WorldWideScience

Sample records for optimize soil analysis

  1. Measurement of uranium in soil environment optimization of liquid fluorescent method improvement

    International Nuclear Information System (INIS)

    Qin Guangcheng; Li Yan

    2013-01-01

    Measurement of uranium in soil environment were introduced in this paper optimization improvement fluid fluorescence analysis method. Use 'on the determination of uranium in soil, rocks, etc. Samples of liquid fluorescent method' when measuring low environment soil samples can not meet the required precision of 8% or less in gansu province and method detection limit of 0.3 mg/kg or less. In affecting the method detection limit, recovery rate and precision of the soil sample decomposition temperature, measuring the temperature of the sample, sample pH value measurement, the background fluorescence measurement condition optimization of analysis is determined, the method detection limit of 0.133 mg/kg, the average recovery rate was 96.6%, the precision is 3.80%. The experimental results show that the method can meet the requirements for determination of trace uranium m environment soil samples. (authors)

  2. Shaping an Optimal Soil by Root-Soil Interaction.

    Science.gov (United States)

    Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei

    2017-10-01

    Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optimizing Soil Moisture Sampling Locations for Validation Networks for SMAP

    Science.gov (United States)

    Roshani, E.; Berg, A. A.; Lindsay, J.

    2013-12-01

    Soil Moisture Active Passive satellite (SMAP) is scheduled for launch on Oct 2014. Global efforts are underway for establishment of soil moisture monitoring networks for both the pre- and post-launch validation and calibration of the SMAP products. In 2012 the SMAP Validation Experiment, SMAPVEX12, took place near Carman Manitoba, Canada where nearly 60 fields were sampled continuously over a 6 week period for soil moisture and several other parameters simultaneous to remotely sensed images of the sampling region. The locations of these sampling sites were mainly selected on the basis of accessibility, soil texture, and vegetation cover. Although these criteria are necessary to consider during sampling site selection, they do not guarantee optimal site placement to provide the most efficient representation of the studied area. In this analysis a method for optimization of sampling locations is presented which combines the state-of-art multi-objective optimization engine (non-dominated sorting genetic algorithm, NSGA-II), with the kriging interpolation technique to minimize the number of sampling sites while simultaneously minimizing the differences between the soil moisture map resulted from the kriging interpolation and soil moisture map from radar imaging. The algorithm is implemented in Whitebox Geospatial Analysis Tools, which is a multi-platform open-source GIS. The optimization framework is subject to the following three constraints:. A) sampling sites should be accessible to the crew on the ground, B) the number of sites located in a specific soil texture should be greater than or equal to a minimum value, and finally C) the number of sampling sites with a specific vegetation cover should be greater than or equal to a minimum constraint. The first constraint is implemented into the proposed model to keep the practicality of the approach. The second and third constraints are considered to guarantee that the collected samples from each soil texture categories

  4. Optimizing land use pattern to reduce soil erosion

    Directory of Open Access Journals (Sweden)

    Reza Sokouti

    2017-01-01

    Full Text Available Soil erosion hazard is one of the main problems can affect ecological balance in watersheds. This study aimed to determine the optimal use of land to reduce erosion and increase the resident's income of Qushchi watershed in West Azerbaijan province, Iran. Income and expenses for the current land uses were calculated with field studies. Damages resulting from the soil erosion were estimated by soil depth equal to the specified land uses. For three different options including the current status of land uses without and with land management, and the standard status of land uses, multi-objective linear programming model was established by LINGO software. Then the optimization problem of the land use was solved by simplex method. Finally, the best option of land use was determined by comparing erosion rate and its cost in each scenario. Then the circumstances and the recommended conditions were compared. The results indicated that the current surface area of current land uses is not suitable to reduce erosion and increase income of residents and should change in the optimum conditions. At the optimum level, there should change horticulture area of 408 to 507 (ha, irrigated land area of 169 to 136 (ha and dry farming of 636 to 570 (ha, while conversion of rangeland area not indispensable. In addition, the results showed that in case of the optimization of land use, soil erosion and the profitability of the whole area will decrease 0.75% and increase 3.68%, respectively. In case of land management practices, soil erosion will decrease 42.27% and the profitability increase 21.39% while in the standard conditions, soil erosion will decrease 60.95% and profitability will increase 24.20%. The results of the sensitivity analysis showed that the changes in the horticulture and range land areas have the greatest impact on the increasing profitability and reducing soil erosion of Qushchi watershed. So, it is recommended using Education and Extension to promote

