WorldWideScience

Sample records for optimized architectural approaches

  1. Architecture Approach in System Development

    Directory of Open Access Journals (Sweden)

    Ladislav Burita

    2017-01-01

    Full Text Available The purpose of this paper is to describe a practical solution of architecture approach in system development. The software application is the system which optimizes the transport service. The first part of the paper defines the enterprise architecture, its parts and frameworks. Next is explained the NATO Architecture Framework (NAF, a tool for command and control systems development in military environment. The NAF is used for architecture design of the system for optimization of the transport service.

  2. Future city architecture for optimal living

    CERN Document Server

    Pardalos, Panos

    2015-01-01

      This book offers a wealth of interdisciplinary approaches to urbanization strategies in architecture centered on growing concerns about the future of cities and their impacts on essential elements of architectural optimization, livability, energy consumption and sustainability. It portrays the urban condition in architectural terms, as well as the living condition in human terms, both of which can be optimized by mathematical modeling as well as mathematical calculation and assessment.   Special features include:   ·        new research on the construction of future cities and smart cities   ·        discussions of sustainability and new technologies designed to advance ideas to future city developments   Graduate students and researchers in architecture, engineering, mathematical modeling, and building physics will be engaged by the contributions written by eminent international experts from a variety of disciplines including architecture, engineering, modeling, optimization, and relat...

  3. A Topology Optimisation Approach to Learning in Architectural Design

    DEFF Research Database (Denmark)

    Mullins, Michael; Kirkegaard, Poul Henning; Jessen, Rasmus Zederkof

    2005-01-01

    describes an attempt to unify analytic and analogical approaches in an architectural education setting, using topology optimization software. It uses as examples recent student projects where the architectural design process based on a topology optimization approach has been investigated. The paper...

  4. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Kamesh [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.

  5. Discrete optimization in architecture architectural & urban layout

    CERN Document Server

    Zawidzki, Machi

    2016-01-01

    This book presents three projects that demonstrate the fundamental problems of architectural design and urban composition – the layout design, evaluation and optimization. Part I describes the functional layout design of a residential building, and an evaluation of the quality of a town square (plaza). The algorithm for the functional layout design is based on backtracking using a constraint satisfaction approach combined with coarse grid discretization. The algorithm for the town square evaluation is based on geometrical properties derived directly from its plan. Part II introduces a crowd-simulation application for the analysis of escape routes on floor plans, and optimization of a floor plan for smooth crowd flow. The algorithms presented employ agent-based modeling and cellular automata.

  6. Multilayer Perceptron: Architecture Optimization and Training

    Directory of Open Access Journals (Sweden)

    Hassan Ramchoun

    2016-09-01

    Full Text Available The multilayer perceptron has a large wide of classification and regression applications in many fields: pattern recognition, voice and classification problems. But the architecture choice has a great impact on the convergence of these networks. In the present paper we introduce a new approach to optimize the network architecture, for solving the obtained model we use the genetic algorithm and we train the network with a back-propagation algorithm. The numerical results assess the effectiveness of the theoretical results shown in this paper, and the advantages of the new modeling compared to the previous model in the literature.

  7. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  8. A Bandwidth-Optimized Multi-Core Architecture for Irregular Applications

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    2012-05-31

    This paper presents an architecture template for next-generation high performance computing systems specifically targeted to irregular applications. We start our work by considering that future generation interconnection and memory bandwidth full-system numbers are expected to grow by a factor of 10. In order to keep up with such a communication capacity, while still resorting to fine-grained multithreading as the main way to tolerate unpredictable memory access latencies of irregular applications, we show how overall performance scaling can benefit from the multi-core paradigm. At the same time, we also show how such an architecture template must be coupled with specific techniques in order to optimize bandwidth utilization and achieve the maximum scalability. We propose a technique based on memory references aggregation, together with the related hardware implementation, as one of such optimization techniques. We explore the proposed architecture template by focusing on the Cray XMT architecture and, using a dedicated simulation infrastructure, validate the performance of our template with two typical irregular applications. Our experimental results prove the benefits provided by both the multi-core approach and the bandwidth optimization reference aggregation technique.

  9. A cognitive decision agent architecture for optimal energy management of microgrids

    International Nuclear Information System (INIS)

    Velik, Rosemarie; Nicolay, Pascal

    2014-01-01

    Highlights: • We propose an optimization approach for energy management in microgrids. • The optimizer emulates processes involved in human decision making. • Optimization objectives are energy self-consumption and financial gain maximization. • We gain improved optimization results in significantly reduced computation time. - Abstract: Via the integration of renewable energy and storage technologies, buildings have started to change from passive (electricity) consumers to active prosumer microgrids. Along with this development come a shift from centralized to distributed production and consumption models as well as discussions about the introduction of variable demand–supply-driven grid electricity prices. Together with upcoming ICT and automation technologies, these developments open space to a wide range of novel energy management and energy trading possibilities to optimally use available energy resources. However, what is considered as an optimal energy management and trading strategy heavily depends on the individual objectives and needs of a microgrid operator. Accordingly, elaborating the most suitable strategy for each particular system configuration and operator need can become quite a complex and time-consuming task, which can massively benefit from computational support. In this article, we introduce a bio-inspired cognitive decision agent architecture for optimized, goal-specific energy management in (interconnected) microgrids, which are additionally connected to the main electricity grid. For evaluating the performance of the architecture, a number of test cases are specified targeting objectives like local photovoltaic energy consumption maximization and financial gain maximization. Obtained outcomes are compared against a modified simulating annealing optimization approach in terms of objective achievement and computational effort. Results demonstrate that the cognitive decision agent architecture yields improved optimization results in

  10. Optimal causal inference: estimating stored information and approximating causal architecture.

    Science.gov (United States)

    Still, Susanne; Crutchfield, James P; Ellison, Christopher J

    2010-09-01

    We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.

  11. Open architecture design and approach for the Integrated Sensor Architecture (ISA)

    Science.gov (United States)

    Moulton, Christine L.; Krzywicki, Alan T.; Hepp, Jared J.; Harrell, John; Kogut, Michael

    2015-05-01

    Integrated Sensor Architecture (ISA) is designed in response to stovepiped integration approaches. The design, based on the principles of Service Oriented Architectures (SOA) and Open Architectures, addresses the problem of integration, and is not designed for specific sensors or systems. The use of SOA and Open Architecture approaches has led to a flexible, extensible architecture. Using these approaches, and supported with common data formats, open protocol specifications, and Department of Defense Architecture Framework (DoDAF) system architecture documents, an integration-focused architecture has been developed. ISA can help move the Department of Defense (DoD) from costly stovepipe solutions to a more cost-effective plug-and-play design to support interoperability.

  12. Optimizations of Unstructured Aerodynamics Computations for Many-core Architectures

    KAUST Repository

    Al Farhan, Mohammed Ahmed

    2018-04-13

    We investigate several state-of-the-practice shared-memory optimization techniques applied to key routines of an unstructured computational aerodynamics application with irregular memory accesses. We illustrate for the Intel KNL processor, as a representative of the processors in contemporary leading supercomputers, identifying and addressing performance challenges without compromising the floating point numerics of the original code. We employ low and high-level architecture-specific code optimizations involving thread and data-level parallelism. Our approach is based upon a multi-level hierarchical distribution of work and data across both the threads and the SIMD units within every hardware core. On a 64-core KNL chip, we achieve nearly 2.9x speedup of the dominant routines relative to the baseline. These exhibit almost linear strong scalability up to 64 threads, and thereafter some improvement with hyperthreading. At substantially fewer Watts, we achieve up to 1.7x speedup relative to the performance of 72 threads of a 36-core Haswell CPU and roughly equivalent performance to 112 threads of a 56-core Skylake scalable processor. These optimizations are expected to be of value for many other unstructured mesh PDE-based scientific applications as multi and many-core architecture evolves.

  13. Optimization and mathematical modeling in computer architecture

    CERN Document Server

    Sankaralingam, Karu; Nowatzki, Tony

    2013-01-01

    In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t

  14. An Architecture for Performance Optimization in a Collaborative Knowledge-Based Approach for  Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan Ramon Velasco

    2011-09-01

    Full Text Available Over the past few years, Intelligent Spaces (ISs have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a an optimized design for the inference engine; (b a visual interface; (c a module to reduce the redundancy and complexity of the knowledge bases; (d a module to evaluate the accuracy of the new knowledge base; (e a module to adapt the format of the rules to the structure used by the inference engine; and (f a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern. and repilo (caused by the fungus Spilocaea oleagina. The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery without a substantial decrease in the accuracy of the inferred values.

  15. Topology Optimization - Engineering Contribution to Architectural Design

    Science.gov (United States)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2017-10-01

    The idea of the topology optimization is to find within a considered design domain the distribution of material that is optimal in some sense. Material, during optimization process, is redistributed and parts that are not necessary from objective point of view are removed. The result is a solid/void structure, for which an objective function is minimized. This paper presents an application of topology optimization to multi-material structures. The design domain defined by shape of a structure is divided into sub-regions, for which different materials are assigned. During design process material is relocated, but only within selected region. The proposed idea has been inspired by architectural designs like multi-material facades of buildings. The effectiveness of topology optimization is determined by proper choice of numerical optimization algorithm. This paper utilises very efficient heuristic method called Cellular Automata. Cellular Automata are mathematical, discrete idealization of a physical systems. Engineering implementation of Cellular Automata requires decomposition of the design domain into a uniform lattice of cells. It is assumed, that the interaction between cells takes place only within the neighbouring cells. The interaction is governed by simple, local update rules, which are based on heuristics or physical laws. The numerical studies show, that this method can be attractive alternative to traditional gradient-based algorithms. The proposed approach is evaluated by selected numerical examples of multi-material bridge structures, for which various material configurations are examined. The numerical studies demonstrated a significant influence the material sub-regions location on the final topologies. The influence of assumed volume fraction on final topologies for multi-material structures is also observed and discussed. The results of numerical calculations show, that this approach produces different results as compared with classical one

  16. Optimizing Engineering Tools Using Modern Ground Architectures

    Science.gov (United States)

    2017-12-01

    ENGINEERING TOOLS USING MODERN GROUND ARCHITECTURES by Ryan P. McArdle December 2017 Thesis Advisor: Marc Peters Co-Advisor: I.M. Ross...Master’s thesis 4. TITLE AND SUBTITLE OPTIMIZING ENGINEERING TOOLS USING MODERN GROUND ARCHITECTURES 5. FUNDING NUMBERS 6. AUTHOR(S) Ryan P. McArdle 7... engineering tools. First, the effectiveness of MathWorks’ Parallel Computing Toolkit is assessed when performing somewhat basic computations in

  17. A Disciplined Architectural Approach to Scaling Data Analysis for Massive, Scientific Data

    Science.gov (United States)

    Crichton, D. J.; Braverman, A. J.; Cinquini, L.; Turmon, M.; Lee, H.; Law, E.

    2014-12-01

    Data collections across remote sensing and ground-based instruments in astronomy, Earth science, and planetary science are outpacing scientists' ability to analyze them. Furthermore, the distribution, structure, and heterogeneity of the measurements themselves pose challenges that limit the scalability of data analysis using traditional approaches. Methods for developing science data processing pipelines, distribution of scientific datasets, and performing analysis will require innovative approaches that integrate cyber-infrastructure, algorithms, and data into more systematic approaches that can more efficiently compute and reduce data, particularly distributed data. This requires the integration of computer science, machine learning, statistics and domain expertise to identify scalable architectures for data analysis. The size of data returned from Earth Science observing satellites and the magnitude of data from climate model output, is predicted to grow into the tens of petabytes challenging current data analysis paradigms. This same kind of growth is present in astronomy and planetary science data. One of the major challenges in data science and related disciplines defining new approaches to scaling systems and analysis in order to increase scientific productivity and yield. Specific needs include: 1) identification of optimized system architectures for analyzing massive, distributed data sets; 2) algorithms for systematic analysis of massive data sets in distributed environments; and 3) the development of software infrastructures that are capable of performing massive, distributed data analysis across a comprehensive data science framework. NASA/JPL has begun an initiative in data science to address these challenges. Our goal is to evaluate how scientific productivity can be improved through optimized architectural topologies that identify how to deploy and manage the access, distribution, computation, and reduction of massive, distributed data, while

  18. Infill architecture: Design approaches for in-between buildings and 'bond' as integrative element

    Directory of Open Access Journals (Sweden)

    Alfirević Đorđe

    2015-01-01

    Full Text Available The aim of the paper is to draw attention to the view that the two key elements in achieving good quality of architecture infill in immediate, current surroundings, are the selection of optimal creative method of infill architecture and adequate application of 'the bond' as integrative element, The success of achievement and the quality of architectural infill mainly depend on the assessment of various circumstances, but also on the professionalism, creativity, sensibility, and finally innovativeness of the architect, In order for the infill procedure to be carried out adequately, it is necessary to carry out the assessment of quality of the current surroundings that the object will be integrated into, and then to choose the creative approach that will allow the object to establish an optimal dialogue with its surroundings, On a wider scale, both theory and the practice differentiate thee main creative approaches to infill objects: amimetic approach (mimesis, bassociative approach and ccontrasting approach, Which of the stated approaches will be chosen depends primarily on the fact whether the existing physical structure into which the object is being infilled is 'distinct', 'specific' or 'indistinct', but it also depends on the inclination of the designer, 'The bond' is a term which in architecture denotes an element or zone of one object, but in some instances it can refer to the whole object which has been articulated in a specific way, with an aim of reaching the solution for the visual conflict as is often the case in situations when there is a clash between the existing objects and the newly designed or reconstructed object, This paper provides in-depth analysis of different types of bonds, such as 'direction as bond', 'cornice as bond', 'structure as bond', 'texture as bond' and 'material as bond', which indicate complexity and multiple layers of the designing process of object interpolation.

  19. Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools

    Science.gov (United States)

    Januszkiewicz, Krystyna; Banachowicz, Marta

    2017-10-01

    The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.

  20. An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Plank, James [University of Tennessee (UT); Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2016-01-01

    As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.

  1. Approaching Environmental Issues in Architecture

    DEFF Research Database (Denmark)

    Petersen, Mads Dines; Knudstrup, Mary-Ann

    2013-01-01

    The research presented here takes its point of departure in the design process with a specific focus on how it is approached when designing energy efficient architecture. This is done through a case-study of a design process in a Danish architectural office. This study shows the importance...

  2. An architectural approach to level design

    CERN Document Server

    Totten, Christopher W

    2014-01-01

    Explore Level Design through the Lens of Architectural and Spatial Experience TheoryWritten by a game developer and professor trained in architecture, An Architectural Approach to Level Design is one of the first books to integrate architectural and spatial design theory with the field of level design. It explores the principles of level design through the context and history of architecture, providing information useful to both academics and game development professionals.Understand Spatial Design Principles for Game Levels in 2D, 3D, and Multiplayer ApplicationsThe book presents architectura

  3. Computer architecture a quantitative approach

    CERN Document Server

    Hennessy, John L

    2019-01-01

    Computer Architecture: A Quantitative Approach, Sixth Edition has been considered essential reading by instructors, students and practitioners of computer design for over 20 years. The sixth edition of this classic textbook is fully revised with the latest developments in processor and system architecture. It now features examples from the RISC-V (RISC Five) instruction set architecture, a modern RISC instruction set developed and designed to be a free and openly adoptable standard. It also includes a new chapter on domain-specific architectures and an updated chapter on warehouse-scale computing that features the first public information on Google's newest WSC. True to its original mission of demystifying computer architecture, this edition continues the longstanding tradition of focusing on areas where the most exciting computing innovation is happening, while always keeping an emphasis on good engineering design.

  4. A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems.

    Science.gov (United States)

    Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N

    2006-12-01

    Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

  5. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  6. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  7. Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network

    Science.gov (United States)

    He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang

    2017-03-01

    Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.

  8. An Integrated Modeling Approach to Evaluate and Optimize Data Center Sustainability, Dependability and Cost

    Directory of Open Access Journals (Sweden)

    Gustavo Callou

    2014-01-01

    Full Text Available Data centers have evolved dramatically in recent years, due to the advent of social networking services, e-commerce and cloud computing. The conflicting requirements are the high availability levels demanded against the low sustainability impact and cost values. The approaches that evaluate and optimize these requirements are essential to support designers of data center architectures. Our work aims to propose an integrated approach to estimate and optimize these issues with the support of the developed environment, Mercury. Mercury is a tool for dependability, performance and energy flow evaluation. The tool supports reliability block diagrams (RBD, stochastic Petri nets (SPNs, continuous-time Markov chains (CTMC and energy flow (EFM models. The EFM verifies the energy flow on data center architectures, taking into account the energy efficiency and power capacity that each device can provide (assuming power systems or extract (considering cooling components. The EFM also estimates the sustainability impact and cost issues of data center architectures. Additionally, a methodology is also considered to support the modeling, evaluation and optimization processes. Two case studies are presented to illustrate the adopted methodology on data center power systems.

  9. Low-Level Space Optimization of an AES Implementation for a Bit-Serial Fully Pipelined Architecture

    Science.gov (United States)

    Weber, Raphael; Rettberg, Achim

    A previously developed AES (Advanced Encryption Standard) implementation is optimized and described in this paper. The special architecture for which this implementation is targeted comprises synchronous and systematic bit-serial processing without a central controlling instance. In order to shrink the design in terms of logic utilization we deeply analyzed the architecture and the AES implementation to identify the most costly logic elements. We propose to merge certain parts of the logic to achieve better area efficiency. The approach was integrated into an existing synthesis tool which we used to produce synthesizable VHDL code. For testing purposes, we simulated the generated VHDL code and ran tests on an FPGA board.

  10. Compressed optimization of device architectures

    Energy Technology Data Exchange (ETDEWEB)

    Frees, Adam [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Gamble, John King [Microsoft Research, Redmond, WA (United States). Quantum Architectures and Computation Group; Ward, Daniel Robert [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Blume-Kohout, Robin J [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Eriksson, M. A. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Friesen, Mark [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Coppersmith, Susan N. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

    2014-09-01

    Recent advances in nanotechnology have enabled researchers to control individual quantum mechanical objects with unprecedented accuracy, opening the door for both quantum and extreme- scale conventional computation applications. As these devices become more complex, designing for facility of control becomes a daunting and computationally infeasible task. Here, motivated by ideas from compressed sensing, we introduce a protocol for the Compressed Optimization of Device Architectures (CODA). It leads naturally to a metric for benchmarking and optimizing device designs, as well as an automatic device control protocol that reduces the operational complexity required to achieve a particular output. Because this protocol is both experimentally and computationally efficient, it is readily extensible to large systems. For this paper, we demonstrate both the bench- marking and device control protocol components of CODA through examples of realistic simulations of electrostatic quantum dot devices, which are currently being developed experimentally for quantum computation.

  11. Design Optimization of Mixed-Criticality Real-Time Applications on Cost-Constrained Partitioned Architectures

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul

    2011-01-01

    In this paper we are interested to implement mixed-criticality hard real-time applications on a given heterogeneous distributed architecture. Applications have different criticality levels, captured by their Safety-Integrity Level (SIL), and are scheduled using static-cyclic scheduling. Mixed......-criticality tasks can be integrated onto the same architecture only if there is enough spatial and temporal separation among them. We consider that the separation is provided by partitioning, such that applications run in separate partitions, and each partition is allocated several time slots on a processor. Tasks...... slots on each processor and (iv) the schedule tables, such that all the applications are schedulable and the development costs are minimized. We have proposed a Tabu Search-based approach to solve this optimization problem. The proposed algorithm has been evaluated using several synthetic and real...

  12. Design and optimizing factors of PACS network architecture

    International Nuclear Information System (INIS)

    Tao Yonghao; Miao Jingtao

    2001-01-01

    Objective: Exploring the design and optimizing factors of picture archiving and communication system (PACS) network architecture. Methods: Based on the PACS of shanghai first hospital to performed the measurements and tests on the requirements of network bandwidth and transmitting rate for different PACS functions and procedures respectively in static and dynamic network traffic situation, utilizing the network monitoring tools which built-in workstations and provided by Windows NT. Results: No obvious difference between switch equipment and HUB when measurements and tests implemented in static situation except route which slow down the rate markedly. In dynamic environment Switch is able to provide higher bandwidth utilizing than HUB and local system scope communication achieved faster transmitting rate than global system. Conclusion: The primary optimizing factors of PACS network architecture design include concise network topology and disassemble tremendous global traffic to multiple distributed local scope network communication to reduce the traffic of network backbone. The most important issue is guarantee essential bandwidth for diagnosis procedure of medical imaging

  13. An ontology-based approach for modelling architectural styles

    OpenAIRE

    Pahl, Claus; Giesecke, Simon; Hasselbring, Wilhelm

    2007-01-01

    peer-reviewed The conceptual modelling of software architectures is of central importance for the quality of a software system. A rich modelling language is required to integrate the different aspects of architecture modelling, such as architectural styles, structural and behavioural modelling, into a coherent framework.We propose an ontological approach for architectural style modelling based on description logic as an abstract, meta-level modelling instrument. Architect...

  14. Enterprise architecture approach to mining companies engineering

    Directory of Open Access Journals (Sweden)

    Ilin’ Igor

    2017-01-01

    Full Text Available As Russian economy is still largely oriented on commodities production, there are a lot of cities where mining and commodity-oriented enterprises are the backbone of city economy. The mentioned enterprises mostly define the life quality of citizens in such cities, thus there are high requirements for engineering of city-forming enterprises. The paper describes the enterprise architecture approach for management system engineering of the mining enterprises. The paper contains the model of the mining enterprise architecture, the approach to the development and implementation of an integrated management system based on the concept of enterprise architecture and the structure of information systems and information technology infrastructure of the mining enterprise.

  15. A Declarative Approach to Architectural Reflection

    DEFF Research Database (Denmark)

    Ingstrup, Mads; Hansen, Klaus Marius

    2005-01-01

    which both creates runtime models of specific distributed architectures and allow for evaluation of AQL queries on these models. We illustrate the viability of the approach in two particular applications of such a model: constraint checking relative to an architectural style, and reasoning about certain......Recent research shows runtime architectural reflection is instrumental in, for instance, building adaptive and flexible systems or checking correspondence between design and implementation. Moreover, experience with computational reflection in various branches of computer science shows...... that the interface through which the meta-information of the running system is accessed, and possibly modified, lies at the heart of designing reflective systems. This paper proposes that such an interface should be like a database: accessed through queries expressed using the concepts with which architecture...

  16. Optimization of neural network architecture for classification of radar jamming FM signals

    Science.gov (United States)

    Soto, Alberto; Mendoza, Ariadna; Flores, Benjamin C.

    2017-05-01

    The purpose of this study is to investigate several artificial Neural Network (NN) architectures in order to design a cognitive radar system capable of optimally distinguishing linear Frequency-Modulated (FM) signals from bandlimited Additive White Gaussian Noise (AWGN). The goal is to create a theoretical framework to determine an optimal NN architecture to achieve a Probability of Detection (PD) of 95% or higher and a Probability of False Alarm (PFA) of 1.5% or lower at 5 dB Signal to Noise Ratio (SNR). Literature research reveals that the frequency-domain power spectral densities characterize a signal more efficiently than its time-domain counterparts. Therefore, the input data is preprocessed by calculating the magnitude square of the Discrete Fourier Transform of the digitally sampled bandlimited AWGN and linear FM signals to populate a matrix containing N number of samples and M number of spectra. This matrix is used as input for the NN, and the spectra are divided as follows: 70% for training, 15% for validation, and 15% for testing. The study begins by experimentally deducing the optimal number of hidden neurons (1-40 neurons), then the optimal number of hidden layers (1-5 layers), and lastly, the most efficient learning algorithm. The training algorithms examined are: Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Polak-Ribiére Conjugate Gradient, and Variable Learning Rate Backpropagation. We determine that an architecture with ten hidden neurons (or higher), one hidden layer, and a Scaled Conjugate Gradient for training algorithm encapsulates an optimal architecture for our application.

  17. Selection of an optimal neural network architecture for computer-aided detection of microcalcifications - Comparison of automated optimization techniques

    International Nuclear Information System (INIS)

    Gurcan, Metin N.; Sahiner, Berkman; Chan Heangping; Hadjiiski, Lubomir; Petrick, Nicholas

    2001-01-01

    Many computer-aided diagnosis (CAD) systems use neural networks (NNs) for either detection or classification of abnormalities. Currently, most NNs are 'optimized' by manual search in a very limited parameter space. In this work, we evaluated the use of automated optimization methods for selecting an optimal convolution neural network (CNN) architecture. Three automated methods, the steepest descent (SD), the simulated annealing (SA), and the genetic algorithm (GA), were compared. We used as an example the CNN that classifies true and false microcalcifications detected on digitized mammograms by a prescreening algorithm. Four parameters of the CNN architecture were considered for optimization, the numbers of node groups and the filter kernel sizes in the first and second hidden layers, resulting in a search space of 432 possible architectures. The area A z under the receiver operating characteristic (ROC) curve was used to design a cost function. The SA experiments were conducted with four different annealing schedules. Three different parent selection methods were compared for the GA experiments. An available data set was split into two groups with approximately equal number of samples. By using the two groups alternately for training and testing, two different cost surfaces were evaluated. For the first cost surface, the SD method was trapped in a local minimum 91% (392/432) of the time. The SA using the Boltzman schedule selected the best architecture after evaluating, on average, 167 architectures. The GA achieved its best performance with linearly scaled roulette-wheel parent selection; however, it evaluated 391 different architectures, on average, to find the best one. The second cost surface contained no local minimum. For this surface, a simple SD algorithm could quickly find the global minimum, but the SA with the very fast reannealing schedule was still the most efficient. The same SA scheme, however, was trapped in a local minimum on the first cost

  18. Modeling, analysis and optimization of network-on-chip communication architectures

    CERN Document Server

    Ogras, Umit Y

    2013-01-01

    Traditionally, design space exploration for Systems-on-Chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, the communication architecture plays a major role in the area, performance and energy consumption of the overall system. As a result, a shift from computation-based to communication-based design becomes mandatory. Towards this end, network-on-chip (NoC) communication architectures have emerged recently as a promising alternative to classical bus and point-to-point communication architectures. This book explores outstanding research problems related to modeling, analysis and optimization of NoC communication architectures. More precisely, we present novel design methodologies, software tools and FPGA prototypes to aid the design of application-specific NoCs.

  19. Integrated Nationwide Electronic Health Records system: Semi-distributed architecture approach.

    Science.gov (United States)

    Fragidis, Leonidas L; Chatzoglou, Prodromos D; Aggelidis, Vassilios P

    2016-11-14

    The integration of heterogeneous electronic health records systems by building an interoperable nationwide electronic health record system provides undisputable benefits in health care, like superior health information quality, medical errors prevention and cost saving. This paper proposes a semi-distributed system architecture approach for an integrated national electronic health record system incorporating the advantages of the two dominant approaches, the centralized architecture and the distributed architecture. The high level design of the main elements for the proposed architecture is provided along with diagrams of execution and operation and data synchronization architecture for the proposed solution. The proposed approach effectively handles issues related to redundancy, consistency, security, privacy, availability, load balancing, maintainability, complexity and interoperability of citizen's health data. The proposed semi-distributed architecture offers a robust interoperability framework without healthcare providers to change their local EHR systems. It is a pragmatic approach taking into account the characteristics of the Greek national healthcare system along with the national public administration data communication network infrastructure, for achieving EHR integration with acceptable implementation cost.

  20. Secure ASIC Architecture for Optimized Utilization of a Trusted Supply Chain for Common Architecture A and D Applications

    Science.gov (United States)

    2017-03-01

    Secure ASIC Architecture for Optimized Utilization of a Trusted Supply Chain for Common Architecture A&D Applications Ezra Hall, Ray Eberhard...use applications. Furthermore, a product roadmap must be comprehended as part of this platform, offering A&D programs a solution to their...existing solutions for adoption to occur. Additionally, a well-developed roadmap to future secure SoCs, leveraging the value add of future advanced

  1. Fabrication of microfluidic architectures for optimal flow rate and concentration measurement for lab on chip application

    Science.gov (United States)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    Optimum flow in micro channel for sensing purpose is challenging. In this study, The optimizations of the fluid sample flows are made through the design and characterization of the novel microfluidics' architectures to achieve the optimal flow rate in the micro channels. The biocompatibility of the Polydimetylsiloxane (Sylgard 184 silicon elastomer) polymer used to fabricate the device offers avenue for the device to be implemented as the universal fluidic delivery system for bio-molecules sensing in various bio-medical applications. The study uses the following methodological approaches, designing a novel microfluidics' architectures by integrating the devices on a single 4 inches silicon substrate, fabricating the designed microfluidic devices using low-cost solution soft lithography technique, characterizing and validating the flow throughput of urine samples in the micro channels by generating pressure gradients through the devices' inlets. The characterization on the urine samples flow in the micro channels have witnessed the constant flow throughout the devices.

  2. Pushouts in software architecture design

    OpenAIRE

    Riché, T. L.; Gonçalves, Rui; Marker, B.; Batory, D.

    2012-01-01

    A classical approach to program derivation is to progressively extend a simple specification and then incrementally refine it to an implementation. We claim this approach is hard or impractical when reverse engineering legacy software architectures. We present a case study that shows optimizations and pushouts--in addition to refinements and extensions--are essential for practical stepwise development of complex software architectures. NSF CCF 0724979 NSF CNS 0509338 NSF CCF 0917167 ...

  3. An information-theoretic approach to motor action decoding with a reconfigurable parallel architecture.

    Science.gov (United States)

    Craciun, Stefan; Brockmeier, Austin J; George, Alan D; Lam, Herman; Príncipe, José C

    2011-01-01

    Methods for decoding movements from neural spike counts using adaptive filters often rely on minimizing the mean-squared error. However, for non-Gaussian distribution of errors, this approach is not optimal for performance. Therefore, rather than using probabilistic modeling, we propose an alternate non-parametric approach. In order to extract more structure from the input signal (neuronal spike counts) we propose using minimum error entropy (MEE), an information-theoretic approach that minimizes the error entropy as part of an iterative cost function. However, the disadvantage of using MEE as the cost function for adaptive filters is the increase in computational complexity. In this paper we present a comparison between the decoding performance of the analytic Wiener filter and a linear filter trained with MEE, which is then mapped to a parallel architecture in reconfigurable hardware tailored to the computational needs of the MEE filter. We observe considerable speedup from the hardware design. The adaptation of filter weights for the multiple-input, multiple-output linear filters, necessary in motor decoding, is a highly parallelizable algorithm. It can be decomposed into many independent computational blocks with a parallel architecture readily mapped to a field-programmable gate array (FPGA) and scales to large numbers of neurons. By pipelining and parallelizing independent computations in the algorithm, the proposed parallel architecture has sublinear increases in execution time with respect to both window size and filter order.

  4. New approaches to optimization in aerospace conceptual design

    Science.gov (United States)

    Gage, Peter J.

    1995-01-01

    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.

  5. Modular production line optimization: The exPLORE architecture

    Directory of Open Access Journals (Sweden)

    Spinellis Diomidis D.

    2000-01-01

    Full Text Available The general design problem in serial production lines concerns the allocation of resources such as the number of servers, their service rates, and buffers given production-specific constraints, associated costs, and revenue projections. We describe the design of exPLOre: a modular, object-oriented, production line optimization software architecture. An abstract optimization module can be instantiated using a variety of stochastic optimization methods such as simulated annealing and genetic algorithms. Its search space is constrained by a constraint checker while its search direction is guided by a cost analyser which combines the output of a throughput evaluator with the business model. The throughput evaluator can be instantiated using Markovian, generalised queueing network methods, a decomposition, or an expansion method algorithm.

  6. Proposing an Optimal Learning Architecture for the Digital Enterprise.

    Science.gov (United States)

    O'Driscoll, Tony

    2003-01-01

    Discusses the strategic role of learning in information age organizations; analyzes parallels between the application of technology to business and the application of technology to learning; and proposes a learning architecture that aligns with the knowledge-based view of the firm and optimizes the application of technology to achieve proficiency…

  7. Study on Optimization of I and C Architecture for Research Reactors Using Bayesian Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Khaili Ur; Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-07-01

    The optimization in terms of redundancy of modules and components in Instrumentation and Control (I and C) architecture is based on cost and availability assuming regulatory requirements are satisfied. The motive of this study is to find an optimized I and C architecture, either in hybrid formation, fully digital or analog, with respect to system availability and relative cost of architecture. The cost of research reactors I and C systems is prone to have effect on marketing competitiveness. As a demonstrative example, the reactor protection system of research reactors is selected. The four cases with different architecture formation were developed with single and double redundancy of bi-stable modules, coincidence processor module, and safety or protection circuit actuation logic. The architecture configurations are transformed to reliability block diagram (RBD) based on logical operation and function of modules. A Bayesian Network (BN) model is constructed from RBD to assess availability. The cost estimation was proposed and reliability cost index RI was suggested.

  8. Study on Optimization of I and C Architecture for Research Reactors Using Bayesian Networks

    International Nuclear Information System (INIS)

    Rahman, Khaili Ur; Shin, Jinsoo; Heo, Gyunyoung

    2013-01-01

    The optimization in terms of redundancy of modules and components in Instrumentation and Control (I and C) architecture is based on cost and availability assuming regulatory requirements are satisfied. The motive of this study is to find an optimized I and C architecture, either in hybrid formation, fully digital or analog, with respect to system availability and relative cost of architecture. The cost of research reactors I and C systems is prone to have effect on marketing competitiveness. As a demonstrative example, the reactor protection system of research reactors is selected. The four cases with different architecture formation were developed with single and double redundancy of bi-stable modules, coincidence processor module, and safety or protection circuit actuation logic. The architecture configurations are transformed to reliability block diagram (RBD) based on logical operation and function of modules. A Bayesian Network (BN) model is constructed from RBD to assess availability. The cost estimation was proposed and reliability cost index RI was suggested

  9. Space and place concepts analysis based on semiology approach in residential architecture

    Directory of Open Access Journals (Sweden)

    Mojtaba Parsaee

    2015-12-01

    Full Text Available Space and place are among the fundamental concepts in architecture about which many discussions have been held and the complexity and importance of these concepts were focused on. This research has introduced an approach to better cognition of the architectural concepts based on theory and method of semiology in linguistics. Hence, at first the research investigates the concepts of space and place and explains their characteristics in architecture. Then, it reviews the semiology theory and explores its concepts and ideas. After obtaining the principles of theory and also the method of semiology, they are redefined in an architectural system based on an adaptive method. Finally, the research offers a conceptual model which is called the semiology approach by considering the architectural system as a system of signs. The approach can be used to decode the content of meanings and forms and analyses of the architectural mechanism in order to obtain its meanings and concepts. In this way and based on this approach, the residential architecture of the traditional city of Bushehr – Iran was analyzed as a case of study and its concepts were extracted. The results of this research demonstrate the effectiveness of this approach in structure detection and identification of an architectural system. Besides, this approach has the capability to be used in processes of sustainable development and also be a basis for deconstruction of architectural texts. The research methods of this study are qualitative based on comparative and descriptive analyses.

  10. Space Based Radar-System Architecture Design and Optimization for a Space Based Replacement to AWACS

    National Research Council Canada - National Science Library

    Wickert, Douglas

    1997-01-01

    Through a process of system architecture design, system cost modeling, and system architecture optimization, we assess the feasibility of performing the next generation Airborne Warning and Control System (AWACS...

  11. Optimizing Instruction Scheduling and Register Allocation for Register-File-Connected Clustered VLIW Architectures

    Science.gov (United States)

    Tang, Haijing; Wang, Siye; Zhang, Yanjun

    2013-01-01

    Clustering has become a common trend in very long instruction words (VLIW) architecture to solve the problem of area, energy consumption, and design complexity. Register-file-connected clustered (RFCC) VLIW architecture uses the mechanism of global register file to accomplish the inter-cluster data communications, thus eliminating the performance and energy consumption penalty caused by explicit inter-cluster data move operations in traditional bus-connected clustered (BCC) VLIW architecture. However, the limit number of access ports to the global register file has become an issue which must be well addressed; otherwise the performance and energy consumption would be harmed. In this paper, we presented compiler optimization techniques for an RFCC VLIW architecture called Lily, which is designed for encryption systems. These techniques aim at optimizing performance and energy consumption for Lily architecture, through appropriate manipulation of the code generation process to maintain a better management of the accesses to the global register file. All the techniques have been implemented and evaluated. The result shows that our techniques can significantly reduce the penalty of performance and energy consumption due to access port limitation of global register file. PMID:23970841

  12. Optimizing Instruction Scheduling and Register Allocation for Register-File-Connected Clustered VLIW Architectures

    Directory of Open Access Journals (Sweden)

    Haijing Tang

    2013-01-01

    Full Text Available Clustering has become a common trend in very long instruction words (VLIW architecture to solve the problem of area, energy consumption, and design complexity. Register-file-connected clustered (RFCC VLIW architecture uses the mechanism of global register file to accomplish the inter-cluster data communications, thus eliminating the performance and energy consumption penalty caused by explicit inter-cluster data move operations in traditional bus-connected clustered (BCC VLIW architecture. However, the limit number of access ports to the global register file has become an issue which must be well addressed; otherwise the performance and energy consumption would be harmed. In this paper, we presented compiler optimization techniques for an RFCC VLIW architecture called Lily, which is designed for encryption systems. These techniques aim at optimizing performance and energy consumption for Lily architecture, through appropriate manipulation of the code generation process to maintain a better management of the accesses to the global register file. All the techniques have been implemented and evaluated. The result shows that our techniques can significantly reduce the penalty of performance and energy consumption due to access port limitation of global register file.

  13. Design of complex architectures using a three dimension approach : the crosswork case

    NARCIS (Netherlands)

    Seguel Pérez, R.E.; Grefen, P.W.P.J.; Eshuis, H.

    2010-01-01

    In this paper, we present a three dimensional design approach of complex information systems architectures. Key element of this approach is the model transformation cube, which consists of three dimensions along which architecture models can be positioned. Industry architecture frameworks to guide

  14. Optimizing Vector-Quantization Processor Architecture for Intelligent Query-Search Applications

    Science.gov (United States)

    Xu, Huaiyu; Mita, Yoshio; Shibata, Tadashi

    2002-04-01

    The architecture of a very large scale integration (VLSI) vector-quantization processor (VQP) has been optimized to develop a general-purpose intelligent query-search agent. The agent performs a similarity-based search in a large-volume database. Although similarity-based search processing is computationally very expensive, latency-free searches have become possible due to the highly parallel maximum-likelihood search architecture of the VQP chip. Three architectures of the VQP chip have been studied and their performances are compared. In order to give reasonable searching results according to the different policies, the concept of penalty function has been introduced into the VQP. An E-commerce real-estate agency system has been developed using the VQP chip implemented in a field-programmable gate array (FPGA) and the effectiveness of such an agency system has been demonstrated.

  15. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John; Lee, Jon; Margulies, Susan

    2010-01-01

    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  16. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John

    2010-06-01

    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  17. $H_2$ optimal controllers with observer based architecture for continuous-time systems : separation principle

    NARCIS (Netherlands)

    Saberi, A.; Sannuti, P.; Stoorvogel, A.A.

    1994-01-01

    For a general H2 optimal control problem, at first all Hz optimal measurement feedback controllers are characterized and parameterized, and then attention is focused on controllers with observer based architecture. Both full order as well as reduced order observer based H2 optimal controllers are

  18. What is the optimal architecture for visual information routing?

    Science.gov (United States)

    Wolfrum, Philipp; von der Malsburg, Christoph

    2007-12-01

    Analyzing the design of networks for visual information routing is an underconstrained problem due to insufficient anatomical and physiological data. We propose here optimality criteria for the design of routing networks. For a very general architecture, we derive the number of routing layers and the fanout that minimize the required neural circuitry. The optimal fanout l is independent of network size, while the number k of layers scales logarithmically (with a prefactor below 1), with the number n of visual resolution units to be routed independently. The results are found to agree with data of the primate visual system.

  19. Optimization of the Brillouin operator on the KNL architecture

    Science.gov (United States)

    Dürr, Stephan

    2018-03-01

    Experiences with optimizing the matrix-times-vector application of the Brillouin operator on the Intel KNL processor are reported. Without adjustments to the memory layout, performance figures of 360 Gflop/s in single and 270 Gflop/s in double precision are observed. This is with Nc = 3 colors, Nv = 12 right-hand-sides, Nthr = 256 threads, on lattices of size 323 × 64, using exclusively OMP pragmas. Interestingly, the same routine performs quite well on Intel Core i7 architectures, too. Some observations on the much harderWilson fermion matrix-times-vector optimization problem are added.

  20. Architecturally Reconfigurable Development of Mobile Games

    DEFF Research Database (Denmark)

    Zhang, Weishan

    2005-01-01

    . Mobile game domain variants could be handled uniformly and traced across all kinds of software assets. The architecture and configuration mechanism in our approach make optimizations that built into meta-components propagated to all product line members. We show this approach with an industrial Role-Playing-Game......Mobile game development must face the problem of multiple hardware and software platforms, which will bring large number of variants. To cut the development and maintenance efforts, in this paper, we present an architecturally reconfigurable software product line approach to develop mobile games...

  1. Parametric Approach in Designing Large-Scale Urban Architectural Objects

    Directory of Open Access Journals (Sweden)

    Arne Riekstiņš

    2011-04-01

    Full Text Available When all the disciplines of various science fields converge and develop, new approaches to contemporary architecture arise. The author looks towards approaching digital architecture from parametric viewpoint, revealing its generative capacity, originating from the fields of aeronautical, naval, automobile and product-design industries. The author also goes explicitly through his design cycle workflow for testing the latest methodologies in architectural design. The design process steps involved: extrapolating valuable statistical data about the site into three-dimensional diagrams, defining certain materiality of what is being produced, ways of presenting structural skin and structure simultaneously, contacting the object with the ground, interior program definition of the building with floors and possible spaces, logic of fabrication, CNC milling of the proto-type. The author’s developed tool that is reviewed in this article features enormous performative capacity and is applicable to various architectural design scales.Article in English

  2. A Systems Approach to Developing an Affordable Space Ground Transportation Architecture using a Commonality Approach

    Science.gov (United States)

    Garcia, Jerry L.; McCleskey, Carey M.; Bollo, Timothy R.; Rhodes, Russel E.; Robinson, John W.

    2012-01-01

    This paper presents a structured approach for achieving a compatible Ground System (GS) and Flight System (FS) architecture that is affordable, productive and sustainable. This paper is an extension of the paper titled "Approach to an Affordable and Productive Space Transportation System" by McCleskey et al. This paper integrates systems engineering concepts and operationally efficient propulsion system concepts into a structured framework for achieving GS and FS compatibility in the mid-term and long-term time frames. It also presents a functional and quantitative relationship for assessing system compatibility called the Architecture Complexity Index (ACI). This paper: (1) focuses on systems engineering fundamentals as it applies to improving GS and FS compatibility; (2) establishes mid-term and long-term spaceport goals; (3) presents an overview of transitioning a spaceport to an airport model; (4) establishes a framework for defining a ground system architecture; (5) presents the ACI concept; (6) demonstrates the approach by presenting a comparison of different GS architectures; and (7) presents a discussion on the benefits of using this approach with a focus on commonality.

  3. A dynamic optimization-based architecture for polygeneration microgrids with tri-generation, renewables, storage systems and electrical vehicles

    International Nuclear Information System (INIS)

    Bracco, Stefano; Delfino, Federico; Pampararo, Fabio; Robba, Michela; Rossi, Mansueto

    2015-01-01

    Highlights: • We describe two national special projects on smart grid. • We developed dynamic decision model based on a MPC architecture. • We developed an optimization model for microgrids, for a specific case study. - Abstract: An overall architecture, or Energy Management System (EMS), based on a dynamic optimization model to minimize operating costs and CO 2 emissions is formalized and applied to the University of Genova Savona Campus test-bed facilities consisting of a Smart Polygeneration Microgrid (SPM) and a Sustainable Energy Building (SEB) connected to such microgrid. The electric grid is a three phase low voltage distribution system, connecting many different technologies: three cogeneration micro gas turbines fed by natural gas, a photovoltaic field, three cogeneration Concentrating Solar Powered (CSP) systems (equipped with Stirling engines), an absorption chiller equipped with a storage tank, two types of electrical storage based on batteries technology (long term Na–Ni and short term Li-Ion ion), two electric vehicles charging stations, other electrical devices (inverters and smart metering systems), etc. The EMS can be used both for microgrids approximated as single bus bar (or one node) and for microgrids in which all buses are taken into account. The optimal operation of the microgrid is based on a central controller that receives forecasts and data from a SCADA system and that can schedule all dispatchable plants in the day ahead or in real time through an approach based on Model Predictive Control (MPC). The architecture is tested and applied to the case study of the Savona Campus

  4. Modelling Approach In Islamic Architectural Designs

    Directory of Open Access Journals (Sweden)

    Suhaimi Salleh

    2014-06-01

    Full Text Available Architectural designs contribute as one of the main factors that should be considered in minimizing negative impacts in planning and structural development in buildings such as in mosques. In this paper, the ergonomics perspective is revisited which hence focuses on the conditional factors involving organisational, psychological, social and population as a whole. This paper tries to highlight the functional and architectural integration with ecstatic elements in the form of decorative and ornamental outlay as well as incorporating the building structure such as wall, domes and gates. This paper further focuses the mathematical aspects of the architectural designs such as polar equations and the golden ratio. These designs are modelled into mathematical equations of various forms, while the golden ratio in mosque is verified using two techniques namely, the geometric construction and the numerical method. The exemplary designs are taken from theSabah Bandaraya Mosque in Likas, Kota Kinabalu and the Sarawak State Mosque in Kuching,while the Universiti Malaysia Sabah Mosque is used for the Golden Ratio. Results show thatIslamic architectural buildings and designs have long had mathematical concepts and techniques underlying its foundation, hence, a modelling approach is needed to rejuvenate these Islamic designs.

