WorldWideScience

Sample records for optimize vibration characteristics

  1. Multidisciplinary design optimization of the belt drive system considering both structure and vibration characteristics based on improved genetic algorithm

    Yuan, Yongliang; Song, Xueguan; Sun, Wei; Wang, Xiaobang

    2018-05-01

    The dynamic performance of a belt drive system is composed of many factors, such as the efficiency, the vibration, and the optimal parameters. The conventional design only considers the basic performance of the belt drive system, while ignoring its overall performance. To address all these challenges, the study on vibration characteristics and optimization strategies could be a feasible way. This paper proposes a new optimization strategy and takes a belt drive design optimization as a case study based on the multidisciplinary design optimization (MDO). The MDO of the belt drive system is established and the corresponding sub-systems are analyzed. The multidisciplinary optimization is performed by using an improved genetic algorithm. Based on the optimal results obtained from the MDO, the three-dimension (3D) model of the belt drive system is established for dynamics simulation by virtual prototyping. From the comparison of the results with respect to different velocities and loads, the MDO method can effectively reduce the transverse vibration amplitude. The law of the vibration displacement, the vibration frequency, and the influence of velocities on the transverse vibrations has been obtained. Results show that the MDO method is of great help to obtain the optimal structural parameters. Furthermore, the kinematics principle of the belt drive has been obtained. The belt drive design case indicates that the proposed method in this paper can also be used to solve other engineering optimization problems efficiently.

  2. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings

  3. Vibration characteristics of a PWR fuel rod supported by optimized H type spacer grids

    Choi, M. H.; Kang, H. S.; Yoon, K. H.; Kim, H. K.; Song, K. N.

    2002-01-01

    The spacer grids are one of the main structural components in the fuel assembly, which supports and protects the fuel rods from the external loads by seismic and coolant flow. In this study, a modal test and a FE vibration analysis using ABAQUS are performed on a PWR dummy fuel rod of 3.847 m which is continuously supported by eight Optimized H type spacer grids. The experimental results agree with previous works that the natural frequencies decrease, while the amplitudes increase, with the increase of the excitation force. The force levels showing the maximum displacement of 0.2 mm are in the range from 0.2 N to 0.3 N, and at the same force range the fundamental frequencies are measured around 42.0 Hz, at which the relatively big displacements are observed at the 7th span. The results from the modal tests and the FE analyses are compared by both Modal Assurance Criteria (MAC) values and mode shapes. The MAC values at 2nd, 4th, and 7th mode are below 50%. It is believed that the reason of the low MACs at those modes is that the vibration amplitudes of the modes are more distorted by the excitation force than those of the other modes

  4. Derivation of optimal design of cockpit module considering vibration and heat-resistance characteristics

    Kim, Hyun Jun; Cho, Hoon; Son, Young Tak; Suh, Myung Won; Kim, Hye Kyung; Kim, Hae Ryong

    2010-01-01

    Elimination of noise caused by the permanent deformation of interior plastic parts has been one of the major factors driving the design of automotive interior assemblies. Noise, indeed, is one of the main criteria affecting the perception of vehicle quality. Traditionally, noise issues have been identified and rectified through extensive hardware testing. However, to shorten the product development cycle and minimize the amount of costly hardware manufactured, hardware testing must rely on engineering analysis and upfront simulation in the design cycle. In this paper, an analytical study conducted to reduce permanent deformation in a cockpit module is discussed. The analytical investigation utilized a novel and practical methodology, implemented through the software tools ABAQUS and iSight, for the identification and minimization of permanent deformation. Here, the emphasis was placed on evaluating the software for issues relating to the prediction of permanent deformation. The analytical results were compared with the experimental findings for two types of deformation location, and the qualitative correlation was found to be very good. We also developed a methodology for the determination of the optimal guide and mount locations of the cockpit module that minimizes permanent deformation. To this end, the methodology implements and integrates nonlinear finite element analysis with sensitivity-analysis techniques

  5. Vibration behavior optimization of planetary gear sets

    Farshad Shakeri Aski

    2014-12-01

    Full Text Available This paper presents a global optimization method focused on planetary gear vibration reduction by means of tip relief profile modifications. A nonlinear dynamic model is used to study the vibration behavior. In order to investigate the optimal radius and amplitude, Brute Force method optimization is used. One approach in optimization is straightforward and requires considerable computation power: brute force methods try to calculate all possible solutions and decide afterwards which one is the best. Results show the influence of optimal profile on planetary gear vibrations.

  6. Isogeometric Shape Optimization of Vibrating Membranes

    Nguyen, Dang Manh; Evgrafov, Anton; Gersborg, Allan Roulund

    2011-01-01

    We consider a model problem of isogeometric shape optimization of vibrating membranes whose shapes are allowed to vary freely. The main obstacle we face is the need for robust and inexpensive extension of a B-spline parametrization from the boundary of a domain onto its interior, a task which has...... perform a number of numerical experiments with our isogeometric shape optimization algorithm and present smooth, optimized membrane shapes. Our conclusion is that isogeometric analysis fits well with shape optimization....

  7. Optimal parameters uncoupling vibration modes of oscillators

    Le, K. C.; Pieper, A.

    2017-07-01

    This paper proposes a novel optimization concept for an oscillator with two degrees of freedom. By using specially defined motion ratios, we control the action of springs to each degree of freedom of the oscillator. We aim at showing that, if the potential action of the springs in one period of vibration, used as the payoff function for the conservative oscillator, is maximized among all admissible parameters and motions satisfying Lagrange's equations, then the optimal motion ratios uncouple vibration modes. A similar result holds true for the dissipative oscillator having dampers. The application to optimal design of vehicle suspension is discussed.

  8. Investigation of vibration characteristics of electric motors

    Bakshis, A. K.; Tamoshyunas, Y. K.

    1973-01-01

    The vibration characteristics of electric motors were analyzed using mathematical statistics methods. The equipment used and the method of conducting the test are described. Curves are developed to show the visualization of the electric motor vibrations in the vertical direction. Additional curves are included to show the amplitude-phase frequency characteristic of dynamic rotor-housing vibrations at the first lug and the same data for the second lug of the electric motor. Mathematical models were created to show the transmission function of the dynamic rotor housing system.

  9. Structural Design Optimization On Thermally Induced Vibration

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  10. Parameter optimization method for longitudinal vibration absorber of ship shaft system

    LIU Jinlin

    2017-05-01

    Full Text Available The longitudinal vibration of the ship shaft system is the one of the most important factors of hull stern vibration, and it can be effectively minimized by installing a longitudinal vibration absorber. In this way, the vibration and noise of ships can be brought under control. However, the parameters of longitudinal vibration absorbers have a great influence on the vibration characteristics of the shaft system. As such, a certain shafting testing platform was studied as the object on which a finite model was built, and the relationship between longitudinal stiffness and longitudinal vibration in the shaft system was analyzed in a straight alignment state. Furthermore, a longitudinal damping model of the shaft system was built in which the parameters of the vibration absorber were non-dimensionalized, the weight of the vibration absorber was set as a constant, and an optimizing algorithm was used to calculate the optimized stiffness and damping coefficient of the vibration absorber. Finally, the longitudinal vibration frequency response of the shafting testing platform before and after optimizing the parameters of the longitudinal vibration absorber were compared, and the results indicated that the longitudinal vibration of the shafting testing platform was decreased effectively, which suggests that it could provide a theoretical foundation for the parameter optimization of longitudinal vibration absorbers.

  11. Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration

    Spreemann, Dirk; Hoffmann, Daniel; Folkmer, Bernd; Manoli, Yiannos

    2008-01-01

    This paper presents a design and optimization strategy for resonant electromagnetic vibration energy harvesting devices. An analytic expression for the magnetic field of cylindrical permanent magnets is used to build up an electromagnetic subsystem model. This subsystem is used to find the optimal resting position of the oscillating mass and to optimize the geometrical parameters (shape and size) of the magnet and coil. The objective function to be investigated is thereby the maximum voltage output of the transducer. An additional mechanical subsystem model based on well-known equations describing the dynamics of spring–mass–damper systems is established to simulate both nonlinear spring characteristics and the effect of internal limit stops. The mechanical subsystem enables the identification of optimal spring characteristics for realistic operation conditions such as stochastic vibrations. With the overall transducer model, a combination of both subsystems connected to a simple electrical circuit, a virtual operation of the optimized vibration transducer excited by a measured random acceleration profile can be performed. It is shown that the optimization approach results in an appreciable increase of the converter performance

  12. DYNAMICS OF VIBRATION FEEDERS WITH A NONLINEAR ELASTIC CHARACTERISTIC

    V. I. Dyrda

    2017-04-01

    Full Text Available Purpose. Subject to the smooth and efficient operation of each production line, is the use of vehicles transporting high specification. It worked well in practice for transporting construction machines, which are used during the vibration. The use of vibration machines requires optimization of their operation modes. In the form of elastic link in them are increasingly using rubber-metallic elements, which are characterized by nonlinear damping properties. So it is necessary to search for new, more modern, methods of calculation of dynamic characteristics of the vibration machines on the properties of rubber as a cushioning material. Methodology. The dynamics of vibration machine that is as elastic rubber block units and buffer shock absorbers limiting the amplitude of the vibrations of the working body. The method of determining amplitude-frequency characteristics of the vibrating feeder is based on the principle of Voltaire, who in the calculations of the damping properties of the dampers will allow for elastic-hereditary properties of rubber. When adjusting the basic dynamic stiffness of the elastic ties and vibratory buffers, using the principle of heredity rubber properties, determine the dependence of the amplitude of the working body of the machine vibrations. This method is called integro-operator using the fractional-exponential kernels of relaxation. Findings. Using the derived formula for determining the amplitude of the resonance curve is constructed one-mass nonlinear system. It is established that the use of the proposed method of calculation will provide a sufficiently complete description of the damping parameters of rubber-metallic elements and at the same time be an effective means of calculating the amplitude-frequency characteristics of nonlinear vibration systems. Originality. The authors improved method of determining damping characteristics of rubber-metallic elements and the amplitude-frequency characteristics of nonlinear

  13. Optimization of boundary controls of string vibrations

    Il' in, V A; Moiseev, E I [Department of Computing Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2005-12-31

    For a large time interval T boundary controls of string vibrations are optimized in the following seven boundary-control problems: displacement control at one end (with the other end fixed or free); displacement control at both ends; elastic force control at one end (with the other end fixed or free); elastic force control at both ends; combined control (displacement control at one end and elastic force control at the other). Optimal boundary controls in each of these seven problems are sought as functions minimizing the corresponding boundary-energy integral under the constraints following from the initial and terminal conditions for the string at t=0 and t=T, respectively. For all seven problems, the optimal boundary controls are written out in closed analytic form.

  14. Vibration characteristics analysis for HANARO fuel assembly

    Ryu, Jeong Soo; Yoon, Doo Byung

    2001-06-01

    For investigating the vibration characteristics of HANARO fuel assembly, the finite element models of the in-air fuel assemblies and flow tubes were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes and the fuel assemblies were developed. Then, modal analysis of the developed models was carried out. The analysis results show that the fundamental vibration modes of the in-air 18-element and 36-element fuel assemblies are lateral bending modes and its corresponding natural frequencies are 26.4Hz and 27.7Hz, respectively. The fundamental natural frequency of the in-water 18-element and 36-element fuel assemblies were obtained as 16.1Hz and 16.5Hz. For the verification of the developed finite element models, modal analysis results were compared with those obtained from the modal test. These results demonstrate that the natural frequencies of lower order modes obtained from finite element analysis agree well with those of the modal test and the estimation of the hydrodynamic mass is appropriate. It is expected that the analysis results will be applied as a basic data for the operation and management of the HANARO. In addition, when it is necessary to improve the design of the fuel assembly, the developed finite element models will be utilized as a base model for the vibration characteristic analysis of the modified fuel assembly

  15. Vibrational self-consistent field theory using optimized curvilinear coordinates.

    Bulik, Ireneusz W; Frisch, Michael J; Vaccaro, Patrick H

    2017-07-28

    A vibrational SCF model is presented in which the functions forming the single-mode functions in the product wavefunction are expressed in terms of internal coordinates and the coordinates used for each mode are optimized variationally. This model involves no approximations to the kinetic energy operator and does not require a Taylor-series expansion of the potential. The non-linear optimization of coordinates is found to give much better product wavefunctions than the limited variations considered in most previous applications of SCF methods to vibrational problems. The approach is tested using published potential energy surfaces for water, ammonia, and formaldehyde. Variational flexibility allowed in the current ansätze results in excellent zero-point energies expressed through single-product states and accurate fundamental transition frequencies realized by short configuration-interaction expansions. Fully variational optimization of single-product states for excited vibrational levels also is discussed. The highlighted methodology constitutes an excellent starting point for more sophisticated treatments, as the bulk characteristics of many-mode coupling are accounted for efficiently in terms of compact wavefunctions (as evident from the accurate prediction of transition frequencies).

  16. A novel technique for active vibration control, based on optimal

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  17. Low-frequency characteristics extension for vibration sensors

    杨学山; 高峰; 候兴民

    2004-01-01

    Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate. A low frequency characteristic extension for velocity vibration sensors is presented in this paper. The passive circuit technology, active compensation technology and the closedcycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors. Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.

  18. Characteristic molecular vibrations of adenosine receptor ligands.

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  20. Topology optimization of free vibrations of fiber laser packages

    Hansen, Lars Voxen

    2005-01-01

    The optimization problems described in the present paper are inspired by the problem of fiber laser package design for vibrating environments. The optical frequency of tuned fiber lasers glued to stiff packages is sensitive to acoustic or other mechanical vibrations. The paper presents a method...... for reducing this sensitivity by limiting the glue point movement on the package while using only a limited knowledge of vibrating external forces. By use of topology optimization a density distribution for the package is obtained, where the critical eigenmode of the package only effects a small elongation...

  1. RESEARCH OF BRIDGE STRUCTURE VIBRATION CHARACTERISTICS

    V.P. Babak

    2005-02-01

    Full Text Available  Bridge structure test results with using different types of dynamic force have been considered. It has been shown, that the developed technique of registering and processing vibration signals allows obtaining thin spectrum structure. The analysis of its change that is defined by the type of structure loading applied has been carried out. Key parameters of the vibration signals registered have been defined.

  2. Optimal control of vibrational transitions of HCl

    Control of fundamental and overtone transitions of a vibration are studied for the diatomic molecule, HCl. Specifically, the results of the effect of variation of the penalty factor on the physical attributes of the system (i.e., probabilities) and pulse (i.e., amplitudes) considering three different pulse durations for each value of the ...

  3. Vibrational characteristics and wear of fuel rods

    Schmugar, K.L.

    1977-01-01

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  4. Synthesis of Optimal Isolation Systems of Hand-Transmitted Vibration

    Marek Książek

    1997-01-01

    Full Text Available In this article a procedure is presented for the analytical synthesis of optimal vibration isolation for a hand-arm system subjected to stochastic excitation. A general approach is discussed for a selected vibration isolation criterion. The general procedure is illustrated by analytical examples for different hand-arm systems described by their driving-point impedances. The influence of particular forms of excitation and the structure of the vibroisolated hand-arm systems on the resultant vibration isolation is then discussed. Some numerical examples illustrating the procedure have also been included.

  5. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  6. OPTIMAL AUTOMOBILE MUFFLER VIBRATION AND NOISE ANALYSIS

    Sujit Kumar Jha

    2013-06-01

    Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine. muffler, noise, vibration,modal analysis,

  7. Structural Characteristics of Rotate Vector Reducer Free Vibration

    Chuan Chen

    2017-01-01

    Full Text Available For RV reducer widely used in robots, vibration significantly affects its performance. A lumped parameter model is developed to investigate free vibration characteristics without and with gyroscopic effects. The dynamic model considers key factors affecting vibration such as involute and cycloid gear mesh stiffness, crankshaft bending stiffness, and bearing stiffness. For both nongyroscopic and gyroscopic systems, free vibrations are examined and compared with each other. Results reveal the specific structure of vibration modes for both systems, which results from symmetry structure of RV reducer. According to vibration of the central components, vibration modes of two systems can be classified into three types, rotational, translational, and planetary component modes. Different from nongyroscopic system, the eigenvalues with gyroscopic effects are complex-valued and speed-dependent. The eigenvalue for a range of carrier speeds is obtained by numerical simulation. Divergence and flutter instability is observed at speeds adjacent to critical speeds. Furthermore, the work studies effects of key factors, which include crankshaft eccentricity and the number of pins, on eigenvalues. Finally, experiment is performed to verify the effectiveness of the dynamic model. The research of this paper is helpful for the analysis on free vibration and dynamic design of RV reducer.

  8. Smart helicopter rotors optimization and piezoelectric vibration control

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  9. Peculiarities of Vibration Characteristics of Amorphous Ices

    Gets, Kirill V.; Subbotin, Oleg S.; Belosludov, Vladimir R.

    2012-03-01

    Dynamic properties of low (LDA), high (HDA) and very high (VHDA) density amorphous ices were investigated within the approach based on Lattice Dynamics simulations. In this approach, we assume that the short-range molecular order mainly determines the dynamic and thermodynamic properties of amorphous ices. Simulation cell of 512 water molecules with periodical boundary conditions and disordering allows us to study dynamical properties and dispersion curves in the Brillouin zone of pseudo-crystal. Existence of collective phenomena in amorphous ices which is usual for crystals but anomalous for disordered phase was confirmed in our simulations. Molecule amplitudes of delocalized (collective) as well as localized vibrations have been considered.

  10. Topology optimization of vibration and wave propagation problems

    Jensen, Jakob Søndergaard

    2007-01-01

    The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....

  11. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  12. OPTIMAL AUTOMOBILE MUFFLER VIBRATION AND NOISE ANALYSIS

    Sujit Kumar Jha

    2013-06-01

    Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine.

  13. Frequency Tuning of Vibration Absorber Using Topology Optimization

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  14. Design and Optimization of IPM Motor Considering Flux Weakening Capability and Vibration for Electric Vehicle Applications

    Fangwu Ma

    2018-05-01

    Full Text Available As motor design is key to the development of electric vehicles (EVs and hybrid EVs (HEVs, it has recently become the subject of considerable interest. Interior permanent magnet (IPM motors offer advantages such as high torque density and high efficiency, benefiting from both permanent magnet (PM torque and reluctance torque. However an obvious disadvantage of IPM motors is that operation at high speed involves difficulties in achieving the required flux-weakening capability and low vibration. This study focuses on optimizing the flux-weakening performance and reducing the vibration of an IPM motor for EVs. Firstly, flux-weakening capability, cogging torque, torque ripple, and radical vibration force are analyzed based on the mathematical model. Secondly, three kinds of motors are optimized by the genetic algorithm and analyzed, providing visible insights into the contribution of different rotor structures to the torque characteristics, efficiency, and extended speed range. Thirdly, a slotted rotor configuration is proposed to reduce the torque ripple and radical vibration force. The flux density distributions are discussed, explaining the principle that motors with slotted rotors and stator skew slots have smaller torque ripple and radical vibration force. Lastly, the design and optimization results have been validated against experiments.

  15. Reduction of belt CVT gear noise by gear train modification. Optimize vibration characteristics of gear train; Belt CVT no gear noise teigen gijutsu. Gear train shindo tokusei no saitekika

    Arimatsu, M; Kawakami, T [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    With the reduction of vehicle noise, the requirements for an efficient method to reduce transmission gear noise have become stronger yearly. So far efforts to reduce gear noise have generally focused on ways of improving the gears themselves. In addition to these traditional methods, it proved very beneficial to us to optimize the gear train structure. Nissan has just released the new Belt CVT for 2.0L Front wheel drive vehicles. We have been analyzing vibration of the gear train by using a finite element model since the early development stage, and we could achieve the quiet gears effectively. 2 refs., 9 figs.

  16. Experimental study on the vibrational characteristics of piping snubbers

    Kobatake, K.; Ooka, Y.; Suzuki, M.; Katsuki, T.; Hashimoto, T.

    1982-01-01

    Oil snubbers have been widely used for the anti-earthquake suports of piping systems in nuclear power plants. Several types of mechanical snubbers are now being considered. Vibration tests were performed on three models to obtain their fundamental characteristics by using a shaking table. From tests on a pendulum structure model, a piping model, and a vessel model, the equivalent stiffness and fundamental characteristics are estimated, and useful suggestions for applications are made

  17. Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens

    Xiong, Xiaoyan; Niu, Linkai; Gu, Chengxiang; Wang, Yinhua

    2017-12-01

    A banana flip-flow screen is an effective solution for the screening of high-viscosity, high-water and fine materials. As one of the key components, the vibration characteristics of the inclined flip-flow screen panel largely affects the screen performance and the processing capacity. In this paper, a mathematical model for the vibration characteristic of the inclined flip-flow screen panel is proposed based on Catenary theory. The reasonability of Catenary theory in analyzing the vibration characteristic of flip-flow screen panels is verified by a published experiment. Moreover, the effects of the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen on the vertical deflection, the vertical velocity and the vertical acceleration of the screen panel are investigated parametrically. The results show that the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen have significant effects on the vibrations of an inclined flip-flow screen panel, and these parameters should be optimized.

  18. Parametric Design and Multiobjective Optimization of Maglev Actuators for Active Vibration Isolation System

    Qianqian Wu

    2014-05-01

    Full Text Available The microvibration has a serious impact on science experiments on the space station and on image quality of high resolution satellites. As an important component of the active vibration isolation platform, the maglev actuator has a large stroke and exhibits excellent isolating performance benefiting from its noncontact characteristic. A maglev actuator with good linearity was designed in this paper. Fundamental features of the maglev actuator were obtained by finite element simulation. In order to minimize the coil weight and the heat dissipation of the maglev actuator, parametric design was carried out and multiobjective optimization based on the genetic algorithm was adopted. The optimized actuator has better mechanical properties than the initial one. Active vibration isolation platforms for different-scale payload were designed by changing the arrangement of the maglev actuators. The prototype to isolate vibration for small-scale payload was manufactured and the experiments for verifying the characteristics of the actuators were set up. The linearity of the actuator and the mechanical dynamic response of the vibration isolation platform were obtained. The experimental results highlight the effectiveness of the proposed design.

  19. Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-05-01

    One of the major challenges in civil, mechanical, and aerospace engineering is to develop vibration suppression systems with high efficiency and low cost. Recent studies have shown that high damping performance at broadband frequencies can be achieved by incorporating periodic inserts with tunable dynamic properties as internal resonators in structural systems. Structures featuring these kinds of inserts are referred to as metamaterials inspired structures or metastructures. Chiral lattice inserts exhibit unique characteristics such as frequency bandgaps which can be tuned by varying the parameters that define the lattice topology. Recent analytical and experimental investigations have shown that broadband vibration attenuation can be achieved by including chiral lattices as internal resonators in beam-like structures. However, these studies have suggested that the performance of chiral lattice inserts can be maximized by utilizing an efficient optimization technique to obtain the optimal topology of the inserted lattice. In this study, an automated optimization procedure based on a genetic algorithm is applied to obtain the optimal set of parameters that will result in chiral lattice inserts tuned properly to reduce the global vibration levels of a finite-sized beam. Genetic algorithms are considered in this study due to their capability of dealing with complex and insufficiently understood optimization problems. In the optimization process, the basic parameters that govern the geometry of periodic chiral lattices including the number of circular nodes, the thickness of the ligaments, and the characteristic angle are considered. Additionally, a new set of parameters is introduced to enable the optimization process to explore non-periodic chiral designs. Numerical simulations are carried out to demonstrate the efficiency of the optimization process.

  20. Experimental Study of Vibration Isolation Characteristics of a Geometric Anti-Spring Isolator

    Lixun Yan

    2017-07-01

    Full Text Available In order to realize low-frequency vibration isolation, a novel geometric anti-spring isolator consisting of several cantilever blade springs are developed in this paper. The optimal design parameters of the geometric anti-spring isolator for different nonlinear geometric parameters are theoretically obtained. The transmissibility characteristic of the geometric anti-spring isolator is investigated through mathematical simulation. A geometric anti-spring isolator with a nonlinear geometric parameter of 0.92 is designed and its vibration isolation performance and nonlinearity characteristic is experimentally studied. The experiment results show that the designed isolator has good low-frequency vibration isolation performance, of which the initial isolation frequency is less than 3.6 Hz when the load weight is 21 kg. The jump phenomena of the response of the isolator under linear frequency sweep excitation are observed, and this result demonstrates that the geometric anti-spring isolator has a complex nonlinearity characteristics with the increment of excitation amplitude. This research work provides a theoretical and experimental basis for the application of the nonlinear geometric anti-spring low-frequency passive vibration isolation technology in engineering practice.

  1. Dynamic Characteristics of Buildings from Signal Processing of Ambient Vibration

    Dobre, Daniela; Sorin Dragomir, Claudiu

    2017-10-01

    The experimental technique used to determine the dynamic characteristics of buildings is based on records of low intensity oscillations of the building produced by various natural factors, such as permanent agitation type microseismic motions, city traffic, wind etc. The possibility of recording these oscillations is provided by the latest seismic stations (Geosig and Kinemetrics digital accelerographs). The permanent microseismic agitation of the soil is a complex form of stationary random oscillations. The building filters the soil excitation, selects and increases the components of disruptive vibrations corresponding to its natural vibration periods. For some selected buildings, with different instrumentation schemes for the location of sensors (in free-field, at basement, ground floor, roof level), a correlation between the dynamic characteristics resulted from signal processing of ambient vibration and from a theoretical analysis will be presented. The interpretation of recording results could highlight the behavior of the whole structure. On the other hand, these results are compared with those from strong motions, or obtained from a complex dynamic analysis, and they are quite different, but they are explicable.

  2. A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals

    Guo, Wei; Tse, Peter W.

    2013-01-01

    Today, remote machine condition monitoring is popular due to the continuous advancement in wireless communication. Bearing is the most frequently and easily failed component in many rotating machines. To accurately identify the type of bearing fault, large amounts of vibration data need to be collected. However, the volume of transmitted data cannot be too high because the bandwidth of wireless communication is limited. To solve this problem, the data are usually compressed before transmitting to a remote maintenance center. This paper proposes a novel signal compression method that can substantially reduce the amount of data that need to be transmitted without sacrificing the accuracy of fault identification. The proposed signal compression method is based on ensemble empirical mode decomposition (EEMD), which is an effective method for adaptively decomposing the vibration signal into different bands of signal components, termed intrinsic mode functions (IMFs). An optimization method was designed to automatically select appropriate EEMD parameters for the analyzed signal, and in particular to select the appropriate level of the added white noise in the EEMD method. An index termed the relative root-mean-square error was used to evaluate the decomposition performances under different noise levels to find the optimal level. After applying the optimal EEMD method to a vibration signal, the IMF relating to the bearing fault can be extracted from the original vibration signal. Compressing this signal component obtains a much smaller proportion of data samples to be retained for transmission and further reconstruction. The proposed compression method were also compared with the popular wavelet compression method. Experimental results demonstrate that the optimization of EEMD parameters can automatically find appropriate EEMD parameters for the analyzed signals, and the IMF-based compression method provides a higher compression ratio, while retaining the bearing defect

  3. Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames

    C. Kanthasamy

    2012-03-01

    Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.

  4. Vibration and wear characteristics of steam generator tubes

    Choi, Young Hwan

    2003-06-01

    This study investigates the fluid elastic instability characteristics of Steam Generator (SG) U-tubes with defect and the safety assessment of the potential for fretting-wear damages on Steam Generator (SG) U-tubes caused by foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions for determining the fluid elastic instability or fretting-wear parameters such as damping ratio, added mass and flow velocity are obtained from three-dimensional SG flow calculation using the ATHOS3 code. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for the U-tubes either with axial or circumferential flaw with different sizes. Special emphases are on the effects of flaw orientation and size on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, the wear rate of U-tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted, and discussed in this study is the effect of the flow velocity and vibration of the tube on the remaining life of the tube. In addition, addressed is the effect of the internal pressure on the vibration and fretting-wear characteristics of the tube

  5. Optimized Vibration Chamber for Landslide Sensory and Alarm System

    Ismail, Eliza Sabira Binti; Hadi Habaebi, Mohamed; Daoud, Jamal I.; Rafiqul Islam, Md

    2017-11-01

    Landslide is one of natural hazard that is not unfamiliar disaster in Malaysia. Malaysia has experienced this disaster many times since 1969. This natural hazard has become a major research concern for Malaysian government when many people were injured badly and even had been killed. Many previous research works published in the open literature aimed at designing a system that could detect landslide in early stage before the landslide becomes catastrophic. This paper presents the early works on a major work-in-progress landslide early warning system for Malaysian environment. The aim of this system is to develop the most efficiently reliable cost-effective system in which slight earth movements are monitored continuously. The challenge this work aims at is to work with a low budget system that produces efficient performance. Hence, the material used is off-the-shelf. Early design optimization results of the vibration sensor used is quite promising detecting the slightest faint tremors, which are amplified using the best vibration chamber available. It is shown that the choice of proper pipe length and diameter dimensions in combination to a gravel to exaggerate the produced higher sensitivity level noise of 5 dB.

  6. Research on Longitudinal Vibration Characteristic of the Six-Cable-Driven Parallel Manipulator in FAST

    Zhihua Liu

    2013-01-01

    Full Text Available The first adjustable feed support system in FAST is a six-cable-driven parallel manipulator. Due to flexibility of the cables, the cable-driven parallel manipulator bears a concern of possible vibration caused by wind disturbance or internal force from the fine drive system. The purpose of this paper is to analyze vibration characteristic of the six-cable-driven parallel manipulator in FAST. The tension equilibrium equation of the six-cable-driven parallel manipulator is set up regarding the cables as catenaries. Then, vibration equation is established considering the longitudinal vibration of the cables. On this basis, the natural frequencies are depicted in figures since both analytical and numerical solutions are ineffective. Influence of the sags of the cables on the natural frequencies is discussed. It is shown that the sags of the cables will decrease the natural frequencies of the six-cable-driven parallel manipulator. Simplification to acquire the natural frequencies is proposed in this paper. The results justify effectiveness of the simplification to calculate the first-order natural frequencies. Distribution of the first-order natural frequencies in the required workspace is provided based on the simplification method. Finally, parameters optimization is implemented in terms of natural frequencies for building the six-cable-driven parallel manipulator in FAST.

  7. Characteristics for Software Optimization Projects

    Iulian NITESCU

    2008-01-01

    Full Text Available The increasing of the software systems complexity imposes the identification and implementation of some methods and techniques in order to manage it. The software optimization project is a way in which the software complexity is controlled. The software optimization project must face to the organization need to earn profit. The software optimization project is an integrated part of the application cycle because share same resources, depends on other stages and influences next phases. The optimization project has some particularities because it works on an finished product around its quality. The process is quality and performance oriented and it assumes that the product life cycle is almost finished.

  8. Finite Element Analysis and Experimental Study on Elbow Vibration Transmission Characteristics

    Qing-shan, Dai; Zhen-hai, Zhang; Shi-jian, Zhu

    2017-11-01

    Pipeline system vibration is one of the significant factors leading to the vibration and noise of vessel. Elbow is widely used in the pipeline system. However, the researches about vibration of elbow are little, and there is no systematic study. In this research, we firstly analysed the relationship between elbow vibration transmission characteristics and bending radius by ABAQUS finite element simulation. Then, we conducted the further vibration test to observe the vibration transmission characteristics of different elbows which have the same diameter and different bending radius under different flow velocity. The results of simulation calculation and experiment both showed that the vibration acceleration levels of the pipeline system decreased with the increase of bending radius of the elbow, which was beneficial to reduce the transmission of vibration in the pipeline system. The results could be used as reference for further studies and designs for the low noise installation of pipeline system.

  9. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given. (paper)

  10. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    Nguyen, Q. H.; Choi, S. B.

    2012-02-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.

  11. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik

    2015-01-01

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  12. AN ADAPTIVE OPTIMAL KALMAN FILTER FOR STOCHASTIC VIBRATION CONTROL SYSTEM WITH UNKNOWN NOISE VARIANCES

    Li Shu; Zhuo Jiashou; Ren Qingwen

    2000-01-01

    In this paper, an optimal criterion is presented for adaptive Kalman filter in a control sys tem with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.

  13. An optimal approach to active damping of nonlinear vibrations in composite plates using piezoelectric patches

    Saviz, M R

    2015-01-01

    In this paper a nonlinear approach to studying the vibration characteristic of laminated composite plate with surface-bonded piezoelectric layer/patch is formulated, based on the Green Lagrange type of strain–displacements relations, by incorporating higher-order terms arising from nonlinear relations of kinematics into mathematical formulations. The equations of motion are obtained through the energy method, based on Lagrange equations and by using higher-order shear deformation theories with von Karman–type nonlinearities, so that transverse shear strains vanish at the top and bottom surfaces of the plate. An isoparametric finite element model is provided to model the nonlinear dynamics of the smart plate with piezoelectric layer/ patch. Different boundary conditions are investigated. Optimal locations of piezoelectric patches are found using a genetic algorithm to maximize spatial controllability/observability and considering the effect of residual modes to reduce spillover effect. Active attenuation of vibration of laminated composite plate is achieved through an optimal control law with inequality constraint, which is related to the maximum and minimum values of allowable voltage in the piezoelectric elements. To keep the voltages of actuator pairs in an allowable limit, the Pontryagin’s minimum principle is implemented in a system with multi-inequality constraint of control inputs. The results are compared with similar ones, proving the accuracy of the model especially for the structures undergoing large deformations. The convergence is studied and nonlinear frequencies are obtained for different thickness ratios. The structural coupling between plate and piezoelectric actuators is analyzed. Some examples with new features are presented, indicating that the piezo-patches significantly improve the damping characteristics of the plate for suppressing the geometrically nonlinear transient vibrations. (paper)

  14. Prevalence and characteristics of vibrator use among women who have sex with women.

    Schick, Vanessa; Herbenick, Debby; Rosenberger, Joshua G; Reece, Michael

    2011-12-01

    Research suggests that vibrator use may be more prevalent among lesbian/bisexual-identified women. However, previous research has been limited by small samples of lesbian- and bisexual-identified women and has not focused specifically on the characteristics of vibrator use between women. The present study was designed in order to develop a comprehensive understanding of women's use of vibrators with their female sexual partners and to understand the extent to which vibrator use is related to their sexual experiences. Data were collected via a cross-sectional web-based survey from 2,192 women living in the United States and the United Kingdom. All participants reported engaging in sexual behavior with only women in the previous year. Sociodemographic characteristics, vibrator use history, vibrator use perceptions, and the Female Sexual Function Index (FSFI). Over three-quarters of women in the sample reported a history of vibrator use during solo masturbation/with a female partner and over a quarter of the sample reported use in the previous month. Participants who were older, white, and in a long-term relationship were the most likely to use a vibrator with a female partner in the previous year. Vibrator use lifetime history was unrelated to all FSFI subscales with the exception of pain for lesbian and queer-identified women. In contrast to lifetime use, participants who used a vibrator with a female sexual partner in the previous month scored higher on several of the FSFI domains than women who reported no vibrator use or vibrator use only during solo masturbation in the past month. Vibrator use was common among this sample of women who have sex with women. Women who reported recent vibrator use with other women had higher mean sexual functioning scores than women who reported no vibrator use or vibrator use only during masturbation. Implications for health-care providers are discussed. © 2011 International Society for Sexual Medicine.

  15. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.

    2018-03-01

    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  16. Investigation of Apple Vibration Characteristics Using Finite Element Modal Analysis

    R Mirzaei

    2013-02-01

    Full Text Available The most important quality indicator of fruits is the flesh firmness which is well correlated to their young’s modulus. In this research variation of vibration characteristics (shape modes, natural frequency of apple due to change of material characteristics (density, young's models, Poisson ratio and apple volume was investigated using Finite Element simulation. An image processing technique was used to obtain an unsymmetrical and non-spherical geometric model of apple. The exact three-dimensional shape of the fruit was created by determining the coordinates of apple surface and forming uneven rotational curvatures. Modal analysis with no boundary constraints has been applied. The first 20 Eigen frequencies and the corresponding mode shape were determined. Six rigid body modes possess zero resonant frequency which is related to the degree of freedom of a rigid body in space indicated the validity of finite element model. The modal analysis results showed that resonant frequency increased by increasing young's modulus of the fruit, while it decreased by increasing apple density. First mode torsion has a mean resonant frequency of 584 Hz. Variations of natural frequency due to change in young's modulus, density, and Poisson ratio were 80%, 11% and 4%, respectively. Coefficient of variation of resonant frequency in response to changing young's modulus was 2-3 times of that of density which shows the greatest effect of young modulus changes on natural frequency of fruits. Consequently with determination of fruits' natural frequency, their young modulus and firmness can be estimated.

  17. Optimal Search Strategy of Robotic Assembly Based on Neural Vibration Learning

    Lejla Banjanovic-Mehmedovic

    2011-01-01

    Full Text Available This paper presents implementation of optimal search strategy (OSS in verification of assembly process based on neural vibration learning. The application problem is the complex robot assembly of miniature parts in the example of mating the gears of one multistage planetary speed reducer. Assembly of tube over the planetary gears was noticed as the most difficult problem of overall assembly. The favourable influence of vibration and rotation movement on compensation of tolerance was also observed. With the proposed neural-network-based learning algorithm, it is possible to find extended scope of vibration state parameter. Using optimal search strategy based on minimal distance path between vibration parameter stage sets (amplitude and frequencies of robots gripe vibration and recovery parameter algorithm, we can improve the robot assembly behaviour, that is, allow the fastest possible way of mating. We have verified by using simulation programs that search strategy is suitable for the situation of unexpected events due to uncertainties.

  18. Vibration characteristics of the Transrapid TR08 Maglev System

    2002-03-01

    As part of the Federal Railroad Administration's (FRA) Magnetic Levitation Transportation Technology Deployment Program, the technical report has been prepared to charaterize the vibration associated with the operation of the Transrapid International...

  19. Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.

    Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien

    2008-07-01

    Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (pmeasurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.

  20. Vibration characteristics of a long flexible rod supported with multiple gaps

    Umeda, Kenji; Ban, Minoru; Ito, Tomohiro; Nakamura, Tomoichi; Fujita, Katuhisa.

    1991-01-01

    Control rods are long flexible rods supported with multiple gaps and forced to vibrate by hydraulic forces of reactor coolant flow. In order to find methods, to extend control rod life time, flow-induced vibration and wear mechanism of control rod should be identified. As a basic approach for this objective a vibration test in air using a single control rod and nonlinear vibration analyses were conducted to study characteristic of vibration and wear at support points of the control rod. Several test and analytical cases were performed with several initial support conditions, exciting points and exciting force level. With these test results, some information on the vibration and wear mechanism of control rods that explain wear features in actual plants was obtained. (author)

  1. Optimizing the stirring strategy for the vibrating intrinsic reverberation chamber

    Serra, Ramiro; Serra, Ramiro; Leferink, Frank Bernardus Johannes

    2010-01-01

    This work describes the definition, application and assessment of a factorial plan with the aim of gaining insight on what kind of stirring strategy could work the best in a vibrating intrinsic reverberation chamber. Three different stirring strategies were defined as factors of a factorial

  2. Analysis of vibroprotection characteristics of pneumatic relaxation seat suspension with capability of vibration energy recuperation

    Lyashenko Mikhail

    2017-01-01

    Full Text Available This paper proposes mechanism and control algorithm for pneumatic relaxation system of suspension with vibration energy recuperation applied to standard vehicle operator seat (“Sibeko” company. Mathematical model of the seat pneumatic relaxation suspension with two additional air volumes was created. Pneumatic motor – recuperator activated by means of air flow from the one additional volume to another is installed in air piping between additional volumes. Computational research was made in Matlab/Simulink. Amplitude-frequency characteristics of transmission coefficient for standard and proposed suspensions were plotted for preliminary evaluation of vibration protection properties of seat suspension. Performed comparative analysis of amplitude-frequency characteristics shows that noticeable improvement of vibration protection properties of pneumatic relaxation suspension system with vibration energy recuperation in comparison with standard system both in region of resonance disturbances and in above-resonance region. Main ways for further improvement of vibration protection properties of proposed system were marked out.

  3. Vibration transmission characteristics of the legs of freely standing honeybees

    Rohrseitz, Kristin; Kilpinen, Ole

    1997-01-01

    as the stimulator. This was also the case in freely standing honeybees, except around 400 Hz, where an average attenuation of approximately 6 dB was observed. In the fixed bee preparation, the vertical movements of the legs were also measured during horizontal stimulation. The vertical vibration amplitude...... of the legs was 15-20 dB lower than the horizontal stimulation amplitude. The electrophysiologically and behaviourally determined thresholds for vibration stimulation increased by approximately 10 dB, when the stimulus direction was changed from vertical to horizontal. These observations support the notion...

  4. Evaluation of the Perceptual Characteristics of a Force Induced by Asymmetric Vibrations.

    Tanabe, Takeshi; Yano, Hiroaki; Iwata, Hiroo

    2017-08-29

    This paper describes the properties of proprioceptive sensations induced by asymmetric vibration using a vibration speaker-type non-grounded haptic interface. We confirm that the vibration speaker generates a perceived force that pulls or pushes a user's hand in a particular direction when an asymmetric amplitude signal that is generated by inverting a part of a sine wave is input. In this paper, to verify the system with respect to various factors of force perception caused by asymmetric vibration, we conducted six experiments and the following results were obtained. (1) The force vector can be controlled by reversing the asymmetric waves. (2) By investigating the physical characteristics of the vibration, asymmetric vibration was confirmed. (3) The presentation of vibration in the shear direction on the finger pad is effective. (4) The point of subjective equality of the perceived force can be controlled by up to 0.43 N by changing the amplitude voltage of the input signals. (5) The minimum stimulation time required for force perception is 66.7 ms. (6) When the vibration is continuously presented for 40 to 50 s, the perceived force decreases because of adaptation. Hence, we confirmed that we can control both the direction and magnitude of the reaction force by changing the input signal of the vibration speaker.

  5. Classical Analysis of the Shear Vibration Characteristics of an ...

    For harmonic displacement response, it was found that the governing partial differential equation reduces to an ordinary differential equation of the Bessel type. This was then solved, subject to the boundary conditions, to obtain the modal shape functions and natural frequencies of vibration. The shear stress distribution ...

  6. Vibrational Characteristics of ring-type ultrasonic motor stator using ESPI

    Jung, Hyun Kyu; Paik, Sung Hoon; Kim, Seung Ho; Park, Ki Jun; Wang, Young Sung

    2001-01-01

    A stator of ring-type ultrasonic motor composed of the piezoelectric ceramic and the elastic metal was made to generate the travelling wave. Vibrational behavior of the stator was simulated by a finite element analysis using ATILA program and was measured by the electronic speckle pattern interferometry (ESPI) method. The resonance frequencies and vibration modes were analysed depending upon the comparison between the finite element analysis and ESPI measurement. The optimal vibration mode and frequency was estimated to be 7th resonant mode which was corresponded to the measured frequency of 39 KHz. It could be concluded that this fabricated stator can be applied for ring-type ultrasonic motor.

  7. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    Chen Zhongsheng; Yang Yongmin; Lu Zhimiao; Luo Yanting

    2013-01-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  8. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    Chen Zhongsheng, E-mail: czs_study@sina.com [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Yang Yongmin; Lu Zhimiao; Luo Yanting [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2013-02-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  9. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  10. SPT+-IGBT characteristics and optimization

    Chu Weili; Zhu Yangjun; Hu Aibin; Zhang Jie

    2013-01-01

    A novel advanced soft punch through (SPT) IGBT signed as SPT + -IGBT is investigated. Static and dynamic characteristics are simulated based on the 1200 V device structure and adopted technology. Extensive research on the structure optimization of SPT + -IGBT is presented and discussed. Compared with the structure of conventional IGBT, SPT + -IGBT has a much lower collector—emitter saturation voltage and better switching characteristics. Therefore it is very suitable for applications blocking a voltage higher than 3000 V. In addition, due to the improvement of switching speed achieved by using a thinner chip, SPT + -IGBT is also very competitive in 1200 V and 1700 V applications. (semiconductor devices)

  11. Optimal integral force feedback for active vibration control

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  12. Vibration characteristics of tubes in a heat exchanger

    Simonis; Steininger, D.