  5. Experimental parameters optimization of instrumental neutron activation analysis in order to determine selected elements in some industrial soils in Turkey

    International Nuclear Information System (INIS)

    Haciyakupoglu, Sevilay; Nur Esen, Ayse; Erenturk, Sema

    2014-01-01

    The purpose of this study is optimization of the experimental parameters for analysis of soil matrix by instrumental neutron activation analysis and quantitative determination of barium, cerium, lanthanum, rubidium, scandium and thorium in soil samples collected from industrialized urban areas near Istanbul. Samples were irradiated in TRIGA MARK II Research Reactor of Istanbul Technical University. Two types of reference materials were used to check the accuracy of the applied method. The achieved results were found to be in compliance with certified values of the reference materials. The calculated E n numbers for mentioned elements were found to be less than 1. The presented data of element concentrations in soil samples will help to trace the pollution as an impact of urbanization and industrialization, as well as providing database for future studies. - Highlights: • Optimization of experimental parameters is important for high sensitivity results by INAA. • Assessment of uncertainty sources is necessary to increase reliability of results. • The aim of this study is to determine a number of elements in industrial soil samples. • The higher concentrations of studied elements are due to rapid industrialization. • This baseline data can be used in future studies for other industrial areas

  6. Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting

    Science.gov (United States)

    Sharma, Deepak; Barakat, Nada

    2018-02-01

    An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.

  7. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    However, no reliable method for quantitative analysis of clay minerals has been established so far. In this study, an attempt was made to propose an optimization method for the quantitative ... 2. Basic principles. The mineralogical constitution of soil is rather complex. ... K2O, MgO, and TFe as variables for the calculation.

  8. Optimization of surfactant-aided remediation of industrially contaminated soils

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1996-01-01

    Soil matrices contaminated with polycyclic aromatic hydrocarbons (PAHs) abound at the sites of coke-oven gas plants, refineries, and many other major chemical industries. The removal of PAHs from soil using pure water, via soil washing (ex situ) or soil flushing (in situ), is quite ineffective due to their low solubility and hydrophobicity. However, addition of suitable surfactant(s) has been shown to increase the removal efficiency several fold. For the present work, the removal of PAHs occurring in industrially contaminated soil was studied. The objective was to use a nonionic surfactant solution for in situ soil flushing and to evaluate the optimal range of process parameters that can significantly increase the removal efficiency. The process parameters chosen were surfactant concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant effect on PAH removal from the contaminated soil and an optimal range was determined for each parameter under given washing conditions

  9. Optimal systems of means and methods and universal algorithm of decontamination of radio nuclide's contaminated soils

    International Nuclear Information System (INIS)

    Kutlakhmedov, Y.; Zezina, N.; Micheev, A.; Jouve, A.; Perepelyatnikov, G.

    1996-01-01

    This paper represents our data of comparative analysis of efficacy of different countermeasures in decontamination of soils in Ukraine in total and in case study Milyachi. On this base it was created of optimal algorithm of strategy of decontamination of soils which is based on method of usage turf harvester for unploughed soils and method of phytodesactivation for ploughed soils of Ukraine after Chernobyl accident

  10. Optimization of radioactivation analysis for the determination of iodine, bromine, and chlorine contents in soils, plants, soil solutions and rain water

    International Nuclear Information System (INIS)