  5. Building constructions: architecture and nature

    Directory of Open Access Journals (Sweden)

    Mayatskaya Irina

    2017-01-01

    Full Text Available The problem of optimization of building structures is considered in architectural bionic modeling on the bionic principle basis. It is possible to get a reliable and durable constructions by studying the structure and the laws of organization of natural objects. Modern architects have created unique buildings using the bionic approach. There are such properties as symmetry, asymmetry, self-similarity and fractality used in the modern architecture. Using the methods of fractal geometry in the design of architectural forms allows finding a variety of constructive solutions.

  6. Synthesis of conjugated polymers with complex architecture for photovoltaic applications

    DEFF Research Database (Denmark)

    Kiriy, Anton; Krebs, Frederik C

    2017-01-01

    A common approach to bulk heterojunction solar cells involves a “trialand- error” approach in finding optimal kinetically unstable morphologies. An alternative approach assumes the utilization of complex polymer architectures, such as donor–acceptor block copolymers. Because of a covalent preorga...... preorganization of the donor and acceptor components, these materials may form desirable morphologies at thermodynamic equilibrium. This chapter reviews synthetic approaches to such architectures and shows the first photovoltaic results....

  7. A relational approach to support software architecture analysis

    NARCIS (Netherlands)

    Feijs, L.M.G.; Krikhaar, R.L.; van Ommering, R.C.

    1998-01-01

    This paper reports on our experience with a relational approach to support the analysis of existing software architectures. The analysis options provide for visualization and view calculation. The approach has been applied for reverse engineering. It is also possible to check concrete designs

  8. A Bayesian Approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures.

    Science.gov (United States)

    Tanner, Martin A.; Peng, Fengchun; Jacobs, Robert A.

    1997-03-01

    There does not exist a statistical model that shows good performance on all tasks. Consequently, the model selection problem is unavoidable; investigators must decide which model is best at summarizing the data for each task of interest. This article presents an approach to the model selection problem in hierarchical mixtures-of-experts architectures. These architectures combine aspects of generalized linear models with those of finite mixture models in order to perform tasks via a recursive "divide-and-conquer" strategy. Markov chain Monte Carlo methodology is used to estimate the distribution of the architectures' parameters. One part of our approach to model selection attempts to estimate the worth of each component of an architecture so that relatively unused components can be pruned from the architecture's structure. A second part of this approach uses a Bayesian hypothesis testing procedure in order to differentiate inputs that carry useful information from nuisance inputs. Simulation results suggest that the approach presented here adheres to the dictum of Occam's razor; simple architectures that are adequate for summarizing the data are favored over more complex structures. Copyright 1997 Elsevier Science Ltd. All Rights Reserved.

  9. Advanced and secure architectural EHR approaches.

    Science.gov (United States)

    Blobel, Bernd

    2006-01-01

    Electronic Health Records (EHRs) provided as a lifelong patient record advance towards core applications of distributed and co-operating health information systems and health networks. For meeting the challenge of scalable, flexible, portable, secure EHR systems, the underlying EHR architecture must be based on the component paradigm and model driven, separating platform-independent and platform-specific models. Allowing manageable models, real systems must be decomposed and simplified. The resulting modelling approach has to follow the ISO Reference Model - Open Distributing Processing (RM-ODP). The ISO RM-ODP describes any system component from different perspectives. Platform-independent perspectives contain the enterprise view (business process, policies, scenarios, use cases), the information view (classes and associations) and the computational view (composition and decomposition), whereas platform-specific perspectives concern the engineering view (physical distribution and realisation) and the technology view (implementation details from protocols up to education and training) on system components. Those views have to be established for components reflecting aspects of all domains involved in healthcare environments including administrative, legal, medical, technical, etc. Thus, security-related component models reflecting all view mentioned have to be established for enabling both application and communication security services as integral part of the system's architecture. Beside decomposition and simplification of system regarding the different viewpoint on their components, different levels of systems' granularity can be defined hiding internals or focusing on properties of basic components to form a more complex structure. The resulting models describe both structure and behaviour of component-based systems. The described approach has been deployed in different projects defining EHR systems and their underlying architectural principles. In that context

  10. Information security architecture an integrated approach to security in the organization

    CERN Document Server

    Killmeyer, Jan

    2000-01-01

    An information security architecture is made up of several components. Each component in the architecture focuses on establishing acceptable levels of control. These controls are then applied to the operating environment of an organization. Functionally, information security architecture combines technical, practical, and cost-effective solutions to provide an adequate and appropriate level of security.Information Security Architecture: An Integrated Approach to Security in the Organization details the five key components of an information security architecture. It provides C-level executives

  11. Neural Architectures for Control

    Science.gov (United States)

    Peterson, James K.

    1991-01-01

    The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.

  12. Parameterization of Fuel-Optimal Synchronous Approach Trajectories to Tumbling Targets

    Directory of Open Access Journals (Sweden)

    David Charles Sternberg

    2018-04-01

    Full Text Available Docking with potentially tumbling Targets is a common element of many mission architectures, including on-orbit servicing and active debris removal. This paper studies synchronized docking trajectories as a way to ensure the Chaser satellite remains on the docking axis of the tumbling Target, thereby reducing collision risks and enabling persistent onboard sensing of the docking location. Chaser satellites have limited computational power available to them and the time allowed for the determination of a fuel optimal trajectory may be limited. Consequently, parameterized trajectories that approximate the fuel optimal trajectory while following synchronous approaches may be used to provide a computationally efficient means of determining near optimal trajectories to a tumbling Target. This paper presents a method of balancing the computation cost with the added fuel expenditure required for parameterization, including the selection of a parameterization scheme, the number of parameters in the parameterization, and a means of incorporating the dynamics of a tumbling satellite into the parameterization process. Comparisons of the parameterized trajectories are made with the fuel optimal trajectory, which is computed through the numerical propagation of Euler’s equations. Additionally, various tumble types are considered to demonstrate the efficacy of the presented computation scheme. With this parameterized trajectory determination method, Chaser satellites may perform terminal approach and docking maneuvers with both fuel and computational efficiency.

  13. How to ensure sustainable interoperability in heterogeneous distributed systems through architectural approach.

    Science.gov (United States)

    Pape-Haugaard, Louise; Frank, Lars

    2011-01-01

    A major obstacle in ensuring ubiquitous information is the utilization of heterogeneous systems in eHealth. The objective in this paper is to illustrate how an architecture for distributed eHealth databases can be designed without lacking the characteristic features of traditional sustainable databases. The approach is firstly to explain traditional architecture in central and homogeneous distributed database computing, followed by a possible approach to use an architectural framework to obtain sustainability across disparate systems i.e. heterogeneous databases, concluded with a discussion. It is seen that through a method of using relaxed ACID properties on a service-oriented architecture it is possible to achieve data consistency which is essential when ensuring sustainable interoperability.

  14. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Basu, A.; Bartlett, E.B.

    1993-01-01

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a root network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, another classifier network is trained to recognize the particular transient taking place. These networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at, the Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) operator training simulator

  15. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Basu, A.; Bartlett, E.B.

    1993-01-01

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a ''root'' network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, and other ''classifier'' network is trained to recognize the particular transient taking place. these networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at the Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) operator training simulator

  16. Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture

    Energy Technology Data Exchange (ETDEWEB)

    Rattá, G.A., E-mail: giuseppe.ratta@ciemat.es [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Vega, J. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Murari, A. [Consorzio RFX, Associazione EURATOM/ENEA per la Fusione, Padua (Italy); Dormido-Canto, S. [Dpto. de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid (Spain); Moreno, R. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain)

    2016-11-15

    Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.

  17. Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture

    International Nuclear Information System (INIS)

    Rattá, G.A.; Vega, J.; Murari, A.; Dormido-Canto, S.; Moreno, R.

    2016-01-01

    Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.

  18. PLM support to architecture based development

    DEFF Research Database (Denmark)

    Bruun, Hans Peter Lomholt

    , organisation, processes, etc. To identify, evaluate, and align aspects of these domains are necessary for developing the optimal layout of product architectures. It is stated in this thesis that architectures describe building principles for products, product families, and product programs, where this project...... and developing architectures can be difficult to manage, update, and maintain during development. The concept of representing product architectures in computer-based product information tools has though been central in this research, and in the creation of results. A standard PLM tool (Windchill PDMLink...... architectures in computer systems. Presented results build on research literature and experiences from industrial partners. Verification of the theory contributions, approaches, models, and tools, have been carried out in industrial projects, with promising results. This thesis describes the means for: (1...

  19. Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.

    Science.gov (United States)

    Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe

    2017-10-01

    Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.

  20. Architecture and Landscape. Approaches from archaeology

    Directory of Open Access Journals (Sweden)

    Rebeca Blanco-Rotea

    2017-11-01

    Full Text Available This work proposes a theoretical and conceptual basis for the study of the fortified landscapes of the Galician- Portuguese border in the Modern Age. From this theoretical framework there was designed a research program that studies these landscapes. It proposes an approach to the study of this type of archaeological record from the Landscape Archeology and the Archeology of Architecture, introducing the concepts of built space and Archeology of Built Space.

  1. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials.

    Science.gov (United States)

    Xiao, Dongming; Yang, Yongqiang; Su, Xubin; Wang, Di; Sun, Jianfeng

    2013-01-01

    The load-bearing bone implants materials should have sufficient stiffness and large porosity, which are interacted since larger porosity causes lower mechanical properties. This paper is to seek the maximum stiffness architecture with the constraint of specific volume fraction by topology optimization approach, that is, maximum porosity can be achieved with predefine stiffness properties. The effective elastic modulus of conventional cubic and topology optimized scaffolds were calculated using finite element analysis (FEA) method; also, some specimens with different porosities of 41.1%, 50.3%, 60.2% and 70.7% respectively were fabricated by Selective Laser Melting (SLM) process and were tested by compression test. Results showed that the computational effective elastic modulus of optimized scaffolds was approximately 13% higher than cubic scaffolds, the experimental stiffness values were reduced by 76% than the computational ones. The combination of topology optimization approach and SLM process would be available for development of titanium implants materials in consideration of both porosity and mechanical stiffness.

  2. Tectonic thinking in contemporary industrialized architecture

    DEFF Research Database (Denmark)

    Beim, Anne

    2013-01-01

    a creative force in building constructions, structural features and architectural design (construing) – helps to identify and refine technology transfer in contemporary industrialized building construction’. Through various references from the construction industry, business theory and architectural practice......This paper argues for a new critical approach to the ways architectural design strategies are developing. Contemporary construction industry appears to evolve into highly specialized and optimized processes driven by industrialized manufacturing, therefore the role of the architect...... and the understanding of the architectural design process ought to be revised. The paper is based on the following underlying hypothesis: ‘Tectonic thinking – defined as a central attention towards the nature, the properties, and the application of building materials (construction) and how this attention forms...

  3. Time and Power Optimizations in FPGA-Based Architectures for Polyphase Channelizers

    DEFF Research Database (Denmark)

    Awan, Mehmood-Ur-Rehman; Harris, Fred; Koch, Peter

    2012-01-01

    This paper presents the time and power optimization considerations for Field Programmable Gate Array (FPGA) based architectures for a polyphase filter bank channelizer with an embedded square root shaping filter in its polyphase engine. This configuration performs two different re-sampling tasks......% slice register resources of a Xilinx Virtex-5 FPGA, operating at 400 and 480 MHz, and consuming 1.9 and 2.6 Watts of dynamic power, respectively....

  4. The Enactive Approach to Architectural Experience: A Neurophysiological Perspective on Embodiment, Motivation, and Affordances.

    Science.gov (United States)

    Jelić, Andrea; Tieri, Gaetano; De Matteis, Federico; Babiloni, Fabio; Vecchiato, Giovanni

    2016-01-01

    Over the last few years, the efforts to reveal through neuroscientific lens the relations between the mind, body, and built environment have set a promising direction of using neuroscience for architecture. However, little has been achieved thus far in developing a systematic account that could be employed for interpreting current results and providing a consistent framework for subsequent scientific experimentation. In this context, the enactive perspective is proposed as a guide to studying architectural experience for two key reasons. Firstly, the enactive approach is specifically selected for its capacity to account for the profound connectedness of the organism and the world in an active and dynamic relationship, which is primarily shaped by the features of the body. Thus, particular emphasis is placed on the issues of embodiment and motivational factors as underlying constituents of the body-architecture interactions. Moreover, enactive understanding of the relational coupling between body schema and affordances of architectural spaces singles out the two-way bodily communication between architecture and its inhabitants, which can be also explored in immersive virtual reality settings. Secondly, enactivism has a strong foothold in phenomenological thinking that corresponds to the existing phenomenological discourse in architectural theory and qualitative design approaches. In this way, the enactive approach acknowledges the available common ground between neuroscience and architecture and thus allows a more accurate definition of investigative goals. Accordingly, the outlined model of architectural subject in enactive terms-that is, a model of a human being as embodied, enactive, and situated agent, is proposed as a basis of neuroscientific and phenomenological interpretation of architectural experience.

  5. Two-Layer Linear MPC Approach Aimed at Walking Beam Billets Reheating Furnace Optimization

    Directory of Open Access Journals (Sweden)

    Silvia Maria Zanoli

    2017-01-01

    Full Text Available In this paper, the problem of the control and optimization of a walking beam billets reheating furnace located in an Italian steel plant is analyzed. An ad hoc Advanced Process Control framework has been developed, based on a two-layer linear Model Predictive Control architecture. This control block optimizes the steady and transient states of the considered process. Two main problems have been addressed. First, in order to manage all process conditions, a tailored module defines the process variables set to be included in the control problem. In particular, a unified approach for the selection on the control inputs to be used for control objectives related to the process outputs is guaranteed. The impact of the proposed method on the controller formulation is also detailed. Second, an innovative mathematical approach for stoichiometric ratios constraints handling has been proposed, together with their introduction in the controller optimization problems. The designed control system has been installed on a real plant, replacing operators’ mental model in the conduction of local PID controllers. After two years from the first startup, a strong energy efficiency improvement has been observed.

  6. Connecting Architecture and Implementation

    Science.gov (United States)

    Buchgeher, Georg; Weinreich, Rainer

    Software architectures are still typically defined and described independently from implementation. To avoid architectural erosion and drift, architectural representation needs to be continuously updated and synchronized with system implementation. Existing approaches for architecture representation like informal architecture documentation, UML diagrams, and Architecture Description Languages (ADLs) provide only limited support for connecting architecture descriptions and implementations. Architecture management tools like Lattix, SonarJ, and Sotoarc and UML-tools tackle this problem by extracting architecture information directly from code. This approach works for low-level architectural abstractions like classes and interfaces in object-oriented systems but fails to support architectural abstractions not found in programming languages. In this paper we present an approach for linking and continuously synchronizing a formalized architecture representation to an implementation. The approach is a synthesis of functionality provided by code-centric architecture management and UML tools and higher-level architecture analysis approaches like ADLs.

  7. HEURISTIC APPROACHES FOR PORTFOLIO OPTIMIZATION

    OpenAIRE

    Manfred Gilli, Evis Kellezi

    2000-01-01

    The paper first compares the use of optimization heuristics to the classical optimization techniques for the selection of optimal portfolios. Second, the heuristic approach is applied to problems other than those in the standard mean-variance framework where the classical optimization fails.

  8. A novel system architecture for the national integration of electronic health records: a semi-centralized approach.

    Science.gov (United States)

    AlJarullah, Asma; El-Masri, Samir

    2013-08-01

    The goal of a national electronic health records integration system is to aggregate electronic health records concerning a particular patient at different healthcare providers' systems to provide a complete medical history of the patient. It holds the promise to address the two most crucial challenges to the healthcare systems: improving healthcare quality and controlling costs. Typical approaches for the national integration of electronic health records are a centralized architecture and a distributed architecture. This paper proposes a new approach for the national integration of electronic health records, the semi-centralized approach, an intermediate solution between the centralized architecture and the distributed architecture that has the benefits of both approaches. The semi-centralized approach is provided with a clearly defined architecture. The main data elements needed by the system are defined and the main system modules that are necessary to achieve an effective and efficient functionality of the system are designed. Best practices and essential requirements are central to the evolution of the proposed architecture. The proposed architecture will provide the basis for designing the simplest and the most effective systems to integrate electronic health records on a nation-wide basis that maintain integrity and consistency across locations, time and systems, and that meet the challenges of interoperability, security, privacy, maintainability, mobility, availability, scalability, and load balancing.

  9. Comparison of Human Exploration Architecture and Campaign Approaches

    Science.gov (United States)

    Goodliff, Kandyce; Cirillo, William; Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary

    2015-01-01

    As part of an overall focus on space exploration, National Aeronautics and Space Administration (NASA) continues to evaluate potential approaches for sending humans beyond low Earth orbit (LEO). In addition, various external organizations are studying options for beyond LEO exploration. Recent studies include NASA's Evolvable Mars Campaign and Design Reference Architecture (DRA) 5.0, JPL's Minimal Mars Architecture; the Inspiration Mars mission; the Mars One campaign; and the Global Exploration Roadmap (GER). Each of these potential exploration constructs applies unique methods, architectures, and philosophies for human exploration. It is beneficial to compare potential approaches in order to better understand the range of options available for exploration. Since most of these studies were conducted independently, the approaches, ground rules, and assumptions used to conduct the analysis differ. In addition, the outputs and metrics presented for each construct differ substantially. This paper will describe the results of an effort to compare and contrast the results of these different studies under a common set of metrics. The paper will first present a summary of each of the proposed constructs, including a description of the overall approach and philosophy for exploration. Utilizing a common set of metrics for comparison, the paper will present the results of an evaluation of the potential benefits, critical challenges, and uncertainties associated with each construct. The analysis framework will include a detailed evaluation of key characteristics of each construct. These will include but are not limited to: a description of the technology and capability developments required to enable the construct and the uncertainties associated with these developments; an analysis of significant operational and programmatic risks associated with that construct; and an evaluation of the extent to which exploration is enabled by the construct, including the destinations

  10. The enactive approach to architectural experience: a neurophysiological perspective on embodiment, motivation, and affordances

    Directory of Open Access Journals (Sweden)

    Andrea eJelic

    2016-03-01

    Full Text Available Over the last few years, the efforts to reveal through neuroscientific lens the relations between the mind, body, and built environment have set a promising direction of using neuroscience for architecture. However, little has been achieved thus far in developing a systematic account that could be employed for interpreting current results and providing a consistent framework for subsequent scientific experimentation. In this context, the enactive perspective is proposed as a guide to studying architectural experience for two key reasons. Firstly, the enactive approach is specifically selected for its capacity to account for the profound connectedness of the organism and the world in an active and dynamic relationship, which is primarily shaped by the features of the body. Thus, particular emphasis is placed on the issues of embodiment and motivational factors as underlying constituents of the body-architecture interactions. Moreover, enactive understanding of the relational coupling between body schema and affordances of architectural spaces singles out the two-way bodily communication between architecture and its inhabitants, which can be also explored in immersive virtual reality settings. Secondly, enactivism has a strong foothold in phenomenological thinking that corresponds to the existing phenomenological discourse in architectural theory and qualitative design approaches. In this way, the enactive approach acknowledges the available common ground between neuroscience and architecture and thus allows a more accurate definition of investigative goals. Accordingly, the outlined model of architectural subject in enactive terms – that is, a model of a human being as embodied, enactive, and situated agent, is proposed as a basis of neuroscientific and phenomenological interpretation of architectural experience.

  11. Designing area optimized application-specific network-on-chip architectures while providing hard QoS guarantees.

    Directory of Open Access Journals (Sweden)

    Sajid Gul Khawaja

    Full Text Available With the increase of transistors' density, popularity of System on Chip (SoC has increased exponentially. As a communication module for SoC, Network on Chip (NoC framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows.

  12. Architectures for wrist-worn energy harvesting

    Science.gov (United States)

    Rantz, R.; Halim, M. A.; Xue, T.; Zhang, Q.; Gu, L.; Yang, K.; Roundy, S.

    2018-04-01

    This paper reports the simulation-based analysis of six dynamical structures with respect to their wrist-worn vibration energy harvesting capability. This work approaches the problem of maximizing energy harvesting potential at the wrist by considering multiple mechanical substructures; rotational and linear motion-based architectures are examined. Mathematical models are developed and experimentally corroborated. An optimization routine is applied to the proposed architectures to maximize average power output and allow for comparison. The addition of a linear spring element to the structures has the potential to improve power output; for example, in the case of rotational structures, a 211% improvement in power output was estimated under real walking excitation. The analysis concludes that a sprung rotational harvester architecture outperforms a sprung linear architecture by 66% when real walking data is used as input to the simulations.

  13. Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique

    Energy Technology Data Exchange (ETDEWEB)

    Wijayasekara, Dumidu, E-mail: wija2589@vandals.uidaho.edu [Department of Computer Science, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83402 (United States); Manic, Milos [Department of Computer Science, University of Idaho, 1776 Science Center Drive, Idaho Falls, ID 83402 (United States); Sabharwall, Piyush [Idaho National Laboratory, Idaho Falls, ID (United States); Utgikar, Vivek [Department of Chemical Engineering, University of Idaho, Idaho Falls, ID 83402 (United States)

    2011-07-15

    Highlights: > Performance prediction of PCHE using artificial neural networks. > Evaluating artificial neural network performance for PCHE modeling. > Selection of over-training resilient artificial neural networks. > Artificial neural network architecture selection for modeling problems with small data sets. - Abstract: Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or over-learning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the testing

  14. Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique

    International Nuclear Information System (INIS)

    Wijayasekara, Dumidu; Manic, Milos; Sabharwall, Piyush; Utgikar, Vivek

    2011-01-01

    Highlights: → Performance prediction of PCHE using artificial neural networks. → Evaluating artificial neural network performance for PCHE modeling. → Selection of over-training resilient artificial neural networks. → Artificial neural network architecture selection for modeling problems with small data sets. - Abstract: Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or over-learning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the

  15. A Virtual Power Plant Architecture for the Demand-Side Management of Smart Prosumers

    Directory of Open Access Journals (Sweden)

    Marco Pasetti

    2018-03-01

    Full Text Available In this paper, we present a conceptual study on a Virtual Power Plant (VPP architecture for the optimal management of Distributed Energy Resources (DERs owned by prosumers participating in Demand-Side Management (DSM programs. Compared to classical VPP architectures, which aim to aggregate several DERs dispersed throughout the electrical grid, in the proposed VPP architecture the supervised physical domain is limited to single users, i.e., to single Points of Delivery (PODs of the distribution network. The VPP architecture is based on a service-oriented approach, where multiple agents cooperate to implement the optimal management of the prosumer’s assets, by also considering different forms of Demand Response (DR requests. The considered DR schemes range from Price-Based DRs to Event-Based DRs, covering both the normal operating functions and the emergency control requests applied in modern distribution networks. With respect to centralized approaches, in this study the control perspective is moved from the system level to the single prosumer’s level, who is allowed to independently provide flexible power profiles through the aggregation of multiple DERs. A generalized optimization model, formulated as a Mixed-Integer Linear Programming (MILP problem, is also introduced. Such a model is able to compute the optimal scheduling of a prosumer’s assets by considering both DR requests and end-users’ requirements in terms of comfort levels while minimizing the costs.

  16. Monte Carlo simulations on SIMD computer architectures

    International Nuclear Information System (INIS)

    Burmester, C.P.; Gronsky, R.; Wille, L.T.

    1992-01-01

    In this paper algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SIMD) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carl updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures

  17. How organisation of architecture documentation affects architectural knowledge retrieval

    NARCIS (Netherlands)

    de Graaf, K.A.; Liang, P.; Tang, A.; Vliet, J.C.

    A common approach to software architecture documentation in industry projects is the use of file-based documents. This approach offers a single-dimensional arrangement of the architectural knowledge. Knowledge retrieval from file-based architecture documentation is efficient if the organisation of

  18. A lightweight approach for designing enterprise architectures using BPMN : an application in hospitals

    NARCIS (Netherlands)

    Barros, O.; Seguel Pérez, R.E.; Quezada, A.; Dijkman, R.; Hofstetter, J.; Koehler, J.

    2011-01-01

    An Enterprise Architecture (EA) comprises different models at different levels of abstraction. Since existing EA design approaches, e.g. MDA, use UML for modeling, the design of the architecture becomes complex and time consuming. In this paper, we present an integrated and lightweight design

  19. Lightweight enterprise architectures

    CERN Document Server

    Theuerkorn, Fenix

    2004-01-01

    STATE OF ARCHITECTUREArchitectural ChaosRelation of Technology and Architecture The Many Faces of Architecture The Scope of Enterprise Architecture The Need for Enterprise ArchitectureThe History of Architecture The Current Environment Standardization Barriers The Need for Lightweight Architecture in the EnterpriseThe Cost of TechnologyThe Benefits of Enterprise Architecture The Domains of Architecture The Gap between Business and ITWhere Does LEA Fit? LEA's FrameworkFrameworks, Methodologies, and Approaches The Framework of LEATypes of Methodologies Types of ApproachesActual System Environmen

  20. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  1. Architectural geometry

    KAUST Repository

    Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes

    2014-01-01

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  2. Planning intensive care unit design using computer simulation modeling: optimizing integration of clinical, operational, and architectural requirements.

    Science.gov (United States)

    OʼHara, Susan

    2014-01-01

    Nurses have increasingly been regarded as critical members of the planning team as architects recognize their knowledge and value. But the nurses' role as knowledge experts can be expanded to leading efforts to integrate the clinical, operational, and architectural expertise through simulation modeling. Simulation modeling allows for the optimal merge of multifactorial data to understand the current state of the intensive care unit and predict future states. Nurses can champion the simulation modeling process and reap the benefits of a cost-effective way to test new designs, processes, staffing models, and future programming trends prior to implementation. Simulation modeling is an evidence-based planning approach, a standard, for integrating the sciences with real client data, to offer solutions for improving patient care.

  3. Sustainable architecture approach in designing residential ...

    African Journals Online (AJOL)

    Sustainable architecture has been shaped with vernacular materials based on the vernacular architecture according to climatic conditions, saving energy and responding to needs and social and cultural conditions. In cold region architecture, the buildings are constructed as steps on the hills in the direction of sun and ...

  4. Hybrid Cloud Computing Architecture Optimization by Total Cost of Ownership Criterion

    Directory of Open Access Journals (Sweden)

    Elena Valeryevna Makarenko

    2014-12-01

    Full Text Available Achieving the goals of information security is a key factor in the decision to outsource information technology and, in particular, to decide on the migration of organizational data, applications, and other resources to the infrastructure, based on cloud computing. And the key issue in the selection of optimal architecture and the subsequent migration of business applications and data to the cloud organization information environment is the question of the total cost of ownership of IT infrastructure. This paper focuses on solving the problem of minimizing the total cost of ownership cloud.

  5. Managing the Evolution of an Enterprise Architecture using a MAS-Product-Line Approach

    Science.gov (United States)

    Pena, Joaquin; Hinchey, Michael G.; Resinas, manuel; Sterritt, Roy; Rash, James L.

    2006-01-01

    We view an evolutionary system ns being n software product line. The core architecture is the unchanging part of the system, and each version of the system may be viewed as a product from the product line. Each "product" may be described as the core architecture with sonre agent-based additions. The result is a multiagent system software product line. We describe an approach to such n Software Product Line-based approach using the MaCMAS Agent-Oriented nzethoclology. The approach scales to enterprise nrchitectures as a multiagent system is an approprinre means of representing a changing enterprise nrchitectclre nnd the inferaction between components in it.

  6. A Systems Engineering Approach to Architecture Development

    Science.gov (United States)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles

  7. Optimal reliability allocation for large software projects through soft computing techniques

    DEFF Research Database (Denmark)

    Madsen, Henrik; Albeanu, Grigore; Popentiu-Vladicescu, Florin

    2012-01-01

    or maximizing the system reliability subject to budget constraints. These kinds of optimization problems were considered both in deterministic and stochastic frameworks in literature. Recently, the intuitionistic-fuzzy optimization approach was considered as a soft computing successful modelling approach....... Firstly, a review on existing soft computing approaches to optimization is given. The main section extends the results considering self-organizing migrating algorithms for solving intuitionistic-fuzzy optimization problems attached to complex fault-tolerant software architectures which proved...

  8. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  9. Optimizing Thermal-Elastic Properties of C/C–SiC Composites Using a Hybrid Approach and PSO Algorithm

    Science.gov (United States)

    Xu, Yingjie; Gao, Tian

    2016-01-01

    Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343

  10. Dynamical System Approaches to Combinatorial Optimization

    DEFF Research Database (Denmark)

    Starke, Jens

    2013-01-01

    of large times as an asymptotically stable point of the dynamics. The obtained solutions are often not globally optimal but good approximations of it. Dynamical system and neural network approaches are appropriate methods for distributed and parallel processing. Because of the parallelization......Several dynamical system approaches to combinatorial optimization problems are described and compared. These include dynamical systems derived from penalty methods; the approach of Hopfield and Tank; self-organizing maps, that is, Kohonen networks; coupled selection equations; and hybrid methods...... thereof can be used as models for many industrial problems like manufacturing planning and optimization of flexible manufacturing systems. This is illustrated for an example in distributed robotic systems....

  11. A Principled Approach to the Specification of System Architectures for Space Missions

    Science.gov (United States)

    McKelvin, Mark L. Jr.; Castillo, Robert; Bonanne, Kevin; Bonnici, Michael; Cox, Brian; Gibson, Corrina; Leon, Juan P.; Gomez-Mustafa, Jose; Jimenez, Alejandro; Madni, Azad

    2015-01-01

    Modern space systems are increasing in complexity and scale at an unprecedented pace. Consequently, innovative methods, processes, and tools are needed to cope with the increasing complexity of architecting these systems. A key systems challenge in practice is the ability to scale processes, methods, and tools used to architect complex space systems. Traditionally, the process for specifying space system architectures has largely relied on capturing the system architecture in informal descriptions that are often embedded within loosely coupled design documents and domain expertise. Such informal descriptions often lead to misunderstandings between design teams, ambiguous specifications, difficulty in maintaining consistency as the architecture evolves throughout the system development life cycle, and costly design iterations. Therefore, traditional methods are becoming increasingly inefficient to cope with ever-increasing system complexity. We apply the principles of component-based design and platform-based design to the development of the system architecture for a practical space system to demonstrate feasibility of our approach using SysML. Our results show that we are able to apply a systematic design method to manage system complexity, thus enabling effective data management, semantic coherence and traceability across different levels of abstraction in the design chain. Just as important, our approach enables interoperability among heterogeneous tools in a concurrent engineering model based design environment.

  12. A State-Based Modeling Approach for Efficient Performance Evaluation of Embedded System Architectures at Transaction Level

    Directory of Open Access Journals (Sweden)

    Anthony Barreteau

    2012-01-01

    Full Text Available Abstract models are necessary to assist system architects in the evaluation process of hardware/software architectures and to cope with the still increasing complexity of embedded systems. Efficient methods are required to create reliable models of system architectures and to allow early performance evaluation and fast exploration of the design space. In this paper, we present a specific transaction level modeling approach for performance evaluation of hardware/software architectures. This approach relies on a generic execution model that exhibits light modeling effort. Created models are used to evaluate by simulation expected processing and memory resources according to various architectures. The proposed execution model relies on a specific computation method defined to improve the simulation speed of transaction level models. The benefits of the proposed approach are highlighted through two case studies. The first case study is a didactic example illustrating the modeling approach. In this example, a simulation speed-up by a factor of 7,62 is achieved by using the proposed computation method. The second case study concerns the analysis of a communication receiver supporting part of the physical layer of the LTE protocol. In this case study, architecture exploration is led in order to improve the allocation of processing functions.

  13. The constraints satisfaction problem approach in the design of an architectural functional layout

    Science.gov (United States)

    Zawidzki, Machi; Tateyama, Kazuyoshi; Nishikawa, Ikuko

    2011-09-01

    A design support system with a new strategy for finding the optimal functional configurations of rooms for architectural layouts is presented. A set of configurations satisfying given constraints is generated and ranked according to multiple objectives. The method can be applied to problems in architectural practice, urban or graphic design-wherever allocation of related geometrical elements of known shape is optimized. Although the methodology is shown using simplified examples-a single story residential building with two apartments each having two rooms-the results resemble realistic functional layouts. One example of a practical size problem of a layout of three apartments with a total of 20 rooms is demonstrated, where the generated solution can be used as a base for a realistic architectural blueprint. The discretization of design space is discussed, followed by application of a backtrack search algorithm used for generating a set of potentially 'good' room configurations. Next the solutions are classified by a machine learning method (FFN) as 'proper' or 'improper' according to the internal communication criteria. Examples of interactive ranking of the 'proper' configurations according to multiple criteria and choosing 'the best' ones are presented. The proposed framework is general and universal-the criteria, parameters and weights can be individually defined by a user and the search algorithm can be adjusted to a specific problem.

  14. A Formal Approach to Software Architecture

    National Research Council Canada - National Science Library

    Allen, Robert

    1997-01-01

    .... While architectural concepts are often embodied in infrastructure to support specific architectural styles and in the initial conceptualization of a system configuration, the lack of an explicit...

  15. Designing Next Generation Massively Multithreaded Architectures for Irregular Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tumeo, Antonino; Secchi, Simone; Villa, Oreste

    2012-08-31

    Irregular applications, such as data mining or graph-based computations, show unpredictable memory/network access patterns and control structures. Massively multi-threaded architectures with large node count, like the Cray XMT, have been shown to address their requirements better than commodity clusters. In this paper we present the approaches that we are currently pursuing to design future generations of these architectures. First, we introduce the Cray XMT and compare it to other multithreaded architectures. We then propose an evolution of the architecture, integrating multiple cores per node and next generation network interconnect. We advocate the use of hardware support for remote memory reference aggregation to optimize network utilization. For this evaluation we developed a highly parallel, custom simulation infrastructure for multi-threaded systems. Our simulator executes unmodified XMT binaries with very large datasets, capturing effects due to contention and hot-spotting, while predicting execution times with greater than 90% accuracy. We also discuss the FPGA prototyping approach that we are employing to study efficient support for irregular applications in next generation manycore processors.

  16. Design and optimization of different P-channel LUDMOS architectures on a 0.18 µm SOI-CMOS technology

    International Nuclear Information System (INIS)

    Cortés, I; Toulon, G; Morancho, F; Hugonnard-Bruyere, E; Villard, B; Toren, W J

    2011-01-01

    This paper focuses on the design and optimization of different power P-channel LDMOS transistors (V BR > 120 V) to be integrated in a new generation of smart-power technology based upon a 0.18 µm SOI-CMOS technology. Different drift architectures have been envisaged in this work with the purpose of optimizing the transistor static (R on-sp /V BR trade-off) and dynamic (R on × Q g ) characteristics to improve their switching performance. Conventional single-RESURF P-channel LUDMOS architectures on thin-SOI substrates show very poor R on-sp /V BR trade-off due to their low RESURF effectiveness. Alternative drift configurations such as the addition of an N-type buried layer deep inside the SOI layer or the application of the superjunction concept by alternatively placing stacked P- and N-type pillars could highly improve the RESURF effectiveness and the P-channel device switching performance

  17. CONTEMPORARY SLOVENIAN TIMBER ARCHITECTURE INTERNATIONAL RECOGNIZED

    Directory of Open Access Journals (Sweden)

    Manja Kitek Kuzman

    2014-12-01

    Full Text Available The book presents Slovenia' s contemporary timber architecture. Thanks to its abundant forests, Slovenia has preserved the tradition of wood construction. As much as 60% of its surface is covered by forests. Slovenia is also the third most forested country in Europe. The high share of forest-covered surface allows for a sustainable production of high-quality wood. In the past, wood was used primarily in the construction of farm buildings, but now timber architecture is used for everything from residences and office buildings to public buildings such as community centres and schools. Timber construction is becoming increasingly popular. Apart from larger companies taking this approach, a great number of wooden houses have sprung up, built either on personal initiative or with the support of carpenter workshops. Slovenian timber architecture has taken a new approach to environmental and energy-efficiency problems and received great international recognition. The book discusses over fifty projects built over a ten-year period, and includes descriptions, photographs, and plans. The projects include residential areas, administration, and office, as well as tourist, educational, and industrial buildings. Timber architecture is presented as an integral part of the Slovenian landscape. The monograph will be useful to designers and future experts in their planning of optimal timber buildings and will highlight the main benefits of using timber construction.

  18. Contingent self-definition and amorphous regions: a dynamic approach to place brand architecture

    OpenAIRE

    Dinnie, Keith

    2017-01-01

    This article explores the concept of contingent self-definition, whereby place brands employ flexible self-definitional approaches in constructing their place brand architecture. Adopting a view of regions as social constructs, the article builds on and extends previous work on place brand architecture by identifying the underlying factors that drive contingent self-definition decisions. Based on an empirical study of professionals tasked with managing region brands in the Netherlands, eleven...

  19. Toward an Agile Approach to Managing the Effect of Requirements on Software Architecture during Global Software Development

    Directory of Open Access Journals (Sweden)

    Abdulaziz Alsahli

    2016-01-01

    Full Text Available Requirement change management (RCM is a critical activity during software development because poor RCM results in occurrence of defects, thereby resulting in software failure. To achieve RCM, efficient impact analysis is mandatory. A common repository is a good approach to maintain changed requirements, reusing and reducing effort. Thus, a better approach is needed to tailor knowledge for better change management of requirements and architecture during global software development (GSD.The objective of this research is to introduce an innovative approach for handling requirements and architecture changes simultaneously during global software development. The approach makes use of Case-Based Reasoning (CBR and agile practices. Agile practices make our approach iterative, whereas CBR stores requirements and makes them reusable. Twin Peaks is our base model, meaning that requirements and architecture are handled simultaneously. For this research, grounded theory has been applied; similarly, interviews from domain experts were conducted. Interview and literature transcripts formed the basis of data collection in grounded theory. Physical saturation of theory has been achieved through a published case study and developed tool. Expert reviews and statistical analysis have been used for evaluation. The proposed approach resulted in effective change management of requirements and architecture simultaneously during global software development.

  20. Designing flexible engineering systems utilizing embedded architecture options

    Science.gov (United States)

    Pierce, Jeff G.

    This dissertation develops and applies an integrated framework for embedding flexibility in an engineered system architecture. Systems are constantly faced with unpredictability in the operational environment, threats from competing systems, obsolescence of technology, and general uncertainty in future system demands. Current systems engineering and risk management practices have focused almost exclusively on mitigating or preventing the negative consequences of uncertainty. This research recognizes that high uncertainty also presents an opportunity to design systems that can flexibly respond to changing requirements and capture additional value throughout the design life. There does not exist however a formalized approach to designing appropriately flexible systems. This research develops a three stage integrated flexibility framework based on the concept of architecture options embedded in the system design. Stage One defines an eight step systems engineering process to identify candidate architecture options. This process encapsulates the operational uncertainty though scenario development, traces new functional requirements to the affected design variables, and clusters the variables most sensitive to change. The resulting clusters can generate insight into the most promising regions in the architecture to embed flexibility in the form of architecture options. Stage Two develops a quantitative option valuation technique, grounded in real options theory, which is able to value embedded architecture options that exhibit variable expiration behavior. Stage Three proposes a portfolio optimization algorithm, for both discrete and continuous options, to select the optimal subset of architecture options, subject to budget and risk constraints. Finally, the feasibility, extensibility and limitations of the framework are assessed by its application to a reconnaissance satellite system development problem. Detailed technical data, performance models, and cost estimates

  1. A new method for performance evaluation of enterprise architecture using streotypes

    Directory of Open Access Journals (Sweden)

    Samaneh Khamseh

    2013-11-01

    Full Text Available These days, we see many organizations with extremely complex systems with various processes, organizational units, individuals, and information technology support where there are complex relationships among their various elements. In these organizations, poor architecture reduces efficiency and flexibility. Enterprise architecture, with full description of the functions of information technology in the organization, attempts to reduce the complexity of the most efficient tools to reach organizational objectives. Enterprise architecture can better assess the optimal conditions for achieving organizational goals. For evaluating enterprise architecture, executable model need to be applied. Executable model using a static architectural view to describe necessary documents need to be created. Therefore, to make an executable model, we need a requirement to produce products of the enterprise architecture to create an executable model. In this paper, for the production of an enterprise architecture, object-oriented approach is implemented. We present an algorithm to use stereotypes by considering reliability assessment. The approach taken in this algorithm is to improve the reliability by considering additional components in parallel and using redundancy techniques to maintain the minimum number of components. Furthermore, we implement the proposed algorithm on a case study and the results are compared with previous algorithms.

  2. Synthesis-Based Software Architecture Design

    NARCIS (Netherlands)

    Tekinerdogan, B.; Aksit, Mehmet; Aksit, Mehmet

    2001-01-01

    During the last decade several architecture design approaches have been introduced. These approaches however have to cope with several obstacles and software architecture design remains a difficult problem. To cope with these obstacles this chapter introduces a novel architecture design approach.

  3. Bio-inspired adaptive feedback error learning architecture for motor control.

    Science.gov (United States)

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  4. Optimized GF(2k) ONB type I multiplier architecture based on the Massey-Omura multiplication pattern

    International Nuclear Information System (INIS)

    Fournaris, A P; Koufopavlou, O

    2005-01-01

    Multiplication in GF(2 k ) finite fields is becoming rapidly a very promising solution for fast, small, efficient binary algorithms designed for hardware applications. GF(2 k ) finite fields defined over optimal normal bases (ONB) can be very advantageous in term of gates number and multiplication time delay. Many ONB multipliers works have been proposed that use the Massey-Omura multiplication pattern. In this paper, a method for designing type I optimal normal basis multipliers and an optimal normal basis (ONB) type I multiplier hardware architecture is proposed that, through parallelism and pairing categorization of the ONB multiplication table matrix, achieves very interesting results in terms of gate number and multiplication time delay

  5. Blended Design Approach of Long Span Structure and Malay Traditional Architecture

    Science.gov (United States)

    Sundari, Titin

    2017-12-01

    The growing population in the world is so fast, which is followed by the increasing need of some new and large activities. Architects face the problem on how to facilitate buildings with various activities such as for large meeting, conference, indoors gymnasium and sports, and many others. The long span structure of building is one of the solutions to solve that problem. Generally, large buildings which implemented this structure will look as a technological, modern and futuristic ones or even neo futuristic performance. But on the other hand, many people still want to enjoy the specific and unique senses of local traditional architecture. So is the Malay people who want an easy pleasant large facilities which can be fulfilled by implementing modern long span building structure technology. In the same time, their unique sense of Malay traditional architecture can still be maintained. To overcome this double problems of design, it needs a blended design approach of long span structure and Malay Traditional Architecture.

  6. Computer Architecture A Quantitative Approach

    CERN Document Server

    Hennessy, John L

    2007-01-01

    The era of seemingly unlimited growth in processor performance is over: single chip architectures can no longer overcome the performance limitations imposed by the power they consume and the heat they generate. Today, Intel and other semiconductor firms are abandoning the single fast processor model in favor of multi-core microprocessors--chips that combine two or more processors in a single package. In the fourth edition of Computer Architecture, the authors focus on this historic shift, increasing their coverage of multiprocessors and exploring the most effective ways of achieving parallelis

  7. Simulation-based evaluation and optimization of a new CdZnTe gamma-camera architecture (HiSens)

    International Nuclear Information System (INIS)

    Robert, Charlotte; Montemont, Guillaume; Rebuffel, Veronique; Guerin, Lucie; Verger, Loick; Buvat, Irene

    2010-01-01

    A new gamma-camera architecture named HiSens is presented and evaluated. It consists of a parallel hole collimator, a pixelated CdZnTe (CZT) detector associated with specific electronics for 3D localization and dedicated reconstruction algorithms. To gain in efficiency, a high aperture collimator is used. The spatial resolution is preserved thanks to accurate 3D localization of the interactions inside the detector based on a fine sampling of the CZT detector and on the depth of interaction information. The performance of this architecture is characterized using Monte Carlo simulations in both planar and tomographic modes. Detective quantum efficiency (DQE) computations are then used to optimize the collimator aperture. In planar mode, the simulations show that the fine CZT detector pixelization increases the system sensitivity by 2 compared to a standard Anger camera without loss in spatial resolution. These results are then validated against experimental data. In SPECT, Monte Carlo simulations confirm the merits of the HiSens architecture observed in planar imaging.