    1985-01-01

    Circumferential tube cracking has occurred in the once-through steam generators used in nuclear power plants. Analyses of failed tubes indicate that a fatigue process induced by tube vibration could cause the leaks. To investigate the vibration amplitude of tube spans during reactor operation, twenty-three tube spans were instrumented with accelerometers and strain gages at Three Mile Island Unit 2. To aid in the interpretation of the operational vibration measurements, tests were performed, in air, to determine the predominant resonant frequencies and mode shapes of selected tubes. By adapting modal analysis techniques, the two predominant response frequencies were determined for 100 randomly selected tube spans and the 23 instrumented tube spans; plus, the predominant mode shape was determined for five tube spans bounded by the tube sheet and the fifteenth support plate and one tube span bounded by the ninth and tenth support plate. The average value for the first and second predominant response frequency was 65 Hz and 170 Hz, respectively. The predominant frequencies for the individual tube spans are distributed randomly with no spatial orientation. The first predominant mode shape for the six tube spans tested corresponded to a classical beam with elastic supports. The equivalent stiffness of the elastic supports depend upon the tube span tested

  13. Vibration characteristics of a vertical round tube according to heat transfer regimes

    Lee, Yong Ho; Kim, Dae Hun; Chang, Soon Heung; Baek, Won Pil

    2001-01-01

    This paper presents the results of an experimental work on the effects of boiling heat transfer regimes on the vibration. the experiment has been performed using an electrically heated veritcal round tube through which water flows at atmospheric pressure. Vibration characteristics of the heated tube are changed significantly by heat transfer regimes and flow patterns. For single-phase liquid convection, the rod vibrations are negligible. However, On the beginning of subcooled nucleate boiling at tube exit, vibration level becomes very large. As bubble departure is occurred at the nucleation site of heated surface, the vibration decrease to saturated boiling region where thermal equilibrium quality becomes 0.0 at tube exit. In saturated boiling region, vibration amplitude increase with exit quality up to certain maximum value then decreases. At liquid film dryout condition, vibration could be regarded as negligible, however, these results cannot be extended to DNB-type CHF mechanism. Frequency analysis results of vibration signals suggested that excitation sources be different with heat transfer regimes. This study would contribute to improve the understanding of the relationship between boiling heat transfer and FIV

  14. Investigation of the correlation between noise and vibration characteristics and unsteady flow in a circulator pump

    Wu, Denghao; Ren, Yun; Mou, Jiegang; Gu, Yunqing [Zhejiang University of Technology, Hangzhou (China)

    2017-05-15

    Circulator pumps have wide engineering applications but the acoustics, vibration and unsteady flow structures of the circulator pump are still not fully understood. We investigated the noise and vibration characteristics and unsteady flow structures in a circulator pump at different flow rates. Three-dimensional, unsteady RANS equations were solved on high-quality structured meshes with SST k-ω turbulence model numerically. Measurements were made in a semi-anechoic chamber to get an overview of noise and vibration level of a pump at different flow rates. The 1/3 octave-band filter technique was applied to obtain the explicit frequency spectra of sound, pressure fluctuations and vibration signals and their principal frequencies were identified successfully. The air-borne noise level of the designed condition is lower than that of the off-design conditions, and the highest sound pressure level is found at part-load condition. The acoustic emission from the pump is mainly caused by unsteady flow structures and pressure fluctuations. In addition, both the link between air- borne noise and pressure fluctuation, and the correlation between vibration and unsteady hydrodynamic forces, were quantitatively examined and verified. This work offers good data to understand noise and vibration characteristics of circulator pumps and the relationships among the noise, vibration and unsteady flow structures.

  15. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  16. Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System

    Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong

    2013-06-01

    The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.

  17. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    Rubio, Wilfredo Montealegre; Paulino, Glaucio H; Silva, Emilio Carlos Nelli

    2011-01-01

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method

  18. Optimal placement of trailing-edge flaps for helicopter vibration reduction using response surface methods

    Viswamurthy, S. R.; Ganguli, Ranjan

    2007-03-01

    This study aims to determine optimal locations of dual trailing-edge flaps to achieve minimum hub vibration levels in a helicopter, while incurring low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. The reduced hub vibration levels and required flap control power (due to flap motion) are the two objectives considered in this study and the flap locations along the blade are the design variables. It is found that second order polynomial response surfaces based on the central composite design of the theory of design of experiments describe both objectives adequately. Numerical studies for a four-bladed hingeless rotor show that both objectives are more sensitive to outboard flap location compared to the inboard flap location by an order of magnitude. Optimization results show a disjoint Pareto surface between the two objectives. Two interesting design points are obtained. The first design gives 77 percent vibration reduction from baseline conditions (no flap motion) with a 7 percent increase in flap power compared to the initial design. The second design yields 70 percent reduction in hub vibration with a 27 percent reduction in flap power from the initial design.

  19. The Optimizer Topology Characteristics in Seismic Hazards

    Sengor, T.

    2015-12-01

    The characteristic data of the natural phenomena are questioned in a topological space approach to illuminate whether there is an algorithm behind them bringing the situation of physics of phenomena to optimized states even if they are hazards. The optimized code designing the hazard on a topological structure mashes the metric of the phenomena. The deviations in the metric of different phenomena push and/or pull the fold of the other suitable phenomena. For example if the metric of a specific phenomenon A fits to the metric of another specific phenomenon B after variation processes generated with the deviation of the metric of previous phenomenon A. Defining manifold processes covering the metric characteristics of each of every phenomenon is possible for all the physical events; i.e., natural hazards. There are suitable folds in those manifold groups so that each subfold fits to the metric characteristics of one of the natural hazard category at least. Some variation algorithms on those metric structures prepare a gauge effect bringing the long time stability of Earth for largely scaled periods. The realization of that stability depends on some specific conditions. These specific conditions are called optimized codes. The analytical basics of processes in topological structures are developed in [1]. The codes are generated according to the structures in [2]. Some optimized codes are derived related to the seismicity of NAF beginning from the quakes of the year 1999. References1. Taner SENGOR, "Topological theory and analytical configuration for a universal community model," Procedia- Social and Behavioral Sciences, Vol. 81, pp. 188-194, 28 June 2013, 2. Taner SENGOR, "Seismic-Climatic-Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth," The 2014 AGU Fall Meeting, Abstract no.: 31374, ABD.

  20. Optimal design of a beam-based dynamic vibration absorber using fixed-points theory

    Hua, Yingyu; Wong, Waion; Cheng, Li

    2018-05-01

    The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.

  1. Influence of Tire Characteristics of Interurban Taxis on Exposure Level to Drivers Whole-Body Vibrations

    Milad Derakhshanjazari

    2016-03-01

    Full Text Available Introduction: Taxi drivers’ exposure to repeat whole-body vibrations can cause back pain and digestive disorders. Since this type of vibration depends on the car components, this study was carried out to determine the influence of tire characteristics on the amount of whole-body vibrations transmitted to the Peugeot 405 taxi drivers. Methods: In this experimental study, vibration characteristics were measured according to the ISO2631-1 with each of the statuses: tubeless tires fixed and fluid in it (normal air or nitrogen and also the fluid in the tires fixed with tubes or tubeless on asphalt-paved road. Other variables including tire pressure, engine speed, road gradient, number of passengers, springs, and shock absorbers were kept constant. Then the effect of changes was analyzed using an appropriate statistical test. Results: After changing nitrogen to normal air and tubeless tires to tube, the average of RMS in Z-axis, eight-hour equivalent acceleration A(8 and crest factor were reduced (P 0.9 m/s2 to caution zone (0.45-0.9 m/s2 with a value of 0.8 m/s2. Conclusions: The amount of vibration transmitted to the whole body is sensitive to existence of tubes and tires inflation so that we can reduce the amount of whole-body vibration to lower than the upper limit of the health risk by changing the characteristics of the tire

  2. The response characteristics of vibration-sensitive saccular fibers in the grassfrog, Rana temporaria

    Christensen-Dalsgaard, J; Jørgensen, M B

    1988-01-01

    The response characteristics of saccular nerve fibers in European grassfrogs (Rana temporaria) subjected to dorso-ventral, 10-200 Hz sinusoidal vibrations were studied. Only 4 fibers out of a total of 129 did not respond to the vibrations. 70 fibers had an irregular spontaneous activity of 2-48 s...... motion of the otolith relative to the macula is complex. No behavioral role of a vibration receptor has been demonstrated in the grassfrog.(ABSTRACT TRUNCATED AT 250 WORDS)......The response characteristics of saccular nerve fibers in European grassfrogs (Rana temporaria) subjected to dorso-ventral, 10-200 Hz sinusoidal vibrations were studied. Only 4 fibers out of a total of 129 did not respond to the vibrations. 70 fibers had an irregular spontaneous activity of 2......-48 spikes/s. These fibers were very vibration-sensitive. The synchronization thresholds at 10-20 Hz varied from below 0.005 to 0.02 cm/s2. In contrast to earlier results, all these fibers had low-pass characteristics (with respect to acceleration) and responded maximally at 10 and 20 Hz. 55 fibers had...

  3. Study on design method and vibration reduction characteristic of floating raft with periodic structure

    Fang, Yuanyuan; Zuo, Yanyan; Xia, Zhaowang

    2018-03-01

    The noise level is getting higher with the development of high-power marine power plant. Mechanical noise is one of the most obvious noise sources which not only affect equipment reliability, riding comfort and working environment, but also enlarge underwater noise. The periodic truss type device which is commonly applied in fields of aerospace and architectural is introduced to floating raft construction in ship. Four different raft frame structure are designed in the paper. The vibration transmissibility is taken as an evaluation index to measure vibration isolation effect. A design scheme with the best vibration isolation effect is found by numerical method. Plate type and the optimized periodic truss type raft frame structure are processed to experimental verify vibration isolation effect of the structure of the periodic raft. The experimental results demonstrate that the same quality of the periodic truss floating raft has better isolation effect than that of the plate type floating raft.

  4. Optimization of time characteristics in activation analysis

    Gurvich, L.G.; Umaraliev, A.T.

    2006-01-01

    Full text: The activation analysis temporal characteristics optimization methods developed at present are aimed at determination of optimal values of the three important parameters - irradiation time, cooling time and measurement time. In the performed works, especially in [1-5] the activation analysis processes are described, the optimal values of optimization parameters are obtained from equations solved, and the computational results are given for these parameters for a number of elements. However, the equations presented in [2] were inaccurate, did not allow one to have optimization parameters results for one element content calculations, and it did not take into account background dependence of time. Therefore, we proposed modified equations to determine the optimal temporal parameters and iteration processes for the solution of these equations. It is well-known that the activity of studied sample during measurements does not change significantly, i.e. measurement time is much shorter than the half-life, thus the processes taking place can be described by the Poisson probability distribution, and in general case one can apply binomial distribution. The equation and iteration processes use in this research describe both probability distributions. Expectedly, the cooling time iteration expressions obtained for one element analysis case are similar for the both distribution types, as the optimised time values occurred to be of the same order as half-life values, whereas the cooling time, as we observed, depends on the ratio of the studied sample's peak value to the background peak, and can be significantly larger than the half-life value. This pattern is general, and can be derived from the optimized time expressions, which is supported by the experimental data on short-living isotopes [3,4]. For the isotopes with large half-lives, up to years, like cobalt-60, the cooling time values given in the above mentioned works are equal to months which, apparently

  5. TLCD Parametric Optimization for the Vibration Control of Building Structures Based on Linear Matrix Inequality

    Huo, Linsheng; Qu, Chunxu; Li, Hongnan

    2014-01-01

    Passive liquid dampers have been used to effectively reduce the dynamic response of civil infrastructures subjected to earthquakes or strong winds. The design of liquid dampers for structural vibration control involves the determination of the optimal parameters. This paper presents an optimal design methodology for tuned liquid column dampers (TLCDs) based on the H∞ control theory. A practical structure, Dalian Xinghai Financial Business Building, is used to illustrate the feasibility of the...

  6. Measurements of bridges' vibration characteristics using a mobile phone

    Z. M. C. Pravia

    Full Text Available ABSTRACTThis research presents an alternative way to perform a bridge inspection, which considers the dynamics parameters from the structure. It shows an experimental phase with use of a mobile phone to extract the accelerations answers from two concrete bridges, from those records is feasible to obtain natural frequencies using the Fast Fourier Transform (FFT.Numerical models with uses finite element model (FEM allow to determine the natural frequencies from the two concrete bridges and compare with the experimental phase of each one. The final results shows it's possible to use mobiles phones to extract vibration answers from concrete bridges and define the structural behavior of bridges from natural frequencies, this procedure could be used to evaluate bridges with lower costs.

  7. Prediction of vibration characteristics of a planar mechanism having imperfect joints using neural network

    Erkaya, Selcuk

    2012-01-01

    Clearance is inevitable in the joints of mechanisms due primarily to the design, manufacturing and assembly processes or a wear effect. Excessive value of joint clearance plays a crucial role and has a significant effect on the kinematic and dynamic performances of the mechanism. In this study, effects of joint clearances on bearing vibrations of mechanism are investigated. An experimental test rig is set up, and a planar slider-crank mechanism having two imperfect joints with radial clearance is used as a model mechanism. Three accelerometers are positioned at different points to measure the bearing vibrations during the mechanism motion. For the different running speeds and clearance sizes, this work provides a neural model to predict and estimate the bearing vibrations of the mechanical systems having imperfect joints. The results show that radial basis function (RBF) neural network has a superior performance for predicting and estimating the vibration characteristics of the mechanical system

  8. Optimization of a primary circuit of the nuclear power plant from the vibration point of view

    Dupal, J.; Zeman, V.

    2003-01-01

    The primary circuit of the nuclear power plant (NPP) as a dynamical vibrating system can be disturbed by various excitation including earthquake or pressure pulsation generated by main circulation pumps (MCP). Especially, unpleasant pulsation vibration growth can be caused by the small differences of revolutions between main circulation pumps of the individual coolant loops. This growth corresponds to the well known beats. The paper deals with an approach to the improving and optimization of dynamical properties of the whole primary circuit system including the reactor and coolant loops under pressure pulsation. (author)

  9. Free vibration characteristics analysis of rectangular plate with rectangular opening based on Fourier series method

    WANG Minhao

    2017-08-01

    Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.

  10. Active vibration reduction by optimally placed sensors and actuators with application to stiffened plates by beams

    Daraji, A H; Hale, J M

    2014-01-01

    This study concerns new investigation of active vibration reduction of a stiffened plate bonded with discrete sensor/actuator pairs located optimally using genetic algorithms based on a developed finite element modeling. An isotropic plate element stiffened by a number of beam elements on its edges and having a piezoelectric sensor and actuator pair bonded to its surfaces is modeled using the finite element method and Hamilton’s principle, taking into account the effects of piezoelectric mass, stiffness and electromechanical coupling. The modeling is based on the first order shear deformation theory taking into account the effects of bending, membrane and shear deformation for the plate, the stiffening beam and the piezoelectric patches. A Matlab finite element program has been built for the stiffened plate model and verified with ANSYS and also experimentally. Optimal placement of ten piezoelectric sensor/actuator pairs and optimal feedback gain for active vibration reduction are investigated for a plate stiffened by two beams arranged in the form of a cross. The genetic algorithm was set up for optimization of sensor/actuator placement and feedback gain based on the minimization of the optimal linear quadratic index as an objective function to suppress the first six modes of vibration. Comparison study is presented for active vibration reduction of a square cantilever plate stiffened by crossed beams with two sensor/actuator configurations: firstly, ten piezoelectric sensor/actuator pairs are located in optimal positions; secondly, a piezoelectric layer of single sensor/actuator pair covering the whole of the stiffened plate as a SISO system. (paper)

  11. Vibration characteristics of an APS lab facility in Building 401

    Royston, T.J.

    1998-01-01

    The vibratory behavior of a lab facility located in Building 401 of the Advanced Photon Source site at Argonne National Laboratory is summarized. Measurements of ambient vibration indicate that acceptable displacement levels are usually maintained (rms value below 0.1 microns) for the measured frequency range, above 0.2 Hz. An exception occurs when strong wind conditions excite a horizontal building resonance near 1.85 Hz to rms levels as high as 0.3 microns. Measurements of the laboratory floor's dynamic response to directly applied force excitation agree with theoretical predictions. The primary component of the floor construction is a reinforced concrete slab. The slab has a transverse fundamental resonant frequency of 18.5 Hz and an associated damping level of roughly 8.5% of critical. It is also shown via experimental measurements that the linoleum surface adhered to the concrete slab is far more compliant than the slab itself and can significantly influence the floor's dynamic response to local excitations

  12. [Short-term memory characteristics of vibration intensity tactile perception on human wrist].

    Hao, Fei; Chen, Li-Juan; Lu, Wei; Song, Ai-Guo

    2014-12-25

    In this study, a recall experiment and a recognition experiment were designed to assess the human wrist's short-term memory characteristics of tactile perception on vibration intensity, by using a novel homemade vibrotactile display device based on the spatiotemporal combination vibration of multiple micro vibration motors as a test device. Based on the obtained experimental data, the short-term memory span, recognition accuracy and reaction time of vibration intensity were analyzed. From the experimental results, some important conclusions can be made: (1) The average short-term memory span of tactile perception on vibration intensity is 3 ± 1 items; (2) The greater difference between two adjacent discrete intensities of vibrotactile stimulation is defined, the better average short-term memory span human wrist gets; (3) There is an obvious difference of the average short-term memory span on vibration intensity between the male and female; (4) The mechanism of information extraction in short-term memory of vibrotactile display is to traverse the scanning process by comparison; (5) The recognition accuracy and reaction time performance of vibrotactile display compares unfavourably with that of visual and auditory. The results from this study are important for designing vibrotactile display coding scheme.

  13. Optimization of Surface Finish in Turning Operation by Considering the Machine Tool Vibration using Taguchi Method

    Muhammad Munawar

    2012-01-01

    Full Text Available Optimization of surface roughness has been one of the primary objectives in most of the machining operations. Poor control on the desired surface roughness generates non conforming parts and results into increase in cost and loss of productivity due to rework or scrap. Surface roughness value is a result of several process variables among which machine tool condition is one of the significant variables. In this study, experimentation was carried out to investigate the effect of machine tool condition on surface roughness. Variable used to represent machine tool\\'s condition was vibration amplitude. Input parameters used, besides vibration amplitude, were feed rate and insert nose radius. Cutting speed and depth of cut were kept constant. Based on Taguchi orthogonal array, a series of experimentation was designed and performed on AISI 1040 carbon steel bar at default and induced machine tool\\'s vibration amplitudes. ANOVA (Analysis of Variance, revealed that vibration amplitude and feed rate had moderate effect on the surface roughness and insert nose radius had the highest significant effect on the surface roughness. It was also found that a machine tool with low vibration amplitude produced better surface roughness. Insert with larger nose radius produced better surface roughness at low feed rate.

  14. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  15. Optimal Piezoelectric Actuators and Sensors Configuration for Vibration Suppression of Aircraft Framework Using Particle Swarm Algorithm

    Quanzhen Huang

    2017-01-01

    Full Text Available Numbers and locations of sensors and actuators play an important role in cost and control performance for active vibration control system of piezoelectric smart structure. This may lead to a diverse control system if sensors and actuators were not configured properly. An optimal location method of piezoelectric actuators and sensors is proposed in this paper based on particle swarm algorithm (PSA. Due to the complexity of the frame structure, it can be taken as a combination of many piezoelectric intelligent beams and L-type structures. Firstly, an optimal criterion of sensors and actuators is proposed with an optimal objective function. Secondly, each order natural frequency and modal strain are calculated and substituted into the optimal objective function. Preliminary optimal allocation is done using the particle swarm algorithm, based on the similar optimization method and the combination of the vibration stress and strain distribution at the lower modal frequency. Finally, the optimal location is given. An experimental platform was established and the experimental results indirectly verified the feasibility and effectiveness of the proposed method.

  16. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Utsunomiya, Shin; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions. (paper)

  17. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Utsunomiya, Shin; Yamamoto, Ryo

    2017-07-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions.

  18. The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion

    Fan Kang-Qi; Ming Zheng-Feng; Xu Chun-Hui; Chao Feng-Bo

    2013-01-01

    As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption. The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Dynamic characteristics of heterogeneous media in vibrational and wave processes

    Fedotovskij, V.S.; Sinyavskij, V.F.; Terenik, L.V.; Spirov, V.S.; Kokorev, B.V.

    1986-01-01

    The complex mechanic systems involving a great quantity of the same type elements, in particular, the rod systems flowed around by the one- or two-phase flow are considered as the two- or three-phase heterogeneous media with certain effective properties. Some recommendations for calculating effective properties and determining those on a base of the dynamic characteristics of various heterogeneous systems are given. (author)

  20. Discrete optimization of isolator locations for vibration isolation systems: An analytical and experimental investigation

    Ponslet, E.R.; Eldred, M.S. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1996-05-17

    An analytical and experimental study is conducted to investigate the effect of isolator locations on the effectiveness of vibration isolation systems. The study uses isolators with fixed properties and evaluates potential improvements to the isolation system that can be achieved by optimizing isolator locations. Because the available locations for the isolators are discrete in this application, a Genetic Algorithm (GA) is used as the optimization method. The system is modeled in MATLAB{trademark} and coupled with the GA available in the DAKOTA optimization toolkit under development at Sandia National Laboratories. Design constraints dictated by hardware and experimental limitations are implemented through penalty function techniques. A series of GA runs reveal difficulties in the search on this heavily constrained, multimodal, discrete problem. However, the GA runs provide a variety of optimized designs with predicted performance from 30 to 70 times better than a baseline configuration. An alternate approach is also tested on this problem: it uses continuous optimization, followed by rounding of the solution to neighboring discrete configurations. Results show that this approach leads to either infeasible or poor designs. Finally, a number of optimized designs obtained from the GA searches are tested in the laboratory and compared to the baseline design. These experimental results show a 7 to 46 times improvement in vibration isolation from the baseline configuration.

  1. Vibration Characteristics for Moving Printing Membrane with Variable Density along the Lateral Direction

    Mingyue Shao

    2017-01-01

    Full Text Available The vibration model of moving membrane with variable density distribution is established, and the density distribution of the moving membrane varies along the lateral direction. The transverse vibration differential equations of moving membrane are established based on D’Alembert’s principle and discretized by using the differential quadrature method (DQM. The relationships of the first three dimensionless complex frequencies between dimensionless speed, density coefficient, and tension ratio of the membrane are analyzed by numerical calculation. The effects of the density coefficient and the tension ratio on transverse vibration characteristics of the membrane are investigated. The relationship between density coefficient and critical speed is obtained. The numerical results show that the density coefficient and the tension ratio have important influence on the stability of moving membrane. So the study provides a theoretical basis for improving the working stability of the membrane in the high-speed printing process.

  2. Investigation of the vibration and EMC characteristics of miniature Stirling electric coolers for space applications

    Kondratjev, V.; Gostilo, V.; Owens, anb A.

    2017-08-01

    We present the results of an investigation into the detrimental effects that electromechanical coolers can have on the spectral performance of compact, large volume HPGe spectrometers for space applications. Both mechanical vibration and electromagnetic pickup effects were considered, as well as a comparative assessment between three miniature Stirling cycle coolers—two Ricor model K508 coolers and one Thales model RM3 cooler. In spite of the limited number of coolers tested, the following conclusions can be made. There are significant differences in the vibration characteristics not only between the various types of cooler but also between coolers of the same type. It was also found that compared to the noise induced by mechanical vibrations, electromagnetic interference emanating from the embedded controllers does not significantly impact the energy resolution of detectors.

  3. Design, Simulation, and Optimization of a Frequency-Tunable Vibration Energy Harvester That Uses a Magnetorheological Elastomer

    Wan Sun

    2015-01-01

    Full Text Available This study focuses on the design, simulation, and load power optimization for the development of a novel frequency-tunable electromagnetic vibrational energy harvester. The unique characteristic of a magnetorheological elastomer (MRE is utilized, that the shear modulus can be varied by changing the strength of an applied magnetic field. The electromagnetic energy harvester is fabricated, the external electric circuit is connected, and the performance is evaluated through a series of experiments. The resonant frequencies and the parasitic damping constant are measured experimentally for different tuning magnet gap distances, which validate the application of the MRE to the development of a frequency-tunable energy harvesting system. The harvested energy of the system is measured by the voltage across the load resistor. The maximum load power is attained by optimizing the external circuit connected to the coil system. The analysis results are presented for harvesting the maximum load power in terms of the coil parameters and external circuit resistance. The optimality of the load resistance is validated by comparing the analytical results with experimental results. The optimal load resistances under various resonance frequencies are also found for the design and composition of the optimal energy harvesting circuit of the energy harvester system.

  4. The transmission of vertical vibration through seats: Influence of the characteristics of the human body

    Toward, Martin G. R.; Griffin, Michael J.

    2011-12-01

    The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration through a car seat was measured with 80 adults (41 males and 39 females aged 18-65) at frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), and with three magnitudes of random vibration (0.5, 1.0, and 1.5 m s -2 rms). Linear regression models were used to study the effects of subject physical characteristics (age, gender, and anthropometry) and features of their apparent mass (resonance frequency, apparent mass at resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both the frequency of the principal resonance in seat transmissibility and the seat transmissibility at resonance was subject age, with other factors having only marginal effects. The transmissibility of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject weight was strongly associated with apparent mass, weight was not strongly associated with seat transmissibility. The resonance frequency of the seat decreased with increases in the magnitude of the vibration excitation and increased when subjects made contact with the backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance was less with greater vibration excitation, but was largely unaffected by backrest contact. A lumped parameter seat-person model showed that changes in seat transmissibility with age can be predicted from changes in apparent mass with age, and that the dynamic stiffness of the seat appeared to increase with increased loading so as to compensate for increases in subject apparent mass associated with increased sitting

  5. Optimal placement and decentralized robust vibration control for spacecraft smart solar panel structures

    Jiang, Jian-ping; Li, Dong-xu

    2010-01-01

    The decentralized robust vibration control with collocated piezoelectric actuator and strain sensor pairs is considered in this paper for spacecraft solar panel structures. Each actuator is driven individually by the output of the corresponding sensor so that only local feedback control is implemented, with each actuator, sensor and controller operating independently. Firstly, an optimal placement method for the location of the collocated piezoelectric actuator and strain gauge sensor pairs is developed based on the degree of observability and controllability indices for solar panel structures. Secondly, a decentralized robust H ∞ controller is designed to suppress the vibration induced by external disturbance. Finally, a numerical comparison between centralized and decentralized control systems is performed in order to investigate their effectiveness to suppress vibration of the smart solar panel. The simulation results show that the vibration can be significantly suppressed with permitted actuator voltages by the controllers. The decentralized control system almost has the same disturbance attenuation level as the centralized control system with a bit higher control voltages. More importantly, the decentralized controller composed of four three-order systems is a better practical implementation than a high-order centralized controller is

  6. Numerical investigation on vibration characteristics of a micro-speaker diaphragm considering thermoforming effects

    Kim, Kyeong Min; Park, Ke Un [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2013-10-15

    Micro-speaker diaphragms play an important role in generating desired sound responses, and are designed to have thin membrane shapes for flexibility in the axial direction. The micro-speaker diaphragms are formed from thin polymer film through the thermoforming process, in which local thickness reductions occur due to strain localization. This thickness reduction results in a change in vibration characteristics of the diaphragm and different sound responses from that of the original design. In this study, the effect of this thickness change in the diaphragm on its vibration characteristics is numerically investigated by coupling thermoforming simulation, structural analysis and modal analysis. Thus, the thickness change in the diaphragm is calculated from the thermoforming simulation, and reflected in the further structural and modal analyses in order to estimate the relevant stiffness and vibration modes. Comparing these simulation results with those from a diaphragm with the uniform thickness, it is found that a local thickness reduction results in the stiffness reduction and the relevant change in the natural frequencies and the corresponding vibration modes.

  7. Numerical investigation on vibration characteristics of a micro-speaker diaphragm considering thermoforming effects

    Kim, Kyeong Min; Park, Ke Un

    2013-01-01

    Micro-speaker diaphragms play an important role in generating desired sound responses, and are designed to have thin membrane shapes for flexibility in the axial direction. The micro-speaker diaphragms are formed from thin polymer film through the thermoforming process, in which local thickness reductions occur due to strain localization. This thickness reduction results in a change in vibration characteristics of the diaphragm and different sound responses from that of the original design. In this study, the effect of this thickness change in the diaphragm on its vibration characteristics is numerically investigated by coupling thermoforming simulation, structural analysis and modal analysis. Thus, the thickness change in the diaphragm is calculated from the thermoforming simulation, and reflected in the further structural and modal analyses in order to estimate the relevant stiffness and vibration modes. Comparing these simulation results with those from a diaphragm with the uniform thickness, it is found that a local thickness reduction results in the stiffness reduction and the relevant change in the natural frequencies and the corresponding vibration modes.

  8. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer

    Qiufeng Yan

    2018-03-01

    Full Text Available Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured at various voltages, and the influence of the micro-tapered aperture and its variation on the atomization rate was characterized. The resonance frequency of the piezoelectric vibrator was obtained using a laser vibrometer, and the atomization rates were measured at each resonance frequency. From experiments, we found that the atomization rates at the first five resonance frequencies increased as the working frequency increased. At the fifth resonance frequency (121.1 kHz, the atomization rate was maximized (0.561 mL/min, and at the sixth resonance frequency (148.3 kHz, the atomization rate decreased significantly (0.198 mL/min. The experimental results show that the vibration characteristics of the piezoelectric vibrator have a relatively strong impact on the atomization rate. This research is expected to contribute to the manufacture of micro-tapered aperture atomizers.

  9. Forced vibration of nonlinear system with symmetrical piecewise-linear characteristics

    Watanabe, Takeshi

    1983-01-01

    It is fairly difficult to treat exactly the analysis of a vibrating system including some play because it is accompanied by a strong nonlinear phenomenon of collision. The author attempted the theoretical analysis by the exact solution using series solution and the approximate solution, treating the forced vibration of a system having some play as the forced vibration of a continuous system with nonlinear boundary condition or the colliding vibration of a continuum. In this report, the problem of such system with play is treated as a nonlinear system having the symmetrical, piecewise linear characteristics of one degree of freedom. That is, it is considered that at the time of collision due to play, the collided body causes the deformation accompanied by triangular hystersis elastically and plastically, and the spring characteristics of restitution force change piecewise by the collision. The exact solution using series solution and the approximate solution are performed, and the effectiveness of these theoretical solutions is confirmed by comparing with the solution using an analog computer. The relation between the accuracy of two analysis methods and nonlinear parameters is shown by the examples of numerical calculation. (Kako, I.)

  10. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer.

    Yan, Qiufeng; Zhang, Jianhui; Huang, Jun; Wang, Ying

    2018-03-21

    Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured at various voltages, and the influence of the micro-tapered aperture and its variation on the atomization rate was characterized. The resonance frequency of the piezoelectric vibrator was obtained using a laser vibrometer, and the atomization rates were measured at each resonance frequency. From experiments, we found that the atomization rates at the first five resonance frequencies increased as the working frequency increased. At the fifth resonance frequency (121.1 kHz), the atomization rate was maximized (0.561 mL/min), and at the sixth resonance frequency (148.3 kHz), the atomization rate decreased significantly (0.198 mL/min). The experimental results show that the vibration characteristics of the piezoelectric vibrator have a relatively strong impact on the atomization rate. This research is expected to contribute to the manufacture of micro-tapered aperture atomizers.

  11. Parametric Study and Optimization of a Piezoelectric Energy Harvester from Flow Induced Vibration

    Ashok, P.; Jawahar Chandra, C.; Neeraj, P.; Santhosh, B.

    2018-02-01

    Self-powered systems have become the need of the hour and several devices and techniques were proposed in favour of this crisis. Among the various sources, vibrations, being the most practical scenario, is chosen in the present study to investigate for the possibility of harvesting energy. Various methods were devised to trap the energy generated by vibrating bodies, which would otherwise be wasted. One such concept is termed as flow-induced vibration which involves the flow of a fluid across a bluff body that oscillates due to a phenomenon known as vortex shedding. These oscillations can be converted into electrical energy by the use of piezoelectric patches. A two degree of freedom system containing a cylinder as the primary mass and a cantilever beam as the secondary mass attached with a piezoelectric circuit, was considered to model the problem. Three wake oscillator models were studied in order to determine the one which can generate results with high accuracy. It was found that Facchinetti model produced better results than the other two and hence a parametric study was performed to determine the favourable range of the controllable variables of the system. A fitness function was formulated and optimization of the selected parameters was done using genetic algorithm. The parametric optimization led to a considerable improvement in the harvested voltage from the system owing to the high displacement of secondary mass.

  12. Magnetically tuned mass dampers for optimal vibration damping of large structures

    Bourquin, Frederic; Siegert, Dominique; Caruso, Giovanni; Peigney, Michael

    2014-01-01

    This paper deals with the theoretical and experimental analysis of magnetically tuned mass dampers, applied to the vibration damping of large structures of civil engineering interest. Two devices are analysed, for which both the frequency tuning ratio and the damping coefficient can be easily and finely calibrated. They are applied for the damping of the vibrations along two natural modes of a mock-up of a bridge under construction. An original analysis, based on the Maxwell receding image method, is developed for estimating the drag force arising inside the damping devices. It also takes into account self-inductance effects, yielding a complex nonlinear dependence of the drag force on the velocity. The analysis highlights the range of velocities for which the drag force can be assumed of viscous type, and shows its dependence on the involved geometrical parameters of the dampers. The model outcomes are then compared to the corresponding experimental calibration curves. A dynamic model of the controlled structure equipped with the two damping devices is presented, and used for the development of original optimization expressions and for determining the corresponding maximum achievable damping. Finally, several experimental results are presented, concerning both the free and harmonically forced vibration damping of the bridge mock-up, and compared to the corresponding theoretical predictions. The experimental results reveal that the maximum theoretical damping performance can be achieved, when both the tuning frequencies and damping coefficients of each device are finely calibrated according to the optimization expressions. (paper)

  13. Investigations on Vibration Characteristics of Sma Embedded Horizontal Axis Wind Turbine Blade

    Jagadeesh, V.; Yuvaraja, M.; Chandhru, A.; Viswanathan, P.; Senthil kumar, M.

    2018-02-01

    Vibration induced in wind turbine blade is a solemn problem as it reduces the life of the blade and also it can create critical vibration onto the tower, which may cause serious damage to the tower. The aim of this paper is to investigate the vibration characteristics of the prototype horizontal axis wind turbine blade. Shape memory alloys (SMA), with its variable physical properties, provides an alternative actuating mechanism. Heating an SMA causes a change in the elastic modulus of the material and hence SMAs are used as a damping material. A prototype blade with S1223 profile has been manufactured and the natural frequency is found. The natural frequency is found by incorporating the single SMA wire of 0.5mm diameter over the surface of the blade for a length of 240 mm. Similarly, number of SMA wires over the blade is increased up to 3 and the natural frequency is found. Frequency responses showed that the embedment of SMA over the blade’s surface will increase the natural frequency and reduce the amplitude of vibration. This is because of super elastic nature of SMA. In this paper, when SMA wire of 0.5 mm diameter and of length of 720 mm is embedded on the blade, an increase in the natural frequency by 6.3% and reducing the amplitude by 64.8%. Results of the experimental modal and harmonic indicates the effectiveness of SMA as a passive vibration absorber and that it has potential as a modest and high-performance method for controlling vibration of the blade.

  14. Prediction of blast vibration level considered propagation characteristics; Denpa tokusei to koryoshita happa shindo level no yosoku

    Kunimatsu, S; Jinguji, M [National Institute for Resources and Environment, Tsukuba (Japan); Yamada, M; Hirai, T [Newjec Inc., Osaka (Japan); Durucan, S; Farsangi, M

    1997-10-22

    With an objective to assess environmental influence induced by blast vibration, a study has been carried out on a method to predict vibration levels. The study has discussed a method to calculate vibration levels, in which vibration propagating characteristics are sought on blast vibration generated from an open-cut limestone mine from acceleration waveforms in the vicinity of the blast source and residential housings by using an octave analysis, and waveforms are predicted. The shortest straight line distance from the blast position to a housing is about 150 m, and the height difference is about 30 to 40 meters. The measuring instruments include a vibration level meter used for pollution measurement and a data recorder, with signals lower than 1 Hz and higher than 90 Hz being interrupted. The environmental influence assessment discusses not only the maximum value of the vibration level, but also sizes of values of each band by using a frequency analysis. The result of the discussions revealed that the prediction of the vibration levels is little affected by phase characteristics, and that no problems are caused in the measurement accuracy even if the vibration levels are predicted by using relative decay amount according to a one-third octave analysis for the propagation characteristics. 5 figs., 4 tabs.

  15. Optimal design and experimental analyses of a new micro-vibration control payload-platform

    Sun, Xiaoqing; Yang, Bintang; Zhao, Long; Sun, Xiaofen

    2016-07-01

    This paper presents a new payload-platform, for precision devices, which possesses the capability of isolating the complex space micro-vibration in low frequency range below 5 Hz. The novel payload-platform equipped with smart material actuators is investigated and designed through optimization strategy based on the minimum energy loss rate, for the aim of achieving high drive efficiency and reducing the effect of the magnetic circuit nonlinearity. Then, the dynamic model of the driving element is established by using the Lagrange method and the performance of the designed payload-platform is further discussed through the combination of the controlled auto regressive moving average (CARMA) model with modified generalized prediction control (MGPC) algorithm. Finally, an experimental prototype is developed and tested. The experimental results demonstrate that the payload-platform has an impressive potential of micro-vibration isolation.

  16. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer

    Qiufeng Yan; Jianhui Zhang; Jun Huang; Ying Wang

    2018-01-01

    Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured...

  17. Designing a hand rest tremor dynamic vibration absorber using H{sub 2} optimization method

    Rahnavard, Mostafa; Dizaji, Ahmad F. [Tehran University, Tehran (Iran, Islamic Republic of); Hashemi, Mojtaba [Amirkabir University, Tehran (Iran, Islamic Republic of); Faramand, Farzam [Sharif University, Tehran (Iran, Islamic Republic of)

    2014-05-15

    An optimal single DOF dynamic absorber is presented. A tremor has a random nature and then the system is subjected to a random excitation instead of a sinusoidal one; so the H{sub 2} optimization criterion is probably more desirable than the popular H{sub ∞} optimization method and was implemented in this research. The objective of H{sub 2} optimization criterion is to reduce the total vibration energy of the system for overall frequencies. An objective function, considering the elbow joint angle, θ {sub 2}, tremor suppression as the main goal, was selected. The optimization was done by minimization of this objective function. The optimal system, including the absorber, performance was analyzed in both time and frequency domains. Implementing the optimal absorber, the frequency response amplitude of θ{sub 2} was reduced by more than 98% and 80% at the first and second natural frequencies of the primary system, respectively. A reduction of more than 94% and 78%, was observed for the shoulder joint angle, θ{sub 1}. The objective function also decreased by more than 46%. Then, two types of random inputs were considered. For the first type, θ{sub 1} and θ {sub 2} revealed 60% and 39% reduction in their rms values, whereas for the second type, 33% and 50% decrease was observed.

  18. Designing a hand rest tremor dynamic vibration absorber using H2 optimization method

    Rahnavard, Mostafa; Dizaji, Ahmad F.; Hashemi, Mojtaba; Faramand, Farzam

    2014-01-01

    An optimal single DOF dynamic absorber is presented. A tremor has a random nature and then the system is subjected to a random excitation instead of a sinusoidal one; so the H 2 optimization criterion is probably more desirable than the popular H ∞ optimization method and was implemented in this research. The objective of H 2 optimization criterion is to reduce the total vibration energy of the system for overall frequencies. An objective function, considering the elbow joint angle, θ 2 , tremor suppression as the main goal, was selected. The optimization was done by minimization of this objective function. The optimal system, including the absorber, performance was analyzed in both time and frequency domains. Implementing the optimal absorber, the frequency response amplitude of θ 2 was reduced by more than 98% and 80% at the first and second natural frequencies of the primary system, respectively. A reduction of more than 94% and 78%, was observed for the shoulder joint angle, θ 1 . The objective function also decreased by more than 46%. Then, two types of random inputs were considered. For the first type, θ 1 and θ 2 revealed 60% and 39% reduction in their rms values, whereas for the second type, 33% and 50% decrease was observed.

  19. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

    Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

    2016-01-01

    Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

  20. DFT study of conformational and vibrational characteristics of 2-(2-hydroxyphenyl)benzothiazole molecule.

    Pandey, Urmila; Srivastava, Mayuri; Singh, R P; Yadav, R A

    2014-08-14

    The conformational and IR and Raman spectral studies of 2-(2-hydroxyphenyl)benzothiazole have been carried out by using the DFT method at the B3LYP/6-311++G(**) level. The detailed vibrational assignments have been done on the basis of calculated potential energy distributions. Comparative studies of molecular geometries, atomic charges and vibrational fundamentals of all the conformers have been made. There are four possible conformers for this molecule. The optimized geometrical parameters obtained by B3LYP/6-311++G(**) method showed good agreement with the experimental X-ray data. The atomic polar tensor (APT) charges, Mulliken atomic charges, natural bond orbital (NBO) analysis and HOMO-LUMO energy gap of HBT and its conformers were also computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Topology optimization and fabrication of low frequency vibration energy harvesting microdevices

    Deng, Jiadong; Rorschach, Katherine; Baker, Evan; Sun, Cheng; Chen, Wei

    2015-01-01

    Topological design of miniaturized resonating structures capable of harvesting electrical energy from low frequency environmental mechanical vibrations encounters a particular physical challenge, due to the conflicting design requirements: low resonating frequency and miniaturization. In this paper structural static stiffness to resist undesired lateral deformation is included into the objective function, to prevent the structure from degenerating and forcing the solution to be manufacturable. The rational approximation of material properties interpolation scheme is introduced to deal with the problems of local vibration and instability of the low density area induced by the design dependent body forces. Both density and level set based topology optimization (TO) methods are investigated in their parameterization, sensitivity analysis, and applicability for low frequency energy harvester TO problems. Continuum based variation formulations for sensitivity analysis and the material derivative based shape sensitivity analysis are presented for the density method and the level set method, respectively; and their similarities and differences are highlighted. An external damper is introduced to simulate the energy output of the resonator due to electrical damping and the Rayleigh proportional damping is used for mechanical damping. Optimization results for different scenarios are tested to illustrate the influences of dynamic and static loads. To demonstrate manufacturability, the designs are built to scale using a 3D microfabrication method and assembled into vibration energy harvester prototypes. The fabricated devices based on the optimal results from using different TO techniques are tested and compared with the simulation results. The structures obtained by the level set based TO method require less post-processing before fabrication and the structures obtained by the density based TO method have resonating frequency as low as 100 Hz. The electrical voltage response

  2. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    Aizzat S. Yahaya Rashid

    2014-01-01

    Full Text Available The dynamic behavior of a body-in-white (BIW structure has significant influence on the noise, vibration, and harshness (NVH and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process.

  3. Study on Vibration of Heavy-Precision Robot Cantilever Based on Time-varying Glowworm Swarm Optimization Algorithm

    Luo, T. H.; Liang, S.; Miao, C. B.

    2017-12-01

    A method of terminal vibration analysis based on Time-varying Glowworm Swarm Optimization algorithm is proposed in order to solve the problem that terminal vibration of the large flexible robot cantilever under heavy load precision.The robot cantilever of the ballastless track is used as the research target and the natural parameters of the flexible cantilever such as the natural frequency, the load impact and the axial deformation is considered. Taking into account the change of the minimum distance between the glowworm individuals, the terminal vibration response and adaptability could meet. According to the Boltzmann selection mechanism, the dynamic parameters in the motion simulation process are determined, while the influence of the natural frequency and the load impact as well as the axial deformation on the terminal vibration is studied. The method is effective and stable, which is of great theoretical basis for the study of vibration control of flexible cantilever terminal.

  4. Experimental Investigations on Effect of Damage on Vibration Characteristics of a Reinforced Concrete Beam

    Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi

    2012-02-01

    Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.

  5. PRODUCT OPTIMIZATION METHOD BASED ON ANALYSIS OF OPTIMAL VALUES OF THEIR CHARACTERISTICS

    Constantin D. STANESCU

    2016-05-01

    Full Text Available The paper presents an original method of optimizing products based on the analysis of optimal values of their characteristics . Optimization method comprises statistical model and analytical model . With this original method can easily and quickly obtain optimal product or material .

  6. Experimental Investigation into Vibration Characteristics for Damage Minimization in a Lapping Process

    J. Suwatthikul

    2016-01-01

    Full Text Available Lapping machines are used in a hard disk rough lapping process where a workpiece (a wafer row bar is locked with a robot arm and rubbed on a lap plate. In this process, the lap plate’s condition and lifetime are among important concerned factors. The lifetime can be too short due to the plate being accidentally scratched by the workpiece during lapping. This problem leads to undesired consequences such as machine downtime and excessive plate material usage. This paper presents an experimental investigation into vibration characteristics of passed and failed lapping scenarios and discusses a potential solution to minimize the serious damage so-called “plate scratch” which intermittently occurs in such process. The experimental results show that, by in situ monitoring vibration and utilizing artificial intelligence, damage minimization can be possible.