    Yuita, Kouichi

    1983-01-01

    The conventional analytical procedures for iodine, bromine and chlorine in soils, plants, soil solutions and rain water, especially in the former two, have not been sufficient in their accuracy and sensitivity. With emphasis on the radioactivation analysis known to be a highly accurate analytical method, practical radioactivation procedures with high sensitivity, accurate and covenient, have been investigated for the determination of the three halogen elements in various soils and plants and of the three contained in extremely low concentrations in soil solutions and rain water. Consequently, the following methods were able to be established: (1) non-destructive radioactivation analysis without the chemical separation of bromine and chlorine in plants, soil solutions and rain water; (2) radioactivation analysis by group separating, simultaneous determination of iodine, bromine and chlorine in soils; (3) highsensitivity radioactivation analysis for iodine in plants, soil solutions and rain water. A manual for the analytical procedures was prepared accordingly. (Mori, K.)

  11. Atomic Force Microscopy for Soil Analysis

    Science.gov (United States)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  12. [Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution].

    Science.gov (United States)

    Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng

    2015-03-01

    Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.

  13. Soil evaluation for land use optimizing

    Science.gov (United States)

    Marinina, O. A.

    2018-01-01

    The article presents the method of soil classification proposed in the course of the study in which the list of indicators proposed by the existing recommendations is optimized. On the example of one of the river basins within the boundaries of the Belgorod region zoning of the territory was carried out. With this approach, the boundaries of the territorial zones are projected along the natural boundaries of natural objects and the productivity of soils is determined as the main criterion for zoning. To assess the territory by soil properties, the features of the soil cover of the river basin were studied and vectorization of the soil variety boundaries was carried out. In the land evaluation essential and useful for the growth of crops macro- and minor-nutrient elements necessary for the growth of crops were included. To compare the soils each of the indicators was translated into relative units. The final score of soil quality is calculated as the mean geometric value of scores from 0 to 100 points for the selected diagnostic features. Through the imposition of results of soil classification and proposed by the concept of basin nature management - land management activities, five zones were identified according to the degree of suitability for use in agriculture.

  14. Modelling and Bi-objective Optimization of Soil Cutting and Pushing Process for Bulldozer and its Blade

    Science.gov (United States)

    Barakat, Nada; Sharma, Deepak

    2017-12-01

    Bulldozer is an earth moving machine, which is mainly used for cutting and pushing soil. The process of soil cutting and pushing involves various decisions making to make it optimum. The decisions are generally made based on the experience of practitioners that may not be optimum for different working conditions. In this paper, a bi-objective optimization problem is modelled so that the optimum values of decision variables can be determined. The objective functions are proposed to make the process economic and productive by minimizing the cutting force on a bulldozer blade and maximizing the blade capacity. A constraint is also developed on the power requirement from a bulldozer to overcome resistance. The problem is solved using ɛ-constraint method and multi-objective genetic algorithm. The approximate Pareto-optimal solutions and their perturbation analysis are presented. Various relationships are evolved from the post-optimal analysis that can be used for making guidelines for decision making for the process. The originality of this paper lies in developing the bi-objective formulation and in presenting various relationships by the post-optimal analysis, which has sparingly done in the domain literature.

  15. Influence of physical and chemical properties of different soil types on optimal soil moisture for tillage

    Directory of Open Access Journals (Sweden)

    Vladimir Zebec

    2017-01-01

    Full Text Available Soil plasticity is the area of soil consistency, i.e. it represents a change in soil condition due to different soil moisture influenced by external forces activity. Consistency determines soil resistance in tillage, therefore, the aim of the research was to determine the optimum soil moisture condition for tillage and the influence of the chemical and physical properties of the arable land horizons on the soil plasticity on three different types of soil (fluvisol, luvisol and humic glaysol. Statistically significant differences were found between all examined soil types, such as the content of clay particles, the density of packaging and the actual and substitution acidity, the cation exchange capacity and the content of calcium. There were also statistically significant differences between the examined types of soil for the plasticity limit, liquid limit and the plasticity index. The average established value of plasticity limit as an important element for determining the optimal moment of soil tillage was 18.9% mass on fluvisol, 24.0% mass on luvisol and 28.6% mass on humic glaysol. Very significant positive direction correlation with plasticity limits was shown by organic matter, clay, fine silt, magnesium, sodium and calcium, while very significant negative direction correlation was shown by hydrolytic acidity, coarse sand, fine sand and coarse silt. Created regression models can estimate the optimal soil moisture condition for soil cultivation based on the basic soil properties. The model precision is significantly increased by introducing a greater number of agrochemical and agrophysical soil properties, and the additional precision of the model can be increased by soil type data.