  8. ADAPTIVE REUSE FOR NEW SOCIAL AND MUNICIPAL FUNCTIONS AS AN ACCEPTABLE APPROACH FOR CONSERVATION OF INDUSTRIAL HERITAGE ARCHITECTURE IN THE CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Oleg Fetisov

    2016-04-01

    Full Text Available The present paper deals with a problem of conservation and adaptive reuse of industrial heritage architecture. The relevance and topicality of the problem of adaptive reuse of industrial heritage architecture for new social and municipal functions as the conservation concept are defined. New insights on the typology of industrial architecture are reviewed (e. g. global changes in all European industry, new concepts and technologies in manufacturing, new features of industrial architecture and their construction and typology, first results of industrialization and changes in the typology of industrial architecture in post-industrial period. General goals and tasks of conservation in context of adaptive reuse of industrial heritage architecture are defined (e. g. historical, architectural and artistic, technical. Adaptive reuse as an acceptable approach for conservation and new use is proposed and reviewed. Moreover, the logical model of adaptive reuse of industrial heritage architecture as an acceptable approach for new use has been developed. Consequently, three general methods for the conservation of industrial heritage architecture by the adaptive reuse approach are developed: historical, architectural and artistic, technical. Relevant functional methods' concepts (social concepts are defined and classified. General beneficial effect of the adaptive reuse approach is given. On the basis of analysis results of experience in adaptive reuse of industrial architecture with new social functions general conclusions are developed.

  9. A novel approach for optimal chiller loading using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ardakani, A. Jahanbani; Ardakani, F. Fattahi; Hosseinian, S.H. [Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran 15875-4413 (Iran, Islamic Republic of)

    2008-07-01

    This study employs two new methods to solve optimal chiller loading (OCL) problem. These methods are continuous genetic algorithm (GA) and particle swarm optimization (PSO). Because of continuous nature of variables in OCL problem, continuous GA and PSO easily overcome deficiencies in other conventional optimization methods. Partial load ratio (PLR) of the chiller is chosen as the variable to be optimized and consumption power of the chiller is considered as fitness function. Both of these methods find the optimal solution while the equality constraint is exactly satisfied. Some of the major advantages of proposed approaches over other conventional methods can be mentioned as fast convergence, escaping from getting into local optima, simple implementation as well as independency of the solution from the problem. Abilities of proposed methods are examined with reference to an example system. To demonstrate these abilities, results are compared with binary genetic algorithm method. The proposed approaches can be perfectly applied to air-conditioning systems. (author)

  10. An Enhanced System Architecture for Optimized Demand Side Management in Smart Grid

    Directory of Open Access Journals (Sweden)

    Anzar Mahmood

    2016-04-01

    Full Text Available Demand Side Management (DSM through optimization of home energy consumption in the smart grid environment is now one of the well-known research areas. Appliance scheduling has been done through many different algorithms to reduce peak load and, consequently, the Peak to Average Ratio (PAR. This paper presents a Comprehensive Home Energy Management Architecture (CHEMA with integration of multiple appliance scheduling options and enhanced load categorization in a smart grid environment. The CHEMA model consists of six layers and has been modeled in Simulink with an embedded MATLAB code. A single Knapsack optimization technique is used for scheduling and four different cases of cost reduction are modeled at the second layer of CHEMA. Fault identification and electricity theft control have also been added in CHEMA. Furthermore, carbon footprint calculations have been incorporated in order to make the users aware of environmental concerns. Simulation results prove the effectiveness of the proposed model.

  11. Systems approaches to study root architecture dynamics

    Directory of Open Access Journals (Sweden)

    Candela eCuesta

    2013-12-01

    Full Text Available The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation.Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how lateral roots and thereby root system architecture is established and developed.

  12. Model-Based Engine Control Architecture with an Extended Kalman Filter

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  13. Progress on the design of a data push architecture for an array of optimized time tagging pixels

    International Nuclear Information System (INIS)

    Shapiro, S.; Cords, D.; Mani, S.; Holbrook, B.; Atlas, E.

    1993-06-01

    A pixel array has been proposed which features a completely data driven architecture. A pixel cell has been designed that has been optimized for this readout. It retains the features of preceding designs which allow low noise operation, time stamping, analog signal processing, XY address recording, ghost elimination and sparse data transmission. The pixel design eliminates a number of problems inherent in previous designs, by the use of sampled data techniques, destructive readout, and current mode output drivers. This architecture and pixel design is directed at applications such as a forward spectrometer at the SSC, an e + e - B factory at SLAC, and fixed target experiments at FNAL

  14. Implementing the competences-based students-centered learning approach in Architectural Design Education. The case of the T MEDA Pilot Architectural Program at the Hashemite University (Jordan

    Directory of Open Access Journals (Sweden)

    Ahmad A. S. Al Husban

    2016-11-01

    Full Text Available Higher educational systems become increasingly oriented towards the competences-based student-centered learning and outcome approach. Worldwide, these systems are focusing on the students as a whole: focusing on their dimensional, intellectual, professional, psychological, moral, and spiritual. This research was conducted in an attempt to answer the main research question: how can the architectural design courses be designed based on the required competences and how can the teaching, learning activities and assessment methods be structured and aligned in order to allow students to achieve and reach the intended learning outcomes? This research used a case study driven best practice research method to answer the research questions based on the T MEDA pilot architectural program that was implemented at the Hashemite University, Jordan. This research found that it is important for architectural education to adapt the students-centered learning method. Such approach increases the effectiveness of teaching and learning methods, enhances the design studio environment, and focuses on students’ engagement to develop their design process and product. Moreover, this research found that using different assessment methods in architectural design courses help students to develop their learning outcomes; and inform teachers about the effectiveness of their teaching process. Furthermore, the involvement of students in assessment produces effective learning and enhances their design motivation. However, applying competences-based students-centered learning and outcome approach needs more time and staff to apply. Another problem is that some instructors resist changing to the new methods or approaches because they prefer to use their old and traditional systems. The application for this method at the first time needs intensive recourses, more time, and good cooperation between different instructors and course coordinator. However, within the time this method

  15. One approach to architectural acoustics in education

    Science.gov (United States)

    Jaffe, J. Christopher

    2003-04-01

    In the fall of 1997, Dean Alan Balfour of the School of Architecture at the Rennselaer Polytechnic Institute asked me to introduce an undergraduate 14 credit certificate course entitled ''Sonics in Architecture.`` Subsequently, the program was expanded to include a Master's Degree in Building Science. This paper discusses the trials and tribulations of building a scientific program in a liberal arts school. In addition, the problem of acquiring the research funds needed to provide tuition assistance for graduate students in Architectural Acoustics is reviewed. Information on the curriculum developed for both the lecture and laboratory courses is provided. I will also share my concerns regarding the teaching methods currently prevalent in many schools of architecture today, and how building science professionals might assist in addressing these issues.

  16. AN ARCHITECTURAL APPROACH FOR QUALITY IMPROVING OF ANDROID APPLICATIONS DEVELOPMENT WHICH IMPLEMENTED TO COMMUNICATION APPLICATION FOR MECHATRONICS ROBOT LABORATORY ONAFT

    Directory of Open Access Journals (Sweden)

    V. Makarenko

    2017-11-01

    Full Text Available Developing a proper system architecture is a critical factor for the success of the project. After the analysisphase is complete, system design begins. For an effective solution developing it is very important that it will be flexible andscalable. During the system design, its component composition and development tools are determined. The system designphase is an opportunity to maximize the speed and effectiveness of subsequent development.There are quite a lot of architectural approaches for building systems. Despite their small differences, they have much incommon. They all define ways of splitting the application into separate layers. At the same time, in each system, at least, thereis a layer containing the business logic of the application, a layer of data interaction and a layer for displaying data.The "Clean Architecture" approach has been analyzed and adapted to the communication application for mechatronicsrobot laboratory developing. This approach allows to solve all the problems while building the application architecture: itmakes the code modular, tested and easily readable, and also positively affects the quality of development.New architectural components which was introduced by Google in 2017 was considered. The analysis showed that theArchitecture Components fit well into the concept and will interact with the "Clean Architecture" approach. Dagger 2framework was applied for a complete abstraction and simplify testing. Also, it is planned to implement the RxJava library.

  17. Game-theoretic approaches to optimal risk sharing

    NARCIS (Netherlands)

    Boonen, T.J.

    2014-01-01

    This Ph.D. thesis studies optimal risk capital allocation and optimal risk sharing. The first chapter deals with the problem of optimally allocating risk capital across divisions within a financial institution. To do so, an asymptotic approach is used to generalize the well-studied Aumann-Shapley

  18. Advanced Architectures for Astrophysical Supercomputing

    Science.gov (United States)

    Barsdell, B. R.; Barnes, D. G.; Fluke, C. J.

    2010-12-01

    Astronomers have come to rely on the increasing performance of computers to reduce, analyze, simulate and visualize their data. In this environment, faster computation can mean more science outcomes or the opening up of new parameter spaces for investigation. If we are to avoid major issues when implementing codes on advanced architectures, it is important that we have a solid understanding of our algorithms. A recent addition to the high-performance computing scene that highlights this point is the graphics processing unit (GPU). The hardware originally designed for speeding-up graphics rendering in video games is now achieving speed-ups of O(100×) in general-purpose computation - performance that cannot be ignored. We are using a generalized approach, based on the analysis of astronomy algorithms, to identify the optimal problem-types and techniques for taking advantage of both current GPU hardware and future developments in computing architectures.

  19. LPI Optimization Framework for Target Tracking in Radar Network Architectures Using Information-Theoretic Criteria

    Directory of Open Access Journals (Sweden)

    Chenguang Shi

    2014-01-01

    Full Text Available Widely distributed radar network architectures can provide significant performance improvement for target detection and localization. For a fixed radar network, the achievable target detection performance may go beyond a predetermined threshold with full transmitted power allocation, which is extremely vulnerable in modern electronic warfare. In this paper, we study the problem of low probability of intercept (LPI design for radar network and propose two novel LPI optimization schemes based on information-theoretic criteria. For a predefined threshold of target detection, Schleher intercept factor is minimized by optimizing transmission power allocation among netted radars in the network. Due to the lack of analytical closed-form expression for receiver operation characteristics (ROC, we employ two information-theoretic criteria, namely, Bhattacharyya distance and J-divergence as the metrics for target detection performance. The resulting nonconvex and nonlinear LPI optimization problems associated with different information-theoretic criteria are cast under a unified framework, and the nonlinear programming based genetic algorithm (NPGA is used to tackle the optimization problems in the framework. Numerical simulations demonstrate that our proposed LPI strategies are effective in enhancing the LPI performance for radar network.

  20. Portfolio optimization using median-variance approach

    Science.gov (United States)

    Wan Mohd, Wan Rosanisah; Mohamad, Daud; Mohamed, Zulkifli

    2013-04-01

    Optimization models have been applied in many decision-making problems particularly in portfolio selection. Since the introduction of Markowitz's theory of portfolio selection, various approaches based on mathematical programming have been introduced such as mean-variance, mean-absolute deviation, mean-variance-skewness and conditional value-at-risk (CVaR) mainly to maximize return and minimize risk. However most of the approaches assume that the distribution of data is normal and this is not generally true. As an alternative, in this paper, we employ the median-variance approach to improve the portfolio optimization. This approach has successfully catered both types of normal and non-normal distribution of data. With this actual representation, we analyze and compare the rate of return and risk between the mean-variance and the median-variance based portfolio which consist of 30 stocks from Bursa Malaysia. The results in this study show that the median-variance approach is capable to produce a lower risk for each return earning as compared to the mean-variance approach.

  1. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

    Directory of Open Access Journals (Sweden)

    Daniela Sánchez

    2017-01-01

    Full Text Available A grey wolf optimizer for modular neural network (MNN with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.

  2. Partially Decentralized Control Architectures for Satellite Formations

    Science.gov (United States)

    Carpenter, J. Russell; Bauer, Frank H.

    2002-01-01

    In a partially decentralized control architecture, more than one but less than all nodes have supervisory capability. This paper describes an approach to choosing the number of supervisors in such au architecture, based on a reliability vs. cost trade. It also considers the implications of these results for the design of navigation systems for satellite formations that could be controlled with a partially decentralized architecture. Using an assumed cost model, analytic and simulation-based results indicate that it may be cheaper to achieve a given overall system reliability with a partially decentralized architecture containing only a few supervisors, than with either fully decentralized or purely centralized architectures. Nominally, the subset of supervisors may act as centralized estimation and control nodes for corresponding subsets of the remaining subordinate nodes, and act as decentralized estimation and control peers with respect to each other. However, in the context of partially decentralized satellite formation control, the absolute positions and velocities of each spacecraft are unique, so that correlations which make estimates using only local information suboptimal only occur through common biases and process noise. Covariance and monte-carlo analysis of a simplified system show that this lack of correlation may allow simplification of the local estimators while preserving the global optimality of the maneuvers commanded by the supervisors.

  3. From Smart-Eco Building to High-Performance Architecture: Optimization of Energy Consumption in Architecture of Developing Countries

    Science.gov (United States)

    Mahdavinejad, M.; Bitaab, N.

    2017-08-01

    Search for high-performance architecture and dreams of future architecture resulted in attempts towards meeting energy efficient architecture and planning in different aspects. Recent trends as a mean to meet future legacy in architecture are based on the idea of innovative technologies for resource efficient buildings, performative design, bio-inspired technologies etc. while there are meaningful differences between architecture of developed and developing countries. Significance of issue might be understood when the emerging cities are found interested in Dubaization and other related booming development doctrines. This paper is to analyze the level of developing countries’ success to achieve smart-eco buildings’ goals and objectives. Emerging cities of West of Asia are selected as case studies of the paper. The results of the paper show that the concept of high-performance architecture and smart-eco buildings are different in developing countries in comparison with developed countries. The paper is to mention five essential issues in order to improve future architecture of developing countries: 1- Integrated Strategies for Energy Efficiency, 2- Contextual Solutions, 3- Embedded and Initial Energy Assessment, 4- Staff and Occupancy Wellbeing, 5- Life-Cycle Monitoring.

  4. On the EU approach for DEMO architecture exploration and dealing with uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, M., E-mail: matti.coleman@euro-fusion.org [EUROfusion Consortium, Boltzmannstraße 2, 85748 Garching (Germany); CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Maviglia, F.; Bachmann, C. [EUROfusion Consortium, Boltzmannstraße 2, 85748 Garching (Germany); Anthony, J. [CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Federici, G. [EUROfusion Consortium, Boltzmannstraße 2, 85748 Garching (Germany); Shannon, M. [EUROfusion Consortium, Boltzmannstraße 2, 85748 Garching (Germany); CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Wenninger, R. [EUROfusion Consortium, Boltzmannstraße 2, 85748 Garching (Germany); Max-Planck-Institut für Plasmaphysik, 85748 Garching (Germany)

    2016-11-01

    Highlights: • The issue of epistemic uncertainties in the DEMO design basis is described. • An approach to tackle uncertainty by investigating plant architectures is proposed. • The first wall heat load uncertainty is addressed following the proposed approach. - Abstract: One of the difficulties inherent in designing a future fusion reactor is dealing with uncertainty. As the major step between ITER and the commercial exploitation of nuclear fusion energy, DEMO will have to address many challenges – the natures of which are still not fully known. Unlike fission reactors, fusion reactors suffer from the intrinsic complexity of the tokamak (numerous interdependent system parameters) and from the dependence of plasma physics on scale – prohibiting design exploration founded on incremental progression and small-scale experimentation. For DEMO, this means that significant technical uncertainties will exist for some time to come, and a systems engineering design exploration approach must be developed to explore the reactor architecture when faced with these uncertainties. Important uncertainties in the context of fusion reactor design are discussed and a strategy for dealing with these is presented, treating the uncertainty in the first wall loads as an example.

  5. The Critical Approach of ‘Plug’ in Re-Conceptualisation of Architectural Program

    Directory of Open Access Journals (Sweden)

    Bahar Beslioglu

    2014-03-01

    Full Text Available This paper explores the issue of ‘plug’ in designing program within particular experimental studies in architecture. There was what could be called a critical ‘elaboration’ of program in Archigram’s 1964 ‘Plug-In’ City project, while intriguingly the critical approach taken in the 2001 ‘Un-Plug’ project of Francois Roche and Stephanie Lavaux hinted at a ‘re-evaluation’ of ‘plug’ related to program in architecture. The embedded criticism and creative programmatic suggestions in both projects will be discussed from the point of view of using the accumulated urbanscape as a potential for contemplation, a theme that has also been elaborated, both theoretically and experimentally, by the artist/architect Gordon Matta-Clark in his 1978 ‘Balloon Housing’ project. These experimentations - about the ‘plug’ - need to be discussed in order to understand their contributions as traceable sources to program issue in contemporary architecture.

  6. Parametric Approach to Assessing Performance of High-Lift Device Active Flow Control Architectures

    Directory of Open Access Journals (Sweden)

    Yu Cai

    2017-02-01

    Full Text Available Active Flow Control is at present an area of considerable research, with multiple potential aircraft applications. While the majority of research has focused on the performance of the actuators themselves, a system-level perspective is necessary to assess the viability of proposed solutions. This paper demonstrates such an approach, in which major system components are sized based on system flow and redundancy considerations, with the impacts linked directly to the mission performance of the aircraft. Considering the case of a large twin-aisle aircraft, four distinct active flow control architectures that facilitate the simplification of the high-lift mechanism are investigated using the demonstrated approach. The analysis indicates a very strong influence of system total mass flow requirement on architecture performance, both for a typical mission and also over the entire payload-range envelope of the aircraft.

  7. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-25

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, so-called panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects.

  8. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-26

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, socalled panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects. © 2010 ACM.

  9. A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization.

    Science.gov (United States)

    Yang, Shaofu; Liu, Qingshan; Wang, Jun

    2018-04-01

    This paper is concerned with multiple-objective distributed optimization. Based on objective weighting and decision space decomposition, a collaborative neurodynamic approach to multiobjective distributed optimization is presented. In the approach, a system of collaborative neural networks is developed to search for Pareto optimal solutions, where each neural network is associated with one objective function and given constraints. Sufficient conditions are derived for ascertaining the convergence to a Pareto optimal solution of the collaborative neurodynamic system. In addition, it is proved that each connected subsystem can generate a Pareto optimal solution when the communication topology is disconnected. Then, a switching-topology-based method is proposed to compute multiple Pareto optimal solutions for discretized approximation of Pareto front. Finally, simulation results are discussed to substantiate the performance of the collaborative neurodynamic approach. A portfolio selection application is also given.

  10. Research on Heat Dissipation of Electric Vehicle Based on Safety Architecture Optimization

    Science.gov (United States)

    Zhou, Chao; Guo, Yajuan; Huang, Wei; Jiang, Haitao; Wu, Liwei

    2017-10-01

    In order to solve the problem of excessive temperature in the discharge process of lithium-ion battery and the temperature difference between batteries, a heat dissipation of electric vehicle based on safety architecture optimization is designed. The simulation is used to optimize the temperature field of the heat dissipation of the battery. A reasonable heat dissipation control scheme is formulated to achieve heat dissipation requirements. The results show that the ideal working temperature range of the lithium ion battery is 20?∼45?, and the temperature difference between the batteries should be controlled within 5?. A cooling fan is arranged at the original air outlet of the battery model, and the two cooling fans work in turn to realize the reciprocating flow. The temperature difference is controlled within 5? to ensure the good temperature uniformity between the batteries of the electric vehicle. Based on the above finding, it is concluded that the heat dissipation design for electric vehicle batteries is safe and effective, which is the most effective methods to ensure battery life and vehicle safety.

  11. Iterative Multiuser Equalization for Subconnected Hybrid mmWave Massive MIMO Architecture

    Directory of Open Access Journals (Sweden)

    R. Magueta

    2017-01-01

    Full Text Available Millimeter waves and massive MIMO are a promising combination to achieve the multi-Gb/s required by future 5G wireless systems. However, fully digital architectures are not feasible due to hardware limitations, which means that there is a need to design signal processing techniques for hybrid analog-digital architectures. In this manuscript, we propose a hybrid iterative block multiuser equalizer for subconnected millimeter wave massive MIMO systems. The low complexity user-terminals employ pure-analog random precoders, each with a single RF chain. For the base station, a subconnected hybrid analog-digital equalizer is designed to remove multiuser interference. The hybrid equalizer is optimized using the average bit-error-rate as a metric. Due to the coupling between the RF chains in the optimization problem, the computation of the optimal solutions is too complex. To address this problem, we compute the analog part of the equalizer sequentially over the RF chains using a dictionary built from the array response vectors. The proposed subconnected hybrid iterative multiuser equalizer is compared with a recently proposed fully connected approach. The results show that the performance of the proposed scheme is close to the fully connected hybrid approach counterpart after just a few iterations.

  12. Non-technical approach to the challenges of ecological architecture: Learning from Van der Laan

    Directory of Open Access Journals (Sweden)

    María-Jesús González-Díaz

    2016-06-01

    Full Text Available Up to now, ecology has a strong influence on the development of technical and instrumental aspects of architecture, such as renewable and efficient of resources and energy, CO2 emissions, air quality, water reuse, some social and economical aspects. These concepts define the physical keys and codes of the current ׳sustainable׳ architecture, normally instrumental but rarely and insufficiently theorised. But is not there another way of bringing us to nature? We need a theoretical referent. This is where we place the Van der Laan׳s thoughts: he considers that art completes nature and he builds his theoretical discourse on it, trying to better understand many aspects of architecture. From a conceptual point of view, we find in his works sense of timelessness, universality, special attention on the ׳locus׳ and a strict sense of proportions and use of materials according to nature. Could these concepts complement our current sustainable architecture? How did Laan apply the current codes of ecology in his architecture? His work may help us to get a theoretical interpretation of nature and not only physical. This paper develops this idea through the comparison of thoughts and works of Laan with the current technical approach to ׳sustainable׳ architecture.

  13. Approaching Technical Issues in Architectural Education

    DEFF Research Database (Denmark)

    Pugnale, Alberto; Parigi, Dario

    2012-01-01

    This paper discusses teaching of technical subjects in architecture, presenting two experimental activities, recently organized at Aalborg University - a two week long workshop and a one day long lecture. From the pedagogical point of view, the activities are strategically placed between conventi......This paper discusses teaching of technical subjects in architecture, presenting two experimental activities, recently organized at Aalborg University - a two week long workshop and a one day long lecture. From the pedagogical point of view, the activities are strategically placed between...

  14. Joint optimization of algorithmic suites for EEG analysis.

    Science.gov (United States)

    Santana, Eder; Brockmeier, Austin J; Principe, Jose C

    2014-01-01

    Electroencephalogram (EEG) data analysis algorithms consist of multiple processing steps each with a number of free parameters. A joint optimization methodology can be used as a wrapper to fine-tune these parameters for the patient or application. This approach is inspired by deep learning neural network models, but differs because the processing layers for EEG are heterogeneous with different approaches used for processing space and time. Nonetheless, we treat the processing stages as a neural network and apply backpropagation to jointly optimize the parameters. This approach outperforms previous results on the BCI Competition II - dataset IV; additionally, it outperforms the common spatial patterns (CSP) algorithm on the BCI Competition III dataset IV. In addition, the optimized parameters in the architecture are still interpretable.

  15. Improving Software Performance in the Compute Unified Device Architecture

    Directory of Open Access Journals (Sweden)

    Alexandru PIRJAN

    2010-01-01

    Full Text Available This paper analyzes several aspects regarding the improvement of software performance for applications written in the Compute Unified Device Architecture CUDA. We address an issue of great importance when programming a CUDA application: the Graphics Processing Unit’s (GPU’s memory management through ranspose ernels. We also benchmark and evaluate the performance for progressively optimizing a transposing matrix application in CUDA. One particular interest was to research how well the optimization techniques, applied to software application written in CUDA, scale to the latest generation of general-purpose graphic processors units (GPGPU, like the Fermi architecture implemented in the GTX480 and the previous architecture implemented in GTX280. Lately, there has been a lot of interest in the literature for this type of optimization analysis, but none of the works so far (to our best knowledge tried to validate if the optimizations can apply to a GPU from the latest Fermi architecture and how well does the Fermi architecture scale to these software performance improving techniques.

  16. Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.

    Science.gov (United States)

    Menke, S Matthew; Holmes, Russell J

    2015-02-04

    In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.

  17. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Tang, Jiang; Kramer, Illan J.; Ning, Zhijun; Sargent, Edward H.

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum

  18. Open architecture of smart sensor suites

    Science.gov (United States)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  19. Beyond Information Architecture: A Systems Integration Approach to Web-site Design

    Directory of Open Access Journals (Sweden)

    Krisellen Maloney

    2017-09-01

    Full Text Available Users' needs and expectations regarding access to information have fundamentally changed, creating a disconnect between how users expect to use a library Web site and how the site was designed. At the same time, library technical infrastructures include legacy systems that were not designedf or the Web environment. The authors propose a framework that combines elements of information architecture with approaches to incremental system design and implementation. The framework allows for the development of a Web site that is responsive to changing user needs, while recognizing the need for libraries to adopt a cost-effective approach to implementation and maintenance.

  20. Sourcing from an Enterprise Architecture Perspective

    DEFF Research Database (Denmark)

    Gøtze, John; Axél, Mette

    2013-01-01

    Enterprise architecture offers direct input in order to define the appropriate combination of people, components and services used to produce and deliver products and services. Sourcing, as the process of optimally organizing and procuring this inside and outside an organization, is therefore...... a central enterprise architecture concern. In this chapter we will discuss how enterprise architecture can benefit an enterprise’s sourcing strategy....

  1. Intel Many Integrated Core (MIC) architecture optimization strategies for a memory-bound Weather Research and Forecasting (WRF) Goddard microphysics scheme

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Goddard cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The WRF is a widely used weather prediction system in the world. It development is a done in collaborative around the globe. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the code of this important part of WRF. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU do. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 4.7x. Furthermore, the same optimizations improved performance on a dual socket Intel Xeon E5-2670 system by a factor of 2.8x compared to the original code.

  2. Random Matrix Approach for Primal-Dual Portfolio Optimization Problems

    Science.gov (United States)

    Tada, Daichi; Yamamoto, Hisashi; Shinzato, Takashi

    2017-12-01

    In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We analyze both optimization problems by the Lagrange multiplier method and the random matrix approach. Thereafter, we compare the results obtained from our proposed approach with the results obtained in previous work. Moreover, we use numerical experiments to validate the results obtained from the replica approach and the random matrix approach as methods for analyzing both the primal and dual portfolio optimization problems.

  3. Design of low-power coarse-grained reconfigurable architectures

    CERN Document Server

    Kim, Yoonjin

    2010-01-01

    Coarse-grained reconfigurable architecture (CGRA) has emerged as a solution for flexible, application-specific optimization of embedded systems. Helping you understand the issues involved in designing and constructing embedded systems, Design of Low-Power Coarse-Grained Reconfigurable Architectures offers new frameworks for optimizing the architecture of components in embedded systems in order to decrease area and save power. Real application benchmarks and gate-level simulations substantiate these frameworks.The first half of the book explains how to reduce power in the configuration cache. T

  4. A Hybrid Heuristic Optimization Approach for Leak Detection in Pipe Networks Using Ordinal Optimization Approach and the Symbiotic Organism Search

    Directory of Open Access Journals (Sweden)

    Chao-Chih Lin

    2017-10-01

    Full Text Available A new transient-based hybrid heuristic approach is developed to optimize a transient generation process and to detect leaks in pipe networks. The approach couples the ordinal optimization approach (OOA and the symbiotic organism search (SOS to solve the optimization problem by means of iterations. A pipe network analysis model (PNSOS is first used to determine steady-state head distribution and pipe flow rates. The best transient generation point and its relevant valve operation parameters are optimized by maximizing the objective function of transient energy. The transient event is created at the chosen point, and the method of characteristics (MOC is used to analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial organisms with leak information. The SOS is employed to determine the leaks by minimizing the sum of differences between simulated and computed head at the observation points. Two synthetic leaking scenarios, a simple pipe network and a water distribution network (WDN, are chosen to test the performance of leak detection ordinal symbiotic organism search (LDOSOS. Leak information can be accurately identified by the proposed approach for both of the scenarios. The presented technique makes a remarkable contribution to the success of leak detection in the pipe networks.

  5. Vector-model-supported approach in prostate plan optimization

    International Nuclear Information System (INIS)

    Liu, Eva Sau Fan; Wu, Vincent Wing Cheung; Harris, Benjamin; Lehman, Margot; Pryor, David; Chan, Lawrence Wing Chi

    2017-01-01

    Lengthy time consumed in traditional manual plan optimization can limit the use of step-and-shoot intensity-modulated radiotherapy/volumetric-modulated radiotherapy (S&S IMRT/VMAT). A vector model base, retrieving similar radiotherapy cases, was developed with respect to the structural and physiologic features extracted from the Digital Imaging and Communications in Medicine (DICOM) files. Planning parameters were retrieved from the selected similar reference case and applied to the test case to bypass the gradual adjustment of planning parameters. Therefore, the planning time spent on the traditional trial-and-error manual optimization approach in the beginning of optimization could be reduced. Each S&S IMRT/VMAT prostate reference database comprised 100 previously treated cases. Prostate cases were replanned with both traditional optimization and vector-model-supported optimization based on the oncologists' clinical dose prescriptions. A total of 360 plans, which consisted of 30 cases of S&S IMRT, 30 cases of 1-arc VMAT, and 30 cases of 2-arc VMAT plans including first optimization and final optimization with/without vector-model-supported optimization, were compared using the 2-sided t-test and paired Wilcoxon signed rank test, with a significance level of 0.05 and a false discovery rate of less than 0.05. For S&S IMRT, 1-arc VMAT, and 2-arc VMAT prostate plans, there was a significant reduction in the planning time and iteration with vector-model-supported optimization by almost 50%. When the first optimization plans were compared, 2-arc VMAT prostate plans had better plan quality than 1-arc VMAT plans. The volume receiving 35 Gy in the femoral head for 2-arc VMAT plans was reduced with the vector-model-supported optimization compared with the traditional manual optimization approach. Otherwise, the quality of plans from both approaches was comparable. Vector-model-supported optimization was shown to offer much shortened planning time and iteration

  6. Vector-model-supported approach in prostate plan optimization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Eva Sau Fan [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong); Wu, Vincent Wing Cheung [Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong); Harris, Benjamin [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); Lehman, Margot; Pryor, David [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); School of Medicine, University of Queensland (Australia); Chan, Lawrence Wing Chi, E-mail: wing.chi.chan@polyu.edu.hk [Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong)

    2017-07-01

    Lengthy time consumed in traditional manual plan optimization can limit the use of step-and-shoot intensity-modulated radiotherapy/volumetric-modulated radiotherapy (S&S IMRT/VMAT). A vector model base, retrieving similar radiotherapy cases, was developed with respect to the structural and physiologic features extracted from the Digital Imaging and Communications in Medicine (DICOM) files. Planning parameters were retrieved from the selected similar reference case and applied to the test case to bypass the gradual adjustment of planning parameters. Therefore, the planning time spent on the traditional trial-and-error manual optimization approach in the beginning of optimization could be reduced. Each S&S IMRT/VMAT prostate reference database comprised 100 previously treated cases. Prostate cases were replanned with both traditional optimization and vector-model-supported optimization based on the oncologists' clinical dose prescriptions. A total of 360 plans, which consisted of 30 cases of S&S IMRT, 30 cases of 1-arc VMAT, and 30 cases of 2-arc VMAT plans including first optimization and final optimization with/without vector-model-supported optimization, were compared using the 2-sided t-test and paired Wilcoxon signed rank test, with a significance level of 0.05 and a false discovery rate of less than 0.05. For S&S IMRT, 1-arc VMAT, and 2-arc VMAT prostate plans, there was a significant reduction in the planning time and iteration with vector-model-supported optimization by almost 50%. When the first optimization plans were compared, 2-arc VMAT prostate plans had better plan quality than 1-arc VMAT plans. The volume receiving 35 Gy in the femoral head for 2-arc VMAT plans was reduced with the vector-model-supported optimization compared with the traditional manual optimization approach. Otherwise, the quality of plans from both approaches was comparable. Vector-model-supported optimization was shown to offer much shortened planning time and iteration

  7. Architectural Analysis of Dynamically Reconfigurable Systems

    Science.gov (United States)

    Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly

    2010-01-01

    oTpics include: the problem (increased flexibility of architectural styles decrease analyzability, behavior emerges and varies depending on the configuration, does the resulting system run according to the intended design, and architectural decisions can impede or facilitate testing); top down approach to architecture analysis, detection of defects and deviations, and architecture and its testability; currently targeted projects GMSEC and CFS; analyzing software architectures; analyzing runtime events; actual architecture recognition; GMPUB in Dynamic SAVE; sample output from new approach; taking message timing delays into account; CFS examples of architecture and testability; some recommendations for improved testablity; and CFS examples of abstract interfaces and testability; CFS example of opening some internal details.

  8. Enterprise architecture patterns practical solutions for recurring IT-architecture problems

    CERN Document Server

    Perroud, Thierry

    2013-01-01

    Every enterprise architect faces similar problems when designing and governing the enterprise architecture of a medium to large enterprise. Design patterns are a well-established concept in software engineering, used to define universally applicable solution schemes. By applying this approach to enterprise architectures, recurring problems in the design and implementation of enterprise architectures can be solved over all layers, from the business layer to the application and data layer down to the technology layer.Inversini and Perroud describe patterns at the level of enterprise architecture

  9. Application of ant colony Algorithm and particle swarm optimization in architectural design

    Science.gov (United States)

    Song, Ziyi; Wu, Yunfa; Song, Jianhua

    2018-02-01

    By studying the development of ant colony algorithm and particle swarm algorithm, this paper expounds the core idea of the algorithm, explores the combination of algorithm and architectural design, sums up the application rules of intelligent algorithm in architectural design, and combines the characteristics of the two algorithms, obtains the research route and realization way of intelligent algorithm in architecture design. To establish algorithm rules to assist architectural design. Taking intelligent algorithm as the beginning of architectural design research, the authors provide the theory foundation of ant colony Algorithm and particle swarm algorithm in architectural design, popularize the application range of intelligent algorithm in architectural design, and provide a new idea for the architects.

  10. Quantifying loopy network architectures.

    Directory of Open Access Journals (Sweden)

    Eleni Katifori

    Full Text Available Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes from the metric topology (connectivity and edge weight and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  11. ePix: a class of architectures for second generation LCLS cameras

    International Nuclear Information System (INIS)

    Dragone, A; Caragiulo, P; Markovic, B; Herbst, R; Reese, B; Herrmann, S C; Hart, P A; Segal, J; Carini, G A; Kenney, C J; Haller, G

    2014-01-01

    ePix is a novel class of ASIC architectures, based on a common platform, optimized to build modular scalable detectors for LCLS. The platform architecture is composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog-to-digital converters per column. It also implements a dedicated control interface and all the required support electronics to perform configuration, calibration and readout of the matrix. Based on this platform a class of front-end ASICs and several camera modules, meeting different requirements, can be developed by designing specific pixel architectures. This approach reduces development time and expands the possibility of integration of detector modules with different size, shape or functionality in the same camera. The ePix platform is currently under development together with the first two integrating pixel architectures: ePix100 dedicated to ultra low noise applications and ePix10k for high dynamic range applications.

  12. Information Integration Architecture Development

    OpenAIRE

    Faulkner, Stéphane; Kolp, Manuel; Nguyen, Duy Thai; Coyette, Adrien; Do, Thanh Tung; 16th International Conference on Software Engineering and Knowledge Engineering

    2004-01-01

    Multi-Agent Systems (MAS) architectures are gaining popularity for building open, distributed, and evolving software required by systems such as information integration applications. Unfortunately, despite considerable work in software architecture during the last decade, few research efforts have aimed at truly defining patterns and languages for designing such multiagent architectures. We propose a modern approach based on organizational structures and architectural description lan...

  13. Software architecture evolution

    DEFF Research Database (Denmark)

    Barais, Olivier; Le Meur, Anne-Francoise; Duchien, Laurence

    2008-01-01

    Software architectures must frequently evolve to cope with changing requirements, and this evolution often implies integrating new concerns. Unfortunately, when the new concerns are crosscutting, existing architecture description languages provide little or no support for this kind of evolution....... The software architect must modify multiple elements of the architecture manually, which risks introducing inconsistencies. This chapter provides an overview, comparison and detailed treatment of the various state-of-the-art approaches to describing and evolving software architectures. Furthermore, we discuss...... one particular framework named Tran SAT, which addresses the above problems of software architecture evolution. Tran SAT provides a new element in the software architecture descriptions language, called an architectural aspect, for describing new concerns and their integration into an existing...

  14. Optimizing the Betts-Miller-Janjic cumulus parameterization with Intel Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.-L.

    2015-10-01

    The schemes of cumulus parameterization are responsible for the sub-grid-scale effects of convective and/or shallow clouds, and intended to represent vertical fluxes due to unresolved updrafts and downdrafts and compensating motion outside the clouds. Some schemes additionally provide cloud and precipitation field tendencies in the convective column, and momentum tendencies due to convective transport of momentum. The schemes all provide the convective component of surface rainfall. Betts-Miller-Janjic (BMJ) is one scheme to fulfill such purposes in the weather research and forecast (WRF) model. National Centers for Environmental Prediction (NCEP) has tried to optimize the BMJ scheme for operational application. As there are no interactions among horizontal grid points, this scheme is very suitable for parallel computation. With the advantage of Intel Xeon Phi Many Integrated Core (MIC) architecture, efficient parallelization and vectorization essentials, it allows us to optimize the BMJ scheme. If compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670, the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.4x and 17.0x, respectively.

  15. Reliability-based optimal structural design by the decoupling approach

    International Nuclear Information System (INIS)

    Royset, J.O.; Der Kiureghian, A.; Polak, E.

    2001-01-01

    A decoupling approach for solving optimal structural design problems involving reliability terms in the objective function, the constraint set or both is discussed and extended. The approach employs a reformulation of each problem, in which reliability terms are replaced by deterministic functions. The reformulated problems can be solved by existing semi-infinite optimization algorithms and computational reliability methods. It is shown that the reformulated problems produce solutions that are identical to those of the original problems when the limit-state functions defining the reliability problem are affine. For nonaffine limit-state functions, approximate solutions are obtained by solving series of reformulated problems. An important advantage of the approach is that the required reliability and optimization calculations are completely decoupled, thus allowing flexibility in the choice of the optimization algorithm and the reliability computation method

  16. A Cooperative Coevolution Approach to Automate Pattern-based Software Architectural Synthesis

    NARCIS (Netherlands)

    Xu, Y.R.; Liang, P.

    2014-01-01

    To reuse successful experience in software architecture design, architects use architectural patterns as reusable architectural knowledge for architectural synthesis. However, it has been observed that the resulting architecture does not always conform to the initial architectural patterns employed.

  17. Scaling Watershed Models: Modern Approaches to Science Computation with MapReduce, Parallelization, and Cloud Optimization

    Science.gov (United States)

    Environmental models are products of the computer architecture and software tools available at the time of development. Scientifically sound algorithms may persist in their original state even as system architectures and software development approaches evolve and progress. Dating...

  18. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  19. Development of enterprise architecture management methodology for teaching purposes

    Directory of Open Access Journals (Sweden)

    Dmitry V. Kudryavtsev

    2017-01-01

    Full Text Available Enterprise architecture is considered as a certain object of management, providing in business a general view of the enterprise and the mutual alignment of parts of this enterprise into a single whole, and as the discipline that arose based on this object. The architectural approach to the modeling and design of the enterprise originally arose in the field of information technology and was used to design information systems and technical infrastructure, as well as formalize business requirements. Since the early 2000’s enterprise architecture is increasingly used in organizational development and business transformation projects, especially if information technologies are involved. Enterprise architecture allows describing, analyzing and designing the company from the point of view of its structure, functioning and goal setting (motivation.In the context of this approach, the enterprise is viewed as a system of services, processes, goals and performance indicators, organizational units, information systems, data, technical facilities, etc. Enterprise architecture implements the idea of a systematic approach to managing and changing organizations in the digital economy where business is strongly dependent on information technologies.This increases the relevance of the suggested approach at the present time, when companies need to create and successfully implement a digital business strategy.Teaching enterprise architecture in higher educational institutions is a difficult task due to the interdisciplinary of this subject, its generalized nature and close connection with practical experience. In addition, modern enterprise architecture management methodologies are complex for students and contain many details that are relevant for individual situations.The paper proposes a simplified methodology for enterprise architecture management, which on the one hand will be comprehensible to students, and on the other hand, it will allow students to apply

  20. An Optimizing Compiler for Petascale I/O on Leadership-Class Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Kandemir, Mahmut Taylan [PSU; Choudary, Alok [Northwestern; Thakur, Rajeev [ANL

    2014-03-01

    In high-performance computing (HPC), parallel I/O architectures usually have very complex hierarchies with multiple layers that collectively constitute an I/O stack, including high-level I/O libraries such as PnetCDF and HDF5, I/O middleware such as MPI-IO, and parallel file systems such as PVFS and Lustre. Our DOE project explored automated instrumentation and compiler support for I/O intensive applications. Our project made significant progress towards understanding the complex I/O hierarchies of high-performance storage systems (including storage caches, HDDs, and SSDs), and designing and implementing state-of-the-art compiler/runtime system technology that targets I/O intensive HPC applications that target leadership class machine. This final report summarizes the major achievements of the project and also points out promising future directions Two new sections in this report compared to the previous report are IOGenie and SSD/NVM-specific optimizations.

  1. Enterprise architecture management

    DEFF Research Database (Denmark)

    Rahimi, Fatemeh; Gøtze, John; Møller, Charles

    2017-01-01

    Despite the growing interest in enterprise architecture management, researchers and practitioners lack a shared understanding of its applications in organizations. Building on findings from a literature review and eight case studies, we develop a taxonomy that categorizes applications of enterprise...... architecture management based on three classes of enterprise architecture scope. Organizations may adopt enterprise architecture management to help form, plan, and implement IT strategies; help plan and implement business strategies; or to further complement the business strategy-formation process....... The findings challenge the traditional IT-centric view of enterprise architecture management application and suggest enterprise architecture management as an approach that could support the consistent design and evolution of an organization as a whole....

  2. Enterprise architecture management

    DEFF Research Database (Denmark)

    Rahimi, Fatemeh; Gøtze, John; Møller, Charles

    2017-01-01

    architecture management based on three classes of enterprise architecture scope. Organizations may adopt enterprise architecture management to help form, plan, and implement IT strategies; help plan and implement business strategies; or to further complement the business strategy-formation process......Despite the growing interest in enterprise architecture management, researchers and practitioners lack a shared understanding of its applications in organizations. Building on findings from a literature review and eight case studies, we develop a taxonomy that categorizes applications of enterprise....... The findings challenge the traditional IT-centric view of enterprise architecture management application and suggest enterprise architecture management as an approach that could support the consistent design and evolution of an organization as a whole....

  3. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures

    Science.gov (United States)

    Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2016-05-01

    In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.

  4. Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach.

    Science.gov (United States)

    Zhang, Gen; Tsujimoto, Masahiko; Packwood, Daniel; Duong, Nghia Tuan; Nishiyama, Yusuke; Kadota, Kentaro; Kitagawa, Susumu; Horike, Satoshi

    2018-02-21

    Covalent organic frameworks (COFs) represent an emerging class of crystalline porous materials that are constructed by the assembly of organic building blocks linked via covalent bonds. Several strategies have been developed for the construction of new COF structures; however, a facile approach to fabricate hierarchical COF architectures with controlled domain structures remains a significant challenge, and has not yet been achieved. In this study, a dynamic covalent chemistry (DCC)-based postsynthetic approach was employed at the solid-liquid interface to construct such structures. Two-dimensional imine-bonded COFs having different aromatic groups were prepared, and a homogeneously mixed-linker structure and a heterogeneously core-shell hollow structure were fabricated by controlling the reactivity of the postsynthetic reactions. Solid-state nuclear magnetic resonance (NMR) spectroscopy and transmission electron microscopy (TEM) confirmed the structures. COFs prepared by a postsynthetic approach exhibit several functional advantages compared with their parent phases. Their Brunauer-Emmett-Teller (BET) surface areas are 2-fold greater than those of their parent phases because of the higher crystallinity. In addition, the hydrophilicity of the material and the stepwise adsorption isotherms of H 2 O vapor in the hierarchical frameworks were precisely controlled, which was feasible because of the distribution of various domains of the two COFs by controlling the postsynthetic reaction. The approach opens new routes for constructing COF architectures with functionalities that are not possible in a single phase.