  7. Investigation of free vibration characteristics for skew multiphase magneto-electro-elastic plate

    Kiran, M. C.; Kattimani, S.

    2018-04-01

    This article presents the investigation of skew multiphase magneto-electro-elastic (MMEE) plate to assess its free vibration characteristics. A finite element (FE) model is formulated considering the different couplings involved via coupled constitutive equations. The transformation matrices are derived to transform local degrees of freedom into the global degrees of freedom for the nodes lying on the skew edges. Effect of different volume fraction (Vf) on the free vibration behavior is explicitly studied. In addition, influence of width to thickness ratio, the aspect ratio, and the stacking arrangement on natural frequencies of skew multiphase MEE plate investigated. Particular attention has been paid to investigate the effect of skew angle on the non-dimensional Eigen frequencies of multiphase MEE plate with simply supported edges.

  8. Vibrational characteristics of graphene sheets elucidated using an elastic network model.

    Kim, Min Hyeok; Kim, Daejoong; Choi, Jae Boong; Kim, Moon Ki

    2014-08-07

    Recent studies of graphene have demonstrated its great potential for highly sensitive resonators. In order to capture the intrinsic vibrational characteristics of graphene, we propose an atomistic modeling method called the elastic network model (ENM), in which a graphene sheet is modeled as a mass-spring network of adjacent atoms connected by various linear springs with specific bond ratios. Normal mode analysis (NMA) reveals the various vibrational features of bi-layer graphene sheets (BLGSs) clamped at two edges. We also propose a coarse-graining (CG) method to extend our graphene study into the meso- and macroscales, at which experimental measurements and synthesis of graphene become practical. The simulation results show good agreement with experimental observations. Therefore, the proposed ENM approach will not only shed light on the theoretical study of graphene mechanics, but also play an important role in the design of highly-sensitive graphene-based resonators.

  9. Optimal linear generator with Halbach array for harvesting of vibration energy during human walking

    Joonsoo Jun

    2016-05-01

    Full Text Available In IT business, the capacity of the battery in smartphone was drastically improved to digest various functions such as communication, Internet, e-banking, and entertainment. Although the capacity of the battery is improved, it still needs to be upgraded due to customer’s demands. In this article, we optimize the design of the linear generator with the Halbach array to improve the efficiency of harvesting vibration energy during human walking for the battery capacitance. We propose the optimal design of the tubular permanent magnet with the linear generator that uses a Halbach array. The approximate model is established using generic algorithm. Furthermore, we performed electromagnetic finite element analysis to predict the induced voltage.

  10. Design Optimization of a Magnetically Levitated Electromagnetic Vibration Energy Harvester for Body Motion

    Pancharoen, K.; Zhu, D.; Beeby, S. P.

    2016-11-01

    This paper presents a magnetically levitated electromagnetic vibration energy harvester based on magnet arrays. It has a nonlinear response that extends the operating bandwidth and enhances the power output of the harvesting device. The harvester is designed to be embedded in a hip prosthesis and harvest energy from low frequency movements (< 5 Hz) associated with human motion. The design optimization is performed using Comsol simulation considering the constraints on size of the harvester and low operating frequency. The output voltage across the optimal load 3.5kΩ generated from hip movement is 0.137 Volts during walking and 0.38 Volts during running. The power output harvested from hip movement during walking and running is 5.35 μW and 41.36 μW respectively..

  11. Optimal Design and Acoustic Assessment of Low-Vibration Rotor Blades

    G. Bernardini

    2016-01-01

    Full Text Available An optimal procedure for the design of rotor blade that generates low vibratory hub loads in nonaxial flow conditions is presented and applied to a helicopter rotor in forward flight, a condition where vibrations and noise become severe. Blade shape and structural properties are the design parameters to be identified within a binary genetic optimization algorithm under aeroelastic stability constraint. The process exploits an aeroelastic solver that is based on a nonlinear, beam-like model, suited for the analysis of arbitrary curved-elastic-axis blades, with the introduction of a surrogate wake inflow model for the analysis of sectional aerodynamic loads. Numerical results are presented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades as well as to assess the robustness of solution at off-design operating conditions. Further, the aeroacoustic assessment of the rotor configurations determined is carried out in order to examine the impact of low-vibration blade design on the emitted noise field.

  12. Process optimization for ultrasonic vibration assisted polishing of micro-structured surfaces on super hard material

    Sun, Zhiyuan; Guo, Bing; Rao, Zhimin; Zhao, Qingliang

    2014-08-01

    In consideration of the excellent property of SiC, the ground micro-structured surface quality is hard to meet the requirement - consequently the ultrasonic vibration assisted polishing (UVAP) of micro-structures of molds is proposed in this paper. Through the orthogonal experiment, the parameters of UVAP of micro-structures were optimized. The experimental results show that, abrasive polishing process, the effect of the workpiece feed rate on the surface roughness (Ra), groove tip radius (R) and material removal rate (MRR) of micro-structures is significant. While, the UVAP, the most significant effect factor for Ra, R and MRR is the ultrasonic amplitude of the ultrasonic vibration. In addition, within the scope of the polishing process parameters selected by preliminary experiments, ultrasonic amplitude of 2.5μm, polishing force of 0.5N, workpiece feed rate of 5 mm·min-1, polishing wheel rotational speed of 50rpm, polishing time of 35min, abrasive size of 100nm and the polishing liquid concentration of 15% is the best technology of UVAP of micro-structures. Under the optimal parameters, the ground traces on the micro-structured surface were removed efficiently and the integrity of the edges of the micro-structure after grinding was maintained efficiently.

  13. A search for optimal parameters of resonance circuits ensuring damping of electroelastic structure vibrations based on the solution of natural vibration problem

    Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.

    2017-06-01

    In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.

  14. Strain sensors optimal placement for vibration-based structural health monitoring. The effect of damage on the initially optimal configuration

    Loutas, T. H.; Bourikas, A.

    2017-12-01

    We revisit the optimal sensor placement of engineering structures problem with an emphasis on in-plane dynamic strain measurements and to the direction of modal identification as well as vibration-based damage detection for structural health monitoring purposes. The approach utilized is based on the maximization of a norm of the Fisher Information Matrix built with numerically obtained mode shapes of the structure and at the same time prohibit the sensorization of neighbor degrees of freedom as well as those carrying similar information, in order to obtain a satisfactory coverage. A new convergence criterion of the Fisher Information Matrix (FIM) norm is proposed in order to deal with the issue of choosing an appropriate sensor redundancy threshold, a concept recently introduced but not further investigated concerning its choice. The sensor configurations obtained via a forward sequential placement algorithm are sub-optimal in terms of FIM norm values but the selected sensors are not allowed to be placed in neighbor degrees of freedom providing thus a better coverage of the structure and a subsequent better identification of the experimental mode shapes. The issue of how service induced damage affects the initially nominated as optimal sensor configuration is also investigated and reported. The numerical model of a composite sandwich panel serves as a representative aerospace structure upon which our investigations are based.

  15. Study on vibration characteristics of the shaft system for a dredging pump based on FEM

    Zhai, L M; Liu, X; He, L Y; Wang, Z W; Qin, L; Liu, C Y; He, Y

    2012-01-01

    The dynamic characteristics of the shaft system for a dredging pump were studied with the Finite Element Method (FEM) by SAMCEF ROTOR. At first, the influence of the fluid-solid coupling interaction of mud water and impeller, water sealing and pump shaft on the lateral critical speeds were analyzed. The results indicated that the mud water must be taken into consideration, while the water sealing need not to. Then the effects of radial and thrust rolling bearings on the lateral critical speeds were discussed, which shows that the radial bearing close to the impeller has greatest impact on the 1st order critical speed. At last, the upper and lower limits of the critical speeds of lateral, axial and torsional vibration were calculated. The rated speed of the dredging pump was far less than the predicted critical speed, which can ensure the safe operation of the unit. Each vibration mode is also shown in this paper. This dynamic analysis method offers some reference value on the research of vibration and stability of the shaft system in dredging pump.

  16. Characteristics of steady vibration in a rotating hub-beam system

    Zhao, Zhen; Liu, Caishan; Ma, Wei

    2016-02-01

    A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.

  17. Analysis of the Impacts of Bearing on Vibration Characteristics of Rotor

    Peiji Yang

    2017-01-01

    Full Text Available Aiming at a Top Gas Recovery Turbine Unit (TRT with double support rotor and the extending disk end, theoretical and experimental analysis about influence of cylindrical bearing and four-lobe bearing on vibration of TRT rotor system are conducted in this paper. The results indicate that vibration of the rotor supported by cylindrical bearing is more stable than that supported by four-lobe bearing at the driving end (DE and the nondriving end (NDE. The amplitude of rotor is supported by both of these types of bearing increases as the speed increases at the NDE, while the amplitude of the DE remains unchanged. Comparing with the result of theoretical analysis, the practical test results are more consistent with the theoretical response analysis conducted by applying unbalanced mass at the extending disk end. This paper presents an analysis method of the critical characteristics of a double support rotor system with the extending disk end and provides reference value for dealing with vibration fault of double support rotor system with the extending disk end.

  18. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  19. The use of statistical characteristics of reducer vibrations as diagnostic symptoms

    Balitskiy, F. Y.; Genkin, M. D.; Ivanova, M. A.; Sokolova, A. G.

    1973-01-01

    The results of a statistical analysis of the vibrations of the experimental RS-1 reducer stand, with a spiral-gear transmission, operating on a closed circuit, are presented. The analysis was carried out on the Minsk-2 and Minsk-32 digital computers, with two-channel analog-digital converter, built in the Institute of the Science of Mechanics. Two-dimensional distribution patterns, conditional dispersions and dispersion ratios were calculated. The octave-band-filtered first harmonics of the tooth frequency f sub z of the vibrations at two different measurement points were considered as the components of the vibration process to be analyzed. The regression lines, corresponding to different values of the loading torque, are presented. Since it was not the gear drive parameters which were determined by diagnostic methods, but the characteristics most sensitive to change in state of the object of the investigation, the loading torque, which is the simplest and most accessible for measurement, was chosen as the condition parameter.

  20. Curvature Effects on the Vibration Characteristics of Doubly Curved Shallow Shells with General Elastic Edge Restraints

    Hui Shi

    2015-01-01

    Full Text Available Effects of curvature upon the vibration characteristics of doubly curved shallow shells are assessed in this paper. Boundary conditions of the shell are generally specified in terms of distributed elastic restraints along the edges. The classical homogeneous boundary supports can be easily simulated by setting the stiffnesses of restraining springs to either zero or infinite. Vibration problems of the shell are solved by a modified Fourier series method that each of the displacements is invariably expressed as a simple trigonometric series which converges uniformly and acceleratedly over the solution domain. All the unknown expansion coefficients are treated equally as a set of independent generalized coordinates and solved using the Rayleigh-Ritz technique. The current method provides a unified solution to the vibration problems of curved shallow shells involving different geometric properties and boundary conditions with no need of modifying the formulations and solution procedures. Extensive tabular and graphical results are presented to show the curvature effects on the natural frequencies of the shell with various boundary conditions.

  1. Research on cutting vibration characteristics of face-milling involute gear

    Chengzhe JIN

    2017-10-01

    Full Text Available Traditional machining methods, such as gear hobbing, gear shaping and gear milling, etc, are commonly used for cutting machining of gear tooth profile, which cannot meet huge machining demand of gears to a certain extent. This article proposes to utilize a face-milling machining method in involute gear machining, which can be used to reduce production cost effectively. Cutting vibration generated during cutting machining has a direct effect on the machining accuracy and machined surface quality of workpiece. Therefore, it is desiderated to perform in-depth research regarding this issue. ADAMS software was used to establish a rigid-flexible coupling virtual prototyping model of face-milling gear milling system and a cutting vibration system model. Cutting vibration analysis was performed for face-milling gear by adopting quick sine frequency sweep method, so that the frequency response characteristics of workpiece in three directions X, Y and Z and space were acquired. The research results will provide reference and theoretical foundation for actual application of face-milling gear machining technology.

  2. Effects of surface relaxation and reconstruction on the vibration characteristics of nanobeams

    Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang; Yang, Bin

    2016-01-01

    Surface effects on the free vibration characteristics of nanobeams are investigated by a modified continuum model. In this paper, the relationship between the parameters of the modified continuum model of surface effects including surface elasticity, surface density, and residual surface stresses, and the parameters of the atomistic lattice model such as surface relaxation and reconstruction in nanobeams is characterized by an atomistic lattice model. The surface effects are incorporated into nanobeams to develop a modified continuum model depicting the free vibrational behavior of nanobeams. The model is validated with the experimental data of an effective size-dependent Young’s modulus and the previous theoretical results. The results demonstrate that both surface elasticity and surface density vary exponentially with surface layer thickness. Therefore, surface elasticity and density can be affected by surface relaxation and residual surface stresses can be induced by surface reconstruction. The natural frequencies of doubly clamped nanobeams can be affected by the dimensions of the nanobeams, surface layer thickness, and residual surface stress. This work may be helpful for understanding surface effects and their influence on the vibrational behavior of nanobeams. (paper)

  3. Flow induced vibration characteristics in 2X3 bundle critical heat flux experiment

    Kim, Dae Hun; Chang, Soon Heung

    2005-01-01

    Above a certain heat flux, the liquid can no longer permanently wet the heater surface. This situation leads to an inordinate decrease in the surface heat transfer. This heat flux is commonly referred to as the critical heat flux (CHF). The CHF in nuclear reactors is one of the important thermal hydraulic parameters limiting the available power. Flow induced vibration (FIV) is the vibration caused by a fluid flowing around a body. In the fluid flowing system, FIV occurred by structures and flow condition. Many structures in nuclear power plant system are designed to prevent from structure failure due to FIV. Recently, Hibiki and Ishii (1998) carried out an experimental investigation on the effect of flow-induced vibration (FIV) on two-phase flow structure in vertical tube and reported that the FIV drastically changed the void fraction profiles. The void fraction profiles is one of the important parameter for determining CHF. Therefore, the investigation on the effect of FIV on CHF are needed. The research on FIV characteristics detection during CHF experiment in 2X3 bundle using R-134a has been carried out in KAIST. Using the results new FIV correlation in 2-pahse turbulent flow are suggested after finding out relation between CHF and dynamic pressure fluctuation value

  4. Certain Type Turbofan Engine Whole Vibration Model with Support Looseness Fault and Casing Response Characteristics

    H. F. Wang

    2014-01-01

    Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.

  5. Optimal placement of water-lubricated rubber bearings for vibration reduction of flexible multistage rotor systems

    Liu, Shibing; Yang, Bingen

    2017-10-01

    Flexible multistage rotor systems with water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Filling a technical gap in the literature, this effort proposes a method of optimal bearing placement that minimizes the vibration amplitude of a WLRB-supported flexible rotor system with a minimum number of bearings. In the development, a new model of WLRBs and a distributed transfer function formulation are used to define a mixed continuous-and-discrete optimization problem. To deal with the case of uncertain number of WLRBs in rotor design, a virtual bearing method is devised. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and lengths of water-lubricated rubber bearings, by which the prescribed operational requirements for the rotor system are satisfied. The proposed method is applicable either to preliminary design of a new rotor system with the number of bearings unforeknown or to redesign of an existing rotor system with a given number of bearings. Numerical examples show that the proposed optimal bearing placement is efficient, accurate and versatile in different design cases.

  6. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    Bingfeng Ju

    2011-03-01

    Full Text Available In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  7. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure.

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  8. The research of optimal selection method for wavelet packet basis in compressing the vibration signal of a rolling bearing in fans and pumps

    Hao, W; Jinji, G

    2012-01-01

    Compressing the vibration signal of a rolling bearing has important significance to wireless monitoring and remote diagnosis of fans and pumps which is widely used in the petrochemical industry. In this paper, according to the characteristics of the vibration signal in a rolling bearing, a compression method based on the optimal selection of wavelet packet basis is proposed. We analyze several main attributes of wavelet packet basis and the effect to the compression of the vibration signal in a rolling bearing using wavelet packet transform in various compression ratios, and proposed a method to precisely select a wavelet packet basis. Through an actual signal, we come to the conclusion that an orthogonal wavelet packet basis with low vanishing moment should be used to compress the vibration signal of a rolling bearing to get an accurate energy proportion between the feature bands in the spectrum of reconstructing the signal. Within these low vanishing moments, orthogonal wavelet packet basis, and 'coif' wavelet packet basis can obtain the best signal-to-noise ratio in the same compression ratio for its best symmetry.

  9. Quantification of Gear Tooth Damage by Optimal Tracking of Vibration Signatures

    Choy, F. K.; Veillette, R. J.; Polyshchuk, V.; Braun, M. J.; Hendricks, R. C.

    1996-01-01

    This paper presents a technique for quantifying the wear or damage of gear teeth in a transmission system. The procedure developed in this study can be applied as a part of either an onboard machine health-monitoring system or a health diagnostic system used during regular maintenance. As the developed methodology is based on analysis of gearbox vibration under normal operating conditions, no shutdown or special modification of operating parameters is required during the diagnostic process. The process of quantifying the wear or damage of gear teeth requires a set of measured vibration data and a model of the gear mesh dynamics. An optimization problem is formulated to determine the profile of a time-varying mesh stiffness parameter for which the model output approximates the measured data. The resulting stiffness profile is then related to the level of gear tooth wear or damage. The procedure was applied to a data set generated artificially and to another obtained experimentally from a spiral bevel gear test rig. The results demonstrate the utility of the procedure as part of an overall health-monitoring system.

  10. Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System with a Bearing Defect

    Cao, Hongrui; Niu, Linkai; He, Zhengjia

    2012-01-01

    Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514

  11. Topology Optimization of a Vibrating System of Rigid and Flexible Bodies for Maximizing Repeated Eigenfrequencies

    Ahn, Byungseong; Kim, Suh In; Kim, Yoon Young

    2016-01-01

    When a system consisting of rigid and flexible bodies is optimized to improve its dynamic characteristics, its eigenfrequencies are typically maximized. While topology optimization formulations dealing with simultaneous design of a system of rigid and flexible bodies are available, studies on eigenvalue maximization of the system are rare. In particular, no work has solved for the case when the target frequency becomes one of the repeated eigenfrequencies. The problem involving repeated eigenfrequencies is solved in this study, and a topology optimization formulation and sensitivity analysis are presented. Further, several numerical case studies are considered to demonstrate the validity of the proposed formulation

  12. Vibration and acoustic characteristics of a city-car engine fueled with biodiesel blends

    Chiatti, Giancarlo; Chiavola, Ornella; Palmieri, Fulvio

    2017-01-01

    Highlights: • Investigation on the impact of UCO bends on the engine vibro-acoustic behavior. • The engine is mainly used in micro-cars in urban areas. • Data analysis to select the vibration/acoustic components related to the combustion. • Indicators used to evaluate the effect of blends on vibration and noise radiation. - Abstract: A number of studies have demonstrated that biodiesel is a more environmentally sustainable fuel than petroleum-derived fuels since it is a renewable source of energy and it allows to reduce undesired exhaust emissions (e.g. unburned HC, CO and particulate matter). However, specialized literature highlights there is still the need to further investigate performance, emissions and NVH characteristics of engines equipped with up-to-date technologies fueled with biodiesel blend. The aim of the present paper is to investigate the vibro-acoustic behavior of a small displacement engine, mainly employed in micro-cars, fueled with blends of distilled biodiesel (obtained from used cooking oil) and ultra low sulfur diesel fuel up to 40% by volume. Demands for reducing chemical and noise pollutions, traffic congestion and parking difficulties in urban areas make the micro-cars one of the possible solutions for the future urban environment, especially if the engine is fueled with biodiesel blends for their potential of reducing the pollutant emissions. An original methodology developed by the authors for in-cylinder pressure characterization via non-intrusive measurements is here applied to evaluate the impact of biodiesel content on the combustion process and therefore on engine vibration and noise emissions. The data processing in frequency domain allowed to extract the components mainly related to the combustion events. Concerning vibration signals: for all blends, the vibration amplitudes increases with the increase of engine speed values; B40 is characterized by highest values of RMS of accelerometer signal almost in the complete

  13. Reliability-based optimization of an active vibration controller using evolutionary algorithms

    Saraygord Afshari, Sajad; Pourtakdoust, Seid H.

    2017-04-01

    Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.

  14. Multi-objective genetic algorithm optimization of 2D- and 3D-Pareto fronts for vibrational quantum processes

    Gollub, C; De Vivie-Riedle, R

    2009-01-01

    A multi-objective genetic algorithm is applied to optimize picosecond laser fields, driving vibrational quantum processes. Our examples are state-to-state transitions and unitary transformations. The approach allows features of the shaped laser fields and of the excitation mechanisms to be controlled simultaneously with the quantum yield. Within the parameter range accessible to the experiment, we focus on short pulse durations and low pulse energies to optimize preferably robust laser fields. Multidimensional Pareto fronts for these conflicting objectives could be constructed. Comparison with previous work showed that the solutions from Pareto optimizations and from optimal control theory match very well.

  15. High-Power Piezoelectric Vibration Characteristics of Textured SrBi2Nb2O9 Ceramics

    Kawada, Shinichiro; Ogawa, Hirozumi; Kimura, Masahiko; Shiratsuyu, Kosuke; Niimi, Hideaki

    2006-09-01

    The high-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 (SBN) ceramics, that is bismuth-layer-structured ferroelectrics, were studied in the longitudinal mode (33-mode) by constant current driving method and compared with those of ordinary randomly oriented SBN and widely used Pb(Ti,Zr)O3 (PZT) ceramics. In the case of textured SBN ceramics, resonant properties are stable up to a vibration velocity of 2.6 m/s. Vibration velocity at resonant frequency increases proportionally with the applied electric field, and resonant frequency is almost constant in high-vibration-velocity driving. On the other hand, in the case of randomly oriented SBN and PZT ceramics, the increase in vibration velocity is not proportional to the applied high electric field, and resonant frequency decreases with increasing vibration velocity. The resonant sharpness Q of textured SBN ceramics is about 2000, even at a vibration velocity of 2.6 m/s. Therefore, textured SBN ceramics are good candidates for high-power piezoelectric applications.

  16. Internal flow and evaporation characteristic inside a water droplet on a vertical vibrating hydrophobic surface

    Kim Hun; Lim, Hee Chang

    2015-01-01

    This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4

  17. Vibration characteristics of a hydraulic generator unit rotor system with parallel misalignment and rub-impact

    Huang, Zhiwei; Zhou, Jianzhong; Yang, Mengqi; Zhang, Yongchuan [Huazhong University of Science and Technology, College of Hydraulic and Digitalization Engineering, Wuhan, Hubei Province (China)

    2011-07-15

    The object of this research aims at the hydraulic generator unit rotor system. According to fault problems of the generator rotor local rubbing caused by the parallel misalignment and mass eccentricity, a dynamic model for the rotor system coupled with misalignment and rub-impact is established. The dynamic behaviors of this system are investigated using numerical integral method, as the parallel misalignment, mass eccentricity and bearing stiffness vary. The nonlinear dynamic responses of the generator rotor and turbine rotor with coupling faults are analyzed by means of bifurcation diagrams, Poincare maps, axis orbits, time histories and amplitude spectrum diagrams. Various nonlinear phenomena in the system, such as periodic, three-periodic and quasi-periodic motions, are studied with the change of the parallel misalignment. The results reveal that vibration characteristics of the rotor system with coupling faults are extremely complex and there are some low frequencies with large amplitude in the 0.3-0.4 x components. As the increase in mass eccentricity, the interval of nonperiodic motions will be continuously moved forward. It suggests that the reduction in mass eccentricity or increase in bearing stiffness could preclude nonlinear vibration. These might provide some important theory references for safety operating and exact identification of the faults in rotating machinery. (orig.)

  18. Internal flow and evaporation characteristic inside a water droplet on a vertical vibrating hydrophobic surface

    Kim Hun; Lim, Hee Chang [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-07-15

    This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

  19. Flow-induced vibration characteristics of the BWR/5-201 jet pump

    LaCroix, L.V.

    1982-09-01

    A General Electric boiling water reactor BWR/5-201 jet pump was tested for flow-induced vibration (FIV) characteristics in the Large Steam Water Test Facility at Moss Landing, CA, during the period June-July 1978. High level periodic FIV were observed at reactor operating conditions (1027 psia, 532 0 F and prototypical flow rates) for the specific single jet pump assembly tested. High level FIV of similar amplitude and character have been shown capable of damaging jet pump components and associated support hardware if allowed to continue unchecked. High level FIV were effectively suppressed in two special cases tested: (1) lateral load (>500 lb) at the mixer to diffuser slip joint; and (2) a labyrinth seal (5 small, circumferential grooves) on the mixer at the slip joint. Stability criteria for the particular jet pump tested were developed from test data. A cause-effect relationship between the dynamic pressure within the slip joint and the jet pump vibration was established

  20. Vibration Characteristics of Axially Moving Titanium- Polymer Nanocomposite Faced Sandwich Plate Under Initial Tension

    Ali Ghorbanpour Arani

    2017-07-01

    Full Text Available In the present research, vibration and instability of axially moving sandwich plate made of soft core and composite face sheets under initial tension is investigated. Single-walled carbon nano-tubes (SWCNTs are selected as a reinforcement of composite face sheets inside Poly methyl methacrylate (PMMA matrix. Higher order shear deformation theory (HSDT is utilized due to its accuracy of polynomial functions than other plate theories. Based on extended rule of mixture, the structural properties of composite face sheets are taken into consideration. Motion equations are obtained by means of Hamilton’s principle and solved analytically. Influences of various parameters such as axially moving speed, volume fraction of CNTs, pre-tension, thickness and aspect ratio of sandwich plate on the vibration characteristics of moving system are discussed in details. The results indicated that the critical speed of moving sandwich plate is strongly dependent on the volume fraction of CNTs. Therefore, the critical speed of moving sandwich plate can be improved by adding appropriate values of CNTs. The results of this investigation can be used in design and manufacturing of marine vessels and aircrafts.

  1. LP compressor blade vibration characteristics at starting conditions of a 100 MW heavy-duty gas turbine

    Lee, An Sung; Vedichtchev, Alexandre F.

    2004-01-01

    In this paper are presented the blade vibration characteristics at the starting conditions of the low pressure multistage axial compressor of heavy-duty 100 MW gas turbine. Vibration data have been collected through strain gauges during aerodynamic tests of the model compressor. The influences of operating modes at the starting conditions are investigated upon the compressor blade vibrations. The exciting mechanisms and features of blade vibrations are investigated at the surge, rotating stall, and buffeting flutter. The influences of operating modes upon blade dynamic stresses are investigated for the first and second stages. It is shown that a high dynamic stress peak of 120 MPa can occur in the first stage blades due to resonances with stall cell excitations or with inlet strut wake excitations at the stalled conditions

  2. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium

    Zhang, D. P.; Lei, Y.; Shen, Z. B.

    2017-12-01

    The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell's relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.

  3. Optimization design of high power ultrasonic circular ring radiator in coupled vibration.

    Xu, Long; Lin, Shuyu; Hu, Wenxu

    2011-10-01

    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Optimal deployment schedule of an active twist rotor for performance enhancement and vibration reduction in high-speed flights

    Young H. YOU

    2017-08-01

    Full Text Available The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm (PSGA is employed for the optimizer. A rotorcraft Computational Structural Dynamics (CSD code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics (CFD code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.

  5. Optimal Shape Design of Pyeongyeong Considering Structural and Acoustical Characteristics

    Lee, Seungmok; Kang, Minseok; Lee, Jin Woo

    2014-01-01

    An optimal shape design algorithm is suggested to systematically design a traditional Korean musical instrument, the Pyeongyeong. The Pyeongyeong consists of 16 different chime stones called Gyeongpyeons. The first natural vibration frequency of each Gyeongpyeon must be adjusted to its target frequency, which is determined by the traditional sound tuning method. The second and third natural frequencies must be proportional to the first natural frequency with a specific ratio (1:1.498:2.378). The key idea in our suggested design algorithm is to use the sensitivity of natural frequencies to the variation in the length of each side of a Gyeongpyeon. The dimensions of five different Gyeongpyeons are determined by following the suggested algorithm. Changes in natural frequencies with respect to local thickness variation are closely investigated to compensate for errors that may occur during manufacturing

  6. Optimal Shape Design of Pyeongyeong Considering Structural and Acoustical Characteristics

    Lee, Seungmok; Kang, Minseok [Gyeonggi Science High School, Suwon (Korea, Republic of); Lee, Jin Woo [Ajou Univ., Suwon (Korea, Republic of)

    2014-03-15

    An optimal shape design algorithm is suggested to systematically design a traditional Korean musical instrument, the Pyeongyeong. The Pyeongyeong consists of 16 different chime stones called Gyeongpyeons. The first natural vibration frequency of each Gyeongpyeon must be adjusted to its target frequency, which is determined by the traditional sound tuning method. The second and third natural frequencies must be proportional to the first natural frequency with a specific ratio (1:1.498:2.378). The key idea in our suggested design algorithm is to use the sensitivity of natural frequencies to the variation in the length of each side of a Gyeongpyeon. The dimensions of five different Gyeongpyeons are determined by following the suggested algorithm. Changes in natural frequencies with respect to local thickness variation are closely investigated to compensate for errors that may occur during manufacturing.

  7. Study on vibration characteristics and fault diagnosis method of oil-immersed flat wave reactor in Arctic area converter station

    Lai, Wenqing; Wang, Yuandong; Li, Wenpeng; Sun, Guang; Qu, Guomin; Cui, Shigang; Li, Mengke; Wang, Yongqiang

    2017-10-01

    Based on long term vibration monitoring of the No.2 oil-immersed fat wave reactor in the ±500kV converter station in East Mongolia, the vibration signals in normal state and in core loose fault state were saved. Through the time-frequency analysis of the signals, the vibration characteristics of the core loose fault were obtained, and a fault diagnosis method based on the dual tree complex wavelet (DT-CWT) and support vector machine (SVM) was proposed. The vibration signals were analyzed by DT-CWT, and the energy entropy of the vibration signals were taken as the feature vector; the support vector machine was used to train and test the feature vector, and the accurate identification of the core loose fault of the flat wave reactor was realized. Through the identification of many groups of normal and core loose fault state vibration signals, the diagnostic accuracy of the result reached 97.36%. The effectiveness and accuracy of the method in the fault diagnosis of the flat wave reactor core is verified.

  8. Optimal Damping of Stays in Cable-Stayed Bridges for In-Plane Vibrations

    Jensen, C.N.; Nielsen, S.R.K.; Sørensen, John Dalsgaard

    2002-01-01

    cable-stayed bridges are often designed as twin cables with a spacing of, say 1m. In such cases, it is suggested in the paper to suppress the mentioned in-plane types of vibrations by means of a tuned mass–damper (TMD) placed between the twin cables at their midpoints. The TMD divides the stay into four......Significant vibrations have been reported in stays of recently constructed cable stayed bridges. The vibrations appear as in-plane vibrations that may be caused by rain–wind- induced aeroelastic interaction or by resonance excitation of the cables from the motion of the pylons. The stays of modern...

  9. Experimental Study on the Influence on Vibration Characteristics of Thin Cylindrical Shell with Hard Coating under Cantilever Boundary Condition

    Hui Li

    2017-01-01

    Full Text Available This research has experimentally investigated the influence on vibration characteristics of thin cantilever cylindrical shell (TCS with hard coating under cantilever boundary condition. Firstly, the theoretical model of TCS with hard coating is established to calculate its natural frequencies and modal shapes so as to roughly understand vibration characteristic of TCS when it is coated with hard coating material. Then, by considering its nonlinear stiffness and damping influences, an experiment system is established to accurately measure vibration parameters of the shell, and the corresponding test methods and identification techniques are also proposed. Finally, based on the measured data, the influences on natural frequencies, modal shapes, damping ratios, and vibration responses of TCS with hard coating are analyzed and discussed in detail. It can be found that hard coating can play an important role in vibration reduction of TCS, and for the most modes of TCS, hard coating will result in the decrease of natural frequencies, but the decreased level is not very big, and its damping effects on the higher frequency range of the shell are weak and ineffective. Therefore, in order to make better use of this coating material, we must carefully choose the concerned antivibration frequency range of the shell; otherwise it may lead to some negative effects.

  10. Free Vibration Characteristics of Cylindrical Shells Using a Wave Propagation Method

    A. Ghoshal

    2001-01-01

    Full Text Available In the present paper, concept of a periodic structure is used to study the characteristics of the natural frequencies of a complete unstiffened cylindrical shell. A segment of the shell between two consecutive nodal points is chosen to be a periodic structural element. The present effort is to modify Mead and Bardell's approach to study the free vibration characteristics of unstiffened cylindrical shell. The Love-Timoshenko formulation for the strain energy is used in conjunction with Hamilton's principle to compute the natural propagation constants for two shell geometries and different circumferential nodal patterns employing Floquet's principle. The natural frequencies were obtained using Sengupta's method and were compared with those obtained from classical Arnold-Warburton's method. The results from the wave propagation method were found to compare identically with the classical methods, since both the methods lead to the exact solution of the same problem. Thus consideration of the shell segment between two consecutive nodal points as a periodic structure is validated. The variations of the phase constants at the lower bounding frequency for the first propagation band for different nodal patterns have been computed. The method is highly computationally efficient.

  11. Application of support vector regression for optimization of vibration flow field of high-density polyethylene melts characterized by small angle light scattering

    Xian, Guangming

    2018-03-01

    In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.

  12. Characteristics in Molecular Vibrational Frequency Patterns between Agonists and Antagonists of Histamine Receptors

    S. June Oh

    2012-06-01

    Full Text Available To learn the differences between the structure-activity relationship and molecular vibration-activity relationship in the ligand-receptor interaction of the histamine receptor, 47 ligands of the histamine receptor were analyzed by structural similarity and molecular vibrational frequency patterns. The radial tree that was produced by clustering analysis of molecular vibrational frequency patterns shows its potential for the functional classification of histamine receptor ligands.

  13. 地铁车辆地板振动异常的测试分析及优化改进%Analysis and Optimization of Abnormal Vibration of Metro Vehicle Floor

    李华; 忻力; 丁杰; 王永胜; 臧晓斌

    2017-01-01

    针对某地铁车辆其中一节车厢地板在交付过程中出现的振动异常问题,开展了大量的振动测试及分析,找到了异常振动的来源,排除了变压器箱和地板共振的可能;通过振动传递特性分析,确定了地板振动异常是该节车厢车体梁在98 Hz附近存在局部共振引起,并提出了解决方案.通过对地板下方的隔振层进行优化,地板振动降低34%.%In view of the abnormal vibration of a carriage floor in the delivery process of a metro vehicle,a large number of vibration tests and analysis were carried out to find the source of the abnormal vibration and eliminate the possibility of the transformer box and floor resonance.Through the analysis of the vibration transmission characteristics,it was determined that the floor vibration anomaly was caused by the local resonance of the car body beam near 98 Hz,and the solution was put forward.Finally,the floor vibration was reduced by 34% after optimizing the isolation layer below the floor.

  14. An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine

    Xuanlin Peng

    2017-11-01

    Full Text Available In this paper, a new methodology is proposed to reduce the vortex-induced vibration (VIV and improve the performance of the stay vane in a 200-MW Francis turbine. The process can be divided into two parts. Firstly, a diagnosis method for stay vane vibration based on field experiments and a finite element method (FEM is presented. It is found that the resonance between the Kármán vortex and the stay vane is the main cause for the undesired vibration. Then, we focus on establishing an intelligent optimization model of the stay vane’s trailing edge profile. To this end, an approach combining factorial experiments, extreme learning machine (ELM and particle swarm optimization (PSO is implemented. Three kinds of improved profiles of the stay vane are proposed and compared. Finally, the profile with a Donaldson trailing edge is adopted as the best solution for the stay vane, and verifications such as computational fluid dynamics (CFD simulations, structural analysis and fatigue analysis are performed to validate the optimized geometry.

  15. Characteristics of vibrator use by gay and bisexually identified men in the United States.

    Reece, Michael; Rosenberger, Joshua G; Schick, Vanessa; Herbenick, Debby; Dodge, Brian; Novak, David S

    2010-10-01

    Recent reports indicate that vibrator use during solo and partnered sexual activities is common among heterosexual men and women in the United States. However, little research has comprehensively assessed vibrator use among gay and bisexually identified men. This study sought to document the extent to which gay and bisexually identified men report using vibrators, the sexual and relational situations within which they use them, and how men use vibrators on their own and their partners' bodies. Data were collected from 25,294 gay and bisexually identified men from 50 U.S. states and from the District of Columbia via an internet-based survey. Measures included sociodemographics, health-related indicators, sexual behaviors, and those related to recent and past use of vibrators during solo and partnered sexual interactions with other men. Approximately half (49.8%) of gay and bisexually identified men reported having used vibrators. Most men who had used a vibrator in the past reported use during masturbation (86.2%). When used during partnered interactions, vibrators were incorporated into foreplay (65.9%) and intercourse (59.4%). Men reported frequent insertion of vibrators into the anus or rectum when using them during masturbation (87.3%), which was also common during partnered interactions (∼60%), but varied slightly for casual and relationship sex partners. For both masturbation and partnered interactions, men overwhelmingly endorsed the extent to which vibrator use contributed to sexual arousal, orgasm, and pleasure. Vibrator use during both solo and partnered sexual acts was common among the gay and bisexually identified men in this sample and was described by men as adding to the quality of their sexual experiences. © 2010 International Society for Sexual Medicine.

  16. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  17. Vibration Characteristics of a Mistuned Bladed Disk considering the Effect of Coriolis Forces

    Xuanen Kan

    2016-01-01

    Full Text Available To investigate the influence of Coriolis force on vibration characteristics of mistuned bladed disk, a bladed disk with 22 blades is employed and the effects of different rotational speeds and excitation engine orders on the maximum forced response are discussed considering the effects of Coriolis forces. The results show that if there are frequency veering regions, the largest split of double natural frequencies of each modal family considering the effects of Coriolis forces appears at frequency veering region. In addition, the amplitude magnification factor considering the Coriolis effects is increased by 1.02% compared to the system without considering the Coriolis effects as the rotating speed is 3000 rpm, while the amplitude magnification factor is increased by 2.76% as the rotating speed is 10000 rpm. The results indicate that the amplitude magnification factor may be moderately enhanced with the increasing of rotating speed. Moreover, the position of the maximum forced response of bladed disk may shift from one blade to another with the increasing of the rotational speed, when the effects of Coriolis forces are considered.

  18. A Rapid Aeroelasticity Optimization Method Based on the Stiffness characteristics

    Yuan, Zhe; Huo, Shihui; Ren, Jianting

    2018-01-01

    A rapid aeroelasticity optimization method based on the stiffness characteristics was proposed in the present study. Large time expense in static aeroelasticity analysis based on traditional time domain aeroelasticity method is solved. Elastic axis location and torsional stiffness are discussed firstly. Both torsional stiffness and the distance between stiffness center and aerodynamic center have a direct impact on divergent velocity. The divergent velocity can be adjusted by changing the cor...

  19. Response characteristics of vibration-sensitive interneurons related to Johnston's organ in the honeybee, Apis mellifera.

    Ai, Hiroyuki; Rybak, Jürgen; Menzel, Randolf; Itoh, Tsunao

    2009-07-10

    Honeybees detect airborne vibration by means of Johnston's organ (JO), located in the pedicel of each antenna. In this study we identified two types of vibration-sensitive interneurons with arborizations in the primary sensory area of the JO, namely, the dorsal lobe-interneuron 1 (DL-Int-1) and dorsal lobe-interneuron 2 (DL-Int-2) using intracellular recordings combined with intracellular staining. For visualizing overlapping areas between the JO sensory terminals and the branches of these identified interneurons, the three-dimensional images of the individual neurons were registered into the standard atlas of the honeybee brain (Brandt et al. [2005] J Comp Neurol 492:1-19). Both DL-Int-1 and DL-Int-2 overlapped with the central terminal area of receptor neurons of the JO in the DL. For DL-Int-1 an on-off phasic excitation was elicited by vibrational stimuli applied to the JO when the spontaneous spike frequency was low, whereas tonic inhibition was induced when it was high. Moreover, current injection into a DL-Int-1 led to changes of the response pattern from on-off phasic excitation to tonic inhibition, in response to the vibratory stimulation. Although the vibration usually induced on-off phasic excitation in DL-Int-1, vibration applied immediately after odor stimulation induced tonic inhibition in it. DL-Int-2 responded to vibration stimuli applied to the JO by a tonic burst and were most sensitive to 265 Hz vibration, which is coincident with the strongest frequency of airborne vibrations arising during the waggle dance. These results suggest that DL-Int-1 and DL-Int-2 are related to coding of the duration of the vibration as sensed by the JO. Copyright 2009 Wiley-Liss, Inc.

  20. Theory of vibration protection

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  1. Influence of Ultrasonic Vibrations on the Static Friction Characteristics of a Rubber/Aluminum Couple

    Cheng Ting-Hai; Gao Han; Bao Gang

    2011-01-01

    A novel ultrasonic vibration approach is introduced into a chloroprene rubber/aluminum friction couple for improving the static friction properties between rubber and metal. Compared to the test results without vibrations, the static friction force of a chloroprene rubber/aluminum couple decreases observably, leading to the ultimate displacement of rubber. The values of the static friction force and ultimate displacement can be ultimately reduced to 23.1% and 50% of those without ultrasonic vibrations, respectively. (fundamental areas of phenomenology(including applications))

  2. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    Kim, Nak-Geun; Lee, Kye-Bock [Chungbuk National University, Cheongju (Korea, Republic of); Cho, Yong [Korea Water Resources Corporation, Daejeon (Korea, Republic of)

    2017-07-15

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  3. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    Kim, Nak-Geun; Lee, Kye-Bock; Cho, Yong

    2017-01-01

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  4. Electrical Characteristics of the Contour-Vibration-Mode Piezoelectric Transformer with Ring/Dot Electrode Area Ratio

    Yoo, Juhyun; Yoon, Kwanghee; Lee, Yongwoo; Suh, Sungjae; Kim, Jongsun; Yoo, Chungsik

    2000-05-01

    Contour-vibration-mode Pb(Sb1/2Nb1/2)O3-Pb(Zr, Ti)O3 [PSN-PZT] piezoelectric transformers with different ring/dot electrode area ratios were fabricated to the size of 27.5× 27.5× 2.5 mm3 by cold isostatic pressing. The electrical properties and characteristic temperature rises caused by the vibration were measured at various load resistances. Efficiencies above 90% with load resistance were obtained from all the transformers. The voltage step-up ratio appeared to be proportional to the dot electrode area. A 14 W fluorescent lamp, T5, was successfully driven by all of the fabricated transformers. The transformer with ring/dot electrode area ratio of 4.85 exhibited the best properties in terms of output power, efficiency and characteristic temperature rise, 14.88 W, 98% and 5°C, respectively.

  5. Passive acoustic radiation control for a vibrating panel with piezoelectric shunt damping circuit using particle swarm optimization algorithm

    Jeon, Jin Young

    2009-01-01

    This paper presents a new acoustic radiation optimization method for a vibrating panel-like structure with a passive piezoelectric shunt damping system in order to minimize well-radiating modes generated from the panel. The optimization method is based on an idea of using the p-version finite element method(p-version FEM), the boundary element method(BEM), and the particle swarm optimization algorithm(PSOA). Optimum embossment design for the vibrating panel using the PSOA is first investigated in order to minimize noise radiation over a frequency range of interest. The optimum embossment design works as a kind of stiffener so that well-radiating natural modes are shifted up with some degrees. The optimized panel, however, may still require additional damping for attenuating the peak acoustic amplitudes. A passive shunt damping system is thus employed to additionally damp the well-radiating modes from the optimized panel. To numerically evaluate the acoustic multiple-mode damping capability by a shunt damping system, the integrated p-version FEM/BEM for the panel with the shunt damping system is modeled and developed by MATLAB. Using the PSOA, the optimization technique for the optimal multiple-mode shunt damper is investigated in order to achieve the optimum damping performance for the well-radiating modes simultaneously. Also, the acoustic damping performance of the shunt damping circuit in the acoustic environment is demonstrated numerically and experimentally with respect to the realistically sized panel. The simulated result shows a good agreement with that of the experimental result

  6. Biobjective Optimization of Vibration Performance of Steel-Spring Floating Slab Tracks by Four-Pole Parameter Method Coupled with Ant Colony Optimization

    Hao Jin

    2015-01-01

    Full Text Available Steel-spring floating slab tracks are one of the most effective methods to reduce vibrations from underground railways, which has drawn more and more attention in scientific communities. In this paper, the steel-spring floating slab track located in Track Vibration Abatement and Control Laboratory was modeled with four-pole parameter method. The influences of the fastener damping ratio, the fastener stiffness, the steel-spring damping ratio, and the steel-spring stiffness were researched for the rail displacement and the foundation acceleration. Results show that the rail displacement and the foundation acceleration will decrease with the increase of the fastener stiffness or the steel-spring damping ratio. However, the rail displacement and the foundation acceleration have the opposite variation tendency for the fastener damping ratio and the steel-spring stiffness. In order to optimize the rail displacement and the foundation acceleration affected by the fastener damping ratio and the steel-spring stiffness at the same time, a multiobjective ant colony optimization (ACO was employed. Eventually, Pareto optimal frontier of the rail displacement and the foundation acceleration was derived. Furthermore, the desirable values of the fastener damping ratio and the steel-spring stiffness can be obtained according to the corresponding Pareto optimal solution set.

