monica; Sorger, Peter K.; Sullivan, Ryan J.; Flaherty, Keith T.; Frederick, Dennie T.; Jané-Valbuena, Judit; Yoon, Charles H.; Rozenblatt-Rosen, Orit; Shalek, Alex K.; Regev, Aviv; Garraway, Levi A.

    2016-01-01

    To explore the distinct genotypic and phenotypic states of melanoma tumors we applied single-cell RNA-seq to 4,645 single cells isolated from 19 patients, profiling malignant, immune, stromal and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that “MITF-high” tumors also contained “AXL-high” tumor cells. Single-cell analyses suggested distinct tumor micro-environmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and to clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single cell genomics offers insights with implications for both targeted and immune therapies. PMID:27124452

  15. Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs

    NARCIS (Netherlands)

    Sanders, Ashley D; Falconer, Ester; Hills, Mark; Spierings, Diana C J; Lansdorp, Peter M.

    The ability to distinguish between genome sequences of homologous chromosomes in single cells is important for studies of copy-neutral genomic rearrangements (such as inversions and translocations), building chromosome-length haplotypes, refining genome assemblies, mapping sister chromatid exchange

  16. BayesHammer: Bayesian clustering for error correction in single-cell sequencing.

    Science.gov (United States)

    Nikolenko, Sergey I; Korobeynikov, Anton I; Alekseyev, Max A

    2013-01-01

    Error correction of sequenced reads remains a difficult task, especially in single-cell sequencing projects with extremely non-uniform coverage. While existing error correction tools designed for standard (multi-cell) sequencing data usually come up short in single-cell sequencing projects, algorithms actually used for single-cell error correction have been so far very simplistic.We introduce several novel algorithms based on Hamming graphs and Bayesian subclustering in our new error correction tool BAYESHAMMER. While BAYESHAMMER was designed for single-cell sequencing, we demonstrate that it also improves on existing error correction tools for multi-cell sequencing data while working much faster on real-life datasets. We benchmark BAYESHAMMER on both k-mer counts and actual assembly results with the SPADES genome assembler.

  17. Single-cell mRNA quantification and differential analysis with Census.

    Science.gov (United States)

    Qiu, Xiaojie; Hill, Andrew; Packer, Jonathan; Lin, Dejun; Ma, Yi-An; Trapnell, Cole

    2017-03-01

    Single-cell gene expression studies promise to reveal rare cell types and cryptic states, but the high variability of single-cell RNA-seq measurements frustrates efforts to assay transcriptional differences between cells. We introduce the Census algorithm to convert relative RNA-seq expression levels into relative transcript counts without the need for experimental spike-in controls. Analyzing changes in relative transcript counts led to dramatic improvements in accuracy compared to normalized read counts and enabled new statistical tests for identifying developmentally regulated genes. Census counts can be analyzed with widely used regression techniques to reveal changes in cell-fate-dependent gene expression, splicing patterns and allelic imbalances. We reanalyzed single-cell data from several developmental and disease studies, and demonstrate that Census enabled robust analysis at multiple layers of gene regulation. Census is freely available through our updated single-cell analysis toolkit, Monocle 2.

  18. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    Science.gov (United States)

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  19. Single Cell HLA Matching Feasibility by Whole Genomic Amplification and Nested PCR

    Institute of Scientific and Technical Information of China (English)

    Xiao-hong Li; Fang-yin Meng

    2004-01-01

    @@ PCR based single-cell DNA analysis has been widely used in forensic science, preimplantation genetic diagnosis and so on. However, the original sample cannot be efficiently retrieved following single cell PCR, consequently the amount of information gained is limited. HLA system is too sophisticated that it is very hard to complete HLA typing by single cell. A Taq polymerase-based method using random primers to amplify whole genome termed as whole genome amplification (WGA) has demonstrated to be a useful method in increasing the copies of minimum sample. We establish a technique in this study to amplify HLA-A and HLA-B loci at same time in a single cell using WGA.

  20. Yeast single cell protein in the diet of Oreochromis niloticus (L ...

    African Journals Online (AJOL)

    use

    2Department of Animal Science and Fishery, University of Port Harcourt, Rivers State, Nigeria. Accepted 27 ... with yeast single cell protein (SCP) in the order 10, 20, 30, 40 and 50%, respectively. .... the culture of O. niloticus was determined.

  1. A Miniature Probe for Ultrasonic Penetration of a Single Cell

    Directory of Open Access Journals (Sweden)

    Mingfei Xiao

    2009-05-01

    Full Text Available Although ultrasound cavitation must be avoided for safe diagnostic applications, the ability of ultrasound to disrupt cell membranes has taken on increasing significance as a method to facilitate drug and gene delivery. A new ultrasonic resonance driving method is introduced to penetrate rigid wall plant cells or oocytes with springy cell membranes. When a reasonable design is created, ultrasound can gather energy and increase the amplitude factor. Ultrasonic penetration enables exogenous materials to enter cells without damaging them by utilizing instant acceleration. This paper seeks to develop a miniature ultrasonic probe experiment system for cell penetration. A miniature ultrasonic probe is designed and optimized using the Precise Four Terminal Network Method and Finite Element Method (FEM and an ultrasonic generator to drive the probe is designed. The system was able to successfully puncture a single fish cell.

  2. Integrated Automation System for Rare Earth Countercurrent Extraction Process

    Institute of Scientific and Technical Information of China (English)

    柴天佑; 杨辉

    2004-01-01

    Lower automation level in industrial rare-earth extraction processes results in high production cost, inconsistent product quality and great consumption of resources in China. An integrated automation system for extraction process of rare earth is proposed to realize optimal product indices, such as product purity,recycle rate and output. The optimal control strategy for output component, structure and function of the two-gradcd integrated automation system composed of the process management grade and the process control grade were discussed. This system is successfully applied to a HAB yttrium extraction production process and was found to provide optimal control, optimal operation, optimal management and remarkable benefits.

  3. PCR amplification of microsatellites from single cells of Karenia brevis preserved in Lugol's iodine solution.

    Science.gov (United States)

    Henrichs, D W; Renshaw, M A; Santamaria, C A; Richardson, B; Gold, J R; Campbell, L

    2008-01-01

    A simple and effective protocol is described for multiplex polymerase chain reaction (PCR) amplification of single cells of Karenia brevis. The protocol requires minimum processing, avoids additions that might dilute target DNA template, and can be used on cells preserved in Lugol's iodine preservative. Destaining of Lugol's-preserved cells with sodium thiosulfate allowed successful amplification of single-copy, nuclear-encoded microsatellites in single cells of K. brevis that have been preserved for up to 6 years.

  4. The application of single cell gel electrophoresis or comet assay to human monitoring studies

    Directory of Open Access Journals (Sweden)

    Valverde Mahara

    1999-01-01

    Full Text Available Objective. In the search of new human genotoxic biomarkers, the single cell gel electrophoresis assay has been proposed as a sensible alternative. Material and methods. This technique detects principally single strand breaks as well as alkali-labile and repair-retarded sites. Results. Herein we present our experience using the single cell gel electrophoresis assay in human population studies, both occupationally and environmentally exposed. Conclusions. We discuss the assay feasibility as a genotoxic biomarker.

  5. The application of single cell gel electrophoresis or comet assay to human monitoring studies

    OpenAIRE

    1999-01-01

    Objective. In the search of new human genotoxic biomarkers, the single cell gel electrophoresis assay has been proposed as a sensible alternative. Material and methods. This technique detects principally single strand breaks as well as alkali-labile and repair-retarded sites. Results. Herein we present our experience using the single cell gel electrophoresis assay in human population studies, both occupationally and environmentally exposed. Conclusions. We discuss the assay feasibility as a g...

  6. Robust high-performance nanoliter-volume single-cell multiple displacement amplification on planar substrates

    Science.gov (United States)

    Leung, Kaston; Klaus, Anders; Lin, Bill K.; Laks, Emma; Biele, Justina; Lai, Daniel; Bashashati, Ali; Huang, Yi-Fei; Aniba, Radhouane; Moksa, Michelle; Steif, Adi; Mes-Masson, Anne-Marie; Hirst, Martin; Shah, Sohrab P.; Aparicio, Samuel; Hansen, Carl L.

    2016-01-01

    The genomes of large numbers of single cells must be sequenced to further understanding of the biological significance of genomic heterogeneity in complex systems. Whole genome amplification (WGA) of single cells is generally the first step in such studies, but is prone to nonuniformity that can compromise genomic measurement accuracy. Despite recent advances, robust performance in high-throughput single-cell WGA remains elusive. Here, we introduce droplet multiple displacement amplification (MDA), a method that uses commercially available liquid dispensing to perform high-throughput single-cell MDA in nanoliter volumes. The performance of droplet MDA is characterized using a large dataset of 129 normal diploid cells, and is shown to exceed previously reported single-cell WGA methods in amplification uniformity, genome coverage, and/or robustness. We achieve up to 80% coverage of a single-cell genome at 5× sequencing depth, and demonstrate excellent single-nucleotide variant (SNV) detection using targeted sequencing of droplet MDA product to achieve a median allelic dropout of 15%, and using whole genome sequencing to achieve false and true positive rates of 9.66 × 10−6 and 68.8%, respectively, in a G1-phase cell. We further show that droplet MDA allows for the detection of copy number variants (CNVs) as small as 30 kb in single cells of an ovarian cancer cell line and as small as 9 Mb in two high-grade serous ovarian cancer samples using only 0.02× depth. Droplet MDA provides an accessible and scalable method for performing robust and accurate CNV and SNV measurements on large numbers of single cells. PMID:27412862

  7. An integrated image analysis platform to quantify signal transduction in single cells

    OpenAIRE

    Pelet, Serge; Dechant, Reinhard; Lee, Sung Sik; van Drogen, Frank; Peter, Matthias

    2012-01-01

    Microscopy can provide invaluable information about biological processes at the single cell level. It remains a challenge, however, to extract quantitative information from these types of datasets. We have developed an image analysis platform named YeastQuant to simplify data extraction by offering an integrated method to turn time-lapse movies into single cell measurements. This platform is based on a database with a graphical user interface where the users can describe their experiments....

  8. Actual prospects of single cell protein (SCP) in agriculture and industry.

    OpenAIRE

    2004-01-01

    Since the beginning of the XXthcentury, single cell protein production has represented abiotechnological option, which viability has been muchargued, for the handling and profitable disposal of largeamounts of agricultural and industrial waste materials. Due tothe nature of this process, lots of pollution sources can betransformed into useful materials with industrial, nutritionaland economical value. This paper overviews the historicalevolution of single cell protein, its importance andappli...

  9. A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2016-09-01

    Full Text Available Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231 are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, cyclin-dependent kinase inhibitor 1A (CDKN1A, and aurora kinase A (AURKA genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation.