  16. Analysis of Fluorotelomer Alcohols in Soils: Optimization of Extraction and Chromatography

    Science.gov (United States)

    This article describes the development of an analytical method for the determination of fluorotelomer alcohols (FTOHs) in soil. The sensitive and selective determination of the telomer alcohols was performed by extraction with mthyl tert-butyl ether (MTBE) and analysis of the ext...

  17. Development, optimization, validation and application of faster gas chromatography - flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils.

    Science.gov (United States)

    Zubair, Abdulrazaq; Pappoe, Michael; James, Lesley A; Hawboldt, Kelly

    2015-12-18

    This paper presents an important new approach to improving the timeliness of Total Petroleum Hydrocarbon (TPH) analysis in the soil by Gas Chromatography - Flame Ionization Detector (GC-FID) using the CCME Canada-Wide Standard reference method. The Canada-Wide Standard (CWS) method is used for the analysis of petroleum hydrocarbon compounds across Canada. However, inter-laboratory application of this method for the analysis of TPH in the soil has often shown considerable variability in the results. This could be due, in part, to the different gas chromatography (GC) conditions, other steps involved in the method, as well as the soil properties. In addition, there are differences in the interpretation of the GC results, which impacts the determination of the effectiveness of remediation at hydrocarbon-contaminated sites. In this work, multivariate experimental design approach was used to develop and validate the analytical method for a faster quantitative analysis of TPH in (contaminated) soil. A fractional factorial design (fFD) was used to screen six factors to identify the most significant factors impacting the analysis. These factors included: injection volume (μL), injection temperature (°C), oven program (°C/min), detector temperature (°C), carrier gas flow rate (mL/min) and solvent ratio (v/v hexane/dichloromethane). The most important factors (carrier gas flow rate and oven program) were then optimized using a central composite response surface design. Robustness testing and validation of model compares favourably with the experimental results with percentage difference of 2.78% for the analysis time. This research successfully reduced the method's standard analytical time from 20 to 8min with all the carbon fractions eluting. The method was successfully applied for fast TPH analysis of Bunker C oil contaminated soil. A reduced analytical time would offer many benefits including an improved laboratory reporting times, and overall improved clean up

  18. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  19. Optimization of 14C liquid scintillation counting of plant and soil lipids to trace short term formation, translocation and degradation of lipids

    International Nuclear Information System (INIS)

    Wiesenberg, G.L.B.; Gocke, M.; Yakov Kuzyakov

    2010-01-01

    Two powerful approaches are frequently used to trace incorporation and degradation of plant derived C in soil: 14 C labelling/chasing and analysis of lipid composition. In this study, we coupled these approaches in order to trace short term incorporation of plant derived lipids into rhizosphere and non-rhizosphere soil. Methodological optimization was required and implied 14 C liquid scintillation counting improvement for plant lipid extracts taking into account organic solvents, solvent-to-scintillation cocktail ratio, and amount of lipids. Following method optimization, 14 C data of fatty acids indicated a notable contribution of root derived lipids to rhizosphere and non-rhizosphere soil. Coupling of 14 C labelling/chasing with lipid analysis is a powerful and cheap approach for tracing of root derived C in soil allowing for estimation of C budget, for determination of C formation and translocation within plants and from plant to soil, as well as for identification of short term dynamics of specific compound classes within soil. (author)