  7. Free vibration of Euler and Timoshenko nanobeams using boundary characteristic orthogonal polynomials

    Behera, Laxmi; Chakraverty, S.

    2014-03-01

    Vibration analysis of nonlocal nanobeams based on Euler-Bernoulli and Timoshenko beam theories is considered. Nonlocal nanobeams are important in the bending, buckling and vibration analyses of beam-like elements in microelectromechanical or nanoelectromechanical devices. Expressions for free vibration of Euler-Bernoulli and Timoshenko nanobeams are established within the framework of Eringen's nonlocal elasticity theory. The problem has been solved previously using finite element method, Chebyshev polynomials in Rayleigh-Ritz method and using other numerical methods. In this study, numerical results for free vibration of nanobeams have been presented using simple polynomials and orthonormal polynomials in the Rayleigh-Ritz method. The advantage of the method is that one can easily handle the specified boundary conditions at the edges. To validate the present analysis, a comparison study is carried out with the results of the existing literature. The proposed method is also validated by convergence studies. Frequency parameters are found for different scaling effect parameters and boundary conditions. The study highlights that small scale effects considerably influence the free vibration of nanobeams. Nonlocal frequency parameters of nanobeams are smaller when compared to the corresponding local ones. Deflection shapes of nonlocal clamped Euler-Bernoulli nanobeams are also incorporated for different scaling effect parameters, which are affected by the small scale effect. Obtained numerical solutions provide a better representation of the vibration behavior of short and stubby micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant.

  8. The Effect of Vibration during Friction Stir Welding on Corrosion Behavior, Mechanical Properties, and Machining Characteristics of Stir Zone

    Sajad Fouladi

    2017-10-01

    Full Text Available Different methods have been applied to refine various characteristics of the zone (or nugget obtained by friction stir welding (FSW. In the current research, joining components are vibrated normal to the weld line during FSW to refine the zone microstructure. This process is described as friction stir vibration welding (FSVW. The effect of FSVW on mechanical properties, corrosion behavior, and machining characteristics of the zone are investigated. Al5052 alloy specimens are welded using FSW and FSVW processes and their different characteristics are compared and discussed. The results show that the strength and ductility of the welded parts increase when the vibration is applied. The outcomes also show that corrosion resistance of the nugget for FSV-welded specimens is lower than FS welded samples, and machining force of the former specimens is higher than the latter ones. These are related to smaller grain size in the zone of FSV-welded specimens compared to FS welded parts. Smaller grain size leads to a greater volume fraction of grain boundaries and, correspondingly, higher strength and hardness, as well as lower corrosion resistance.

  9. An effective parameter optimization technique for vibration flow field characterization of PP melts via LS-SVM combined with SALS in an electromagnetism dynamic extruder

    Xian, Guangming

    2018-03-01

    A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.

  10. Optimization of vibration amplitudes of the dynamic rotors by introducing hysteresis parameters of materials

    Kamel, Lebchek; Outtas, T. [Laboratory of Structural Mechanics and Materials faculty of technology - University of Batna, Batha (Algeria)

    2013-07-01

    The aim of this work is the study of behavior of rotor dynamics of industrial turbines, using numerical simulation. Finite element model was developed by introducing a new hysteresis parameter to control more precisely the behavior of rolling bearings. The finite element model is used to extract the natural frequencies and modal deformed rotor vibration, as it identifies the constraints acting on the system and predict the dynamic behavior of the rotor transient. Results in Campbell diagram and those relating to the unbalance responses show significant amplitude differences in the parameters of hysteresis imposed . Key words: rotor dynamics, hysteresis, finite element, rotor vibration, unbalance responses, Campbell diagram.

  11. A New Approach to Identify Optimal Properties of Shunting Elements for Maximum Damping of Structural Vibration Using Piezoelectric Patches

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.

  12. Response characteristics of vibration-sensitive neurons in the midbrain of the grassfrog, Rana temporaria

    Christensen-Dalsgaard, J; Jørgensen, M B

    1989-01-01

    European grassfrogs (Rana temporaria) were stimulated with pulsed sinusoidal, vertical vibrations (10-300 Hz) and the responses of 46 single midbrain neurons were recorded in awake, immobilized animals. Most units (40) had simple V-shaped excitatory vibrational tuning curves. The distribution of ...... stimuli probably play a role in communication and detection of predators and the vibration-sensitive midbrain neurons may be involved in the central processing of such behaviorally significant stimuli.......European grassfrogs (Rana temporaria) were stimulated with pulsed sinusoidal, vertical vibrations (10-300 Hz) and the responses of 46 single midbrain neurons were recorded in awake, immobilized animals. Most units (40) had simple V-shaped excitatory vibrational tuning curves. The distribution...... of best frequencies (BF's) was bimodal with peaks at 10 and 100 Hz and the thresholds ranged from 0.02 to 1.28 cm/s2 at the BF. Twenty-three neurons showed phasic-tonic and 11 neurons phasic responses. The dynamic range of seismic intensity for most neurons was 20-30 dB. In contrast to the sharp phase...

  13. Dynamic Model and Vibration Characteristics of Planar 3-RRR Parallel Manipulator with Flexible Intermediate Links considering Exact Boundary Conditions

    Lianchao Sheng

    2017-01-01

    Full Text Available Due to the complexity of the dynamic model of a planar 3-RRR flexible parallel manipulator (FPM, it is often difficult to achieve active vibration control algorithm based on the system dynamic model. To establish a simple and efficient dynamic model of the planar 3-RRR FPM to study its dynamic characteristics and build a controller conveniently, firstly, considering the effect of rigid-flexible coupling and the moment of inertia at the end of the flexible intermediate link, the modal function is determined with the pinned-free boundary condition. Then, considering the main vibration modes of the system, a high-efficiency coupling dynamic model is established on the basis of guaranteeing the model control accuracy. According to the model, the modal characteristics of the flexible intermediate link are analyzed and compared with the modal test results. The results show that the model can effectively reflect the main vibration modes of the planar 3-RRR FPM; in addition the model can be used to analyze the effects of inertial and coupling forces on the dynamics model and the drive torque of the drive motor. Because this model is of the less dynamic parameters, it is convenient to carry out the control program.

  14. ASSESSMENT OF THE GENERAL PSYCHOLOGICAL AND FUNCTIONAL CHARACTERISTICS CAUSED BY VIBRATIONS AT DRIVERS OF HEAVY MOTOR VEHICLES

    Sanela Čajlaković Kurtalić

    2014-09-01

    Full Text Available In this paper we presented a research that estimates general psychological and functional characteristics of motor vehicle drivers, with the goal of determining the adverse effects of noise and vibration on the drivers. The study was conducted on a sample of 56 participants, professional drivers of motor vehicles, randomly chosen from companies of various types operating in transport of passengers and goods. For the evaluation of the results,we used descriptive and correlational analysis. The results showed that there were significant negative side effects caused by the nature of work of drivers, especially those under the influence of noise and vibration, which are even more significant in older participants and those with more years of service and those who spend more time driving during the interval of 24 hours , as well as those who drive heavier vehicles.

  15. Examination and vibration characteristics of gas circulator (B1) of HENDEL

    Shimomura, Hiroaki; Izawa, Naoki; Ihzuka, Takayuki; Kawaji, Satoshi; Kunitama, Takehiko; Hayashi, Haruyoshi; Kobayashi, Toshiaki; Katoh, Michio

    1985-06-01

    An examination and vibration measurements were conducted on the gas bearing type high speed helium gas circulator after the failure on April 1984 and the repairing on August 1984. The examination made clear that the cause of the failure and scratching of gas bearing pads and journal shaft was found. The vibrational spectra showed a clear difference between failed and repaired conditions, and a frequency analysis technique by means of fast Fourier transform and a small-scale computer is expected as a useful method of diagnosis for circulators. A conceptual scheme of gas circulator diagnostic system based on above principle is shown, and a basic process of diagnostic software is described. (author)

  16. Hand-arm vibration syndrome: clinical characteristics, conventional electrophysiology and quantitative sensory testing.

    Rolke, Roman; Rolke, Silke; Vogt, Thomas; Birklein, Frank; Geber, Christian; Treede, Rolf-Detlef; Letzel, Stephan; Voelter-Mahlknecht, Susanne

    2013-08-01

    Workers exposed to vibrating tools may develop hand-arm vibration syndrome (HAVS). We assessed the somatosensory phenotype using quantitative sensory testing (QST) in comparison to electrophysiology to characterize (1) the most sensitive QST parameter for detecting sensory loss, (2) the correlation of QST and electrophysiology, and (3) the frequency of a carpal tunnel syndrome (CTS) in HAVS. QST, cold provocation tests, fine motor skills, and median nerve neurography were used. QST included thermal and mechanical detection and pain thresholds. Thirty-two patients were examined (54 ± 11 years, 91% men) at the more affected hand compared to 16 matched controls. Vibration detection threshold was the most sensitive parameter to detect sensory loss that was more pronounced in the sensitivity range of Pacinian (150 Hz, x12) than Meissner's corpuscles (20 Hz, x3). QST (84% abnormal) was more sensitive to detect neural dysfunction than conventional electrophysiology (37% abnormal). Motor (34%) and sensory neurography (25%) were abnormal in HAVS. CTS frequency was not increased (9.4%). Findings are consistent with a mechanically-induced, distally pronounced motor and sensory neuropathy independent of CTS. HAVS involves a neuropathy predominantly affecting large fibers with a sensory damage related to resonance frequencies of vibrating tools. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C ( L-ascorbic acid) and H 2O

    Dimitrova, Yordanka

    2006-02-01

    The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.

  18. Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations

    Jinghui Peng

    2014-07-01

    Full Text Available The resonance of the armature assembly is the main problem leading to the fatigue of the spring pipe in a torque motor of hydraulic servo valves, which can cause the failure of servo valves. To predict the vibration characteristics of the armature assembly, this paper focuses on the mathematical modeling of the vibration characteristics of armature assembly in a hydraulic servo valve and the identification of parameters in the models. To build models more accurately, the effect of the magnetic spring is taken into account. Vibration modal analysis is performed to obtain the mode shapes and natural frequencies, which are necessary to implement the identification of damping ratios in the mathematical models. Based on the mathematical models for the vibration characteristics, the harmonic responses of the armature assembly are analyzed using the finite element method and measured under electromagnetic excitations. The simulation results agree well with the experimental studies.

  19. Damping characteristics and flow behaviors of an ER fluid with a piston sine vibration in a viscous damper

    Yamaguchi, Hiroshi; Zhang, Xin-Rong; Niu, Xiao-Dong

    2010-01-01

    The damping characteristics and flow behaviors of ER fluids inside a piston–cylinder viscous damper subjected to external electric fields are studied based on experiment, theoretical analysis and numerical simulation. The viscous damper is a closed system with an inner piston and an outer cylinder, which is designed and constructed in our laboratory. In the experiment, the test ER fluid is enclosed in the gap of a piston–cylinder system. To examine the damping characteristics of the test ER fluid, a piston sine vibration experiment is performed with accompanying theoretical analyses. In addition, in order to investigate the ER flow behaviors inside the damper, a numerical simulation is carried out. The present study discloses the damping characteristics and the fluid mechanism of the ER fluid in the piston–cylinder damper with an applied external electric field

  20. The Characteristics of Vibration Isolation System with Damping and Stiffness Geometrically Nonlinear

    Lu, Ze-Qi; Chen, Li-Qun; Brennan, Michael J.; Li, Jue-Ming; Ding, Hu

    2016-09-01

    The paper concerns an investigation into the use of both stiffness and damping nonlinearity in the vibration isolator to improve its effectiveness. The nonlinear damping and nonlinear stiffness are both achieved by horizontal damping and stiffness as the way of the geometrical nonlinearity. The harmonic balance method is used to analyze the force transmissibility of such vibration isolation system. It is found that as the horizontal damping increasing, the height of the force transmissibility peak is decreased and the high-frequency force transmissibility is almost the same. The results are also validated by some numerical method. Then the RMS of transmissibility under Gaussian white noise is calculated numerically, the results demonstrate that the beneficial effects of the damping nonlinearity can be achieved under random excitation.

  1. Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations

    Ajori, S.; Ansari, R.

    2015-01-01

    Functionalization of carbon nanotubes (CNTs) can be viewed as an important process by which the dispersion and solubility of CNTs in the matrices of nanocomposites are improved. Covalent functionalization can affect the mechanical behavior of CNTs. In this paper, the vibrational behavior of diethyltoluenediamines (DETDA) functionalized CNTs is investigated utilizing molecular dynamics simulations in canonical ensemble at room temperature. The models of simulations are divided into two categories of functionalized CNTs with regular and random distributions of DETDA polymers. The results demonstrate that natural frequency of functionalized CNTs is lower than that of pristine ones. Also, it is observed that buckling phenomenon occurs during vibration for functionalized CNTs with regular distribution of polymers. It is further observed that polymer mass and van der Waals (vdW) forces are responsible for frequency changes in functionalized CNTs with random and regular distribution patterns of CNTs, respectively

  2. Numerical study on flow induced vibration characteristics of heat transfer tube

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong

    2014-01-01

    The model presents a fully coupled approach with solving the fluid flow and the structure vibration simultaneously. The three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model were solved by the finite volume approach and the heat transfer structure was solved by finite element method combined with moving mesh control technique. The dynamic equilibrium equation was discretized according to the finite element theory and the mesh update was achieved by the dynamic mesh technology. Based on this model, flow induced vibration responses of the tube were thus investigated using response branch, phase angle, Lissajou diagram, trajectory, phase portrait and Poincare section mapping. Meanwhile, the limit cycle and bifurcation of lift coefficient and lateral displacement were analyzed. The results reveal that a quasi-upper branch is found in the fluid-structure interaction system, and there is no bifurcation of lift coefficient and lateral displacement occurred in three-dimensional flexible tube submitted to uniform turbulent flow. (authors)

  3. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  4. Optimal Design of Complex Passive-Damping Systems for Vibration Control of Large Structures: An Energy-to-Peak Approach

    Francisco Palacios-Quiñonero

    2014-01-01

    Full Text Available We present a new design strategy that makes it possible to synthesize decentralized output-feedback controllers by solving two successive optimization problems with linear matrix inequality (LMI constraints. In the initial LMI optimization problem, two auxiliary elements are computed: a standard state-feedback controller, which can be taken as a reference in the performance assessment, and a matrix that facilitates a proper definition of the main LMI optimization problem. Next, by solving the second optimization problem, the output-feedback controller is obtained. The proposed strategy extends recent results in static output-feedback control and can be applied to design complex passive-damping systems for vibrational control of large structures. More precisely, by taking advantages of the existing link between fully decentralized velocity-feedback controllers and passive linear dampers, advanced active feedback control strategies can be used to design complex passive-damping systems, which combine the simplicity and robustness of passive control systems with the efficiency of active feedback control. To demonstrate the effectiveness of the proposed approach, a passive-damping system for the seismic protection of a five-story building is designed with excellent results.

  5. The optimal location of piezoelectric actuators and sensors for vibration control of plates

    Kumar, K. Ramesh; Narayanan, S.

    2007-12-01

    This paper considers the optimal placement of collocated piezoelectric actuator-sensor pairs on a thin plate using a model-based linear quadratic regulator (LQR) controller. LQR performance is taken as objective for finding the optimal location of sensor-actuator pairs. The problem is formulated using the finite element method (FEM) as multi-input-multi-output (MIMO) model control. The discrete optimal sensor and actuator location problem is formulated in the framework of a zero-one optimization problem. A genetic algorithm (GA) is used to solve the zero-one optimization problem. Different classical control strategies like direct proportional feedback, constant-gain negative velocity feedback and the LQR optimal control scheme are applied to study the control effectiveness.

  6. Vibrational quasi-degenerate perturbation theory with optimized coordinates: applications to ethylene and trans-1,3-butadiene.

    Yagi, Kiyoshi; Otaki, Hiroki

    2014-02-28

    A perturbative extension to optimized coordinate vibrational self-consistent field (oc-VSCF) is proposed based on the quasi-degenerate perturbation theory (QDPT). A scheme to construct the degenerate space (P space) is developed, which incorporates degenerate configurations and alleviates the divergence of perturbative expansion due to localized coordinates in oc-VSCF (e.g., local O-H stretching modes of water). An efficient configuration selection scheme is also implemented, which screens out the Hamiltonian matrix element between the P space configuration (p) and the complementary Q space configuration (q) based on a difference in their quantum numbers (λpq = ∑s|ps - qs|). It is demonstrated that the second-order vibrational QDPT based on optimized coordinates (oc-VQDPT2) smoothly converges with respect to the order of the mode coupling, and outperforms the conventional one based on normal coordinates. Furthermore, an improved, fast algorithm is developed for optimizing the coordinates. First, the minimization of the VSCF energy is conducted in a restricted parameter space, in which only a portion of pairs of coordinates is selectively transformed. A rational index is devised for this purpose, which identifies the important coordinate pairs to mix from others that may remain unchanged based on the magnitude of harmonic coupling induced by the transformation. Second, a cubic force field (CFF) is employed in place of a quartic force field, which bypasses intensive procedures that arise due to the presence of the fourth-order force constants. It is found that oc-VSCF based on CFF together with the pair selection scheme yields the coordinates similar in character to the conventional ones such that the final vibrational energy is affected very little while gaining an order of magnitude acceleration. The proposed method is applied to ethylene and trans-1,3-butadiene. An accurate, multi-resolution potential, which combines the MP2 and coupled-cluster with singles

  7. Vibrational quasi-degenerate perturbation theory with optimized coordinates: Applications to ethylene and trans-1,3-butadiene

    Yagi, Kiyoshi, E-mail: kiyoshi.yagi@riken.jp; Otaki, Hiroki [Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-02-28

    A perturbative extension to optimized coordinate vibrational self-consistent field (oc-VSCF) is proposed based on the quasi-degenerate perturbation theory (QDPT). A scheme to construct the degenerate space (P space) is developed, which incorporates degenerate configurations and alleviates the divergence of perturbative expansion due to localized coordinates in oc-VSCF (e.g., local O–H stretching modes of water). An efficient configuration selection scheme is also implemented, which screens out the Hamiltonian matrix element between the P space configuration (p) and the complementary Q space configuration (q) based on a difference in their quantum numbers (λ{sub pq} = ∑{sub s}|p{sub s} − q{sub s}|). It is demonstrated that the second-order vibrational QDPT based on optimized coordinates (oc-VQDPT2) smoothly converges with respect to the order of the mode coupling, and outperforms the conventional one based on normal coordinates. Furthermore, an improved, fast algorithm is developed for optimizing the coordinates. First, the minimization of the VSCF energy is conducted in a restricted parameter space, in which only a portion of pairs of coordinates is selectively transformed. A rational index is devised for this purpose, which identifies the important coordinate pairs to mix from others that may remain unchanged based on the magnitude of harmonic coupling induced by the transformation. Second, a cubic force field (CFF) is employed in place of a quartic force field, which bypasses intensive procedures that arise due to the presence of the fourth-order force constants. It is found that oc-VSCF based on CFF together with the pair selection scheme yields the coordinates similar in character to the conventional ones such that the final vibrational energy is affected very little while gaining an order of magnitude acceleration. The proposed method is applied to ethylene and trans-1,3-butadiene. An accurate, multi-resolution potential, which combines the MP2 and

  8. Semi-analytical Vibration Characteristics of Rotating Timoshenko Beams Made of Functionally Graded Materials

    Farzad Ebrahimia

    Full Text Available AbstractFree vibration analysis of rotating functionally graded (FG thick Timoshenko beams is presented. The material properties of FG beam vary along the thickness direction of the constituents according to power law model. Governing equations are derived through Hamilton's principle and they are solved applying differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The emphasis is placed on investigating the effect of several beam parameters such as constituent volume fractions, slenderness ratios, rotational speed and hub radius on natural frequencies and mode shapes of the rotating thick FG beam.

  9. Flow characteristics and optimal design for RDT sparger

    Kim, Kwang Chu; Park, Man Heung; Park, Kyoung Suk; Lee, Jong Won

    1999-01-01

    A numerical analysis for RDT sparger of PWR is carried out. Computation is performed to investigate the flow characteristics as the change of design factor. As the result of this study, RDT sparger's flow resistance coefficient is K = 3.53 at the present design condition if engineering margin is considered with 20 percent, and flow ratio into branch pipe is Q s /Q i 0.41. Velocity distribution at exit is not uniform because of separation in branch pipe. In the change of inlet flow rate and second area ratio of branch pipe for main pipe, Flow resistance coefficient is increased as Q s /Q i decreasing, but in the change of branch angle and outlet nozzle diameter of main pipe, flow resistance coefficient is decreased as Q s /Q i decreasing. As the change rate of Q s /Q i is the larger, the change rate of flow resistance coefficient is the larger. The change rate of pressure loss is the largest change as section area ratio changing. The optimal design condition of sparger is estimated as the outlet nozzle diameter ratio of main pipe is D e /D i = 0.333, the second area ratio is A s /A i = 0.2 and the branch angle is α = 55 o . (author)

  10. Study on structure, vibrational analysis and molecular characteristics of some halogen substituted azido-phenylethanones using FTIR spectra and DFT

    Prashanth, J.; Reddy, Byru Venkatram

    2018-03-01

    The Fourier transform infrared (FTIR) spectra of organic compounds 4-fluoro-2-azido-1-phenylethanone (FAP), 4-chloro-2-azido-1-phenylethanone (CAP) and 4-bromo-2-azido-1-phenylethanone (BAP) have been recorded in the region 4000-400 cm-1. The optimized molecular structure for global minimum energy of the titled molecules is determined by evaluating torsional potentials as a function of rotation angle about free rotation bonds among the substituent groups subjecting them to DFT employing B3LYP functional with 6-311++G (d,p) basis set. The vibrational frequencies along with infrared intensities are computed by SQM procedure. The rms error between observed and calculated frequencies is found to be 9.27, 8.17 and 7.95 cm-1 for FAP, CAP and BAP, respectively which shows good agreement between experimental and scaled values of calculated frequencies obtained by DFT. The vibrational assignments of all the fundamental bands of each molecule are made unambiguously using PED and eigen vectors obtained in the computations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the titled molecules exhibit NLO behaviour and hence may be considered for potential applicants for the development of NLO materials. HOMO and LUMO energies evaluated in the study demonstrate chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyper conjugative interactions and charge delocalization. The molecular electrostatic surface potential (MESP) and thermodynamic parameters are also evaluated.

  11. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides.

    Keiderling, Timothy A

    2017-12-01

    Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.

  12. Effects of adding whole body vibration to squat training on isometric force/time characteristics.

    Lamont, Hugh S; Cramer, Joel T; Bemben, Debra A; Shehab, Randa L; Anderson, Mark A; Bemben, Michael G

    2010-01-01

    Resistance training interventions aimed at increasing lower-body power and rates of force development have produced varying results. Recent studies have suggested that whole-body low-frequency vibration (WBLFV) may elicit an acute postactivation potentiation response, leading to acute improvements in power and force development. Potentially, the use of WBLFV between sets of resistance training rather than during training itself may lead to increased recruitment and synchronization of high-threshold motor units, minimize fatigue potential, and facilitate the chronic adaptation to resistance exercise. The purpose of this study was to determine the effects of applying TriPlaner, WBLFV, prior to and then intermittently between sets of Smith machine squats on short-term adaptations in explosive isometric force expression. Thirty recreationally resistance trained men aged 18-30 were randomly assigned to 1 of 3 groups: resistance training only (SQT, n = 11), resistance plus whole-body vibration (SQTV, n = 13), or active control (CON, n = 6). An isometric squat test was performed prior to and following a 6-week periodized Smith machine squat program. Whole-body low-frequency vibration was applied 180 seconds prior to the first work set (50 Hz, 2-4 mm, 30 seconds) and intermittently (50 Hz, 4-6 mm, 3 x 10 seconds, 60 seconds between exposures) within a 240-second interset rest period. Subjects were instructed to assume a quarter squat posture while positioning their feet directly under their center of mass, which was modified using a handheld goniometer to a knee angle of 135 +/- 5 degrees . Instructions were given to subjects to apply force as fast and as hard as possible for 3.5 seconds. Isometric force (N) and rates of force development (N.s(-1)) were recorded from the onset of contraction (F(0)) to time points corresponding to 30, 50, 80, 100, 150, and 250 milliseconds, as well as the peak isometric rate of force development (PISORFD), and rate of force development to

  13. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out

    Yu, Pingchao; Zhang, Dayi; Ma, Yanhong; Hong, Jie

    2018-06-01

    Fan Blade Out (FBO) from a running rotor of the turbofan engine will not only introduce the sudden unbalance and inertia asymmetry into the rotor, but also apply large impact load and induce rotor-to-stator rubbing on the rotor, which makes the mass, gyroscopic and stiffness matrixes of the dynamic equation become time-varying and highly nonlinear, consequently leads to the system's complicated vibration. The dynamic analysis of the aero-engine rotor system is one essential requirement of the authorities and is vital to the aero-engine's safety. The paper aims at studying the dynamic responses of the complicated dual-rotor systems at instantaneous and windmilling statuses when FBO event occurs. The physical process and mechanical characteristics of the FBO event are described qualitatively, based on which the dynamic modeling for an aero-engine dual-rotor system is carried out considering several excitations caused by FBO. Meanwhile the transient response during the instantaneous status and steady-state response at the windmilling status are obtained. The results reveal that the sudden unbalance can induce impact load to the rotor, and lead to the sharp increase of the vibration amplitude and reaction force. The rub-impact will apply constraint effects on the rotor and restrict the transient vibration amplitude, while the inertia asymmetry has little influence on the transient response. When the rotor with huge unbalance operates at windmilling status, the rub-impact turns to be the main factor determining the rotor's dynamic behavior, and several potential motion states, such as instable dry whip, intermittent rubbing and synchronous full annular rubbing would happen on certain conditions.

  14. Stator Vibration Characteristic Identification of Turbogenerator among Single and Composite Faults Composed of Static Air-Gap Eccentricity and Rotor Interturn Short Circuit

    Yu-Ling He

    2016-01-01

    Full Text Available This paper investigates the radial stator vibration characteristics of turbogenerator under the static air-gap eccentricity (SAGE fault, the rotor interturn short circuit (RISC fault, and the composite faults (CFs composed of SAGE and RISC, respectively. Firstly, the impact of the faulty types on the magnetic flux density (MFD is analyzed, based on which the detailed expressions of the magnetic pull per unit area (MPPUA on the stator under different performing conditions are deduced. Then, numerical FEM simulations based on Ansoft and an experimental study are carried out, taking the SDF-9 type fault simulating generator as the study object. It is shown that SAGE will increase the stator vibration at 2f (f is the electrical frequency which already exists even in normal condition, while RISC and CF will bring in stator vibrations at f, 2f, 3f, and 4f at the same time. The vibration amplitudes under CF are larger than those under RISC. As SAGE increases, the vibration amplitudes of each harmonic component under CF will all be increased, while the development of RISC will decrease the 2nd harmonic vibration but meanwhile increase the 4th harmonic vibration. The achievements of this paper are beneficial for fault identification and condition monitoring of the turbogenerator.

  15. Vibration Characteristics of Piezoelectric Microbeams Based on the Modified Couple Stress Theory

    R. Ansari

    2014-01-01

    Full Text Available The vibration behavior of piezoelectric microbeams is studied on the basis of the modified couple stress theory. The governing equations of motion and boundary conditions for the Euler-Bernoulli and Timoshenko beam models are derived using Hamilton’s principle. By the exact solution of the governing equations, an expression for natural frequencies of microbeams with simply supported boundary conditions is obtained. Numerical results for both beam models are presented and the effects of piezoelectricity and length scale parameter are illustrated. It is found that the influences of piezoelectricity and size effects are more prominent when the length of microbeams decreases. A comparison between two beam models also reveals that the Euler-Bernoulli beam model tends to overestimate the natural frequencies of microbeams as compared to its Timoshenko counterpart.

  16. Lateral stiffness and vibration characteristics of composite plated RC shear walls with variable fibres spacing

    Meftah, S.A.; Yeghnem, R.; Tounsi, A.; Adda Bedia, E.A.

    2008-01-01

    In this paper, a finite element model for static and free vibration analysis of reinforced concrete (RC) shear walls structures strengthened with thin composite plates having variable fibres spacing is presented. An efficient analysis method that can be used regardless to the sizes and location of the bonded plates is proposed in this study. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several test problems are examined to demonstrate the accuracy and effectiveness of the proposed method. Numerical results are obtained for six nonuniform distributions of E-glass, graphite and boron fibres in epoxy matrices. The fibre redistributions of the bonded plates are seen to increase the frequencies modes and reduce substantially the lateral displacements

  17. Transfer Matrix Method for the Determination of the Natural Vibration Characteristics of Realistic Thrusting Launch Vehicle—Part I

    Laith K. Abbas

    2013-01-01

    Full Text Available The feasibility of using the transfer matrix method (TMM to compute the natural vibration characteristics of a flexible rocket/satellite launch vehicle is explored theoretically. In the approach to the problem, a nonuniform free-free Timoshenko and Euler-Bernoulli beamlike structure is modeled. A provision is made to take into consideration the effects of shear deformation and rotary inertia. Large thrust-to-weight ratio leads to large axial accelerations that result in an axial inertia load distribution from nose to tail which causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. Once the transfer matrix of a single component has been obtained, the product of all component matrices composes the matrix of the entire structure. The frequency equation and mode shape are formulated in terms of the elements of the structural matrices. Flight test and analytical results validate the present TMM formulas.

  18. Radar Interferometry for Monitoring the Vibration Characteristics of Buildings and Civil Structures: Recent Case Studies in Spain.

    Luzi, Guido; Crosetto, Michele; Fernández, Enric

    2017-03-24

    The potential of a coherent microwave sensor to monitor the vibration characteristics of civil structures has been investigated in the past decade, and successful case studies have been published by different research teams. This remote sensing technique is based on the interferometric processing of real aperture radar acquisitions. Its capability to estimate, simultaneously and remotely, the displacement of different parts of the investigated structures, with high accuracy and repeatability, is its main advantage with respect to conventional sensors. A considerable amount of literature on this technique is available, including various case studies aimed at testing the ambient vibration of bridges, buildings, and towers. In the last years, this technique has been used in Spain for civil structures monitoring. In this paper, three examples of such case studies are described: the monitoring of the suspended bridge crossing the Ebro River at Amposta, the communications tower of Collserola in Barcelona, and an urban building located in Vilafranca del Penedès, a small town close to Barcelona. This paper summarizes the main outcomes of these case studies, underlining the advantages and limitations of the sensors currently available, and concluding with the possible improvements expected from the next generation of sensors.

  19. Is transverse feedback necessary for the SSC emittance preservation? (Vibration noise analysis and feedback parameters optimization)

    Parkhomchuk, V.V.; Shiltsev, V.D.

    1993-06-01

    The paper considers the Superconducting Super Collider (SSC) site ground motion measurements as well as data from accelerators worldwide about noises that worsen beam performance. Unacceptably fast emittance growth due to these noises is predicted for the SSC. A transverse feedback system was found to be the only satisfactory alternative to prevent emittance decay. Optimization of the primary feedback parameters was done

  20. An Investigation of the Vibration Characteristics of the Eurocopter AS35OB Main Rotor Gearbox Under Different Operating Conditions

    Wang, Wenyi

    2001-01-01

    Different flight conditions can introduce complex changes to the vibration of helicopter transmissions, which may cause a vibration-based in-flight transmission diagnostic system to produce false alarms...

  1. Electromechanical characteristics of piezoelectric ceramic transformers in radial vibration composed of concentric piezoelectric ceramic disk and ring

    Lin, Shuyu; Hu, Jing; Fu, Zhiqiang

    2013-01-01

    A new type of piezoelectric ceramic transformer in radial vibration is presented. The piezoelectric transformer consists of a pairing of a concentric piezoelectric ceramic circular disk and ring. The inner piezoelectric ceramic disk is axially polarized and the outer piezoelectric ring is radially polarized. Based on the plane stress theory, the exact analytical theory for the piezoelectric transformer is developed and its electromechanical equivalent circuit is introduced. The resonance/anti-resonance frequency equations of the transformer are obtained and the relationship between the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient and the geometrical dimensions of the piezoelectric transformer is analyzed. The dependency of the voltage transformation ratio on the frequency is obtained. To verify the analytical theory, a numerical method is used to simulate the electromechanical characteristics of the piezoelectric transformer. It is shown that the analytical resonance/anti-resonance frequencies are in good agreement with the numerical results. (paper)

  2. Structural characteristics and harmonic vibrational analysis of the stable conformer of 2,3-epoxypropanol by quantum chemical methods.

    Arjunan, V; Rani, T; Santhanam, R; Mohan, S

    2012-10-01

    The FT-IR and FT-Raman spectra of H bond inner conformer of 2,3-epoxypropanol have been recorded in the regions 3700-400 and 3700-100 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The normal coordinate analysis was carried out to confirm the precision of the assignments. The structure of the conformers H bond inner and H bond outer1 were optimised and the structural characteristics were determined by density functional theory (DFT) using B3LYP and MP2 methods with 6-31G** and 6-311++G** basis sets. The vibrational frequencies were calculated in all these methods and were compared with the experimental frequencies which yield good agreement between observed and calculated frequencies. The electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Vibration characteristics of the seismically isolated building supported by the elastomers and the elasto-plastic dampers

    Mazda, Taiji; Shiojiri, Hiroo; Aoyagi, Sakae; Sawada, Yoshihiro; Kawai, Nobuyasu; Harada, Osamu; Ohtsuka, Susume; Abe, Isamu.

    1989-01-01

    Recently, the seismic isolation has become one of the popular methods in the design of important structures or equipment against the earthquakes. However, the demonstration data on reliability of seismically isolated structures are not enough, therefore it is expected to accumulate such data. Based on the above recognition, the vibration tests of a base isolated building were carried out in Tsukuba Science City. After that, many earthquake records have been obtained at the building, and they made clear the dynamic characteristics of the structure. In order to make clear the dynamic behavior of the building, furthermore, seismic response analyses were executed by using Lumped Mass model, and the results of the analyses roughly agreed with the observed results. (author)

  4. THE OPTIMIZATION OF ELECTRODYNAMIC CONFIGURATION OBJECT WITH THE DESIRED CHARACTERISTICS OF SCATTERING.

    A. P. Preobrazhensky

    2017-02-01

    Full Text Available This paper considers the problem of optimization of the characteristics of scattering of electromagnetic waves on periodic electrodynamic structure. The solution of the scattering problem is based on the method of integral equations, the optimization of the characteristics is based on the genetic algorithm. Recommendations on the parameters of the periodic structure under given angles are given.

  5. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  6. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.

    2010-01-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  7. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  8. Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier

    Wang, Guangqing; Liao, Wei-Hsin; Yang, Binqiang; Wang, Xuebao; Xu, Wentan; Li, Xiuling

    2018-05-01

    Bistable piezoelectric energy harvesters are being increasingly seen as an alternative to batteries in low-power devices. However, their energy harvesting characteristics are limited. To enhance these, we use a configuration including an elastic magnifier to amplify base excitation and provide sufficient kinetic energy to overcome potential well barriers, thus leading to large-amplitude bistable motion. We derive the distributed parameter mathematical model of this configuration by using Hamilton's principle. We then investigate the nonlinear dynamic behaviors and energetic characteristics and analyze the bifurcation for the equilibrium solution of the model. The simulations and experiments show high electromechanical responses and energy generation characteristics of the proposed system over a broad frequency band. The results suggest that, compared with a typical bistable piezoelectric energy harvester, the proposed energy harvester system with an elastic magnifier can provide higher output over a broader frequency band at lower excitation levels by adjusting the system's mass and stiffness ratios.

  9. Identification of dynamic characteristics by field vibration test in Tsurumi Tsubasa bridge; Tsurumi Tsubasakyo no shindo jikken ni yoru doteki tokusei no dotei

    Yamaguchi, H. [Saitama University, Saitama (Japan). Faculty of Engineering; Takano, H.; Ogasawara, M.; Shimosato, T. [Metropolitan Expressway Public Corp., Tokyo (Japan); Kato, M.; Okada, J. [NKK Corp., Tokyo (Japan)

    1996-07-21

    Field vibration test of the Tsurumi Tsubasa Bridge, a long span cable stayed bridge, has been conducted. Focusing on its dynamic characteristics, an identification method from test results and its validity were investigated. The natural frequency identified using mode circle and resonance curve from steady vibration test agreed with that identified by the peak method from free damping test. Accordingly, there was no difference due to identification methods, and both methods provided appropriate accuracy. The natural vibration mode obtained from the steady vibration test agreed with that obtained by the eigenvalue analysis. The dispersion of experimental values, which indicates the adaptation to mode circle method, became a scale indicating reliability of identified values. When the damping obtained by the half power method for the microtremors test is compared with that identified from the steady vibration test and free damping test, it is required to compare them at lower amplitude level region, considering that the amplitude level of microtremors test is very low. For the dynamic characteristics of the Tsurumi Tsubasa Bridge, it was found that it has lower natural frequency and higher modal damping compared with other cable stayed bridges with similar scale of span. 18 refs., 13 figs., 4 tabs.

  10. Prevalence and characteristics of vibrator use by women in the United States: results from a nationally representative study.

    Herbenick, Debra; Reece, Michael; Sanders, Stephanie; Dodge, Brian; Ghassemi, Annahita; Fortenberry, J Dennis

    2009-07-01

    Although vibrators are commonly recommended by clinicians as adjunct to treatment for female sexual dysfunction, and for sexual enhancement, little is known about their prevalence or correlates of use. The aim of this study was to determine the lifetime and recent prevalence of women's vibrator use during masturbation and partnered sex, and the correlates of use related to sociodemographic variables, health behaviors, and sexual function. A nationally representative sample of 3,800 women aged 18-60 years were invited to participate in a cross-sectional Internet-based survey; 2,056 (54.1%) participated. The prevalence of vibrator use, the relationship between vibrator use and physical and psychological well-being (as assessed by the Centers for Disease Control and Prevention [CDC] Healthy Days measure) and health-promoting behaviors, the relationship between vibrator use and women's scores on the Female Sexual Function Index, and an assessment of the frequency and severity of side effects potentially associated with vibrator use. The prevalence of women's vibrator use was found to be 52.5% (95% CI 50.3-54.7%). Vibrator users were significantly more likely to have had a gynecologic exam during the past year (P health-promoting behaviors and positive sexual function, and rarely associated with side effects. Clinicians may find these data useful in responding to patients' sexual issues and recommending vibrator use to improve sexual function. Further research on the relationships between vibrator use and sexual health is warranted.

  11. Experimental Study on Piezoelectric Energy Harvesting from Vortex-Induced Vibrations and Wake-Induced Vibrations

    Min Zhang

    2016-01-01

    Full Text Available A rigid circular cylinder with two piezoelectric beams attached on has been tested through vortex-induced vibrations (VIV and wake-induced vibrations (WIV by installing a big cylinder fixed upstream, in order to study the influence of the different flow-induced vibrations (FIV types. The VIV test shows that the output voltage increases with the increases of load resistance; an optimal load resistance exists for the maximum output power. The WIV test shows that the vibration of the small cylinder is controlled by the vortex frequency of the large one. There is an optimal gap of the cylinders that can obtain the maximum output voltage and power. For a same energy harvesting device, WIV has higher power generation capacity; then the piezoelectric output characteristics can be effectively improved.

  12. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  13. Improvement of characteristic statistic algorithm and its application on equilibrium cycle reloading optimization

    Hu, Y.; Liu, Z.; Shi, X.; Wang, B.

    2006-01-01

    A brief introduction of characteristic statistic algorithm (CSA) is given in the paper, which is a new global optimization algorithm to solve the problem of PWR in-core fuel management optimization. CSA is modified by the adoption of back propagation neural network and fast local adjustment. Then the modified CSA is applied to PWR Equilibrium Cycle Reloading Optimization, and the corresponding optimization code of CSA-DYW is developed. CSA-DYW is used to optimize the equilibrium cycle of 18 month reloading of Daya bay nuclear plant Unit 1 reactor. The results show that CSA-DYW has high efficiency and good global performance on PWR Equilibrium Cycle Reloading Optimization. (authors)

  14. Active control of noise radiation from vibrating structures

    Mørkholt, Jakob

    developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... and result in different representations of the controllers. The Internal Model Control structure combined with optimal filtering is suggested as an alternative to state space optimal control techniques for designing robust optimal controllers for audio frequency vibration control of resonant structures....

  15. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  16. Fourier transform and particle swarm optimization based modified LQR algorithm for mitigation of vibrations using magnetorheological dampers

    Kumar, Gaurav; Kumar, Ashok

    2017-11-01

    Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure

  17. Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration

    Lin, Cherng-Yuan; Wang, Jung-Chang; Chen, Teng-Chieh

    2011-01-01

    Highlights: → The Al 2 O 3 nanofluid prepared with a surfactant with an HLB value = 12 had the lowest nanoparticle precipitation rate. → The nanofluids prepared with both a dispersant and surfactant had the lowest thermal conductivity . → The thermal conductivity decreased with storage time for all of the Al 2 O 3 nanofluids. → An increase in operating temperature leads to an increase in the thermal conductivity of Al 2 O 3 nanofluids. -- Abstract: Nanofluids that contain nanoparticles with excellent heat transfer characteristics dispersed in a continuous liquid phase are expected to exhibit superior thermal and fluid characteristics to those in a single liquid phase primarily because of their much greater collision frequency and larger contact surface between solid nanoparticles and the liquid phase. One of the major challenges in the use of nanofluids to dissipate the heat generated in electronic equipment such as LEDs is nanoparticles' precipitation due to their poor suspension in the fluid after periods of storage or operation, thereby leading to deterioration in the nanofluids' heat transfer rate. In this study, ultrasonic vibration was employed to prepare Al 2 O 3 nanofluids with a surfactant, a dispersant, and a combination of the two to evaluate their suspension and heat transfer characteristics. The experimental results show the Al 2 O 3 nanofluid prepared with a non-ionic surfactant with a hydrophile lipophile balance (HLB) value of 12 to have the lowest nanoparticle precipitation rate and, accordingly, the highest degree of emulsification stability. Moreover, the nanofluids prepared with both the dispersant and surfactant had the greatest dynamic viscosity and lowest degree of thermal conductivity. Both the precipitation rate and dynamic viscosity of the nanoparticles increased, and their thermal conductivity coefficient decreased, the longer they remained in the Al 2 O 3 nanofluids. Further, an increase in operating temperature caused an

  18. An experimental study of heat transfer characteristics of single and two-phase flows in an annular tube with external vibrations

    Zaki, Adel M.; Abou El-Kassem, S.K.; Abdalla Hanafi

    2003-01-01

    An experimental study of the external vibration effect on the heat transfer characteristics of single and two-phase flows in an annular tube is carried out. An experimental set-up was constructed to study the heat transfer in a stationary, as well as, in oscillating annular tube. The annular tube was heated electrically through the inner surface, which is a stainless steel tube (St 304) 13 mm outer diameter, while the outer tube, of 3.7 cm inner diameter, made from a glass. The experimental set-up was equipped with a vibrating system to excite the annular tube in the frequency range of 0 up to 134 Hz. Several sensors for measuring wall and fluid temperatures, heat fluxes and volume flow rates of both phases were used. The obtained results show that the heat transfer coefficient can be significantly increased by vibration of the test section. (author)

  19. Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic

    González-Carbajal, Javier; Domínguez, Jaime

    2017-11-01

    This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.

  20. Relationship between vibrations of tubular elements of power equipment and dynamic characteristics of longitudinal two-phase flow

    Fokin, B.S.; Gol'dberg, E.N.