  10. Visualization and cellular hierarchy inference of single-cell data using SPADE.

    Science.gov (United States)

    Anchang, Benedict; Hart, Tom D P; Bendall, Sean C; Qiu, Peng; Bjornson, Zach; Linderman, Michael; Nolan, Garry P; Plevritis, Sylvia K

    2016-07-01

    High-throughput single-cell technologies provide an unprecedented view into cellular heterogeneity, yet they pose new challenges in data analysis and interpretation. In this protocol, we describe the use of Spanning-tree Progression Analysis of Density-normalized Events (SPADE), a density-based algorithm for visualizing single-cell data and enabling cellular hierarchy inference among subpopulations of similar cells. It was initially developed for flow and mass cytometry single-cell data. We describe SPADE's implementation and application using an open-source R package that runs on Mac OS X, Linux and Windows systems. A typical SPADE analysis on a 2.27-GHz processor laptop takes ∼5 min. We demonstrate the applicability of SPADE to single-cell RNA-seq data. We compare SPADE with recently developed single-cell visualization approaches based on the t-distribution stochastic neighborhood embedding (t-SNE) algorithm. We contrast the implementation and outputs of these methods for normal and malignant hematopoietic cells analyzed by mass cytometry and provide recommendations for appropriate use. Finally, we provide an integrative strategy that combines the strengths of t-SNE and SPADE to infer cellular hierarchy from high-dimensional single-cell data.

  11. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells

    Directory of Open Access Journals (Sweden)

    Chansavath Phetsouphanh

    2015-08-01

    Full Text Available A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.

  12. SINGLE CELL DEGENERATE OLIGONUCLEOTIDE PRIMER-PCR AND COMPARATIVE GENOMIC HYBRIDIZATION WITH MODIFIED CONTROL REFERENCE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For investigating the possibility of applying degenerate oligonucleotide primer PCR (DOP-PCR) and comparative genomic hybridization (CGH) technique to analyses of genomic genetics in a single cell, the whole genomic DNA of a single cell with XX, XY, XO, XXY, +13 or +21 was amplified by DOP-PCR. Single cell DOP-PCR CGHs with conventional and modified control references, the genomic DNA and a single cell DOP-PCR product from normal male, were carried out respectively. The results showed that the average profile of the fluorescence intensity ratio in CGH with the genomic DNA as reference fluctuates much and that the standard deviation in about 30% haploid is beyond the normal limits. False positive hyper-representation was found to exist in X chromosome while trisomy 13 and 21 were not detected. However, the distributions of the mean and the standard deviation of the ratio in the CGH with DOP-PCR product as reference were quite acceptable. The copy number changes of chromosome X,Y,13 and 21 were revealed. Those results suggested that there is unrandom unequal amplification in a single cell DOP-PCR. Using a single DOP-PCR product as reference can decrease its influence on CGH. Single cell DOP-PCR-CGH and its application in the genetic analyses of preimplantation embryo or fetal cell in maternal blood may be possible.

  13. Whole-genome amplification of single-cell genomes for next-generation sequencing.

    Science.gov (United States)

    Korfhage, Christian; Fisch, Evelyn; Fricke, Evelyn; Baedker, Silke; Loeffert, Dirk

    2013-10-11

    DNA sequence analysis and genotyping of biological samples using next-generation sequencing (NGS), microarrays, or real-time PCR is often limited by the small amount of sample available. A single cell contains only one to four copies of the genomic DNA, depending on the organism (haploid or diploid organism) and the cell-cycle phase. The DNA content of a single cell ranges from a few femtograms in bacteria to picograms in mammalia. In contrast, a deep analysis of the genome currently requires a few hundred nanograms up to micrograms of genomic DNA for library formation necessary for NGS sequencing or labeling protocols (e.g., microarrays). Consequently, accurate whole-genome amplification (WGA) of single-cell DNA is required for reliable genetic analysis (e.g., NGS) and is particularly important when genomic DNA is limited. The use of single-cell WGA has enabled the analysis of genomic heterogeneity of individual cells (e.g., somatic genomic variation in tumor cells). This unit describes how the genome of single cells can be used for WGA for further genomic studies, such as NGS. Recommendations for isolation of single cells are given and common sources of errors are discussed.

  14. A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection

    Science.gov (United States)

    Dong, Hui; Sun, Hao

    2016-01-01

    Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine) with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231) are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cyclin-dependent kinase inhibitor 1A (CDKN1A), and aurora kinase A (AURKA) genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation. PMID:27649175

  15. Investigating evolutionary perspective of carcinogenesis with single-cell transcriptome analysis

    Institute of Scientific and Technical Information of China (English)

    Xi Zhang; Cheng Zhang; Zhongjun Li; Jiangjian Zhong; Leslie P. Weiner; Jiang F. Zhong

    2013-01-01

    We developed phase-switch microfluidic devices for molecular profiling of a large number of single cells. Whole genome microarrays and RNA-sequencing are commonly used to determine the expression levels of genes in cell lysates (a physical mix of millions of cells) for inferring gene functions. However, cellular heterogeneity becomes an inherent noise in the measurement of gene expression. The unique molecular characteristics of individual cells, as well as the temporal and quantitative information of gene expression in cells, are lost when averaged among all cells in cell lysates. Our single-cell technology overcomes this limitation and enables us to obtain a large number of single-cell transcriptomes from a population of cells. A collection of single-cell molecular profiles allows us to study carcinogenesis from an evolutionary perspective by treating cancer as a diverse population of cells with abnormal molecular characteristics. Because a cancer cellpopulation contains cells at various stages of development toward drug resistance, clustering similar single-cell molecular profiles could reveal how drug-resistant sub-clones evolve during cancer treatment. Here, we discuss how single-celltranscriptome analysis technology could enable the study of carcinogenesis from an evolutionary perspective and the development of drug-resistance in leukemia. The single-cell transcriptome analysis reported here could have a direct and significant impact on current cancer treatments and future personalized cancer therapies.

  16. Automated Budget System

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  17. Automation 2017

    CERN Document Server

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2017-01-01

    This book consists of papers presented at Automation 2017, an international conference held in Warsaw from March 15 to 17, 2017. It discusses research findings associated with the concepts behind INDUSTRY 4.0, with a focus on offering a better understanding of and promoting participation in the Fourth Industrial Revolution. Each chapter presents a detailed analysis of a specific technical problem, in most cases followed by a numerical analysis, simulation and description of the results of implementing the solution in a real-world context. The theoretical results, practical solutions and guidelines presented are valuable for both researchers working in the area of engineering sciences and practitioners looking for solutions to industrial problems. .

  18. Marketing automation

    Directory of Open Access Journals (Sweden)

    TODOR Raluca Dania

    2017-01-01

    Full Text Available The automation of the marketing process seems to be nowadays, the only solution to face the major changes brought by the fast evolution of technology and the continuous increase in supply and demand. In order to achieve the desired marketing results, businessis have to employ digital marketing and communication services. These services are efficient and measurable thanks to the marketing technology used to track, score and implement each campaign. Due to the technical progress, the marketing fragmentation, demand for customized products and services on one side and the need to achieve constructive dialogue with the customers, immediate and flexible response and the necessity to measure the investments and the results on the other side, the classical marketing approached had changed continue to improve substantially.

  19. A Practical Guide to Calibration of a GSSHA Hydrologic Model Using ERDC Automated Model Calibration Software - Effective and Efficient Stochastic Global Optimization

    Science.gov (United States)

    2012-02-01

    of-the-ground model ( Frankenstein and Koenig, 2004), and a sixteen parameter Gridded Surface Subsurface Hydrologic Analysis (GSSHA) (Downer and...efficient global minimization. Journal of Optimization Theory and its Applications, 76 (3), 501-521. Frankenstein , S., and G. Koenig. 2004. Fast All... Frankenstein , and C. W. Downer. 2009. Efficient Levenberg- Marquardt Method Based Model Independent Calibration. Environmental Modelling & Software (24

  20. Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.

    Science.gov (United States)

    Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric

    2015-11-01

    A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.

  1. Optimization of automated segmentation of monkeypox virus-induced lung lesions from normal lung CT images using hard C-means algorithm

    Science.gov (United States)

    Castro, Marcelo A.; Thomasson, David; Avila, Nilo A.; Hufton, Jennifer; Senseney, Justin; Johnson, Reed F.; Dyall, Julie

    2013-03-01

    Monkeypox virus is an emerging zoonotic pathogen that results in up to 10% mortality in humans. Knowledge of clinical manifestations and temporal progression of monkeypox disease is limited to data collected from rare outbreaks in remote regions of Central and West Africa. Clinical observations show that monkeypox infection resembles variola infection. Given the limited capability to study monkeypox disease in humans, characterization of the disease in animal models is required. A previous work focused on the identification of inflammatory patterns using PET/CT image modality in two non-human primates previously inoculated with the virus. In this work we extended techniques used in computer-aided detection of lung tumors to identify inflammatory lesions from monkeypox virus infection and their progression using CT images. Accurate estimation of partial volumes of lung lesions via segmentation is difficult because of poor discrimination between blood vessels, diseased regions, and outer structures. We used hard C-means algorithm in conjunction with landmark based registration to estimate the extent of monkeypox virus induced disease before inoculation and after disease progression. Automated estimation is in close agreement with manual segmentation.

  2. Mechanisms of gravitropism in single-celled systems

    Science.gov (United States)

    Greuel, Nicole; Braun, Markus; Hauslage, Jens; Wiemann, Katharina

    disruption of the actin cytoskeleton in root statocytes by using Latrunculin B results in an increased gravisensitivity and in a promoted gravitropic curvature rather than in an inhibition. It is speculated that the actomyosin system in statocytes has a fine-tuning function in the early phases of gravity sensing. Actin in higher plant statocytes may be required to optimize statolith-receptor interactions and to keep the sensing system highly sensitive on one hand, but on the other hand actomyosin-statolith interactions seem to avoid unfavourable responses to only transient stimuli.Investigating the unicellular characean rhizoid has greatly enhanced our understanding of gravity sensing processes in plants and there is increasing evidence that higher plants and characean rhizoids share common processes in the signalling pathway of gravity-oriented growth.

  3. Reliable measurement of E. coli single cell fluorescence distribution using a standard microscope set-up.

    Science.gov (United States)

    Cortesi, Marilisa; Bandiera, Lucia; Pasini, Alice; Bevilacqua, Alessandro; Gherardi, Alessandro; Furini, Simone; Giordano, Emanuele

    2017-01-01

    Quantifying gene expression at single cell level is fundamental for the complete characterization of synthetic gene circuits, due to the significant impact of noise and inter-cellular variability on the system's functionality. Commercial set-ups that allow the acquisition of fluorescent signal at single cell level (flow cytometers or quantitative microscopes) are expensive apparatuses that are hardly affordable by small laboratories. A protocol that makes a standard optical microscope able to acquire quantitative, single cell, fluorescent data from a bacterial population transformed with synthetic gene circuitry is presented. Single cell fluorescence values, acquired with a microscope set-up and processed with custom-made software, are compared with results that were obtained with a flow cytometer in a bacterial population transformed with the same gene circuitry. The high correlation between data from the two experimental set-ups, with a correlation coefficient computed over the tested dynamic range > 0.99, proves that a standard optical microscope- when coupled with appropriate software for image processing- might be used for quantitative single-cell fluorescence measurements. The calibration of the set-up, together with its validation, is described. The experimental protocol described in this paper makes quantitative measurement of single cell fluorescence accessible to laboratories equipped with standard optical microscope set-ups. Our method allows for an affordable measurement/quantification of intercellular variability, whose better understanding of this phenomenon will improve our comprehension of cellular behaviors and the design of synthetic gene circuits. All the required software is freely available to the synthetic biology community (MUSIQ Microscope flUorescence SIngle cell Quantification).