  20. Optimization of a sample processing protocol for recovery of Bacillus anthracis spores from soil

    Science.gov (United States)

    Silvestri, Erin E.; Feldhake, David; Griffin, Dale; Lisle, John T.; Nichols, Tonya L.; Shah, Sanjiv; Pemberton, A; Schaefer III, Frank W

    2016-01-01

    Following a release of Bacillus anthracis spores into the environment, there is a potential for lasting environmental contamination in soils. There is a need for detection protocols for B. anthracis in environmental matrices. However, identification of B. anthracis within a soil is a difficult task. Processing soil samples helps to remove debris, chemical components, and biological impurities that can interfere with microbiological detection. This study aimed to optimize a previously used indirect processing protocol, which included a series of washing and centrifugation steps. Optimization of the protocol included: identifying an ideal extraction diluent, variation in the number of wash steps, variation in the initial centrifugation speed, sonication and shaking mechanisms. The optimized protocol was demonstrated at two laboratories in order to evaluate the recovery of spores from loamy and sandy soils. The new protocol demonstrated an improved limit of detection for loamy and sandy soils over the non-optimized protocol with an approximate matrix limit of detection at 14 spores/g of soil. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol will be robust enough to use at multiple laboratories while achieving comparable recoveries.

  1. Optimization of microwave-assisted extraction and supercritical fluid extraction of carbamate pesticides in soil by experimental design methodology.

    Science.gov (United States)

    Sun, Lei; Lee, Hian Kee

    2003-10-03

    Orthogonal array design (OAD) was applied for the first time to optimize microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) conditions for the analysis of four carbamates (propoxur, propham, methiocarb, chlorpropham) from soil. The theory and methodology of a new OA16 (4(4)) matrix derived from a OA16 (2(15)) matrix were developed during the MAE optimization. An analysis of variance technique was employed as the data analysis strategy in this study. Determinations of analytes were completed using high-performance liquid chromatography (HPLC) with UV detection. Four carbamates were successfully extracted from soil with recoveries ranging from 85 to 105% with good reproducibility (approximately 4.9% RSD) under the optimum MAE conditions: 30 ml methanol, 80 degrees C extraction temperature, and 6-min microwave heating. An OA8 (2(7)) matrix was employed for the SFE optimization. The average recoveries and RSD of the analytes from spiked soil by SFE were 92 and 5.5%, respectively except for propham (66.3+/-7.9%), under the following conditions: heating for 30 min at 60 degrees C under supercritical CO2 at 300 kg/cm2 modified with 10% (v/v) methanol. The composition of the supercritical fluid was demonstrated to be a crucial factor in the extraction. The addition of a small volume (10%) of methanol to CO2 greatly enhanced the recoveries of carbamates. A comparison of MAE with SFE was also conducted. The results indicated that >85% average recoveries were obtained by both optimized extraction techniques, and slightly higher recoveries of three carbamates (propoxur, propham and methiocarb) were achieved using MAE. SFE showed slightly higher recovery for chlorpropham (93 vs. 87% for MAE). The effects of time-aged soil on the extraction of analytes were examined and the results obtained by both methods were also compared.

  2. Land Surface Model and Particle Swarm Optimization Algorithm Based on the Model-Optimization Method for Improving Soil Moisture Simulation in a Semi-Arid Region.

    Science.gov (United States)