    1979-01-01

    Analytical results of statistical nature of forces exciting vibrations of tubular elements, which are flown around with two-phase flows, are given. Relationships for the calculation of a mean-square amplitude and vibration frequency of a tubular element flown around with a two-phase mixture have been obtained. The relationships are confirmed experimentally

  1. Operational characteristics optimization of human-computer system

    Zulquernain Mallick

    2010-09-01

    Full Text Available Computer operational parameters are having vital influence on the operators efficiency from readability viewpoint. Four parameters namely font, text/background color, viewing angle and viewing distance are analyzed. The text reading task, in the form of English text, was presented on the computer screen to the participating subjects and their performance, measured in terms of number of words read per minute (NWRPM, was recorded. For the purpose of optimization, the Taguchi method is used to find the optimal parameters to maximize operators’ efficiency for performing readability task. Two levels of each parameter have been considered in this study. An orthogonal array, the signal-to-noise (S/N ratio and the analysis of variance (ANOVA were employed to investigate the operators’ performance/efficiency. Results showed that Times Roman font, black text on white background, 40 degree viewing angle and 60 cm viewing distance, the subjects were quite comfortable, efficient and read maximum number of words per minute. Text/background color was dominant parameter with a percentage contribution of 76.18% towards the laid down objective followed by font type at 18.17%, viewing distance 7.04% and viewing angle 0.58%. Experimental results are provided to confirm the effectiveness of this approach.

  2. Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.

    Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David

    2017-01-01

    Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO.

  3. Production of Chemoenzymatic Catalyzed Monoepoxide Biolubricant: Optimization and Physicochemical Characteristics

    Jumat Salimon

    2012-01-01

    Full Text Available Linoleic acid (LA is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435. This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12-10(13-monoepoxy 12(9-octadecanoic acid (MEOA was optimized using D-optimal design. At optimum conditions, higher yield% (82.14 and medium oxirane oxygen content (OOC (4.91% of MEOA were predicted at 15 μL of H2O2, 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP, flash point (FP, viscosity index (VI, and oxidative stability (OT were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of −41°C. FP of MEOA increased to 128°C comparing with 115°C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168°C, respectively.

  4. Optimized Estimation of Surface Layer Characteristics from Profiling Measurements

    Doreene Kang

    2016-01-01

    Full Text Available New sampling techniques such as tethered-balloon-based measurements or small unmanned aerial vehicles are capable of providing multiple profiles of the Marine Atmospheric Surface Layer (MASL in a short time period. It is desirable to obtain surface fluxes from these measurements, especially when direct flux measurements are difficult to obtain. The profiling data is different from the traditional mean profiles obtained at two or more fixed levels in the surface layer from which surface fluxes of momentum, sensible heat, and latent heat are derived based on Monin-Obukhov Similarity Theory (MOST. This research develops an improved method to derive surface fluxes and the corresponding MASL mean profiles of wind, temperature, and humidity with a least-squares optimization method using the profiling measurements. This approach allows the use of all available independent data. We use a weighted cost function based on the framework of MOST with the cost being optimized using a quasi-Newton method. This approach was applied to seven sets of data collected from the Monterey Bay. The derived fluxes and mean profiles show reasonable results. An empirical bias analysis is conducted using 1000 synthetic datasets to evaluate the robustness of the method.

  5. Optimizing Power–Frequency Droop Characteristics of Distributed Energy Resources

    Guggilam, Swaroop S.; Zhao, Changhong; Dall Anese, Emiliano; Chen, Yu Christine; Dhople, Sairaj V.

    2018-05-01

    This paper outlines a procedure to design power-frequency droop slopes for distributed energy resources (DERs) installed in distribution networks to optimally participate in primary frequency response. In particular, the droop slopes are engineered such that DERs respond in proportion to their power ratings and they are not unfairly penalized in power provisioning based on their location in the distribution network. The main contribution of our approach is that a guaranteed level of frequency regulation can be guaranteed at the feeder head, while ensuring that the outputs of individual DERs conform to some well-defined notion of fairness. The approach we adopt leverages an optimization-based perspective and suitable linearizations of the power-flow equations to embed notions of fairness and information regarding the physics of the power flows within the distribution network into the droop slopes. Time-domain simulations from a differential algebraic equation model of the 39-bus New England test-case system augmented with three instances of the IEEE 37-node distribution-network with frequency-sensitive DERs are provided to validate our approach.

  6. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    Jackson W. Cryns

    2013-01-01

    Full Text Available Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random, and sine on random (SOR input vibration scenarios; the implications of source vibration characteristics on harvester design are discussed. The rise in popularity of harvesting energy from ambient vibrations has made compact, energy dense piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. Variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. The results agree with numerical and theoretical predictions in the previous literature for optimal power harvesting in sinusoidal and flat broadband vibration scenarios. Going beyond idealized steady-state sinusoidal and flat random vibration input, experimental SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibration sources significantly alter power generation and processing requirements by varying harvested power, shifting optimal conditioning impedance, inducing voltage fluctuations, and ultimately rendering idealized sinusoidal and random analyses incorrect.

  7. Empirically characteristic analysis of chaotic PID controlling particle swarm optimization

    Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David

    2017-01-01

    Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles’ search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles’ premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO. PMID:28472050

  8. Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.

    Danping Yan

    Full Text Available Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO, we herein propose a chaotic proportional integral derivative (PID controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA and PSO.

  9. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli's principle: An application to vocal folds vibration.

    Zhang, Lucy T; Yang, Jubiao

    2016-12-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.

  10. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli’s principle: An application to vocal folds vibration

    Zhang, Lucy T.; Yang, Jubiao

    2017-01-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli’s principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli’s principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions. PMID:29527541

  11. Characteristic statistic algorithm (CSA) for in-core loading pattern optimization

    Liu Zhihong; Hu Yongming; Shi Gong

    2007-01-01

    To solve the problem of PWR in-core loading pattern optimization, a more suitable global optimization algorithm, i.e., Characteristic statistic algorithm (CSA), is used. The searching process of this algorithm and how to apply it to this problem are presented. Loading pattern optimization code SCYCLE is developed. Two different problems on real PWR models are calculated and the results are compared with other algorithms. It is shown that SCYCLE has high efficiency and good global performance on this problem. (authors)

  12. Growth characteristics and enzyme production optimization of lipase Producing Strain

    Zheng, Chaocheng

    2018-01-01

    55 samples from different regions were selected and screened by Rhodamine B flat transparent circle method to observe lipase producing effect, among which, LHY-1, identified as Serratia sp. has the characteristics of fast growth, high enzyme production and stable ability. The colony of this strain is white, the edge is smooth and tidy, the surface is moist, the cell is straight, rod-shaped, gram negative, 0.1-0.2 μm in diameter and, length 0.3-0.5 μm in length.

  13. Prototype observation and influencing factors of environmental vibration induced by flood discharge

    Xin Wang

    2017-01-01

    Full Text Available Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The results indicate that field vibrations caused by flood discharge have distinctive characteristics of constancy, low frequency, small amplitude, and randomness with impact, which significantly differ from the common high-frequency vibration characteristics. Field vibrations have a main frequency of about 0.5–3.0 Hz and the characteristics of long propagation distance and large-scale impact. The vibration of a stilling basin slab runs mainly in the vertical direction. The vibration response of the guide wall perpendicular to the flow is significantly stronger than it is in other directions and decreases linearly downstream along the guide wall. The vibration response of the underground turbine floor is mainly caused by the load of unit operation. Urban environmental vibration has particular distribution characteristics and change patterns, and is greatly affected by discharge, scheduling modes, and geological conditions. Along with the increase of the height of residential buildings, vibration responses show a significant amplification effect. The horizontal and vertical vibrations of the 7th floor are, respectively, about 6 times and 1.5 times stronger than the corresponding vibrations of the 1st floor. The vibration of a large-scale chemical plant presents the combined action of flood discharge and working machines. Meanwhile, it is very difficult to reduce the low-frequency environmental vibrations. Optimization of the discharge scheduling mode is one of the effective measures of reducing the flow impact loads at present. Choosing reasonable dam sites is crucial.

  14. Peripheral origins and functional characteristics of vibration-sensitive VIIIth nerve fibers in the frog Rana temporaria

    Jøgensen, Morten Buhl; Christensen-Dalsgaard, Jakob

    1991-01-01

    were studied. 2) Vibration-sensitive fibers were found in both the anterior and posterior branch of the VIIIth nerve. 3) No vibration-sensitive fibers were found in the lagenar nerve. 4) The vibration-sensitive fibers in the posterior branch probably innervated the amphibian papilla and many...... of these fibers also responded to low-frequency sound. 5) The vibration-sensitive fibers in the anterior branch probably innervated the sacculus and the utriculus. 6) Hence, the grassfrog has at least two, and probably three, vibration-sensitive organs in the inner ear. 7) All fibers had V-shaped vibrational...... tuning curves. In the posterior branch best frequencies (BFs) ranged from 10 to 300 Hz, in the anterior branch from 10 to 100 Hz. In the posterior branch spike-rate thresholds at BF ranged from 0.04 to 1.28 cm/s2, in the anterior branch from 0.02 to 1.28 cm/s2. All fibers showed strong synchronization...

  15. Research on Free Vibration Frequency Characteristics of Rotating Functionally Graded Material Truncated Conical Shells with Eccentric Functionally Graded Material Stringer and Ring Stiffeners

    Dao Van Dung

    Full Text Available Abstract In this research work, an exact analytical solution for frequency characteristics of the free vibration of rotating functionally graded material (FGM truncated conical shells reinforced by eccentric FGM stringers and rings has been investigated by the displacement function method. Material properties of shell and stiffeners are assumed to be graded in the thickness direction according to a simple power law distribution. The change of spacing between stringers is considered. Using the Donnell shell theory, Leckhnisky smeared stiffeners technique and taking into account the influences of centrifugal force and Coriolis acceleration the governing equations are derived. For stiffened FGM conical shells, it is difficult that free vibration equations are a couple set of three variable coefficient partial differential equations. By suitable transformations and applying Galerkin method, this difficulty is overcome in the paper. The sixth order polynomial equation for w is obtained and it is used to analyze the frequency characteristics of rotating ES-FGM conical shells. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed on frequency characteristics of the shell forward and backward wave are discussed in detail. The present approach proves to be reliable and accurate by comparing with published results available in the literature.

  16. Vibration Energy Harvesting Potential for Turbomachinery Applications

    Adrian STOICESCU

    2018-03-01

    Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.

  17. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    Zhou Yiheng

    2017-01-01

    Full Text Available Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major structural parameters are analysed by finite element method, which is conductive to the design and optimization of the tubular horizontal-gap passive magnetic levitation vibration isolator. The force characteristics of different topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are compared and evaluated from the aspect of force density, force ripple and manufacturability. In comparison with conventional passive magnetic levitation vibration isolators, the proposed tubular horizontal-gap passive magnetic levitation vibration isolator shows advantage in higher force density.

  18. Research on robust optimization of emergency logistics network considering the time dependence characteristic

    WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun

    2017-06-01

    Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.

  19. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.

    Saariaho, Anna-Maija; Jääskeläinen, Anna-Stiina; Nuopponen, Mari; Vuorinen, Tapani

    2003-01-01

    Raman spectroscopy of wood and lignin samples is preferably carried out in the near-infrared region because lignin produces an intense laser-induced fluorescence background at visible excitation wavelengths. However, excitation of aromatic and conjugated lignin structures with deep ultra violet (UV) light gives resonance-enhanced Raman signals while the overlapping fluorescence is eliminated. In this study, ultra violet resonance Raman (UVRR) spectroscopy was used to define characteristic vibration bands of model compounds of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures at three excitation wavelengths (229, 244, and 257 nm). The intensities of each band, relative to the intensity of the aromatic vibration band at 1600 cm-1, were defined and the most suitable excitation wavelength was suggested for each structure. p-Hydroxyphenyl structures showed intensive characteristic bands at 1217-1214 and 1179-1167 cm-1 with excitation at 244 nm, whereas the bands of guaiacyl structures were more intensive with 257 nm excitation. Most intensive characteristic bands of guaiacyl structures were found at 1289-1279, 1187-1185, 1158-1155, and 791-704 cm-1. Syringyl structures had almost identical spectra with 244 and 257 nm excitations with characteristic bands at 1514-1506, 1333-1330, and 981-962 cm-1. The characteristic bands of the three structural units were also found from the compression wood, softwood, and hardwood samples, indicating that UVRR spectroscopy can be applied for the determination of chemical structures of lignin.

  20. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.

    2013-07-01

    Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing

  1. Hydraulic optimization of 'S' characteristics of the pump-turbine for Xianju pumped storage plant

    Liu, W C; Zheng, J S; Cheng, J; Shi, Q H

    2012-01-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the 'S' characteristic in the development of the model pump-turbine. This paper presents the cause of 'S' characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the 'S' characteristics of the machine at Xianju pumped storage plant and a big step for removing the 'S' characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  2. Adaptive photodetectors for vibration monitoring

    Sokolov, I.A.

    2003-01-01

    We present characteristics of laser vibrometer using semiconductor GaAs and molecular SnS 2 adaptive photodetectors (AP) based on the effect of the non-steady-state photoelectromotive force. AP enable efficient direct conversion of high-frequency phase modulation of speckle-like optical wave reflected from the vibrating object into an output electrical signal with concomitant setting of optimal operation point of the interferometer and suppression of amplitude laser noise. The sensitivity of the setup is analyzed and further improvements in operation of AP are discussed

  3. Performance improvement of an active vibration absorber subsystem for an aircraft model using a bees algorithm based on multi-objective intelligent optimization

    Zarchi, Milad; Attaran, Behrooz

    2017-11-01

    This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.

  4. Vibration characteristics of two-stage planetary transmission system with thin-walled ring gear on elastic supports

    Li, JianYing; Hu, QingChun; Zong, ChangFu; Zhu, TianJun; Zhang, ZeXing

    2018-03-01

    A dual-clutch and dual-speed planetary gears mechanism of a hybrid car coupled-system is taken as research subject, in which the ring gear of planet set II is a thin-walled structure and the clutch friction plates of planet set II are used as its elastic supports. Based on the lumped parameter-rigid elastic coupled dynamic model of two-stage planetary transmission system with thin-walled ring gear on elastic supports, the motion differential equations are established and the dynamic responses are solved by the Runge-Kutta method considering each stage internal and external time-varying mesh stiffness. The vibration displacements of each stage ring gear have been affected differently in time-domain, the translational vibration displacement of the ring gear of planet set I are obviously more than the torsional vibration displacement, but it is opposite for the ring gear of planet set II; The translational and torsional vibration responses of each stage ring gear arrive the peak in low-frequency. The analysis results of this paper can enrich the theoretical research of multistage planetary transmission and provide guidance for dynamic design.

  5. Vibrational Coupling in Conjugated π Systems with a view to Optimization of Fluorescence Yield through Phonon Confinement

    O'Neill, Luke; Lynch, Patrick; McNamara, Mary; Byrne, Hugh J.

    2005-01-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transi...

  6. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil

    Wang Qing

    2015-04-01

    Full Text Available In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming (SQP method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on the SC1095 airfoil. The geometry of airfoil is parameterized by the class-shape-transformation (CST method, and the C-topology body-fitted mesh is then automatically generated around the airfoil by solving the Poisson equations. Based on the grid generation technology, the unsteady Reynolds-averaged Navier-Stokes (RANS equations are chosen as the governing equations for predicting airfoil flow field and the highly-efficient implicit scheme of lower–upper symmetric Gauss–Seidel (LU-SGS is adopted for temporal discretization. To capture the dynamic stall phenomenon of the rotor more accurately, the Spalart–Allmaras turbulence model is employed to close the RANS equations. The optimized airfoil with a larger leading edge radius and camber is obtained. The leading edge vortex and trailing edge separation of the optimized airfoil under unsteady conditions are obviously weakened, and the dynamic stall characteristics of optimized airfoil at different Mach numbers, reduced frequencies and angles of attack are also obviously improved compared with the baseline SC1095 airfoil. It is demonstrated that the optimized method is effective and the optimized airfoil is suitable as the helicopter rotor airfoil.

  7. Finite element parametric study of the influence of friction pad material and morphological characteristics on disc brake vibration phenomena

    Forte, P; Frendo, F; Rodrigues, R N

    2016-01-01

    Since nowadays the NVH performance of vehicles has become an important priority, the noise radiating from brakes is considered a source of considerable passenger discomfort and dissatisfaction. Creep groan and squeal that show up with annoying vibrations and noise in specific frequency ranges are typical examples of self-excited brake vibrations caused by the stick-slip effect, the former, by the mode coupling of brake disc and friction pads or calliper, the latter. In both cases, the friction coefficient, which depends, among other factors, on the morphology of the mating surfaces and on the operating conditions, is a fundamental parameter but not the only one for the occurrence of the vibratory phenomena. Finite element complex eigenvalue parametric analyses were performed on a disc brake assembly to evaluate propensity to dynamic instability of brakes with multiple pads, as in railway brakes, as a function of the number of pads, pad shape and size, and material parameters. (paper)

  8. Optimization of Performance and Emission Characteristics of Diesel Engine with Biodiesel Using Grey-Taguchi Method

    Goutam Pohit

    2013-01-01

    Full Text Available Engine performances and emission characteristics of Karanja oil methyl ester blended with diesel were carried out on a variable compression diesel engine. In order to search for the optimal process response through a limited number of experiment runs, application of Taguchi method in combination with grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a particular combination of input parameters was predicted so as to achieve optimum response characteristics. It was observed that a blend of fifty percent was most suitable for use in a diesel engine without significantly affecting the engine performance and emissions characteristics.

  9. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  10. Particle swarm optimization using multi-information characteristics of all personal-best information.

    Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng

    2016-01-01

    Convergence stagnation is the chief difficulty to solve hard optimization problems for most particle swarm optimization variants. To address this issue, a novel particle swarm optimization using multi-information characteristics of all personal-best information is developed in our research. In the modified algorithm, two positions are defined by personal-best positions and an improved cognition term with three positions of all personal-best information is used in velocity update equation to enhance the search capability. This strategy could make particles fly to a better direction by discovering useful information from all the personal-best positions. The validity of the proposed algorithm is assessed on twenty benchmark problems including unimodal, multimodal, rotated and shifted functions, and the results are compared with that obtained by some published variants of particle swarm optimization in the literature. Computational results demonstrate that the proposed algorithm finds several global optimum and high-quality solutions in most case with a fast convergence speed.

  11. Optimization of Steering System of Forklift Vehicle for Idle Performance

    Yuan Shen

    2015-01-01

    Full Text Available This paper presents an optimal design process for the steering system of a forklift vehicle. An efficient procedure for minimizing the engine-induced idle vibration is developed in this study. Reciprocating unbalance and gas pressure torque as two major sources of engine excitation are studied. Using the field vibration tests and FEM analysis, the cause and characteristics of steering system’s idle vibration are recognized. So as to distribute the characteristic modes based on the optimization strategy, global sensitivity analysis of the main parameters is also carried out to achieve the optimal combination of the optimization factors. Based on all analysis above, some structure modifications for optimization are presented to control the idle vibration. The effectiveness and rationality of the improvements are also verified through experimental prototyping testing. This study also makes it possible to provide a design guideline using CAE (computer aided engineering analysis for some other objects.

  12. Orbital-optimized coupled-electron pair theory and its analytic gradients: Accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions

    Bozkaya, Uǧur; Sherrill, C. David

    2013-08-01

    Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm-1) is fortuitously even better than that of CCSD(T) (50 cm-1), while the MAEs of CEPA(0) (184 cm-1) and CCSD (84 cm-1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol-1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol-1), and comparing to MP2 (7.7 kcal mol-1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal

  13. A method of network topology optimization design considering application process characteristic

    Wang, Chunlin; Huang, Ning; Bai, Yanan; Zhang, Shuo

    2018-03-01

    Communication networks are designed to meet the usage requirements of users for various network applications. The current studies of network topology optimization design mainly considered network traffic, which is the result of network application operation, but not a design element of communication networks. A network application is a procedure of the usage of services by users with some demanded performance requirements, and has obvious process characteristic. In this paper, we first propose a method to optimize the design of communication network topology considering the application process characteristic. Taking the minimum network delay as objective, and the cost of network design and network connective reliability as constraints, an optimization model of network topology design is formulated, and the optimal solution of network topology design is searched by Genetic Algorithm (GA). Furthermore, we investigate the influence of network topology parameter on network delay under the background of multiple process-oriented applications, which can guide the generation of initial population and then improve the efficiency of GA. Numerical simulations show the effectiveness and validity of our proposed method. Network topology optimization design considering applications can improve the reliability of applications, and provide guidance for network builders in the early stage of network design, which is of great significance in engineering practices.

  14. Crystal structure and conformational analysis of s-cis-(acetylacetonato)(ethylenediamine-N,N'-diacetato)-chromium(III): development of vibrationally optimized force field (VOFF).

    Choi, Jong-Ha; Niketić, Svetozar R; Djordjević, Ivana; Clegg, William; Harrington, Ross W

    2012-05-01

    The crystal structure of [Cr(edda)(acac)] (edda = ethylediamine-N,N'-diacetate; acac = acetylacetonato) has been determined by a single crystal X-ray diffraction study at 150 K. The chromium ion is in a distorted octahedral environment coordinated by two N and two O atoms of chelating edda and two O atoms of acac, resulting in s-cis configuration. The complex crystallizes in the space group P2(1)/c of the monoclinic system in a cell of dimensions a = 10.2588(9), b = 15.801(3), c = 8.7015(11) Å, β =101.201(9)° and Z = 4. The mean Cr-N(edda), Cr-O(edda) and Cr-O(acac) bond distances are 2.0829(14), 1.9678(11) and 1.9477(11) Å while the angles O-Cr-O of edda and O-Cr-O of acac are 171.47(5) and 92.72(5)°, respectively. The crystal structure is stabilized by N-H···O hydrogen bonds linking [Cr(edda)(acac)] molecules in distinct linear strands. The visible electronic and IR spectroscopic properties are also discussed. An improved, physically more realistic force field, Vibrationally Optimized Force Field (VOFF), capable of reproducing structural and vibrational properties of [Cr(edda)(acac)] was developed and its transferability demonstrated on selected chromium(III) complexes with similar ligands.

  15. Vibrations of rotating machinery

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  16. The Parameters Optimizing Design of Double Suspension Arm Torsion Bar in the Electric Sight-Seeing Car by Random Vibration Analyzing Method

    Shui-Ting Zhou

    2017-01-01

    Full Text Available This study is about the impact of the performance and the sensitivity analysis for parameters of the torsion bar suspension in the electric sight-seeing car, which the authors’ laboratory designed and which is used in the authors’ university. The suspension stiffness was calculated by using the virtual work principle, the vector algebra, and tensor of finite rotation methods and was verified by the ADAMS software. Based on the random vibration analysis method, the paper analyzed the dynamic tire load (DTL, suspension working space (SWS, and comfort performance parameters. For the purpose of decreasing the displacement of the suspension and limiting the frequency of impacting the stop block, the paper examined the three parameters and optimized the basic parameters of the torsion bar. The results show that the method achieves a great effect and contributes an accurate value for the general layout design.

  17. Optimizing the milling characteristics of Al-SiC particulate composites

    Karthikeyan, R.; Raghukandan, K.; Naagarazan, R. S.; Pai, B. C.

    2000-12-01

    The present investigation focuses on the face milling characteristics of LM25Al-SiC particulate composites produced through stir casting. Experiments were conducted according to an L27 orthogonal array and mathematical models were developed for such machining characteristics as flank wear, specific energy and surface roughness whose adequacy was checked. The insignificant effects present in the models were eliminated using a t-test. Goal programming was employed to optimize the cutting conditions by considering such primary objectives as maximizing the metal removal rate and minimizing tool wear, specific energy and surface roughness.

  18. Optimized geometry, vibration (IR and Raman spectra and nonlinear optical activity of p-nitroanilinium perchlorate molecule: A theoretical study

    Tamer Ömer

    2016-03-01

    Full Text Available The molecular modeling of p-nitroanilinium perchlorate molecule was carried out by using B3LYP and HSEH1PBE levels of density functional theory (DFT. The IR and Raman spectra were simulated and the assignments of vibrational modes were performed on the basis of relative contribution of various internal co-ordinates. NBO analysis was performed to demonstrate charge transfer, conjugative interactions and the formation of intramolecular hydrogen bonding interactions within PNAPC. Obtained large dipole moment values showed that PNAPC is a highly polarizable complex, and the charge transfer occurs within PNAPC. Hydrogen bonding and charge transfer interactions were also displayed by small HOMO-LUMO gap and molecular electrostatic potential (MEP surface. The strong evidences that the material can be used as an efficient nonlinear optical (NLO material of PNAPC were demonstrated by considerable polarizability and hyperpolarizability values obtained at DFT levels.

  19. Effect of torrefaction conditions on greenhouse crop residue: Optimization of conditions to upgrade solid characteristics.

    Iáñez-Rodríguez, Irene; Martín-Lara, María Ángeles; Blázquez, Gabriel; Pérez, Antonio; Calero, Mónica

    2017-11-01

    This work investigated the possibility of using a greenhouse crop waste as a fuel, since it is an abundant residue in the Mediterranean area of Spain. The residue is mainly composed by biomass with a little quantity of plastic. The physical and chemical characteristics of the biomass were determined by elemental analysis, proximate analysis, FT-IR, FE-SEM and thermogravimetry. Additionally, a torrefaction process was carried out as a pre-treatment to improve the energy properties of the biomass material. The optimal conditions (time and temperature) of torrefaction were found to be 263°C and 15min using the gain and loss method. Further studies were carried out with the sample prepared with the nearest conditions to the optimal in order to determine the effect of the plastic fraction in the characteristics and torrefaction process of the waste studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Optimization of observation plan based on the stochastic characteristics of the geodetic network

    Pachelski Wojciech

    2016-06-01

    Full Text Available Optimal design of geodetic network is a basic subject of many engineering projects. An observation plan is a concluding part of the process. Any particular observation within the network has through adjustment a different contribution and impact on values and accuracy characteristics of unknowns. The problem of optimal design can be solved by means of computer simulation. This paper presents a new method of simulation based on sequential estimation of individual observations in a step-by-step manner, by means of the so-called filtering equations. The algorithm aims at satisfying different criteria of accuracy according to various interpretations of the covariance matrix. Apart of them, the optimization criterion is also amount of effort, defined as the minimum number of observations required.

  1. Characteristics of psychiatric patients for whom financial considerations affect optimal treatment provision.

    West, Joyce C; Pingitore, David; Zarin, Deborah A

    2002-12-01

    This study assessed characteristics of psychiatric patients for whom financial considerations affected the provision of "optimal" treatment. Psychiatrists reported that for 33.8 percent of 1,228 patients from a national sample, financial considerations such as managed care limitations, the patient's personal finances, and limitations inherent in the public care system adversely affected the provision of optimal treatment. Patients were more likely to have their treatment adversely affected by financial considerations if they were more severely ill, had more than one behavioral health disorder or a psychosocial problem, or were receiving treatment under managed care arrangements. Patients for whom financial considerations affect the provision of optimal treatment represent a population for whom access to treatment may be particularly important.

  2. Research overview on vibration damping of mistuned bladed disk assemblies

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  3. A characteristic study of CCF modeling techniques and optimization of CCF defense strategies

    Kim, Min Chull

    2000-02-01

    Common Cause Failures (CCFs ) are among the major contributors to risk and core damage frequency (CDF ) from operating nuclear power plants (NPPs ). Our study on CCF focused on the following aspects : 1) a characteristic study on the CCF modeling techniques and 2) development of the optimal CCF defense strategy. Firstly, the characteristics of CCF modeling techniques were studied through sensitivity study of CCF occurrence probability upon system redundancy. The modeling techniques considered in this study include those most widely used worldwide, i.e., beta factor, MGL, alpha factor, and binomial failure rate models. We found that MGL and alpha factor models are essentially identical in terms of the CCF probability. Secondly, in the study for CCF defense, the various methods identified in the previous studies for defending against CCF were classified into five different categories. Based on these categories, we developed a generic method by which the optimal CCF defense strategy can be selected. The method is not only qualitative but also quantitative in nature: the selection of the optimal strategy among candidates is based on the use of analytic hierarchical process (AHP). We applied this method to two motor-driven valves for containment sump isolation in Ulchin 3 and 4 nuclear power plants. The result indicates that the method for developing an optimal CCF defense strategy is effective

  4. Performance characteristics and parametric optimization of an irreversible magnetic Ericsson heat-pump

    Wei Fang; Lin Guoxing; Chen Jincan; Brueck, Ekkes

    2011-01-01

    Taking into account the finite-rate heat transfer in the heat-transfer processes, heat leak between the two external heat reservoirs, regenerative loss, regeneration time, and internal irreversibility due to dissipation of the cycle working substance, an irreversible magnetic Ericsson heat-pump cycle is presented. On the basis of the thermodynamic properties of magnetic materials, the performance characteristics of the irreversible magnetic Ericsson heat-pump are investigated and the relationship between the optimal heating load and the coefficient of performance (COP) is derived. Moreover, the maximum heating load and the corresponding COP as well as the maximum COP and the corresponding heating load are obtained. Furthermore, the other optimal performance characteristics are discussed in detail. The results obtained here may provide some new information for the optimal parameter design and the development of real magnetic Ericsson heat-pumps. -- Research Highlights: →The effects of multi-irreversibilities on the performance of a magnetic heat-pump are revealed. →Mathematical expressions of the heating load and the COP are derived and the optimal performance and operating parameters are analyzed and discussed. →Several important performance bounds are determined.

  5. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  6. Lightweight Vehicle and Driver’s Whole-Body Models for Vibration Analysis

    MdSah, Jamali; Taha, Zahari; Azwan Ismail, Khairul

    2018-03-01

    Vehicle vibration is a main factor for driving fatigue, discomfort and health problems. The ability to simulate the vibration characteristics in the vehicle and its effects on driver’s whole-body vibration will give significant advantages to designers especially on the vehicle development time and cost. However, it is difficult to achieve optimal condition of ride comfort and handling when using passive suspension system. This paper presents mathematical equations that can be used to describe the vibration characteristics of a lightweight electric vehicle that had been developed. The vehicle’s model was combined with the lumped-parameter model of driver to determine the whole-body vibration level when the vehicle is passing over a road hump using Matlab Simulink. The models were simulated at a constant speed and the results were compared with the experimental data. The simulated vibration level at the vehicle floor and seat were almost similar to the experimental vibration results. The suspension systems that are being used for the solar vehicle are able to reduce the vibration level due to the road hump. The models can be used to simulate and choose the optimal parameters for the suspensions.

  7. Silicon micromachined vibrating gyroscopes

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  8. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-06-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p- n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 μm was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  9. Condenser design optimization and operation characteristics of a novel miniature loop heat pipe

    Wan Zhenping; Wang Xiaowu; Tang Yong

    2012-01-01

    Highlights: ► A novel miniature LHP (mLHP) system was presented. ► Optimal design of condenser was considered. ► The heat transfer performance was investigated experimentally. - Abstract: Loop heat pipe (LHP) is a promising means for electronics cooling since LHP is a exceptionally efficient heat transfer device. In this paper, a novel miniature LHP (mLHP) system is presented and optimal design of condenser is considered seeing that evaporators have been able to handle very high-heat fluxes with low-heat transfer resistances since most of the previous researchers focused on the evaporator of mLHP. The arrayed pins were designed and machined out on the bottom of condenser to enhance condensation heat transfer. The parameters of the arrayed pins, including layout, cross-section shape and area, were optimized by finite element analysis. Tests were carried out on the mLHP with a CPU thermal simulator using forced air convection condenser cooling to validate the optimization. The operation characteristics of the mLHP with optimal design parameters of condenser were investigated experimentally. The experimental results show that the mLHP can reject head load 200 W while maintaining the cooled object temperatures below 100 °C, and for a variable power applied to the evaporator, the system presents reliable startups and continuous operation.

  10. Vibration mixer

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  11. Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface

    Park, Chang-Seok; Lim, Hee-Chang [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-01-15

    Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

  12. Spectroscopic investigation on structure (monomer and dimer), molecular characteristics and comparative study on vibrational analysis of picolinic and isonicotinic acids using experimental and theoretical (DFT & IVP) methods

    Ramesh, Gaddam; Reddy, Byru Venkatram

    2018-05-01

    In this investigation, the monomeric structure is determined for picolinic and isonicotinic acids based on geometry optimization for one of the four possible conformers and intramolecular hydrogen bond of Osbnd H⋯O using density functional theory (DFT) employing B3LYP functional supplemented with 6-311++G(d,p) basis set. Using this optimized monomeric form, the dimer structure is determined based on minimum energy and length of hydrogen bonds obtained for two possible dimeric forms yielded due to head-to-tail intermolecular Osbnd H⋯N hydrogen bond (dimer 1) linkage and tail-to -tail intermolecular Osbnd H⋯O hydrogen bond (dimer 2) linkage between pyridine ring and carboxyl group. The structure parameters obtained for monomer and dimer forms are in good agreement with the experimental literature values. The vibrational assignments have been made unambiguously for all the vibrations from FTIR and FT-Raman spectra based on the potential energy distribution (PED) and eigen vectors obtained in DFT and inverse vibrational problem (IVP) computations. The rms error between the observed and scaled frequencies is 7.7 and 9.4 cm-1 for PIA and INA, respectively. A 74-element modified valence force field is derived by Wilson's GF matrix method using 58 experimental frequencies of the two molecules in overlay least-squares technique. The average error between observed and computed frequencies by this method is calculated to be 10.39 cm-1. The results of both DFT and IVP computations yielded good agreement between observed and calculated frequencies. The NLO behaviour using hyperpolarizability values; and HOMO and LUMO energies; of the two molecules are investigated by DFT. Charge density distribution and site of chemical reactivity of the molecules are studied by molecular electrostatic surface potential (MESP). Stability of the molecules arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO

  13. Optimization of tropical fruit juice based on sensory and nutritional characteristics

    Paula Nogueira CURI

    Full Text Available Abstract The objective of this study was, through mixing design and response surface methodology, to optimize a reduced calorie mixed juice of persimmon, orange and pineapple based the sensory and nutritional characteristics. This study also aimed to carry out the survey of the physicochemical characteristics that are desirable in this product. It was found that juice of these fruits, when combined, have better sensory and nutritional characteristics than when isolated. The consumer has a preference for mixed fruit juices made up of orange, pineapple and persimmon that are sweeter and more acidic and regarding color, consumers prefer a juice with less intense red color. According to evaluation, the most recommended mixed juice formulations are 50% pineapple and 50% persimmon, and 33% pineapple, 33% persimmon, and 33% orange.

  14. Study to optimize a disposal tunnel layout taking into account heterogeneous characteristics of the geological environment

    Suyama, Yasuhiro; Toida, Masaru; Yanagizawa, Koichi

    2007-01-01

    The geological environment has spatially heterogeneous characteristics with varied host rock types, fractures and so on. In this case the generic disposal tunnel layout, which has been designed by JNC, is not the most suitable for HLW disposal in Japan. The existence of spatially heterogeneous characteristics means that in the repository region there exist sub-regions that are more favorable from the perspective of long-term safety and ones that are less favorable. In order that the spatially heterogeneous environment itself may be utilized most effectively as an NBS, an alternative design of disposal tunnel layout is required. Focusing on the geological environment with spatially heterogeneous characteristics, the authors have developed an alternative design of disposal tunnel layout. The alternative design adopts an optimization approach using a 'variable disposal tunnel layout'. The optimization approach minimizes the number of locations where major water conducting fractures are intersected, and maximizes the number of emplacement locations for waste packages. This paper will outline the variable disposal tunnel layout and its applicability. (author)

  15. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  16. Modeling and Characteristic Analysis of Wireless Ultrasonic Vibration Energy Transmission Channels through Planar and Curved Metal Barriers

    DingXin Yang

    2018-01-01

    Full Text Available Wireless ultrasonic vibration energy transmission systems through metal barriers based on piezoelectric transducers have drawn a lot of focus due to the advantage of nonpenetration of the barriers, thus maintaining the integrity of sealed structures. It is meaningful to investigate appropriate modeling methods and to characterize such wireless ultrasonic energy transmission channels with different geometric shapes. In this paper, equivalent circuit modeling and finite element modeling methods are applied to the planar metal barrier channel, and a 3-dimensional finite element modeling method is applied to the cylindrical metallic barrier channel. Meanwhile, the experimental setup is established and measurements are carried out to validate the effectiveness of the corresponding modeling methods. The results show that Leach’s equivalent circuit modeling method and finite element modeling method are nearly similarly effective in characterizing the planar metal barrier channel. But for a cylindrical metal barrier, only the three-dimensional finite element modeling method is effective. Furthermore, we found that, for the planar barrier, the effect of standing waves on the efficiency of wireless energy transmission is dominated. But for the curved barrier, only the resonant phenomenon of the piezoelectric transducer exists.

  17. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics.

    Ahmed, Osama A A; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid-liquid phase separation method, according to the Box-Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance.

  18. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  19. Study on characteristics of response to nodal vibration in a main hull of a large-size ferry boat; Ogata feri no shusentai yodo oto tokusei ni kansuru kenkyu

    Takimoto, T; Yamamoto, A; Kasuda, T; Yanagi, K [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1996-04-10

    Demand for reduction in vibration and noise in large-size ferry boats has been severer in recent years. On the other hand, vibration exciting force in main engines and propellers is on an increasing trend in association with increase in speed and horsepower. A large-size ferry boat uses an intermediate-speed diesel engine which has high vibration exciting frequency. Therefore, discussions were given on characteristics of response to nodal vibration in a main hull induced by primary internal moment in a main engine in a large-size ferry boat mounting an intermediate speed main engine. Results of detailed vibration calculations, vibration experiments using an actual ship, and results of measurements were used for the discussions. Natural frequency for two-node vibration above and below the main hull was set for an equation of estimation such that the whole ship is hypothesized to have been structured with beams having the same cross section according to the Todd`s equation, and effect of rigidity of the long structure can be evaluated. Parameters were derived by using the minimum square method that uses the measured natural frequency of the ship A through the ship E among large-size ferry boats. The derived result may be summarized as follows: this equation of estimation has an estimation error of about 5% against the natural frequency for nodal vibration above and below the main hull; and this equation of estimation has an estimation error of about 30% against the acceleration in the vertical direction at the end of the stern. 2 refs., 11 figs., 1 tab.

  20. Optimal Premium as a Function of the Deductible: Customer Analysis and Portfolio Characteristics

    Julie Thøgersen

    2016-11-01

    Full Text Available An insurance company offers an insurance contract ( p , K , consisting of a premium p and a deductible K. In this paper, we consider the problem of choosing the premium optimally as a function of the deductible. The insurance company is facing a market of N customers, each characterized by their personal claim frequency, α, and risk aversion, β. When a customer is offered an insurance contract, she/he will, based on these characteristics, choose whether or not to insure. The decision process of the customer is analyzed in detail. Since the customer characteristics are unknown to the company, it models them as i.i.d. random variables; A 1 , … , A N for the claim frequencies and B 1 , … , B N for the risk aversions. Depending on the distributions of A i and B i , expressions for the portfolio size n ( p ; K ∈ [ 0 , N ] and average claim frequency α ( p ; K in the portfolio are obtained. Knowing these, the company can choose the premium optimally, mainly by minimizing the ruin probability.

  1. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems.

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-11-11

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  2. Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths

    Ni, Yong; Song, Zhaoqiang; Jiang, Hongyuan; Yu, Shu-Hong; He, Linghui

    2015-08-01

    How nacreous nanocomposites with optimal combinations of stiffness, strength and toughness depend on constituent property and microstructure parameters is studied using a nonlinear shear-lag model. We show that the interfacial elasto-plasticity and the overlapping length between bricks dependent on the brick size and brick staggering mode significantly affect the nonuniformity of the shear stress, the stress-transfer efficiency and thus the failure path. There are two characteristic lengths at which the strength and toughness are optimized respectively. Simultaneous optimization of the strength and toughness is achieved by matching these lengths as close as possible in the nacreous nanocomposite with regularly staggered brick-and-mortar (BM) structure where simultaneous uniform failures of the brick and interface occur. In the randomly staggered BM structure, as the overlapping length is distributed, the nacreous nanocomposite turns the simultaneous uniform failure into progressive interface or brick failure with moderate decrease of the strength and toughness. Specifically there is a parametric range at which the strength and toughness are insensitive to the brick staggering randomness. The obtained results propose a parametric selection guideline based on the length matching for rational design of nacreous nanocomposites. Such guideline explains why nacre is strong and tough while most artificial nacreous nanocomposites aere not.

  3. Ship Vibrations

    Sørensen, Herman

    1997-01-01

    Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...

  4. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding

    Shi, Jianjun; Zhu, Ping; Fu, Geyan; Shi, Shihong

    2018-05-01

    Coaxial laser inside wire cladding method is very promising as it has a very high efficiency and a consistent interaction between the laser and wire. In this paper, the energy and mass conservation law, and the regression algorithm are used together for establishing the mathematical models to study the relationship between the layer geometry characteristics (width, height and cross section area) and process parameters (laser power, scanning velocity and wire feeding speed). At the selected parameter ranges, the predicted values from the models are compared with the experimental measured results, and there is minor error existing, but they reflect the same regularity. From the models, it is seen the width of the cladding layer is proportional to both the laser power and wire feeding speed, while it firstly increases and then decreases with the increasing of the scanning velocity. The height of the cladding layer is proportional to the scanning velocity and feeding speed and inversely proportional to the laser power. The cross section area increases with the increasing of feeding speed and decreasing of scanning velocity. By using the mathematical models, the geometry characteristics of the cladding layer can be predicted by the known process parameters. Conversely, the process parameters can be calculated by the targeted geometry characteristics. The models are also suitable for multi-layer forming process. By using the optimized process parameters calculated from the models, a 45 mm-high thin-wall part is formed with smooth side surfaces.

  5. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics

    Ahmed OA

    2015-01-01

    Full Text Available Osama AA Ahmed,1,2 Khaled M Hosny,1,3 Majid M Al-Sawahli,1,4 Usama A Fahmy11Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Holding Company for Biological Products & Vaccines (VACSERA, Cairo, EgyptAbstract: The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid–liquid phase separation method, according to the Box–Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1, ethanol concentration (X2, and caseinate concentration (X3. The selected dependent variables were mean particle size (Y1, SMV encapsulation efficiency (Y2, and cumulative percentage of drug permeated after 1 hour (Y3. The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability

  6. Optimization of performance and emission characteristics of PPCCI engine fuelled with ethanol and diesel blends using grey-Taguchi method

    Natarajan, S.; Pitchandi, K.; Mahalakshmi, N. V.

    2018-02-01

    The performance and emission characteristics of a PPCCI engine fuelled with ethanol and diesel blends were carried out on a single cylinder air cooled CI engine. In order to achieve the optimal process response with a limited number of experimental cycles, multi objective grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a combination of input parameters was prefigured so as to achieve optimum response characteristics. It was observed that 20% premixed ratio of blend was most suitable for use in a PPCCI engine without significantly affecting the engine performance and emissions characteristics.

  7. Nanosized sustained-release pyridostigmine bromide microcapsules: process optimization and evaluation of characteristics

    Tan, Qunyou; Jiang, Rong; Xu, Meiling; Liu, Guodong; Li, Songlin; Zhang, Jingqing

    2013-01-01

    Background Pyridostigmine bromide (3-[[(dimethylamino)-carbonyl]oxy]-1-methylpyridinium bromide), a reversible inhibitor of cholinesterase, is given orally in tablet form, and a treatment schedule of multiple daily doses is recommended for adult patients. Nanotechnology was used in this study to develop an alternative sustained-release delivery system for pyridostigmine, a synthetic drug with high solubility and poor oral bioavailability, hence a Class III drug according to the Biopharmaceutics Classification System. Novel nanosized pyridostigmine-poly(lactic acid) microcapsules (PPNMCs) were expected to have a longer duration of action than free pyridostigmine and previously reported sustained-release formulations of pyridostigmine. Methods The PPNMCs were prepared using a double emulsion-solvent evaporation method to achieve sustained-release characteristics for pyridostigmine. The preparation process for the PPNMCs was optimized by single-factor experiments. The size distribution, zeta potential, and sustained-release behavior were evaluated in different types of release medium. Results The optimal volume ratio of inner phase to external phase, poly(lactic acid) concentration, polyvinyl alcohol concentration, and amount of pyridostigmine were 1:10, 6%, 3% and 40 mg, respectively. The negatively charged PPNMCs had an average particle size of 937.9 nm. Compared with free pyridostigmine, PPNMCs showed an initial burst release and a subsequent very slow release in vitro. The release profiles for the PPNMCs in four different types of dissolution medium were fitted to the Ritger-Peppas and Weibull models. The similarity between pairs of dissolution profiles for the PPNMCs in different types of medium was statistically significant, and the difference between the release curves for PPNMCs and free pyridostigmine was also statistically significant. Conclusion PPNMCs prepared by the optimized protocol described here were in the nanometer range and had good uniformity

  8. Multiple performance characteristics optimization for Al 7075 on electric discharge drilling by Taguchi grey relational theory

    Khanna, Rajesh; Kumar, Anish; Garg, Mohinder Pal; Singh, Ajit; Sharma, Neeraj

    2015-12-01

    Electric discharge drill machine (EDDM) is a spark erosion process to produce micro-holes in conductive materials. This process is widely used in aerospace, medical, dental and automobile industries. As for the performance evaluation of the electric discharge drilling machine, it is very necessary to study the process parameters of machine tool. In this research paper, a brass rod 2 mm diameter was selected as a tool electrode. The experiments generate output responses such as tool wear rate (TWR). The best parameters such as pulse on-time, pulse off-time and water pressure were studied for best machining characteristics. This investigation presents the use of Taguchi approach for better TWR in drilling of Al-7075. A plan of experiments, based on L27 Taguchi design method, was selected for drilling of material. Analysis of variance (ANOVA) shows the percentage contribution of the control factor in the machining of Al-7075 in EDDM. The optimal combination levels and the significant drilling parameters on TWR were obtained. The optimization results showed that the combination of maximum pulse on-time and minimum pulse off-time gives maximum MRR.