  4. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2016-08-01

    Full Text Available Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.

  5. Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq.

    Science.gov (United States)

    Redmond, David; Poran, Asaf; Elemento, Olivier

    2016-07-27

    Accurate characterization of the repertoire of the T-cell receptor (TCR) alpha and beta chains is critical to understanding adaptive immunity. Such characterization has many applications across such fields as vaccine development and response, clone-tracking in cancer, and immunotherapy. Here we present a new methodology called single-cell TCRseq (scTCRseq) for the identification and assembly of full-length rearranged V(D)J T-cell receptor sequences from paired-end single-cell RNA sequencing reads. The method allows accurate identification of the V(D)J rearrangements for each individual T-cell and has the novel ability to recover paired alpha and beta segments. Source code is available at https://github.com/ElementoLab/scTCRseq .

  6. A high-throughput DNA methylation analysis of a single cell.

    Science.gov (United States)

    Kantlehner, Martin; Kirchner, Roland; Hartmann, Petra; Ellwart, Joachim W; Alunni-Fabbroni, Marianna; Schumacher, Axel

    2011-04-01

    In recent years, the field of epigenetics has grown dramatically and has become one of the most dynamic and fast-growing branches of molecular biology. The amount of diseases suspected of being influenced by DNA methylation is rising steadily and includes common diseases such as schizophrenia, bipolar disorder, Alzheimer's disease, diabetes, atherosclerosis, cancer, major psychosis, lupus and Parkinson's disease. Due to cellular heterogeneity of methylation patterns, epigenetic analyses of single cells become a necessity. One rationale is that DNA methylation profiles are highly variable across individual cells, even in the same organ, dependent on the function of the gene, disease state, exposure to environmental factors (e.g. radiation, drugs or nutrition), stochastic fluctuations and various other causes. Using a polymerase chain reaction (PCR)-slide microreaction system, we present here a methylation-sensitive PCR analysis, the restriction enzyme-based single-cell methylation assay (RSMA), in the analysis of DNA methylation patterns in single cells. This method addresses the problems of cell heterogeneity in epigenetics research; it is comparably affordable, avoids complicated microfluidic systems and offers the opportunity for high-throughput screening, as many single cells can be screened in parallel. In addition to this study, critical principles and caveats of single cell methylation analyses are discussed.

  7. Using measures of single-cell physiology and physiological state to understand organismic aging.

    Science.gov (United States)

    Mendenhall, Alexander; Driscoll, Monica; Brent, Roger

    2016-02-01

    Genetically identical organisms in homogeneous environments have different lifespans and healthspans. These differences are often attributed to stochastic events, such as mutations and 'epimutations', changes in DNA methylation and chromatin that change gene function and expression. But work in the last 10 years has revealed differences in lifespan- and health-related phenotypes that are not caused by lasting changes in DNA or identified by modifications to DNA or chromatin. This work has demonstrated persistent differences in single-cell and whole-organism physiological states operationally defined by values of reporter gene signals in living cells. While some single-cell states, for example, responses to oxygen deprivation, were defined previously, others, such as a generally heightened ability to make proteins, were, revealed by direct experiment only recently, and are not well understood. Here, we review technical progress that promises to greatly increase the number of these measurable single-cell physiological variables and measureable states. We discuss concepts that facilitate use of single-cell measurements to provide insight into physiological states and state transitions. We assert that researchers will use this information to relate cell level physiological readouts to whole-organism outcomes, to stratify aging populations into groups based on different physiologies, to define biomarkers predictive of outcomes, and to shed light on the molecular processes that bring about different individual physiologies. For these reasons, quantitative study of single-cell physiological variables and state transitions should provide a valuable complement to genetic and molecular explanations of how organisms age.

  8. A simple strategy for reducing false negatives in calling variants from single-cell sequencing data.

    Science.gov (United States)

    Ji, Cong; Miao, Zong; He, Xionglei

    2015-01-01

    Due to the growth of interest in single-cell genomics, computational methods for distinguishing true variants from artifacts are highly desirable. While special attention has been paid to false positives in variant or mutation calling from single-cell sequencing data, an equally important but often neglected issue is that of false negatives derived from allele dropout during the amplification of single cell genomes. In this paper, we propose a simple strategy to reduce the false negatives in single-cell sequencing data analysis. Simulation results show that this method is highly reliable, with an error rate of 4.94×10-5, which is orders of magnitude lower than the expected false negative rate (~34%) estimated from a single-cell exome dataset, though the method is limited by the low SNP density in the human genome. We applied this method to analyze the exome data of a few dozen single tumor cells generated in previous studies, and extracted cell specific mutation information for a small set of sites. Interestingly, we found that there are difficulties in using the classical clonal model of tumor cell growth to explain the mutation patterns observed in some tumor cells.

  9. A simple strategy for reducing false negatives in calling variants from single-cell sequencing data.

    Directory of Open Access Journals (Sweden)

    Cong Ji

    Full Text Available Due to the growth of interest in single-cell genomics, computational methods for distinguishing true variants from artifacts are highly desirable. While special attention has been paid to false positives in variant or mutation calling from single-cell sequencing data, an equally important but often neglected issue is that of false negatives derived from allele dropout during the amplification of single cell genomes. In this paper, we propose a simple strategy to reduce the false negatives in single-cell sequencing data analysis. Simulation results show that this method is highly reliable, with an error rate of 4.94×10-5, which is orders of magnitude lower than the expected false negative rate (~34% estimated from a single-cell exome dataset, though the method is limited by the low SNP density in the human genome. We applied this method to analyze the exome data of a few dozen single tumor cells generated in previous studies, and extracted cell specific mutation information for a small set of sites. Interestingly, we found that there are difficulties in using the classical clonal model of tumor cell growth to explain the mutation patterns observed in some tumor cells.

  10. Enhanced electrochemical nanoring electrode for analysis of cytosol in single cells.

    Science.gov (United States)

    Zhuang, Lihong; Zuo, Huanzhen; Wu, Zengqiang; Wang, Yu; Fang, Danjun; Jiang, Dechen

    2014-12-02

    A microelectrode array has been applied for single cell analysis with relatively high throughput; however, the cells were typically cultured on the microelectrodes under cell-size microwell traps leading to the difficulty in the functionalization of an electrode surface for higher detection sensitivity. Here, nanoring electrodes embedded under the microwell traps were fabricated to achieve the isolation of the electrode surface and the cell support, and thus, the electrode surface can be modified to obtain enhanced electrochemical sensitivity for single cell analysis. Moreover, the nanometer-sized electrode permitted a faster diffusion of analyte to the surface for additional improvement in the sensitivity, which was evidenced by the electrochemical characterization and the simulation. To demonstrate the concept of the functionalized nanoring electrode for single cell analysis, the electrode surface was deposited with prussian blue to detect intracellular hydrogen peroxide at a single cell. Hundreds of picoamperes were observed on our functionalized nanoring electrode exhibiting the enhanced electrochemical sensitivity. The success in the achievement of a functionalized nanoring electrode will benefit the development of high throughput single cell electrochemical analysis.

  11. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    Institute of Scientific and Technical Information of China (English)

    Miao Yu; Zongzheng Chen; Cheng Xiang; Bo Liu; Handi Xie; Kairong Qin

    2016-01-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the rela-tionship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the tra-ditional ones, which have been only based upon either stag-nation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addi-tion, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and con-veniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  12. Single Cell Mass Measurement Using Drag Force Inside Lab-on-Chip Microfluidics System.

    Science.gov (United States)

    Rahman, Md Habibur; Ahmad, Mohd Ridzuan; Takeuchi, Masaru; Nakajima, Masahiro; Hasegawa, Yasuhisa; Fukuda, Toshio

    2015-12-01

    Single cell mass (SCM) is an intrinsic property of single cell, it arouses a great interest among scientists as cell mass depends on the synthesis of proteins, DNA replication, cell wall stiffness, cell cytoplasm density, cell growth, ribosome, and other analogous of organisms. To date, several great strides have been taken to the advancements of SCM measurement techniques. Nevertheless, more works are required to enable the technology to push frontier in deep analysis of SCM measurement, hence to elucidate intracellular properties. In this paper, we present a lab-on-chip microfluidics system for SCM measurement, related with the force required to drag a single cell and Newton's law of motion inside microfluidics channel. Drag force on the cell was generated by a pressure driven syringe micropump and the motion of the cell was measured using optical observation under an inverted microscope. This approach of measuring SCM was calibrated using known mass (77.3 pg) of a polystyrene particle of 5.2 μm diameter. Furthermore, we used Saccharomyces cerevisiae baker's yeast cells of different sizes ([Formula: see text] diameter) for SCM measurement. Mass of 4.4 μm diameter of single yeast cell was measured as 2.12 pg which is in the range of previously reported single yeast cell mass (2-3 pg). In addition, we also studied the relation between SCM and single cell size. Results showed that single yeast cell mass increases exponentially with the increasing of single cell size.

  13. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    Science.gov (United States)

    Che, Keying; Zhao, Yang; Qu, Xiao; Pang, Zhaofei; Ni, Yang; Zhang, Tiehong; Du, Jiajun; Shen, Hongchang

    2017-01-01

    Purpose Gastric carcinoma (GC) is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma. Materials and methods Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS) was statistically analyzed. Results Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145) of them. Single cell invasion and large cell invasion were observed in 62.8% (186) and 16.9% (50) of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, Ptumor budding and single cell invasion were observed to be independent risk factors for gastric adenocarcinoma (PTumor budding and single cell invasion in gastric adenocarcinoma are associated with an unfavorable prognosis.