    Yang, Qidong; Zuo, Hongchao; Li, Weidong

    2016-01-01

    Improving the capability of land-surface process models to simulate soil moisture assists in better understanding the atmosphere-land interaction. In semi-arid regions, due to limited near-surface observational data and large errors in large-scale parameters obtained by the remote sensing method, there exist uncertainties in land surface parameters, which can cause large offsets between the simulated results of land-surface process models and the observational data for the soil moisture. In this study, observational data from the Semi-Arid Climate Observatory and Laboratory (SACOL) station in the semi-arid loess plateau of China were divided into three datasets: summer, autumn, and summer-autumn. By combing the particle swarm optimization (PSO) algorithm and the land-surface process model SHAW (Simultaneous Heat and Water), the soil and vegetation parameters that are related to the soil moisture but difficult to obtain by observations are optimized using three datasets. On this basis, the SHAW model was run with the optimized parameters to simulate the characteristics of the land-surface process in the semi-arid loess plateau. Simultaneously, the default SHAW model was run with the same atmospheric forcing as a comparison test. Simulation results revealed the following: parameters optimized by the particle swarm optimization algorithm in all simulation tests improved simulations of the soil moisture and latent heat flux; differences between simulated results and observational data are clearly reduced, but simulation tests involving the adoption of optimized parameters cannot simultaneously improve the simulation results for the net radiation, sensible heat flux, and soil temperature. Optimized soil and vegetation parameters based on different datasets have the same order of magnitude but are not identical; soil parameters only vary to a small degree, but the variation range of vegetation parameters is large.

  3. Optimizing soil and water management in dryland farming systems in Cabo Verde

    NARCIS (Netherlands)

    Santos Baptista Costa, Dos I.

    2016-01-01

    Optimizing Soil and Water Management in Dryland Farming Systems in Cabo Verde”

    Isaurinda Baptista

    Summary

    Soil and land degradation poses a great challenge for sustainable development worldwide and, in Cabo Verde, has strongly affected both

  4. Analysis of perfluorinated carboxylic acids in soils II: optimization of chromatography and extraction.

    Science.gov (United States)

    Washington, John W; Henderson, W Matthew; Ellington, J Jackson; Jenkins, Thomas M; Evans, John J

    2008-02-15

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorooctanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary phases, two different liquid chromatography-tandem mass spectrometry (LC/MS/MS) systems, and eight combinations of sample-extract pretreatments, extractions and cleanups on three test soils. For the columns and systems we tested, we achieved the greatest analytical sensitivity for PFCAs using a column with a C(18) stationary phase in a Waters LC/MS/MS. In this system we achieved an instrument detection limit for PFOA of 270 ag/microL, equating to about 14 fg of PFOA on-column. While an elementary acetonitrile/water extraction of soils recovers PFCAs effectively, natural soil organic matter also dissolved in the extracts commonly imparts significant noise that appears as broad, multi-nodal, asymmetric peaks that coelute with several PFCAs. The intensity and elution profile of this noise is highly variable among soils and it challenges detection of low concentrations of PFCAs by decreasing the signal-to-noise contrast. In an effort to decrease this background noise, we investigated several methods of pretreatment, extraction and cleanup, in a variety of combinations, that used alkaline and unbuffered water, acetonitrile, tetrabutylammonium hydrogen sulfate, methyl-tert-butyl ether, dispersed activated carbon and solid-phase extraction. For the combined objectives of complete recovery and minimization of background noise, we have chosen: (1) alkaline pretreatment; (2) extraction with acetonitrile/water; (3) evaporation to dryness; (4) reconstitution with tetrabutylammonium-hydrogen-sulfate ion-pairing solution; (5) ion-pair extraction to methyl-tert-butyl ether; (6) evaporation to dryness; (7) reconstitution with 60/40 acetonitrile/water (v/v); and (8) analysis by LC/MS/MS. Using this method, we

  5. Optimizing operational water management with soil moisture data from Sentinel-1 satellites

    Science.gov (United States)