  5. Optimal energy management strategy for self-reconfigurable batteries

    International Nuclear Information System (INIS)

    Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter

    2017-01-01

    This paper proposes a novel energy management strategy for multi-cell high voltage batteries where the current through each cell can be controlled, called self-reconfigurable batteries. An optimized control strategy further enhances the energy efficiency gained by the hardware architecture of those batteries. Currently, achieving cell equalization by using the active balancing circuits is considered as the best way to optimize the energy efficiency of the battery pack. This study demonstrates that optimizing the energy efficiency of self-reconfigurable batteries is no more strongly correlated to the cell balancing. According to the features of this novel battery architecture, the energy management strategy is formulated as nonlinear dynamic optimization problem. To solve this optimal control, an optimization algorithm that generates the optimal discharge policy for a given driving cycle is developed based on dynamic programming and code vectorization. The simulation results show that the designed energy management strategy maximizes the system efficiency across the battery lifetime over conventional approaches. Furthermore, the present energy management strategy can be implemented online due to the reduced complexity of the optimization algorithm. - Highlights: • The energy efficiency of self-reconfigurable batteries is maximized. • The energy management strategy for the battery is formulated as optimal control problem. • Developing an optimization algorithm using dynamic programming techniques and code vectorization. • Simulation studies are conducted to validate the proposed optimal strategy.

  6. Compiling quantum circuits to realistic hardware architectures using temporal planners

    Science.gov (United States)

    Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy

    2018-04-01

    To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.

  7. Optimization of nonlinear controller with an enhanced biogeography approach

    Directory of Open Access Journals (Sweden)

    Mohammed Salem

    2014-07-01

    Full Text Available This paper is dedicated to the optimization of nonlinear controllers basing of an enhanced Biogeography Based Optimization (BBO approach. Indeed, The BBO is combined to a predator and prey model where several predators are used with introduction of a modified migration operator to increase the diversification along the optimization process so as to avoid local optima and reach the optimal solution quickly. The proposed approach is used in tuning the gains of PID controller for nonlinear systems. Simulations are carried out over a Mass spring damper and an inverted pendulum and has given remarkable results when compared to genetic algorithm and BBO.

  8. The Impact of Basic Architectural Design

    DEFF Research Database (Denmark)

    Naboni, Emanuele; Malcangi, Antonio

    2015-01-01

    The research explores the impact of the shape, construction type, materials and components of buildings and users' scenarios – on buildings' key energy loads (heating, cooling and lighting) in Copenhagen's climate. Applying a genetic algorithm, a search space consisting of over 408,000 simulated ...... by proper basic design choices based on energy simulation coupled with genetic optimization. The Impact of Basic Architectural Design. Thinking beyond BR10 and Passivhaus Standard Prescriptions with the Use of Genetic Optimization (PDF Download Available). Available from: https......://www.researchgate.net/publication/287994281_The_Impact_of_Basic_Architectural_Design_Thinking_beyond_BR10_and_Passivhaus_Standard_Prescriptions_with_the_Use_of_Genetic_Optimization [accessed Jan 21, 2016]....

  9. Battery-Less Electroencephalogram System Architecture Optimization

    Science.gov (United States)

    2016-12-01

    self-powered, adaptive data acquisition, subthreshold, internet of things 34 Peter Gadfort 301-394-0949Unclassified Unclassified Unclassified UU ii...desirable, such as for Internet of Things systems. The presented architecture is capable of low- power operation while maintaining a similar signal...the system will need to be harvested from the environment. There are several methods to harvest power from RF, solar , motion, and thermal. In this case

  10. Robust Portfolio Optimization using CAPM Approach

    Directory of Open Access Journals (Sweden)

    mohsen gharakhani

    2013-08-01

    Full Text Available In this paper, a new robust model of multi-period portfolio problem has been developed. One of the key concerns in any asset allocation problem is how to cope with uncertainty about future returns. There are some approaches in the literature for this purpose including stochastic programming and robust optimization. Applying these techniques to multi-period portfolio problem may increase the problem size in a way that the resulting model is intractable. In this paper, a novel approach has been proposed to formulate multi-period portfolio problem as an uncertain linear program assuming that asset return follows the single-index factor model. Robust optimization technique has been also used to solve the problem. In order to evaluate the performance of the proposed model, a numerical example has been applied using simulated data.

  11. Soft computing approach for reliability optimization: State-of-the-art survey

    International Nuclear Information System (INIS)

    Gen, Mitsuo; Yun, Young Su

    2006-01-01

    In the broadest sense, reliability is a measure of performance of systems. As systems have grown more complex, the consequences of their unreliable behavior have become severe in terms of cost, effort, lives, etc., and the interest in assessing system reliability and the need for improving the reliability of products and systems have become very important. Most solution methods for reliability optimization assume that systems have redundancy components in series and/or parallel systems and alternative designs are available. Reliability optimization problems concentrate on optimal allocation of redundancy components and optimal selection of alternative designs to meet system requirement. In the past two decades, numerous reliability optimization techniques have been proposed. Generally, these techniques can be classified as linear programming, dynamic programming, integer programming, geometric programming, heuristic method, Lagrangean multiplier method and so on. A Genetic Algorithm (GA), as a soft computing approach, is a powerful tool for solving various reliability optimization problems. In this paper, we briefly survey GA-based approach for various reliability optimization problems, such as reliability optimization of redundant system, reliability optimization with alternative design, reliability optimization with time-dependent reliability, reliability optimization with interval coefficients, bicriteria reliability optimization, and reliability optimization with fuzzy goals. We also introduce the hybrid approaches for combining GA with fuzzy logic, neural network and other conventional search techniques. Finally, we have some experiments with an example of various reliability optimization problems using hybrid GA approach

  12. Hardware Genetic Algorithm Optimization by Critical Path Analysis using a Custom VLSI Architecture

    Directory of Open Access Journals (Sweden)

    Farouk Smith

    2015-07-01

    Full Text Available This paper propose a Virtual-Field Programmable Gate Array (V-FPGA architecture that allows direct access to its configuration bits to facilitate hardware evolution, thereby allowing any combinational or sequential digital circuit to be realized. By using the V-FPGA, this paper investigates two possible ways of making evolutionary hardware systems more scalable: by optimizing the system’s genetic algorithm (GA; and by decomposing the solution circuit into smaller, evolvable sub-circuits. GA optimization is done by: omitting a canonical GA’s crossover operator (i.e. by using a 1+λ algorithm; applying evolution constraints; and optimizing the fitness function. A noteworthy contribution this research has made is the in-depth analysis of the phenotypes’ CPs. Through analyzing the CPs, it has been shown that a great amount of insight can be gained into a phenotype’s fitness. We found that as the number of columns in the Cartesian Genetic Programming array increases, so the likelihood of an external output being placed in the column decreases. Furthermore, the number of used LEs per column also substantially decreases per added column. Finally, we demonstrated the evolution of a state-decomposed control circuit. It was shown that the evolution of each state’s sub-circuit was possible, and suggest that modular evolution can be a successful tool when dealing with scalability.

  13. How architecture students gain and apply knowledge of sustainable architecture

    DEFF Research Database (Denmark)

    Donovan, Elizabeth; Holder, Anna

    2016-01-01

    understandings of how architects synthesise different types of knowledge while designing, raising questions about the ‘match’ between educational experiences and subsequent behaviours in practice. Taking an example from Denmark, we outline the approach of Aarhus School of Architecture, where sustainability...... teaching is partially integrated within the design studio courses. We compare the institution’s philosophy for sustainability with pedagogical approaches as practiced within the school. An empirical study was made of 2nd year architecture student experiences of a one-month introduction course to ‘Reuse...... to be supported in gaining different types of knowledge (ie. propositional, experiential, applied) through different modes of learning. There are gaps to be bridged in education in order for the sustainability agenda to be fully integrated in architectural practice....

  14. BUBBLE UP: ALTERNATIVE APPROACHES TO RESEARCH IN THE ACADEMIC ARCHITECTURE STUDIO

    Directory of Open Access Journals (Sweden)

    Gregory Marinic

    2010-07-01

    Full Text Available Increased connectivity among the design disciplines has radically transformed the nature of building today. Architectural education must accordingly adapt to the emerging needs of our changing built environment by providing vital, flexible, and open learning environments. Pedagogies in the academy have typically been rooted in practices that are both reluctant to change and slow to address transformative forces in an honest and open manner. Regrettably, the resilience of such top-down methods continues to bias the lens of learning toward natural performers and the notion of singular genius. Authentic attempts to react to new demands and to introduce change are all too often met with both strong resistance and profound contempt by conservative critics. Mainline architectural academia continues to project a deep ambivalence to new methodologies, alternative approaches to context, broadened conceptual practices, and advanced visualization techniques. Yet such means provide a responsive and resilient structure to re-frame content, expedite delivery, and update pedagogical objectives for the next generation.

  15. Topology-oblivious optimization of MPI broadcast algorithms on extreme-scale platforms

    KAUST Repository

    Hasanov, Khalid; Quintin, Jean-Noë l; Lastovetsky, Alexey

    2015-01-01

    operations for particular architectures by taking into account either their topology or platform parameters. In this work we propose a simple but general approach to optimization of the legacy MPI broadcast algorithms, which are widely used in MPICH and Open

  16. Ancient Climatic Architectural Design Approach

    Directory of Open Access Journals (Sweden)

    Nasibeh Faghih

    2013-01-01

    Full Text Available Ancient climatic architecture had found out a series of appropriate responses for the best compatibility with the critical climate condition for instance, designing ‘earth sheltered houses’ and ‘courtyard houses’. They could provide human climatic comfort without excessive usage of fossil fuel resources. Owing to the normal thermal conditions in the ground depth, earth sheltered houses can be slightly affected by thermal fluctuations due to being within the earth. In depth further than 6.1 meters, temperature alternation is minute during the year, equaling to average annual temperature of outside. More to the point, courtyard buildings as another traditional design approach, have prepared controlled climatic space based on creating the maximum shade in the summer and maximum solar heat absorption in the winter. The courtyard houses served the multiple functions of lighting to the rooms, acting as a heat absorber in the summer and a radiator in the winter, as well as providing an open space inside for community activities. It must be noted that they divided into summer and winter zones located in south and north of the central courtyard where residents were replaced into them according to changing the seasons. Therefore, Ancient climatic buildings provided better human thermal comfort in comparison with the use contemporary buildings of recent years, except with the air conditioning

  17. Lattice Boltzmann Simulation Optimization on Leading Multicore Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine

    2008-02-01

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Clovertown, AMD Opteron X2, Sun Niagara2, STI Cell, as well as the single core Intel Itanium2. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned LBMHD application achieves up to a 14x improvement compared with the original code. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.

  18. Lattice Boltzmann simulation optimization on leading multicore platforms

    Energy Technology Data Exchange (ETDEWEB)

    Williams, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Carter, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shalf, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yelick, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2008-01-01

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of searchbased performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Clovertown, AMD Opteron X2, Sun Niagara2, STI Cell, as well as the single core Intel Itanium2. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our autotuned LBMHD application achieves up to a 14 improvement compared with the original code. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.

  19. Performative Computation-aided Design Optimization

    Directory of Open Access Journals (Sweden)

    Ming Tang

    2012-12-01

    Full Text Available This article discusses a collaborative research and teaching project between the University of Cincinnati, Perkins+Will’s Tech Lab, and the University of North Carolina Greensboro. The primary investigation focuses on the simulation, optimization, and generation of architectural designs using performance-based computational design approaches. The projects examine various design methods, including relationships between building form, performance and the use of proprietary software tools for parametric design.

  20. ISLAMIZATION OF CONTEMPORARY ARCHITECTURE: SHIFTING THE PARADIGM OF ISLAMIC ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Mustapha Ben- Hamouche

    2012-03-01

    Full Text Available Islamic architecture is often thought as a history course and thus finds its material limited to the cataloguing and studying of legacies of successive empires or various geographic regions of the Islamic world. In practice, adherent professionals tend to reproduce high styles such as Umayyad, Abassid, Fatimid, Ottoman, etc., or recycle well known elements such as the minarets, courtyards, and mashrabiyyahs. This approach, endorsed by the present comprehensive Islamic revival, is believed to be the way to defend and revitalize the identity of Muslim societies that was initially affected by colonization and now is being offended by globalization. However, this approach often clashes with the contemporary trends in architecture that do not necessarily oppose the essence of Islamic architecture. Furthermore, it sometimes lead to an erroneous belief that consists of relating a priori forms to Islam and that clashes with the timeless and universal character of the Islamic religion. The key question to be asked then is, beyond this historicist view, what would be an “Islamic architec-ture” of nowadays that originates from the essence of Islam and that responds to contemporary conditions, needs, aspirations of present Muslim societies and individuals. To what extends can Islamic architecture bene-fits from modern progress and contemporary thought in resurrecting itself without loosing its essence. The hypothesis of the study is that, just as early Muslim architecture started from the adoption, use and re-use of early pre-Islamic architectures before reaching originality, this process, called Islamization, could also take place nowadays with the contemporary thought that is mostly developed in Western and non-Islamic environ-ments. Mechanisms in Islam that allowed the “absorption” of pre-existing civilizations should thus structure the islamization approach and serve the scholars and professionals to reach the new Islamic architecture. The

  1. Business process architectures: overview, comparison and framework

    Science.gov (United States)

    Dijkman, Remco; Vanderfeesten, Irene; Reijers, Hajo A.

    2016-02-01

    With the uptake of business process modelling in practice, the demand grows for guidelines that lead to consistent and integrated collections of process models. The notion of a business process architecture has been explicitly proposed to address this. This paper provides an overview of the prevailing approaches to design a business process architecture. Furthermore, it includes evaluations of the usability and use of the identified approaches. Finally, it presents a framework for business process architecture design that can be used to develop a concrete architecture. The use and usability were evaluated in two ways. First, a survey was conducted among 39 practitioners, in which the opinion of the practitioners on the use and usefulness of the approaches was evaluated. Second, four case studies were conducted, in which process architectures from practice were analysed to determine the approaches or elements of approaches that were used in their design. Both evaluations showed that practitioners have a preference for using approaches that are based on reference models and approaches that are based on the identification of business functions or business objects. At the same time, the evaluations showed that practitioners use these approaches in combination, rather than selecting a single approach.

  2. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay.

    Science.gov (United States)

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs.

  3. Time-Predictable Computer Architecture

    Directory of Open Access Journals (Sweden)

    Schoeberl Martin

    2009-01-01

    Full Text Available Today's general-purpose processors are optimized for maximum throughput. Real-time systems need a processor with both a reasonable and a known worst-case execution time (WCET. Features such as pipelines with instruction dependencies, caches, branch prediction, and out-of-order execution complicate WCET analysis and lead to very conservative estimates. In this paper, we evaluate the issues of current architectures with respect to WCET analysis. Then, we propose solutions for a time-predictable computer architecture. The proposed architecture is evaluated with implementation of some features in a Java processor. The resulting processor is a good target for WCET analysis and still performs well in the average case.

  4. Minimizing transient influence in WHPA delineation: An optimization approach for optimal pumping rate schemes

    Science.gov (United States)

    Rodriguez-Pretelin, A.; Nowak, W.

    2017-12-01

    For most groundwater protection management programs, Wellhead Protection Areas (WHPAs) have served as primarily protection measure. In their delineation, the influence of time-varying groundwater flow conditions is often underestimated because steady-state assumptions are commonly made. However, it has been demonstrated that temporary variations lead to significant changes in the required size and shape of WHPAs. Apart from natural transient groundwater drivers (e.g., changes in the regional angle of flow direction and seasonal natural groundwater recharge), anthropogenic causes such as transient pumping rates are of the most influential factors that require larger WHPAs. We hypothesize that WHPA programs that integrate adaptive and optimized pumping-injection management schemes can counter transient effects and thus reduce the additional areal demand in well protection under transient conditions. The main goal of this study is to present a novel management framework that optimizes pumping schemes dynamically, in order to minimize the impact triggered by transient conditions in WHPA delineation. For optimizing pumping schemes, we consider three objectives: 1) to minimize the risk of pumping water from outside a given WHPA, 2) to maximize the groundwater supply and 3) to minimize the involved operating costs. We solve transient groundwater flow through an available transient groundwater and Lagrangian particle tracking model. The optimization problem is formulated as a dynamic programming problem. Two different optimization approaches are explored: I) the first approach aims for single-objective optimization under objective (1) only. The second approach performs multiobjective optimization under all three objectives where compromise pumping rates are selected from the current Pareto front. Finally, we look for WHPA outlines that are as small as possible, yet allow the optimization problem to find the most suitable solutions.

  5. A Constructive Data Classification Version of the Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Alexandre Szabo

    2013-01-01

    Full Text Available The particle swarm optimization algorithm was originally introduced to solve continuous parameter optimization problems. It was soon modified to solve other types of optimization tasks and also to be applied to data analysis. In the latter case, however, there are few works in the literature that deal with the problem of dynamically building the architecture of the system. This paper introduces new particle swarm algorithms specifically designed to solve classification problems. The first proposal, named Particle Swarm Classifier (PSClass, is a derivation of a particle swarm clustering algorithm and its architecture, as in most classifiers, is pre-defined. The second proposal, named Constructive Particle Swarm Classifier (cPSClass, uses ideas from the immune system to automatically build the swarm. A sensitivity analysis of the growing procedure of cPSClass and an investigation into a proposed pruning procedure for this algorithm are performed. The proposals were applied to a wide range of databases from the literature and the results show that they are competitive in relation to other approaches, with the advantage of having a dynamically constructed architecture.

  6. Cross Layer Optimization and Simulation of Smart Grid Home Area Network

    Directory of Open Access Journals (Sweden)

    Lipi K. Chhaya

    2018-01-01

    Full Text Available An electrical “Grid” is a network that carries electricity from power plants to customer premises. Smart Grid is an assimilation of electrical and communication infrastructure. Smart Grid is characterized by bidirectional flow of electricity and information. Smart Grid is a complex network with hierarchical architecture. Realization of complete Smart Grid architecture necessitates diverse set of communication standards and protocols. Communication network protocols are engineered and established on the basis of layered approach. Each layer is designed to produce an explicit functionality in association with other layers. Layered approach can be modified with cross layer approach for performance enhancement. Complex and heterogeneous architecture of Smart Grid demands a deviation from primitive approach and reworking of an innovative approach. This paper describes a joint or cross layer optimization of Smart Grid home/building area network based on IEEE 802.11 standard using RIVERBED OPNET network design and simulation tool. The network performance can be improved by selecting various parameters pertaining to different layers. Simulation results are obtained for various parameters such as WLAN throughput, delay, media access delay, and retransmission attempts. The graphical results show that various parameters have divergent effects on network performance. For example, frame aggregation decreases overall delay but the network throughput is also reduced. To prevail over this effect, frame aggregation is used in combination with RTS and fragmentation mechanisms. The results show that this combination notably improves network performance. Higher value of buffer size considerably increases throughput but the delay is also greater and thus the choice of optimum value of buffer size is inevitable for network performance optimization. Parameter optimization significantly enhances the performance of a designed network. This paper is expected to serve

  7. Use of PRA techniques to optimize the design of the IRIS nuclear power plant

    International Nuclear Information System (INIS)

    Muhlheim, M.D.; Cletcher, J.W. II

    2003-01-01

    True design optimization of a plants inherent safety and performance characteristics results when a probabilistic risk assessment (PRA) is integrated with the plant-level design process. This is the approach being used throughout the design of the International Reactor Innovative and Secure (IRIS) nuclear power plant to maximize safety. A risk-based design optimization tool employing a 'one-button' architecture is being developed by the Oak Ridge National Laboratory to evaluate design changes; new modeling approaches, methods, or theories modeling uncertainties and completeness; physical assumptions; and data changes on component, cabinet, train, and system bases. Unlike current PRAs, the one-button architecture allows components, modules, and data to be interchanged at will with the probabilistic effect immediately apparent. Because all of the current and previous design, and data sets are available via the one-button architecture, the safety ramifications of design options are evaluated, feedback on design alternatives is immediate, and true optimization and understanding can be achieved. Thus, for the first time, PRA analysts and designers can easily determine the probabilistic implications of different design configurations and operating conditions in various combinations for the entire range of initiating events. The power of the one-button architecture becomes evident by the number of design alternatives that can be evaluated C11 component choices yielded 160 design alternatives. Surprisingly, the lessons learned can be counter-intuitive and significant. For example, one of the alternative designs for IRIS evaluated via this architecture revealed that because of common-cause failure probabilities, using the most reliable components actually decreased systems' reliability. (author)

  8. Optimized batteries for cars with dual electrical architecture

    Science.gov (United States)

    Douady, J. P.; Pascon, C.; Dugast, A.; Fossati, G.

    During recent years, the increase in car electrical equipment has led to many problems with traditional starter batteries (such as cranking failure due to flat batteries, battery cycling etc.). The main causes of these problems are the double function of the automotive battery (starter and service functions) and the difficulties in designing batteries well adapted to these two functions. In order to solve these problems a new concept — the dual-concept — has been developed with two separate batteries: one battery is dedicated to the starter function and the other is dedicated to the service function. Only one alternator charges the two batteries with a separation device between the two electrical circuits. The starter battery is located in the engine compartment while the service battery is located at the rear of the car. From the analysis of new requirements, battery designs have been optimized regarding the two types of functions: (i) a small battery with high specific power for the starting function; for this function a flooded battery with lead-calcium alloy grids and thin plates is proposed; (ii) for the service function, modified sealed gas-recombinant batteries with cycling and deep-discharge ability have been developed. The various advantages of the dual-concept are studied in terms of starting reliability, battery weight, and voltage supply. The operating conditions of the system and several dual electrical architectures have also been studied in the laboratory and the car. The feasibility of the concept is proved.

  9. RF cavity design exploiting a new derivative-free trust region optimization approach

    Directory of Open Access Journals (Sweden)

    Abdel-Karim S.O. Hassan

    2015-11-01

    Full Text Available In this article, a novel derivative-free (DF surrogate-based trust region optimization approach is proposed. In the proposed approach, quadratic surrogate models are constructed and successively updated. The generated surrogate model is then optimized instead of the underlined objective function over trust regions. Truncated conjugate gradients are employed to find the optimal point within each trust region. The approach constructs the initial quadratic surrogate model using few data points of order O(n, where n is the number of design variables. The proposed approach adopts weighted least squares fitting for updating the surrogate model instead of interpolation which is commonly used in DF optimization. This makes the approach more suitable for stochastic optimization and for functions subject to numerical error. The weights are assigned to give more emphasis to points close to the current center point. The accuracy and efficiency of the proposed approach are demonstrated by applying it to a set of classical bench-mark test problems. It is also employed to find the optimal design of RF cavity linear accelerator with a comparison analysis with a recent optimization technique.

  10. System design in an evolving system-of-systems architecture and concept of operations

    Science.gov (United States)

    Rovekamp, Roger N., Jr.

    Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.

  11. Convenience of Statistical Approach in Studies of Architectural Ornament and Other Decorative Elements Specific Application

    Science.gov (United States)

    Priemetz, O.; Samoilov, K.; Mukasheva, M.

    2017-11-01

    An ornament is an actual phenomenon of the architecture modern theory, a common element in the practice of design and construction. It has been an important aspect of shaping for millennia. The description of the methods of its application occupies a large place in the studies on the theory and practice of architecture. However, the problem of the saturation of compositions with ornamentation, the specificity of its themes and forms have not been sufficiently studied yet. This aspect requires accumulation of additional knowledge. The application of quantitative methods for the plastic solutions types and a thematic diversity of facade compositions of buildings constructed in different periods creates another tool for an objective analysis of ornament development. It demonstrates the application of this approach for studying the features of the architectural development in Kazakhstan at the end of the XIX - XXI centuries.

  12. The hybrid thermography approach applied to architectural structures

    Science.gov (United States)

    Sfarra, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; Pasqualoni, G.

    2017-07-01

    This work contains an overview of infrared thermography (IRT) method and its applications relating to the investigation of architectural structures. In this method, the passive approach is usually used in civil engineering, since it provides a panoramic view of the thermal anomalies to be interpreted also thanks to the use of photographs focused on the region of interest (ROI). The active approach, is more suitable for laboratory or indoor inspections, as well as for objects having a small size. The external stress to be applied is thermal, coming from non-natural apparatus such as lamps or hot / cold air jets. In addition, the latter permits to obtain quantitative information related to defects not detectable to the naked eyes. Very recently, the hybrid thermography (HIRT) approach has been introduced to the attention of the scientific panorama. It can be applied when the radiation coming from the sun, directly arrives (i.e., possibly without the shadow cast effect) on a surface exposed to the air. A large number of thermograms must be collected and a post-processing analysis is subsequently applied via advanced algorithms. Therefore, an appraisal of the defect depth can be obtained passing through the calculation of the combined thermal diffusivity of the materials above the defect. The approach is validated herein by working, in a first stage, on a mosaic sample having known defects while, in a second stage, on a Church built in L'Aquila (Italy) and covered with a particular masonry structure called apparecchio aquilano. The results obtained appear promising.

  13. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression, Experiment Development

    Science.gov (United States)

    Miller, Christopher J.; Goodrick, Dan

    2017-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads. The subject of this paper is the design of the optimal control architecture, and provides the reader with some techniques for tailoring the architecture, along with detailed simulation results.

  14. Collaborative design of parametric sustainable architecture

    NARCIS (Netherlands)

    Hubers, H.

    2011-01-01

    Sustainable architecture is complex. Many aspects, differently important to many stakeholders, are to be optimized. BIM should be used for this. Building Information Modelling is a collaborative process where all stakeholders integrate and optimize their information in a digital 3D model. Sometimes

  15. Collaborative Design of Parametric Sustainable Architecture

    NARCIS (Netherlands)

    Hubers, J.C.

    2012-01-01

    Sustainable architecture is complex. Many aspects, differently important to many stakeholders, are to be optimized. BIM should be used for this. Building Information Modellingis a collaborative process where all stakeholders integrate and optimize their information in a digital 3D model. Sometimes

  16. Architectural Strategies for Enabling Data-Driven Science at Scale

    Science.gov (United States)

    Crichton, D. J.; Law, E. S.; Doyle, R. J.; Little, M. M.

    2017-12-01

    The analysis of large data collections from NASA or other agencies is often executed through traditional computational and data analysis approaches, which require users to bring data to their desktops and perform local data analysis. Alternatively, data are hauled to large computational environments that provide centralized data analysis via traditional High Performance Computing (HPC). Scientific data archives, however, are not only growing massive, but are also becoming highly distributed. Neither traditional approach provides a good solution for optimizing analysis into the future. Assumptions across the NASA mission and science data lifecycle, which historically assume that all data can be collected, transmitted, processed, and archived, will not scale as more capable instruments stress legacy-based systems. New paradigms are needed to increase the productivity and effectiveness of scientific data analysis. This paradigm must recognize that architectural and analytical choices are interrelated, and must be carefully coordinated in any system that aims to allow efficient, interactive scientific exploration and discovery to exploit massive data collections, from point of collection (e.g., onboard) to analysis and decision support. The most effective approach to analyzing a distributed set of massive data may involve some exploration and iteration, putting a premium on the flexibility afforded by the architectural framework. The framework should enable scientist users to assemble workflows efficiently, manage the uncertainties related to data analysis and inference, and optimize deep-dive analytics to enhance scalability. In many cases, this "data ecosystem" needs to be able to integrate multiple observing assets, ground environments, archives, and analytics, evolving from stewardship of measurements of data to using computational methodologies to better derive insight from the data that may be fused with other sets of data. This presentation will discuss

  17. Efficient approach for reliability-based optimization based on weighted importance sampling approach

    International Nuclear Information System (INIS)

    Yuan, Xiukai; Lu, Zhenzhou

    2014-01-01

    An efficient methodology is presented to perform the reliability-based optimization (RBO). It is based on an efficient weighted approach for constructing an approximation of the failure probability as an explicit function of the design variables which is referred to as the ‘failure probability function (FPF)’. It expresses the FPF as a weighted sum of sample values obtained in the simulation-based reliability analysis. The required computational effort for decoupling in each iteration is just single reliability analysis. After the approximation of the FPF is established, the target RBO problem can be decoupled into a deterministic one. Meanwhile, the proposed weighted approach is combined with a decoupling approach and a sequential approximate optimization framework. Engineering examples are given to demonstrate the efficiency and accuracy of the presented methodology

  18. Optimized readout configuration for PIXE spectrometers based on Silicon Drift Detectors: Architecture and performance

    International Nuclear Information System (INIS)

    Alberti, R.; Grassi, N.; Guazzoni, C.; Klatka, T.

    2009-01-01

    An optimized readout configuration based on a charge preamplifier with pulsed-reset has been designed for Silicon Drift Detectors (SDDs) to be used in Particle Induced X-ray Emission (PIXE) measurements. The customized readout electronics is able to manage the large pulses originated by the protons backscattered from the target material that would otherwise cause significant degradation of X-ray spectra and marked increase in dead time. In this way, the excellent performance of SDDs can be exploited in high-quality proton-induced spectroscopy of low- and medium-energy X-rays. This paper describes the designed readout architecture and the performance characterization carried out in a PIXE setup with MeV proton beams.

  19. Optimizing queries in distributed systems

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2006-01-01

    Full Text Available This research presents the main elements of query optimizations in distributed systems. First, data architecture according with system level architecture in a distributed environment is presented. Then the architecture of a distributed database management system (DDBMS is described on conceptual level followed by the presentation of the distributed query execution steps on these information systems. The research ends with presentation of some aspects of distributed database query optimization and strategies used for that.

  20. Computing Optimal Stochastic Portfolio Execution Strategies: A Parametric Approach Using Simulations

    Science.gov (United States)

    Moazeni, Somayeh; Coleman, Thomas F.; Li, Yuying

    2010-09-01

    Computing optimal stochastic portfolio execution strategies under appropriate risk consideration presents great computational challenge. We investigate a parametric approach for computing optimal stochastic strategies using Monte Carlo simulations. This approach allows reduction in computational complexity by computing coefficients for a parametric representation of a stochastic dynamic strategy based on static optimization. Using this technique, constraints can be similarly handled using appropriate penalty functions. We illustrate the proposed approach to minimize the expected execution cost and Conditional Value-at-Risk (CVaR).

  1. Design health village with the approach of sustainable architecture ...

    African Journals Online (AJOL)

    Journal Home > Vol 8, No 3 (2016) > ... a natural environment and away from the pollution of urban life , traditional medical care, hydrotherapy, sports and ... Keywords: Health; city health; smart; sustainability in architecture; architectural design ...

  2. Distributed Cooperative Optimal Control for Multiagent Systems on Directed Graphs: An Inverse Optimal Approach.

    Science.gov (United States)

    Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing

    2015-07-01

    In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.

  3. Quantum Resonance Approach to Combinatorial Optimization

    Science.gov (United States)

    Zak, Michail

    1997-01-01

    It is shown that quantum resonance can be used for combinatorial optimization. The advantage of the approach is in independence of the computing time upon the dimensionality of the problem. As an example, the solution to a constraint satisfaction problem of exponential complexity is demonstrated.

  4. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay

    Science.gov (United States)

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs. PMID:23833548

  5. GPAW optimized for Blue Gene/P using hybrid programming

    DEFF Research Database (Denmark)

    Kristensen, Mads Ruben Burgdorff; Happe, Hans Henrik; Vinter, Brian

    2009-01-01

    In this work we present optimizations of a Grid-based projector-augmented wave method software, GPAW for the Blue Gene/P architecture. The improvements are achieved by exploring the advantage of shared and distributed memory programming also known as hybrid programming. The work focuses on optimi......In this work we present optimizations of a Grid-based projector-augmented wave method software, GPAW for the Blue Gene/P architecture. The improvements are achieved by exploring the advantage of shared and distributed memory programming also known as hybrid programming. The work focuses...... on optimizing a very time consuming operation in GPAW, the finite-different stencil operation, and different hybrid programming approaches are evaluated. The work succeeds in demonstrating a hybrid programming model which is clearly beneficial compared to the original flat programming model. In total...... an improvement of 1.94 compared to the original implementation is obtained. The results we demonstrate here are reasonably general and may be applied to other finite difference codes....

  6. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    Science.gov (United States)

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  7. Architectural Theatricality

    DEFF Research Database (Denmark)

    Tvedebrink, Tenna Doktor Olsen

    environments and a knowledge gap therefore exists in present hospital designs. Consequently, the purpose of this thesis has been to investigate if any research-based knowledge exist supporting the hypothesis that the interior architectural qualities of eating environments influence patient food intake, health...... and well-being, as well as outline a set of basic design principles ‘predicting’ the future interior architectural qualities of patient eating environments. Methodologically the thesis is based on an explorative study employing an abductive approach and hermeneutic-interpretative strategy utilizing tactics...... and food intake, as well as a series of references exist linking the interior architectural qualities of healthcare environments with the health and wellbeing of patients. On the basis of these findings, the thesis presents the concept of Architectural Theatricality as well as a set of design principles...

  8. Franz Kafka in the Design Studio: A Hermeneutic-Phenomenological Approach to Architectural Design Education

    Science.gov (United States)

    Hisarligil, Beyhan Bolak

    2012-01-01

    This article demonstrates the outcomes of taking a hermeneutic phenomenological approach to architectural design and discusses the potentials for imaginative reasoning in design education. This study tests the use of literature as a verbal form of art and design and the contribution it can make to imaginative design processes--which are all too…

  9. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    Science.gov (United States)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software

  10. Low power design of wireless endoscopy compression/communication architecture

    Directory of Open Access Journals (Sweden)

    Zitouni Abdelkrim

    2018-05-01

    Full Text Available A wireless endoscopy capsule represents an efficient device interesting on the examination of digestive diseases. Many performance criteria’s (silicon area, dissipated power, image quality, computational time, etc. need to be deeply studied.In this paper, our interest is the optimization of the indicated criteria. The proposed methodology is based on exploring the advantages of the DCT/DWT transforms by combining them into single architecture. For arithmetic operations, the MCLA technique is used. This architecture integrates also a CABAC entropy coder that supports all binarization schemes. AMBA/I2C architecture is developed for assuring optimized communication.The comparisons of the proposed architecture with the most popular methods explained in related works show efficient results in terms dissipated power, hardware cost, and computation speed. Keywords: Wireless endoscopy capsule, DCT/DWT image compression, CABAC entropy coder, AMBA/I2C multi-bus architecture

  11. Preemptive Architecture: Explosive Art and Future Architectures in Cursed Urban Zones

    Directory of Open Access Journals (Sweden)

    Stahl Stenslie

    2017-04-01

    Full Text Available This article describes the art and architectural research project Preemptive Architecture that uses artistic strategies and approaches to create bomb-ready architectural structures that act as instruments for the undoing of violence in war. Increasing environmental usability through destruction represents an inverse strategy that reverses common thinking patterns about warfare, art and architecture. Building structures predestined for a construc­tive destruction becomes a creative act. One of the main motivations behind this paper is to challenge and expand the material thinking as well as the socio-political conditions related to artistic, architectural and design based practices.   Article received: December 12, 2016; Article accepted: January 10, 2017; Published online: April 20, 2017 Original scholarly paper How to cite this article: Stenslie, Stahl, and Magne Wiggen. "Preemptive Architecture: Explosive Art and Future Architectures in Cursed Urban Zones." AM Journal of Art and Media Studies 12 (2017: 29-39. doi: 10.25038/am.v0i12.165

  12. System-on-chip architecture and validation for real-time transceiver optimization: APC implementation on FPGA

    Science.gov (United States)

    Suarez, Hernan; Zhang, Yan R.

    2015-05-01

    New radar applications need to perform complex algorithms and process large quantity of data to generate useful information for the users. This situation has motivated the search for better processing solutions that include low power high-performance processors, efficient algorithms, and high-speed interfaces. In this work, hardware implementation of adaptive pulse compression for real-time transceiver optimization are presented, they are based on a System-on-Chip architecture for Xilinx devices. This study also evaluates the performance of dedicated coprocessor as hardware accelerator units to speed up and improve the computation of computing-intensive tasks such matrix multiplication and matrix inversion which are essential units to solve the covariance matrix. The tradeoffs between latency and hardware utilization are also presented. Moreover, the system architecture takes advantage of the embedded processor, which is interconnected with the logic resources through the high performance AXI buses, to perform floating-point operations, control the processing blocks, and communicate with external PC through a customized software interface. The overall system functionality is demonstrated and tested for real-time operations using a Ku-band tested together with a low-cost channel emulator for different types of waveforms.

  13. Optimized Architectural Approaches in Hardware and Software Enabling Very High Performance Shared Storage Systems

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    There are issues encountered in high performance storage systems that normally lead to compromises in architecture. Compute clusters tend to have compute phases followed by an I/O phase that must move data from the entire cluster in one operation. That data may then be shared by a large number of clients creating unpredictable read and write patterns. In some cases the aggregate performance of a server cluster must exceed 100 GB/s to minimize the time required for the I/O cycle thus maximizing compute availability. Accessing the same content from multiple points in a shared file system leads to the classical problems of data "hot spots" on the disk drive side and access collisions on the data connectivity side. The traditional method for increasing apparent bandwidth usually includes data replication which is costly in both storage and management. Scaling a model that includes replicated data presents additional management challenges as capacity and bandwidth expand asymmetrically while the system is scaled. ...

  14. Constellation Architecture Team-Lunar Scenario 12.0 Habitation Overview

    Science.gov (United States)

    Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne

    2010-01-01

    This paper will describe an overview of the Constellation Architecture Team Lunar Scenario 12.0 (LS-12) surface habitation approach and concept performed during the study definition. The Lunar Scenario 12 architecture study focused on two primary habitation approaches: a horizontally-oriented habitation module (LS-12.0) and a vertically-oriented habitation module (LS-12.1). This paper will provide an overview of the 12.0 lunar surface campaign, the associated outpost architecture, habitation functionality, concept description, system integration strategy, mass and power resource estimates. The Scenario 12 architecture resulted from combining three previous scenario attributes from Scenario 4 "Optimized Exploration", Scenario 5 "Fission Surface Power System" and Scenario 8 "Initial Extensive Mobility" into Scenario 12 along with an added emphasis on defining the excursion ConOps while the crew is away from the outpost location. This paper will describe an overview of the CxAT-Lunar Scenario 12.0 habitation concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suitlock function such as suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as enhanced life support systems hardware, consumable stowage, spares stowage, interconnection to the other habitation elements, a common interface mechanism for future growth, and mating to a pressurized rover or Pressurized Logistics Module (PLM). The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, medical operations, and exercise equipment.

  15. Architectural design criteria for f-block metal sequestering agents. 1997 annual progress report

    International Nuclear Information System (INIS)

    Hay, B.P.; Paine, R.T.; Roundhill, D.M.

    1997-01-01

    'The objective of this project is to provide the means to optimize ligand architecture for f-block metal recognition. The authors strategy builds on an innovative and successful molecular modeling approach in developing polyether ligand design criteria for the alkali and alkaline earth cations. The hypothesis underlying this proposal is that differences in metal ion binding with multidentate ligands bearing the same number and type of donor groups are primarily attributable to intramolecular steric factors. The authors propose quantifying these steric factors through the application of molecular mechanics models. The proposed research involves close integration of theoretical and experimental chemistry. The experimental work entails synthesizing novel ligands and experimentally determining structures and binding constants for metal ion complexation by series of ligands in which architecture is systematically varied. The theoretical work entails using electronic structure calculations to parameterize a molecular mechanics force field for a range of metal ions and ligand types. The resulting molecular mechanics force field will be used to predict low-energy structures for unidentate, bidentate, and multidentate ligands and their metal complexes through conformational searches. Results will be analyzed to assess the relative importance of several steric factors including optimal M-L length, optimal geometry at the metal center, optimal geometry at the donor atoms (complementarity), and conformation prior to binding (preorganization). An accurate set of criteria for the design of ligand architecture will be obtained from these results. These criteria will enable researchers to target ligand structures for synthesis and thereby dramatically reduce the time and cost associated with metal-specific ligand development.'

  16. Proceedings International Workshop on Formal Engineering approaches to Software Components and Architectures

    OpenAIRE

    Kofroň, Jan; Tumova, Jana

    2017-01-01

    These are the proceedings of the 14th International Workshop on Formal Engineering approaches to Software Components and Architectures (FESCA). The workshop was held on April 22, 2017 in Uppsala (Sweden) as a satellite event to the European Joint Conference on Theory and Practice of Software (ETAPS'17). The aim of the FESCA workshop is to bring together junior researchers from formal methods, software engineering, and industry interested in the development and application of formal modelling ...

  17. Optimization approaches to volumetric modulated arc therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu; Bortfeld, Thomas; Craft, David [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Alber, Markus [Department of Medical Physics and Department of Radiation Oncology, Aarhus University Hospital, Aarhus C DK-8000 (Denmark); Bangert, Mark [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg D-69120 (Germany); Bokrantz, Rasmus [RaySearch Laboratories, Stockholm SE-111 34 (Sweden); Chen, Danny [Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Men, Chunhua [Department of Research, Elekta, Maryland Heights, Missouri 63043 (United States); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Papp, Dávid [Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Romeijn, Edwin [H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Salari, Ehsan [Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, Kansas 67260 (United States)

    2015-03-15

    Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed.

  18. Architecture Between Mind and Empirical Experience

    Directory of Open Access Journals (Sweden)

    Shatha Abbas Hassan

    2016-10-01

    Full Text Available The research aims to identify the level of balance in the architectural thought influenced by the rational type human consciousness, the materialistic based on the Empirical type, moral based on human experience as source of knowledge. This was reflected in architecture in the specialized thought that the mind is the source of knowledge which explains the phenomena of life. The rational approach based on objectivity and methodology in (Form Production, the other approach is based on subjectivity in form production (Form Inspiration. The research problem is that there is imbalance in the relationship between the rational side and the human experience in architecture, which led into imbalance between theory and application in architecture according to architectural movements.

  19. Communication-Oriented Design Space Exploration for Reconfigurable Architectures

    Directory of Open Access Journals (Sweden)

    Gogniat Guy

    2007-01-01

    Full Text Available Many academic works in computer engineering focus on reconfigurable architectures and associated tools. Fine-grain architectures, field programmable gate arrays (FPGAs, are the most well-known structures of reconfigurable hardware. Dedicated tools (generic or specific allow for the exploration of their design space to choose the best architecture characteristics and/or to explore the application characteristics. The aim is to increase the synergy between the application and the architecture in order to get the best performance. However, there is no generic tool to perform such an exploration for coarse-grain or heterogeneous-grain architectures, just a small number of very specific tools are able to explore a limited set of architectures. To address this major lack, in this paper we propose a new design space exploration approach adapted to fine- and coarse-grain granularities. Our approach combines algorithmic and architecture explorations. It relies on an automatic estimation tool which computes the communication hierarchical distribution and the architectural processing resources use rate for the architecture under exploration. Such an approach forwards the rapid definition of efficient reconfigurable architectures dedicated to one or several applications.

  20. Effect of Ceramic Scaffold Architectural Parameters on Biological Response

    Directory of Open Access Journals (Sweden)

    Maria Isabella eGariboldi

    2015-10-01

    Full Text Available Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1 surface topography, (2 pore size and geometry, (3 porous networks and (4 macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way, as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.

  1. Agent Architectures for Compliance

    Science.gov (United States)

    Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua

    A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.

  2. A Risk-Constrained Multi-Stage Decision Making Approach to the Architectural Analysis of Mars Missions

    Science.gov (United States)

    Kuwata, Yoshiaki; Pavone, Marco; Balaram, J. (Bob)

    2012-01-01

    This paper presents a novel risk-constrained multi-stage decision making approach to the architectural analysis of planetary rover missions. In particular, focusing on a 2018 Mars rover concept, which was considered as part of a potential Mars Sample Return campaign, we model the entry, descent, and landing (EDL) phase and the rover traverse phase as four sequential decision-making stages. The problem is to find a sequence of divert and driving maneuvers so that the rover drive is minimized and the probability of a mission failure (e.g., due to a failed landing) is below a user specified bound. By solving this problem for several different values of the model parameters (e.g., divert authority), this approach enables rigorous, accurate and systematic trade-offs for the EDL system vs. the mobility system, and, more in general, cross-domain trade-offs for the different phases of a space mission. The overall optimization problem can be seen as a chance-constrained dynamic programming problem, with the additional complexity that 1) in some stages the disturbances do not have any probabilistic characterization, and 2) the state space is extremely large (i.e, hundreds of millions of states for trade-offs with high-resolution Martian maps). To this purpose, we solve the problem by performing an unconventional combination of average and minimax cost analysis and by leveraging high efficient computation tools from the image processing community. Preliminary trade-off results are presented.

  3. Realizing an Optimization Approach Inspired from Piaget’s Theory on Cognitive Development

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2015-09-01

    Full Text Available The objective of this paper is to introduce an artificial intelligence based optimization approach, which is inspired from Piaget’s theory on cognitive development. The approach has been designed according to essential processes that an individual may experience while learning something new or improving his / her knowledge. These processes are associated with the Piaget’s ideas on an individual’s cognitive development. The approach expressed in this paper is a simple algorithm employing swarm intelligence oriented tasks in order to overcome single-objective optimization problems. For evaluating effectiveness of this early version of the algorithm, test operations have been done via some benchmark functions. The obtained results show that the approach / algorithm can be an alternative to the literature in terms of single-objective optimization.The authors have suggested the name: Cognitive Development Optimization Algorithm (CoDOA for the related intelligent optimization approach.