  14. Polydimethylsiloxane (PDMS Sub-Micron Traps for Single-Cell Analysis of Bacteria

    Directory of Open Access Journals (Sweden)

    Dietrich Kohlheyer

    2013-10-01

    Full Text Available Microfluidics has become an essential tool in single-cell analysis assays for gaining more accurate insights into cell behavior. Various microfluidics methods have been introduced facilitating single-cell analysis of a broad range of cell types. However, the study of prokaryotic cells such as Escherichia coli and others still faces the challenge of achieving proper single-cell immobilization simply due to their small size and often fast growth rates. Recently, new approaches were presented to investigate bacteria growing in monolayers and single-cell tracks under environmental control. This allows for high-resolution time-lapse observation of cell proliferation, cell morphology and fluorescence-coupled bioreporters. Inside microcolonies, interactions between nearby cells are likely and may cause interference during perturbation studies. In this paper, we present a microfluidic device containing hundred sub-micron sized trapping barrier structures for single E. coli cells. Descendant cells are rapidly washed away as well as components secreted by growing cells. Experiments show excellent growth rates, indicating high cell viability. Analyses of elongation and growth rates as well as morphology were successfully performed. This device will find application in prokaryotic single-cell studies under constant environment where by-product interference is undesired.

  15. Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing.

    Science.gov (United States)

    McWilliam Leitch, E Carol; McLauchlan, John

    2013-12-01

    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants.

  16. A nanobiosensor for dynamic single cell analysis during microvascular self-organization.

    Science.gov (United States)

    Wang, S; Sun, J; Zhang, D D; Wong, P K

    2016-10-14

    The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization. Dynamic single cell analysis reveals that endothelial cells self-organize into subpopulations with specialized phenotypes to form microvascular networks and identifies the involvement of Notch1-Dll4 signaling in regulating the cell subpopulations. The cell phenotype correlates with the initial Dll4 mRNA expression level and each subpopulation displays a unique dynamic Dll4 mRNA expression profile. Pharmacological perturbations and RNA interference of Notch1-Dll4 signaling modulate the cell subpopulations and modify the morphology of the microvascular network. Taken together, a nanobiosensor enables a dynamic single cell analysis approach underscoring the importance of Notch1-Dll4 signaling in microvascular self-organization.

  17. Molecular characterization of heterogeneous mesenchymal stem cells with single-cell transcriptomes.

    Science.gov (United States)

    Li, Zhongjun; Zhang, Chao; Weiner, Leslie P; Zhang, Yiqiang; Zhong, Jiang F

    2013-01-01

    Mesenchymal stem cells (MSC) are heterogeneous cell populations with promising therapeutic potentials in regenerative medicine. The therapeutic values of MSC in various clinical situations have been reported. Clonal assays (expansion of MSC from a single cell) demonstrated that multiple types of cells with different developmental potential exist in a MSC population. Due to the heterogeneous nature of MSC, molecular characterization of MSC in the absence of known biomarkers is a challenge for cell therapy with MSC. Here, we review potential therapeutic applications of MSC and discuss a systematic approach for molecular characterization of heterogeneous cell population using single-cell transcriptome analysis. Differentiation/maturation of cells is orchestrated by sequential expression of a series of genes within a cell. Therefore, single-cell mRNA expression (transcriptome) profiles from consecutive developmental stages are more similar than those from disparate stages. Bioinformatic analysis can cluster single-cell transcriptome profiles from consecutive developmental stages into a dendrogram based on the similarity matrix of these profiles. Because a single-cell is an ultimately "pure" sample in expression profiling, these dendrograms can be used to classify individual cells into molecular subpopulations within a heterogeneous cell population without known biomarkers. This approach is especially powerful in studying cell populations with little molecular information and few known biomarkers, for example the MSC populations. The molecular understanding will provide novel targets for manipulating MSC differentiation with small molecules and other drugs to enable safer and more effective therapeutic applications of MSC.

  18. Single-cell detection of mRNA expression using nanofountain-probe electroporated molecular beacons.

    Science.gov (United States)

    Giraldo-Vela, Juan P; Kang, Wonmo; McNaughton, Rebecca L; Zhang, Xuemei; Wile, Brian M; Tsourkas, Andrew; Bao, Gang; Espinosa, Horacio D

    2015-05-01

    New techniques for single-cell analysis enable new discoveries in gene expression and systems biology. Time-dependent measurements on individual cells are necessary, yet the common single-cell analysis techniques used today require lysing the cell, suspending the cell, or long incubation times for transfection, thereby interfering with the ability to track an individual cell over time. Here a method for detecting mRNA expression in live single cells using molecular beacons that are transfected into single cells by means of nanofountain probe electroporation (NFP-E) is presented. Molecular beacons are oligonucleotides that emit fluorescence upon binding to an mRNA target, rendering them useful for spatial and temporal studies of live cells. The NFP-E is used to transfect a DNA-based beacon that detects glyceraldehyde 3-phosphate dehydrogenase and an RNA-based beacon that detects a sequence cloned in the green fluorescence protein mRNA. It is shown that imaging analysis of transfection and mRNA detection can be performed within seconds after electroporation and without disturbing adhered cells. In addition, it is shown that time-dependent detection of mRNA expression is feasible by transfecting the same single cell at different time points. This technique will be particularly useful for studies of cell differentiation, where several measurements of mRNA expression are required over time.

  19. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    Science.gov (United States)

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  20. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum.

  1. Nanowell-based immunoassays for measuring single-cell secretion: characterization of transport and surface binding.

    Science.gov (United States)

    Torres, Alexis J; Hill, Abby S; Love, J Christopher

    2014-12-01

    Arrays of subnanoliter wells (nanowells) provide a useful system to isolate single cells and analyze their secreted proteins. Two general approaches have emerged: one that uses open arrays and local capture of secreted proteins, and a second (called microengraving) that relies on closed arrays to capture secreted proteins on a solid substrate, which is subsequently removed from the array. However, the design and operating parameters for efficient capture from these two approaches to analyze single-cell secretion have not been extensively considered. Using numerical simulations, we analyzed the operational envelope for both open and closed formats, as a function of the spatial distribution of capture ligands, their affinities for the protein, and the rates of single-cell secretion. Based on these analyses, we present a modified approach to capture secreted proteins in-well for highly active secreting cells. This simple method for in-well detection should facilitate rapid identification of cell lines with high specific productivities.

  2. Direct observation of frequency modulated transcription in single cells using light activation

    Science.gov (United States)

    Larson, Daniel R; Fritzsch, Christoph; Sun, Liang; Meng, Xiuhau; Lawrence, David S; Singer, Robert H

    2013-01-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single steroid-responsive gene and follow dynamic synthesis of RNA from the activated locus. DOI: http://dx.doi.org/10.7554/eLife.00750.001 PMID:24069527

  3. The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing.

    Science.gov (United States)

    Björklund, Åsa K; Forkel, Marianne; Picelli, Simone; Konya, Viktoria; Theorell, Jakob; Friberg, Danielle; Sandberg, Rickard; Mjösberg, Jenny

    2016-04-01

    Innate lymphoid cells (ILCs) are increasingly appreciated as important participants in homeostasis and inflammation. Substantial plasticity and heterogeneity among ILC populations have been reported. Here we have delineated the heterogeneity of human ILCs through single-cell RNA sequencing of several hundreds of individual tonsil CD127(+) ILCs and natural killer (NK) cells. Unbiased transcriptional clustering revealed four distinct populations, corresponding to ILC1 cells, ILC2 cells, ILC3 cells and NK cells, with their respective transcriptomes recapitulating known as well as unknown transcriptional profiles. The single-cell resolution additionally divulged three transcriptionally and functionally diverse subpopulations of ILC3 cells. Our systematic comparison of single-cell transcriptional variation within and between ILC populations provides new insight into ILC biology during homeostasis, with additional implications for dysregulation of the immune system.

  4. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq

    Science.gov (United States)

    Islam, Saiful; Kjällquist, Una; Moliner, Annalena; Zajac, Pawel; Fan, Jian-Bing; Lönnerberg, Peter; Linnarsson, Sten

    2011-01-01

    Our understanding of the development and maintenance of tissues has been greatly aided by large-scale gene expression analysis. However, tissues are invariably complex, and expression analysis of a tissue confounds the true expression patterns of its constituent cell types. Here we describe a novel strategy to access such complex samples. Single-cell RNA-seq expression profiles were generated, and clustered to form a two-dimensional cell map onto which expression data were projected. The resulting cell map integrates three levels of organization: the whole population of cells, the functionally distinct subpopulations it contains, and the single cells themselves—all without need for known markers to classify cell types. The feasibility of the strategy was demonstrated by analyzing the transcriptomes of 85 single cells of two distinct types. We believe this strategy will enable the unbiased discovery and analysis of naturally occurring cell types during development, adult physiology, and disease. PMID:21543516

  5. Compartmental genomics in living cells revealed by single-cell nanobiopsy.

    Science.gov (United States)

    Actis, Paolo; Maalouf, Michelle M; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R Adam; Pourmand, Nader

    2014-01-28

    The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis.

  6. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation

    Science.gov (United States)

    Vera, Maria; Biswas, Jeetayu; Senecal, Adrien

    2016-01-01

    Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology. PMID:27893965

  7. Plasma membrane and cytoskeleton dynamics during single-cell wound healing.

    Science.gov (United States)

    Boucher, Eric; Mandato, Craig A

    2015-10-01

    Wounding leads not only to plasma membrane disruption, but also to compromised cytoskeleton structures. This results not only in unwarranted exchanges between the cytosol and extracellular milieu, but also in loss of tensegrity, which may further endanger the cell. Tensegrity can be described as the interplay between the tensile forces generated by the apparent membrane tension, actomyosin contraction, and the cytoskeletal structures resisting those changes (e.g., microtubules). It is responsible for the structural integrity of the cell and for its ability to sense mechanical signals. Recent reviews dealing with single-cell healing mostly focused on the molecular machineries controlling the traffic and fusion of specific vesicles, or their role in different pathologies. In this review, we aim to take a broader view of the different modes of single cell repair, while focussing on the different ways the changes in plasmalemma surface area and composition, plasmalemma tension, and cytoskeletal dynamics may influence and affect single-cell repair.

  8. Optimization and validation of an automated DHS-TD-GC-MS method for the determination of aromatic esters in sweet wines.

    Science.gov (United States)

    Marquez, Ana; Serratosa, Maria P; Merida, Julieta; Zea, Luis; Moyano, Lourdes

    2014-06-01

    A dynamic headspace sorptive extraction (DHS) combined with thermal desorption (TD) and coupled with gas chromatography-mass spectrometry (GC/MS) was developed for the determination of 11 esters which contribute to the fruity aroma in sweet wines. A full factorial (4 factors, 2 level) experiment design was used to optimize the extraction conditions and the results were evaluated by multiple linear regression (MLR) and principal component analysis (PCA). The esters showed optimal extraction using an extraction temperature of 30°C during 20 min, and a subsequent purge volume of 300 mL and dry volume of 50 mL. Afterwards, quantification was achieved using calibration curves constructed for each ester with linear regression equations having correlation coefficients (R(2)) ranging from 0.9894 to 0.9981. The proposed method was successfully validated and showed good intermediate precision, repeatability and accuracy values for all the monitored compounds. Finally, the method was applied to quantify esters, with fruity aromatic notes, of sweet white and red wines, elaborated with different winemaking processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The Center for Optimized Structural Studies (COSS) platform for automation in cloning, expression, and purification of single proteins and protein-protein complexes.