  9. Effect of shelf aging on vibration transmissibility of anti-vibration gloves

    SHIBATA, Nobuyuki

    2017-01-01

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817

  10. Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports

    Zhong, Rui; Wang, Qingshan; Tang, Jinyuan; Shuai, Cijun; Liang, Qian

    2018-02-01

    This paper presents the first known vibration characteristics of moderately thick functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports on the basis of the firstorder shear deformation theory. Different distributions of single walled carbon nanotubes (SWCNTs) along the thickness are considered. Uniform and other three kinds of functionally graded distributions of carbon nanotubes along the thickness direction of plates are studied. The solutions carried out using an enhanced Ritz method mainly include the following three points: Firstly, create the Lagrange energy function by the energy principle; Secondly, as the main innovation point, the modified Fourier series are chosen as the basic functions of the admissible functions of the plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges; Lastly, solve the natural frequencies as well as the associated mode shapes by means of the Ritz-variational energy method. In this study, the influences of the volume fraction of CNTs, distribution type of CNTs, boundary restrain parameters, location of the internal line supports, foundation coefficients on the natural frequencies and mode shapes of the FG-CNT reinforced composite rectangular plates are presented.

  11. Study on optimal design of 210kW traction IPMSM considering thermal demagnetization characteristics

    Kim, Young Hyun; Lee, Seong Soo; Cheon, Byung Chul; Lee, Jung Ho

    2018-04-01

    This study analyses the permanent magnet (PM) used in the rotor of an interior permanent magnet synchronous motor (IPMSM) used for driving an electric railway vehicle (ERV) in the context of controllable shape, temperature, and external magnetic field. The positioning of the inserted magnets is a degree of freedom in the design of such machines. This paper describes a preliminary analysis using parametric finite-element method performed with the aim of achieving an effective design. Next, features of the experimental design, based on methods such as the central-composition method, Box-Behnken and Taguchi method, are explored to optimise the shape of the high power density. The results are used to produce an optimal design for IPMSMs, with design errors minimized using Maxwell 2D, a commercial program. Furthermore, the demagnetization process is analysed based on the magnetization and demagnetization theory for PM materials in computer simulation. The result of the analysis can be used to calculate the magnetization and demagnetization phenomenon according to the input B-H curve. This paper presents the conditions for demagnetization by the external magnetic field in the driving and stopped states, and proposes a simulation method that can analyse demagnetization phenomena according to each condition and design the IPMSM that maximizes efficiency and torque characteristics. Finally, operational characteristics are analysed in terms of the operation patterns of railway vehicles, and control conditions are deduced to achieve maximum efficiency in all sections. This was experimentally verified.

  12. Optimization and performance characteristics of servo-piston hydraulic control rod drive mechanism

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    This paper introduces the structure and working principles of the servo-piston hydraulic control rod drive mechanism (SHCM), which can be moved continuously and has self-lock capacity. The steady state characteristics of SHCM are simulated using FLUENT codes. Based on comparison with the experimental results, the simulation is proven to be credible as a tool to describe the steady state characteristics. Finally, the influence of structural parameters is analyzed to obtain an optimal design. The experimental results indicate that the traction of the servo-tube is larger in the starting and braking stages. The resistance coefficient of SHCM increases gradually in the starting and lifting stage, and then tends to be stable. This coefficient has a maximum value while the inlet pressure is low. Performance norms of SHCM, such as the anti-disturbance ability and positioning accuracy, are tested, the anti-disturbance ability of the actuator is strong while the inlet pressure is fluctuating. The positioning accuracy is high regardless of the action process (lifting or not). (author)

  13. Urban vibrations

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

    In   this   paper   we   describe   a   field   study   conducted   with   a   wearable   vibration   belt   where   we   test   to   determine   the   vibration   intensity   sensitivity   ranges   on   a   large   diverse   group   of   participants   with   evenly   distributed  ages  and...

  14. Natural characteristics analysis of two teeth difference external compound planet transmission

    Youdong YE

    2016-12-01

    Full Text Available An analytical translational-rotational-coupling dynamic model is developed to evaluate the natural characteristics of two teeth difference external compound planet transmission by adopting centralized parameters method. The governing differential equations are established by deriving relative displacement relationships between all motional components, and Matlab is used to calculate and obtain the natural frequencies and free vibration modes of the transmission system. The analysis results show that the vibration modes are classified into rotational mode of the central members, translational mode of the central members and complicate vibration mode of the planetary gears. The vibration modes are different from the NGW planetary transmission, and especially the planetary gears vibration mode are quite complex with several different vibration modes. The research can provide useful reference for preventing resonance, vibration and noise reduction, and structure optimization of the planet transmission mode used in polishing grinding.

  15. Optimal Scanning Bandwidth Strategy Incorporating Uncertainty about Adversary’s Characteristics

    Andrey Garnaev

    2014-12-01

    Full Text Available In this paper, we investigate the problem of designing a spectrum scanning strategy to detect an intelligent Invader who wants to utilize spectrum undetected for his/her unapproved purposes. To deal with this problem we model the situation as two games, between a Scanner and an Invader, and solve them sequentially. The first game is formulated to design the optimal (in maxmin sense scanning algorithm, while the second one allows one to find the optimal values of the parameters for the algorithm depending on the parameters of the network. These games provide solutions for two dilemmas that the rivals face. The Invader’s dilemma consists of the following: the more bandwidth the Invader attempts to use leads to a larger payoff if he is not detected, but at the same time also increases the probability of being detected and thus fined. Similarly, the Scanner faces a dilemma: the wider the bandwidth scanned, the higher the probability of detecting the Invader, but at the expense of increasing the cost of building the scanning system. The equilibrium strategies are found explicitly and reveal interesting properties. In particular, we have found a discontinuous dependence of the equilibrium strategies on the network parameters, fine and the type of the Invader’s award. This discontinuity of the fine means that the network provider has to take into account a human/social factor since some threshold values of fine could be very sensible for the Invader, while in other situations simply increasing the fine has a minimal deterrence impact. Also we show how incomplete information about the Invader’s technical characteristics and reward (e.g. motivated by using different type of application, say, video-streaming or downloading files can be incorporated into the scanning strategy to increase its efficiency.

  16. Quantification the Effect of Ageing on Characteristics of the Photoplethysmogram Using an Optimized Windkessel Model

    Doostdar H.

    2014-09-01

    Full Text Available Background: With increasing age, some changes appeared in specifications of vessels which including dimensions and elasticity in theirs. The changes in parameters such as resistance, inertance and compliance vessels appear and eventually changes in the environmental pulse releases are in circulation. These changes clearly appear in specification of photoplethysmogram particularly in the size and position signals second peak is observed. Aim and scope: The aim of study was to Circulatory system modeling using windkessel electrical model for evalution blood flow and Its matching with the photoplethysmogram’s signal for investigate the reasons for changes of Characteristics of the Photoplethysmogram. The first purpose of this paper is to examine the age-related parameters in the Photoplethysmogram’s signal and finally the diagnosis of cardiovascular disease using the model and photoplethysmogram’s signal. Methods: In this study we followed some of these effects to the circulatory system by using the windkessel electrical model. The algorithm in this project appeared by optimization with the matrix coefficients of state space windkessel electrical model. Optimize of the coefficients matching with the output of the model and the photoplethysmogram’s signal. Photoplethysmogram’s signals from 50 healthy subjects with the age range of 20 to 50 years, shows that outputs the model and photoplethysmogram’s signal in terms of error rate and cross-correlation algorithm in a fully automate, was consistent. Wavelength of the Photoplethysmogram’s signals were 950 nm and The sampling rate was set at 50 Hz. Results: Simulation results show that aging reduces the signal amplitude and delay of the second peak occurs. These changes were seen as reduce the rate of compliance and increase the rate of resistance and inertance windkessel electrical model of circulation. Conclusion: The high accuracy of the results led to being able to identify the age

  17. Vibrational Spectral Studies of Gemfibrozil

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  18. Theory And Working Of Noise And Vibration

    Jeong, Il Rok

    1988-09-01

    This book deals with theory of noise including physical property of noise like term and characteristic of sound, occurrence of sound, characteristic of noise pollution and main cause of occurrence of noise, technique of prevention of noise with noise reduction, construction guide for prevention of noise, and measure of interior noise. It also has the theory of vibration such as an introduction of vibration, and technology of prevention of vibration, official test method of environmental pollution, and summary of protection of the environment.

  19. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

    Xinan Zhang

    2016-10-01

    Full Text Available The penetration of solar photovoltaic (PV systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS. With concern for the high investment cost, the choice of a cost-effective BESS with proper sizing is necessary. To this end, this paper proposes the employment of a vanadium redox flow battery (VRB, which possesses a long cycle life and high energy efficiency, for residential users with PV systems. It further proposes methods of computing the capital and maintenance cost of VRB systems and evaluating battery efficiency based on VRB electrochemical characteristics. Furthermore, by considering the cost and efficiency of VRB, the prevalent time-of-use electricity price, the solar feed-in tariff, the solar power profile and the user load pattern, an optimal sizing algorithm for VRB systems is proposed. Simulation studies are carried out to show the effectiveness of the proposed methods.

  20. An extension of the receiver operating characteristic curve and AUC-optimal classification.

    Takenouchi, Takashi; Komori, Osamu; Eguchi, Shinto

    2012-10-01

    While most proposed methods for solving classification problems focus on minimization of the classification error rate, we are interested in the receiver operating characteristic (ROC) curve, which provides more information about classification performance than the error rate does. The area under the ROC curve (AUC) is a natural measure for overall assessment of a classifier based on the ROC curve. We discuss a class of concave functions for AUC maximization in which a boosting-type algorithm including RankBoost is considered, and the Bayesian risk consistency and the lower bound of the optimum function are discussed. A procedure derived by maximizing a specific optimum function has high robustness, based on gross error sensitivity. Additionally, we focus on the partial AUC, which is the partial area under the ROC curve. For example, in medical screening, a high true-positive rate to the fixed lower false-positive rate is preferable and thus the partial AUC corresponding to lower false-positive rates is much more important than the remaining AUC. We extend the class of concave optimum functions for partial AUC optimality with the boosting algorithm. We investigated the validity of the proposed method through several experiments with data sets in the UCI repository.

  1. Vibration-Based Damage Detection in Beams by Cooperative Coevolutionary Genetic Algorithm

    Kittipong Boonlong

    2014-03-01

    Full Text Available Vibration-based damage detection, a nondestructive method, is based on the fact that vibration characteristics such as natural frequencies and mode shapes of structures are changed when the damage happens. This paper presents cooperative coevolutionary genetic algorithm (CCGA, which is capable for an optimization problem with a large number of decision variables, as the optimizer for the vibration-based damage detection in beams. In the CCGA, a minimized objective function is a numerical indicator of differences between vibration characteristics of the actual damage and those of the anticipated damage. The damage detection in a uniform cross-section cantilever beam, a uniform strength cantilever beam, and a uniform cross-section simply supported beam is used as the test problems. Random noise in the vibration characteristics is also considered in the damage detection. In the simulation analysis, the CCGA provides the superior solutions to those that use standard genetic algorithms presented in previous works, although it uses less numbers of the generated solutions in solution search. The simulation results reveal that the CCGA can efficiently identify the occurred damage in beams for all test problems including the damage detection in a beam with a large number of divided elements such as 300 elements.

  2. Experience in WWER fuel assemblies vibration analysis

    Ovtcharov, O.; Pavelko, V.; Usanov, A.; Arkadov, G.; Dolgov, A.; Molchanov, V.

    2003-01-01

    It is stated that the vibration studies of internals and the fuel assemblies should be conducted during the reactor designing, commissioning and commercial operation stages and the analysis methods being used should complement each other. The present paper describes the methods and main results of the vibration noise studies of internals and the fuel assemblies of the operating NPPs with WWER reactors, as an example of the implementation of the comprehensive approach to the analysis on equipment flow-induced vibration. At that, the characteristics of internals and fuel assemblies vibration loading were dealt jointly as they are elements of the same compound oscillating system and their vibrations have the interrelated nature

  3. Vibration isolation using nonlinear damping implemented by a feedback-controlled MR damper

    Ho, C; Lang, Z Q; Billings, S A; Sapiński, B

    2013-01-01

    The main problem of using a conventional linear damper on a vibration isolation system is that the reduction of the resonant peak in many cases inevitably results in the degradation of the high-frequency transmissibility. Instead of using active control methods which normally depend on the model of the controlled plant and where unmodelled dynamics may induce stability concerns, recent studies have revealed that optimal vibration isolation over a wide frequency range can be achieved by using nonlinear damping. The present study is concerned with the realization of the ideal nonlinear damping characteristic using a feedback-controlled MR damper. Both simulation and experimental studies are conducted to demonstrate the advantages of the simple but effective vibration control strategy. This research work has significant implications for the effective use of MR dampers in the vibration control of a wide range of engineering systems. (paper)

  4. A New Vibration Absorber Design for Under-Chassis Device of a High-Speed Train

    Yu Sun

    2017-01-01

    Full Text Available To realize the separation of vertical and lateral stiffness of the under-chassis device, a new type of vibration absorber is designed by using the negative stiffness of the disc spring in parallel with the rubber component. To solve its transmission characteristics, harmonic transfer method was used. A rigid-flexible coupling multibody dynamic model of a high-speed train with an elastic car body is established, and the vertical and lateral optimal stiffness of the under-chassis device are calculated. The Sperling index and acceleration PSD of the vehicle with the new vibration absorber and the vehicle with traditional rubber absorber are compared and analyzed. The results show that, with the new vibration absorber, vehicle’s running stability and vibration of the car body are more effective than the vehicle with the traditional rubber absorber.

  5. Vibrational Fingerprints of Low-Lying PtnP2n (n = 1–5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces

    Jedidi, Abdesslem

    2015-11-13

    Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.

  6. Vibrational Fingerprints of Low-Lying PtnP2n (n = 1–5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces

    Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe

    2015-01-01

    Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.

  7. A study on the characteristics of retrospective optimal interpolation using an Observing System Simulation Experiment

    Kim, Shin-Woo; Noh, Nam-Kyu; Lim, Gyu-Ho

    2013-04-01

    This study presents the introduction of retrospective optimal interpolation (ROI) and its application with Weather Research and Forecasting model (WRF). Song et al. (2009) suggested ROI method which is an optimal interpolation (OI) that gradually assimilates observations over the analysis window for variance-minimum estimate of an atmospheric state at the initial time of the analysis window. The assimilation window of ROI algorithm is gradually increased, similar with that of the quasi-static variational assimilation (QSVA; Pires et al., 1996). Unlike QSVA method, however, ROI method assimilates the data at post analysis time using perturbation method (Verlaan and Heemink, 1997) without adjoint model. Song and Lim (2011) improved this method by incorporating eigen-decomposition and covariance inflation. The computational costs for ROI can be reduced due to the eigen-decomposition of background error covariance which can concentrate ROI analyses on the error variances of governing eigenmodes by transforming the control variables into eigenspace. A total energy norm is used for the normalization of each control variables. In this study, ROI method is applied to WRF model with Observing System Simulation Experiment (OSSE) to validate the algorithm and to investigate the capability. Horizontal wind, pressure, potential temperature, and water vapor mixing ratio are used for control variables and observations. Firstly, 1-profile assimilation experiment is performed. Subsequently, OSSE's are performed using the virtual observing system which consists of synop, ship, and sonde data. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error with the assimilation by ROI. The characteristics and strength/weakness of ROI method are also investigated by conducting the experiments with 3D-Var (3-dimensional variational) method and 4D-Var (4-dimensional variational) method

  8. A Study on the Optimization Method of the Main Steam Safety Valve Characteristics for Overpressure Protection

    Kim, Kyoung Ryun; Kim, Ung Soo; Pakr, Min Soo; Lee, Gyu Cheon; Kim, Shin Whan [KEPCO EnC Company Inc., Daejeon (Korea, Republic of)

    2015-05-15

    The safety analysis on Loss of Condenser Vacuum (LOCV) event should be performed in accordance with Standard Review Plan (SRP) for pressurized water reactor. SRP is prepared for the guidance of staff reviewers in the office of nuclear reactor regulation in performing safety reviews of applications to operate nuclear power plants. The recent SRP requires that peak pressure in the primary and secondary system be evaluated separately since initial conditions are different for the primary and secondary systems. This paper presents an evaluation of the effect of the MSSVs characteristics with the analysis of LOCV event in order to have the sufficient safety margin of RCS and secondary system. This study has been conducted with the sensitivity analysis on the design parameters of MSSV which are the opening logic, set-point pressure and discharging capacity to the atmosphere. In this work, the effect of optimization method for the MSSV is evaluated from the viewpoints of opening logic change, discharge capacity increase and opening set-point decrease to mitigate the RCS and secondary system peak pressure resulting in additional safety margin. From the results, the optimization method is identified to be effective in reducing system peak pressure, especially for the secondary system. The opening logic which has increased number of MSSVs in the 1''st MSSV bank remarkably decreases the pressure of the secondary system. In the cases of 1/1/3, 2/1/2, the peak pressure of the main steam system is limited to the set-point of the 3''rd bank of MSSVs, and in the case of 3/1/1 it is limited to the set- point of the 2''nd bank of MSSVs. Consequently, the opening logic of the MSSVs is very important parameter to have the safety margin of the secondary system. The capacity and set-point of MSSVs do not involve increasing the peak pressure of RCS. It is recommended that the new design method of MSSVs as shown in this study be adopted to have the sufficient

  9. Vibrating minds

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  10. Vibrational spectroscopy

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  11. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  12. Analysis of vibration characteristics of a prestressed concrete cable-stayed bridge using strong motion observation data. Jishin kansoku ni motozuku PC shachokyo no shindo tokusei no kaiseki

    Inatomi, T. (Port and Harbour Research Institute, Kanagawa (Japan)); Takeda, T.; Obi, N.; Yamanobe, S. (Kajima Corp., Tokyo (Japan))

    1994-05-31

    Records of seismic observation were analyzed for the purpose of proving the validity of antiseismic design for a prestressed concrete (PC) cable-stayed bridge. This bridge is a three span continuous PC cable-stayed bridge of 498 m in bridge length, and is constructed on alluvial soft ground. The seismometer used is a servo type accelerometer. The observed frequency and mode of seismic vibration are in good agreement with those in the analysis and hence the validity of modelling of the structure in designing was confirmed. It was also confirmed that the bending vibration and torsional vibration of the main girder are separated as designed. However, some points such as a large difference in the observed vibration and analysed vibration in the mode accompanying rotation of the base are listed as problems to be solved in antiseismic design. In order to investigate the attenuation constant of the upper structure, a seismic wave response analysis was performed and its results were compared with observed ones. When the attenuation constant is assumed to be 2%, agreement of data between analysis and observation is good, and it is considered that the attenuation constant of the upper structure only without the effects of attenuation of energy escape from the base and crack generation in concrete was about 2% in the observed earthquake (maximum acceleration on the ground: 51 Gal). 8 refs., 9 figs., 2 tabs.

  13. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. INFLUENCE OF AXIAL COMPRESSOR STAGE SPATIAL OPTIMIZATION ON THRUST-ECONOMICAL CHARACTERISTICS OF CARGO AIRCRAFT GAS TURBINE ENGINE

    L.G. Volyanskaya

    2005-02-01

    Full Text Available  The article considers the research results of D-27 gas turbine engine thrust-economical characteristics change due to of axial compressor flow path optimization. The applied procedure of optimization takes into account a difference in the shapes of axial compressor stage blades at rest and design mode, redistribution of kinetic energy losses along the blade height. The estimation of parameters of a gas flow in the stage flow path is made by the solution of Navier-Stokes equation complete set.

  15. Optimization of UO{sub 2} Granule Characteristics for UO{sub 2}-Mo Pellet Fabrication

    Kim, Dongjoo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik; Oh, Jang Soo; Yang, Jae Ho; Koo, Yanghyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    work, we intended to control the placement of the Mo metallic phase as a high thermal conductive material. To continuously arrange the metallic Mo in the UO{sub 2} matrix, a UO{sub 2} granulation technique was applied. In addition, to optimize the UO{sub 2} granule characteristics, a fabrication test for the effect of UO{sub 2} granule densities and size on the UO{sub 2}-Mo composite pellet was performed, and the density and microstructure of the sintered pellet were observed.

  16. A novel prediction method of vibration and acoustic radiation for rectangular plate with particle dampers

    Wang, Dongqiang; Wu, Chengjun [Xi' an Jiaotong University, Xi' an (China)

    2016-03-15

    Particle damping technology is widely used in mechanical and structural systems or civil engineering to reduce vibration and suppress noise as a result of its high efficiency, simplicity and easy implementation, low cost, and energy-saving characteristic without the need for any auxiliary power equipment. Research on particle damping theory has focused on the vibration response of the particle damping structure, but the acoustic radiation of the particle damping structure is rarely investigated. Therefore, a feasible modeling method to predict the vibration response and acoustic radiation of the particle damping structure is desirable to satisfy the actual requirements in industrial practice. In this paper, a novel simulation method based on multiphase flow theory of gas particle by COMSOL multiphysics is developed to study the vibration and acoustic radiation characteristics of a cantilever rectangular plate with Particle dampers (PDs). The frequency response functions and scattered far-field sound pressure level of the plate without and with PDs under forced vibration are predicted, and the predictions agree well with the experimental results. Results demonstrate that the added PDs have a significant effect on vibration damping and noise reduction for the primary structure. The presented work in this paper shows that the theoretical work is valid, which can provide important theoretical guidance for low-noise optimization design of particle damping structure. This model also has an important reference value for the noise control of this kind of structure.

  17. Active and passive vibration isolation in piezoelectric phononic rods with external voltage excitation

    Qicheng Zhang

    2017-05-01

    Full Text Available Active piezoelectric materials are applied to one-dimensional phononic crystals, for the control of longitudinal vibration propagation both in active and passive modes. Based on the electromechanical coupling between the acoustical vibration and electric field, the electromechanical equivalent method is taken to theoretically predict the transmission spectrum of the longitudinal vibration. It is shown that the phononic rod can suppress the vibration efficiently at the frequencies of interest, by actively optimizing the motions of piezoelectric elements. In an illustrated phononic rod of 11.2cm long, active tunable isolations of more than 20dB at low frequencies (500Hz-14kHz are generated by controlling the excitation voltages of piezoelectric elements. Meanwhile, passive fixed isolation at high frequencies (14k-63kHz are presented by its periodicity characteristics. Finite element simulations and vibration experiments on the rod demonstrate the effectiveness of the approach in terms of its vibration isolation capabilities and tunable characteristics. This phononic rod can be manufactured easily and provides numerous potential applications in designing isolation mounts and platforms.

  18. Long Range Dependence Prognostics for Bearing Vibration Intensity Chaotic Time Series

    Qing Li

    2016-01-01

    Full Text Available According to the chaotic features and typical fractional order characteristics of the bearing vibration intensity time series, a forecasting approach based on long range dependence (LRD is proposed. In order to reveal the internal chaotic properties, vibration intensity time series are reconstructed based on chaos theory in phase-space, the delay time is computed with C-C method and the optimal embedding dimension and saturated correlation dimension are calculated via the Grassberger–Procaccia (G-P method, respectively, so that the chaotic characteristics of vibration intensity time series can be jointly determined by the largest Lyapunov exponent and phase plane trajectory of vibration intensity time series, meanwhile, the largest Lyapunov exponent is calculated by the Wolf method and phase plane trajectory is illustrated using Duffing-Holmes Oscillator (DHO. The Hurst exponent and long range dependence prediction method are proposed to verify the typical fractional order features and improve the prediction accuracy of bearing vibration intensity time series, respectively. Experience shows that the vibration intensity time series have chaotic properties and the LRD prediction method is better than the other prediction methods (largest Lyapunov, auto regressive moving average (ARMA and BP neural network (BPNN model in prediction accuracy and prediction performance, which provides a new approach for running tendency predictions for rotating machinery and provide some guidance value to the engineering practice.

  19. Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics

    Kyoung, Sinsu; Hong, Young-sung; Lee, Myung-hwan; Nam, Tae-jin

    2018-02-01

    In order to enhance specific on-resistance (Ron,sp), the trench gate structure was also introduced into 4H-SiC MOSFET as Si MOSFET. But the 4H-SiC trench gate has worse off-state characteristics than the Si trench gate due to the incomplete gate oxidation process (Šimonka et al., 2017). In order to overcome this problem, P-shielding trench gate MOSFET (TMOS) was proposed and researched in previous studies. But P-shielding has to be designed with minimum design rule in order to protect gate oxide effectively. P-shielding TMOS also has the drawback of on-state characteristics degradation corresponding to off state improvement for minimum design rule. Therefore optimized design is needed to satisfy both on and off characteristics. In this paper, the design parameters were analyzed and optimized so that the 4H-SiC P-shielding TMOS satisfies both on and off characteristics. Design limitations were proposed such that P-shielding is able to defend the gate oxide. The P-shielding layer should have the proper junction depth and concentration to defend the electric field to gate oxide during the off-state. However, overmuch P-shielding junction depth disturbs the on-state current flow, a problem which can be solved by increasing the trench depth. As trench depth increases, however, the breakdown voltage decreases. Therefore, trench depth should be designed with due consideration for on-off characteristics. For this, design conditions and modeling were proposed which allow P-shielding to operate without degradation of on-state characteristics. Based on this proposed model, the 1200 V 4H-SiC P-shielding trench gate MOSFET was designed and optimized.

  20. Developed vibration waveform monitoring unit for CBM

    Hamada, T.; Hotsuta, K.; Hirose, I.; Morita, E.

    2007-01-01

    In nuclear power plants, many rotating machines such as pumps and fans are in use. Shikoku Research Institute Inc. has recently developed easy-to-use tools to facilitate the maintenance of such equipment. They include a battery-operated vibration waveform monitoring unit which allows unmanned vibration monitoring on a regular basis and data collection even from intermittently operating equipment, a waveform data collector which can be used for easy collection, storage, control, and analysis of raw vibration waveform data during normal operation, and vibration analysis and evaluation tools. A combination of these tools has a high potential for optimization of rotating equipment maintenance. (author)

  1. Characteristics of positive-interaction parenting style among primiparous teenage, optimal age, and advanced age mothers in Canada.

    Kim, Theresa H M; Connolly, Jennifer A; Rotondi, Michael; Tamim, Hala

    2018-01-08

    Positive-interaction parenting early in childhood is encouraged due to its association with behavioural development later in life. The objective of this study was to examine if the level of positive-interaction parenting style differs among teen, optimal age, and advanced age mothers in Canada, and to identify the characteristics associated with positive-interaction parenting style separately for each age group. This was a cross-sectional secondary analysis of the National Longitudinal Survey of Children and Youth. First-time mothers with children 0-23 months were grouped into: teen (15-19 years, N = 53,409), optimal age (20-34 years, N = 790,960), and advanced age (35 years and older, N = 106,536). The outcome was positive-interaction parenting style (Parenting Practices Scale); maternal socio-demographics, health, social, and child characteristics were considered for backward stepwise multiple linear regression modeling, stratified for each of the age groups. Teen, optimal age, and advanced age mothers reported similar levels of positive- interaction parenting style. Covariates differed across the three age groups. Among optimal age mothers, being an ever-landed immigrant, childcare use, and being devoted to religion were found to decrease positive-interaction parenting style, whereas, higher education was found to increase positive-interaction parenting style. Teen mothers were not found to have any characteristics uniquely associated with positive-interaction parenting. Among advanced age mothers, social support was uniquely associated with an increase in positive-interaction parenting. Very good/excellent health was found to be positively associated with parenting in teens but negatively associated with parenting in advanced age mothers. Characteristics associated with positive-interaction parenting varied among the three age groups. Findings may have public health implications through information dissemination to first-time mothers, clinicians

  2. Characteristics of positive-interaction parenting style among primiparous teenage, optimal age, and advanced age mothers in Canada

    Kim, Theresa H. M.; Connolly, Jennifer A.; Rotondi, Michael; Tamim, Hala

    2018-01-01

    Background Positive-interaction parenting early in childhood is encouraged due to its association with behavioural development later in life. The objective of this study was to examine if the level of positive-interaction parenting style differs among teen, optimal age, and advanced age mothers in Canada, and to identify the characteristics associated with positive-interaction parenting style separately for each age group. Methods This was a cross-sectional secondary analysis of the National ...

  3. Application of desirability function for optimizing the performance characteristics of carbonitrided bushes

    Boby John

    2013-06-01

    Full Text Available The performance of a product is generally characterized by more than one response variable. Hence the management often faces the problem of simultaneous optimization of many response variables. This study was undertaken to simultaneously optimize the surface hardness and case depth of carbonitrided bushes. Even though lots of literature has been published on various methodologies for tackling the multi-response optimization problem, the simultaneous optimization of heat treated properties of carbonitrided bushes are not reported yet. In this research the effect of four factors and two interactions on surface hardness and case depth of carbontirded bushes were studied using design of experiments. Based on the experimental results, the expected values of the heat treated properties of the bushes were estimated for all possible combination of factors. Then the best combination which, simultaneously optimized the response variables, was arrived at using desirability function. The study showed that the optimum combination obtained through desirability function approach not only minimized the variation around the targets of surface hardness and case depth but also was superior to the ones obtained by optimizing the response variables separately. Moreover this study provides a useful and effective approach to design the production process to manufacture bushes with customer specified surface hardness and case depth targets.

  4. Comparison of Imaging Characteristics of 124I PET for Determination of Optimal Energy Window on the Siemens Inveon PET

    A Ram Yu

    2016-01-01

    Full Text Available Purpose.124I has a half-life of 4.2 days, which makes it suitable for imaging over several days over its uptake and washout phases. However, it has a low positron branching ratio (23%, because of prompt gamma coincidence due to high-energy γ-photons (602 to 1,691 keV, which are emitted in cascade with positrons. Methods. In this study, we investigated the optimal PET energy window for 124I PET based on image characteristics of reconstructed PET. Image characteristics such as nonuniformities, recovery coefficients (RCs, and the spillover ratios (SORs of 124I were measured as described in NEMA NU 4-2008 standards. Results. The maximum and minimum prompt gamma coincidence fraction (PGF were 33% and 2% in 350~800 and 400~590 keV, respectively. The difference between best and worst uniformity in the various energy windows was less than 1%. The lowest SORs of 124I were obtained at 350~750 keV in nonradioactive water compartment. Conclusion. Optimal energy window should be determined based on image characteristics. Our developed correction method would be useful for the correction of high-energy prompt gamma photon in 124I PET. In terms of the image quality of 124I PET, our findings indicate that an energy window of 350~750 keV would be optimal.

  5. Characteristics of Omega-Optimized Portfolios at Different Levels of Threshold Returns

    Renaldas Vilkancas

    2014-12-01

    Full Text Available There is little literature considering effects that the loss-gain threshold used for dividing good and bad outcomes by all downside (upside risk measures has on portfolio optimization and performance. The purpose of this study is to assess the performance of portfolios optimized with respect to the Omega function developed by Keating and Shadwick at different levels of the threshold returns. The most common choices of the threshold values used in various Omega studies cover the risk-free rate and the average market return or simply a zero return, even though the inventors of this measure for risk warn that “using the values of the Omega function at particular points can be critically misleading” and that “only the entire Omega function contains information on distribution”. The obtained results demonstrate the importance of the selected values of the threshold return on portfolio performance – higher levels of the threshold lead to an increase in portfolio returns, albeit at the expense of a higher risk. In fact, within a certain threshold interval, Omega-optimized portfolios achieved the highest net return, compared with all other strategies for portfolio optimization using three different test datasets. However, beyond a certain limit, high threshold values will actually start hurting portfolio performance while meta-heuristic optimizers typically are able to produce a solution at any level of the threshold, and the obtained results would most likely be financially meaningless.

  6. Design optimization of flexible biomass-processing polygeneration plants using characteristic operation periods

    Lythcke-Jørgensen, Christoffer Ernst; Münster, Marie; Ensinas, Adriano V.

    2014-01-01

    scheme applied on a conceptual polygeneration plant that considers the integrated production of power, heat, ethanol, and biomethane. The design is optimized with respect to net present value and total CO2 emission impact. The results suggest that the best solution with respect to net present value...... is the production of heat and power using a gas turbine and a natural gas boiler, while the best solution with respect to CO2 emission savings includes full-scale ethanol and biomethane production, as well as a straw boiler for utility heat production. Solving the same design optimization problem using yearly...

  7. Optimization of the performance characteristics in an irreversible magnetic Brayton refrigeration cycle

    Wang Hao; Liu Sanqiu

    2008-01-01

    An irreversible cycle model of magnetic Brayton refrigerators is established, in which the thermal resistance and irreversibility in the two adiabatic processes are taken into account. Expressions for several important performance parameters, such as the coefficient of performance, cooling rate and power input are derived. Moreover, the optimal performance parameters are obtained at the maximum coefficient of performance. The optimization region (or criteria) for an irreversible magnetic Brayton refrigerator is obtained. The results obtained here have general significance and will be helpful to understand deeply the performance of a magnetic Brayton refrigeration cycle

  8. Vibration mode and vibration shape under excitation of a three phase model transformer core

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  9. A Study on Gas Insulation Characteristics for Design Optimization of High Voltage Power Apparatus

    Kim, I S; Kim, M K; Seo, K S; Moon, I W; Choi, C K [Korea Electrotechnology Research Institute (Korea, Republic of)

    1996-12-01

    This study aim of obtaining the basic data for gas insulation in the high voltage apparatus and for investigating the breakdown characteristics in uniform field and non-uniform which the geometric construction in the practical power apparatus. In this study, the research results on the insulation technology published earlier are reviewed and the basic data for an optimum design of a high voltage apparatus are obtained thorough the experiment and computer simulation by using a uniform field. The main result are summarized as follows: (A) Investigation on the insulation technology in a large-capacity power apparatus. (B) Investigation on the breakdown characteristics in particle contaminated condition. (C) Investigation on the design in computer simulation. (D) Investigation on the simulation technology of breakdown characteristics. (E) Investigation on breakdown characteristics in the nonuniform field and experiment. (author). refs., figs., tabs.

  10. Optimal Test Characteristics for Maximal Anaerobic Work on the Bicycle Ergometer

    Katch, Victor; And Others

    1977-01-01

    Data from two separate experiments conducted to ascertain the optimum protocol for a maximum anaerobic work output test on the bicycle ergometer indicated that the test duration needs to be approximately forty seconds and the optimal frictional resistance five to six kilograms. (MB)

  11. Prediction of Optimal Designs for Material Removal Rate and Surface Roughness Characteristics

    Maheswara Rao Ch

    2016-12-01

    Full Text Available The present work involves in finding the optimal combination of cutting parameters, in dry turning of EN19 steel using a tungsten carbide tool of nose radius 0.4 mm. The experiments were conducted on a CNC turret lathe as per the designed L9 (3^3 orthogonal array. In order to optimize the Material Removal Rate (MRR, Arithmetic Average Roughness (Ra and Average Peak-to-Valley Height Roughness (Rz individually, Single objective Taguchi method has been employed. From the results, the optimal combination of cutting parameters for MRR is found at: 225 m/min, 0.15 mm/rev and 0.6 mm. Optimal combination of Ra and Rz is found at: 225 m/min, 0.05 mm/rev and 0.6 mm. Analysis of variance (ANOVA is used to find the influence of cutting parameters on the responses. ANOVA results revealed that speed and feed has high influence on MRR. Speed has high influence in affecting the Roughness parameters. Linear regression models for the responses were prepared using the MINITAB-16 software. From the results, it is found that the models prepared are more significant and accurate.

  12. Statistical approach of synthesize CoFe{sub 2}O{sub 4} nanoparticles to optimize their characteristics using response surface methodology

    Shams, S. Fatemeh, E-mail: f.shams@fz-juelich.de [Department of Materials Science and Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad (Iran, Islamic Republic of); Peter Grünberg Institute (PGI-6), Jülich Research Centre, 52425 Jülich (Germany); Kashefi, Mehrdad, E-mail: m-kashefi@um.ac.ir [Department of Materials Science and Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad (Iran, Islamic Republic of); Schmitz-Antoniak, Carolin [Peter Grünberg Institute (PGI-6), Jülich Research Centre, 52425 Jülich (Germany)

    2017-06-15

    Highlights: • The CoFe{sub 2}O{sub 4} nanoparticles were successfully synthesized by coprecipitation method. • By RSM technique, some predicted models were presented for particles size. • Temperature, pH and their interactions had most effectiveness on the particles size. • The reduction agent type can effect on the size properties. • The mixing order of components can effect on the size properties. - Abstract: The performance of magnetic nanoparticles in different applications is severely depended on their size characteristics, so the study of effective parameters on these properties can play significant roles in qualifications of nanoparticles. In present work, some important factors on size features of CoFe{sub 2}O{sub 4} superparamagnetic nanoparticles include the mixing order of synthesis components, the utilized reduction agents, stabilization process, and chelating mechanisms were investigated. Moreover, in order to optimize several influential factors such as the temperature, pH, and cation ratio of reaction, the experimental design was done by using central composite design method of response surface methodology. The simultaneous effects on the particles size and their size distribution were investigated by different methods i.e. dynamic light scattering, X-ray diffraction, Fourier transform inferred spectroscopy, vibration sample magnetometer, and transmission electron microscopy. Results demonstrated the mixing order of reduction agent to salt solution and also the employing of NH{sub 4}OH as a reduction agent could cause to significant decreasing of particles size and size distribution. Furthermore, the nitric acid could stabilize and chelate nanoparticles more appropriate than citric acid. Based on the optimization results, the quadratic polynomial models were fitted on the responses which could predict their amounts, while temperature, pH, and their interactions had higher effectiveness. In addition, the optimum amounts of particle size (14

  13. Hot Ground Vibration Tests

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  14. Study of an optimization approach for a disposal tunnel layout, taking into account the geological environment with spatially heterogeneous characteristics

    Suyama, Yasuhiro; Toida, Masaru; Yanagizawa, Koichi

    2009-01-01

    The geological environment has spatially heterogeneous characteristics with varied host rock types, fractures and so on. In this case the generic disposal tunnel layout, which has been designed by JNC, is not the most suitable for HLW disposal in Japan. The existence of spatially heterogeneous characteristics means that in the repository region there exist sub-regions that are more favourable from the perspective of long-term safety and ones that are less favourable. In order that the spatially heterogeneous environment itself may be utilized most effectively as a natural barrier system, an alternative design of disposal tunnel layout is required. Focusing on the geological environment with spatially heterogeneous characteristics, the authors have developed an alternative design of disposal tunnel layout. The alternative design adopts an optimization approach using a variable disposal tunnel layout. The optimization approach minimizes the number of locations where major water-conducting fractures are intersected, and maximizes the number of emplacement locations for waste packages. This paper will outline the variable disposal tunnel layout and its applicability.

  15. Turbine blade vibration dampening

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  16. Wake Characteristics of a Flapping Wing Optimized for both Aerial and Aquatic Flight

    Izraelevitz, Jacob; Kotidis, Miranda; Triantafyllou, Michael

    2017-11-01

    Multiple aquatic bird species (including murres, puffins, and other auks) employ a single actuator to propel themselves in two different fluid media: both flying and swimming using primarily their flapping wings. This impressive design compromise could be adopted by engineered implementations of dual aerial/aquatic robotic platforms, as it offers an existence proof for favorable flow physics. We discuss one realization of a 3D flapping wing actuation system for use in both air and water. The wing oscillates by the root and employs an active in-line motion degree-of-freedom. An experiment-coupled optimization routine generates the wing trajectories, controlling the unsteady forces throughout each flapping cycle. We elucidate the wakes of these wing trajectories using dye visualization, correlating the wake vortex structures with simultaneous force measurements. After optimization, the wing generates the large force envelope necessary for propulsion in both fluid media, and furthermore, demonstrate improved control over the unsteady wake.

  17. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen

    Wu, Horng-Wen; Wu, Zhan-Yi

    2012-01-01

    This study applies the L 9 orthogonal array of the Taguchi method to find out the best hydrogen injection timing, hydrogen-energy-share ratio, and the percentage of exhaust gas circulation (EGR) in a single DI diesel engine. The injection timing is controlled by an electronic control unit (ECU) and the quantity of hydrogen is controlled by hydrogen flow controller. For various engine loads, the authors determine the optimal operating factors for low BSFC (brake specific fuel consumption), NO X , and smoke. Moreover, net heat-release rate involving variable specific heat ratio is computed from the experimental in-cylinder pressure. In-cylinder pressure, net heat-release rate, A/F ratios, COV (coefficient of variations) of IMEP (indicated mean effective pressure), NO X , and smoke using the optimum condition factors are compared with those by original baseline diesel engine. The predictions made using Taguchi's parameter design technique agreed with the confirmation results on 95% confidence interval. At 45% and 60% loads the optimum factor combination compared with the original baseline diesel engine reduces 14.52% for BSFC, 60.5% for NO X and for 42.28% smoke and improves combustion performance such as peak in-cylinder pressure and net heat-release rate. Adding hydrogen and EGR would not generate unstable combustion due to lower COV of IMEP. -- Highlights: ► We use hydrogen injector controlled by ECU and cooled EGR system in a diesel engine. ► Optimal factors by Taguchi method are determined for low BSFC, NO X and smoke. ► The COV of IMEP is lower than 10% so it will not cause the unstable combustion. ► We improve A/F ratio, in-cylinder pressure, and heat-release at optimized engine. ► Decrease is 14.5% for BSFC, 60.5% for NO X , and 42.28% for smoke at optimized engine.

  18. Optimized expression of prolyl aminopeptidase in Pichia pastoris and its characteristics after glycosylation.

    Yang, Hongyu; Zhu, Qiang; Zhou, Nandi; Tian, Yaping

    2016-11-01

    Prolyl aminopeptidases are specific exopeptidases that catalyze the hydrolysis of the N-terminus proline residue of peptides and proteins. In the present study, the prolyl aminopeptidase gene (pap) from Aspergillus oryzae JN-412 was optimized through the codon usage of Pichia pastoris. Both the native and optimized pap genes were inserted into the expression vector pPIC9 K and were successfully expressed in P. pastoris. Additionally, the activity of the intracellular enzyme expressed by the recombinant optimized pap gene reached 61.26 U mL(-1), an activity that is 2.1-fold higher than that of the native gene. The recombinant enzyme was purified by one-step elution through Ni-affinity chromatography. The optimal temperature and pH of the purified PAP were 60 °C and 7.5, respectively. Additionally, the recombinant PAP was recovered at a yield greater than 65 % at an extremely broad range of pH values from 6 to 10 after treatment at 50 °C for 6 h. The molecular weight of the recombinant PAP decreased from 50 kDa to 48 kDa after treatment with a deglycosylation enzyme, indicating that the recombinant PAP was completely glycosylated. The glycosylated PAP exhibited high thermo-stability. Half of the activity remained after incubation at 50 °C for 50 h, whereas the remaining activity of PAP expressed in E. coli was only 10 % after incubation at 50 °C for 1 h. PAP could be activated by the appropriate salt concentration and exhibited salt tolerance against NaCl at a concentration up to 5 mol L(-1).

  19. Operation Characteristics Optimization of Low Power Three-Phase Asynchronous Motors

    VLAD, I.