  4. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Jui-Yu Wu

    2013-01-01

    Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

  5. Metabolistic Architecture

    DEFF Research Database (Denmark)

    2013-01-01

    Textile Spaces presents different approaches to using textile as a spatial definer and artistic medium. The publication collages images and text, art and architecture, science, philosophy and literature, process and product, past, present and future. It forms an insight into soft materials' funct......' functional and poetic potentials, linking the disciplines through fragments that aim to inspire a further look into the artists' and architects' practices, while simultaneously framing these textile visions in a wider context.......Textile Spaces presents different approaches to using textile as a spatial definer and artistic medium. The publication collages images and text, art and architecture, science, philosophy and literature, process and product, past, present and future. It forms an insight into soft materials...

  6. Evaluation Algorithm of the Educacional Potential of Architectural Spaces in Centers of Vocacional Training

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez Fuentes

    2016-12-01

    Full Text Available The importance of educational facilities from the architectural point of view are not limited to vital questions of habitability required as a physical container of activities. The good service they provide to the educational process has also to do with the educational potential conferred upon them. The transformations of architectural programs in educational institutions to absorb the continuous curriculum changes that educational policies provide make of the architectural evaluation a necessity of first order as a guarantee of their pertinence. This work contains the procedure followed for the architectural evaluation of a specific Vocational Training centre: approach and methodological strategy, instruments used for data collection and treatment of the information gathered, to make decisions about how to ignite the potential of the arranged workspacewith a view to their optimization. Evaluation indicators resulting from the previous process constitute a reference framework for the design of instruments that speed up the task of evaluation of any Center similar to the case of study.

  7. Data Architecture for Sensor Network

    Directory of Open Access Journals (Sweden)

    Jan Ježek

    2012-03-01

    Full Text Available Fast development of hardware in recent years leads to the high availability of simple sensing devices at minimal cost. As a consequence, there is many of sensor networks nowadays. These networks can continuously produce a large amount of observed data including the location of measurement. Optimal data architecture for such propose is a challenging issue due to its large scale and spatio-temporal nature.  The aim of this paper is to describe data architecture that was used in a particular solution for storage of sensor data. This solution is based on relation data model – concretely PostgreSQL and PostGIS. We will mention out experience from real world projects focused on car monitoring and project targeted on agriculture sensor networks. We will also shortly demonstrate the possibilities of client side API and the potential of other open source libraries that can be used for cartographic visualization (e.g. GeoServer. The main objective is to describe the strength and weakness of usage of relation database system for such propose and to introduce also alternative approaches based on NoSQL concept.

  8. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    Science.gov (United States)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  9. Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach

    International Nuclear Information System (INIS)

    Wei, F.; Wu, Q.H.; Jing, Z.X.; Chen, J.J.; Zhou, X.X.

    2016-01-01

    This paper proposes a comprehensive framework including a multi-objective interval optimization model and evidential reasoning (ER) approach to solve the unit sizing problem of small-scale integrated energy systems, with uncertain wind and solar energies integrated. In the multi-objective interval optimization model, interval variables are introduced to tackle the uncertainties of the optimization problem. Aiming at simultaneously considering the cost and risk of a business investment, the average and deviation of life cycle cost (LCC) of the integrated energy system are formulated. In order to solve the problem, a novel multi-objective optimization algorithm, MGSOACC (multi-objective group search optimizer with adaptive covariance matrix and chaotic search), is developed, employing adaptive covariance matrix to make the search strategy adaptive and applying chaotic search to maintain the diversity of group. Furthermore, ER approach is applied to deal with multiple interests of an investor at the business decision making stage and to determine the final unit sizing solution from the Pareto-optimal solutions. This paper reports on the simulation results obtained using a small-scale direct district heating system (DH) and a small-scale district heating and cooling system (DHC) optimized by the proposed framework. The results demonstrate the superiority of the multi-objective interval optimization model and ER approach in tackling the unit sizing problem of integrated energy systems considering the integration of uncertian wind and solar energies. - Highlights: • Cost and risk of investment in small-scale integrated energy systems are considered. • A multi-objective interval optimization model is presented. • A novel multi-objective optimization algorithm (MGSOACC) is proposed. • The evidential reasoning (ER) approach is used to obtain the final optimal solution. • The MGSOACC and ER can tackle the unit sizing problem efficiently.

  10. An Efficient PageRank Approach for Urban Traffic Optimization

    Directory of Open Access Journals (Sweden)

    Florin Pop

    2012-01-01

    to determine optimal decisions for each traffic light, based on the solution given by Larry Page for page ranking in Web environment (Page et al. (1999. Our approach is similar with work presented by Sheng-Chung et al. (2009 and Yousef et al. (2010. We consider that the traffic lights are controlled by servers and a score for each road is computed based on efficient PageRank approach and is used in cost function to determine optimal decisions. We demonstrate that the cumulative contribution of each car in the traffic respects the main constrain of PageRank approach, preserving all the properties of matrix consider in our model.

  11. Geometry optimization of molecules within an LCGTO local-density functional approach

    International Nuclear Information System (INIS)

    Mintmire, J.W.

    1990-01-01

    We describe our implementation of geometry optimization techniques within the linear combination of Gaussian-type orbitals (LCGTO) approach to local-density functional theory. The algorithm for geometry optimization is based on the evaluation of the gradient of the total energy with respect to internal coordinates within the local-density functional scheme. We present optimization results for a range of small molecules which serve as test cases for our approach

  12. Telemedicine system interoperability architecture: concept description and architecture overview.

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Richard Layne, II

    2004-05-01

    In order for telemedicine to realize the vision of anywhere, anytime access to care, it must address the question of how to create a fully interoperable infrastructure. This paper describes the reasons for pursuing interoperability, outlines operational requirements that any interoperability approach needs to consider, proposes an abstract architecture for meeting these needs, identifies candidate technologies that might be used for rendering this architecture, and suggests a path forward that the telemedicine community might follow.

  13. Horsetail matching: a flexible approach to optimization under uncertainty

    Science.gov (United States)

    Cook, L. W.; Jarrett, J. P.

    2018-04-01

    It is important to design engineering systems to be robust with respect to uncertainties in the design process. Often, this is done by considering statistical moments, but over-reliance on statistical moments when formulating a robust optimization can produce designs that are stochastically dominated by other feasible designs. This article instead proposes a formulation for optimization under uncertainty that minimizes the difference between a design's cumulative distribution function and a target. A standard target is proposed that produces stochastically non-dominated designs, but the formulation also offers enough flexibility to recover existing approaches for robust optimization. A numerical implementation is developed that employs kernels to give a differentiable objective function. The method is applied to algebraic test problems and a robust transonic airfoil design problem where it is compared to multi-objective, weighted-sum and density matching approaches to robust optimization; several advantages over these existing methods are demonstrated.

  14. Information Architecture: Looking Ahead.

    Science.gov (United States)

    Rosenfeld, Louis

    2002-01-01

    Considers the future of the field of information architecture. Highlights include a comparison with the growth of the field of professional management; the design of information systems since the Web; more demanding users; the need for an interdisciplinary approach; and how to define information architecture. (LRW)

  15. Process optimization on ambitious sustainability goals through the framework of DGNB

    DEFF Research Database (Denmark)

    Espenhein, Kasper; Jensen, Lotte Bjerregaard

    2017-01-01

    The need for designing buildings with a sustainable approach is higher than ever before, but using building sustainability assessment tools, such as DGNB, is a comprehensive and complex activity. This has led to attempts to optimize the tangibility for usage of sustainability assessment tools...... the use of Grounded Theory. The findings expose that the project brief must define a healthy framework for both collaboration and projectmanagement, and a specific two-step approach to obtain the certification goal should be performed. The size of the criteria determined how it should be addressed...... in the project. DGNB was also found to have an impact on the architectural quality leading to certain architectural traits. An important finding was that it is paramount that all stakeholders take an integrated holistic approach when applying DGNB....

  16. Using Pareto optimality to explore the topology and dynamics of the human connectome.

    Science.gov (United States)

    Avena-Koenigsberger, Andrea; Goñi, Joaquín; Betzel, Richard F; van den Heuvel, Martijn P; Griffa, Alessandra; Hagmann, Patric; Thiran, Jean-Philippe; Sporns, Olaf

    2014-10-05

    Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.

  17. Source-synchronous networks-on-chip circuit and architectural interconnect modeling

    CERN Document Server

    Mandal, Ayan; Mahapatra, Rabi

    2014-01-01

    This book describes novel methods for network-on-chip (NoC) design, using source-synchronous high-speed resonant clocks.  The authors discuss NoCs from the bottom up, providing circuit level details, before providing architectural simulations. As a result, readers will get a complete picture of how a NoC can be designed and optimized.  Using the methods described in this book, readers are enabled to design NoCs that are 5X better than existing approaches in terms of latency and throughput and can also sustain a significantly greater amount of traffic.   • Describes novel methods for high-speed network-on-chip (NoC) design; • Enables readers to understand NoC design from both circuit and architectural levels; • Provides circuit-level details of the NoC (including clocking, router design), along with a high-speed, resonant clocking style which is used in the NoC; • Includes architectural simulations of the NoC, demonstrating significantly superior performance over the state-of-the-art.

  18. Towards a Media Architecture

    DEFF Research Database (Denmark)

    Ebsen, Tobias

    2010-01-01

    This text explores the concept of media architecture as a phenomenon of visual culture that describes the use of screen-technology in new spatial configurations in practices of architecture and art. I shall argue that this phenomenon is not necessarily a revolutionary new approach, but rather...... a result of conceptual changes in both modes visual representation and in expressions of architecture. These are changes the may be described as an evolution of ideas and consequent experiments that can be traced back to changes in the history of art and the various styles and ideologies of architecture....

  19. Architectural design criteria for f-block metal ion sequestering agents. 1998 annual progress report

    International Nuclear Information System (INIS)

    Dixon, D.A.; Hay, B.P.; Paine, R.T.; Raymond, K.N.; Rogers, R.D.; Roundhill, D.M.

    1998-01-01

    'The objective of this project is to provide a means to optimize ligand architecture for f-block metal recognition. The authors strategy builds on an innovative and successful molecular modeling approach in developing polyether ligand design criteria for the alkali and alkaline earth cations. The hypothesis underlying this proposal is that differences in metal ion binding with multidentate ligands bearing the same number and type of donor groups are primarily attributable to intramolecular steric factors. They propose quantifying these steric factors through the application of molecular mechanics models. The research involves close integration of theoretical and experimental chemistry. The experimental work entails synthesizing novel ligands and experimentally determining structures and binding constants for metal ion complexation by series of ligands in which architecture is systematically varied. The theoretical work entails using electronic structure calculations to parameterize a molecular mechanics force field for a range of metal ions and ligand types. The resulting molecular mechanics force field will be used to predict low energy structures for unidentate, bidentate, and multidentate ligands and their metal complexes through conformational searches. Results will be analyzed to assess the relative importance of several steric factors including optimal M-L length, optimal geometry at the metal center, optimal geometry at the donor atoms (complementarity), and conformation prior to binding (preorganization). An accurate set of criteria for the design of ligand architecture will be obtained from these results. These criteria will enable researchers to target ligand structures for synthesis and thereby dramatically reduce the time and cost associated with metal-specific ligand development.'

  20. A Study on Technology Architecture and Serving Approaches of Electronic Government System

    Science.gov (United States)

    Liu, Chunnian; Huang, Yiyun; Pan, Qin

    As E-government becomes a very active research area, a lot of solutions to solve citizens' needs are being deployed. This paper provides technology architecture of E-government system and approaches of service in Public Administrations. The proposed electronic system addresses the basic E-government requirements of user friendliness, security, interoperability, transparency and effectiveness in the communication between small and medium sized public organizations and their citizens, businesses and other public organizations. The paper has provided several serving approaches of E-government, which includes SOA, web service, mobile E-government, public library and every has its own characteristics and application scenes. Still, there are a number of E-government issues for further research on organization structure change, including research methodology, data collection analysis, etc.

  1. Clustering Approaches for Pragmatic Two-Layer IoT Architecture

    Directory of Open Access Journals (Sweden)

    J. Sathish Kumar

    2018-01-01

    Full Text Available Connecting all devices through Internet is now practical due to Internet of Things. IoT assures numerous applications in everyday life of common people, government bodies, business, and society as a whole. Collaboration among the devices in IoT to bring various applications in the real world is a challenging task. In this context, we introduce an application-based two-layer architectural framework for IoT which consists of sensing layer and IoT layer. For any real-time application, sensing devices play an important role. Both these layers are required for accomplishing IoT-based applications. The success of any IoT-based application relies on efficient communication and utilization of the devices and data acquired by the devices at both layers. The grouping of these devices helps to achieve the same, which leads to formation of cluster of devices at various levels. The clustering helps not only in collaboration but also in prolonging overall network lifetime. In this paper, we propose two clustering algorithms based on heuristic and graph, respectively. The proposed clustering approaches are evaluated on IoT platform using standard parameters and compared with different approaches reported in literature.

  2. Porous sheet-like and sphere-like nano-architectures of SnO2 nanoparticles via a solvent-thermal approach and their gas-sensing performances

    International Nuclear Information System (INIS)

    Jie Liu; Tang, Xin-Cun; Xiao, Yuan-Hua; Hai Jia,; Gong, Mei-Li; Huang, Fu-Qin

    2013-01-01

    Highlights: • Porous sheet-like and sphere-like nano-architectures of SnO 2 nanoparticles have been prepared. • A solvent-thermal approach without surfactant or polymer templates simply by changing the volume ratio of DMF to water. • The formation mechanism of nano-architectures is proposed in this article. • Porous sphere-like SnO 2 nano-architectures exhibit good sensitivity to the reduce vapors tested. • Sheet-like materials show better selectivity to ethanol. -- Abstract: Porous sheet-like and sphere-like nano-architectures of SnO 2 nanoparticles have been prepared via a solvent-thermal approach in the absence of any surfactant or polymer templates by simply changing the volume ratio of DMF to water. The nano-materials have been characterized by FESEM, XRD, IR, TEM and BET. A mechanism for the formation of nano-architectures is also proposed based on the assembly behaviors of DMF in water. The gas sensors constructed with porous sphere-like SnO 2 nano-architectures exhibit much higher sensitivity to the reduce vapors tested, compared to those from porous sheet-like SnO 2 materials, while the sheet-like materials show better selectivity to ethanol. The nano-architectures fabricated with the facile method are promising candidates for building chemical sensors with tunable performances

  3. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  4. Optimizing engineering tools using modern ground architectures

    OpenAIRE

    McArdle, Ryan P.

    2017-01-01

    Approved for public release; distribution is unlimited Over the past decade, a deluge of large and complex datasets (aka big data) has overwhelmed the scientific community. Traditional computing architectures were not capable of processing the data efficiently, or in some cases, could not process the data at all. Industry was forced to reexamine the existing data processing paradigm and develop innovative solutions to address the challenges. This thesis investigates how these modern comput...

  5. Design of pressure vessels using shape optimization: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Carbonari, R.C., E-mail: ronny@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Munoz-Rojas, P.A., E-mail: pablo@joinville.udesc.br [Department of Mechanical Engineering, Universidade do Estado de Santa Catarina, Bom Retiro, Joinville, SC 89223-100 (Brazil); Andrade, E.Q., E-mail: edmundoq@petrobras.com.br [CENPES, PDP/Metodos Cientificos, Petrobras (Brazil); Paulino, G.H., E-mail: paulino@uiuc.edu [Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Av., Urbana, IL 61801 (United States); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801-2906 (United States); Nishimoto, K., E-mail: knishimo@usp.br [Department of Naval Architecture and Ocean Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Silva, E.C.N., E-mail: ecnsilva@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil)

    2011-05-15

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: > Shape optimization of entire pressure vessel considering an integrated approach. > By increasing the number of spline knots, the convergence stability is improved. > The null angle condition gives lower stress values resulting in a better design. > The cylinder stresses are very sensitive to the cylinder length. > The shape optimization of the entire vessel must be considered for cylinder length.

  6. Service-Oriented Architecture Approach to MAGTF Logistics Support Systems

    Science.gov (United States)

    2013-09-01

    Support System-Marine Corps IT Information Technology KPI Key Performance Indicators LCE Logistics Command Element ITV In-transit Visibility LCM...building blocks, options, KPI (key performance indicators), design decisions and the corresponding; the physical attributes which is the second attribute... KPI ) that they impact. h. Layer 8 (Information Architecture) The business intelligence layer and information architecture safeguards the inclusion

  7. The column architecture -- A novel architecture for event driven 2D pixel imagers

    International Nuclear Information System (INIS)

    Millaud, J.; Nygren, D.

    1996-01-01

    The authors describe an electronic architecture for two-dimensional pixel arrays that permits very large increases in rate capability for event- or data-driven applications relative to conventional x-y architectures. The column architecture also permits more efficient use of silicon area in applications requiring local buffering, frameless data acquisition, and it avoids entirely the problem of ambiguities that may arise in conventional approaches. Two examples of active implementation are described: high energy physics and protein crystallography

  8. Tai Chi Chuan Optimizes the Functional Organization of the Intrinsic Human Brain Architecture in Older Adults

    Directory of Open Access Journals (Sweden)

    Gao-Xia eWei

    2014-04-01

    Full Text Available Whether Tai Chi Chuan (TCC can influence the intrinsic functional architecture of the human brain remains unclear. To examine TCC-associated changes in functional connectomes, resting-state functional magnetic resonance images were acquired from 40 older individuals including 22 experienced TCC practitioners (experts and 18 demographically matched TCC-naïve healthy controls, and their local functional homogeneities across the cortical mantle were compared. Compared to the controls, the TCC experts had significantly greater and more experience-dependent functional homogeneity in the right postcentral gyrus (PosCG and less functional homogeneity in the left anterior cingulate cortex (ACC and the right dorsal lateral prefrontal cortex (DLPFC. Increased functional homogeneity in the PosCG was correlated with TCC experience. Intriguingly, decreases in functional homogeneity (improved functional specialization in the left ACC and increases in functional homogeneity (improved functional integration in the right PosCG both predicted performance gains on attention network behavior tests. These findings provide evidence for the functional plasticity of the brain’s intrinsic architecture toward optimizing locally functional organization, with great implications for understanding the effects of TCC on cognition, behavior and health in aging population.

  9. A combined stochastic programming and optimal control approach to personal finance and pensions

    DEFF Research Database (Denmark)

    Konicz, Agnieszka Karolina; Pisinger, David; Rasmussen, Kourosh Marjani

    2015-01-01

    The paper presents a model that combines a dynamic programming (stochastic optimal control) approach and a multi-stage stochastic linear programming approach (SLP), integrated into one SLP formulation. Stochastic optimal control produces an optimal policy that is easy to understand and implement....

  10. Web Service Architecture for e-Learning

    Directory of Open Access Journals (Sweden)

    Xiaohong Qiu

    2005-10-01

    Full Text Available Message-based Web Service architecture provides a unified approach to applications and Web Services that incorporates the flexibility of messaging and distributed components. We propose SMMV and MMMV collaboration as the general architecture of collaboration based on a Web service model, which accommodates both instructor-led learning and participatory learning. This approach derives from our message-based Model-View-Controller (M-MVC architecture of Web applications, comprises an event-driven Publish/Subscribe scheme, and provides effective collaboration with high interactivity of rich Web content for diverse clients over heterogeneous network environments.

  11. A comparison of two closely-related approaches to aerodynamic design optimization

    Science.gov (United States)

    Shubin, G. R.; Frank, P. D.

    1991-01-01

    Two related methods for aerodynamic design optimization are compared. The methods, called the implicit gradient approach and the variational (or optimal control) approach, both attempt to obtain gradients necessary for numerical optimization at a cost significantly less than that of the usual black-box approach that employs finite difference gradients. While the two methods are seemingly quite different, they are shown to differ (essentially) in that the order of discretizing the continuous problem, and of applying calculus, is interchanged. Under certain circumstances, the two methods turn out to be identical. We explore the relationship between these methods by applying them to a model problem for duct flow that has many features in common with transonic flow over an airfoil. We find that the gradients computed by the variational method can sometimes be sufficiently inaccurate to cause the optimization to fail.

  12. Energy Efficiency - Spectral Efficiency Trade-off: A Multiobjective Optimization Approach

    KAUST Repository

    Amin, Osama

    2015-04-23

    In this paper, we consider the resource allocation problem for energy efficiency (EE) - spectral efficiency (SE) trade-off. Unlike traditional research that uses the EE as an objective function and imposes constraints either on the SE or achievable rate, we propound a multiobjective optimization approach that can flexibly switch between the EE and SE functions or change the priority level of each function using a trade-off parameter. Our dynamic approach is more tractable than the conventional approaches and more convenient to realistic communication applications and scenarios. We prove that the multiobjective optimization of the EE and SE is equivalent to a simple problem that maximizes the achievable rate/SE and minimizes the total power consumption. Then we apply the generalized framework of the resource allocation for the EE-SE trade-off to optimally allocate the subcarriers’ power for orthogonal frequency division multiplexing (OFDM) with imperfect channel estimation. Finally, we use numerical results to discuss the choice of the trade-off parameter and study the effect of the estimation error, transmission power budget and channel-to-noise ratio on the multiobjective optimization.

  13. Energy Efficiency - Spectral Efficiency Trade-off: A Multiobjective Optimization Approach

    KAUST Repository

    Amin, Osama; Bedeer, Ebrahim; Ahmed, Mohamed; Dobre, Octavia

    2015-01-01

    In this paper, we consider the resource allocation problem for energy efficiency (EE) - spectral efficiency (SE) trade-off. Unlike traditional research that uses the EE as an objective function and imposes constraints either on the SE or achievable rate, we propound a multiobjective optimization approach that can flexibly switch between the EE and SE functions or change the priority level of each function using a trade-off parameter. Our dynamic approach is more tractable than the conventional approaches and more convenient to realistic communication applications and scenarios. We prove that the multiobjective optimization of the EE and SE is equivalent to a simple problem that maximizes the achievable rate/SE and minimizes the total power consumption. Then we apply the generalized framework of the resource allocation for the EE-SE trade-off to optimally allocate the subcarriers’ power for orthogonal frequency division multiplexing (OFDM) with imperfect channel estimation. Finally, we use numerical results to discuss the choice of the trade-off parameter and study the effect of the estimation error, transmission power budget and channel-to-noise ratio on the multiobjective optimization.

  14. Architectural Anthropology

    DEFF Research Database (Denmark)

    Stender, Marie

    Architecture and anthropology have always had a common focus on dwelling, housing, urban life and spatial organisation. Current developments in both disciplines make it even more relevant to explore their boundaries and overlaps. Architects are inspired by anthropological insights and methods......, while recent material and spatial turns in anthropology have also brought an increasing interest in design, architecture and the built environment. Understanding the relationship between the social and the physical is at the heart of both disciplines, and they can obviously benefit from further...... collaboration: How can qualitative anthropological approaches contribute to contemporary architecture? And just as importantly: What can anthropologists learn from architects’ understanding of spatial and material surroundings? Recent theoretical developments in anthropology stress the role of materials...

  15. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture

    Science.gov (United States)

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan; Fich, Lars Brorson; Leder, Helmut; Modroño, Cristián; Nadal, Marcos; Rostrup, Nicolai; Skov, Martin

    2013-01-01

    On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences brain function. To begin closing this gap, we conducted a functional magnetic resonance imaging study to examine how systematic variation in contour impacts aesthetic judgments and approach-avoidance decisions, outcome measures of interest to both architects and users of spaces alike. As predicted, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects. Complementing this finding, pleasantness—the valence dimension of the affect circumplex—accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings. In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural evidence underscores the role of emotion in our preference for curvilinear objects in this domain. PMID:23754408

  16. Towards Adaptive Evolutionary Architecture

    DEFF Research Database (Denmark)

    Bak, Sebastian HOlt; Rask, Nina; Risi, Sebastian

    2016-01-01

    This paper presents first results from an interdisciplinary project, in which the fields of architecture, philosophy and artificial life are combined to explore possible futures of architecture. Through an interactive evolutionary installation, called EvoCurtain, we investigate aspects of how...... to the development of designs tailored to the individual preferences of inhabitants, changing the roles of architects and designers entirely. Architecture-as-it-could-be is a philosophical approach conducted through artistic methods to anticipate the technological futures of human-centered development within...

  17. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  18. A method to evaluate utility for architectural comparisons for a campaign to explore the surface of Mars

    Science.gov (United States)

    Ward, Eric D.; Webb, Ryan R.; deWeck, Olivier L.

    2016-11-01

    There is a general consensus that Mars is the next high priority destination for human space exploration. There has been no lack of analysis and recommendations for human missions to Mars, including, for example, the NASA Design Reference Architectures and the Mars Direct proposal. These studies and others usually employ the traditional approach of selecting a baseline mission architecture and running individual trade studies. However, this can cause blind spots, as not all combinations are explored. An alternative approach is to holistically analyze the entire architectural trade-space such that all of the possible system interactions are identified and measured. In such a framework, an optimal design is sought by minimizing cost for maximal value. While cost is relatively easy to model for manned spaceflight, value is more difficult to define. In our efforts to develop a surface base architecture for the MIT Mars 2040 project, we explored several methods for quantifying value, including technology development benefits, challenge, and various metrics for measuring scientific return. We developed a science multi-score method that combines astrobiology and geologic research goals, which is weighted by the crew-member hours that can be used for scientific research rather than other activities.

  19. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization.

    Science.gov (United States)

    Fang, Yuling; Chen, Qingkui; Xiong, Neal N; Zhao, Deyu; Wang, Jingjuan

    2017-08-04

    This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes' diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services.

  20. Photoperiodic envelope: application of the generative design based on the performance of architectural envelopes, the exploring its shape and performance optimization

    International Nuclear Information System (INIS)

    Viquez Alas, Ernesto Alonso

    2013-01-01

    An alternative method of design is demonstrated to be used in the creation of an architectural envelope, through the application of tools and techniques such as algorithms, optimization, parametrization and simulation. The aesthetic criteria of the form are enriched to achieve the decrease in solar radiation rates. The methods and techniques of optimization, simulation, analysis and synthesis are habituated through the study of the contemporary paradigm of generative design and design by performance. Some of the applying of potential benefits an alternative design method and conditions to be met are designed to facilitate its application in the design of envelopes. A study of application and testing is demonstrated to explore the surround topology. The optimization results in relation to reducing the solar incidence are examined in a simulated environment [es

  1. Communication and Memory Architecture Design of Application-Specific High-End Multiprocessors

    Directory of Open Access Journals (Sweden)

    Yahya Jan

    2012-01-01

    Full Text Available This paper is devoted to the design of communication and memory architectures of massively parallel hardware multiprocessors necessary for the implementation of highly demanding applications. We demonstrated that for the massively parallel hardware multiprocessors the traditionally used flat communication architectures and multi-port memories do not scale well, and the memory and communication network influence on both the throughput and circuit area dominates the processors influence. To resolve the problems and ensure scalability, we proposed to design highly optimized application-specific hierarchical and/or partitioned communication and memory architectures through exploring and exploiting the regularity and hierarchy of the actual data flows of a given application. Furthermore, we proposed some data distribution and related data mapping schemes in the shared (global partitioned memories with the aim to eliminate the memory access conflicts, as well as, to ensure that our communication design strategies will be applicable. We incorporated these architecture synthesis strategies into our quality-driven model-based multi-processor design method and related automated architecture exploration framework. Using this framework, we performed a large series of experiments that demonstrate many various important features of the synthesized memory and communication architectures. They also demonstrate that our method and related framework are able to efficiently synthesize well scalable memory and communication architectures even for the high-end multiprocessors. The gains as high as 12-times in performance and 25-times in area can be obtained when using the hierarchical communication networks instead of the flat networks. However, for the high parallelism levels only the partitioned approach ensures the scalability in performance.

  2. Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture.

    Science.gov (United States)

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2013-01-01

    The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value.

  3. Humanoids Learning to Walk: a Natural CPG-Actor-Critic Architecture

    Directory of Open Access Journals (Sweden)

    CAI eLI

    2013-04-01

    Full Text Available The identification of learning mechanisms for locomotion has been the subject of much researchfor some time but many challenges remain. Dynamic systems theory (DST offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system.In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model,a simplified central pattern generator (CPG architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic. In the cpg-actor-critic architecture, least-square-temporal-difference (LSTD based learning converges to the optimal solution quickly by using natural gradient and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified reward it uses a dynamic value function as a stability indicator (SI that adapts to the environment.The results obtained are analyzed and explained by using a novel DST embodied cognition approach. Learning to walk, from this perspective, is a process of integrating sensorimotor levels and value.

  4. Stochastic optimization in insurance a dynamic programming approach

    CERN Document Server

    Azcue, Pablo

    2014-01-01

    The main purpose of the book is to show how a viscosity approach can be used to tackle control problems in insurance. The problems covered are the maximization of survival probability as well as the maximization of dividends in the classical collective risk model. The authors consider the possibility of controlling the risk process by reinsurance as well as by investments. They show that optimal value functions are characterized as either the unique or the smallest viscosity solution of the associated Hamilton-Jacobi-Bellman equation; they also study the structure of the optimal strategies and show how to find them. The viscosity approach was widely used in control problems related to mathematical finance but until quite recently it was not used to solve control problems related to actuarial mathematical science. This book is designed to familiarize the reader on how to use this approach. The intended audience is graduate students as well as researchers in this area.

  5. Computer Architecture A Quantitative Approach

    CERN Document Server

    Hennessy, John L

    2011-01-01

    The computing world today is in the middle of a revolution: mobile clients and cloud computing have emerged as the dominant paradigms driving programming and hardware innovation today. The Fifth Edition of Computer Architecture focuses on this dramatic shift, exploring the ways in which software and technology in the cloud are accessed by cell phones, tablets, laptops, and other mobile computing devices. Each chapter includes two real-world examples, one mobile and one datacenter, to illustrate this revolutionary change.Updated to cover the mobile computing revolutionEmphasizes the two most im

  6. Fork-join and data-driven execution models on multi-core architectures: Case study of the FMM

    KAUST Repository

    Amer, Abdelhalim

    2013-01-01

    Extracting maximum performance of multi-core architectures is a difficult task primarily due to bandwidth limitations of the memory subsystem and its complex hierarchy. In this work, we study the implications of fork-join and data-driven execution models on this type of architecture at the level of task parallelism. For this purpose, we use a highly optimized fork-join based implementation of the FMM and extend it to a data-driven implementation using a distributed task scheduling approach. This study exposes some limitations of the conventional fork-join implementation in terms of synchronization overheads. We find that these are not negligible and their elimination by the data-driven method, with a careful data locality strategy, was beneficial. Experimental evaluation of both methods on state-of-the-art multi-socket multi-core architectures showed up to 22% speed-ups of the data-driven approach compared to the original method. We demonstrate that a data-driven execution of FMM not only improves performance by avoiding global synchronization overheads but also reduces the memory-bandwidth pressure caused by memory-intensive computations. © 2013 Springer-Verlag.

  7. Electromagnetic Physics Models for Parallel Computing Architectures

    Science.gov (United States)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-10-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.

  8. A practical multiscale approach for optimization of structural damping

    DEFF Research Database (Denmark)

    Andreassen, Erik; Jensen, Jakob Søndergaard

    2016-01-01

    A simple and practical multiscale approach suitable for topology optimization of structural damping in a component ready for additive manufacturing is presented.The approach consists of two steps: First, the homogenized loss factor of a two-phase material is maximized. This is done in order...

  9. Reframing Architecture

    DEFF Research Database (Denmark)

    Riis, Søren

    2013-01-01

    I would like to thank Prof. Stephen Read (2011) and Prof. Andrew Benjamin (2011) for both giving inspiring and elaborate comments on my article “Dwelling in-between walls: the architectural surround”. As I will try to demonstrate below, their two different responses not only supplement my article...... focuses on how the absence of an initial distinction might threaten the endeavour of my paper. In my reply to Read and Benjamin, I will discuss their suggestions and arguments, while at the same time hopefully clarifying the postphenomenological approach to architecture....

  10. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    Science.gov (United States)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  11. Functional webs for freeform architecture

    KAUST Repository

    Deng, Bailin

    2011-08-01

    Rationalization and construction-aware design dominate the issue of realizability of freeform architecture. The former means the decomposition of an intended shape into parts which are sufficiently simple and efficient to manufacture; the latter refers to a design procedure which already incorporates rationalization. Recent contributions to this topic have been concerned mostly with small-scale parts, for instance with planar faces of meshes. The present paper deals with another important aspect, namely long-range parts and supporting structures. It turns out that from the pure geometry viewpoint this means studying families of curves which cover surfaces in certain well-defined ways. Depending on the application one has in mind, different combinatorial arrangements of curves are required. We here restrict ourselves to so-called hexagonal webs which correspond to a triangular or tri-hex decomposition of a surface. The individual curve may have certain special properties, like being planar, being a geodesic, or being part of a circle. Each of these properties is motivated by manufacturability considerations and imposes constraints on the shape of the surface. We investigate the available degrees of freedom, show numerical methods of optimization, and demonstrate the effectivity of our approach and the variability of construction solutions derived from webs by means of actual architectural designs.

  12. Architectural Engineers

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer

    engineering is addresses from two perspectives – as an educational response and an occupational constellation. Architecture and engineering are two of the traditional design professions and they frequently meet in the occupational setting, but at educational institutions they remain largely estranged....... The paper builds on a multi-sited study of an architectural engineering program at the Technical University of Denmark and an architectural engineering team within an international engineering consultancy based on Denmark. They are both responding to new tendencies within the building industry where...... the role of engineers and architects increasingly overlap during the design process, but their approaches reflect different perceptions of the consequences. The paper discusses some of the challenges that design education, not only within engineering, is facing today: young designers must be equipped...

  13. Unifying approach for model transformations in the MOF metamodeling architecture

    NARCIS (Netherlands)

    Ivanov, Ivan; van den Berg, Klaas

    2004-01-01

    In the Meta Object Facility (MOF) metamodeling architecture a number of model transformation scenarios can be identified. It could be expected that a metamodeling architecture will be accompanied by a transformation technology supporting the model transformation scenarios in a uniform way. Despite

  14. A penalty guided stochastic fractal search approach for system reliability optimization

    International Nuclear Information System (INIS)

    Mellal, Mohamed Arezki; Zio, Enrico

    2016-01-01

    Modern industry requires components and systems with high reliability levels. In this paper, we address the system reliability optimization problem. A penalty guided stochastic fractal search approach is developed for solving reliability allocation, redundancy allocation, and reliability–redundancy allocation problems. Numerical results of ten case studies are presented as benchmark problems for highlighting the superiority of the proposed approach compared to others from literature. - Highlights: • System reliability optimization is investigated. • A penalty guided stochastic fractal search approach is developed. • Results of ten case studies are compared with previously published methods. • Performance of the approach is demonstrated.

  15. MVMO-based approach for optimal placement and tuning of supplementary damping controller

    NARCIS (Netherlands)

    Rueda Torres, J.L.; Gonzalez-Longatt, F.

    2015-01-01

    This paper introduces an approach based on the Swarm Variant of the Mean-Variance Mapping Optimization (MVMO-S) to solve the multi-scenario formulation of the optimal placement and coordinated tuning of power system supplementary damping controllers (POCDCs). The effectiveness of the approach is

  16. Improving a HMM-based off-line handwriting recognition system using MME-PSO optimization

    Science.gov (United States)

    Hamdani, Mahdi; El Abed, Haikal; Hamdani, Tarek M.; Märgner, Volker; Alimi, Adel M.

    2011-01-01

    One of the trivial steps in the development of a classifier is the design of its architecture. This paper presents a new algorithm, Multi Models Evolvement (MME) using Particle Swarm Optimization (PSO). This algorithm is a modified version of the basic PSO, which is used to the unsupervised design of Hidden Markov Model (HMM) based architectures. For instance, the proposed algorithm is applied to an Arabic handwriting recognizer based on discrete probability HMMs. After the optimization of their architectures, HMMs are trained with the Baum- Welch algorithm. The validation of the system is based on the IfN/ENIT database. The performance of the developed approach is compared to the participating systems at the 2005 competition organized on Arabic handwriting recognition on the International Conference on Document Analysis and Recognition (ICDAR). The final system is a combination between an optimized HMM with 6 other HMMs obtained by a simple variation of the number of states. An absolute improvement of 6% of word recognition rate with about 81% is presented. This improvement is achieved comparing to the basic system (ARAB-IfN). The proposed recognizer outperforms also most of the known state-of-the-art systems.

  17. Adjoint current-based approaches to prostate brachytherapy optimization

    International Nuclear Information System (INIS)

    Roberts, J. A.; Henderson, D. L.

    2009-01-01

    This paper builds on previous work done at the Univ. of Wisconsin - Madison to employ the adjoint concept of nuclear reactor physics in the so-called greedy heuristic of brachytherapy optimization. Whereas that previous work focused on the adjoint flux, i.e. the importance, this work has included use of the adjoint current to increase the amount of information available in optimizing. Two current-based approaches were developed for 2-D problems, and each was compared to the most recent form of the flux-based methodology. The first method aimed to take a treatment plan from the flux-based greedy heuristic and adjust via application of the current-displacement, or a vector displacement based on a combination of tissue (adjoint) and seed (forward) currents acting as forces on a seed. This method showed promise in improving key urethral and rectal dosimetric quantities. The second method uses the normed current-displacement as the greedy criterion such that seeds are placed in regions of least force. This method, coupled with the dose-update scheme, generated treatment plans with better target irradiation and sparing of the urethra and normal tissues than the flux-based approach. Tables of these parameters are given for both approaches. In summary, these preliminary results indicate adjoint current methods are useful in optimization and further work in 3-D should be performed. (authors)

  18. Architectural considerations in the certification of modular systems

    Energy Technology Data Exchange (ETDEWEB)

    Bate, Iain; Kelly, Tim

    2003-09-01

    Modular system architectures, such as integrated modular avionics (IMA) in the aerospace sector, offer potential benefits of improved flexibility in function allocation, reduced development costs and improved maintainability. However, they require a new certification approach. The traditional approach to certification is to prepare monolithic safety cases as bespoke developments for a specific system in a fixed configuration. However, this nullifies the benefits of flexibility and reduced rework claimed of IMA-based systems and will necessitate the development of new safety cases for all possible (current and future) configurations of the architecture. This paper discusses a modular approach to safety case construction, whereby the safety case is partitioned into separable arguments of safety corresponding with the components of the system architecture. Such an approach relies upon properties of the IMA system architecture (such as segregation and location independence) having been established. The paper describes how such properties can be assessed to show that they are met and trade-offs performed during architecture definition reusing information and techniques from the safety argument process.

  19. Architectural considerations in the certification of modular systems

    International Nuclear Information System (INIS)

    Bate, Iain; Kelly, Tim

    2003-01-01

    Modular system architectures, such as integrated modular avionics (IMA) in the aerospace sector, offer potential benefits of improved flexibility in function allocation, reduced development costs and improved maintainability. However, they require a new certification approach. The traditional approach to certification is to prepare monolithic safety cases as bespoke developments for a specific system in a fixed configuration. However, this nullifies the benefits of flexibility and reduced rework claimed of IMA-based systems and will necessitate the development of new safety cases for all possible (current and future) configurations of the architecture. This paper discusses a modular approach to safety case construction, whereby the safety case is partitioned into separable arguments of safety corresponding with the components of the system architecture. Such an approach relies upon properties of the IMA system architecture (such as segregation and location independence) having been established. The paper describes how such properties can be assessed to show that they are met and trade-offs performed during architecture definition reusing information and techniques from the safety argument process

  20. Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method

    CSIR Research Space (South Africa)

    Govender, Nicolin

    2015-09-01

    Full Text Available consideration due to the architectural differences between CPU and GPU platforms. This paper describes the DEM algorithms and heuristics that are optimized for the parallel NVIDIA Kepler GPU architecture in detail. This includes a GPU optimized collision...

  1. Toward an Agile Approach to Managing the Effect of Requirements on Software Architecture during Global Software Development

    OpenAIRE

    Alsahli, Abdulaziz; Khan, Hameed; Alyahya, Sultan

    2016-01-01

    Requirement change management (RCM) is a critical activity during software development because poor RCM results in occurrence of defects, thereby resulting in software failure. To achieve RCM, efficient impact analysis is mandatory. A common repository is a good approach to maintain changed requirements, reusing and reducing effort. Thus, a better approach is needed to tailor knowledge for better change management of requirements and architecture during global software development (GSD).The o...

  2. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations.

    Science.gov (United States)

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts.

  3. EASEE: an open architecture approach for modeling battlespace signal and sensor phenomenology

    Science.gov (United States)

    Waldrop, Lauren E.; Wilson, D. Keith; Ekegren, Michael T.; Borden, Christian T.

    2017-04-01

    Open architecture in the context of defense applications encourages collaboration across government agencies and academia. This paper describes a success story in the implementation of an open architecture framework that fosters transparency and modularity in the context of Environmental Awareness for Sensor and Emitter Employment (EASEE), a complex physics-based software package for modeling the effects of terrain and atmospheric conditions on signal propagation and sensor performance. Among the highlighted features in this paper are: (1) a code refactorization to separate sensitive parts of EASEE, thus allowing collaborators the opportunity to view and interact with non-sensitive parts of the EASEE framework with the end goal of supporting collaborative innovation, (2) a data exchange and validation effort to enable the dynamic addition of signatures within EASEE thus supporting a modular notion that components can be easily added or removed to the software without requiring recompilation by developers, and (3) a flexible and extensible XML interface, which aids in decoupling graphical user interfaces from EASEE's calculation engine, and thus encourages adaptability to many different defense applications. In addition to the outlined points above, this paper also addresses EASEE's ability to interface with both proprietary systems such as ArcGIS. A specific use case regarding the implementation of an ArcGIS toolbar that leverages EASEE's XML interface and enables users to set up an EASEE-compliant configuration for probability of detection or optimal sensor placement calculations in various modalities is discussed as well.

  4. Documenting the ICT Architecture of TSI

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Blanken, Henk; Fokkinga, M.M.

    2001-01-01

    We use the business and software architecture of Travel Service International (TSI) as a case study to validate our approach to ICT architecture. The techniques discussed are explained at length in a textbook by Wieringa.

  5. Materials Driven Architectural Design and Representation

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    This paper aims to outline a framework for a deeper connection between experimentally obtained material knowledge and architectural design. While materials and architecture in the process of realisation are tightly connected, architectural design and representation are often distanced from...... another role in relation to architectural production. It is, in this paper, the intention to point at material research as an active initiator in explorative approaches to architectural design methods and architectural representation. This paper will point at the inclusion of tangible and experimental...... material research in the early phases of architectural design and to that of the architectural set of tools and representation. The paper will through use of existing research and the author’s own material research and practice suggest a way of using a combination of digital drawing, digital fabrication...

  6. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations

    Science.gov (United States)

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts. PMID:25993414

  7. Patterns of Growth—Biomimetics and Architectural Design

    Directory of Open Access Journals (Sweden)

    Petra Gruber

    2017-04-01

    Full Text Available This paper discusses the approach of biomimetic design in architecture applied to the theme of growth in biology by taking two exemplary research projects at the intersection of arts and sciences. The first project, ‘Biornametics’, dealt with patterns from nature; the second project ‘Growing as Building (GrAB’ took on biological growth as a specific theme for the transfer to architecture and the arts. Within a timeframe of five years (2011–2015, the research was conducted under the Program for Arts-based Research PEEK (Programm zur Entwicklung und Erschliessung der Künste of the Austrian Science Fund FWF (Fonds zur Förderung der wissenschaftlichen Forschung. The underlying hypothesis was that growth processes in nature have not been studied for transfer into technology and architecture yet and that, with advanced software tools, promising applications could be found. To ensure a high degree of innovation, this research was done with an interdisciplinary team of architects, engineers, and scientists (mainly biologists to lay the groundwork for future product-oriented technological solutions. Growth, as one of the important characteristics of living organisms, is used as a frame for research into systems and principles that shall deliver innovative and sustainable solutions in architecture and the arts. Biomimetics as a methodology was used to create and guide information transfer from the life sciences to innovative proto-architectural solutions. The research aimed at transferring qualities present in biological growth; for example, adaptiveness, exploration, or local resource harvesting into technical design and production processes. In contrast to our current building construction, implementing principles of growth could potentially transform building towards a more integrated and sustainable setting, a new living architecture. Tools and methods, especially Quality Function Deployment (QFD for matching biological role models with

  8. Unit 1A: General Approach to the Teaching of Architecture

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    An ideal course Ever since the founding of the Aar- hus School of Architecture in 1965 there has been a tradition for lively discussion surrounding the content of the architecture program. The discussion has often been con- ducted from ideological or norma- tive positions, with the tendency to st...