    Science.gov (United States)

    Mlynek, Georg; Lehner, Anita; Neuhold, Jana; Leeb, Sarah; Kostan, Julius; Charnagalov, Alexej; Stolt-Bergner, Peggy; Djinović-Carugo, Kristina; Pinotsis, Nikos

    2014-06-01

    Expression in Escherichia coli represents the simplest and most cost effective means for the production of recombinant proteins. This is a routine task in structural biology and biochemistry where milligrams of the target protein are required in high purity and monodispersity. To achieve these criteria, the user often needs to screen several constructs in different expression and purification conditions in parallel. We describe a pipeline, implemented in the Center for Optimized Structural Studies, that enables the systematic screening of expression and purification conditions for recombinant proteins and relies on a series of logical decisions. We first use bioinformatics tools to design a series of protein fragments, which we clone in parallel, and subsequently screen in small scale for optimal expression and purification conditions. Based on a scoring system that assesses soluble expression, we then select the top ranking targets for large-scale purification. In the establishment of our pipeline, emphasis was put on streamlining the processes such that it can be easily but not necessarily automatized. In a typical run of about 2 weeks, we are able to prepare and perform small-scale expression screens for 20-100 different constructs followed by large-scale purification of at least 4-6 proteins. The major advantage of our approach is its flexibility, which allows for easy adoption, either partially or entirely, by any average hypothesis driven laboratory in a manual or robot-assisted manner.

  10. Value-based distribution feeder automation planning

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Jen-Hao [Department of Electrical Engineering, I-Shou University, No. 1, Section 1, Syuecheng Road, Dashu Township, Kaohsiung 840, Taiwan (Taiwan); Lu, Chan-Nan [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (Taiwan)

    2006-03-15

    In a competitive electric energy market, service quality and reliability are two of the essential issues of the business. Distribution automation has been chosen by many utilities around the world as one of the most reliable measures for reducing outage time in their distribution networks. Considering network reliability data and the customer interruption costs, a value-based planning method is proposed in this paper to find the optimal numbers and locations of switches in feeder automation systems. The proposed method takes reliability costs, maintenance and investment costs into account to obtain a feeder automation plan that has a maximum benefit and a proper system reliability requirement. Three stages are involved in the search for optimal solution. Using minimum feeder data and assume equally distributed feeder loads, stage 1 gives initial estimates of reliability indices and costs, and benefit/cost ratios of different feeder automation options. To gain the maximum benefits from feeder automation with reasonable costs, results of stage 1 are used to select feeders with highest priorities for automations. Stage 2 determines the optimum locations of switches that minimize feeder outage costs, and in stage 3, the best locations for tie switches in the automated network are determined. Numerical processing procedure is described and the solution efficiency and results are compared with those obtained from a genetic algorithm. (author)

  11. Automating the multiprocessing environment

    Energy Technology Data Exchange (ETDEWEB)

    Arpasi, D.J.

    1989-03-01

    An approach to automate the programming and operation of tree-structured networks of multiprocessor systems is discussed. A conceptual, knowledge-based operating environment is presented, and requirements for two major technology elements are identified as follows: (1) An intelligent information translator is proposed for implementating information transfer between dissimilar hardware and software, thereby enabling independent and modular development of future systems and promoting a language-independence of codes and information; (2) A resident system activity manager, which recognizes the systems capabilities and monitors the status of all systems within the environment, is proposed for integrating dissimilar systems into effective parallel processing resources to optimally meet user needs. Finally, key computational capabilities which must be provided before the environment can be realized are identified.

  12. A Single Cell Extraction Chip Using Vibration-Induced Whirling Flow and a Thermo-Responsive Gel Pattern

    Directory of Open Access Journals (Sweden)

    Takeshi Hayakawa

    2014-09-01

    Full Text Available We propose a single cell extraction chip with an open structure, which utilizes vibration-induced whirling flow and a single cell catcher. By applying a circular vibration to a micropillar array spiral pattern, a whirling flow is induced around the micropillars, and target cells are transported towards the single cell catcher placed at the center of the spiral. The single cell catcher is composed of a single-cell-sized hole pattern of thermo-responsive gel. The gel swells at low temperatures (≲32 ◦C and shrinks at high temperatures (≳32 ◦C, therefore, its volume expansion can be controlled by an integrated microheater. When the microheater is turned on, a single cell is trapped by the hole pattern of the single cell catcher. Then, when the microheater is turned off, the single cell catcher is cooled by the ambient temperature. The gel swells at this temperature, and the hole closes to catch the single cell. The caught cell can then be released into culture wells on a microtiter plate by heating the gel again. We conducted single cell extraction with the proposed chip and achieved a 60% success rate, of which 61% cells yielded live cells.

  13. Laboratory automation: trajectory, technology, and tactics.

    Science.gov (United States)

    Markin, R S; Whalen, S A

    2000-05-01

    Laboratory automation is in its infancy, following a path parallel to the development of laboratory information systems in the late 1970s and early 1980s. Changes on the horizon in healthcare and clinical laboratory service that affect the delivery of laboratory results include the increasing age of the population in North America, the implementation of the Balanced Budget Act (1997), and the creation of disease management companies. Major technology drivers include outcomes optimization and phenotypically targeted drugs. Constant cost pressures in the clinical laboratory have forced diagnostic manufacturers into less than optimal profitability states. Laboratory automation can be a tool for the improvement of laboratory services and may decrease costs. The key to improvement of laboratory services is implementation of the correct automation technology. The design of this technology should be driven by required functionality. Automation design issues should be centered on the understanding of the laboratory and its relationship to healthcare delivery and the business and operational processes in the clinical laboratory. Automation design philosophy has evolved from a hardware-based approach to a software-based approach. Process control software to support repeat testing, reflex testing, and transportation management, and overall computer-integrated manufacturing approaches to laboratory automation implementation are rapidly expanding areas. It is clear that hardware and software are functionally interdependent and that the interface between the laboratory automation system and the laboratory information system is a key component. The cost-effectiveness of automation solutions suggested by vendors, however, has been difficult to evaluate because the number of automation installations are few and the precision with which operational data have been collected to determine payback is suboptimal. The trend in automation has moved from total laboratory automation to a

  14. Using cell monolayer rheology to probe average single cell mechanical properties.

    Science.gov (United States)

    Sander, Mathias; Flesch, Julia; Ott, Albrecht

    2015-01-01

    The cell monolayer rheology technique consists of a commercial rotational rheometer that probes the mechanical properties of a monolayer of isolated cells. So far we have described properties of an entire monolayer. In this short communication, we show that we can deduce average single cell properties. Results are in very good agreement with earlier work on single cell mechanics. Our approach provides a mean of 105-106 adherent cells within a single experiment. This makes the results very reproducible. We extend our work on cell adhesion strength and deduce cell adhesion forces of fibroblast cells on fibronectin coated glass substrates.

  15. Single-cell concepts for obtaining photovoltaic conversion efficiency over 30 percent

    Science.gov (United States)

    Fan, John C. C.

    1985-01-01

    Although solar photovoltaic conversion efficiencies over 30 percent (one sun, AM1) can be expected for multiple-cell configurations using spectral splitting techniques, the highest practical single-cell conversion efficiency that can be attained using present concepts is estimated to be about 27-28 percent. To achieve conversion efficiencies above 30 percent using single-cell configurations it will be necessary to employ different concepts, such as spectral compression and broad-band detection. The implementation of these concepts would require major breakthroughs that are not anticipated in the near future.

  16. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio

    2016-01-01

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels-where the cells can flow one-by-one -, allowing single...... cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm...

  17. Hydrodynamic lift for single cell manipulation in a femtosecond laser fabricated optofluidic chip

    Directory of Open Access Journals (Sweden)

    Bragheri Francesca

    2017-08-01

    Full Text Available Single cell sorting based either on fluorescence or on mechanical properties has been exploited in the last years in microfluidic devices. Hydrodynamic focusing allows increasing the efficiency of theses devices by improving the matching between the region of optical analysis and that of cell flow. Here we present a very simple solution fabricated by femtosecond laser micromachining that exploits flow laminarity in microfluidic channels to easily lift the sample flowing position to the channel portion illuminated by the optical waveguides used for single cell trapping and analysis.

  18. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics.

    Science.gov (United States)

    Camp, J Gray; Treutlein, Barbara

    2017-05-01

    Innovative methods designed to recapitulate human organogenesis from pluripotent stem cells provide a means to explore human developmental biology. New technologies to sequence and analyze single-cell transcriptomes can deconstruct these 'organoids' into constituent parts, and reconstruct lineage trajectories during cell differentiation. In this Spotlight article we summarize the different approaches to performing single-cell transcriptomics on organoids, and discuss the opportunities and challenges of applying these techniques to generate organ-level, mechanistic models of human development and disease. Together, these technologies will move past characterization to the prediction of human developmental and disease-related phenomena. © 2017. Published by The Company of Biologists Ltd.

  19. Measurement of DNA damage in individual cells using the Single Cell Gel Electrophoresis (Comet) assay.

    Science.gov (United States)

    Hartley, Janet M; Spanswick, Victoria J; Hartley, John A

    2011-01-01

    The Single Cell Gel Electrophoresis (Comet) assay is a simple, versatile and sensitive method for measuring DNA damage in individual cells, allowing the determination of heterogeneity of response within a cell population. The basic alkaline technique described is for the determination of DNA strand break damage and its repair at a single cell level. Specific modifications to the method use a lower pH ('neutral' assay), or allow the measurement of DNA interstrand cross-links. It can be further adapted to, for example, study specific DNA repair mechanisms, be combined with fluorescent in situ hybridisation, or incorporate lesion specific enzymes.

  20. Hydrodynamic lift for single cell manipulation in a femtosecond laser fabricated optofluidic chip

    Science.gov (United States)

    Bragheri, Francesca; Osellame, Roberto

    2017-08-01

    Single cell sorting based either on fluorescence or on mechanical properties has been exploited in the last years in microfluidic devices. Hydrodynamic focusing allows increasing the efficiency of theses devices by improving the matching between the region of optical analysis and that of cell flow. Here we present a very simple solution fabricated by femtosecond laser micromachining that exploits flow laminarity in microfluidic channels to easily lift the sample flowing position to the channel portion illuminated by the optical waveguides used for single cell trapping and analysis.

  1. Copy Number Variation Analysis by Array Analysis of Single Cells Following Whole Genome Amplification.

    Science.gov (United States)

    Dimitriadou, Eftychia; Zamani Esteki, Masoud; Vermeesch, Joris Robert

    2015-01-01

    Whole genome amplification is required to ensure the availability of sufficient material for copy number variation analysis of a genome deriving from an individual cell. Here, we describe the protocols we use for copy number variation analysis of non-fixed single cells by array-based approaches following single-cell isolation and whole genome amplification. We are focusing on two alternative protocols, an isothermal and a PCR-based whole genome amplification method, followed by either comparative genome hybridization (aCGH) or SNP array analysis, respectively.