    Pezij, Michiel; Augustijn, Denie; Hendriks, Dimmie; Hulscher, Suzanne

    2016-04-01

    operational water management in cooperation with users. As a first step, the current simulation of soil moisture processes within the NHI will be reviewed. We want to present the findings of this assessment as well as the research methodology. This PhD-research is part of the Optimizing Water Availability with Sentinel-1 Satellites (OWAS1S)-project in which two other PhD-students are participating. They are focussing on the translation of raw Sentinel-1 satellite data to surface soil moisture data and the application of the remotely sensed soil moisture data on crop water availability and trafficability on field scale. References: De Lange, W. J., Prinsen, G. F., Hoogewoud, J. C., Veldhuizen, A. A., Verkaik, J., Oude Essink, G. H. P., van Walsum, P. E. V., Delsman, J. R., Hunink, J. C., Massop, H. T. L., & Kroon, T. (2014). An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis: The Netherlands Hydrological Instrument. Environmental Modelling & Software, 59, 98-108. doi: 10.1016/j.envsoft.2014.05.009 Wanders, N., Karssenberg, D., de Roo, A., de Jong, S. M., & Bierkens, M. F. P. (2014). The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrology and Earth System Sciences, 18(6), 2343-2357. doi: 10.5194/hess-18-2343-2014

  6. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    Science.gov (United States)

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The

  7. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  8. Optimization of ultrasonic extraction and analyses methodology by HPLC for determination of diuron and its metabolites in soil cultivation of sugar cane

    Directory of Open Access Journals (Sweden)

    Maria Josefa Santos Yabe

    2009-03-01

    Full Text Available Diuron, N-(3,4-dichlorophenyl-N, N-dimethylurea can be transformed into the soil through the biodegradation of 3-(3,4-dichlorophenyl-3-methylurea (DCPMU, 3.4-diclorofenilureia (DCPU and 3,4-dichloroaniline (DCA. This study aimed to optimize and validate a method of extraction and analysis of these substances in the soil by HPLC/DAD. There was extracted with methanol in the bath ultrasonic and analysis in a liquid chromatograph/detector brand Waters. The condition of analysis optimized for separation of analytes was mobile phase methanol: water 50:50 (v / v, flow 1 mL min-1. Wavelength of 240 nm was selected for the DCA and 254 nm for diuron, DCPMU and DCPU. It was used column and pre column Waters Xterra RP18, 5 um, 4.6 and 3.9 x 150 mm x 20 mm. The calibration curve was obtained from the fortification of the soil with the mixture of patterns in the range of 5 mg Kg-1 to 200 mg Kg-1 of soil. The recovery was obtained in two concentration levels of 5 and 200 mg. Kg-1 of soil was between 85 and 99%. The repeatability was 0.78%, 2.20%, 2.17% and 1.72% and intermediate precision was 2.48%, 2.11%, 3.10% and 2.77% for diuron, DCPMU, DCPU and DCA, respectively. The limit of quantification was 1.25 mg Kg-1 soil. The concentration of diuron found in some bioaugmented soil samples ranged from 5.5 to 8.9 mg Kg-1 soil, but was not detected the presence of their metabolites.

  9. The contribution of particle swarm optimization to three-dimensional slope stability analysis.

    Science.gov (United States)

    Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  10. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Science.gov (United States)

    A Rashid, Ahmad Safuan; Ali, Nazri

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

  11. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Directory of Open Access Journals (Sweden)

    Roohollah Kalatehjari

    2014-01-01

    Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  12. Adsorption and analysis of the insecticides thiamethoxam and indoxacarb in hawaiian soils.

    Science.gov (United States)

    Campbell, Sonia; Chen, Lilian; Yu, Jian; Li, Qing X

    2005-06-29

    A method was developed for the simultaneous extraction and analysis of the insecticides indoxacarb and thiamethoxam from five Hawaiian soils. Using pressurized fluid extraction followed by liquid chromatography, optimized recoveries from the five soils were obtained ranging from 80% +/- 5 to 101% +/- 10 for thiamethoxam, and 83% +/- 6 to 106% +/- 7 for indoxacarb. Aging studies also showed strong binding of indoxacarb to all soils tested after 30 days, while thiamethoxam remained quite available for extraction during the length of the study (90 days). Freundlich constant (K(f)) and empirical value (n) for thiamethoxam sorption on Lihue soil were 0.007391 mmol((1-1/)(n)).L(1/)(n).g(-1) and 1.1377, respectively; K(f) and n were 0.007844 mmol((1-1/)(n)).L(1/)(n).g(-1) and 0.8473, respectively, on Wahiawa soil. The organic carbon adsorption constant (Koc) of thiamethoxam was 0.53 in Lihue soil and 0.23 in Wahiawa soil.