  9. CogWnet: A Resource Management Architecture for Cognitive Wireless Networks

    KAUST Repository

    Alqerm, Ismail

    2013-07-01

    With the increasing adoption of wireless communication technologies, there is a need to improve management of existing radio resources. Cognitive radio is a promising technology to improve the utilization of wireless spectrum. Its operating principle is based on building an integrated hardware and software architecture that configures the radio to meet application requirements within the constraints of spectrum policy regulations. However, such an architecture must be able to cope with radio environment heterogeneity. In this paper, we propose a cognitive resource management architecture, called CogWnet, that allocates channels, re-configures radio transmission parameters to meet QoS requirements, ensures reliability, and mitigates interference. The architecture consists of three main layers: Communication Layer, which includes generic interfaces to facilitate the communication between the cognitive architecture and TCP/IP stack layers; Decision-Making Layer, which classifies the stack layers input parameters and runs decision-making optimization algorithms to output optimal transmission parameters; and Policy Layer to enforce policy regulations on the selected part of the spectrum. The efficiency of CogWnet is demonstrated through a testbed implementation and evaluation.

  10. Methodological approach to strategic performance optimization

    OpenAIRE

    Hell, Marko; Vidačić, Stjepan; Garača, Željko

    2009-01-01

    This paper presents a matrix approach to the measuring and optimization of organizational strategic performance. The proposed model is based on the matrix presentation of strategic performance, which follows the theoretical notions of the balanced scorecard (BSC) and strategy map methodologies, initially developed by Kaplan and Norton. Development of a quantitative record of strategic objectives provides an arena for the application of linear programming (LP), which is a mathematical tech...

  11. Enterprise Architecture Analysis with XML

    OpenAIRE

    Boer, Frank; Bonsangue, Marcello; Jacob, Joost; Stam, A.; Torre, Leon

    2005-01-01

    htmlabstractThis paper shows how XML can be used for static and dynamic analysis of architectures. Our analysis is based on the distinction between symbolic and semantic models of architectures. The core of a symbolic model consists of its signature that specifies symbolically its structural elements and their relationships. A semantic model is defined as a formal interpretation of the symbolic model. This provides a formal approach to the design of architectural description languages and a g...

  12. Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm

    International Nuclear Information System (INIS)

    Torres-Echeverría, A.C.; Martorell, S.; Thompson, H.A.

    2012-01-01

    This paper presents the optimization of design and test policies of safety instrumented systems using MooN voting redundancies by a multi-objective genetic algorithm. The objectives to optimize are the Average Probability of Dangerous Failure on Demand, which represents the system safety integrity, the Spurious Trip Rate and the Lifecycle Cost. In this way safety, reliability and cost are included. This is done by using novel models of time-dependent probability of failure on demand and spurious trip rate, recently published by the authors. These models are capable of delivering the level of modeling detail required by the standard IEC 61508. Modeling includes common cause failure and diagnostic coverage. The Probability of Failure on Demand model also permits to quantify results with changing testing strategies. The optimization is performed using the multi-objective Genetic Algorithm NSGA-II. This allows weighting of the trade-offs between the three objectives and, thus, implementation of safety systems that keep a good balance between safety, reliability and cost. The complete methodology is applied to two separate case studies, one for optimization of system design with redundancy allocation and component selection and another for optimization of testing policies. Both optimization cases are performed for both systems with MooN redundancies and systems with only parallel redundancies. Their results are compared, demonstrating how introducing MooN architectures presents a significant improvement for the optimization process.

  13. Electromagnetic Physics Models for Parallel Computing Architectures

    International Nuclear Information System (INIS)

    Amadio, G; Bianchini, C; Iope, R; Ananya, A; Apostolakis, J; Aurora, A; Bandieramonte, M; Brun, R; Carminati, F; Gheata, A; Gheata, M; Goulas, I; Nikitina, T; Bhattacharyya, A; Mohanty, A; Canal, P; Elvira, D; Jun, S Y; Lima, G; Duhem, L

    2016-01-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well. (paper)

  14. A PSO approach for preventive maintenance scheduling optimization

    International Nuclear Information System (INIS)

    Pereira, C.M.N.A.; Lapa, C.M.F.; Mol, A.C.A.; Luz, A.F. da

    2009-01-01

    This work presents a Particle Swarm Optimization (PSO) approach for preventive maintenance policy optimization, focused in reliability and cost. The probabilistic model for reliability and cost evaluation is developed in such a way that flexible intervals between maintenance are allowed. As PSO is skilled for realcoded continuous spaces, a non-conventional codification has been developed in order to allow PSO to solve scheduling problems (which is discrete) with variable number of maintenance interventions. In order to evaluate the proposed methodology, the High Pressure Injection System (HPIS) of a typical 4-loop PWR has been considered. Results demonstrate ability in finding optimal solutions, for which expert knowledge had to be automatically discovered by PSO. (author)

  15. Design Principles for E-Government Architectures

    Science.gov (United States)

    Sandoz, Alain

    The paper introduces a holistic approach for architecting systems which must sustain the entire e-government activity of a public authority. Four principles directly impact the architecture: Legality, Responsibility, Transparency, and Symmetry leading to coherent representations of the architecture for the client, the designer and the builder. The approach enables to deploy multipartite, distributed public services, including legal delegation of roles and outsourcing of non mandatory tasks through PPP.

  16. Algorithms, architectures and information systems security

    CERN Document Server

    Sur-Kolay, Susmita; Nandy, Subhas C; Bagchi, Aditya

    2008-01-01

    This volume contains articles written by leading researchers in the fields of algorithms, architectures, and information systems security. The first five chapters address several challenging geometric problems and related algorithms. These topics have major applications in pattern recognition, image analysis, digital geometry, surface reconstruction, computer vision and in robotics. The next five chapters focus on various optimization issues in VLSI design and test architectures, and in wireless networks. The last six chapters comprise scholarly articles on information systems security coverin

  17. An iterative approach for the optimization of pavement maintenance management at the network level.

    Science.gov (United States)

    Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Pellicer, Eugenio; Yepes, Víctor

    2014-01-01

    Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach.

  18. An Iterative Approach for the Optimization of Pavement Maintenance Management at the Network Level

    Directory of Open Access Journals (Sweden)

    Cristina Torres-Machí

    2014-01-01

    Full Text Available Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach.

  19. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.

    Science.gov (United States)

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-12-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.

  20. A Novel Measurement Matrix Optimization Approach for Hyperspectral Unmixing

    Directory of Open Access Journals (Sweden)

    Su Xu

    2017-01-01

    Full Text Available Each pixel in the hyperspectral unmixing process is modeled as a linear combination of endmembers, which can be expressed in the form of linear combinations of a number of pure spectral signatures that are known in advance. However, the limitation of Gaussian random variables on its computational complexity or sparsity affects the efficiency and accuracy. This paper proposes a novel approach for the optimization of measurement matrix in compressive sensing (CS theory for hyperspectral unmixing. Firstly, a new Toeplitz-structured chaotic measurement matrix (TSCMM is formed by pseudo-random chaotic elements, which can be implemented by a simple hardware; secondly, rank revealing QR factorization with eigenvalue decomposition is presented to speed up the measurement time; finally, orthogonal gradient descent method for measurement matrix optimization is used to achieve optimal incoherence. Experimental results demonstrate that the proposed approach can lead to better CS reconstruction performance with low extra computational cost in hyperspectral unmixing.

  1. Survey on efficient linear solvers for porous media flow models on recent hardware architectures

    International Nuclear Information System (INIS)

    Anciaux-Sedrakian, Ani; Gratien, Jean-Marc; Guignon, Thomas; Gottschling, Peter

    2014-01-01

    In the past few years, High Performance Computing (HPC) technologies led to General Purpose Processing on Graphics Processing Units (GPGPU) and many-core architectures. These emerging technologies offer massive processing units and are interesting for porous media flow simulators may used for CO 2 geological sequestration or Enhanced Oil Recovery (EOR) simulation. However the crucial point is 'are current algorithms and software able to use these new technologies efficiently?' The resolution of large sparse linear systems, almost ill-conditioned, constitutes the most CPU-consuming part of such simulators. This paper proposes a survey on various solver and pre-conditioner algorithms, analyzes their efficiency and performance regarding these distinct architectures. Furthermore it proposes a novel approach based on a hybrid programming model for both GPU and many-core clusters. The proposed optimization techniques are validated through a Krylov subspace solver; BiCGStab and some pre-conditioners like ILU0 on GPU, multi-core and many-core architectures, on various large real study cases in EOR simulation. (authors)

  2. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from

  3. Novel in situ multiharmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water

    International Nuclear Information System (INIS)

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Aurbach, Doron; Daikhin, Leonid; Presser, Volker

    2016-01-01

    Multiharmonic analysis by electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D) is introduced as an excellent tool for quantitative studying electrosorption of ions from aqueous solution in mesoporous (BP-880) or mixed micro-mesoporous (BP-2000) carbon electrodes. Finding the optimal conditions for gravimetric analysis of the ionic content in the charged carbon electrodes, we propose a novel approach to modeling the charge-dependent gravimetric characteristics by incorporation of Gouy-Chapman-Stern electric double layer model for ions electrosorption into meso- and micro-mesoporous carbon electrodes. All three parameters of the gravimetric equation evaluated by fitting it to the experimental mass changes curves were validated using supplementary nitrogen gas sorption analysis and complementing atomic force microscopy. Important overlap between gravimetric EQCM-D analysis of the ionic content of porous carbon electrodes and the classical capacitive deionization models has been established. The necessity and usefulness of non-gravimetric EQCM-D characterizations of complex carbon architectures, providing insight into their unique viscoelastic behavior and porous structure changes, have been discussed in detail. (paper)

  4. Methodology Used to Create System Architecture for its in Slovakia

    Directory of Open Access Journals (Sweden)

    Ales Janota

    2004-01-01

    Full Text Available The paper deals with an object oriented approach proposed by the authors for creation of the ITS system architecture in the Slovak Republic and shows how a reference architecture can be created as s base for future more detailed architectures (models. The authors characterise possible approaches, explain their relations to existing architectures and propose a methodology based on the Unifield Modelling language (UML. The main attention is paid to the logical part (logical view of the system architecture, that should result in the form of easy readable and understandable UML models.

  5. Deciphering the genomic architecture of the stickleback brain with a novel multilocus gene-mapping approach.

    Science.gov (United States)

    Li, Zitong; Guo, Baocheng; Yang, Jing; Herczeg, Gábor; Gonda, Abigél; Balázs, Gergely; Shikano, Takahito; Calboli, Federico C F; Merilä, Juha

    2017-03-01

    Quantitative traits important to organismal function and fitness, such as brain size, are presumably controlled by many small-effect loci. Deciphering the genetic architecture of such traits with traditional quantitative trait locus (QTL) mapping methods is challenging. Here, we investigated the genetic architecture of brain size (and the size of five different brain parts) in nine-spined sticklebacks (Pungitius pungitius) with the aid of novel multilocus QTL-mapping approaches based on a de-biased LASSO method. Apart from having more statistical power to detect QTL and reduced rate of false positives than conventional QTL-mapping approaches, the developed methods can handle large marker panels and provide estimates of genomic heritability. Single-locus analyses of an F 2 interpopulation cross with 239 individuals and 15 198, fully informative single nucleotide polymorphisms (SNPs) uncovered 79 QTL associated with variation in stickleback brain size traits. Many of these loci were in strong linkage disequilibrium (LD) with each other, and consequently, a multilocus mapping of individual SNPs, accounting for LD structure in the data, recovered only four significant QTL. However, a multilocus mapping of SNPs grouped by linkage group (LG) identified 14 LGs (1-6 depending on the trait) that influence variation in brain traits. For instance, 17.6% of the variation in relative brain size was explainable by cumulative effects of SNPs distributed over six LGs, whereas 42% of the variation was accounted for by all 21 LGs. Hence, the results suggest that variation in stickleback brain traits is influenced by many small-effect loci. Apart from suggesting moderately heritable (h 2  ≈ 0.15-0.42) multifactorial genetic architecture of brain traits, the results highlight the challenges in identifying the loci contributing to variation in quantitative traits. Nevertheless, the results demonstrate that the novel QTL-mapping approach developed here has distinctive advantages

  6. OPTIMAL TRAFFIC MANAGEMENT FOR AIRCRAFT APPROACHING THE AERODROME LANDING AREA

    Directory of Open Access Journals (Sweden)

    Igor B. Ivenin

    2018-01-01

    Full Text Available The research proposes a mathematical optimization approach of arriving aircraft traffic at the aerodrome zone. The airfield having two parallel runways, capable of operating independently of each other, is modeled. The incoming traffic of aircraft is described by a Poisson flow of random events. The arriving aircraft are distributed by the air traffic controller between two runways. There is one approach flight path for each runway. Both approach paths have a common starting point. Each approach path has a different length. The approach trajectories do not overlap. For each of the two approach procedures, the air traffic controller sets the average speed of the aircraft. The given model of airfield and airfield zone is considered as the two-channel system of mass service with refusals in service. Each of the two servicing units includes an approach trajectory, a glide path and a runway. The servicing unit can be in one of two states – free and busy. The probabilities of the states of the servicing units are described by the Kolmogorov system of differential equations. The number of refusals in service on the simulated time interval is used as criterion for assessment of mass service system quality of functioning. This quality of functioning criterion is described by an integral functional. The functions describing the distribution of aircraft flows between the runways, as well as the functions describing the average speed of the aircraft, are control parameters. The optimization problem consists in finding such values of the control parameters for which the value of the criterion functional is minimal. To solve the formulated optimization problem, the L.S. Pontryagin maximum principle is applied. The form of the Hamiltonian function and the conjugate system of differential equations is given. The structure of optimal control has been studied for two different cases of restrictions on the control of the distribution of incoming aircraft

  7. Software representation methodology for agile application development: An architectural approach

    Directory of Open Access Journals (Sweden)

    Alejandro Paolo Daza Corredor

    2016-06-01

    Full Text Available The generation of Web applications represents the execution of repetitive tasks, this process involves determining information structures, the generation of different types of components and finally deployment tasks and tuning applications. In many applications of this type are coincident components generated from application to application. Current trends in software engineering as MDE, MDA or MDD pretend to automate the generation of applications based on structuring a model to apply transformations to the achievement of the application. This document intends to translate an architectural foundation that facilitates the generation of these applications relying on model-driven architecture but without ignoring the existence and relevance of existing trends mentioned in this summary architectural models.

  8. High-resolution microwave diagnostics of architectural components by particle swarm optimization

    Science.gov (United States)

    Genovesi, Simone; Salerno, Emanuele; Monorchio, Agostino; Manara, Giuliano

    2010-05-01

    We present a very simple monostatic setup for coherent multifrequency microwave measurements, and an optimization procedure to reconstruct high-resolution permittivity profiles of layered objects from complex reflection coefficients. This system is capable of precisely locating internal inhomogeneities in dielectric bodies, and can be applied to on-site diagnosis of architectural components. While limiting the imaging possibilities to 1D permittivity profiles, the monostatic geometry has an important advantage over multistatic tomographic systems, since these are normally confined to laboratories, and on-site applications are difficult to devise. The sensor is a transmitting-receiving microwave antenna, and the complex reflection coefficients are measured at a number of discrete frequencies over the system passband by using a general-purpose vector network analyzer. A dedicated instrument could also be designed, thus realizing an unexpensive, easy-to-handle system. The profile reconstruction algorithm is based on the optimization of an objective functional that includes a data-fit term and a regularization term. The first consists in the norm of the complex vector difference between the measured data and the data computed by a forward solver from the current estimate of the profile function. The regularization term enforces a piecewise smooth model for the solution, based on two 1D interacting Markov random fields: the intensity field, which models the continuous permittivity values, and the binary line field, which accounts for the possible presence of discontinuities in the profile. The data-fit and the regularization terms are balanced through a tunable regularization coefficient. By virtue of this prior model, the final result is robust against noise, and overcomes the usual limitations in spatial resolution induced by the wavelengths of the probing radiations. Indeed, the accuracy in the location of the discontinuities is only limited by the system noise and

  9. Self-optimizing approach for automated laser resonator alignment

    Science.gov (United States)

    Brecher, C.; Schmitt, R.; Loosen, P.; Guerrero, V.; Pyschny, N.; Pavim, A.; Gatej, A.

    2012-02-01

    Nowadays, the assembly of laser systems is dominated by manual operations, involving elaborate alignment by means of adjustable mountings. From a competition perspective, the most challenging problem in laser source manufacturing is price pressure, a result of cost competition exerted mainly from Asia. From an economical point of view, an automated assembly of laser systems defines a better approach to produce more reliable units at lower cost. However, the step from today's manual solutions towards an automated assembly requires parallel developments regarding product design, automation equipment and assembly processes. This paper introduces briefly the idea of self-optimizing technical systems as a new approach towards highly flexible automation. Technically, the work focuses on the precision assembly of laser resonators, which is one of the final and most crucial assembly steps in terms of beam quality and laser power. The paper presents a new design approach for miniaturized laser systems and new automation concepts for a robot-based precision assembly, as well as passive and active alignment methods, which are based on a self-optimizing approach. Very promising results have already been achieved, considerably reducing the duration and complexity of the laser resonator assembly. These results as well as future development perspectives are discussed.

  10. A Hybrid Genetic Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Sydulu Maheswarapu

    2011-08-01

    Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.

  11. PICNIC Architecture.

    Science.gov (United States)

    Saranummi, Niilo

    2005-01-01

    The PICNIC architecture aims at supporting inter-enterprise integration and the facilitation of collaboration between healthcare organisations. The concept of a Regional Health Economy (RHE) is introduced to illustrate the varying nature of inter-enterprise collaboration between healthcare organisations collaborating in providing health services to citizens and patients in a regional setting. The PICNIC architecture comprises a number of PICNIC IT Services, the interfaces between them and presents a way to assemble these into a functioning Regional Health Care Network meeting the needs and concerns of its stakeholders. The PICNIC architecture is presented through a number of views relevant to different stakeholder groups. The stakeholders of the first view are national and regional health authorities and policy makers. The view describes how the architecture enables the implementation of national and regional health policies, strategies and organisational structures. The stakeholders of the second view, the service viewpoint, are the care providers, health professionals, patients and citizens. The view describes how the architecture supports and enables regional care delivery and process management including continuity of care (shared care) and citizen-centred health services. The stakeholders of the third view, the engineering view, are those that design, build and implement the RHCN. The view comprises four sub views: software engineering, IT services engineering, security and data. The proposed architecture is founded into the main stream of how distributed computing environments are evolving. The architecture is realised using the web services approach. A number of well established technology platforms and generic standards exist that can be used to implement the software components. The software components that are specified in PICNIC are implemented in Open Source.

  12. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Science.gov (United States)

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  13. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Directory of Open Access Journals (Sweden)

    Nadia Said

    Full Text Available Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  14. Optimal planning of multiple distributed generation sources in distribution networks: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    AlRashidi, M.R., E-mail: malrash2002@yahoo.com [Department of Electrical Engineering, College of Technological Studies, Public Authority for Applied Education and Training (PAAET) (Kuwait); AlHajri, M.F., E-mail: mfalhajri@yahoo.com [Department of Electrical Engineering, College of Technological Studies, Public Authority for Applied Education and Training (PAAET) (Kuwait)

    2011-10-15

    Highlights: {yields} A new hybrid PSO for optimal DGs placement and sizing. {yields} Statistical analysis to fine tune PSO parameters. {yields} Novel constraint handling mechanism to handle different constraints types. - Abstract: An improved particle swarm optimization algorithm (PSO) is presented for optimal planning of multiple distributed generation sources (DG). This problem can be divided into two sub-problems: the DG optimal size (continuous optimization) and location (discrete optimization) to minimize real power losses. The proposed approach addresses the two sub-problems simultaneously using an enhanced PSO algorithm capable of handling multiple DG planning in a single run. A design of experiment is used to fine tune the proposed approach via proper analysis of PSO parameters interaction. The proposed algorithm treats the problem constraints differently by adopting a radial power flow algorithm to satisfy the equality constraints, i.e. power flows in distribution networks, while the inequality constraints are handled by making use of some of the PSO features. The proposed algorithm was tested on the practical 69-bus power distribution system. Different test cases were considered to validate the proposed approach consistency in detecting optimal or near optimal solution. Results are compared with those of Sequential Quadratic Programming.

  15. Optimal planning of multiple distributed generation sources in distribution networks: A new approach

    International Nuclear Information System (INIS)

    AlRashidi, M.R.; AlHajri, M.F.

    2011-01-01

    Highlights: → A new hybrid PSO for optimal DGs placement and sizing. → Statistical analysis to fine tune PSO parameters. → Novel constraint handling mechanism to handle different constraints types. - Abstract: An improved particle swarm optimization algorithm (PSO) is presented for optimal planning of multiple distributed generation sources (DG). This problem can be divided into two sub-problems: the DG optimal size (continuous optimization) and location (discrete optimization) to minimize real power losses. The proposed approach addresses the two sub-problems simultaneously using an enhanced PSO algorithm capable of handling multiple DG planning in a single run. A design of experiment is used to fine tune the proposed approach via proper analysis of PSO parameters interaction. The proposed algorithm treats the problem constraints differently by adopting a radial power flow algorithm to satisfy the equality constraints, i.e. power flows in distribution networks, while the inequality constraints are handled by making use of some of the PSO features. The proposed algorithm was tested on the practical 69-bus power distribution system. Different test cases were considered to validate the proposed approach consistency in detecting optimal or near optimal solution. Results are compared with those of Sequential Quadratic Programming.

  16. A robust optimization based approach for microgrid operation in deregulated environment

    International Nuclear Information System (INIS)

    Gupta, R.A.; Gupta, Nand Kishor

    2015-01-01

    Highlights: • RO based approach developed for optimal MG operation in deregulated environment. • Wind uncertainty modeled by interval forecasting through ARIMA model. • Proposed approach evaluated using two realistic case studies. • Proposed approach evaluated the impact of degree of robustness. • Proposed approach gives a significant reduction in operation cost of microgrid. - Abstract: Micro Grids (MGs) are clusters of Distributed Energy Resource (DER) units and loads. MGs are self-sustainable and generally operated in two modes: (1) grid connected and (2) grid isolated. In deregulated environment, the operation of MG is managed by the Microgrid Operator (MO) with an objective to minimize the total cost of operation. The MG management is crucial in the deregulated power system due to (i) integration of intermittent renewable sources such as wind and Photo Voltaic (PV) generation, and (ii) volatile grid prices. This paper presents robust optimization based approach for optimal MG management considering wind power uncertainty. Time series based Autoregressive Integrated Moving Average (ARIMA) model is used to characterize the wind power uncertainty through interval forecasting. The proposed approach is illustrated through a case study having both dispatchable and non-dispatchable generators through different modes of operation. Further the impact of degree of robustness is analyzed in both cases on the total cost of operation of the MG. A comparative analysis between obtained results using proposed approach and other existing approach shows the strength of proposed approach in cost minimization in MG management

  17. Proceedings 10th International Workshop on Formal Engineering Approaches to Software Components and Architectures

    OpenAIRE

    Buhnova, Barbora; Happe, Lucia; Kofroň, Jan

    2013-01-01

    These are the proceedings of the 10th International Workshop on Formal Engineering approaches to Software Components and Architectures (FESCA). The workshop was held on March 23, 2013 in Rome (Italy) as a satellite event to the European Joint Conference on Theory and Practice of Software (ETAPS'13). The aim of the FESCA workshop is to bring together both young and senior researchers from formal methods, software engineering, and industry interested in the development and application of formal...

  18. A probabilistic approach for optimal sensor allocation in structural health monitoring

    International Nuclear Information System (INIS)

    Azarbayejani, M; Reda Taha, M M; El-Osery, A I; Choi, K K

    2008-01-01

    Recent advances in sensor technology promote using large sensor networks to efficiently and economically monitor, identify and quantify damage in structures. In structural health monitoring (SHM) systems, the effectiveness and reliability of the sensor network are crucial to determine the optimal number and locations of sensors in SHM systems. Here, we suggest a probabilistic approach for identifying the optimal number and locations of sensors for SHM. We demonstrate a methodology to establish the probability distribution function that identifies the optimal sensor locations such that damage detection is enhanced. The approach is based on using the weights of a neural network trained from simulations using a priori knowledge about damage locations and damage severities to generate a normalized probability distribution function for optimal sensor allocation. We also demonstrate that the optimal sensor network can be related to the highest probability of detection (POD). The redundancy of the proposed sensor network is examined using a 'leave one sensor out' analysis. A prestressed concrete bridge is selected as a case study to demonstrate the effectiveness of the proposed method. The results show that the proposed approach can provide a robust design for sensor networks that are more efficient than a uniform distribution of sensors on a structure

  19. Art as behaviour--an ethological approach to visual and verbal art, music and architecture.

    Science.gov (United States)

    Sütterlin, Christa; Schiefenhövel, Wulf; Lehmann, Christian; Forster, Johanna; Apfelauer, Gerhard

    2014-01-01

    In recent years, the fine arts, architecture, music and literature have increasingly been examined from the vantage point of human ethology and evolutionary psychology. In 2011 the authors formed the research group 'Ethology of the Arts' concentrating on the evolution and biology of perception and behaviour. These novel approaches aim at a better understanding of the various facets represented by the arts by taking into focus possible phylogenetic adaptations, which have shaped the artistic capacities of our ancestors. Rather than culture specificity, which is stressed e.g. by cultural anthropology and numerous other disciplines, universal human tendencies to perceive, feel, think and behave are postulated. Artistic expressive behaviour is understood as an integral part of the human condition, whether expressed in ritual, visual, verbal or musical art. The Ethology of the Arts-group's research focuses on visual and verbal art, music and built environment/architecture and is designed to contribute to the incipient interdisciplinarity in the field of evolutionary art research.

  20. Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach

    Science.gov (United States)

    Aguilo, Miguel A.; Warner, James E.

    2017-01-01

    This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.

  1. A Statistical Approach to Optimizing Concrete Mixture Design

    OpenAIRE

    Ahmad, Shamsad; Alghamdi, Saeid A.

    2014-01-01

    A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (33). A total of 27 concrete mixtures with three replicate...

  2. A portable approach for PIC on emerging architectures

    Science.gov (United States)

    Decyk, Viktor

    2016-03-01

    A portable approach for designing Particle-in-Cell (PIC) algorithms on emerging exascale computers, is based on the recognition that 3 distinct programming paradigms are needed. They are: low level vector (SIMD) processing, middle level shared memory parallel programing, and high level distributed memory programming. In addition, there is a memory hierarchy associated with each level. Such algorithms can be initially developed using vectorizing compilers, OpenMP, and MPI. This is the approach recommended by Intel for the Phi processor. These algorithms can then be translated and possibly specialized to other programming models and languages, as needed. For example, the vector processing and shared memory programming might be done with CUDA instead of vectorizing compilers and OpenMP, but generally the algorithm itself is not greatly changed. The UCLA PICKSC web site at http://www.idre.ucla.edu/ contains example open source skeleton codes (mini-apps) illustrating each of these three programming models, individually and in combination. Fortran2003 now supports abstract data types, and design patterns can be used to support a variety of implementations within the same code base. Fortran2003 also supports interoperability with C so that implementations in C languages are also easy to use. Finally, main codes can be translated into dynamic environments such as Python, while still taking advantage of high performing compiled languages. Parallel languages are still evolving with interesting developments in co-Array Fortran, UPC, and OpenACC, among others, and these can also be supported within the same software architecture. Work supported by NSF and DOE Grants.

  3. Reliability-redundancy optimization by means of a chaotic differential evolution approach

    International Nuclear Information System (INIS)

    Coelho, Leandro dos Santos

    2009-01-01

    The reliability design is related to the performance analysis of many engineering systems. The reliability-redundancy optimization problems involve selection of components with multiple choices and redundancy levels that produce maximum benefits, can be subject to the cost, weight, and volume constraints. Classical mathematical methods have failed in handling nonconvexities and nonsmoothness in optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solution in reliability-redundancy optimization problems. Evolutionary algorithms (EAs) - paradigms of evolutionary computation field - are stochastic and robust meta-heuristics useful to solve reliability-redundancy optimization problems. EAs such as genetic algorithm, evolutionary programming, evolution strategies and differential evolution are being used to find global or near global optimal solution. A differential evolution approach based on chaotic sequences using Lozi's map for reliability-redundancy optimization problems is proposed in this paper. The proposed method has a fast convergence rate but also maintains the diversity of the population so as to escape from local optima. An application example in reliability-redundancy optimization based on the overspeed protection system of a gas turbine is given to show its usefulness and efficiency. Simulation results show that the application of deterministic chaotic sequences instead of random sequences is a possible strategy to improve the performance of differential evolution.

  4. Contingency Contractor Optimization Phase 3 Sustainment Software Design Document - Contingency Contractor Optimization Tool - Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa; Jones, Katherine A

    2016-05-01

    This document describes the final software design of the Contingency Contractor Optimization Tool - Prototype. Its purpose is to provide the overall architecture of the software and the logic behind this architecture. Documentation for the individual classes is provided in the application Javadoc. The Contingency Contractor Optimization project is intended to address Department of Defense mandates by delivering a centralized strategic planning tool that allows senior decision makers to quickly and accurately assess the impacts, risks, and mitigation strategies associated with utilizing contract support. The Contingency Contractor Optimization Tool - Prototype was developed in Phase 3 of the OSD ATL Contingency Contractor Optimization project to support strategic planning for contingency contractors. The planning tool uses a model to optimize the Total Force mix by minimizing the combined total costs for selected mission scenarios. The model optimizes the match of personnel types (military, DoD civilian, and contractors) and capabilities to meet mission requirements as effectively as possible, based on risk, cost, and other requirements.

  5. Can architecture be barbaric?

    Science.gov (United States)

    Hürol, Yonca

    2009-06-01

    The title of this article is adapted from Theodor W. Adorno's famous dictum: 'To write poetry after Auschwitz is barbaric.' After the catastrophic earthquake in Kocaeli, Turkey on the 17th of August 1999, in which more than 40,000 people died or were lost, Necdet Teymur, who was then the dean of the Faculty of Architecture of the Middle East Technical University, referred to Adorno in one of his 'earthquake poems' and asked: 'Is architecture possible after 17th of August?' The main objective of this article is to interpret Teymur's question in respect of its connection to Adorno's philosophy with a view to make a contribution to the politics and ethics of architecture in Turkey. Teymur's question helps in providing a new interpretation of a critical approach to architecture and architectural technology through Adorno's philosophy. The paper also presents a discussion of Adorno's dictum, which serves for a better understanding of its universality/particularity.

  6. Fog computing job scheduling optimization based on bees swarm

    Science.gov (United States)

    Bitam, Salim; Zeadally, Sherali; Mellouk, Abdelhamid

    2018-04-01

    Fog computing is a new computing architecture, composed of a set of near-user edge devices called fog nodes, which collaborate together in order to perform computational services such as running applications, storing an important amount of data, and transmitting messages. Fog computing extends cloud computing by deploying digital resources at the premise of mobile users. In this new paradigm, management and operating functions, such as job scheduling aim at providing high-performance, cost-effective services requested by mobile users and executed by fog nodes. We propose a new bio-inspired optimization approach called Bees Life Algorithm (BLA) aimed at addressing the job scheduling problem in the fog computing environment. Our proposed approach is based on the optimized distribution of a set of tasks among all the fog computing nodes. The objective is to find an optimal tradeoff between CPU execution time and allocated memory required by fog computing services established by mobile users. Our empirical performance evaluation results demonstrate that the proposal outperforms the traditional particle swarm optimization and genetic algorithm in terms of CPU execution time and allocated memory.

  7. FY1995 study of design methodology and environment of high-performance processor architectures; 1995 nendo koseino processor architecture sekkeiho to sekkei kankyo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The aim of our project is to develop high-performance processor architectures for both general purpose and application-specific purpose. We also plan to develop basic softwares, such as compliers, and various design aid tools for those architectures. We are particularly interested in performance evaluation at architecture design phase, design optimization, automatic generation of compliers from processor designs, and architecture design methodologies combined with circuit layout. We have investigated both microprocessor architectures and design methodologies / environments for the processors. Our goal is to establish design technologies for high-performance, low-power, low-cost and highly-reliable systems in system-on-silicon era. We have proposed PPRAM architecture for high-performance system using DRAM and logic mixture technology, Softcore processor architecture for special purpose processors in embedded systems, and Power-Pro architecture for low power systems. We also developed design methodologies and design environments for the above architectures as well as a new method for design verification of microprocessors. (NEDO)

  8. The impact of optimize solar radiation received on the levels and energy disposal of levels on architectural design result by using computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Davood; Farajzadeh Khosroshahi, Samaneh; Sadegh Falahat, Mohammad [Zanjan University (Iran, Islamic Republic of)], email: d_rezaei@znu.ac.ir, email: ronas_66@yahoo.com, email: Safalahat@yahoo.com

    2011-07-01

    In order to minimize the energy consumption of a building it is important to achieve optimum solar energy. The aim of this paper is to introduce the use of computer modeling in the early stages of design to optimize solar radiation received and energy disposal in an architectural design. Computer modeling was performed on 2 different projects located in Los Angeles, USA, using ECOTECT software. Changes were made to the designs following analysis of the modeling results and a subsequent analysis was carried out on the optimized designs. Results showed that the computer simulation allows the designer to set the analysis criteria and improve the energy performance of a building before it is constructed; moreover, it can be used for a wide range of optimization levels. This study pointed out that computer simulation should be performed in the design stage to optimize a building's energy performance.

  9. An Optimization Approach to the Dynamic Allocation of Economic Capital

    NARCIS (Netherlands)

    Laeven, R.J.A.; Goovaerts, M.J.

    2004-01-01

    We propose an optimization approach to allocating economic capital, distinguishing between an allocation or raising principle and a measure for the risk residual. The approach is applied both at the aggregate (conglomerate) level and at the individual (subsidiary) level and yields an integrated

  10. Architecture design of the application software for the low-level RF control system of the free-electron laser at Hamburg

    International Nuclear Information System (INIS)

    Geng, Z.; Ayvazyan, V.; Simrock, S.

    2012-01-01

    The superconducting linear accelerator of the Free-Electron Laser at Hamburg (FLASH) provides high performance electron beams to the lasing system to generate synchrotron radiation to various users. The Low-Level RF (LLRF) system is used to maintain the beam stabilities by stabilizing the RF field in the superconducting cavities with feedback and feed forward algorithms. The LLRF applications are sets of software to perform RF system model identification, control parameters optimization, exception detection and handling, so as to improve the precision, robustness and operability of the LLRF system. In order to implement the LLRF applications in the hardware with multiple distributed processors, an optimized architecture of the software is required for good understandability, maintainability and extendibility. This paper presents the design of the LLRF application software architecture based on the software engineering approach for FLASH. (authors)

  11. Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks.

    Science.gov (United States)

    Yetton, Benjamin D; McDevitt, Elizabeth A; Cellini, Nicola; Shelton, Christian; Mednick, Sara C

    2018-01-01

    The pattern of sleep stages across a night (sleep architecture) is influenced by biological, behavioral, and clinical variables. However, traditional measures of sleep architecture such as stage proportions, fail to capture sleep dynamics. Here we quantify the impact of individual differences on the dynamics of sleep architecture and determine which factors or set of factors best predict the next sleep stage from current stage information. We investigated the influence of age, sex, body mass index, time of day, and sleep time on static (e.g. minutes in stage, sleep efficiency) and dynamic measures of sleep architecture (e.g. transition probabilities and stage duration distributions) using a large dataset of 3202 nights from a non-clinical population. Multi-level regressions show that sex effects duration of all Non-Rapid Eye Movement (NREM) stages, and age has a curvilinear relationship for Wake After Sleep Onset (WASO) and slow wave sleep (SWS) minutes. Bayesian network modeling reveals sleep architecture depends on time of day, total sleep time, age and sex, but not BMI. Older adults, and particularly males, have shorter bouts (more fragmentation) of Stage 2, SWS, and they transition less frequently to these stages. Additionally, we showed that the next sleep stage and its duration can be optimally predicted by the prior 2 stages and age. Our results demonstrate the potential benefit of big data and Bayesian network approaches in quantifying static and dynamic architecture of normal sleep.

  12. Architectural Design of a LMS with LTSA-Conformance

    Science.gov (United States)

    Sengupta, Souvik; Dasgupta, Ranjan

    2017-01-01

    This paper illustrates an approach for architectural design of a Learning Management System (LMS), which is verifiable against the Learning Technology System Architecture (LTSA) conformance rules. We introduce a new method for software architectural design that extends the Unified Modeling Language (UML) component diagram with the formal…

  13. DOE's Institute for Advanced Architecture and Algorithms: An application-driven approach

    International Nuclear Information System (INIS)

    Murphy, Richard C

    2009-01-01

    This paper describes an application driven methodology for understanding the impact of future architecture decisions on the end of the MPP era. Fundamental transistor device limitations combined with application performance characteristics have created the switch to multicore/multithreaded architectures. Designing large-scale supercomputers to match application demands is particularly challenging since performance characteristics are highly counter-intuitive. In fact, data movement more than FLOPS dominates. This work discusses some basic performance analysis for a set of DOE applications, the limits of CMOS technology, and the impact of both on future architectures.

  14. An Enterprise Security Program and Architecture to Support Business Drivers

    Directory of Open Access Journals (Sweden)

    Brian Ritchot

    2013-08-01

    Full Text Available This article presents a business-focused approach to developing and delivering enterprise security architecture that is focused on enabling business objectives while providing a sensible and balanced approach to risk management. A balanced approach to enterprise security architecture can create the important linkages between the goals and objectives of a business, and it provides appropriate measures to protect the most critical assets within an organization while accepting risk where appropriate. Through a discussion of information assurance, this article makes a case for leveraging enterprise security architectures to meet an organizations' need for information assurance. The approach is derived from the Sherwood Applied Business Security Architecture (SABSA methodology, as put into practice by Seccuris Inc., an information assurance integrator. An understanding of Seccuris’ approach will illustrate the importance of aligning security activities with high-level business objectives while creating increased awareness of the duality of risk. This business-driven approach to enterprise security architecture can help organizations change the perception of IT security, positioning it as a tool to enable and assure business success, rather than be perceived as an obstacle to be avoided.

  15. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    Science.gov (United States)

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.

    Science.gov (United States)

    Fiege, Jason; McCurdy, Boyd; Potrebko, Peter; Champion, Heather; Cull, Andrew

    2011-09-01

    In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning. pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient. pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows promise in optimizing the number

  17. Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space

    Science.gov (United States)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2015-09-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their

  18. A Swarm Optimization approach for clinical knowledge mining.

    Science.gov (United States)

    Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A

    2015-10-01

    Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright

  19. Spatiotemporal radiotherapy planning using a global optimization approach

    Science.gov (United States)

    Adibi, Ali; Salari, Ehsan

    2018-02-01

    This paper aims at quantifying the extent of potential therapeutic gain, measured using biologically effective dose (BED), that can be achieved by altering the radiation dose distribution over treatment sessions in fractionated radiotherapy. To that end, a spatiotemporally integrated planning approach is developed, where the spatial and temporal dose modulations are optimized simultaneously. The concept of equivalent uniform BED (EUBED) is used to quantify and compare the clinical quality of spatiotemporally heterogeneous dose distributions in target and critical structures. This gives rise to a large-scale non-convex treatment-plan optimization problem, which is solved using global optimization techniques. The proposed spatiotemporal planning approach is tested on two stylized cancer cases resembling two different tumor sites and sensitivity analysis is performed for radio-biological and EUBED parameters. Numerical results validate that spatiotemporal plans are capable of delivering a larger BED to the target volume without increasing the BED in critical structures compared to conventional time-invariant plans. In particular, this additional gain is attributed to the irradiation of different regions of the target volume at different treatment sessions. Additionally, the trade-off between the potential therapeutic gain and the number of distinct dose distributions is quantified, which suggests a diminishing marginal gain as the number of dose distributions increases.

  20. Business architecture management architecting the business for consistency and alignment

    CERN Document Server

    Simon, Daniel

    2015-01-01

    This book presents a comprehensive overview of enterprise architecture management with a specific focus on the business aspects. While recent approaches to enterprise architecture management have dealt mainly with aspects of information technology, this book covers all areas of business architecture from business motivation and models to business execution. The book provides examples of how architectural thinking can be applied in these areas, thus combining different perspectives into a consistent whole. In-depth experiences from end-user organizations help readers to understand the abstract concepts of business architecture management and to form blueprints for their own professional approach. Business architecture professionals, researchers, and others working in the field of strategic business management will benefit from this comprehensive volume and its hands-on examples of successful business architecture management practices.​.

  1. Computer programming and architecture the VAX

    CERN Document Server

    Levy, Henry

    2014-01-01

    Takes a unique systems approach to programming and architecture of the VAXUsing the VAX as a detailed example, the first half of this book offers a complete course in assembly language programming. The second describes higher-level systems issues in computer architecture. Highlights include the VAX assembler and debugger, other modern architectures such as RISCs, multiprocessing and parallel computing, microprogramming, caches and translation buffers, and an appendix on the Berkeley UNIX assembler.

  2. A Multivariate Quality Loss Function Approach for Optimization of Spinning Processes

    Science.gov (United States)

    Chakraborty, Shankar; Mitra, Ankan

    2018-05-01

    Recent advancements in textile industry have given rise to several spinning techniques, such as ring spinning, rotor spinning etc., which can be used to produce a wide variety of textile apparels so as to fulfil the end requirements of the customers. To achieve the best out of these processes, they should be utilized at their optimal parametric settings. However, in presence of multiple yarn characteristics which are often conflicting in nature, it becomes a challenging task for the spinning industry personnel to identify the best parametric mix which would simultaneously optimize all the responses. Hence, in this paper, the applicability of a new systematic approach in the form of multivariate quality loss function technique is explored for optimizing multiple quality characteristics of yarns while identifying the ideal settings of two spinning processes. It is observed that this approach performs well against the other multi-objective optimization techniques, such as desirability function, distance function and mean squared error methods. With slight modifications in the upper and lower specification limits of the considered quality characteristics, and constraints of the non-linear optimization problem, it can be successfully applied to other processes in textile industry to determine their optimal parametric settings.

  3. Application of probabilistic risk based optimization approaches in environmental restoration

    International Nuclear Information System (INIS)

    Goldammer, W.

    1995-01-01

    The paper presents a general approach to site-specific risk assessments and optimization procedures. In order to account for uncertainties in the assessment of the current situation and future developments, optimization parameters are treated as probabilistic distributions. The assessments are performed within the framework of a cost-benefit analysis. Radiation hazards and conventional risks are treated within an integrated approach. Special consideration is given to consequences of low probability events such as, earthquakes or major floods. Risks and financial costs are combined to an overall figure of detriment allowing one to distinguish between benefits of available reclamation options. The probabilistic analysis uses a Monte Carlo simulation technique. The paper demonstrates the applicability of this approach in aiding the reclamation planning using an example from the German reclamation program for uranium mining and milling sites

  4. Digital design and computer architecture

    CERN Document Server

    Harris, David

    2010-01-01

    Digital Design and Computer Architecture is designed for courses that combine digital logic design with computer organization/architecture or that teach these subjects as a two-course sequence. Digital Design and Computer Architecture begins with a modern approach by rigorously covering the fundamentals of digital logic design and then introducing Hardware Description Languages (HDLs). Featuring examples of the two most widely-used HDLs, VHDL and Verilog, the first half of the text prepares the reader for what follows in the second: the design of a MIPS Processor. By the end of D

  5. A Massively Scalable Architecture for Instant Messaging & Presence

    NARCIS (Netherlands)

    Schippers, Jorrit; Remke, Anne Katharina Ingrid; Punt, Henk; Wegdam, M.; Haverkort, Boudewijn R.H.M.; Thomas, N.; Bradley, J.; Knottenbelt, W.; Dingle, N.; Harder, U.

    2010-01-01

    This paper analyzes the scalability of Instant Messaging & Presence (IM&P) architectures. We take a queueing-based modelling and analysis approach to ��?nd the bottlenecks of the current IM&P architecture at the Dutch social network Hyves, as well as of alternative architectures. We use the

  6. An end-to-end security auditing approach for service oriented architectures

    NARCIS (Netherlands)

    Azarmi, M.; Bhargava, B.; Angin, P.; Ranchal, R.; Ahmed, N.; Sinclair, A.; Linderman, M.; Ben Othmane, L.

    2012-01-01

    Service-Oriented Architecture (SOA) is becoming a major paradigm for distributed application development in the recent explosion of Internet services and cloud computing. However, SOA introduces new security challenges not present in the single-hop client-server architectures due to the involvement

  7. Development of a Multi-Event Trajectory Optimization Tool for Noise-Optimized Approach Route Design

    NARCIS (Netherlands)

    Braakenburg, M.L.; Hartjes, S.; Visser, H.G.; Hebly, S.J.