  2. Laboratory automation in clinical bacteriology: what system to choose?

    Science.gov (United States)

    Croxatto, A; Prod'hom, G; Faverjon, F; Rochais, Y; Greub, G

    2016-03-01

    Automation was introduced many years ago in several diagnostic disciplines such as chemistry, haematology and molecular biology. The first laboratory automation system for clinical bacteriology was released in 2006, and it rapidly proved its value by increasing productivity, allowing a continuous increase in sample volumes despite limited budgets and personnel shortages. Today, two major manufacturers, BD Kiestra and Copan, are commercializing partial or complete laboratory automation systems for bacteriology. The laboratory automation systems are rapidly evolving to provide improved hardware and software solutions to optimize laboratory efficiency. However, the complex parameters of the laboratory and automation systems must be considered to determine the best system for each given laboratory. We address several topics on laboratory automation that may help clinical bacteriologists to understand the particularities and operative modalities of the different systems. We present (a) a comparison of the engineering and technical features of the various elements composing the two different automated systems currently available, (b) the system workflows of partial and complete laboratory automation, which define the basis for laboratory reorganization required to optimize system efficiency, (c) the concept of digital imaging and telebacteriology, (d) the connectivity of laboratory automation to the laboratory information system, (e) the general advantages and disadvantages as well as the expected impacts provided by laboratory automation and (f) the laboratory data required to conduct a workflow assessment to determine the best configuration of an automated system for the laboratory activities and specificities.

  3. Manufacturing and automation

    Directory of Open Access Journals (Sweden)

    Ernesto Córdoba Nieto

    2010-04-01

    Full Text Available The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and examined, especially that referring to the problem’s relationship with reconciling the level of automation with the flexibility and productivity demanded by competitive, worldwide manufacturing.

  4. Optimizing Installation and Operation Properties of an AUV-Mounted Swath Sonar Sensor for Automated Marine Gas Seep Detection - a Modelling Approach

    Science.gov (United States)

    Wenau, S.; Fei, T.; Tóth, Z.; Keil, H.; Spiess, V.; Kraus, D.

    2014-12-01

    The detection of gas bubble streams in the water column by single- and multibeam sonars has been a common procedure in the research of marine seep sites. In the framework of the development of an AUV capable of automatic detection and sampling of gas bubble streams, such acoustic flares were modelled in MATLAB routines to assess the optimal sonar configuration for flare detection. The AUV development (IMGAM-project) is carried out as a cooperation of the company ATLAS Hydrographic and the MARUM at the University of Bremen. The combination of sensor inclination, sonar carrier frequency and pulse characteristics affect the ability of the system to detect bubble streams of different sizes and intensities. These variations in acoustic signal return from gas bubble streams depending on acquisition parameters can affect the detectability and acoustic properties of recorded acoustic flares in various seepage areas in the world's oceans. We show several examples of acoustic signatures of previously defined bubble streams under varying acquisition parameters and document the effects of changing sensor parameters on detection efficiency.

  5. Single-cell level based approach to investigate bacterial metabolism during batch industrial fermentation

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Eriksen, Niels T.

    Escherichia coli fermentations have been studied for decades, but most results are based on average measurements of the whole populations of cells, whilst averaged data can mask the distribution of activities at the sub-population or single-cell level. A population of genetically identical cells ...

  6. Monitoring impedance changes associated with motility and mitosis of a single cell.

    Science.gov (United States)

    Ghenim, Lamya; Kaji, Hirokazu; Hoshino, Yu; Ishibashi, Takeshi; Haguet, Vincent; Gidrol, Xavier; Nishizawa, Matsuhiko

    2010-10-07

    We present a device enabling impedance measurements that probe the motility and mitosis of a single adherent cell in a controlled way. The micrometre-sized electrodes are designed for adhesion of an isolated cell and enhanced sensitivity to cell motion. The electrode surface is switched electro-chemically to favour cell adhesion, and single cells are attracted to the electrode using positive dielectrophoresis. Periods of linear variation in impedance with time correspond to the motility of a single cell adherent to the surface estimated at 0.6 μm h(-1). In the course of our study we observed the impedance changes associated with mitosis of a single cell. Electrical measurements, carried out concomitantly with optical observations, revealed three phases, prophase, metaphase and anaphase in the time variation of the impedance during cell division. Maximal impedance was observed at metaphase with a 20% increase of the impedance. We argue that at mitosis, the changes detected were due to the charge density distribution at the cell surface. Our data demonstrate subtle electrical changes associated with cell motility and for the first time with division at the single-cell level. We speculate that this could open up new avenues for characterizing healthy and pathological cells.

  7. Response of Escherichia coli to nutrient availability during cultivation at single cell level

    DEFF Research Database (Denmark)

    Han, Shanshan

    membrane permeability and thus resulted in the loss of cellular fluorescence. Such an observation was further investigated in Manuscript 2 with an in-house flow cytometer and PI staining. Growth and cell permeability were monitored in real-time during the process at the single cell level...

  8. Preparation of cell lines for single-cell analysis of transcriptional activation dynamics.

    Science.gov (United States)

    Rafalska-Metcalf, Ilona U; Janicki, Susan M

    2013-01-01

    Imaging molecularly defined regions of chromatin in single living cells during transcriptional activation has the potential to provide new insight into gene regulatory mechanisms. Here, we describe a method for isolating cell lines with multi-copy arrays of reporter transgenes, which can be used for real-time high-resolution imaging of transcriptional activation dynamics in single cells.

  9. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior

    Directory of Open Access Journals (Sweden)

    Kyogo Kobayashi

    2016-01-01

    Full Text Available Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of “single-cell memory” still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality.

  10. Psychrophilic proteases dramatically reduce single cell RNA-seq artifacts: A molecular atlas of kidney development.

    Science.gov (United States)

    Adam, Mike; Potter, Andrew S; Potter, S Steven

    2017-08-29

    Single cell RNA-seq is a powerful methodology. Nevertheless there are important limitations, including the technical challenges of breaking down an organ or tissue into a single cell suspension. Invariably this has required enzymatic incubation at 37°C, which can be expected to result in artifact changes in gene expression patterns. We here describe a dissociation method that uses a protease with high activity in the cold, purified from a psychrophilic microorganism. The entire procedure is carried out at 6°C or colder, where mammalian transcriptional machinery is largely inactive, thereby effectively "freezing in" the in vivo gene expression patterns. To test this method we carried out RNA-seq on 20,424 single cells from P1 mouse kidneys, comparing the results of the psychrophilic protease method with procedures using 37°C incubation. We show that the cold protease method provides a great reduction in gene expression artifacts. In addition the results produce a single cell resolution gene expression atlas of the newborn mouse kidney, an interesting time in development when mature nephrons are present yet nephrogenesis remains extremely active. © 2017. Published by The Company of Biologists Ltd.

  11. Digital cell counting device integrated with a single-cell array.

    Science.gov (United States)

    Saeki, Tatsuya; Hosokawa, Masahito; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2014-01-01

    In this paper, we present a novel cell counting method accomplished using a single-cell array fabricated on an image sensor, complementary metal oxide semiconductor sensor. The single-cell array was constructed using a microcavity array, which can trap up to 7,500 single cells on microcavities periodically arranged on a plane metallic substrate via the application of a negative pressure. The proposed method for cell counting is based on shadow imaging, which uses a light diffraction pattern generated by the microcavity array and trapped cells. Under illumination, the cell-occupied microcavities are visualized as shadow patterns in an image recorded by the complementary metal oxide semiconductor sensor due to light attenuation. The cell count is determined by enumerating the uniform shadow patterns created from one-on-one relationships with single cells trapped on the microcavities in digital format. In the experiment, all cell counting processes including entrapment of non-labeled HeLa cells from suspensions on the array and image acquisition of a wide-field-of-view of 30 mm(2) in 1/60 seconds were implemented in a single integrated device. As a result, the results from the digital cell counting had a linear relationship with those obtained from microscopic observation (r(2)  = 0.99). This platform could be used at extremely low cell concentrations, i.e., 25-15,000 cells/mL. Our proposed system provides a simple and rapid miniaturized cell counting device for routine laboratory use.

  12. Obesity modulates inflammation and lipid metabolism oocyte gene expression: A single cell transcriptome perspective

    Science.gov (United States)

    This study aimed to compare oocyte gene expression profiles and follicular fluid (FF) content from overweight/obese (OW) women and normal weight (NW) women who were undergoing fertility treatments. Using single cell transcriptomic analyses, we investigated oocyte gene expression using RNA-seq. Serum...

  13. Single-cell forensic short tandem repeat typing within microfluidic droplets.

    Science.gov (United States)

    Geng, Tao; Novak, Richard; Mathies, Richard A

    2014-01-07

    A short tandem repeat (STR) typing method is developed for forensic identification of individual cells. In our strategy, monodisperse 1.5 nL agarose-in-oil droplets are produced with a high frequency using a microfluidic droplet generator. Statistically dilute single cells, along with primer-functionalized microbeads, are randomly compartmentalized in the droplets. Massively parallel single-cell droplet polymerase chain reaction (PCR) is performed to transfer replicas of desired STR targets from the single-cell genomic DNA onto the coencapsulated microbeads. These DNA-conjugated beads are subsequently harvested and reamplified under statistically dilute conditions for conventional capillary electrophoresis (CE) STR fragment size analysis. The 9-plex STR profiles of single cells from both pure and mixed populations of GM09947 and GM09948 human lymphoid cells show that all alleles are correctly called and allelic drop-in/drop-out is not observed. The cell mixture study exhibits a good linear relationship between the observed and input cell ratios in the range of 1:1 to 10:1. Additionally, the STR profile of GM09947 cells could be deduced even in the presence of a high concentration of cell-free contaminating 9948 genomic DNA. Our method will be valuable for the STR analysis of samples containing mixtures of cells/DNA from multiple contributors and for low-concentration samples.

  14. SmashCell: A software framework for the analysis of single-cell amplified genome sequences

    DEFF Research Database (Denmark)

    Harrington, Eoghan D; Arumugam, Manimozhiyan; Raes, Jeroen;

    2010-01-01

    SUMMARY: Recent advances in single-cell manipulation technology, whole genome amplification and high-throughput sequencing have now made it possible to sequence the genome of an individual cell. The bioinformatic analysis of these genomes however is far more complicated than the analysis of those...