    2014-02-01

    Full Text Available Most published papers on low power asynchronous motors were aimed to achieve better operational performances in different operating conditions. The optimal design of the general-purpose motors requires searching and selecting an electric machine to meet minimum operating costs criterion and certain customer imposed restrictive conditions. In this paper, there are many significant simulations providing qualitative and quantitative information on reducing active and reactive energy losses in motors, and on parameters and constructive solution. The optimization study applied the minimal operating costs criterion, and it took into account the starting restrictive conditions. Thirteen variables regarding electromagnetic stresses and main constructive dimensions were considered. The operating costs of the optimized motor decreased with 25.6%, as compared to the existing solution. This paper can be a practical and theoretical support for the development and implementation of modern design methods, based on theoretical and experimental study of stationary and transient processes in low power motors, to increase efficiency and power factor.

  20. Optimized balance rehabilitation training strategy for the elderly through an evaluation of balance characteristics in response to dynamic motions

    Jung, HoHyun; Chun, Keyoung Jin; Hong, Jaesoo; Lim, Dohyung

    2015-01-01

    Balance is important in daily activities and essential for maintaining an independent lifestyle in the elderly. Recent studies have shown that balance rehabilitation training can improve the balance ability of the elderly, and diverse balance rehabilitation training equipment has been developed. However, there has been little research into optimized strategies for balance rehabilitation training. To provide an optimized strategy, we analyzed the balance characteristics of participants in response to the rotation of a base plate on multiple axes. Seven male adults with no musculoskeletal or nervous system-related diseases (age: 25.5±1.7 years; height: 173.9±6.4 cm; body mass: 71.3±6.5 kg; body mass index: 23.6±2.4 kg/m2) were selected to investigate the balance rehabilitation training using customized rehabilitation equipment. Rotation of the base plate of the equipment was controlled to induce dynamic rotation of participants in the anterior–posterior, right-diagonal, medial–lateral, and left-diagonal directions. We used a three-dimensional motion capture system employing infrared cameras and the Pedar Flexible Insoles System to characterize the major lower-extremity joint angles, center of body mass, and center of pressure. We found statistically significant differences between the changes in joint angles in the lower extremities in response to dynamic rotation of the participants (P0.05). These results indicate that optimizing rotation control of the base plate of balance rehabilitation training equipment to induce anterior–posterior and medial–lateral dynamic rotation preferentially can lead to effective balance training. Additional tests with varied speeds and ranges of angles of base plate rotation are expected to be useful as well as an analysis of the balance characteristics considering a balance index that reflects the muscle activity and cooperative characteristics. PMID:26508847

  1. Modelling Supported Driving as an Optimal Control Cycle : Framework and Model Characteristics

    Wang, M.; Treiber, M.; Daamen, W.; Hoogendoorn, S.P.; Van Arem, B.

    2013-01-01

    Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may induce changes in traffic flow characteristics. This paper puts forward a receding horizon control framework to model driver assistance and cooperative systems. The accelerations of

  2. On Optimizing H. 264/AVC Rate Control by Improving R-D Model and Incorporating HVS Characteristics

    Jiang Gangyi

    2010-01-01

    Full Text Available The state-of-the-art JVT-G012 rate control algorithm of H.264 is improved from two aspects. First, the quadratic rate-distortion (R-D model is modified based on both empirical observations and theoretical analysis. Second, based on the existing physiological and psychological research findings of human vision, the rate control algorithm is optimized by incorporating the main characteristics of the human visual system (HVS such as contrast sensitivity, multichannel theory, and masking effect. Experiments are conducted, and experimental results show that the improved algorithm can simultaneously enhance the overall subjective visual quality and improve the rate control precision effectively.

  3. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics

    Chen, Zhicong; Wu, Lijun; Cheng, Shuying; Lin, Peijie; Wu, Yue; Lin, Wencheng

    2017-01-01

    Highlights: •An improved Simulink based modeling method is proposed for PV modules and arrays. •Key points of I-V curves and PV model parameters are used as the feature variables. •Kernel extreme learning machine (KELM) is explored for PV arrays fault diagnosis. •The parameters of KELM algorithm are optimized by the Nelder-Mead simplex method. •The optimized KELM fault diagnosis model achieves high accuracy and reliability. -- Abstract: Fault diagnosis of photovoltaic (PV) arrays is important for improving the reliability, efficiency and safety of PV power stations, because the PV arrays usually operate in harsh outdoor environment and tend to suffer various faults. Due to the nonlinear output characteristics and varying operating environment of PV arrays, many machine learning based fault diagnosis methods have been proposed. However, there still exist some issues: fault diagnosis performance is still limited due to insufficient monitored information; fault diagnosis models are not efficient to be trained and updated; labeled fault data samples are hard to obtain by field experiments. To address these issues, this paper makes contribution in the following three aspects: (1) based on the key points and model parameters extracted from monitored I-V characteristic curves and environment condition, an effective and efficient feature vector of seven dimensions is proposed as the input of the fault diagnosis model; (2) the emerging kernel based extreme learning machine (KELM), which features extremely fast learning speed and good generalization performance, is utilized to automatically establish the fault diagnosis model. Moreover, the Nelder-Mead Simplex (NMS) optimization method is employed to optimize the KELM parameters which affect the classification performance; (3) an improved accurate Simulink based PV modeling approach is proposed for a laboratory PV array to facilitate the fault simulation and data sample acquisition. Intensive fault experiments are

  4. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  5. Particle transport and fluctuation characteristics around neoclassically optimized configurations in LHD

    Tanaka, K.; Michael, C.; Vyacheslavov, L.N.

    2008-01-01

    Density profiles in LHD were measured and particle transport coefficients were estimated from density modulation experiments in LHD. The data set contains the wide region of discharge condition. The dataset of different magnetic axis, toroidal magnetic field and heating power provided data set of widely scanned neoclassical transport. At minimized neoclassical transport configuration in the dataset (Rax=3.5m, Bt=2.8T) showed peaked density profile. Its peaking factor increased gradually with decrease of collisional frequency. This is a similar result observed in tokamak data base. At other configuration, peaking factor reduced with decrease of collisional frequency. Data set showed that larger contribution of neoclassical transport produced hollowed density profile. Comparison between neoclassical and experimental estimated particle diffusivity showed different minimum condition. This suggests neoclassical optimization is not same as anomalous optimization. Clear difference of spatial profile of turbulence was observed between hollowed and peaked density profiles. Major part of fluctuation existed in the unstable region of linear growth rate of ion temperature gradient mode. (author)

  6. Optimization of SDS exposure on preservation of ECM characteristics in whole organ decellularization of rat kidneys.

    He, M; Callanan, A; Lagaras, K; Steele, J A M; Stevens, M M

    2017-08-01

    Renal transplantation is well established as the optimal form of renal replacement therapy but is restricted by the limited pool of organs available for transplantation. The whole organ decellularisation approach is leading the way for a regenerative medicine solution towards bioengineered organ replacements. However, systematic preoptimization of both decellularization and recellularization parameters is essential prior to any potential clinical application and should be the next stage in the evolution of whole organ decellularization as a potential strategy for bioengineered organ replacements. Here we have systematically assessed two fundamental parameters (concentration and duration of perfusion) with regards to the effects of differing exposure to the most commonly used single decellularizing agent (sodium dodecyl sulphate/SDS) in the perfusion decellularization process for whole rat kidney ECM bioscaffolds, with findings showing improved preservation of both structural and functional components of the whole kidney ECM bioscaffold. Whole kidney bioscaffolds based on our enhanced protocol were successfully recellularized with rat primary renal cells and mesenchymal stromal cells. These findings should be widely applicable to decellularized whole organ bioscaffolds and their optimization in the development of regenerated organ replacements for transplantation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1352-1360, 2017. © 2016 Wiley Periodicals, Inc.

  7. Optimization of Selective Laser Melting by Evaluation Method of Multiple Quality Characteristics

    Khaimovich, A. I.; Stepanenko, I. S.; Smelov, V. G.

    2018-01-01

    Article describes the adoption of the Taguchi method in selective laser melting process of sector of combustion chamber by numerical and natural experiments for achieving minimum temperature deformation. The aim was to produce a quality part with minimum amount of numeric experiments. For the study, the following optimization parameters (independent factors) were chosen: the laser beam power and velocity; two factors for compensating the effect of the residual thermal stresses: the scale factor of the preliminary correction of the part geometry and the number of additional reinforcing elements. We used an orthogonal plan of 9 experiments with a factor variation at three levels (L9). As quality criterias, the values of distortions for 9 zones of the combustion chamber and the maximum strength of the material of the chamber were chosen. Since the quality parameters are multidirectional, a grey relational analysis was used to solve the optimization problem for multiple quality parameters. As a result, according to the parameters obtained, the combustion chamber segments of the gas turbine engine were manufactured.

  8. Underserved Areas and Pediatric Resident Characteristics: Is There Reason for Optimism?

    Laraque-Arena, Danielle; Frintner, Mary Pat; Cull, William L

    2016-01-01

    To examine whether resident characteristics and experiences are related to practice in underserved areas. Cross-sectional survey of a national random sample of pediatric residents (n = 1000) and additional sample of minority residents (n = 223) who were graduating in 2009 was conducted. Using weighted logistic regression, we examined relationships between resident characteristics (background, values, residency experiences, and practice goals) and reported 1) expectation to practice in underserved area and 2) postresidency position in underserved area. Response rate was 57%. Forty-one percent of the residents reported that they had an expectation of practicing in an underserved area. Of those who had already accepted postresidency positions, 38% reported positions in underserved areas. Service obligation in exchange for loans/scholarships and primary care/academic pediatrics practice goals were the strongest predictors of expectation of practicing in underserved areas (respectively, adjusted odds ratio 4.74, 95% confidence interval 1.87-12.01; adjusted odds ratio 3.48, 95% confidence interval 1.99-6.10). Other significant predictors include hospitalist practice goals, primary care practice goals, importance of racial/ethnic diversity of patient population in residency selection, early plan (before medical school) to care for underserved families, mother with a graduate or medical degree, and higher score on the Universalism value scale. Service obligation and primary care/academic pediatrics practice goal were also the strongest predictors for taking a postresidency job in underserved area. Trainee characteristics such as service obligations, values of humanism, and desire to serve underserved populations offer the hope that policies and public funding can be directed to support physicians with these characteristics to redress the maldistribution of physicians caring for children. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All

  9. Pacinian channel mediated vasoconstriction in the fingers during vibration exposure

    Ye, Ying

    2013-01-01

    A review of the literature showed that acute vascular responses to hand-transmitted vibration depend on the magnitude, the frequency, and the duration of the vibration but the mechanisms involved in the immediate vasoconstriction on exposure to vibration are not clear. This research was designed to advance understanding of the relation between the characteristics of vibration and changes in vascular circulation on exposed hands, and to develop a model of the mechanoreceptor channel involved i...

  10. Torsional vibrations of shafts of mechanical systems

    Gulevsky, V. A.; Belyaev, A. N.; Trishina, T. V.

    2018-03-01

    The aim of the research is to compare the calculated dependencies for determining the equivalent rigidity of a mechanical system and to come to an agreement on the methods of compiling dynamic models for systems with elastic reducer couplings in applied and classical oscillation theories. As a result of the analysis, it was revealed that most of the damage in the mechanisms and their details is due to the appearance of oscillations due to the dynamic impact of various factors: shock and alternating loads, unbalanced parts of machines, etc. Therefore, the designer at the design stage, and the engineer in the process of operation should provide the possibility of regulating the oscillatory processes both in details and machines by means of creating rational designs, as well as the use of special devices such as vibration dampers, various vibrators with optimal characteristics. A method is proposed for deriving a formula for determining the equivalent stiffness of a double-mass oscillating system of a multistage reducer with elastic reducer links without taking into account the internal losses and inertia of its elements, which gives a result completely coinciding with the result obtained by the classical theory of small mechanical oscillations and allows eliminating formulas for reducing the moments of inertia of the flywheel masses and the stiffness of the shafts.

  11. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices

    Kim, Jae Eun [Catholic University of Daegu, Kyungsan (Korea, Republic of)

    2015-05-15

    To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

  12. Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor

    Bandura, A.N.; Byrka, O.V.; Garkusha, I.E.; Ladygina, M.S.; Marchenko, A.K.; Petrov, Yu.V.; Solyakov, D.G.; Chebotarev, V.V.; Chuvilo, A.A.

    2011-01-01

    The main objective of these studies is characterization of dense xenon plasma streams generated by magnetoplasma compressor (MPC) in different operational regimes. Optimization of plasma compression in MPC allows increase of the plasma stream pressure up to 22...25 bar, average temperature of electrons of 10...20 eV and plasma stream velocity varied in the range of (2...9)x10 6 cm/s depending on operation regime. Spectroscopy measurements demonstrate that in these conditions most of Xe spectral lines are reabsorbed. In the case of known optical thickness, the real value of electron density can be calculated with accounting self-absorption. Estimations of optical thickness were performed and resulting electron density in focus region was evaluated as 10 18 cm -3 .

  13. Taguchi based fuzzy logic optimization of multiple quality characteristics in laser cutting of Duralumin sheet

    Pandey, Arun Kumar; Dubey, Avanish Kumar

    2012-03-01

    Capability of laser cutting mainly depends on optical and thermal properties of work material. Highly reflective and thermally conductive Duralumin sheets are difficult-to-laser-cut. Application of Duralumin sheets in aeronautic and automotive industries due to its high strength to weight ratio demand narrow and complex cuts with high geometrical accuracy. The present paper experimentally investigates the laser cutting of Duralumin sheet with the aim to improve geometrical accuracy by simultaneously minimizing the kerf width and kerf deviations at top and bottom sides. A hybrid approach, obtained by combining robust parameter design methodology and Fuzzy logic theory has been applied to compute the fuzzy multi-response performance index. This performance index is further used for multi-objective optimization. The predicted optimum results have been verified by performing the confirmation tests. The confirmation tests show considerable reduction in kerf deviations at top and bottom sides.

  14. Characteristics and optimization of ZnO/CdS/CZTS photovoltaic solar cell

    Gueddim, A.; Bouarissa, N.; Naas, A.; Daoudi, F.; Messikine, N.

    2018-02-01

    In the present contribution a ZnO/CdS/CZTS structure with new thicknesses of the different layers has been proposed using solar cell capacitance simulator. The objective of this study is the improvement of the device efficiency while varying the thickness of the various layers and the CZTS system energy band-gap. Our results showed that cells with optimal values of thicknesses of 0.1, 0.02 and 1 µm for ZnO window layer, CdS buffer layer and CZTS absorber layer, respectively give conversion efficiency of 23.56%. Furthermore, the higher performance of these cells is obtained for a CZTS band-gap energy of about 1.45 eV. The obtained conversion efficiency is comparable to those previously reported in the literature.

  15. Micro-gas turbine performance optimization by off-design characteristics prediction

    Asgari, M.B.; Pahlevanzadeh, H. [Power and Water University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2005-07-01

    Micro-gas turbines are increasingly seen as a good option for supplying distributed electric or combined heat and power (CHP) systems. Micro turbines operate on the same thermodynamic cycle as the Brayton cycle. Fresh air enters a compressor and air pressure increases isentropically and high-pressure air and fuel are mixed and burnt in the combustion chamber at constant pressure. During this process the flue gas expands to lower pressure and increase volume isentropically. In this study a model was developed using parameters obtained from the compressor and turbine. Ambient temperature and and pressure effects on micro-gas turbines were examined. Customer requirements were used as constraints on micro-gas turbine parameters. The computer software Matlab was used to study the effect of the surge margin on the behaviour of the engine. Optimum performance speeds were presented, and a marginal envelope was obtained at the optimal speed. Issues concerning fuel consumption, power output, and efficiency were considered. The principal results of the simulation presented an optimum region of operation rather than any single optimal point. It was suggested that further research is needed to study the influence of the heat exchanger on efficiency and development of a model of the power electronics so that the complete system can be simulated from power generation. It was noted that although operation of microturbines at high speeds of revolution causes more net power output, this affects the thermal efficiency of the system and fuel consumption is high. It was concluded that optimum operating conditions should be evaluated by satisfying the trade off between net power generated and fuel consumption, as well as the achievable efficiency. 8 refs., 12 figs.

  16. Vibration of machine

    Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo

    2001-09-01

    This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.

  17. Method and device for optimizing the measurements of the damping characteristics of therman neutrons

    Jacobson, L.A.; Johnstone, C.W.

    1978-01-01

    The borehole probe consists of a pulsed neutron generator and two detectors installed at different distances from the generator. The decay or damping characteristics of the thermal neutrons in a ground formation are measured by picking up indications of the concentration of thermal neutrons in the formation during a set of two measuring intervals offer irradiation. These measuring intervals consist of a sequence of discrete time gates. The time gates are subdivided into groups of progressive periods of time. The time delay between the pulses and the beginning of the sequence is adjusted by means of a selected scale factor value. (DG) [de

  18. Numerical simulation of lead devices for seismic isolation and vibration control on their damping characteristics. Development of lead material model under cyclic large deformation

    Matsuda, Akihiro; Yabana, Shuichi; Borst, Rene de

    2004-01-01

    In order to predict the mechanical properties of lead devices for seismic isolation and vibration control, especially damping behavior under cyclic loading using numerical simulation, cyclic shear loading tests and uniaxial tensile loading tests were performed, and a new material model was proposed with the use of the both test results. Until now, it has been difficult to evaluate mechanical properties of lead material under cyclic loading by uniaxial tensile loading test because local deformations appeared with the small tensile strain. Our shear cyclic loading tests for lead material enabled practical evaluation of its mechanical properties under cyclic large strain which makes it difficult to apply uniaxial test. The proposed material model was implemented into a finite element program, and it was applied to numerical simulation of mechanical properties of lead dampers and rubber bearings with a lead plug. The numerical simulations and the corresponding laboratory loading tests showed good agreement, which proved the applicability of the proposed model. (author)

  19. Enhanced vibration diagnostics using vibration signature analysis

    Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.

    2001-01-01

    Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)

  20. Characteristic vibration patterns of odor compounds from bread-baking volatiles upon protein binding: density functional and ONIOM study and principal component analysis.

    Treesuwan, Witcha; Hirao, Hajime; Morokuma, Keiji; Hannongbua, Supa

    2012-05-01

    As the mechanism underlying the sense of smell is unclear, different models have been used to rationalize structure-odor relationships. To gain insight into odorant molecules from bread baking, binding energies and vibration spectra in the gas phase and in the protein environment [7-transmembrane helices (7TMHs) of rhodopsin] were calculated using density functional theory [B3LYP/6-311++G(d,p)] and ONIOM [B3LYP/6-311++G(d,p):PM3] methods. It was found that acetaldehyde ("acid" category) binds strongly in the large cavity inside the receptor, whereas 2-ethyl-3-methylpyrazine ("roasted") binds weakly. Lys296, Tyr268, Thr118 and Ala117 were identified as key residues in the binding site. More emphasis was placed on how vibrational frequencies are shifted and intensities modified in the receptor protein environment. Principal component analysis (PCA) suggested that the frequency shifts of C-C stretching, CH(3) umbrella, C = O stretching and CH(3) stretching modes have a significant effect on odor quality. In fact, the frequency shifts of the C-C stretching and C = O stretching modes, as well as CH(3) umbrella and CH(3) symmetric stretching modes, exhibit different behaviors in the PCA loadings plot. A large frequency shift in the CH(3) symmetric stretching mode is associated with the sweet-roasted odor category and separates this from the acid odor category. A large frequency shift of the C-C stretching mode describes the roasted and oily-popcorn odor categories, and separates these from the buttery and acid odor categories.

  1. Axisymmetric vibrations of thick shells of revolution

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  2. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks.

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-02-03

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.

  3. Topological material layout in plates for vibration suppression and wave propagation control

    Larsen, Anders Astrup; Laksafoss, B.; Jensen, Jakob Søndergaard

    2009-01-01

    We propose a topological material layout method to design elastic plates with optimized properties for vibration suppression and guided transport of vibration energy. The gradient-based optimization algorithm is based on a finite element model of the plate vibrations obtained using the Mindlin...

  4. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve

    Xu, Lili; Luo, Shuqian

    2010-11-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  5. Fuel characteristics needed for optimal operation of the BR2 reactor

    Koonen, E.; Beeckmans, A.; Gubel, P.

    1998-01-01

    The standard BR2 fuel element contains 400 g 235 U under the form of UAl x with burnable absorbers homogeneously mixed into the fuel meat. The uranium is highly enriched with a density of ∼1.30 g U/cm 3 . This fuel element was developed in the early seventies to satisfy the irradiation conditions required by many experimental programmes: large reactivity available, cycle length, hard neutron spectrum, limited motion of the control rods during the cycle thereby stabilizing the irradiation conditions. Another benefit is the reduction of the fuel consumption by increasing the burnup at discharge. BR2 has recently been restarted after the completion of an important refurbishment programme. Future utilization will again be concentrated on engineering R and D in the field of nuclear fuels, materials and safety, and on radioisotope production. Therefore the required irradiation conditions and the corresponding fuel characteristics remain essentially the same as in the past. (author)

  6. Vibration analysis and vibration damage assessment in nuclear and process equipment

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.; Yetisir, M.; Smith, B.A.W.

    1997-01-01

    Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of process and nuclear components. The purpose of this paper is to discuss flow-induced vibration analysis and vibration damage prediction. Vibration excitation mechanisms are described with particular emphasis on fluid elastic instability. The dynamic characteristics of process and power equipment are explained. The statistical nature of some parameters, in particular support conditions, is discussed. The prediction of fretting-wear damage is approached from several points-of-view. An energy approach to formulate fretting-wear damage is proposed. (author)

  7. On the neutron noise diagnostics of pressurized water reactor control rod vibrations. 1. periodic vibrations

    Pazsit, I.; Glockler, O.

    1983-01-01

    Based on the theory of neutron noise arising from the vibration of a localized absorber, the possibility of rod vibration diagnostics is investigated. It is found that noise source characteristics, namely rod position and vibration trajectory and spectra, can be unfolded from measured neutron noise signals. For the localization process, the first and more difficult part of the diagnostics, a procedure is suggested whose novelty is that it is applicable in case of arbitrary vibration trajectories. Applicability of the method is investigated in numerical experiments where effects of background noise are also accounted for

  8. [Occupational standing vibration rate and vibrational diseases].

    Karnaukh, N G; Vyshchipan, V F; Haumenko, B S

    2003-12-01

    Occupational standing vibration rate is proposed in evaluating a degree of impairment of an organism activity. It will allow more widely to introduce specification of quality and quantity in assessment of the development of vibrational disease. According out-patient and inpatient obtained data we have established criterial values of functional changes in accordance with accumulated occupational standing vibration rate. The nomogram was worked out for defining a risk of the development of vibrational disease in mine workers. This nomogram more objectively can help in diagnostics of the disease.

  9. Cognitive Dysfunction after On-Pump Operations: Neuropsychological Characteristics and Optimal Core Battery of Tests

    Anna G. Polunina

    2014-01-01

    Full Text Available Postoperative cognitive dysfunction (POCD is a mild form of perioperative ischemic brain injury, which emerges as memory decline, decreased attention, and decreased concentration during several months, or even years, after surgery. Here we present results of our three neuropsychological studies, which overall included 145 patients after on-pump operations. We found that the auditory memory span test (digit span was more effective as a tool for registration of POCD, in comparison with the word-list learning and story-learning tests. Nonverbal memory or visuoconstruction tests were sensitive to POCD in patients after intraoperative opening of cardiac chambers with increased cerebral air embolism. Psychomotor speed tests (digit symbol, or TMT A registered POCD, which was characteristic for elderly atherosclerotic patients. Finally, we observed that there were significant effects of the order of position of a test on the performance on this test. For example, the postoperative performance on the core tests (digit span and digit symbol showed minimal impairment when either of these tests was administered at the beginning of testing. Overall, our data shows that the selection of tests, and the order of which these tests are administered, may considerably influence the results of studies of POCD.

  10. Response surface optimization of pH and ionic strength for emulsion characteristics of egg yolk.

    Kurt, S; Zorba, O

    2009-11-01

    Effects of pH (3.5, 4.5, 6.0, 7.5, and 8.5) and ionic strength (0.05, 0.15, 0.30, 0.45, and 0.55 M NaCl) on emulsion capacity, emulsion stability (ES), apparent yield stress of emulsion (AYS), and emulsion density (ED) of egg yolk were studied by using a model system. Ionic strength and pH had significant (P emulsion characteristics of egg yolk. Their interaction effects also have been found significant on ES, AYS, and ED. Predicted solutions of ES, emulsion capacity, and ED were minimum. The critical point of ES was determined to be at pH 6.08 and an ionic strength of 0.49 (M NaCl). Predicted solution for AYS was a maximum, which was determined to be at pH 6.04 and an ionic strength of 0.29 (M NaCl). Optimum values of pH and ionic strenght were 4.61 to 7.43 and 0.10 to 0.47, respectively.

  11. Optimizing the sensory characteristics and acceptance of canned cat food: use of a human taste panel.

    Pickering, G J

    2009-02-01

    food acceptance and preference behaviours in cats. For instance, while the sense of taste in cats appears generally similar to that of other mammals, they lack a sweet taste receptor (Li et al., 2006), which may limit the applicability of sweetness ratings obtained from humans. Modification of existing techniques used with human food research, such as external preference mapping (Naes and Risvik, 1996) may be useful. Ultimately, this may facilitate more economical and efficient methods for optimizing cat food flavour and texture and predicting the effects of composition and processing changes on cat feeding behaviour. This will require collaboration between pet food manufacturers and nutritionists, animal behaviourists and human sensory scientists. The results of this preliminary study should assist in this process.

  12. Expert Consensus Survey on Digital Health Tools for Patients With Serious Mental Illness: Optimizing for User Characteristics and User Support.

    Hatch, Ainslie; Hoffman, Julia E; Ross, Ruth; Docherty, John P

    2018-06-12

    Digital technology is increasingly being used to enhance health care in various areas of medicine. In the area of serious mental illness, it is important to understand the special characteristics of target users that may influence motivation and competence to use digital health tools, as well as the resources and training necessary for these patients to facilitate the use of this technology. The aim of this study was to conduct a quantitative expert consensus survey to identify key characteristics of target users (patients and health care professionals), barriers and facilitators for appropriate use, and resources needed to optimize the use of digital health tools in patients with serious mental illness. A panel of 40 experts in digital behavioral health who met the participation criteria completed a 19-question survey, rating predefined responses on a 9-point Likert scale. Consensus was determined using a chi-square test of score distributions across three ranges (1-3, 4-6, 7-9). Categorical ratings of first, second, or third line were designated based on the lowest category into which the CI of the mean ratings fell, with a boundary >6.5 for first line. Here, we report experts' responses to nine questions (265 options) that focused on (1) user characteristics that would promote or hinder the use of digital health tools, (2) potential benefits or motivators and barriers or unintended consequences of digital health tool use, and (3) support and training for patients and health care professionals. Among patient characteristics most likely to promote use of digital health tools, experts endorsed interest in using state-of-the-art technology, availability of necessary resources, good occupational functioning, and perception of the tool as beneficial. Certain disease-associated signs and symptoms (eg, more severe symptoms, substance abuse problems, and a chaotic living situation) were considered likely to make it difficult for patients to use digital health tools

  13. EMBEDDED SYSTEMS FOR VIBRATION MONITORING

    Miloš Milovančević

    2014-08-01

    Full Text Available The purpose of the research presented in this paper is the development of the optimal micro configuration for vibration monitoring of pumping aggregate, based on Microchip’s microcontroller (MC. Hardware used is 10-bit MC, upgraded with 12/bit A/D converter. Software for acquisition and data analysis is optimized for testing turbo pumps with rotation speed up to 2000 rpm. This software limitation is set for automatic diagnostics and for individual and manual vibro-diagnostic; the only limitation is set by accelerometer performance. The authors have performed numerous measurements on a wide range of turbo aggregates for establishing the operational condition of pumping aggregates.

  14. Dependence of steam generator vibrations on feedwater pressure

    Sadilek, J.

    1989-01-01

    Vibration sensors are attached to the bottom of the steam generator jacket between the input and output primary circuit collectors. The effective vibration value is recorded daily. Several times higher vibrations were observed at irregular intervals; their causes were sought, and the relation between the steam generator vibrations measured at the bottom of its vessel and the feedwater pressure was established. The source of the vibrations was found to be in the feedwater tract of the steam generator. The feedwater tract is described and its hydraulic characteristics are given. Vibrations were measured on the S02 valve. It is concluded that vibrations can be eliminated by reducing the water pressure before the control valves and by replacing the control valves with ones with more suitable control characteristics. (E.J.). 3 figs., 1 tab., 3 refs

  15. Modelling of thermal processes and optimization of energy-ecology characteristics of the modern boiler plants

    Filkoski, Risto V.

    2004-01-01

    The investigation accomplished in the framework of this work is concerned with the thermal processes in the furnaces of modern steam and hot-water boilers on fossil fuels. Aerodynamic and thermal conditions in the furnaces are described and models for separate processes and phenomena that occur there are presented. By using proper CFD technique, three-dimensional models of furnaces of coal-fired power boiler, hot-water boiler with circulating fluidized bed combustion and steam boiler on liquid/gaseous fuel are created. Graphical pre-processor is used for geometry creation and mesh generation of the investigated boiler plants. Mathematical model for the gas-solids mixture flow is based on Lagrange approach for the discrete phase simulations, in addition to the transport equations for the gas phase. A standard steady semi-empirical k-E model is employed for description of the turbulent flow. Coupling of velocity and pressure is achieved by the SIMPLEC method. Coal combustion is modelled as non-premixed kinetics/diffusion-limited process by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Radiation heat transfer is computed by means of the P-1 model, which is simplified variance of the P-N model, based on the expansion of the radiation intensity into an orthogonal series of spherical harmonics. Presence of discrete solid phase in the main gas stream is effectively taken into consideration through additional terms in the radiation energy transfer equation and in other model equations. Variable emissivity coefficient of the combustion products is modelled with the weighted-sum-of-grey gases-model. A model for NO x formation and reduction is included in the computations. Numerical simulations provide results concerning the boilers operation in several regimes. A methodology for optimisation of energetic-ecological characteristics of boiler plants is proposed

  16. Vibration characteristics and dynamic increment factor of 2 span continuous PC cable-stayed bridge under moving vehicles; 2 keikan renzoku PC shachokyo no sharyo sokoji no shindo tokusei to doteki zofukuritsu

    Fukada, S.; Kajikawa, Y. [Kanazawa Univ. (Japan)] Tsunomoto, M. [Oriental Construction Co. Ltd., Tokyo (Japan)

    1998-10-21

    In this study, experiments on and simulation analyses of the travels of vehicles on a 2 span continuous PC cable-stayed bridge were conducted, and the propriety of the analysis method, vibration characteristics of traveling vehicles, and characteristics of the effective amplitude and dynamic increment factor concerning various traveling states were discussed. The results show that actually measured value of strain to a dynamic load substantially agreed with the value of strain obtained in the case of analysis in which the end fulcrums were movable. The actually measured value of natural frequency was between the value of natural frequency in the case of analysis in which the end fulcrums were movable and the value in the case of analysis in which the end fulcrums were in a pin state. The actually measured value of mode damping constant agreed exactly with the value of mode damping constant calculated on the assumption that the damping constant of the main beam is 1.0%, those of the main tower and bridge pier 5.0%, and that of the cables 0.1%. Therefore, the damping matrix in the dynamic response analysis was determined on the basis of the damping constants of these members. The characteristics of the effective amplitude and dynamic increment factor in various traveling states of the results of the simulation analysis are in comparatively good agreement with those of experiments. 20 refs., 17 figs., 5 tabs.

  17. Determination of optimal whole body vibration amplitude and frequency parameters with plyometric exercise and its influence on closed-chain lower extremity acute power output and EMG activity in resistance trained males

    Hughes, Nikki J.

    The optimal combination of Whole body vibration (WBV) amplitude and frequency has not been established. Purpose. To determine optimal combination of WBV amplitude and frequency that will enhance acute mean and peak power (MP and PP) output EMG activity in the lower extremity muscles. Methods. Resistance trained males (n = 13) completed the following testing sessions: On day 1, power spectrum testing of bilateral leg press (BLP) movement was performed on the OMNI. Days 2 and 3 consisted of WBV testing with either average (5.8 mm) or high (9.8 mm) amplitude combined with either 0 (sham control), 10, 20, 30, 40 and 50 Hz frequency. Bipolar surface electrodes were placed on the rectus femoris (RF), vastus lateralis (VL), bicep femoris (BF) and gastrocnemius (GA) muscles for EMG analysis. MP and PP output and EMG activity of the lower extremity were assessed pre-, post-WBV treatments and after sham-controls on the OMNI while participants performed one set of five repetitions of BLP at the optimal resistance determined on Day 1. Results. No significant differences were found between pre- and sham-control on MP and PP output and on EMG activity in RF, VL, BF and GA. Completely randomized one-way ANOVA with repeated measures demonstrated no significant interaction of WBV amplitude and frequency on MP and PP output and peak and mean EMGrms amplitude and EMG rms area under the curve. RF and VL EMGrms area under the curve significantly decreased (p plyometric exercise does not induce alterations in subsequent MP and PP output and EMGrms activity of the lower extremity. Future studies need to address the time of WBV exposure and magnitude of external loads that will maximize strength and/or power output.

  18. Portable vibration exciter

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  19. Axisymmetric vibrations of thin shells of revolution

    Suzuki, Katsuyoshi; Kikuchi, Norio; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    The problem of free vibration of axisymmetric shells of revolution is important in connection with the design of pressure vessels, chemical equipment, aircrafts, structures and so on. In this study, the axisymmetrical vibration of a thin shell of revolution having a constant curvature in meridian direction was analyzed by thin shell theory. First, the Lagrangian during one period of the vibration of a shell of revolution was determined by the primary approximate theory of Love, and the vibration equations and boundary conditions were derived from its stopping condition. The vibration equations were strictly analyzed by using the series solution. The basic equations for the strain and strain energy of a shell were based on those of Novozhilov. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. The theory and the numerical calculation ore described. Especially in the frequency curves, the waving phenomena were observed frequently, which were not seen in non-axisymmetric vibration, accordingly also the vibration mode changed in complex state on the frequency curves of same order. The numerical calculation was carried out in the large computer center in Tohoku University. (Kako, I.)

  20. Experimental Study of Pressure Drop and Wall Shear Stress Characteristics of γ /Al2O3-Water Nanofluid in a Circular pipe under Turbulent flow induced vibration.

    Adil Abbas AL-Moosawy

    2016-09-01

    Full Text Available Experimental study of γ /Al2O3 with mean diameter of less than 50 nm was dispersed in the distilled water that flows through a pipe consist of five sections as work station ,four sections made of carbon steel metal and one sections made of Pyrex glass pipe, with five nanoparticles volume concentrations of 0%,0.1%,0.2%,0.3%,and 0.4% with seven different volume flow rates 100, 200 , 300, 400, 500, 600 ,and 700ℓ/min were investigated to calculated pressure distribution for the cases without rubber ,with 3mm rubber and with 6mm rubber used to support the pipe. Reynolds number was between 20000 and 130000. Frequency value through pipe was measured for all stations of pipe for all cases. The results show that the pressure drop and wall shear stress of the nanofluid increase by increasing the nanoparticles volume concentrations or Reynolds number, the values of frequency through the pipe increase continuously when wall shear stress increases and the ratio of increment increases as nanofluid concentrations increase. Increasing of vibration frequency lead to increasing the friction factor between the pipe and the wall and thus increasing in pressure drop. Several equations between the wall shear stress and frequency for all volume concentration and for three cases without rubber, with rubber has 3mm thickness ,and with rubber has 6mm thickness. Finally, the results led to that γ /Al2O3 could function as a good and alternative conventional working fluid in heat transfer applications. A good agreement is seen between the experimental and those available in the literature

  1. Vibrations and Eigenvalues

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  2. Experimental chaos in nonlinear vibration isolation system

    Lou Jingjun; Zhu Shijian; He Lin; He Qiwei

    2009-01-01

    The chaotic vibration isolation method was studied thoroughly from an experimental perspective. The nonlinear load-deflection characteristic of the conical coil spring used in the experiment was surveyed. Chaos and subharmonic responses including period-2 and period-6 motions were observed. The line spectrum reduction and the drop of the acceleration vibration level in chaotic state and that in non-chaotic state were compared, respectively. It was concluded from the experiment that the nonlinear vibration isolation system in chaotic state has strong ability in line spectrum reduction.

  3. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part. 2. Applicability for seismic waves with various frequency characteristics

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2010-01-01

    In this study, the applicability of a previously developed optimal seismic design methodology, which can consider the structural integrity of not only piping systems but also elasto-plastic supporting devices, is studied for seismic waves with various frequency characteristics. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location and the capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Numerical simulations are performed using a simple piping system model. As a result, it is shown that the proposed optimal seismic design methodology is applicable to the seismic design of piping systems subjected to seismic waves with various frequency characteristics. The mechanism of optimization is also clarified. (author)

  4. Optical vibration measurement of mechatronics devices

    Yanabe, Shigeo

    1993-09-01

    An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.

  5. System for Monitoring and Analysis of Vibrations at Electric Motors

    Gabriela Rață; Mihai Rață

    2014-01-01

    The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11) and a data acquisition board from National Instruments (NI 6009). Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual...

  6. Dynamic characteristics of stay cables with inerter dampers

    Shi, Xiang; Zhu, Songye

    2018-06-01

    This study systematically investigates the dynamic characteristics of a stay cable with an inerter damper installed close to one end of a cable. The interest in applying inerter dampers to stay cables is partially inspired by the superior damping performance of negative stiffness dampers in the same application. A comprehensive parametric study on two major parameters, namely, inertance and damping coefficients, are conducted using analytical and numerical approaches. An inerter damper can be optimized for one vibration mode of a stay cable by generating identical wave numbers in two adjacent modes. An optimal design approach is proposed for inerter dampers installed on stay cables. The corresponding optimal inertance and damping coefficients are summarized for different damper locations and interested modes. Inerter dampers can offer better damping performance than conventional viscous dampers for the target mode of a stay cable that requires optimization. However, additional damping ratios in other vibration modes through inerter damper are relatively limited.

  7. Quantum Monte Carlo for vibrating molecules

    Brown, W.R.; Lawrence Berkeley National Lab., CA

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies

  8. Structural dynamics and vibration 1995. PD-Volume 70

    Ovunc, B.A.; Esat, I.I.; Sabir, A.B.; Karadag, V.

    1995-01-01

    The themes of this symposium focused on: dynamic responses to temperature cycles and wind excitation; the influence of the hydraulic feedback on stability; structural reliability; vibratory stress relief; fault detection by signal processing; dynamic contact in mechanisms; vibration of thick flexible mechanisms; higher order mechanisms in flexible mechanisms; natural circular frequencies by finite element method; elastic buckling, stability, and vibration of linear and nonlinear structures; buckling of stiffened plates and rings; mixed variable optimization; vibration optimization; and optimization in a constrained space. Separate abstracts were prepared for 20 papers in this book

  9. Experimental investigation of nonlinear characteristics of a smart fluid damper

    Rahman, Mahmudur; Ong, Zhi Chao; Chong, Wen Tong; Julai, Sabariah; Ahamed, Raju

    2018-05-01

    Smart fluids, known as smart material, are used to form controllable dampers in vibration control applications. Magnetorheological(MR) fluid damper is a well-known smart fluid damper which has a reputation to provide high damping force with low-power input. However, the force/velocity of the MR damper is significantly nonlinear and proper characteristic analysis are required to be studied for optimal implementation in structural vibration control. In this study, an experimental investigation is carried out to test the damping characteristics of MR damper. Dynamic testing is performed with a long-stroke MR damper model no RD-80410-1 from Lord corporation on a universal testing machine(UTM). The force responses of MR damper are measured under different stroke lengths, velocities and current inputs and their performances are analyzed. This study will play a key role to implement MR damper in many structural vibration control applications.

  10. Vibration of hydraulic machinery

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  11. Anti-vibration gloves?

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.

  12. Vibrational and electronic spectroscopic studies of melatonin

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  13. Vibration Analysis and Experimental Research of the Linear-Motor-Driven Water Piston Pump Used in the Naval Ship

    Ye-qing Huang

    2016-01-01

    Full Text Available Aiming at the existing problems of traditional water piston pump used in the naval ship, such as low efficiency, high noise, large vibration, and nonintelligent control, a new type of linear-motor-driven water piston pump is developed and its vibration characteristics are analyzed in this research. Based on the 3D model of the structure, the simulation analyses including static stress analysis, modal analysis, and harmonic response analysis are conducted. The simulation results reveal that the mode shape under low frequency stage is mainly associated with the eccentricity swing of the piston rod. The vibration experiment results show that the resonance frequency of linear-motor-driven water piston pump is concentrated upon 500 Hz and 800 Hz in the low frequency range. The dampers can change the resonance frequency of the system to a certain extent. The vibration under triangular motion curve is much better than that of S curve, which is consistent with the simulation conclusion. This research provides an effective method to detect the vibration characteristics and a reference for design and optimization of the linear-motor-driven water piston pump.

  14. High-Performance Reaction Wheel Optimization for Fine-Pointing Space Platforms: Minimizing Induced Vibration Effects on Jitter Performance plus Lessons Learned from Hubble Space Telescope for Current and Future Spacecraft Applications

    Hasha, Martin D.

    2016-01-01

    The Hubble Space Telescope (HST) applies large-diameter optics (2.5-m primary mirror) for diffraction-limited resolution spanning an extended wavelength range (approx. 100-2500 nm). Its Pointing Control System (PCS) Reaction Wheel Assemblies (RWAs), in the Support Systems Module (SSM), acquired an unprecedented set of high-sensitivity Induced Vibration (IV) data for 5 flight-certified RWAs: dwelling at set rotation rates. Focused on 4 key ratios, force and moment harmonic values (in 3 local principal directions) are extracted in the RWA operating range (0-3000 RPM). The IV test data, obtained under ambient lab conditions, are investigated in detail, evaluated, compiled, and curve-fitted; variational trends, core causes, and unforeseen anomalies are addressed. In aggregate, these values constitute a statistically-valid basis to quantify ground test-to-test variations and facilitate extrapolations to on-orbit conditions. Accumulated knowledge of bearing-rotor vibrational sources, corresponding harmonic contributions, and salient elements of IV key variability factors are discussed. An evolved methodology is presented for absolute assessments and relative comparisons of macro-level IV signal magnitude due to micro-level construction-assembly geometric details/imperfections stemming from both electrical drive and primary bearing design parameters. Based upon studies of same-size/similar-design momentum wheels' IV changes, upper estimates due to transitions from ground tests to orbital conditions are derived. Recommended HST RWA choices are discussed relative to system optimization/tradeoffs of Line-Of-Sight (LOS) vector-pointing focal-plane error driven by higher IV transmissibilities through low-damped structural dynamics that stimulate optical elements. Unique analytical disturbance results for orbital HST accelerations are described applicable to microgravity efforts. Conclusions, lessons learned, historical context/insights, and perspectives on future applications

  15. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  16. Design of a nonlinear torsional vibration absorber

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  17. Micro-gas turbine performance optimization by off-design characteristics prediction. Paper no. IGEC-1-ID24

    Asgari, M.B.; Pahlevanzadeh, H.

    2005-01-01

    The design characteristics of a microturbine can be obtained according to geometrical features of major modules like compressor and turbine. Ambient temperature and pressure affect on micro-gas turbine performance. The customer requirements may be introduced some constraints on micro-gas turbine parameters. This work presents a program in Matlab to study the effect of surge margin on the behavior of the engine. It has been shown that the optimum performance could be obtained at 0.83-designed speed. Around the optimized speed, a marginal envelope was obtained. The results show that the fuel consumption 61% of design point, the power output 78% of design point and the efficiency 20.5%. It is easy to show that the principal results of simulation present an optimum region of operation rather than the one point for optimum conditions. Finally, a future work for studying the influence of heat exchanger on efficiency and development of a model of the power electronics so that the complete system can be simulated from power generation is suggested. (author)

  18. Procedure for vibration test of the fuel rod supported by spacer grids

    Choi, Myoung Hwan; Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Song, Kee Nam

    2002-07-01

    One of the methods that are used to compare and verify the supporting performance of the spacer grids developed is the vibration characteristic test. In this report there are two aims. One is of the understand of the experimental method and procedure performing the modal testing using I-DEAS TDAS module. The other is the investigation of the vibration behaviors of a dummy fuel rod supported by 8 optimized H type spacer grids. This report describes the method and procedure of modal testing to obtain the vibration characteristics such as amplitudes, natural frequencies and mode shapes of the fuel rod using a shaker, a non-contact gap sensor and an accelerometer. This report provides a test procedure in detail so that anyone can be easily understood and use the I-DEAS TDAS program. The I-DEAS TDAS program related to the modal testing has several tasks including the Modal analysis, Signal Processing et al.. This report includes model preparation to prepare the geometrical model, Signal Processing (Sine/Standard measurement) to acquire the signal, Modal analysis to obtain the frequencies and mode shapes, Correlation to analyze the relation between the test and FE analysis and Post Processing tasks. In addition, this report contains the actual test and analysis data of a dummy fuel rod in length 3847mm supported by 8 optimized H type spacer grids

  19. System for Monitoring and Analysis of Vibrations at Electric Motors

    Gabriela Rață

    2014-09-01

    Full Text Available The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11 and a data acquisition board from National Instruments (NI 6009. Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual instrument that allows real-time monitoring and Fourier analysis of signals from the vibration sensor was implemented in LabVIEW.