    2011-01-01

    This paper presents preliminary results from an ongoing research effort towards the development of a multi-event trajectory optimization methodology that allows to synthesize RNAV approach routes that minimize a cumulative measure of noise, taking into account the total noise effect aggregated for

  8. RFID-WSN integrated architecture for energy and delay- aware routing a simulation approach

    CERN Document Server

    Ahmed, Jameel; Tayyab, Muhammad; Nawaz, Menaa

    2015-01-01

    The book identifies the performance challenges concerning Wireless Sensor Networks (WSN) and Radio Frequency Identification (RFID) and analyzes their impact on the performance of routing protocols. It presents a thorough literature survey to identify the issues affecting routing protocol performance, as well as a mathematical model for calculating the end-to-end delays of the routing protocol ACQUIRE; a comparison of two routing protocols (ACQUIRE and DIRECTED DIFFUSION) is also provided for evaluation purposes. On the basis of the results and literature review, recommendations are made for better selection of protocols regarding the nature of the respective application and related challenges. In addition, this book covers a proposed simulator that integrates both RFID and WSN technologies. Therefore, the manuscript is divided in two major parts: an integrated architecture of smart nodes, and a power-optimized protocol for query and information interchange.

  9. Microprocessor architectures RISC, CISC and DSP

    CERN Document Server

    Heath, Steve

    1995-01-01

    'Why are there all these different processor architectures and what do they all mean? Which processor will I use? How should I choose it?' Given the task of selecting an architecture or design approach, both engineers and managers require a knowledge of the whole system and an explanation of the design tradeoffs and their effects. This is information that rarely appears in data sheets or user manuals. This book fills that knowledge gap.Section 1 provides a primer and history of the three basic microprocessor architectures. Section 2 describes the ways in which the architectures react with the

  10. Space Elevators Preliminary Architectural View

    Science.gov (United States)

    Pullum, L.; Swan, P. A.

    Space Systems Architecture has been expanded into a process by the US Department of Defense for their large scale systems of systems development programs. This paper uses the steps in the process to establishes a framework for Space Elevator systems to be developed and provides a methodology to manage complexity. This new approach to developing a family of systems is based upon three architectural views: Operational View OV), Systems View (SV), and Technical Standards View (TV). The top level view of the process establishes the stages for the development of the first Space Elevator and is called Architectural View - 1, Overview and Summary. This paper will show the guidelines and steps of the process while focusing upon components of the Space Elevator Preliminary Architecture View. This Preliminary Architecture View is presented as a draft starting point for the Space Elevator Project.

  11. Polymer architecture and drug delivery.

    Science.gov (United States)

    Qiu, Li Yan; Bae, You Han

    2006-01-01

    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  12. Automatic Functionality Assignment to AUTOSAR Multicore Distributed Architectures

    DEFF Research Database (Denmark)

    Maticu, Florin; Pop, Paul; Axbrink, Christian

    2016-01-01

    The automotive electronic architectures have moved from federated architectures, where one function is implemented in one ECU (Electronic Control Unit), to distributed architectures, where several functions may share resources on an ECU. In addition, multicore ECUs are being adopted because...... of better performance, cost, size, fault-tolerance and power consumption. In this paper we present an approach for the automatic software functionality assignment to multicore distributed architectures. We consider that the systems use the AUTomotive Open System ARchitecture (AUTOSAR). The functionality...

  13. Experiencing a Problem-Based Learning Approach for Teaching Reconfigurable Architecture Design

    Directory of Open Access Journals (Sweden)

    Erwan Fabiani

    2009-01-01

    Full Text Available This paper presents the “reconfigurable computing” teaching part of a computer science master course (first year on parallel architectures. The practical work sessions of this course rely on active pedagogy using problem-based learning, focused on designing a reconfigurable architecture for the implementation of an application class of image processing algorithms. We show how the successive steps of this project permit the student to experiment with several fundamental concepts of reconfigurable computing at different levels. Specific experiments include exploitation of architectural parallelism, dataflow and communicating component-based design, and configurability-specificity tradeoffs.

  14. Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method

    Science.gov (United States)

    Zhang, Xiangnan

    2018-03-01

    A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.

  15. Computational Approaches to Simulation and Optimization of Global Aircraft Trajectories

    Science.gov (United States)

    Ng, Hok Kwan; Sridhar, Banavar

    2016-01-01

    This study examines three possible approaches to improving the speed in generating wind-optimal routes for air traffic at the national or global level. They are: (a) using the resources of a supercomputer, (b) running the computations on multiple commercially available computers and (c) implementing those same algorithms into NASAs Future ATM Concepts Evaluation Tool (FACET) and compares those to a standard implementation run on a single CPU. Wind-optimal aircraft trajectories are computed using global air traffic schedules. The run time and wait time on the supercomputer for trajectory optimization using various numbers of CPUs ranging from 80 to 10,240 units are compared with the total computational time for running the same computation on a single desktop computer and on multiple commercially available computers for potential computational enhancement through parallel processing on the computer clusters. This study also re-implements the trajectory optimization algorithm for further reduction of computational time through algorithm modifications and integrates that with FACET to facilitate the use of the new features which calculate time-optimal routes between worldwide airport pairs in a wind field for use with existing FACET applications. The implementations of trajectory optimization algorithms use MATLAB, Python, and Java programming languages. The performance evaluations are done by comparing their computational efficiencies and based on the potential application of optimized trajectories. The paper shows that in the absence of special privileges on a supercomputer, a cluster of commercially available computers provides a feasible approach for national and global air traffic system studies.

  16. Optimal trading strategies—a time series approach

    Science.gov (United States)

    Bebbington, Peter A.; Kühn, Reimer

    2016-05-01

    Motivated by recent advances in the spectral theory of auto-covariance matrices, we are led to revisit a reformulation of Markowitz’ mean-variance portfolio optimization approach in the time domain. In its simplest incarnation it applies to a single traded asset and allows an optimal trading strategy to be found which—for a given return—is minimally exposed to market price fluctuations. The model is initially investigated for a range of synthetic price processes, taken to be either second order stationary, or to exhibit second order stationary increments. Attention is paid to consequences of estimating auto-covariance matrices from small finite samples, and auto-covariance matrix cleaning strategies to mitigate against these are investigated. Finally we apply our framework to real world data.

  17. Application of parallelized software architecture to an autonomous ground vehicle

    Science.gov (United States)

    Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam

    2011-01-01

    This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.

  18. Architectural Optimization of Digital Libraries

    Science.gov (United States)

    Biser, Aileen O.

    1998-01-01

    This work investigates performance and scaling issues relevant to large scale distributed digital libraries. Presently, performance and scaling studies focus on specific implementations of production or prototype digital libraries. Although useful information is gained to aid these designers and other researchers with insights to performance and scaling issues, the broader issues relevant to very large scale distributed libraries are not addressed. Specifically, no current studies look at the extreme or worst case possibilities in digital library implementations. A survey of digital library research issues is presented. Scaling and performance issues are mentioned frequently in the digital library literature but are generally not the focus of much of the current research. In this thesis a model for a Generic Distributed Digital Library (GDDL) and nine cases of typical user activities are defined. This model is used to facilitate some basic analysis of scaling issues. Specifically, the calculation of Internet traffic generated for different configurations of the study parameters and an estimate of the future bandwidth needed for a large scale distributed digital library implementation. This analysis demonstrates the potential impact a future distributed digital library implementation would have on the Internet traffic load and raises questions concerning the architecture decisions being made for future distributed digital library designs.

  19. An Efficient Approach for Solving Mesh Optimization Problems Using Newton’s Method

    Directory of Open Access Journals (Sweden)

    Jibum Kim

    2014-01-01

    Full Text Available We present an efficient approach for solving various mesh optimization problems. Our approach is based on Newton’s method, which uses both first-order (gradient and second-order (Hessian derivatives of the nonlinear objective function. The volume and surface mesh optimization algorithms are developed such that mesh validity and surface constraints are satisfied. We also propose several Hessian modification methods when the Hessian matrix is not positive definite. We demonstrate our approach by comparing our method with nonlinear conjugate gradient and steepest descent methods in terms of both efficiency and mesh quality.

  20. Hardware Architectures for the Correspondence Problem in Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Thomas Eide

    Method"has been developed in conjunction with the work on this thesis and has not previously been described. Also, during this project a combined image acquisition and compression board has been developed for a NASA sounding rocket. This circuit, a so-called Lightning Imager, is also described. Finally...... an optimized hardware architecture has been proposed in relation to the three matching methods mentioned above. Because of the cost required to physically implement and test the developed architecture, it has been decided todocument the performance of the architecture through theoretical proofs only....

  1. Robust and optimal control a two-port framework approach

    CERN Document Server

    Tsai, Mi-Ching

    2014-01-01

    A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal and H∞ sub-optimal controllers. Simple yet illustrative examples explain each step. A Two-port Framework for Robust and Optimal Control  features: ·         a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs; ·         an abundance of examples illustrating the most important steps in robust and optimal design; and ·   �...

  2. Thermodynamic optimization of geometry in engineering flow systems

    Energy Technology Data Exchange (ETDEWEB)

    Bejan, A.; Jones, J.A. [Duke Univ., Durham, NC (United States)

    2000-07-01

    This review draws attention to an emerging body of work that relies on global thermodynamic optimization in the pursuit of flow system architecture. Exergy analysis establishes the theoretical performance limit. Thermodynamic optimization (or entropy generation minimization) brings the design as closely as permissible to the theoretical limit. The design is destined to remain imperfect because of constraints (finite sizes, times, and costs). Improvements are registered by spreading the imperfection (e.g., flow resistances) through the system. Resistances compete against each other and must be optimized together. Optimal spreading means spatial distribution, geometric form, topology, and geography. System architecture springs out of constrained global optimization. The principle is illustrated by simple examples: the optimization of dimensions, spacings, and the distribution (allocation) of heat transfer surface to the two heat exchangers of a power plant. Similar opportunities for deducing flow architecture exist in more complex systems for power and refrigeration. Examples show that the complete structure of heat exchangers for environmental control systems of aircraft can be derived based on this principle. (authors)

  3. A Hybrid Power Management (HPM) Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Society desires vehicles with reduced fuel consumption and reduced emissions. This presents a challenge and an opportunity for industry and the government. The NASA John H. Glenn Research Center (GRC) has developed a Hybrid Power Management (HPM) based vehicle architecture for space and terrestrial vehicles. GRC's Electrical and Electromagnetics Branch of the Avionics and Electrical Systems Division initiated the HPM Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, providing all power to a common energy storage system, which is used to power the drive motors and vehicle accessory systems, as well as provide power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. This flexible vehicle architecture can be applied to all vehicles to considerably improve system efficiency, reliability, safety, security, and performance. This unique vehicle architecture has the potential to alleviate global energy concerns, improve the environment, stimulate the economy, and enable new missions.

  4. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository. © Springer-Verlag Berlin Heidelberg 2013.

  5. A complex systems approach to planning, optimization and decision making for energy networks

    International Nuclear Information System (INIS)

    Beck, Jessica; Kempener, Ruud; Cohen, Brett; Petrie, Jim

    2008-01-01

    This paper explores a new approach to planning and optimization of energy networks, using a mix of global optimization and agent-based modeling tools. This approach takes account of techno-economic, environmental and social criteria, and engages explicitly with inherent network complexity in terms of the autonomous decision-making capability of individual agents within the network, who may choose not to act as economic rationalists. This is an important consideration from the standpoint of meeting sustainable development goals. The approach attempts to set targets for energy planning, by determining preferred network development pathways through multi-objective optimization. The viability of such plans is then explored through agent-based models. The combined approach is demonstrated for a case study of regional electricity generation in South Africa, with biomass as feedstock

  6. Logical-Rule Models of Classification Response Times: A Synthesis of Mental-Architecture, Random-Walk, and Decision-Bound Approaches

    Science.gov (United States)

    Fific, Mario; Little, Daniel R.; Nosofsky, Robert M.

    2010-01-01

    We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli…

  7. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  8. Heterogeneous architecture to process swarm optimization algorithms

    Directory of Open Access Journals (Sweden)

    Maria A. Dávila-Guzmán

    2014-01-01

    Full Text Available Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution.

  9. Typological Descriptions as Generative Guides for Historical Architecture

    NARCIS (Netherlands)

    Stouffs, R.M.F.A.; Tuncer, B.

    2015-01-01

    This paper presents a description grammar approach in the context of the generation of historical architectural typologies. The specific architectural context is classical period Ottoman mosques of the architect Sinan.

  10. Public regulations towards a tectonic architecture

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    2006-01-01

    's activities has primarily been to support the optimization of the building process through ‘trimmed building’ and ‘partnering’ that only takes the immediate economic benefits of the changes to the building process into account and as such has no measures for architectural quality. The public initiatives so......Public regulations can support tectonic architecture by changes to the tendering system, supporting new organizational structures of the building industry in public building projects and suggesting a focus on innovation through increased research and development activity. The Danish state...... are happening very slowly which is understandable when there is no economic incitement for the industry to change. A change of these public regulations from sticks to carrots could create the economic incitement for the building industry to create tectonic architecture and thereby develop the building industry...

  11. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn

    2009-01-01

    Multi-objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the exergetic, economic and environmental aspects have been considered, simultaneously. The thermodynamic modeling has been implemented comprehensively while economic analysis conducted in accordance with the total revenue requirement (TRR) method. The results for the single objective thermoeconomic optimization have been compared with the previous studies in optimization of CGAM problem. In multi-objective optimization of the CGAM problem, the three objective functions including the exergetic efficiency, total levelized cost rate of the system product and the cost rate of environmental impact have been considered. The environmental impact objective function has been defined and expressed in cost terms. This objective has been integrated with the thermoeconomic objective to form a new unique objective function known as a thermoenvironomic objective function. The thermoenvironomic objective has been minimized while the exergetic objective has been maximized. One of the most suitable optimization techniques developed using a particular class of search algorithms known as multi-objective evolutionary algorithms (MOEAs) has been considered here. This approach which is developed based on the genetic algorithm has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of decision-making has been presented and a final optimal solution has been introduced. The sensitivity of the solutions to the interest rate and the fuel cost has been studied

  12. Renewing Theories, Methods and Design Practices: Challenges for Architectural Education

    Directory of Open Access Journals (Sweden)

    Andri Yatmo Yandi

    2018-01-01

    Full Text Available Architectural education should promote the advancement of knowledge that is necessary as the basis for the development of excellent design practice. Architectural education needs to respond appropriately to the current issues in the society. To find its way into the society in an appropriate way, architecture needs to be liquid. The ability to address the liquidity of architecture requires educational approach that promotes the ability to work with a range of design methods and approaches. There are several principles that become the basis for developing architectural education that could strengthen its position within the society: to promote knowledge-based design practice, to embrace variety of design methods and approaches; to keep a balance between design knowledge and design skills; while at the same time to aim for mastery and excellence in design. These principles should be the basis for defining and developing the curriculum and the process of design learning architectural education. Then the main challenge is on our willingness to be liquid in developing architectural education, which needs continuous renewal and update to respond to the changing context of knowledge, technology and society.

  13. MMI concept and I and C architecture

    International Nuclear Information System (INIS)

    Maillart, H.

    1997-01-01

    The basic design of the I and C for the European pressurized water reactor (EPR) will establish the basis for a preliminary safety assessment and cost and feasibility evaluation. In order to avoid a premature link to a rapidly aging technology, the design aims as far as possible to establish product independent requirements, open to off-the-shelf equipment and thus benefitting from the latest progress in I and C technology in the moment of plant erection. The field of man-machine interface design serves as example to explain the approach, and the resulting overall I and C architecture is outlined. The design team comprising the active participation of designers and utilities, leads to optimal integration of feedback of experience from running plants and other design projects. (orig.)

  14. PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning

    International Nuclear Information System (INIS)

    Fiege, Jason; McCurdy, Boyd; Potrebko, Peter; Champion, Heather; Cull, Andrew

    2011-01-01

    Purpose: In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning. Methods: pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient. Results: pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows

  15. Natural energy and vernacular architecture

    Energy Technology Data Exchange (ETDEWEB)

    Fathy, H.

    1986-01-01

    This volume presents insights into the indigenous architectural forms in hot arid climates. The author presents his extensive research on climate control, particularly in the Middle East, to demonstrate the advantages of many locally available building materials and traditional building methods. He suggests improved uses of natural energy that can bridge the gap between traditional achievements and modern needs. He argues that various architectural forms in these climates have evolved intuitively from scientifically valid concepts. Such forms combine comfort and beauty, social and physical functionality. He discusses that in substituting modern materials, architects sometimes have ignored the environmental context of traditional architecture. As a result, individuals may find themselves physically and psychologically uncomfortable in modern structures. His approach, informed by a sensitive humanism, demonstrates the ways in which traditional architectural forms can be of use in solving problems facing contemporary architecture, in particular the critical housing situation in the Third World.

  16. Architecture on Architecture

    DEFF Research Database (Denmark)

    Olesen, Karen

    2016-01-01

    that is not scientific or academic but is more like a latent body of data that we find embedded in existing works of architecture. This information, it is argued, is not limited by the historical context of the work. It can be thought of as a virtual capacity – a reservoir of spatial configurations that can...... correlation between the study of existing architectures and the training of competences to design for present-day realities.......This paper will discuss the challenges faced by architectural education today. It takes as its starting point the double commitment of any school of architecture: on the one hand the task of preserving the particular knowledge that belongs to the discipline of architecture, and on the other hand...

  17. Deterministic network interdiction optimization via an evolutionary approach

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Ramirez-Marquez, Jose Emmanuel

    2009-01-01

    This paper introduces an evolutionary optimization approach that can be readily applied to solve deterministic network interdiction problems. The network interdiction problem solved considers the minimization of the maximum flow that can be transmitted between a source node and a sink node for a fixed network design when there is a limited amount of resources available to interdict network links. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link. For this problem, the solution approach developed is based on three steps that use: (1) Monte Carlo simulation, to generate potential network interdiction strategies, (2) Ford-Fulkerson algorithm for maximum s-t flow, to analyze strategies' maximum source-sink flow and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate the approach. In terms of computational effort, the results illustrate that solutions are obtained from a significantly restricted solution search space. Finally, the authors discuss the need for a reliability perspective to network interdiction, so that solutions developed address more realistic scenarios of such problem

  18. On the equivalent static loads approach for dynamic response structural optimization

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2014-01-01

    The equivalent static loads algorithm is an increasingly popular approach to solve dynamic response structural optimization problems. The algorithm is based on solving a sequence of related static response structural optimization problems with the same objective and constraint functions...... as the original problem. The optimization theoretical foundation of the algorithm is mainly developed in Park and Kang (J Optim Theory Appl 118(1):191–200, 2003). In that article it is shown, for a certain class of problems, that if the equivalent static loads algorithm terminates then the KKT conditions...

  19. Optimization of a Lattice Boltzmann Computation on State-of-the-Art Multicore Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine

    2009-04-10

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon E5345 (Clovertown), AMD Opteron 2214 (Santa Rosa), AMD Opteron 2356 (Barcelona), Sun T5140 T2+ (Victoria Falls), as well as a QS20 IBM Cell Blade. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned LBMHD application achieves up to a 15x improvement compared with the original code at a given concurrency. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.

  20. A "Reverse-Schur" Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design.

    Science.gov (United States)

    Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.

  1. Impact of Enterprise Architecture on Architecture Agility and Coherence

    Science.gov (United States)

    Abaas, Kanari

    2009-01-01

    IT has permeated to the very roots of organizations and has an ever increasingly important role in the achievement of overall corporate objectives and business strategies. This paper presents an approach for evaluating the impact of existing Enterprise Architecture (EA) implementations. The papers answers questions such as: What are the challenges…

  2. Developing a Distributed Computing Architecture at Arizona State University.

    Science.gov (United States)

    Armann, Neil; And Others

    1994-01-01

    Development of Arizona State University's computing architecture, designed to ensure that all new distributed computing pieces will work together, is described. Aspects discussed include the business rationale, the general architectural approach, characteristics and objectives of the architecture, specific services, and impact on the university…

  3. Data architecture from zen to reality

    CERN Document Server

    Tupper, Charles D

    2011-01-01

    Data Architecture: From Zen to Reality explains the principles underlying data architecture, how data evolves with organizations, and the challenges organizations face in structuring and managing their data. It also discusses proven methods and technologies to solve the complex issues dealing with data. The book uses a holistic approach to the field of data architecture by covering the various applied areas of data, including data modelling and data model management, data quality , data governance, enterprise information management, database design, data warehousing, and warehouse design. This book is a core resource for anyone emplacing, customizing or aligning data management systems, taking the Zen-like idea of data architecture to an attainable reality.

  4. A "Hybrid" Approach for Synthesizing Optimal Controllers of Hybrid Systems

    DEFF Research Database (Denmark)

    Zhao, Hengjun; Zhan, Naijun; Kapur, Deepak

    2012-01-01

    to discretization manageable and within bounds. A major advantage of our approach is not only that it avoids errors due to numerical computation, but it also gives a better optimal controller. In order to illustrate our approach, we use the real industrial example of an oil pump provided by the German company HYDAC...

  5. Programming parallel architectures: The BLAZE family of languages

    Science.gov (United States)

    Mehrotra, Piyush

    1988-01-01

    Programming multiprocessor architectures is a critical research issue. An overview is given of the various approaches to programming these architectures that are currently being explored. It is argued that two of these approaches, interactive programming environments and functional parallel languages, are particularly attractive since they remove much of the burden of exploiting parallel architectures from the user. Also described is recent work by the author in the design of parallel languages. Research on languages for both shared and nonshared memory multiprocessors is described, as well as the relations of this work to other current language research projects.

  6. Efficient Sorting on the Tilera Manycore Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Morari, Alessandro; Tumeo, Antonino; Villa, Oreste; Secchi, Simone; Valero, Mateo

    2012-10-24

    e present an efficient implementation of the radix sort algo- rithm for the Tilera TILEPro64 processor. The TILEPro64 is one of the first successful commercial manycore processors. It is com- posed of 64 tiles interconnected through multiple fast Networks- on-chip and features a fully coherent, shared distributed cache. The architecture has a large degree of flexibility, and allows various optimization strategies. We describe how we mapped the algorithm to this architecture. We present an in-depth analysis of the optimizations for each phase of the algorithm with respect to the processor’s sustained performance. We discuss the overall throughput reached by our radix sort implementation (up to 132 MK/s) and show that it provides comparable or better performance-per-watt with respect to state-of-the art implemen- tations on x86 processors and graphic processing units.

  7. On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies

    Science.gov (United States)

    Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier

    2013-01-01

    The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582

  8. On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies

    Directory of Open Access Journals (Sweden)

    Francisco Javier González-Castano

    2013-08-01

    Full Text Available The extension of the network lifetime of Wireless Sensor Networks (WSN is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.

  9. A design approach for integrating thermoelectric devices using topology optimization

    DEFF Research Database (Denmark)

    Soprani, Stefano; Haertel, Jan Hendrik Klaas; Lazarov, Boyan Stefanov

    2016-01-01

    Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system...... to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems...... for different operating conditions and objective functions, such as temperature span, efficiency, and power recoveryrate. As a specific application, the integration of a thermoelectric cooler into the electronics section ofa downhole oil well intervention tool is investigated, with the objective of minimizing...

  10. On the importance of controlling film architecture in detecting prostate specific antigen

    Science.gov (United States)

    Graça, Juliana Santos; Miyazaki, Celina Massumi; Shimizu, Flavio Makoto; Volpati, Diogo; Mejía-Salazar, J. R.; Oliveira, Osvaldo N., Jr.; Ferreira, Marystela

    2018-03-01

    Immunosensors made with nanostructured films are promising for detecting cancer biomarkers, even at early stages of the disease, but this requires control of film architecture to preserve the biological activity of immobilized antibodies. In this study, we used electrochemical impedance spectroscopy (EIS) to detect Prostate Specific Antigen (PSA) with immunosensors produced with layer-by-layer (LbL) films containing anti-PSA antibodies in two distinct film architectures. The antibodies were either adsorbed from solutions in which they were free, or from solutions where they were incorporated into liposomes of dipalmitoyl phosphatidyl glycerol (DPPG). Incorporation into DPPG liposomes was confirmed with surface plasmon resonance experiments, while the importance of electrostatic interactions on the electrical response was highlighted using the Finite Difference Time-Domain Method (FDTD). The sensitivity of both architectures was sufficient to detect the threshold value to diagnose prostate cancer (ca. 4 ng mL-1). In contrast to expectation, the sensor with the antibodies incorporated into DPPG liposomes had lower sensitivity, though the range of concentrations amenable to detection increased, according to the fitting of the EIS data using the Langmuir-Freundlich adsorption model. The performance of the two film architectures was compared qualitatively by plotting the data with a multidimensional projection technique, which constitutes a generic approach for optimizing immunosensors and other types of sensors.

  11. High-Level Topology-Oblivious Optimization of MPI Broadcast Algorithms on Extreme-Scale Platforms

    KAUST Repository

    Hasanov, Khalid

    2014-01-01

    There has been a significant research in collective communication operations, in particular in MPI broadcast, on distributed memory platforms. Most of the research works are done to optimize the collective operations for particular architectures by taking into account either their topology or platform parameters. In this work we propose a very simple and at the same time general approach to optimize legacy MPI broadcast algorithms, which are widely used in MPICH and OpenMPI. Theoretical analysis and experimental results on IBM BlueGene/P and a cluster of Grid’5000 platform are presented.

  12. Dynamic programming approach to optimization of approximate decision rules

    KAUST Repository

    Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    This paper is devoted to the study of an extension of dynamic programming approach which allows sequential optimization of approximate decision rules relative to the length and coverage. We introduce an uncertainty measure R(T) which is the number

  13. Multidisciplinary Analysis and Optimal Design: As Easy as it Sounds?

    Science.gov (United States)

    Moore, Greg; Chainyk, Mike; Schiermeier, John

    2004-01-01

    The viewgraph presentation examines optimal design for precision, large aperture structures. Discussion focuses on aspects of design optimization, code architecture and current capabilities, and planned activities and collaborative area suggestions. The discussion of design optimization examines design sensitivity analysis; practical considerations; and new analytical environments including finite element-based capability for high-fidelity multidisciplinary analysis, design sensitivity, and optimization. The discussion of code architecture and current capabilities includes basic thermal and structural elements, nonlinear heat transfer solutions and process, and optical modes generation.

  14. Open System Architecture design for planet surface systems

    Science.gov (United States)

    Petri, D. A.; Pieniazek, L. A.; Toups, L. D.

    1992-01-01

    The Open System Architecture is an approach to meeting the needs for flexibility and evolution of the U.S. Space Exploration Initiative program of the manned exploration of the solar system and its permanent settlement. This paper investigates the issues that future activities of the planet exploration program must confront, defines the basic concepts that provide the basis for establishing an Open System Architecture, identifies the appropriate features of such an architecture, and discusses examples of Open System Architectures.

  15. Optimization of the graph model of the water conduit network, based on the approach of search space reducing

    Science.gov (United States)

    Korovin, Iakov S.; Tkachenko, Maxim G.

    2018-03-01

    In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.

  16. A minimal architecture for joint action

    DEFF Research Database (Denmark)

    Vesper, Cordula; Butterfill, Stephen; Knoblich, Günther

    2010-01-01

    What kinds of processes and representations make joint action possible? In this paper we suggest a minimal architecture for joint action that focuses on representations, action monitoring and action prediction processes, as well as ways of simplifying coordination. The architecture spells out...... minimal requirements for an individual agent to engage in a joint action. We discuss existing evidence in support of the architecture as well as open questions that remain to be empirically addressed. In addition, we suggest possible interfaces between the minimal architecture and other approaches...... to joint action. The minimal architecture has implications for theorizing about the emergence of joint action, for human-machine interaction, and for understanding how coordination can be facilitated by exploiting relations between multiple agents’ actions and between actions and the environment....

  17. (Emerging Discourses: Architecture and Cultural Studies

    Directory of Open Access Journals (Sweden)

    Sarah McGaughey

    2012-05-01

    Full Text Available Three recent works, Rosalind Galt’s Pretty, Anne Cheng’s Second Skin, and Daniel Purdy’s On the Ruins of Babel incorporate architectural history and architectural discourse into their analyses in ways that are new to their respective fields ranging from studies of film, gender, and race to intellectual history. Placing these three works in one essay allows for a detailed review of the ways in which each author employs architecture, at the same time as it reveals the benefits and challenges of incorporating architecture into cultural studies. The essay discusses the contributions of each work to their fields and also takes advantage of the different approaches to culture and architecture to explore the ways in which this relationship might continue to inform and generate productive studies.

  18. Terminal Control Area Aircraft Scheduling and Trajectory Optimization Approaches

    Directory of Open Access Journals (Sweden)

    Samà Marcella

    2017-01-01

    Full Text Available Aviation authorities are seeking optimization methods to better use the available infrastructure and better manage aircraft movements. This paper deals with the realtime scheduling of take-off and landing aircraft at a busy terminal control area and with the optimization of aircraft trajectories during the landing procedures. The first problem aims to reduce the propagation of delays, while the second problem aims to either minimize the travel time or reduce the fuel consumption. Both problems are particularly complex, since the first one is NP-hard while the second one is nonlinear and a combined solution needs to be computed in a short-time during operations. This paper proposes a framework for the lexicographic optimization of the two problems. Computational experiments are performed for the Milano Malpensa airport and show the existing gaps between the performance indicators of the two problems when different lexicographic optimization approaches are considered.

  19. Theories of minimalism in architecture: Post scriptum

    Directory of Open Access Journals (Sweden)

    Stevanović Vladimir

    2012-01-01

    Full Text Available Owing to the period of intensive development in the last decade of XX century, architectural phenomenon called Minimalism in Architecture was remembered as the Style of the Nineties, which is characterized, morphologically speaking, by simplicity and formal reduction. Simultaneously with its development in practice, on a theoretical level several dominant interpretative models were able to establish themselves. The new millennium and time distance bring new problems; therefore this paper represents a discussion on specific theorization related to Minimalism in Architecture that can bear the designation of post scriptum, because their development starts after the constitutional period of architectural minimalist discourse. In XXI century theories, the problem of definition of minimalism remains important topic, approached by theorists through resolving on the axis: Modernism - Minimal Art - Postmodernism - Minimalism in Architecture. With regard to this, analyzed texts can be categorized in two groups: 1 texts of affirmative nature and historical-associative approach in which minimalism is identified with anything that is simple and reduced, in an idealizing manner, relied mostly on the existing hypotheses; 2 critically oriented texts, in which authors reconsider adequacy of the very term 'minimalism' in the context of architecture and take a metacritical attitude towards previous texts.

  20. Report on architecture description for the INFLO prototype.

    Science.gov (United States)

    2014-01-01

    This report documents the Architecture Description for the implementation of the Intelligent Network Flow Optimization : (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected Vehicle Program. The : intent is...

  1. Electrochemical Biosensors - Sensor Principles and Architectures

    Directory of Open Access Journals (Sweden)

    Erik Reimhult

    2008-03-01

    Full Text Available Quantification of biological or biochemical processes are of utmost importancefor medical, biological and biotechnological applications. However, converting the biologicalinformation to an easily processed electronic signal is challenging due to the complexity ofconnecting an electronic device directly to a biological environment. Electrochemical biosensorsprovide an attractive means to analyze the content of a biological sample due to thedirect conversion of a biological event to an electronic signal. Over the past decades severalsensing concepts and related devices have been developed. In this review, the most commontraditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry,impedance spectroscopy, and various field-effect transistor based methods are presented alongwith selected promising novel approaches, such as nanowire or magnetic nanoparticle-basedbiosensing. Additional measurement techniques, which have been shown useful in combinationwith electrochemical detection, are also summarized, such as the electrochemical versionsof surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry,quartz crystal microbalance, and scanning probe microscopy.The signal transduction and the general performance of electrochemical sensors are often determinedby the surface architectures that connect the sensing element to the biological sampleat the nanometer scale. The most common surface modification techniques, the various electrochemicaltransduction mechanisms, and the choice of the recognition receptor moleculesall influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches,such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymesinto vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities forsignal amplification.In particular, this review highlights the importance of the precise control over the

  2. Marshall Application Realignment System (MARS) Architecture

    Science.gov (United States)

    Belshe, Andrea; Sutton, Mandy

    2010-01-01

    The Marshall Application Realignment System (MARS) Architecture project was established to meet the certification requirements of the Department of Defense Architecture Framework (DoDAF) V2.0 Federal Enterprise Architecture Certification (FEAC) Institute program and to provide added value to the Marshall Space Flight Center (MSFC) Application Portfolio Management process. The MARS Architecture aims to: (1) address the NASA MSFC Chief Information Officer (CIO) strategic initiative to improve Application Portfolio Management (APM) by optimizing investments and improving portfolio performance, and (2) develop a decision-aiding capability by which applications registered within the MSFC application portfolio can be analyzed and considered for retirement or decommission. The MARS Architecture describes a to-be target capability that supports application portfolio analysis against scoring measures (based on value) and overall portfolio performance objectives (based on enterprise needs and policies). This scoring and decision-aiding capability supports the process by which MSFC application investments are realigned or retired from the application portfolio. The MARS Architecture is a multi-phase effort to: (1) conduct strategic architecture planning and knowledge development based on the DoDAF V2.0 six-step methodology, (2) describe one architecture through multiple viewpoints, (3) conduct portfolio analyses based on a defined operational concept, and (4) enable a new capability to support the MSFC enterprise IT management mission, vision, and goals. This report documents Phase 1 (Strategy and Design), which includes discovery, planning, and development of initial architecture viewpoints. Phase 2 will move forward the process of building the architecture, widening the scope to include application realignment (in addition to application retirement), and validating the underlying architecture logic before moving into Phase 3. The MARS Architecture key stakeholders are most

  3. Design of Carborane Molecular Architectures via Electronic Structure Computations

    International Nuclear Information System (INIS)

    Oliva, J.M.; Serrano-Andres, L.; Klein, D.J.; Schleyer, P.V.R.; Mich, J.

    2009-01-01

    Quantum-mechanical electronic structure computations were employed to explore initial steps towards a comprehensive design of poly carborane architectures through assembly of molecular units. Aspects considered were (i) the striking modification of geometrical parameters through substitution, (ii) endohedral carboranes and proposed ejection mechanisms for energy/ion/atom/energy storage/transport, (iii) the excited state character in single and dimeric molecular units, and (iv) higher architectural constructs. A goal of this work is to find optimal architectures where atom/ion/energy/spin transport within carborane superclusters is feasible in order to modernize and improve future photo energy processes.

  4. A statistical approach to optimizing concrete mixture design.

    Science.gov (United States)

    Ahmad, Shamsad; Alghamdi, Saeid A

    2014-01-01

    A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (3(3)). A total of 27 concrete mixtures with three replicates (81 specimens) were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48), cementitious materials content (350, 375, and 400 kg/m(3)), and fine/total aggregate ratio (0.35, 0.40, and 0.45). The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options.

  5. A Statistical Approach to Optimizing Concrete Mixture Design

    Directory of Open Access Journals (Sweden)

    Shamsad Ahmad

    2014-01-01

    Full Text Available A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (33. A total of 27 concrete mixtures with three replicates (81 specimens were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48, cementitious materials content (350, 375, and 400 kg/m3, and fine/total aggregate ratio (0.35, 0.40, and 0.45. The experimental data were utilized to carry out analysis of variance (ANOVA and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options.

  6. A New Approach to Site Demand-Based Level Inventory Optimization

    Science.gov (United States)

    2016-06-01

    Note: If probability distributions are estimated based on mean and variance , use ˆ qix  and 2ˆ( )qi to generate these. q in , number of...TO SITE DEMAND-BASED LEVEL INVENTORY OPTIMIZATION by Tacettin Ersoz June 2016 Thesis Advisor: Javier Salmeron Second Reader: Emily...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE A NEW APPROACH TO SITE DEMAND-BASED LEVEL INVENTORY OPTIMIZATION 5. FUNDING NUMBERS 6

  7. Architectural anthropology – potentials and pitfalls of mixing disciplines

    DEFF Research Database (Denmark)

    Stender, Marie

    approaches to e.g. understand and involve users, clients and citizens. Several other disciplines currently also approach and embrace anthropological methods, and new sub-disciplines such as design anthropology, architectural anthropology, business anthropology and techno-anthropology have emerged...... these cross-disciplinary and applied settings, and how it may contribute to anthropology in general. Based on research and teaching in the field of architectural anthropology, the paper discuss the potentials and pitfalls of mixing approaches from the two disciplines using examples of architects’ approaches...

  8. Identifying Architectural Technical Debt in Android Applications through Compliance Checking

    NARCIS (Netherlands)

    Verdecchia, R.

    By considering the fast pace at which mobile applications need to evolve, Architectural Technical Debt results to be a crucial yet implicit factor of success. In this research we present an approach to automatically identify Architectural Technical Debt in Android applications. The approach takes

  9. The Value of Style in Architectural Practice

    DEFF Research Database (Denmark)

    Kornberger, Martin; Kreiner, Kristian; Clegg, Stewart

    2011-01-01

    To date, organization theory’s attempts to understand architecture firms have focused by and large on debates about increasing managerialization and economization of the profession. This paper suggests an alternative approach by conceptualizing architecture as practice that does not adhere only...... to a narrow economic logic of value creation but also focuses on the production of aesthetic value. We will introduce the concept of style to understand how architecture practice routinely breaks routines and follows the rule of rule breaking. We will analyze architecture practice as a form of organized...... heresy – a hegemonic engine for the production of difference. In order to illustrate our points we will draw on qualitative empirical fieldwork with an architecture firm....

  10. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos

    2004-01-01

    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  11. Accuracy Test of Software Architecture Compliance Checking Tools : Test Instruction

    NARCIS (Netherlands)

    Prof.dr. S. Brinkkemper; Dr. Leo Pruijt; C. Köppe; J.M.E.M. van der Werf

    2015-01-01

    Author supplied: "Abstract Software Architecture Compliance Checking (SACC) is an approach to verify conformance of implemented program code to high-level models of architectural design. Static SACC focuses on the modular software architecture and on the existence of rule violating dependencies

  12. The Experimental Physics and Industrial Control System architecture: Past, present, and future

    International Nuclear Information System (INIS)

    Dalesio, L.R.; Hill, J.O.; Kraimer, M.; Lewis, S.; Murray, D.; Hunt, S.; Claussen, M.; Watson, W.

    1993-01-01

    The Experimental Physics and Industrial Control System (EPICS), has been used at a number of sites for performing data acquisition, supervisory control, closed-loop control, sequential control, and operational optimization. The EPICS architecture was originally developed by a group with diverse backgrounds in physics and industrial control. The current architecture represents one instance of the ''standard model.'' It provides distributed processing and communication from any LAN device to the front end controllers. This paper will present the genealogy, current architecture, performance envelope, current installations, and planned extensions for requirements not met by the current architecture

  13. An optimization approach for black-and-white and hinge-removal topology designs

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yongqing; Zhang, Xianmin [South China University of Technology, Guangzhou (China)

    2014-02-15

    An optimization approach for black-and-white and hinge-removal topology designs is studied. To achieve this motive, an optimal topology allowing grey boundaries is found firstly. When a suitable design has been obtained, this solution is then used as a starting point for the follow-up optimization with the goal to free unfavorable intermediate elements. For this purpose, an updated optimality criterion in which a threshold factor is introduced to gradually suppress elements with low density is proposed. The typical optimality method and new technique proposed are applied to the design procedure sequentially. Besides, to circumvent the one-point hinge connection problem producing in the process of freeing intermediate elements, a hinge-removal strategy is also proposed. During the optimization, the binary constraints on design variables are relaxed based on the scheme of solid isotropic material with penalization. Meanwhile, the mesh independency filter is employed to ensure the existence of a solution and remove well-known checkerboards. In this way, a solution that has few intermediate elements and is free of one-point hinge connections is obtained. Finally, different numerical examples including the compliance minimization, compliant mechanisms and vibration problems demonstrate the validity of the proposed approach.

  14. An intutionistic fuzzy optimization approach to vendor selection problem

    Directory of Open Access Journals (Sweden)

    Prabjot Kaur

    2016-09-01

    Full Text Available Selecting the right vendor is an important business decision made by any organization. The decision involves multiple criteria and if the objectives vary in preference and scope, then nature of decision becomes multiobjective. In this paper, a vendor selection problem has been formulated as an intutionistic fuzzy multiobjective optimization where appropriate number of vendors is to be selected and order allocated to them. The multiobjective problem includes three objectives: minimizing the net price, maximizing the quality, and maximizing the on time deliveries subject to supplier's constraints. The objection function and the demand are treated as intutionistic fuzzy sets. An intutionistic fuzzy set has its ability to handle uncertainty with additional degrees of freedom. The Intutionistic fuzzy optimization (IFO problem is converted into a crisp linear form and solved using optimization software Tora. The advantage of IFO is that they give better results than fuzzy/crisp optimization. The proposed approach is explained by a numerical example.

  15. Portfolio optimization in enhanced index tracking with goal programming approach

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of passive fund management in stock market. Enhanced index tracking aims to generate excess return over the return achieved by the market index without purchasing all of the stocks that make up the index. This can be done by establishing an optimal portfolio to maximize the mean return and minimize the risk. The objective of this paper is to determine the portfolio composition and performance using goal programming approach in enhanced index tracking and comparing it to the market index. Goal programming is a branch of multi-objective optimization which can handle decision problems that involve two different goals in enhanced index tracking, a trade-off between maximizing the mean return and minimizing the risk. The results of this study show that the optimal portfolio with goal programming approach is able to outperform the Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index because of higher mean return and lower risk without purchasing all the stocks in the market index.

  16. An approach for multi-objective optimization of vehicle suspension system

    Science.gov (United States)

    Koulocheris, D.; Papaioannou, G.; Christodoulou, D.

    2017-10-01

    In this paper, a half car model of with nonlinear suspension systems is selected in order to study the vertical vibrations and optimize its suspension system with respect to ride comfort and road holding. A road bump was used as road profile. At first, the optimization problem is solved with the use of Genetic Algorithms with respect to 6 optimization targets. Then the k - ɛ optimization method was implemented to locate one optimum solution. Furthermore, an alternative approach is presented in this work: the previous optimization targets are separated in main and supplementary ones, depending on their importance in the analysis. The supplementary targets are not crucial to the optimization but they could enhance the main objectives. Thus, the problem was solved again using Genetic Algorithms with respect to the 3 main targets of the optimization. Having obtained the Pareto set of solutions, the k - ɛ optimality method was implemented for the 3 main targets and the supplementary ones, evaluated by the simulation of the vehicle model. The results of both cases are presented and discussed in terms of convergence of the optimization and computational time. The optimum solutions acquired from both cases are compared based on performance metrics as well.

  17. Multi-agent based distributed control architecture for microgrid energy management and optimization

    International Nuclear Information System (INIS)

    Basir Khan, M. Reyasudin; Jidin, Razali; Pasupuleti, Jagadeesh

    2016-01-01

    Highlights: • A new multi-agent based distributed control architecture for energy management. • Multi-agent coordination based on non-cooperative game theory. • A microgrid model comprised of renewable energy generation systems. • Performance comparison of distributed with conventional centralized control. - Abstract: Most energy management systems are based on a centralized controller that is difficult to satisfy criteria such as fault tolerance and adaptability. Therefore, a new multi-agent based distributed energy management system architecture is proposed in this paper. The distributed generation system is composed of several distributed energy resources and a group of loads. A multi-agent system based decentralized control architecture was developed in order to provide control for the complex energy management of the distributed generation system. Then, non-cooperative game theory was used for the multi-agent coordination in the system. The distributed generation system was assessed by simulation under renewable resource fluctuations, seasonal load demand and grid disturbances. The simulation results show that the implementation of the new energy management system proved to provide more robust and high performance controls than conventional centralized energy management systems.

  18. Compiling for Application Specific Computational Acceleration in Reconfigurable Architectures Final Report CRADA No. TSB-2033-01

    Energy Technology Data Exchange (ETDEWEB)

    De Supinski, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caliga, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.

  19. Development of a computerized handbook of architectural plans

    NARCIS (Netherlands)

    Koutamanis, A.

    1990-01-01

    The dissertation investigates an approach to the development of visual / spatial computer representations for architectural purposes through the development of the computerized handbook of architectural plans (chap), a knowledge-based computer system capable of recognizing the metric properties of

  20. A design approach for integrating thermoelectric devices using topology optimization

    International Nuclear Information System (INIS)

    Soprani, S.; Haertel, J.H.K.; Lazarov, B.S.; Sigmund, O.; Engelbrecht, K.

    2016-01-01

    Highlights: • The integration of a thermoelectric (TE) cooler into a robotic tool is optimized. • Topology optimization is suggested as design tool for TE integrated systems. • A 3D optimization technique using temperature dependent TE properties is presented. • The sensitivity of the optimization process to the boundary conditions is studied. • A working prototype is constructed and compared to the model results. - Abstract: Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems for different operating conditions and objective functions, such as temperature span, efficiency, and power recovery rate. As a specific application, the integration of a thermoelectric cooler into the electronics section of a downhole oil well intervention tool is investigated, with the objective of minimizing the temperature of the cooled electronics. Several challenges are addressed: ensuring effective heat transfer from the load, minimizing the thermal resistances within the integrated system, maximizing the thermal protection of the cooled zone, and enhancing the conduction of the rejected heat to the oil well. The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The 3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between experimental results and

  1. Design Considerations. An Interior Architectural Design Approach to Interiors

    Science.gov (United States)

    Sawyer, William C.