  15. Identification of innate lymphoid cells in single-cell RNA-Seq data.

    Science.gov (United States)

    Suffiotti, Madeleine; Carmona, Santiago J; Jandus, Camilla; Gfeller, David

    2017-07-01

    Innate lymphoid cells (ILCs) consist of natural killer (NK) cells and non-cytotoxic ILCs that are broadly classified into ILC1, ILC2, and ILC3 subtypes. These cells recently emerged as important early effectors of innate immunity for their roles in tissue homeostasis and inflammation. Over the last few years, ILCs have been extensively studied in mouse and human at the functional and molecular level, including gene expression profiling. However, sorting ILCs with flow cytometry for gene expression analysis is a delicate and time-consuming process. Here we propose and validate a novel framework for studying ILCs at the transcriptomic level using single-cell RNA-Seq data. Our approach combines unsupervised clustering and a new cell type classifier trained on mouse ILC gene expression data. We show that this approach can accurately identify different ILCs, especially ILC2 cells, in human lymphocyte single-cell RNA-Seq data. Our new model relies only on genes conserved across vertebrates, thereby making it in principle applicable in any vertebrate species. Considering the rapid increase in throughput of single-cell RNA-Seq technology, our work provides a computational framework for studying ILC2 cells in single-cell transcriptomic data and may help exploring their conservation in distant vertebrate species.

  16. Complete disassociation of adult pancreas into viable single cells through cold trypsin-EDTA digestion

    Institute of Scientific and Technical Information of China (English)

    Dan LI; Shi-yun PENG; Zhen-wu ZHANG; Rui-cheng FENG; Lu LI; Jie LIANG; Sheng TAI

    2013-01-01

    The in vitro isolation and analysis of pancreatic stem/progenitor cells are necessary for understanding their properties and function; however,the preparation of high-quality single-cell suspensions from adult pancreas is prerequisite.In this study,we applied a cold trypsin-ethylenediaminetetraacetic acid (EDTA) digestion method to disassociate adult mouse pancreata into single cells.The yield of single cells and the viability of the harvested cells were much higher than those obtained via the two commonly used warm digestion methods.Flow cytometric analysis showed that the ratio of ductal or BCRP1-positive cells in cell suspensions prepared through cold digestion was consistent with that found in vivo.Cell culture tests showed that pancreatic epithelial cells prepared by cold digestion maintained proliferative capacity comparable to those derived from warm collagenase digestion.These results indicate that cold trypsin-EDTA digestion can effectively disassociate an adult mouse pancreas into viable single cells with minimal cell loss,and can be used for the isolation and analysis of pancreatic stem/progenitor cells.

  17. CD133(+) niches and single cells in glioblastoma have different phenotypes

    DEFF Research Database (Denmark)

    Christensen, Karina; Schrøder, Henrik Daa; Kristensen, Bjarne Winther

    2011-01-01

    Putative CD133(+) brain tumor stem cells have been shown to be located in niches and as single cells. This is the first study providing insight into the different phenotypes of CD133(+) cells in glioblastoma according to localization. Paraffin sections were stained by double immunofluorescence...

  18. Single Cell Analysis of Dystrophin and SRY Gene by Using Whole Genome Amplification

    Institute of Scientific and Technical Information of China (English)

    徐晨明; 金帆; 黄荷凤; 陶冶; 叶英辉

    2001-01-01

    Objective To develop a reliable and sensitive method for detection of sex and multiloci of Duchenne muscular dystrophy (DMD) gene in single cell Materials & methods Whole genome of single cell were amplified by using 15-base random primers (primer extension preamplification, PEP), then a small aliquot of PEP product were analyzed by using locus-specific nest PCR amplification. The procedure was evaluated by detection dystrophin exons 8, 17, 19, 44, 45, 48 and human testis-determining gene (SRY)in single lymphocytes from known sources and single blastomeres from the couples with no family history of DMD.Results The amplification efficiency rate of six dystrophin exons from single lymphocytes and single blastomeres were 97. 2% (175/180) and 100% (60/60) respectively.Results of SRY showed that 100% (15/15) amplification in single male-derived lymphocytes and 0% (0/15) amplification in single female-derived lymphocytes. Conclusion The technique of single cell PEP-nest PCR for dystrophin exons 8, 17,19, 44, 45, 48 and SRY is highly specifc. PEP-nest PCR is suitable for Preimplantation genetic diagnosis (PGD) of DMD at single cell level.

  19. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  20. Single-cell analysis of population context advances RNAi screening at multiple levels

    NARCIS (Netherlands)

    Snijder, Berend; Sacher, Raphael; Rämö, Pauli; Liberali, Prisca; Mench, Karin; Wolfrum, Nina; Burleigh, Laura; Scott, Cameron C; Verheije, Monique H; Mercer, Jason; Moese, Stefan; Heger, Thomas; Theusner, Kristina; Jurgeit, Andreas; Lamparter, David; Balistreri, Giuseppe; Schelhaas, Mario; De Haan, Cornelis A M; Marjomäki, Varpu; Hyypiä, Timo; Rottier, Peter J M; Sodeik, Beate; Marsh, Mark; Gruenberg, Jean; Amara, Ali; Greber, Urs; Helenius, Ari; Pelkmans, Lucas

    2012-01-01

    Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensi

  1. Single cell cytometry of protein function in RNAi treated cells and in native populations

    Directory of Open Access Journals (Sweden)

    Hill Andrew

    2008-08-01

    Full Text Available Abstract Background High Content Screening has been shown to improve results of RNAi and other perturbations, however significant intra-sample heterogeneity is common and can complicate some analyses. Single cell cytometry can extract important information from subpopulations within these samples. Such approaches are important for immune cells analyzed by flow cytometry, but have not been broadly available for adherent cells that are critical to the study of solid-tumor cancers and other disease models. Results We have directly quantitated the effect of resolving RNAi treatments at the single cell level in experimental systems for both exogenous and endogenous targets. Analyzing the effect of an siRNA that targets GFP at the single cell level permits a stronger measure of the absolute function of the siRNA by gating to eliminate background levels of GFP intensities. Extending these methods to endogenous proteins, we have shown that well-level results of the knockdown of PTEN results in an increase in phospho-S6 levels, but at the single cell level, the correlation reveals the role of other inputs into the pathway. In a third example, reduction of STAT3 levels by siRNA causes an accumulation of cells in the G1 phase of the cell cycle, but does not induce apoptosis or necrosis when compared to control cells that express the same levels of STAT3. In a final example, the effect of reduced p53 levels on increased adriamycin sensitivity for colon carcinoma cells was demonstrated at the whole-well level using siRNA knockdown and in control and untreated cells at the single cell level. Conclusion We find that single cell analysis methods are generally applicable to a wide range of experiments in adherent cells using technology that is becoming increasingly available to most laboratories. It is well-suited to emerging models of signaling dysfunction, such as oncogene addition and oncogenic shock. Single cell cytometry can demonstrate effects on cell

  2. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Che K

    2017-02-01

    Full Text Available Keying Che,1,* Yang Zhao,2,3,* Xiao Qu,1 Zhaofei Pang,1 Yang Ni,4 Tiehong Zhang,4 Jiajun Du,1,5 Hongchang Shen4 1Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 2Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 4Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 5Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Purpose: Gastric carcinoma (GC is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma.Materials and methods: Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS was statistically analyzed.Results: Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145 of them. Single cell invasion and large cell invasion were observed in 62.8% (186 and 16.9% (50 of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, P<0

  3. Genomic Insights into Geothermal Spring Community Members using a 16S Agnostic Single-Cell Approach

    Science.gov (United States)

    Bowers, R. M.

    2016-12-01

    INSTUTIONS (ALL): DOE Joint Genome Institute, Walnut Creek, CA USA. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME USA. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada. ABSTRACT BODY: With recent advances in DNA sequencing, rapid and affordable screening of single-cell genomes has become a reality. Single-cell sequencing is a multi-step process that takes advantage of any number of single-cell sorting techniques, whole genome amplification (WGA), and 16S rRNA gene based PCR screening to identify the microbes of interest prior to shotgun sequencing. However, the 16S PCR based screening step is costly and may lead to unanticipated losses of microbial diversity, as cells that do not produce a clean 16S amplicon are typically omitted from downstream shotgun sequencing. While many of the sorted cells that fail the 16S PCR step likely originate from poor quality amplified DNA, some of the cells with good WGA kinetics may instead represent bacteria or archaea with 16S genes that fail to amplify due to primer mis-matches or the presence of intervening sequences. Using cell material from Dewar Creek, a hot spring in British Columbia, we sequenced all sorted cells with good WGA kinetics irrespective of their 16S amplification success. We show that this high-throughput approach to single-cell sequencing (i) can reduce the overall cost of single-cell genome production, and (ii). may lead to the discovery of previously unknown branches on the microbial tree of life.

  4. Autonomy and Automation

    Science.gov (United States)

    Shively, Jay

    2017-01-01

    A significant level of debate and confusion has surrounded the meaning of the terms autonomy and automation. Automation is a multi-dimensional concept, and we propose that Remotely Piloted Aircraft Systems (RPAS) automation should be described with reference to the specific system and task that has been automated, the context in which the automation functions, and other relevant dimensions. In this paper, we present definitions of automation, pilot in the loop, pilot on the loop and pilot out of the loop. We further propose that in future, the International Civil Aviation Organization (ICAO) RPAS Panel avoids the use of the terms autonomy and autonomous when referring to automated systems on board RPA. Work Group 7 proposes to develop, in consultation with other workgroups, a taxonomy of Levels of Automation for RPAS.

  5. An automated swimming respirometer

    DEFF Research Database (Denmark)

    STEFFENSEN, JF; JOHANSEN, K; BUSHNELL, PG

    1984-01-01

    An automated respirometer is described that can be used for computerized respirometry of trout and sharks.......An automated respirometer is described that can be used for computerized respirometry of trout and sharks....

  6. Configuration Management Automation (CMA) -

    Data.gov (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  7. Max-Min SINR in Large-Scale Single-Cell MU-MIMO: Asymptotic Analysis and Low Complexity Transceivers

    KAUST Repository

    Sifaou, Houssem

    2016-12-28

    This work focuses on the downlink and uplink of large-scale single-cell MU-MIMO systems in which the base station (BS) endowed with M antennas communicates with K single-antenna user equipments (UEs). Particularly, we aim at reducing the complexity of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio subject to a given power constraint. To this end, we consider the asymptotic regime in which M and K grow large with a given ratio. Tools from random matrix theory (RMT) are then used to compute, in closed form, accurate approximations for the parameters of the optimal precoder and receiver, when imperfect channel state information (modeled by the generic Gauss-Markov formulation form) is available at the BS. The asymptotic analysis allows us to derive the asymptotically optimal linear precoder and receiver that are characterized by a lower complexity (due to the dependence on the large scale components of the channel) and, possibly, by a better resilience to imperfect channel state information. However, the implementation of both is still challenging as it requires fast inversions of large matrices in every coherence period. To overcome this issue, we apply the truncated polynomial expansion (TPE) technique to the precoding and receiving vector of each UE and make use of RMT to determine the optimal weighting coefficients on a per- UE basis that asymptotically solve the max-min SINR problem. Numerical results are used to validate the asymptotic analysis in the finite system regime and to show that the proposed TPE transceivers efficiently mimic the optimal ones, while requiring much lower computational complexity.