  20. Molecular Geometry And Vibrational Spectra of 2'-chloroacetanilide

    Gokce, H.

    2008-01-01

    The molecular structure, vibrational frequencies and the corresponding vibrational assingments of 2'-chloroacetanilide in the ground state have been calculated by using Hartree-Fock (HF) and Density Functional Theory (DFT/B3LYP) methods with 6-311++G(d,p) basis set. The obtained vibrational frequencies and optimized geometric parameters (bond lenghts and angles) are in very good agreement with the experimental data. The comparison of the observed and calculated vibrational frequencies assignments of 2'-chloroacetanilide exhibit that the scaled DFT/B3LYP method is superior to be scaled HF method. Furthermore the calculated Infrared and Raman intensities are also reported

  1. Bandshapes in vibrational spectroscopy

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  2. Adaptive vibration isolation system for diesel engine

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  3. Vibration measurement of accelerator tube table in ATF

    Nakayama, Y.; Sugahara, R.; Yamaoka, H.; Masuzawa, M.; Yamashita, S.

    2004-01-01

    Acceleration tube fixed to the table should not be a structure to amplify the vibration. Stability of ground is preferable for accelerator beam operation, and the beam control by extremely high resolution is especially demanded in GLC. Then, we have measured ground motion and table vibration in ATF at KEK. In this paper, some of analyzed results are shown, and we show the characteristics of vibration about the accelerator tube table in ATF. (author)

  4. Transfer vibration through spine

    Benyovszky, Adam

    2012-01-01

    Transfer Vibration through Spine Abstract In the bachelor project we deal with the topic of Transfer Vibration through Spine. The problem of TVS is trying to be solved by the critical review method. We analyse some diagnostic methods and methods of treatment based on this principle. Close attention is paid to the method of Transfer Vibration through Spine that is being currently solved by The Research Institute of Thermomechanics in The Czech Academy of Sciences in cooperation with Faculty of...

  5. Optimization of Additive-Powder Characteristics for Metallic Micro-Cell UO{sub 2} Fuel Pellet Fabrication

    Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The improvement in the thermal conductivity of the UO{sub 2} fuel pellet can enhance the fuel performance in various aspects. The mobility of the fission gases is reduced by the lower temperature gradient in the UO{sub 2} fuel pellet. That is to say, the capability of the fission gas retention of the fuel pellet can increase. In addition, the lower centerline temperature of the fuel pellet affects the accident tolerance for nuclear fuel as well as the enhancement of fuel safety and fuel pellet integrity under normal operation conditions. The nuclear reactor power can be uprated owing to the higher safety margin. Thus, many researches on enhancing the thermal conductivity of a nuclear fuel pellet for LWRs have been performed. Typically, an enhancement of the thermal conductivity of the UO{sub 2} fuel pellet can be obtained by the addition of a higher thermal conductive material in the fuel pellet. To maximize the effect of the thermal conductivity enhancement, a continuous and uniform channel of the thermal conductive material in the UO{sub 2} matrix must be formed. To enhance the thermal conductivity of a UO{sub 2} fuel pellet, the development of fabrication process of a Cr metallic micro-cell UO{sub 2} pellet with a continuous and uniform channel of the Cr metallic phase was carried out. The formation of the Cr-oxide phases was prevented and the uniformity of the Cr-metal phase distribution was enhanced simultaneously, through the optimization of the additive-powder characteristics. In the results, the Cr metallic micro-cell pellet with continuous and uniform Cr metallic channel could be obtained.

  6. Experimental Research on Vibrations of Double Harmonic Gear Transmission

    Sava Ianici

    2017-11-01

    Full Text Available Gears transmission can be important sources of vibration in the mechanical system structures and can have a significant share in the overall vibration level. The current trend of significant increase in powers and speeds transmitted by modern mechanical systems, along with the size reduction, may cause a worsening of the behaviour of transmissions with gears in terms of vibration, especially when the optimization criteria were not respected in the design, execution and installation phase. This paper presents a study of vibrations that occur in a double harmonic gear transmission (DHGT, based on experimental research. The experimental researches revealed that in a double harmonic gear transmission the vibrations are initiated and develop in the multipara harmonics engagement of the teeth and in the kinematic couplings materialized between the wave generator and the flexible toothed wheel. These vibrations are later transmitted by means of the shafts and bearings to the transmission housing, respectively, through the walls of it, propagating in the air.

  7. NSGA-II based optimal control scheme of wind thermal power system for improvement of frequency regulation characteristics

    S. Chaine

    2015-09-01

    Full Text Available This work presents a methodology to optimize the controller parameters of doubly fed induction generator modeled for frequency regulation in interconnected two-area wind power integrated thermal power system. The gains of integral controller of automatic generation control loop and the proportional and derivative controllers of doubly fed induction generator inertial control loop are optimized in a coordinated manner by employing the multi-objective non-dominated sorting genetic algorithm-II. To reduce the numbers of optimization parameters, a sensitivity analysis is done to determine that the above mentioned three controller parameters are the most sensitive among the rest others. Non-dominated sorting genetic algorithm-II has depicted better efficiency of optimization compared to the linear programming, genetic algorithm, particle swarm optimization, and cuckoo search algorithm. The performance of the designed optimal controller exhibits robust performance even with the variation in penetration levels of wind energy, disturbances, parameter and operating conditions in the system.

  8. Extension of the maintenance cycle of HEPA filters by optimization of the technical characteristics of filters and their construction

    Bella, H.; Stiehl, H.H.; Sinhuber, D.

    1977-01-01

    The knowledge of the parameters of HEPA filters used at present in nuclear plants allows optimization of such filters with respect to flow rate, pressure drop and service life. The application of optimizing new types of HEPA filters of improved performance is reported. The calculated results were checked experimentally. The use of HEPA filters optimized with respect to dust capacity and service life, and the effects of this new type of filter on the reduction of operating and maintenance costs are discussed

  9. Mechanical vibration and shock analysis, sinusoidal vibration

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  10. Hydroelastic Vibrations of Ships

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  11. Surface vibrational spectroscopy

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  12. Gearbox vibration diagnostic analyzer

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  13. Handbook Of Noise And Vibration

    1995-12-01

    This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

  14. Vibration insensitive interferometry

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  15. Active vibration isolation platform on base of magnetorheological elastomers

    Mikhailov, Valery P., E-mail: mikhailov@bmstu.ru; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  16. Optimal Vibration Control of Civil Engineering Structures

    Thesbjerg, Leo

    In designing large civil engineering structures, an important consideration is prospective dynamic loadings which may include earthquake ground motion, wind gusts, severe sea states and moving vehicles, rotating and reciprocating machinery and others. successful design of such structures requires...... providing for the safety and integrity of the structure, and in some cases also providing for a measure of comfort for the occupants during such loading which the structure and its occupants must endure. Due to these uncertainties, the civil engineering community has traditionally adopted a very...

  17. Optimal control of vibrational transitions of HCl

    2016-09-07

    Sep 7, 2016 ... and making, occur in ultrafast time-scale. The control of energy flow in a relatively short time-scale (∼10 fs), in a nuclear ... general motivation to study HCl. ...... ics in science and engineering (Academic Press, New York,.

  18. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    Pawar, Prashant M; Jung, Sung Nam

    2008-01-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades

  19. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    Pawar, Prashant M.; Jung, Sung Nam

    2008-12-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.

  20. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  1. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    S. Asiri

    2008-12-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  2. Intermediate heat exchanger tube vibration induced by cross and parallel mixed flow

    Kawamura, Koji

    1986-01-01

    The characteristics of pool type LMFBR intermediate heat exchanger (IHX) tube vibrations induced by cross and parallel mixed flow were basically investigated. Secondary coolant in IHX tube bundle is mixed flow of parallel jit flow along the tube axis through flow holes in baffle plates and cross flow. By changing these two flow rate, flow distributions vary in the tube bundle. Mixed flow also induces vibrations which cause fretting wear and fatigue of tube. It is therefore very important to evaluate the tube vibration characteristics for estimating the tube integrity. The results show that the relationships between tube vibrations and flow distributions in the tube bundle were cleared, and mixed flow induced tube vibration could be evaluated on the base of the characteristics of both parallel and cross flow induced vibration. From these investigations it could be concluded that the characteristics of tube vibration for various flow distributions can be systematically evaluated. (author)

  3. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  4. Genetic algorithm based active vibration control for a moving flexible smart beam driven by a pneumatic rod cylinder

    Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei

    2012-05-01

    A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.

  5. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.

    2005-04-01

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.

  6. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    Conradie, J.L.; Eisa, M.E.M.; Celliers, P.J.; Delsink, J.L.G.; Fourie, D.T.; Villiers, J.G. de; Maine, P.M.; Springhorn, K.A.; Pineda-Vargas, C.A.

    2005-01-01

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples

  7. A Study on the Vibration Measurement and Analysis of Rotating Machine Foundations

    Lee, Jong Rim; Jeon, Kyu Sik; Suh, Young Pyo; Cho, Chul Hwan; Kim, Sung Taeg; Lee, Myung Kyu [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    To search for the cause of vibration problem of rotating machine in the power plant, first the rotating machine is classified according to their type and each vibration characteristic is reviewed. The criteria for the evaluation of mechanical vibration effect on the structure and human being during the design of machine foundation is described below. The foundation of rotating machine is classified according to its shape and some factors are described which should be considered during dynamic modeling analysis for its correct result. Also the methods of incorporating foundation vibration into mechanical vibration analysis are reviewed. Type of vibration measurement and analysis which is used to find out the dynamic characteristic of structure is described in accordance with its signal processing and measuring method. Measurement of vibration and its analysis when there occurs real vibration troubles in power plant are compared with the results of numerical modeling as case studies. (author). 16 refs., 23 figs.

  8. System Detects Vibrational Instabilities

    Bozeman, Richard J., Jr.

    1990-01-01

    Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.

  9. Coherent vibrational dynamics

    Lanzani, Guglielmo; De Silvestri, Sandro

    2007-01-01

    Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.

  10. Vibrational Fingerprints of Low-Lying Pt(n)P(2n) (n = 1-5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces.

    Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe

    2015-12-03

    Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.

  11. Multi-response optimization of machining characteristics in ultrasonic machining of WC-Co composite through Taguchi method and grey-fuzzy logic

    Ravi Pratap Singh

    2018-01-01

    Full Text Available This article addresses the application of grey based fuzzy logic coupled with Taguchi’s approach for optimization of multi performance characteristics in ultrasonic machining of WC-Co composite material. The Taguchi’s L-36 array has been employed to conduct the experimentation and also to observe the influence of different process variables (power rating, cobalt content, tool geometry, thickness of work piece, tool material, abrasive grit size on machining characteristics. Grey relational fuzzy grade has been computed by converting the multiple responses, i.e., material removal rate and tool wear rate obtained from Taguchi’s approach into a single performance characteristic using grey based fuzzy logic. In addition, analysis of variance (ANOVA has also been attempted in a view to identify the significant parameters. Results revealed grit size and power rating as leading parameters for optimization of multi performance characteristics. From the microstructure analysis, the mode of material deformation has been observed and the critical parameters (i.e., work material properties, grit size, and power rating for the deformation mode have been established.

  12. Vibration Theory, Vol. 3

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration th...... theory is unchanged in comparison to the 3rd edition. Only a few errors have been corrected.......The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  13. Improved Laser Vibration Radar

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  14. NIF Ambient Vibration Measurements

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  15. A vibration sieve

    Alekhin, S.A.; Denisenko, V.V.; Dzhalalov, M.G.; Kirichek, F.P.; Pitatel, Yu.A.; Prokopov, L.I.; Tikhonov, Yu.P.

    1982-01-01

    A vibration sieve is proposed which includes a vibration drive, a body and a screen installed on shock absorbers, a device for washing out the screen, and a subassembly for loading the material. To increase the operational reliability and effectiveness of the vibration sieve by improving the cleaning of the screen, the loading subassembly is equipped with a baffle with a lever which is hinged to it. The device for washing out the screen is made in the form of an electromagnet with a connecting rod, a switch and an eccentric, a friction ratchet mechanism and sprinkling systems. Here, the latter are interconnected, using a connecting rod, while the sprinkling system is installed on rollers under the screen. The electromagnetic switch is installed under the lever. The body is made with grooves for installing the sprinkling system. The vibration sieve is equipped with a switch which interacts with the connecting rod. The friction ratchet mechanism is equipped with a lug.

  16. Forced vibrations of rotating circular cylindrical shells

    Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru

    1995-01-01

    Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)

  17. Noise and vibration in friction systems

    Sergienko, Vladimir P

    2015-01-01

    The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.

  18. Rotor Vibration Reduction via Active Hybrid Bearings

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  19. Sensitivity improvement techniques for micromechanical vibrating accelerometers

    Vtorushin Sergey

    2016-01-01

    Full Text Available The paper presents the problems of detecting a desired signal generated by micromechanical vibrating accelerometer. Three detection methods, namely frequency, amplitude and phase are considered in this paper. These methods are used in micromechanical vibrating accelerometers that incorporate a force sensitive element which transforms measured acceleration into the output signal. Investigations are carried out using the ANSYS finite element program and MATLAB/Simulink support package. Investigation results include the comparative analysis of the output signal characteristics obtained by the different detection methods.

  20. Optimization of multiple performance characteristics in turning using Taguchi’s quality loss function: An experimental investigation

    Tanmaya Mohanty

    2013-06-01

    Full Text Available Cutting force and chip reduction coefficient is the important index of machinability as it determines the power consumption and amount of energy invested in machining actions. It is primarily influenced by process parameters like cutting speed, feed and depth of cut. This paper presents the application of Taguchi’s parameter design to optimize the parameters for individual responses. For multi-response optimization, Taguchi’s quality loss function approach is proposed. In the present investigation, optimal values of cutting speed, feed and depth of cut are determined to minimize cutting force and chip reduction coefficient during orthogonal turning. The effectiveness of the proposed methodology is illustrated through an experimental investigation in turning mild steel workpiece using high speed steel tool.

  1. Full Vehicle Vibration and Noise Analysis Based on Substructure Power Flow

    Zhien Liu

    2017-01-01

    Full Text Available Combining substructure and power flow theory, in this paper an external program is written to control MSC. Nastran solution process and the substructure frequency response are also formulated accordingly. Based on a simple vehicle model, characteristics of vibration, noise, and power flow are studied, respectively. After being compared with the result of conventional FEM (finite element method, the new method is confirmed to be feasible. When it comes to a vehicle with the problem of low-frequency noise, finite element models of substructures for vehicle body and chassis are established, respectively. In addition, substructure power flow method is also employed to examine the transfer characteristics of multidimensional vibration energy for the whole vehicle system. By virtue of the adjustment stiffness of drive shaft support and bushes at rear suspension lower arm, the vehicle interior noise is decreased by about 3 dB when the engine speed is near 1050 rpm and 1650 rpm in experiment. At the same time, this method can increase the computation efficiency by 78%, 38%, and 98% when it comes to the optimization of chassis structure, body structure, and vibration isolation components, respectively.

  2. Structural Stability and Vibration

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  3. 2008 Vibrational Spectroscopy

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  4. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  5. Characteristics of the Different Modes of Walking and Hiking Conditions to Optimize the Movement of Tourists in the Desert

    Imangulova, Tatiyana; Makogonov, Aleksandr; Kulakhmetova, Gulbaram; Sardarov, Osman

    2016-01-01

    The development of desert areas in the industrial and tourist and educational purposes related to the implementation of physical activity in extreme conditions. A complex set of hot climate causes the body deep adaptive adjustment, impact on health, human physical performance. Optimization of physical activity in hot climates is of particular…

  6. Transmission characteristics and optimal diagnostic samples to detect an FMDV infection in vaccinated and non-vaccinated sheep

    Eble, P.L.; Orsel, K.; Kluitenberg-van Hemert, F.; Dekker, A.

    2015-01-01

    We wanted to quantify transmission of FMDV Asia-1 in sheep and to evaluate which samples would be optimal for detection of an FMDV infection in sheep. For this, we used 6 groups of 4 non-vaccinated and 6 groups of 4 vaccinated sheep. In each group 2 sheep were inoculated and contact exposed to 2

  7. Construction of joint confidence regions for the optimal true class fractions of Receiver Operating Characteristic (ROC) surfaces and manifolds.

    Bantis, Leonidas E; Nakas, Christos T; Reiser, Benjamin; Myall, Daniel; Dalrymple-Alford, John C

    2017-06-01

    The three-class approach is used for progressive disorders when clinicians and researchers want to diagnose or classify subjects as members of one of three ordered categories based on a continuous diagnostic marker. The decision thresholds or optimal cut-off points required for this classification are often chosen to maximize the generalized Youden index (Nakas et al., Stat Med 2013; 32: 995-1003). The effectiveness of these chosen cut-off points can be evaluated by estimating their corresponding true class fractions and their associated confidence regions. Recently, in the two-class case, parametric and non-parametric methods were investigated for the construction of confidence regions for the pair of the Youden-index-based optimal sensitivity and specificity fractions that can take into account the correlation introduced between sensitivity and specificity when the optimal cut-off point is estimated from the data (Bantis et al., Biomet 2014; 70: 212-223). A parametric approach based on the Box-Cox transformation to normality often works well while for markers having more complex distributions a non-parametric procedure using logspline density estimation can be used instead. The true class fractions that correspond to the optimal cut-off points estimated by the generalized Youden index are correlated similarly to the two-class case. In this article, we generalize these methods to the three- and to the general k-class case which involves the classification of subjects into three or more ordered categories, where ROC surface or ROC manifold methodology, respectively, is typically employed for the evaluation of the discriminatory capacity of a diagnostic marker. We obtain three- and multi-dimensional joint confidence regions for the optimal true class fractions. We illustrate this with an application to the Trail Making Test Part A that has been used to characterize cognitive impairment in patients with Parkinson's disease.

  8. Vibration dynamics of single atomic nanocontacts

    Khater, A; Bourahla, B; Tigrine, R

    2007-01-01

    The motivation for this work is to introduce a model for an atomic nanocontact, whereby its mechanical properties can be analysed via the local spectra. The model system consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. We calculate the vibration spectra and the local densities of vibration states, in the harmonic approximation, for the irreducible set of sites that constitute the nanocontact domain. The nanocontact observables are numerically calculated for different cases of elastic hardening and softening, to investigate how the local dynamics can respond to changes in the microscopic environment on the domain. We have also calculated the phonon scattering and coherent conductance at the nanocontact, derived in a Landauer-Buettiker matrix approach. The analysis of the spectra, of the densities of vibration states, and of the phonon conductance, identifies characteristic features and demonstrates the central role of a core subset of sites in the nanocontact domain

  9. Parametric analysis of protective grid flow induced vibration

    Ryu, Jooyoung; Eom, Kyongbo; Jeon, Sangyoun; Suh, Jungmin [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    Protective grid (P-grid) flow-induced vibration in a nuclear power reactor is one of the critical factors for the mechanical integrity of a nuclear fuel. The P-grid is located at the lower most position above the bottom nozzle of the nuclear fuel as shown in Fig. 1, and it is required for not only filtering debris, but also supporting fuel rods. On the other hand, P-grid working conditions installed in a nuclear fuel in a reactor are severe in terms of flow speed, temperature and pressure. Considering such a severe condition of P-grid's functional performance in working environment, excessive vibration could be developed. Furthermore, if the P-grid is exposed to high levels of excessive vibration over a long period of time, fatigue failure could be unavoidable. Therefore, it is important to reduce excessive vibration while maintaining P-grid's own functional performance. KEPCO Nuclear Fuel has developed a test facility - Investigation Flow-induced Vibration (INFINIT) - to study flow-induced vibration caused by flowing coolant at various flow rates. To investigate specific relationships between configuration of P-grid and flow-induced vibration characteristics, several types of the P-grids were tested in INFINIT facility. And, based on the test results through parametric studies, the flow-induced vibration characteristics could be analyzed, and critical design parameters were found.

  10. Flow-induced vibration of helical coil compression springs

    Stokes, F.E.; King, R.A.

    1983-01-01

    Helical coil compression springs are used in some nuclear fuel assembly designs to maintain holddown and to accommodate thermal expansion. In the reactor environment, the springs are exposed to flowing water, elevated temperatures and pressures, and irradiation. Flow parallel to the longitudinal axis of the spring may excite the spring coils and cause vibration. The purpose of this investigation was to determine the flow-induced vibration (FIV) response characteristics of the helical coil compression springs. Experimental tests indicate that a helical coil spring responds like a single circular cylinder in cross-flow. Two FIV excitation mechanisms control spring vibration. Namely: 1) Turbulent Buffeting causes small amplitude vibration which increases as a function of velocity squared. 2) Vortex Shedding causes large amplitude vibration when the spring natural frequency and Strouhal frequency coincide. Several methods can be used to reduce or to prevent vortex shedding large amplitude vibrations. One method is compressing the spring to a coil pitch-to-diameter ratio of 2 thereby suppressing the vibration amplitude. Another involves modifying the spring geometry to alter its stiffness and frequency characteristics. These changes result in separation of the natural and Strouhal frequencies. With an understanding of how springs respond in the flowing water environment, the spring physical parameters can be designed to avoid large amplitude vibration. (orig.)

  11. Quantum control of vibrational excitations in a heteronuclear ...

    WINTEC

    Optimal control theory is applied to obtain infrared laser pulses for selective vibrational exci- tation in a ... introduced in the field prior to evaluation of the cost functional for better field shape. Conjugate ... focused greater attention on optimal control of quan- tum states ... from the ground state to the first excited state in a.

  12. Multi-response optimization of surface integrity characteristics of EDM process using grey-fuzzy logic-based hybrid approach

    Shailesh Dewangan

    2015-09-01

    Full Text Available Surface integrity remains one of the major areas of concern in electric discharge machining (EDM. During the current study, grey-fuzzy logic-based hybrid optimization technique is utilized to determine the optimal settings of EDM process parameters with an aim to improve surface integrity aspects after EDM of AISI P20 tool steel. The experiment is designed using response surface methodology (RSM considering discharge current (Ip, pulse-on time (Ton, tool-work time (Tw and tool-lift time (Tup as process parameters. Various surface integrity characteristics such as white layer thickness (WLT, surface crack density (SCD and surface roughness (SR are considered during the current research work. Grey relational analysis (GRA combined with fuzzy-logic is used to determine grey fuzzy reasoning grade (GFRG. The optimal solution based on this analysis is found to be Ip = 1 A, Ton = 10 μs, Tw = 0.2 s, and Tup = 0.0 s. Analysis of variance (ANOVA results clearly indicate that Ton is the most contributing parameter followed by Ip, for multiple performance characteristics of surface integrity.

  13. Parametric optimization of multiple quality characteristics in laser cutting of Inconel-718 by using hybrid approach of multiple regression analysis and genetic algorithm

    Shrivastava, Prashant Kumar; Pandey, Arun Kumar

    2018-06-01

    Inconel-718 has found high demand in different industries due to their superior mechanical properties. The traditional cutting methods are facing difficulties for cutting these alloys due to their low thermal potential, lower elasticity and high chemical compatibility at inflated temperature. The challenges of machining and/or finishing of unusual shapes and/or sizes in these materials have also faced by traditional machining. Laser beam cutting may be applied for the miniaturization and ultra-precision cutting and/or finishing by appropriate control of different process parameter. This paper present multi-objective optimization the kerf deviation, kerf width and kerf taper in the laser cutting of Incone-718 sheet. The second order regression models have been developed for different quality characteristics by using the experimental data obtained through experimentation. The regression models have been used as objective function for multi-objective optimization based on the hybrid approach of multiple regression analysis and genetic algorithm. The comparison of optimization results to experimental results shows an improvement of 88%, 10.63% and 42.15% in kerf deviation, kerf width and kerf taper, respectively. Finally, the effects of different process parameters on quality characteristics have also been discussed.

  14. Active vibration control of a cylindrical structure using flexible piezoactuators: experimental work in air and water environments

    Sohn, Jung Woo; Choi, Seung-Bok

    2014-01-01

    In the present work, the modal characteristics and vibration control performance of a cylindrical structure in air and water are experimentally investigated, and the results are presented in time and frequency domains. In order to achieve this goal, an end-capped cylindrical shell structure is considered as a host structure, and MFC (macro fiber composite) actuators, which are flexible, are bonded on the surface of the structure. After manufacturing a cylindrical shell structure with aluminum, a modal test is carried out, and the natural frequencies of the proposed structure are obtained and analyzed. To verify the modal test results, a finite element analysis is also performed, and the results are compared with the modal test results. By using the experimentally obtained modal characteristics, a state space control model is established. An optimal controller is then designed in order to control the unwanted vibration and is experimentally realized. It has been shown that the structural vibration can be effectively decreased with the optimal control methodology in both air and water environmental conditions. (technical note)

  15. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

    Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

    2018-01-01

    The vibration isolation performances of vibration reducing (VR) gloves are invariably assessed in terms of power tools' handle vibration transmission to the palm of the hand using the method described in ISO 10819 (2013), while the nature of vibration transmitted to the fingers is ignored. Moreover, the VR gloves with relatively low stiffness viscoelastic materials affect the grip strength in an adverse manner. This study is aimed at performance assessments of 12 different VR gloves on the basis of handle vibration transmission to the palm and the fingers of the gloved hand, together with reduction in the grip strength. The gloves included 3 different air bladder, 3 gel, 3 hybrid, and 2 gel-foam gloves in addition to a leather glove. Two Velcro finger adapters, each instrumented with a three-axis accelerometer, were used to measure vibration responses of the index and middle fingers near the mid-phalanges. Vibration transmitted to the palm was measured using the standardized palm adapter. The vibration transmissibility responses of the VR gloves were measured in the laboratory using the instrumented cylindrical handle, also described in the standard, mounted on a vibration exciter. A total of 12 healthy male subjects participated in the study. The instrumented handle was also used to measure grip strength of the subjects with and without the VR gloves. The results of the study showed that the VR gloves, with only a few exceptions, attenuate handle vibration transmitted to the fingers only in the 10-200 Hz and amplify middle finger vibration at frequencies exceeding 200 Hz. Many of the gloves, however, provided considerable reduction in vibration transmitted to the palm, especially at higher frequencies. These suggest that the characteristics of vibration transmitted to fingers differ considerably from those at the palm. Four of the test gloves satisfied the screening criteria of the ISO 10819 (2013) based on the palm vibration alone, even though these caused

  16. Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective

    Du, Zhouwei; Fang, Hongbin; Zhan, Xiong; Xu, Jian

    2018-05-01

    Dry friction appears at the contact interface between two surfaces and is the source of stick-slip vibrations. Instead of being a negative factor, dry friction is essential for vibration-driven locomotion system to take effect. However, the dry-friction-induced stick-slip locomotion has not been fully understood in previous research, especially in terms of experiments. In this paper, we experimentally study the stick-slip dynamics of a vibration-driven locomotion system from a sliding bifurcation perspective. To this end, we first design and build a vibration-driven locomotion prototype based on an internal piezoelectric cantilever. By utilizing the mechanical resonance, the small piezoelectric deformation is significantly amplified to drive the prototype to achieve effective locomotion. Through identifying the stick-slip characteristics in velocity histories, we could categorize the system's locomotion into four types and obtain a stick-slip categorization diagram. In each zone of the diagram the locomotion exhibits qualitatively different stick-slip dynamics. Such categorization diagram is actually a sliding bifurcation diagram; crossing from one stick-slip zone to another corresponds to the triggering of a sliding bifurcation. In addition, a simplified single degree-of-freedom model is established, with the rationality of simplification been explained theoretically and numerically. Based on the equivalent model, a numerical stick-slip categorization is also obtained, which shows good agreement with the experiments both qualitatively and quantitatively. To the best of our knowledge, this is the first work that experimentally generates a sliding bifurcation diagram. The obtained stick-slip categorizations deepen our understanding of stick-slip dynamics in vibration-driven systems and could serve as a base for system design and optimization.

  17. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Cui, Shijie; Zhang, Dalin; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-01

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  18. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Cui, Shijie; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-15

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  19. Predict optimize the friction characteristics of brake pads; Brake pad no masatsu tokusei no yosoku to saitekika

    Saotome, H [Nissin Kogyo Co., Tokyo (Japan); Kato, T [The University of Tokyo, Tokyo (Japan)

    1997-10-01

    The effect of the friction and the wear properties of brake pads were experimentally studied using a test rig of scale of 1/10 of the system used in a commercial car. The experimental data were investigated by the Multiple Regression Analysis and the Neural Network, and the effects of volume % of components on the friction and the wear properties were predicted. In addition the components of brake pads are optimized by Genetic Algorithms. 8 refs., 9 figs., 4 tabs.

  20. Shock and vibration technology with applications to electrical systems

    Eshleman, R. L.

    1972-01-01

    A survey is presented of shock and vibration technology for electrical systems developed by the aerospace programs. The shock environment is surveyed along with new techniques for modeling, computer simulation, damping, and response analysis. Design techniques based on the use of analog computers, shock spectra, optimization, and nonlinear isolation are discussed. Shock mounting of rotors for performance and survival, and vibration isolation techniques are reviewed.

  1. Flow induced vibrations of piping

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fluid mass to the structure. This may lead to serious errors. This paper presents a method to take into account these effects, by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A /D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources. Equations have been written in the hypohesis that acoustical wave lengths remain large compared to the diameter of the pipe. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consists of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provides an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted

  2. Vibration transducer calibration techniques

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  3. Favorable effect of optimal lipid-lowering therapy on neointimal tissue characteristics after drug-eluting stent implantation: qualitative optical coherence tomographic analysis.

    Jang, Ji-Yong; Kim, Jung-Sun; Shin, Dong-Ho; Kim, Byeong-Keuk; Ko, Young-Guk; Choi, Donghoon; Jang, Yangsoo; Hong, Myeong-Ki

    2015-10-01

    Serial follow-up optical coherence tomography (OCT) was used to evaluate the effect of optimal lipid-lowering therapy on qualitative changes in neointimal tissue characteristics after drug-eluting stent (DES) implantation. DES-treated patients (n = 218) who received statin therapy were examined with serial follow-up OCT. First and second follow-up OCT evaluations were performed approximately 6 and 18 months after the index procedure, respectively. Patients were divided into two groups, based on the level of low-density lipoprotein-cholesterol (LDL-C), which was measured at the second follow-up. The optimal lipid-lowering group (n = 121) had an LDL-C reduction of ≥50% or an LDL-C level ≤70 mg/dL, and the conventional group (n = 97). Neointimal characteristics were qualitatively categorized as homogeneous or non-homogeneous patterns using OCT. The non-homogeneous group included heterogeneous, layered, or neoatherosclerosis patterns. Qualitative changes in neointimal tissue characteristics between the first and second follow-up OCT examinations were assessed. Between the first and second follow-up OCT procedures, the neointimal cross-sectional area increased more substantially in the conventional group (0.4 mm(2) vs. 0.2 mm(2) in the optimal lipid-lowering group, p = 0.01). The neointimal pattern changed from homogeneous to non-homogeneous less often in the optimal lipid-lowering group (1.3%, 1/77, p < 0.001) than in the conventional group (15.3%, 11/72, p = 0.44). Optimal LDL-C reduction was an independent predictor for the prevention of neointimal pattern change from homogeneous to non-homogeneous (odds ratio: 0.05, 95% confidence interval: 0.01∼0.46, p = 0.008). Our findings suggest that an intensive reduction in LDL-C levels can prevent non-homogeneous changes in the neointima and increases in neointimal cross-sectional area compared with conventional LDL-C controls. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Symbiotic organism search algorithm for simulation of J- V characteristics and optimizing internal parameters of DSSC developed using electrospun TiO2 nanofibers

    Vinoth, S.; Kanimozhi, G.; Kumar, Harish; Srinadhu, E. S.; Satyanarayana, N.

    2017-12-01

    In the present investigation, the recently developed, simple, robust, and powerful metaheuristic symbiotic organism search (SOS) algorithm was used for simulation of J- V characteristics and optimizing the internal parameters of the dye-sensitized solar cells (DSSCs) fabricated using electrospun 1-D mesoporous TiO2 nanofibers as photoanode. The efficiency ( η = 5.80 %) of the DSSC made up of TiO2 nanofibers as photoanode is found to be ˜ 21.59% higher compared to the efficiency ( η = 4.77 %) of the DSSC made up of TiO2 nanoparticles as photoanode. The observed high efficiency can be attributed to high dye loading as well as high electron transport in the mesoporous 1-D TiO2 nanofibers. Further, the validity and advantage of SOS algorithm are verified by simulating J- V characteristics of DSSC with Lambert-W function.

  5. Vibrationally Assisted Electron Transfer Mechanism of Olfaction: Myth or Reality?

    Solov'yov, Ilia; Chang, Po-Yao; Schulten, Klaus

    2012-01-01

    to this suggestion an olfactory receptor is activated by electron transfer assisted through odorant vibrational excitation. The hundreds to thousands of different olfactory receptors in an animal recognize odorants over a discriminant landscape with surface properties and vibrational frequencies as the two major...... dimensions. In the present paper we introduce the vibrationally assisted mechanism of olfaction and demonstrate for several odorants that, indeed, a strong enhancement of an electron tunneling rate due to odorant vibrations can arise. We discuss in this regard the influence of odorant deuteration and explain...... olfactory receptors and odorants must obey for the vibrationally assisted electron transfer mechanism to function. We argue that the stated characteristics are feasible for realistic olfactory receptors, noting, though, that the receptor structure presently is still unknown, but can be studied through...

  6. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  7. Vibrations in orthopedics.

    Nokes, L D; Thorne, G C

    1988-01-01

    Measurements of various mechanical properties of skeletal material using vibration techniques have been reported. The purposes of such investigations include the monitoring of pathogenic disorders such as osteoporosis, the rate and extent of fracture healing, and the status of internal fixations. Early investigations pioneered the application of conventional vibration measurement equipment to biological systems. The more recent advent of the microcomputer has made available to research groups more sophisticated techniques for data acquisition and analysis. The economical advantages of such equipment has led to the development of portable research instrumentation which lends itself to use in a clinical environment. This review article reports on the developments and progression of the various vibrational techniques and theories as applied to musculoskeletal systems.

  8. AVM branch vibration test equipment

    Anne, J.P.

    1995-01-01

    An inventory of the test equipment of the AVM Branch ''Acoustic and Vibratory Mechanics Analysis Methods'' group has been undertaken. The purpose of this inventory is to enable better acquaintance with the technical characteristics of the equipment, providing an accurate definition of their functionalities, ad to inform potential users of the possibilities and equipment available in this field. The report first summarizes the various experimental surveys conduced. Then, using the AVM equipment database to draw up an exhaustive list of available equipment, it provides a full-scope picture of the vibration measurement systems (sensors, conditioners and exciters) and data processing resources commonly used on industrial sites and in laboratories. A definition is also given of a mobile test unit, called 'shelter', and a test bench used for the testing and performance rating of the experimental analysis methods developed by the group. The report concludes with a description of two fixed installations: - the calibration bench ensuring the requisite quality level for the vibration measurement systems ; - the training bench, whereby know-how acquired in the field in the field of measurement and experimental analysis processes is made available to others. (author). 27 refs., 15 figs., 2 appends

  9. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  10. Design and performance characteristics of solar adsorption refrigeration system using parabolic trough collector: Experimental and statistical optimization technique

    Abu-Hamdeh, Nidal H.; Alnefaie, Khaled A.; Almitani, Khalid H.

    2013-01-01

    Highlights: • The successes of using olive waste/methanol as an adsorbent/adsorbate pair. • The experimental gross cycle coefficient of performance obtained was COP a = 0.75. • Optimization showed expanding adsorbent mass to a certain range increases the COP. • The statistical optimization led to optimum tank volume between 0.2 and 0.3 m 3 . • Increasing the collector area to a certain range increased the COP. - Abstract: The current work demonstrates a developed model of a solar adsorption refrigeration system with specific requirements and specifications. The recent scheme can be employed as a refrigerator and cooler unit suitable for remote areas. The unit runs through a parabolic trough solar collector (PTC) and uses olive waste as adsorbent with methanol as adsorbate. Cooling production, COP (coefficient of performance, and COP a (cycle gross coefficient of performance) were used to assess the system performance. The system’s design optimum parameters in this study were arrived to through statistical and experimental methods. The lowest temperature attained in the refrigerated space was 4 °C and the equivalent ambient temperature was 27 °C. The temperature started to decrease steadily at 20:30 – when the actual cooling started – until it reached 4 °C at 01:30 in the next day when it rose again. The highest COP a obtained was 0.75

  11. Plagiarism in submitted manuscripts: incidence, characteristics and optimization of screening-case study in a major specialty medical journal.

    Higgins, Janet R; Lin, Feng-Chang; Evans, James P

    2016-01-01

    Plagiarism is common and threatens the integrity of the scientific literature. However, its detection is time consuming and difficult, presenting challenges to editors and publishers who are entrusted with ensuring the integrity of published literature. In this study, the extent of plagiarism in manuscripts submitted to a major specialty medical journal was documented. We manually curated submitted manuscripts and deemed an article contained plagiarism if one sentence had 80 % of the words copied from another published paper. Commercial plagiarism detection software was utilized and its use was optimized. In 400 consecutively submitted manuscripts, 17 % of submissions contained unacceptable levels of plagiarized material with 82 % of plagiarized manuscripts submitted from countries where English was not an official language. Using the most commonly employed commercial plagiarism detection software, sensitivity and specificity were studied with regard to the generated plagiarism score. The cutoff score maximizing both sensitivity and specificity was 15 % (sensitivity 84.8 % and specificity 80.5 %). Plagiarism was a common occurrence among manuscripts submitted for publication to a major American specialty medical journal and most manuscripts with plagiarized material were submitted from countries in which English was not an official language. The use of commercial plagiarism detection software can be optimized by selecting a cutoff score that reflects desired sensitivity and specificity.

  12. Vibrational spectra of aminoacetonitrile

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  13. Vibrations and waves

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  14. Vibration Theory, Vol. 3

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration th...... theory is basically unchanged in comparison to the 1st edition. Only section 4.2 on single input - single output systems and chapter 6 on offshore structures have been modified in order to enhance the clearness....

  15. Natural vibration experimental analysis of Novovoronezhskaya NPP main building

    Zoubkov, D.; Isaikin, A.; Shablinsky, G.; Lopanchuk, A.; Nefedov, S.

    2005-01-01

    1. Natural vibration frequencies are main characteristics of buildings and structures which allow to give integral estimation of their in-service state. Even relatively small changes of these frequencies as compared to the initially registered values point to serious defects of building structures. In this paper we analyzed natural vibration frequencies and natural modes of the main building (MB) of Novovoronezhskaya NPP operating nuclear unit with WWER-440 type reactor. The MB consists of a reactor compartment (RC), a machine room (MR) and an electric device (ED) unit positioned in between. 2. Natural vibration frequencies and natural modes of the MB were determined experimentally by analyzing its microvibrations caused by operation of basic equipment (turbines, pumps, etc.). Microvibrations of the main building were measured at 12 points. At each point measurements were carried out along two or three mutually perpendicular vibration directions. Spectral analysis of vibration records has been conducted. Identification of natural vibration frequencies was carried out on the basis of the spectral peaks and plotted vibration modes (taking into account operating frequencies of the basic equipment of the power generating unit). On the basis of the measurement results three transverse modes and corresponding natural vibration frequencies of the MB, one longitudinal mode and corresponding natural vibration frequency of the MB and two natural frequencies of vertical vibrations of RC and MR floor trusses (1st and 2nd symmetric forms) were determined. Dynamic characteristics of the main building of NV NPP resulting from full scale researches are supposed to be used as one of building structure stability criteria. (authors)

  16. a Method for Preview Vibration Control of Systems Having Forcing Inputs and Rapidly-Switched Dampers

    ElBeheiry, E. M.

    1998-07-01

    In a variety of applications, especially in large scale dynamic systems, the mechanization of different vibration control elements in different locations would be decided by limitations placed on the modal vibration of the system and the inherent dynamic coupling between its modes. Also, the quality of vibration control to the economy of producing the whole system would be another trade-off leading to a mix of passive, active and semi-active vibration control elements in one system. This termactiveis limited to externally powered vibration control inputs and the termsemi-activeis limited to rapidly switched dampers. In this article, an optimal preview control method is developed for application to dynamic systems having active and semi-active vibration control elements mechanized at different locations in one system. The system is then a piecewise (bilinear) controller in which two independent sets of control inputs appear additively and multiplicatively. Calculus of variations along with the Hamiltonian approach are employed for the derivation of this method. In essence, it requires the active elements to be ideal force generators and the switched dampers to have the property of on-line variation of the damping characteristics to pre-determined limits. As the dampers switch during operation the whole system's structure differs, and then values of the active forcing inputs are adapted to match these rapid changes. Strictly speaking, each rapidly switched damper has pre-known upper and lower damping levels and it can take on any in-between value. This in-between value is to be determined by the method as long as the damper tracks a pre-known fully active control demand. In every damping state of each semi-active damper the method provides the optimal matching values of the active forcing inputs. The method is shown to have the feature of solving simple standard matrix equations to obtain closed form solutions. A comprehensive 9-DOF tractor semi-trailer model is used

  17. Heterogeneous Dynamics of Coupled Vibrations

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  18. Vibration in car repair work.

    Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E

    1987-03-01

    The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.

  19. Optimizing parameter of particle damping based on Leidenfrost effect of particle flows

    Lei, Xiaofei; Wu, Chengjun; Chen, Peng

    2018-05-01

    Particle damping (PD) has strongly nonlinearity. With sufficiently vigorous vibration conditions, it always plays excellent damping performance and the particles which are filled into cavity are on Leidenfrost state considered in particle flow theory. For investigating the interesting phenomenon, the damping effect of PD on this state is discussed by the developed numerical model which is established based on principle of gas and solid. Furtherly, the numerical model is reformed and applied to study the relationship of Leidenfrost velocity with characteristic parameters of PD such as particle density, diameter, mass packing ratio and diameter-length ratio. The results indicate that particle density and mass packing ratio can drastically improve the damping performance as opposed as particle diameter and diameter-length ratio, mass packing ratio and diameter-length ratio can low the excited intensity for Leidenfrost state. For discussing the application of the phenomenon in engineering, bound optimization by quadratic approximation (BOBYQA) method is employed to optimize mass packing ratio of PD for minimize maximum amplitude (MMA) and minimize total vibration level (MTVL). It is noted that the particle damping can drastically reduce the vibrating amplitude for MMA as Leidenfrost velocity equal to the vibrating velocity relative to maximum vibration amplitude. For MTVL, larger mass packing ratio is best option because particles at relatively wide frequency range is adjacent to Leidenfrost state.

  20. Accelerometer-based estimation and modal velocity feedback vibration control of a stress-ribbon bridge with pneumatic muscles

    Liu, Xiaohan; Schauer, Thomas; Goldack, Arndt; Bleicher, Achim; Schlaich, Mike

    2016-09-01

    Lightweight footbridges are very elegant but also prone to vibration. By employing active vibration control, smart footbridges could accomplish not only the architectural concept but also the required serviceability and comfort. Inertial sensors such as accelerometers allow the estimation of nodal velocities and displacements. A Kalman filter together with a band-limited multiple Fourier linear combiner (BMFLC) is applied to enable a drift-free estimation of these signals for the quasi-periodic motion under pedestrian excitation without extra information from other kinds of auxiliary sensors. The modal velocities of the structure are determined by using a second Kalman filter with the known applied actuator forces as inputs and the estimated nodal displacement and velocities as measurements. The obtained multi-modal velocities are then used for feedback control. An ultra-lightweight stress-ribbon footbridge built in the Peter-Behrens- Halle at the Technische Universitat Berlin served as the research object. Using two inertial sensors in optimal points we can estimate the dominant modal characteristics of this bridge. Real-time implementation and evaluation results of the proposed estimator will be presented in comparison to signals derived from classical displacement encoders. The real-time estimated modal velocities were applied in a multi-modal velocity feedback vibration control scheme with lightweight pneumatic muscle actuators. Experimental results demonstrate the feasibility of using inertial sensors for active vibration control of lightweight footbridges.