    1971-01-01

    The State University Construction Fund, utilizing the nation's top professional talents, must design by contract, within fixed budgets and strict time schedules, quality architecture for 32 campuses in New York State. (Author)

  2. Architecture in the Experience City

    DEFF Research Database (Denmark)

    Kiib, Hans

    2009-01-01

    . The article identifies new rationales related to this development, and it argues that ‘cultural planning' has increasingly shifted its focus from a cultural institutional approach to a more market-oriented strategy that combines art and business in a close relationship. The role of architecture has changed......This article focuses on the combination of programs and the architecture of cultural projects that have emerged within the last few years. These projects are characterized in the article as ‘hybrid cultural projects', because they intend to combine experience with entertainment, play and learning...... too. Architecture not only provides a functional framework for these concepts, but it increasingly tries to give the main idea of the cultural project a spatially aesthetic expression - a shift towards ‘experience architecture'. A great number of these projects typically recycles and reinterprets...

  3. An approach of optimal sensitivity applied in the tertiary loop of the automatic generation control

    Energy Technology Data Exchange (ETDEWEB)

    Belati, Edmarcio A. [CIMATEC - SENAI, Salvador, BA (Brazil); Alves, Dilson A. [Electrical Engineering Department, FEIS, UNESP - Sao Paulo State University (Brazil); da Costa, Geraldo R.M. [Electrical Engineering Department, EESC, USP - Sao Paulo University (Brazil)

    2008-09-15

    This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (author)

  4. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  5. Kalman filter tracking on parallel architectures

    Science.gov (United States)

    Cerati, G.; Elmer, P.; Krutelyov, S.; Lantz, S.; Lefebvre, M.; McDermott, K.; Riley, D.; Tadel, M.; Wittich, P.; Wurthwein, F.; Yagil, A.

    2017-10-01

    We report on the progress of our studies towards a Kalman filter track reconstruction algorithm with optimal performance on manycore architectures. The combinatorial structure of these algorithms is not immediately compatible with an efficient SIMD (or SIMT) implementation; the challenge for us is to recast the existing software so it can readily generate hundreds of shared-memory threads that exploit the underlying instruction set of modern processors. We show how the data and associated tasks can be organized in a way that is conducive to both multithreading and vectorization. We demonstrate very good performance on Intel Xeon and Xeon Phi architectures, as well as promising first results on Nvidia GPUs.

  6. How can we adapt education programmes to the architecture of the future?

    DEFF Research Database (Denmark)

    Knudstrup, Mary-Ann

    2010-01-01

    teaching methods at the Department of Architecture & Design at Aalborg University that are tailored to dealing with current societal/technological, environmental and sustainability issues. In terms of both research and teaching, Aalborg University utilises an interdisciplinary approach to a considerable...... extent. At Architecture & Design at Aalborg University, we are working with environmentally sustainable architecture. We use a method called the Integrated Design Process, which is developed for this purpose and which is an interdisciplinary approach to designing environmentally sustainable architecture...

  7. A “Reverse-Schur” Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design

    Science.gov (United States)

    Bardhan, Jaydeep P.; Altman, Michael D.

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839

  8. Architectural Environment: A Resource Kit.

    Science.gov (United States)

    J.B. Speed Art Museum, Louisville, KY.

    There are many ways to approach the investigation of architecture. One can look at structural form, climate and topography, the aesthetics of style and decoration, building function, historical factors, cultural meanings, or technology and techniques associated with construction. This resource kit touches upon a few of these approaches, ranging…

  9. Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria

    Science.gov (United States)

    Kowalczuk, Zdzisław; Białaszewski, Tomasz

    2018-01-01

    A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the 'curse' of dimensionality typical of many engineering designs.

  10. Migration of supervisory machine control architectures

    NARCIS (Netherlands)

    Graaf, B.; Weber, S.; Deursen, van A.; Nord, R.; Medvidovic, N.; Krikhaar, R.; Stafford, J.; Bosch, J.

    2005-01-01

    In this position paper, we discuss a first step towards an approach for the migration of supervisory machine control (SMC) architectures. This approach is based on the identification of SMC concerns and the definition of corresponding transformation rules.

  11. Optimization of PHEV Power Split Gear Ratio to Minimize Fuel Consumption and Operation Cost

    Science.gov (United States)

    Li, Yanhe

    A Plug-in Hybrid Electric Vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery pack. The battery pack can be charged by plugging the vehicle to the electric grid and from using excess engine power. The research activity performed in this thesis focused on the development of an innovative optimization approach of PHEV Power Split Device (PSD) gear ratio with the aim to minimize the vehicle operation costs. Three research activity lines have been followed: • Activity 1: The PHEV control strategy optimization by using the Dynamic Programming (DP) and the development of PHEV rule-based control strategy based on the DP results. • Activity 2: The PHEV rule-based control strategy parameter optimization by using the Non-dominated Sorting Genetic Algorithm (NSGA-II). • Activity 3: The comprehensive analysis of the single mode PHEV architecture to offer the innovative approach to optimize the PHEV PSD gear ratio.

  12. Hybrid Optimization-Based Approach for Multiple Intelligent Vehicles Requests Allocation

    Directory of Open Access Journals (Sweden)

    Ahmed Hussein

    2018-01-01

    Full Text Available Self-driving cars are attracting significant attention during the last few years, which makes the technology advances jump fast and reach a point of having a number of automated vehicles on the roads. Therefore, the necessity of cooperative driving for these automated vehicles is exponentially increasing. One of the main issues in the cooperative driving world is the Multirobot Task Allocation (MRTA problem. This paper addresses the MRTA problem, specifically for the problem of vehicles and requests allocation. The objective is to introduce a hybrid optimization-based approach to solve the problem of multiple intelligent vehicles requests allocation as an instance of MRTA problem, to find not only a feasible solution, but also an optimized one as per the objective function. Several test scenarios were implemented in order to evaluate the efficiency of the proposed approach. These scenarios are based on well-known benchmarks; thus a comparative study is conducted between the obtained results and the suboptimal results. The analysis of the experimental results shows that the proposed approach was successful in handling various scenarios, especially with the increasing number of vehicles and requests, which displays the proposed approach efficiency and performance.

  13. Collaborative production indicators in information architecture

    Directory of Open Access Journals (Sweden)

    Zayr Claudio Gomes da Silva

    2017-04-01

    Full Text Available Information architecture is considered a strategic domain of collaborative production of Information Science. We describe the conditions of collaborative production in information architecture, considering it a sub-area of the study of Information Science. In order to do so, we specifically address indicators of scientific production that include topics of study, typology and authorship, postgraduate programs and areas to which it is linked, among others. This is an exploratory and descriptive research. The scientific production of the National Meeting of Information Science Research (ENANCIB, from 2003 to 2013, is mapped in the "Network Matters" repository. Bibliometry is used to identify paratextual and textual elements that form evidence of collaborative production in information architecture. We verified the plurality in the academic formation of the researchers that approach information architecture, the sharing of languages, some indications of the disciplinary convergences from the collaboration in coauthorship, as well as a plexus of relations through the indirect citations that represent the sharing of elements Theoretical-methodological approaches in interdisciplinary production. In addition, the academic training of the researchers with the highest productivity index is mainly related to Librarianship and Computer Science. The collaborative production in the information architecture is presented as a multidisciplinary production process, constituting a convergent domain that allows the effectiveness of interdisciplinary practices in Information Science.

  14. Optimization of recurrent neural networks for time series modeling

    DEFF Research Database (Denmark)

    Pedersen, Morten With

    1997-01-01

    The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...

  15. Analysis and optimization of fault-tolerant embedded systems with hardened processors

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Polian, Ilia; Pop, Paul

    2009-01-01

    In this paper we propose an approach to the design optimization of fault-tolerant hard real-time embedded systems, which combines hardware and software fault tolerance techniques. We trade-off between selective hardening in hardware and process reexecution in software to provide the required levels...... of fault tolerance against transient faults with the lowest-possible system costs. We propose a system failure probability (SFP) analysis that connects the hardening level with the maximum number of reexecutions in software. We present design optimization heuristics, to select the fault......-tolerant architecture and decide process mapping such that the system cost is minimized, deadlines are satisfied, and the reliability requirements are fulfilled....

  16. Programming parallel architectures - The BLAZE family of languages

    Science.gov (United States)

    Mehrotra, Piyush

    1989-01-01

    This paper gives an overview of the various approaches to programming multiprocessor architectures that are currently being explored. It is argued that two of these approaches, interactive programming environments and functional parallel languages, are particularly attractive, since they remove much of the burden of exploiting parallel architectures from the user. This paper also describes recent work in the design of parallel languages. Research on languages for both shared and nonshared memory multiprocessors is described.

  17. A novel approach using flexible scheduling and aggregation to optimize demand response in the developing interactive grid market architecture

    International Nuclear Information System (INIS)

    Reihani, Ehsan; Motalleb, Mahdi; Thornton, Matsu; Ghorbani, Reza

    2016-01-01

    Highlights: • Designing a DR market to increase renewable resources and decrease air pollution. • Explaining two economic models for DR market for selling available DR quantities. • Optimal allocating DR quantity to houses under each DR aggregator control. • Proposing a discomfort cost function for residential DR resources. • Performing a sensitivity analysis on discomfort cost function coefficients. - Abstract: With the increasing presence of intermittent renewable energy generation sources, variable control over loads and energy storage devices on the grid become even more important to maintain this balance. Increasing renewable energy penetration depends on both technical and economic factors. Distribution system consumers can contribute to grid stability by controlling residential electrical device power consumed by water heaters and battery storage systems. Coupled with dynamic supply pricing strategies, a comprehensive system for demand response (DR) exist. Proper DR management will allow greater integration of renewable energy sources partially replacing energy demand currently met by the combustion of fossil-fuels. An enticing economic framework providing increased value to consumers compensates them for reduced control of devices placed under a DR aggregator. Much work has already been done to develop more effective ways to implement DR control systems. Utilizing an integrated approach that combines consumer requirements into aggregate pools, and provides a dynamic response to market and grid conditions, we have developed a mathematical model that can quantify control parameters for optimum demand response and decide which resources to switch and when. In this model, optimization is achieved as a function of cost savings vs. customer comfort using mathematical market analysis. Two market modeling approaches—the Cournot and SFE—are presented and compared. A quadratic function is used for presenting the cost function of each DRA (Demand

  18. An enhanced performance through agent-based secure approach for mobile ad hoc networks

    Science.gov (United States)

    Bisen, Dhananjay; Sharma, Sanjeev

    2018-01-01

    This paper proposes an agent-based secure enhanced performance approach (AB-SEP) for mobile ad hoc network. In this approach, agent nodes are selected through optimal node reliability as a factor. This factor is calculated on the basis of node performance features such as degree difference, normalised distance value, energy level, mobility and optimal hello interval of node. After selection of agent nodes, a procedure of malicious behaviour detection is performed using fuzzy-based secure architecture (FBSA). To evaluate the performance of the proposed approach, comparative analysis is done with conventional schemes using performance parameters such as packet delivery ratio, throughput, total packet forwarding, network overhead, end-to-end delay and percentage of malicious detection.

  19. The TDAQ Baseline Architecture

    CERN Multimedia

    Wickens, F J

    The Trigger-DAQ community is currently busy preparing material for the DAQ, HLT and DCS TDR. Over the last few weeks a very important step has been a series of meetings to complete agreement on the baseline architecture. An overview of the architecture indicating some of the main parameters is shown in figure 1. As reported at the ATLAS Plenary during the February ATLAS week, the main area where the baseline had not yet been agreed was around the Read-Out System (ROS) and details in the DataFlow. The agreed architecture has: Read-Out Links (ROLs) from the RODs using S-Link; Read-Out Buffers (ROB) sited near the RODs, mounted in a chassis - today assumed to be a PC, using PCI bus at least for configuration, control and monitoring. The baseline assumes data aggregation, in the ROB and/or at the output (which could either be over a bus or in the network). Optimization of the data aggregation will be made in the coming months, but the current model has each ROB card receiving input from 4 ROLs, and 3 such c...

  20. From Nonlinear Optimization to Convex Optimization through Firefly Algorithm and Indirect Approach with Applications to CAD/CAM

    Directory of Open Access Journals (Sweden)

    Akemi Gálvez

    2013-01-01

    Full Text Available Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor’s method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.

  1. Robust quantum optimizer with full connectivity.

    Science.gov (United States)

    Nigg, Simon E; Lörch, Niels; Tiwari, Rakesh P

    2017-04-01

    Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation.

  2. A general approach for optimal kinematic design of 6-DOF parallel ...

    Indian Academy of Sciences (India)

    Optimal kinematic design of parallel manipulators is a challenging problem. In this work, an attempt has been made to present a generalized approach of kinematic design for a 6-legged parallel manipulator, by considering only the minimally required design parameters. The same approach has been used to design a ...

  3. Method of transient identification based on a possibilistic approach, optimized by genetic algorithm

    International Nuclear Information System (INIS)

    Almeida, Jose Carlos Soares de

    2001-02-01

    This work develops a method for transient identification based on a possible approach, optimized by Genetic Algorithm to optimize the number of the centroids of the classes that represent the transients. The basic idea of the proposed method is to optimize the partition of the search space, generating subsets in the classes within a partition, defined as subclasses, whose centroids are able to distinguish the classes with the maximum correct classifications. The interpretation of the subclasses as fuzzy sets and the possible approach provided a heuristic to establish influence zones of the centroids, allowing to achieve the 'don't know' answer for unknown transients, that is, outside the training set. (author)

  4. An Enterprise Security Program and Architecture to Support Business Drivers

    OpenAIRE

    Brian Ritchot

    2013-01-01

    This article presents a business-focused approach to developing and delivering enterprise security architecture that is focused on enabling business objectives while providing a sensible and balanced approach to risk management. A balanced approach to enterprise security architecture can create the important linkages between the goals and objectives of a business, and it provides appropriate measures to protect the most critical assets within an organization while accepting risk where appropr...

  5. Building Quality into Learning Management Systems – An Architecture-Centric Approach

    OpenAIRE

    Avgeriou, P.; Retalis, Simos; Skordalakis, Manolis

    2003-01-01

    The design and development of contemporary Learning Management Systems (LMS), is largely focused on satisfying functional requirements, rather than quality requirements, thus resulting in inefficient systems of poor software and business quality. In order to remedy this problem there is a research trend into specifying and evaluating software architectures for LMS, since quality at-tributes in a system depend profoundly on its architecture. This paper presents a case study of appraising the s...

  6. Improvement of Shade Resilience in Photovoltaic Modules Using Buck Converters in a Smart Module Architecture

    Directory of Open Access Journals (Sweden)

    S. Zahra Mirbagheri Golroodbari

    2018-01-01

    Full Text Available Partial shading has a nonlinear effect on the performance of photovoltaic (PV modules. Different methods of optimizing energy harvesting under partial shading conditions have been suggested to mitigate this issue. In this paper, a smart PV module architecture is proposed for improvement of shade resilience in a PV module consisting of 60 silicon solar cells, which compensates the current drops caused by partial shading. The architecture consists of groups of series-connected solar cells in parallel to a DC-DC buck converter. The number of cell groups is optimized with respect to cell and converter specifications using a least-squares support vector machine method. A generic model is developed to simulate the behavior of the smart architecture under different shading patterns, using high time resolution irradiance data. In this research the shading patterns are a combination of random and pole shadows. To investigate the shade resilience, results for the smart architecture are compared with an ideal module, and also ordinary series and parallel connected architectures. Although the annual yield for the smart architecture is 79.5% of the yield of an ideal module, we show that the smart architecture outperforms a standard series connected module by 47%, and a parallel architecture by 13.4%.

  7. Organic semi-conducting architectures for supramolecular electronics

    NARCIS (Netherlands)

    Leclère, P.E.L.G.; Surin, M.; Jonkheijm, P.; Henze, O.; Schenning, A.P.H.J.; Biscarini, F.; Grimsdale, A.C.; Feast, W.J.; Meijer, E.W.; Müllen, K.; Brédas, J.L.; Lazzaroni, R.

    2004-01-01

    The properties of organic electronic materials in the solid-state are determined not only by those of individual molecules but also by those of ensembles of molecules. The ability to control the architectures of these ensembles is thus essential for optimizing the properties of conjugated materials

  8. Geometry Optimization Approaches of Inductively Coupled Printed Spiral Coils for Remote Powering of Implantable Biomedical Sensors

    Directory of Open Access Journals (Sweden)

    Sondos Mehri

    2016-01-01

    Full Text Available Electronic biomedical implantable sensors need power to perform. Among the main reported approaches, inductive link is the most commonly used method for remote powering of such devices. Power efficiency is the most important characteristic to be considered when designing inductive links to transfer energy to implantable biomedical sensors. The maximum power efficiency is obtained for maximum coupling and quality factors of the coils and is generally limited as the coupling between the inductors is usually very small. This paper is dealing with geometry optimization of inductively coupled printed spiral coils for powering a given implantable sensor system. For this aim, Iterative Procedure (IP and Genetic Algorithm (GA analytic based optimization approaches are proposed. Both of these approaches implement simple mathematical models that approximate the coil parameters and the link efficiency values. Using numerical simulations based on Finite Element Method (FEM and with experimental validation, the proposed analytic approaches are shown to have improved accurate performance results in comparison with the obtained performance of a reference design case. The analytical GA and IP optimization methods are also compared to a purely Finite Element Method based on numerical optimization approach (GA-FEM. Numerical and experimental validations confirmed the accuracy and the effectiveness of the analytical optimization approaches to design the optimal coil geometries for the best values of efficiency.

  9. PID control design for chaotic synchronization using a tribes optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br; Andrade Bernert, Diego Luis de [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: dbernert@gmail.com

    2009-10-15

    Recently, the investigation of synchronization and control problems for discrete chaotic systems has stimulated a wide range of research activity including both theoretical studies and practical applications. This paper deals with the tuning of a proportional-integral-derivative (PID) controller using a modified Tribes optimization algorithm based on truncated chaotic Zaslavskii map (MTribes) for synchronization of two identical discrete chaotic systems subject the different initial conditions. The Tribes algorithm is inspired by the social behavior of bird flocking and is also an optimization adaptive procedure that does not require sociometric or swarm size parameter tuning. Numerical simulations are given to show the effectiveness of the proposed synchronization method. In addition, some comparisons of the MTribes optimization algorithm with other continuous optimization methods, including classical Tribes algorithm and particle swarm optimization approaches, are presented.

  10. PID control design for chaotic synchronization using a tribes optimization approach

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos; Andrade Bernert, Diego Luis de

    2009-01-01

    Recently, the investigation of synchronization and control problems for discrete chaotic systems has stimulated a wide range of research activity including both theoretical studies and practical applications. This paper deals with the tuning of a proportional-integral-derivative (PID) controller using a modified Tribes optimization algorithm based on truncated chaotic Zaslavskii map (MTribes) for synchronization of two identical discrete chaotic systems subject the different initial conditions. The Tribes algorithm is inspired by the social behavior of bird flocking and is also an optimization adaptive procedure that does not require sociometric or swarm size parameter tuning. Numerical simulations are given to show the effectiveness of the proposed synchronization method. In addition, some comparisons of the MTribes optimization algorithm with other continuous optimization methods, including classical Tribes algorithm and particle swarm optimization approaches, are presented.

  11. Architecture of Brazil 1900-1990

    CERN Document Server

    Segawa, Hugo

    2013-01-01

    Architecture of Brazil: 1900-1990 examines the processes that underpin modern Brazilian architecture under various influences and characterizes different understandings of modernity, evident in the chapter topics of this book. Accordingly, the author does not give overall preference to particular architects nor works, with the exception of a few specific works and architects, including Warchavchik, Niemeyer, Lucio Costa, and Vilanova Artigas. In summary, this book: Meticulously examines the controversies, achievements, and failures in constructing spaces, buildings, and cities in a dynamic country Gives a broad view of Brazilian architecture in the twentieth century Proposes a reinterpretation of the varied approaches of the modern movement up to the Second World War Analyzes ideological impacts of important Brazilian architects including Oscar Niemeyer, Lucio Costa and Vilanova Artigas Discusses work of expatriate architects in Brazil Features over 140 illustrations In Architecture of Brazil: 1900-1990, S...

  12. Optimizing Maintenance Planning in the Production Industry Using the Markovian Approach

    Directory of Open Access Journals (Sweden)

    B Kareem

    2012-12-01

    Full Text Available Maintenance is an essential activity in every manufacturing establishment, as manufacturing effectiveness counts on the functionality of production equipment and machinery in terms of their productivity and operational life. Maintenance cost minimization can be achieved by adopting an appropriate maintenance planning policy. This paper applies the Markovian approach to maintenance planning decision, thereby generating optimal maintenance policy from the identified alternatives over a specified period of time. Markov chains, transition matrices, decision processes, and dynamic programming models were formulated for the decision problem related to maintenance operations of a cable production company. Preventive and corrective maintenance data based on workloads and costs, were collected from the company and utilized in this study. The result showed variability in the choice of optimal maintenance policy that was adopted in the case study. Post optimality analysis of the process buttressed the claim. The proposed approach is promising for solving the maintenance scheduling decision problems of the company.

  13. System Approach of Logistic Costs Optimization Solution in Supply Chain

    OpenAIRE

    Majerčák, Peter; Masárová, Gabriela; Buc, Daniel; Majerčáková, Eva

    2013-01-01

    This paper is focused on the possibility of using the costs simulation in supply chain, which are on relative high level. Our goal is to determine the costs using logistic costs optimization which must necessarily be used in business activities in the supply chain management. The paper emphasizes the need to perform not isolated optimization in the whole supply chain. Our goal is to compare classic approach, when every part tracks its costs isolated, a try to minimize them, with the system (l...

  14. Inverse Reliability Task: Artificial Neural Networks and Reliability-Based Optimization Approaches

    OpenAIRE

    Lehký , David; Slowik , Ondřej; Novák , Drahomír

    2014-01-01

    Part 7: Genetic Algorithms; International audience; The paper presents two alternative approaches to solve inverse reliability task – to determine the design parameters to achieve desired target reliabilities. The first approach is based on utilization of artificial neural networks and small-sample simulation Latin hypercube sampling. The second approach considers inverse reliability task as reliability-based optimization task using double-loop method and also small-sample simulation. Efficie...

  15. Hybrid Power Management-Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  16. Electrochemical Biosensors - Sensor Principles and Architectures

    Science.gov (United States)

    Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik

    2008-01-01

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate

  17. Mars Scenario-Based Visioning: Logistical Optimization of Transportation Architectures

    Science.gov (United States)

    1999-01-01

    The purpose of this conceptual design investigation is to examine transportation forecasts for future human Wu missions to Mars. - Scenario-Based Visioning is used to generate possible future demand projections. These scenarios are then coupled with availability, cost, and capacity parameters for indigenously designed Mars Transfer Vehicles (solar electric, nuclear thermal, and chemical propulsion types) and Earth-to-Orbit launch vehicles (current, future, and indigenous) to provide a cost-conscious dual-phase launch manifest to meet such future demand. A simulator named M-SAT (Mars Scenario Analysis Tool) is developed using this method. This simulation is used to examine three specific transportation scenarios to Mars: a limited "flaus and footprints" mission, a More ambitious scientific expedition similar to an expanded version of the Design Reference Mission from NASA, and a long-term colonization scenario. Initial results from the simulation indicate that chemical propulsion systems might be the architecture of choice for all three scenarios. With this mind, "what if' analyses were performed which indicated that if nuclear production costs were reduced by 30% for the colonization scenario, then the nuclear architecture would have a lower life cycle cost than the chemical. Results indicate that the most cost-effective solution to the Mars transportation problem is to plan for segmented development, this involves development of one vehicle at one opportunity and derivatives of that vehicle at subsequent opportunities.

  18. Evolution of the Ethane Architecture

    National Research Council Canada - National Science Library

    Casado, Martin; Shenker, Scott

    2009-01-01

    The Ethane architecture, developed at Stanford University, demonstrated that a novel approach to building secure networks could support superior low-level security and flexible policy-based control over individual flows...

  19. Modular architectures for quantum networks

    Science.gov (United States)

    Pirker, A.; Wallnöfer, J.; Dür, W.

    2018-05-01

    We consider the problem of generating multipartite entangled states in a quantum network upon request. We follow a top-down approach, where the required entanglement is initially present in the network in form of network states shared between network devices, and then manipulated in such a way that the desired target state is generated. This minimizes generation times, and allows for network structures that are in principle independent of physical links. We present a modular and flexible architecture, where a multi-layer network consists of devices of varying complexity, including quantum network routers, switches and clients, that share certain resource states. We concentrate on the generation of graph states among clients, which are resources for numerous distributed quantum tasks. We assume minimal functionality for clients, i.e. they do not participate in the complex and distributed generation process of the target state. We present architectures based on shared multipartite entangled Greenberger–Horne–Zeilinger states of different size, and fully connected decorated graph states, respectively. We compare the features of these architectures to an approach that is based on bipartite entanglement, and identify advantages of the multipartite approach in terms of memory requirements and complexity of state manipulation. The architectures can handle parallel requests, and are designed in such a way that the network state can be dynamically extended if new clients or devices join the network. For generation or dynamical extension of the network states, we propose a quantum network configuration protocol, where entanglement purification is used to establish high fidelity states. The latter also allows one to show that the entanglement generated among clients is private, i.e. the network is secure.

  20. Hardware architecture design of image restoration based on time-frequency domain computation

    Science.gov (United States)

    Wen, Bo; Zhang, Jing; Jiao, Zipeng

    2013-10-01

    The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

  1. On Generating Optimal Signal Probabilities for Random Tests: A Genetic Approach

    Directory of Open Access Journals (Sweden)

    M. Srinivas

    1996-01-01

    Full Text Available Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed. A brief overview of Genetic Algorithms (GAs and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance of our GAbased approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger.

  2. An optimization approach for fitting canonical tensor decompositions.

    Energy Technology Data Exchange (ETDEWEB)

    Dunlavy, Daniel M. (Sandia National Laboratories, Albuquerque, NM); Acar, Evrim; Kolda, Tamara Gibson

    2009-02-01

    Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be difficult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methods have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.

  3. Optimal design of permanent magnet flux switching generator for wind applications via artificial neural network and multi-objective particle swarm optimization hybrid approach

    International Nuclear Information System (INIS)

    Meo, Santolo; Zohoori, Alireza; Vahedi, Abolfazl

    2016-01-01

    Highlights: • A new optimal design of flux switching permanent magnet generator is developed. • A prototype is employed to validate numerical data used for optimization. • A novel hybrid multi-objective particle swarm optimization approach is proposed. • Optimization targets are weight, cost, voltage and its total harmonic distortion. • The hybrid approach preference is proved compared with other optimization methods. - Abstract: In this paper a new hybrid approach obtained combining a multi-objective particle swarm optimization and artificial neural network is proposed for the design optimization of a direct-drive permanent magnet flux switching generators for low power wind applications. The targets of the proposed multi-objective optimization are to reduce the costs and weight of the machine while maximizing the amplitude of the induced voltage as well as minimizing its total harmonic distortion. The permanent magnet width, the stator and rotor tooth width, the rotor teeth number and stator pole number of the machine define the search space for the optimization problem. Four supervised artificial neural networks are designed for modeling the complex relationships among the weight, the cost, the amplitude and the total harmonic distortion of the output voltage respect to the quantities of the search space. Finite element analysis is adopted to generate training dataset for the artificial neural networks. Finite element analysis based model is verified by experimental results with a 1.5 kW permanent magnet flux switching generator prototype suitable for renewable energy applications, having 6/19 stator poles/rotor teeth. Finally the effectiveness of the proposed hybrid procedure is compared with the results given by conventional multi-objective optimization algorithms. The obtained results show the soundness of the proposed multi objective optimization technique and its feasibility to be adopted as suitable methodology for optimal design of permanent

  4. Activate: Social Action in landscape Architecture Design Education

    Directory of Open Access Journals (Sweden)

    Helen Mclean

    2004-06-01

    Full Text Available This paper is a reflection on the teaching approach adopted in two landscape architecture design studios where students were engaged in developing design projects and campaign strategies informed by personal understandings of action and advocacy for and with communities. The approach was a deliberate application of principles from advocacy theory enmeshed in an educational philosophy of learner-centeredness and the intent was for students to develop strong individual senses of awareness and empowerment in an environment that value personal interests and learning. An evaluation of the approach as an attempt to position landscape architecture as social practice is provided.

  5. Minimization of the LCA impact of thermodynamic cycles using a combined simulation-optimization approach

    International Nuclear Information System (INIS)

    Brunet, Robert; Cortés, Daniel; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Boer, Dieter

    2012-01-01

    This work presents a computational approach for the simultaneous minimization of the total cost and environmental impact of thermodynamic cycles. Our method combines process simulation, multi-objective optimization and life cycle assessment (LCA) within a unified framework that identifies in a systematic manner optimal design and operating conditions according to several economic and LCA impacts. Our approach takes advantages of the complementary strengths of process simulation (in which mass, energy balances and thermodynamic calculations are implemented in an easy manner) and rigorous deterministic optimization tools. We demonstrate the capabilities of this strategy by means of two case studies in which we address the design of a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus. Numerical results show that it is possible to achieve environmental and cost savings using our rigorous approach. - Highlights: ► Novel framework for the optimal design of thermdoynamic cycles. ► Combined use of simulation and optimization tools. ► Optimal design and operating conditions according to several economic and LCA impacts. ► Design of a 10MW Rankine cycle in Aspen Hysys, and a 90kW absorption cycle in Aspen Plus.

  6. Minimization of the LCA impact of thermodynamic cycles using a combined simulation-optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Robert; Cortes, Daniel [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Guillen-Gosalbez, Gonzalo [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Jimenez, Laureano [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Boer, Dieter [Departament d' Enginyeria Mecanica, Escola Tecnica Superior d' Enginyeria, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007, Tarragona (Spain)

    2012-12-15

    This work presents a computational approach for the simultaneous minimization of the total cost and environmental impact of thermodynamic cycles. Our method combines process simulation, multi-objective optimization and life cycle assessment (LCA) within a unified framework that identifies in a systematic manner optimal design and operating conditions according to several economic and LCA impacts. Our approach takes advantages of the complementary strengths of process simulation (in which mass, energy balances and thermodynamic calculations are implemented in an easy manner) and rigorous deterministic optimization tools. We demonstrate the capabilities of this strategy by means of two case studies in which we address the design of a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus. Numerical results show that it is possible to achieve environmental and cost savings using our rigorous approach. - Highlights: Black-Right-Pointing-Pointer Novel framework for the optimal design of thermdoynamic cycles. Black-Right-Pointing-Pointer Combined use of simulation and optimization tools. Black-Right-Pointing-Pointer Optimal design and operating conditions according to several economic and LCA impacts. Black-Right-Pointing-Pointer Design of a 10MW Rankine cycle in Aspen Hysys, and a 90kW absorption cycle in Aspen Plus.

  7. Nanorobot architecture for medical target identification

    International Nuclear Information System (INIS)

    Cavalcanti, Adriano; Shirinzadeh, Bijan; Freita, Robert A Jr; Hogg, Tad

    2008-01-01

    This work has an innovative approach for the development of nanorobots with sensors for medicine. The nanorobots operate in a virtual environment comparing random, thermal and chemical control techniques. The nanorobot architecture model has nanobioelectronics as the basis for manufacturing integrated system devices with embedded nanobiosensors and actuators, which facilitates its application for medical target identification and drug delivery. The nanorobot interaction with the described workspace shows how time actuation is improved based on sensor capabilities. Therefore, our work addresses the control and the architecture design for developing practical molecular machines. Advances in nanotechnology are enabling manufacturing nanosensors and actuators through nanobioelectronics and biologically inspired devices. Analysis of integrated system modeling is one important aspect for supporting nanotechnology in the fast development towards one of the most challenging new fields of science: molecular machines. The use of 3D simulation can provide interactive tools for addressing nanorobot choices on sensing, hardware architecture design, manufacturing approaches, and control methodology investigation

  8. Nanorobot architecture for medical target identification

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Adriano [CAN Center for Automation in Nanobiotech, Melbourne VIC 3168 (Australia); Shirinzadeh, Bijan [Robotics and Mechatronics Research Laboratory, Department of Mechanical Engineering, Monash University, Clayton, Melbourne VIC 3800 (Australia); Freita, Robert A Jr [Institute for Molecular Manufacturing, Pilot Hill, CA 95664 (United States); Hogg, Tad [Hewlett-Packard Laboratories, Palo Alto, CA 94304 (United States)

    2008-01-09

    This work has an innovative approach for the development of nanorobots with sensors for medicine. The nanorobots operate in a virtual environment comparing random, thermal and chemical control techniques. The nanorobot architecture model has nanobioelectronics as the basis for manufacturing integrated system devices with embedded nanobiosensors and actuators, which facilitates its application for medical target identification and drug delivery. The nanorobot interaction with the described workspace shows how time actuation is improved based on sensor capabilities. Therefore, our work addresses the control and the architecture design for developing practical molecular machines. Advances in nanotechnology are enabling manufacturing nanosensors and actuators through nanobioelectronics and biologically inspired devices. Analysis of integrated system modeling is one important aspect for supporting nanotechnology in the fast development towards one of the most challenging new fields of science: molecular machines. The use of 3D simulation can provide interactive tools for addressing nanorobot choices on sensing, hardware architecture design, manufacturing approaches, and control methodology investigation.

  9. Towards Implementation of a Generalized Architecture for High-Level Quantum Programming Language

    Science.gov (United States)

    Ameen, El-Mahdy M.; Ali, Hesham A.; Salem, Mofreh M.; Badawy, Mahmoud

    2017-08-01

    This paper investigates a novel architecture to the problem of quantum computer programming. A generalized architecture for a high-level quantum programming language has been proposed. Therefore, the programming evolution from the complicated quantum-based programming to the high-level quantum independent programming will be achieved. The proposed architecture receives the high-level source code and, automatically transforms it into the equivalent quantum representation. This architecture involves two layers which are the programmer layer and the compilation layer. These layers have been implemented in the state of the art of three main stages; pre-classification, classification, and post-classification stages respectively. The basic building block of each stage has been divided into subsequent phases. Each phase has been implemented to perform the required transformations from one representation to another. A verification process was exposed using a case study to investigate the ability of the compiler to perform all transformation processes. Experimental results showed that the efficacy of the proposed compiler achieves a correspondence correlation coefficient about R ≈ 1 between outputs and the targets. Also, an obvious achievement has been utilized with respect to the consumed time in the optimization process compared to other techniques. In the online optimization process, the consumed time has increased exponentially against the amount of accuracy needed. However, in the proposed offline optimization process has increased gradually.

  10. Runtime QoS control and revenue optimization within service oriented architecture

    NARCIS (Netherlands)

    Zivkovic, Miroslav

    2014-01-01

    The paradigms of service-oriented computing (SOC) and its underlying service-oriented architecture (SOA) have changed the way software applications are designed, developed, deployed, and consumed. Software engineers can therefore realize applications by service composition, using services offered by

  11. High-resolution quantization based on soliton self-frequency shift and spectral compression in a bi-directional comb-fiber architecture

    Science.gov (United States)

    Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong

    2018-03-01

    We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.

  12. Recognition of the role of nature in the formation of fractal architecture

    Directory of Open Access Journals (Sweden)

    Mirmoradi Seyedeh Somayeh

    2017-01-01

    Full Text Available After a long period of one-way consumerist atti­tude toward nature, there have been some alternate per­spectives on the systemic relationship between humans and nature, which have been again brought up during the past few decades. Since the late twentieth century, fractal architecture has been one of the most important themes discussed in architecture and it is based on the chaos and complexity theories. Critics often criticize this architecture due to its lack of architectural values, practi­cality, and attention to economy, culture, and history. The current study aims to clarify the scientific theories that are the theoretical foundations of this approach in contempo­rary architecture. By categorizing the practical examples of this architectural approach, they are analyzed in terms of their relationship with nature using the logical reasoning method to achieve a favorable architecture. In fact, the gap between this architecture and nature’s behavior is shown.

  13. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: A systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database

    International Nuclear Information System (INIS)

    Dietzel, Matthias; Baltzer, Pascal A.T.; Dietzel, Andreas; Zoubi, Ramy; Gröschel, Tobias; Burmeister, Hartmut P.; Bogdan, Martin; Kaiser, Werner A.

    2012-01-01

    Rationale and objectives: Differential diagnosis of lesions in MR-Mammography (MRM) remains a complex task. The aim of this MRM study was to design and to test robustness of Artificial Neural Network architectures to predict malignancy using a large clinical database. Materials and methods: For this IRB-approved investigation standardized protocols and study design were applied (T1w-FLASH; 0.1 mmol/kgBW Gd-DTPA; T2w-TSE; histological verification after MRM). All lesions were evaluated by two experienced (>500 MRM) radiologists in consensus. In every lesion, 18 previously published descriptors were assessed and documented in the database. An Artificial Neural Network (ANN) was developed to process this database (The-MathWorks/Inc., feed-forward-architecture/resilient back-propagation-algorithm). All 18 descriptors were set as input variables, whereas histological results (malignant vs. benign) was defined as classification variable. Initially, the ANN was optimized in terms of “Training Epochs” (TE), “Hidden Layers” (HL), “Learning Rate” (LR) and “Neurons” (N). Robustness of the ANN was addressed by repeated evaluation cycles (n: 9) with receiver operating characteristics (ROC) analysis of the results applying 4-fold Cross Validation. The best network architecture was identified comparing the corresponding Area under the ROC curve (AUC). Results: Histopathology revealed 436 benign and 648 malignant lesions. Enhancing the level of complexity could not increase diagnostic accuracy of the network (P: n.s.). The optimized ANN architecture (TE: 20, HL: 1, N: 5, LR: 1.2) was accurate (mean-AUC 0.888; P: <0.001) and robust (CI: 0.885–0.892; range: 0.880–0.898). Conclusion: The optimized neural network showed robust performance and high diagnostic accuracy for prediction of malignancy on unknown data.

  14. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database.

    Science.gov (United States)

    Dietzel, Matthias; Baltzer, Pascal A T; Dietzel, Andreas; Zoubi, Ramy; Gröschel, Tobias; Burmeister, Hartmut P; Bogdan, Martin; Kaiser, Werner A

    2012-07-01

    Differential diagnosis of lesions in MR-Mammography (MRM) remains a complex task. The aim of this MRM study was to design and to test robustness of Artificial Neural Network architectures to predict malignancy using a large clinical database. For this IRB-approved investigation standardized protocols and study design were applied (T1w-FLASH; 0.1 mmol/kgBW Gd-DTPA; T2w-TSE; histological verification after MRM). All lesions were evaluated by two experienced (>500 MRM) radiologists in consensus. In every lesion, 18 previously published descriptors were assessed and documented in the database. An Artificial Neural Network (ANN) was developed to process this database (The-MathWorks/Inc., feed-forward-architecture/resilient back-propagation-algorithm). All 18 descriptors were set as input variables, whereas histological results (malignant vs. benign) was defined as classification variable. Initially, the ANN was optimized in terms of "Training Epochs" (TE), "Hidden Layers" (HL), "Learning Rate" (LR) and "Neurons" (N). Robustness of the ANN was addressed by repeated evaluation cycles (n: 9) with receiver operating characteristics (ROC) analysis of the results applying 4-fold Cross Validation. The best network architecture was identified comparing the corresponding Area under the ROC curve (AUC). Histopathology revealed 436 benign and 648 malignant lesions. Enhancing the level of complexity could not increase diagnostic accuracy of the network (P: n.s.). The optimized ANN architecture (TE: 20, HL: 1, N: 5, LR: 1.2) was accurate (mean-AUC 0.888; P: <0.001) and robust (CI: 0.885-0.892; range: 0.880-0.898). The optimized neural network showed robust performance and high diagnostic accuracy for prediction of malignancy on unknown data. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Mapping PetaSHA Applications to TeraGrid Architectures

    Science.gov (United States)

    Cui, Y.; Moore, R.; Olsen, K.; Zhu, J.; Dalguer, L. A.; Day, S.; Cruz-Atienza, V.; Maechling, P.; Jordan, T.

    2007-12-01

    The Southern California Earthquake Center (SCEC) has a science program in developing an integrated cyberfacility - PetaSHA - for executing physics-based seismic hazard analysis (SHA) computations. The NSF has awarded PetaSHA 15 million allocation service units this year on the fastest supercomputers available within the NSF TeraGrid. However, one size does not fit all, a range of systems are needed to support this effort at different stages of the simulations. Enabling PetaSHA simulations on those TeraGrid architectures to solve both dynamic rupture and seismic wave propagation have been a challenge from both hardware and software levels. This is an adaptation procedure to meet specific requirements of each architecture. It is important to determine how fundamental system attributes affect application performance. We present an adaptive approach in our PetaSHA application that enables the simultaneous optimization of both computation and communication at run-time using flexible settings. These techniques optimize initialization, source/media partition and MPI-IO output in different ways to achieve optimal performance on the target machines. The resulting code is a factor of four faster than the orignial version. New MPI-I/O capabilities have been added for the accurate Staggered-Grid Split-Node (SGSN) method for dynamic rupture propagation in the velocity-stress staggered-grid finite difference scheme (Dalguer and Day, JGR, 2007), We use execution workflow across TeraGrid sites for managing the resulting data volumes. Our lessons learned indicate that minimizing time to solution is most critical, in particular when scheduling large scale simulations across supercomputer sites. The TeraShake platform has been ported to multiple architectures including TACC Dell lonestar and Abe, Cray XT3 Bigben and Blue Gene/L. Parallel efficiency of 96% with the PetaSHA application Olsen-AWM has been demonstrated on 40,960 Blue Gene/L processors at IBM TJ Watson Center. Notable

  16. Bifurcation-based approach reveals synergism and optimal combinatorial perturbation.

    Science.gov (United States)

    Liu, Yanwei; Li, Shanshan; Liu, Zengrong; Wang, Ruiqi

    2016-06-01

    Cells accomplish the process of fate decisions and form terminal lineages through a series of binary choices in which cells switch stable states from one branch to another as the interacting strengths of regulatory factors continuously vary. Various combinatorial effects may occur because almost all regulatory processes are managed in a combinatorial fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively integrate many different signaling pathways to meet the higher regulation demand during cell development. However, whether the contribution of combinatorial regulation to the state transition is better than that of a single one and if so, what the optimal combination strategy is, seem to be significant issue from the point of view of both biology and mathematics. Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a general framework for the quantitative analysis of synergism in molecular networks. Different from the known methods, the bifurcation-based approach depends only on stable state responses to stimuli because the state transition induced by combinatorial perturbations occurs between stable states. More importantly, an optimal combinatorial perturbation strategy can be determined by investigating the relationship between the bifurcation curve of a synergistic perturbation pair and the level set of a specific objective function. The approach is applied to two models, i.e., a theoretical multistable decision model and a biologically realistic CREB model, to show its validity, although the approach holds for a general class of biological systems.

  17. Simulation environment architecture development using the DoDAF

    NARCIS (Netherlands)

    Berg, T. van den; Lutz, R.

    2015-01-01

    The US Department of Defense (DoD) Architecture Framework (DoDAF) provides a common approach for architecture description development. The primary use of DoDAF is capability development and system acquisition in the military domain. Although DoDAF was not designed to support the development of

  18. Accuracy Test of Software Architecture Compliance Checking Tools – Test Instruction

    NARCIS (Netherlands)

    Pruijt, Leo; van der Werf, J.M.E.M.|info:eu-repo/dai/nl/36950674X; Brinkkemper., Sjaak|info:eu-repo/dai/nl/07500707X

    2015-01-01

    Software Architecture Compliance Checking (SACC) is an approach to verify conformance of implemented program code to high-level models of architectural design. Static SACC focuses on the modular software architecture and on the existence of rule violating dependencies between modules. Accurate tool

  19. A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components

    Science.gov (United States)

    Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun

    2017-10-01

    This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.

  20. An Optimization-Based Impedance Approach for Robot Force Regulation with Prescribed Force Limits

    Directory of Open Access Journals (Sweden)

    R. de J. Portillo-Vélez

    2015-01-01

    Full Text Available An optimization based approach for the regulation of excessive or insufficient forces at the end-effector level is introduced. The objective is to minimize the interaction force error at the robot end effector, while constraining undesired interaction forces. To that end, a dynamic optimization problem (DOP is formulated considering a dynamic robot impedance model. Penalty functions are considered in the DOP to handle the constraints on the interaction force. The optimization problem is online solved through the gradient flow approach. Convergence properties are presented and the stability is drawn when the force limits are considered in the analysis. The effectiveness of our proposal is validated via experimental results for a robotic grasping task.