  8. Workflow automation architecture standard

    Energy Technology Data Exchange (ETDEWEB)

    Moshofsky, R.P.; Rohen, W.T. [Boeing Computer Services Co., Richland, WA (United States)

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  9. High-content screening of drug-induced cardiotoxicity using quantitative single cell imaging cytometry on microfluidic device.

    Science.gov (United States)

    Kim, Min Jung; Lee, Su Chul; Pal, Sukdeb; Han, Eunyoung; Song, Joon Myong

    2011-01-07

    Drug-induced cardiotoxicity or cytotoxicity followed by cell death in cardiac muscle is one of the major concerns in drug development. Herein, we report a high-content quantitative multicolor single cell imaging tool for automatic screening of drug-induced cardiotoxicity in an intact cell. A tunable multicolor imaging system coupled with a miniaturized sample platform was destined to elucidate drug-induced cardiotoxicity via simultaneous quantitative monitoring of intracellular sodium ion concentration, potassium ion channel permeability and apoptosis/necrosis in H9c2(2-1) cell line. Cells were treated with cisapride (a human ether-à-go-go-related gene (hERG) channel blocker), digoxin (Na(+)/K(+)-pump blocker), camptothecin (anticancer agent) and a newly synthesized anti-cancer drug candidate (SH-03). Decrease in potassium channel permeability in cisapride-treated cells indicated that it can also inhibit the trafficking of the hERG channel. Digoxin treatment resulted in an increase of intracellular [Na(+)]. However, it did not affect potassium channel permeability. Camptothecin and SH-03 did not show any cytotoxic effect at normal use (≤300 nM and 10 μM, respectively). This result clearly indicates the potential of SH-03 as a new anticancer drug candidate. The developed method was also used to correlate the cell death pathway with alterations in intracellular [Na(+)]. The developed protocol can directly depict and quantitate targeted cellular responses, subsequently enabling an automated, easy to operate tool that is applicable to drug-induced cytotoxicity monitoring with special reference to next generation drug discovery screening. This multicolor imaging based system has great potential as a complementary system to the conventional patch clamp technique and flow cytometric measurement for the screening of drug cardiotoxicity.

  10. Advances in Automation and Robotics

    CERN Document Server

    International conference on Automation and Robotics ICAR2011

    2012-01-01

    The international conference on Automation and Robotics-ICAR2011 is held during December 12-13, 2011 in Dubai, UAE. The proceedings of ICAR2011 have been published by Springer Lecture Notes in Electrical Engineering, which include 163 excellent papers selected from more than 400 submitted papers.   The conference is intended to bring together the researchers and engineers/technologists working in different aspects of intelligent control systems and optimization, robotics and automation, signal processing, sensors, systems modeling and control, industrial engineering, production and management.   This part of proceedings includes 81 papers contributed by many researchers in relevant topic areas covered at ICAR2011 from various countries such as France, Japan, USA, Korea and China etc.     Many papers introduced their advanced research work recently; some of them gave a new solution to problems in the field, with powerful evidence and detail demonstration. Others stated the application of their designed and...

  11. Automation in Clinical Microbiology

    Science.gov (United States)

    Ledeboer, Nathan A.

    2013-01-01

    Historically, the trend toward automation in clinical pathology laboratories has largely bypassed the clinical microbiology laboratory. In this article, we review the historical impediments to automation in the microbiology laboratory and offer insight into the reasons why we believe that we are on the cusp of a dramatic change that will sweep a wave of automation into clinical microbiology laboratories. We review the currently available specimen-processing instruments as well as the total laboratory automation solutions. Lastly, we outline the types of studies that will need to be performed to fully assess the benefits of automation in microbiology laboratories. PMID:23515547

  12. Sample Preparation Methods Following CellSearch Approach Compatible of Single-Cell Whole-Genome Amplification: An Overview

    NARCIS (Netherlands)

    Swennenhuis, J.F.; Terstappen, L.W.M.M.; Kroneis, Thomas

    2015-01-01

    Single cells are increasingly used to determine the heterogeneity of therapy targets in the genome during the course of a disease. The first challenge using single cells is to isolate these cells from the surrounding cells, especially when the targeted cells are rare. A number of techniques have bee

  13. Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes.

    Science.gov (United States)

    Probst, Christopher; Grünberger, Alexander; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2013-12-01

    Single-cell analysis in microfluidic systems has opened up new possibilities in biotechnological research enabling us to deal with large eukaryotic cells and even small bacteria. In particular, transient investigations in laminar flow or diffusive environments can be performed to unravel single cell behaviour. Up to now, most systems have been limited with respect to precise cell inoculation and sampling methods. Individual cell selection and manipulations have now been made possible by combining laser tweezers with microfluidic cell cultivation environments specifically tailored for micrometre-sized bacteria. Single cells were optically seeded into various micrometre-sized growth sites arranged in parallel. During cultivation, single-cell elongation, morphology and growth rates were derived from single cells and microcolonies of up to 500 cells. Growth of irradiated bacteria was not impaired by minimizing the exposed laser dosage as confirmed by exceptional growth rates. In fact, Escherichia coli exhibited doubling times of less than 20min. For the first time, a filamentous Escherichia coli WT (MG1655) was safely relocated from its growing microcolony by laser manipulations. The cell was transferred to an empty cultivation spot allowing single-cell growth and morphology investigations. Contrary to previous discussions, the filamentous E. coli exhibited normal cell morphology and division after a few generations. This combination of optical tweezers and single-cell analysis in microfluidics adds a new degree of freedom to microbial single-cell analysis. © 2013.

  14. Job scheduling optimization in multi-shuttle automated storage and retrieval system%多载具自动化存取系统作业调度优化

    Institute of Scientific and Technical Information of China (English)

    杨朋; 缪立新; 秦磊

    2013-01-01

    为从作业调度角度提交多载具自动化存取系统的运作效率,根据多载具自动化存取系统的作业特点,建立了多载具自动化存取系统作业调度优化问题的数学模型,对问题进行复杂度分析,证明为NP-hard问题,设计了遗传模拟退火算法对问题进行求解.通过实例对算法性能进行分析,结果表明提出的算法具有较好的求解精度和较高的求解效率,能够有效地缩短完成存取货作业的行程时间.%To improve the operation efficiency of multi-shuttle Automated Storage and Retrieval System (AS/RS) in term of job scheduling,a mathematical model for job scheduling optimization was established according to the operational characteristic of multi-shuttle AS/RS.The job scheduling problem was proved to be NP-hard after complexity analysis,and a genetic simulated annealing algorithm was developed to solve this NP-hard problem.The performance of proposed algorithm was demonstrated by numerical examples,and the results showed that the algorithm had better solution precision and efficiency.The travel time of performing storage and retrieval operations was reduced effectively by this algorithm.

  15. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    /Dead fluorescence staining at the end of each experiment. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time of contact. The single-cell probe offers control of the cell immobilization, thus holds advantages over the commonly used multi-cell probes where...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding...... density PLL-g-PEG coatings were about eight times as thick as the conventional PLL-g-PEG coatings. Adhesion forces toward high density PLL-g-PEG coatings were low (P. aeruginosa) or close to zero (S. aureus and S. epidermidis) compared to bare titanium surface. However, no decrease in adhesion force...

  16. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation.

    Science.gov (United States)

    Park, Ji Hun; Kim, Kyunghwan; Lee, Juno; Choi, Ji Yu; Hong, Daewha; Yang, Sung Ho; Caruso, Frank; Lee, Younghoon; Choi, Insung S

    2014-11-10

    Single-cell encapsulation promises the cytoprotection of the encased cells against lethal stressors, reminiscent of the sporulation process in nature. However, the development of a cytocompatible method for chemically mimicking the germination process (i.e., shell degradation on-demand) has been elusive, despite the shell degradation being pivotal for the practical use of functional cells as well as for single cell-based biology. We report that an artificial shell, composed of tannic acid (TA) and Fe(III) , on individual Saccharomyces cerevisiae controllably degrades on-demand, while protecting the yeast from multiple external aggressors, including UV-C irradiation, lytic enzymes, and silver nanoparticles. Cell division is suppressed by the TA-Fe(III) shell, but restored fully upon shell degradation. The formation of a TA-Fe(III) shell would provide a versatile tool for achieving the chemical version of "sporulation and germination".

  17. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells.

    Science.gov (United States)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni; Chiodi, Ilaria; Mondello, Chiara; Osellame, Roberto; Berg-Sørensen, Kirstine; Cristiani, Ilaria; Minzioni, Paolo

    2016-04-04

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values.

  18. Single-cell level based approach to investigate acetate metabolism during batch industrial fermentation

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Eriksen, Niels T.

    accumulation causes the decrease of productivity as it represents a waste of carbon source that would otherwise be converted to biomass and product. As the acetate accumulation problem is of the utmost importance in batch fermentation processes, various strategies have been developed to explain, understand...... on the sub-population level. We hypothesized that during the fermentation process, bacterial subpopulation exist, which exhibit different metabolic strategies towards the acetate. In this study, pure culture of Escherichia coli MG1655 was used to investigate in situ acetate metabolism at single-cell level...... during glucose fermentation. Batch fermentations were performed in order to examine consecutive stages of acetate metabolism during the fermentation process (production, co-consumption with glucose, consumption as single substrate). Uptake of glucose and acetate at single-cell level was observed...

  19. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes.

    Science.gov (United States)

    Shi, Bao-Xian; Wang, Yu; Zhang, Kai; Lam, Tin-Lun; Chan, Helen Lai-Wa

    2011-02-15

    The study of single cell dynamics has been greatly adapted in biological and medical research and applications. In this work a novel microfluidic electrochemical sensor with carbon nanotubes (CNTs) modified indium tin oxide (ITO) microelectrode was developed for single cells release monitoring. The sensitivity of the electrochemical sensor after CNTs surface modification was improved by 2.5-3 orders of magnitude. The developed CNTs modified ITO sensor was successfully employed to monitor the dopamine release from single living rat pheochromocytoma (PC 12) cells. Its ultrahigh sensitivity, transparency and need for fewer agents enable this smart electrochemical sensor to become a powerful tool in recording dynamic release from various living tissues and organs optically and electrically.

  20. Information Processing in Single Cells and Small Networks: Insights from Compartmental Models

    Science.gov (United States)

    Poirazi, Panayiota

    2009-03-01

    The goal of this paper is to present a set of predictions generated by detailed compartmental models regarding the ways in which information may be processed, encoded and propagated by single cells and neural assemblies. Towards this goal, I will review a number of modelling studies from our lab that investigate how single pyramidal neurons and small neural networks in different brain regions process incoming signals that are associated with learning and memory. I will first discuss the computational capabilities of individual pyramidal neurons in the hippocampus [1-3] and how these properties may allow a single cell to discriminate between different memories [4]. I will then present biophysical models of prefrontal layer V neurons and small networks that exhibit sustained activity under realistic synaptic stimulation and discuss their potential role in working memory [5].