  13. Enhanced Soil Moisture Initialization Using Blended Soil Moisture Product and Regional Optimization of LSM-RTM Coupled Land Data Assimilation System.

    Science.gov (United States)

    Nair, A. S.; Indu, J.

    2017-12-01

    Prediction of soil moisture dynamics is high priority research challenge because of the complex land-atmosphere interaction processes. Soil moisture (SM) plays a decisive role in governing water and energy balance of the terrestrial system. An accurate SM estimate is imperative for hydrological and weather prediction models. Though SM estimates are available from microwave remote sensing and land surface model (LSM) simulations, it is affected by uncertainties from several sources during estimation. Past studies have generally focused on land data assimilation (DA) for improving LSM predictions by assimilating soil moisture from single satellite sensor. This approach is limited by the large time gap between two consequent soil moisture observations due to satellite repeat cycle of more than three days at the equator. To overcome this, in the present study, we have performed DA using ensemble products from the soil moisture operational product system (SMOPS) blended soil moisture retrievals from different satellite sensors into Noah LSM. Before the assimilation period, the Noah LSM is initialized by cycling through seven multiple loops from 2008 to 2010 forcing with Global data assimilation system (GDAS) data over the Indian subcontinent. We assimilated SMOPS into Noah LSM for a period of two years from 2010 to 2011 using Ensemble Kalman Filter within NASA's land information system (LIS) framework. Results show that DA has improved Noah LSM prediction with a high correlation of 0.96 and low root mean square difference of 0.0303 m3/m3 (figure 1a). Further, this study has also investigated the notion of assimilating microwave brightness temperature (Tb) as a proxy for SM estimates owing to the close proximity of Tb and SM. Preliminary sensitivity analysis show a strong need for regional parameterization of radiative transfer models (RTMs) to improve Tb simulation. Towards this goal, we have optimized the forward RTM using swarm optimization technique for direct Tb

  14. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    Science.gov (United States)

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  15. Downscaling soil moisture over East Asia through multi-sensor data fusion and optimization of regression trees

    Science.gov (United States)

    Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung

    2017-04-01

    Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An

  16. Spatial distribution of ammonium and calcium in optimally fertilized pine plantation soils

    Science.gov (United States)

    Ivan Edwards; Andrew Gillespie; Jennifer Chen; Kurt Johnsen; Ronald Turco

    2005-01-01

    Commercial timber production is increasingly reliant on long-term fertilization to maximize stand productivity, yet we do not understand the extent to which this practice homogenizes soil properties. The effects of 16 yr of optimal fertilization and optimal fertilization with irrigation (fertigation) on forest floor depth, pH, total organic carbon (TOC) and total...

  17. Sample pretreatment optimization for the analysis of short chain chlorinated paraffins in soil with gas chromatography-electron capture negative ion-mass spectrometry.

    Science.gov (United States)

    Chen, Laiguo; Huang, Yumei; Han, Shuang; Feng, Yongbin; Jiang, Guo; Tang, Caiming; Ye, Zhixiang; Zhan, Wei; Liu, Ming; Zhang, Sukun

    2013-01-25

    Accurately quantifying short chain chlorinated paraffins (SCCPs) in soil samples with gas chromatograph coupled with electron capture negative ionization mass spectrometry (GC-ECNI-MS) is difficult because many other polychlorinated pollutants are present in the sample matrices. These pollutants (e.g., polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and toxaphene) can cause serious interferences during SCCPs analysis with GC-MS. Four main columns packed with different adsorbents, including silica gel, Florisil and alumina, were investigated in this study to determine their performance for separating interfering pollutants from SCCPs. These experimental results suggest that the optimum cleanup procedure uses a silica gel column and a multilayer silica gel-Florisil composite column. This procedure completely separated 22 PCB congeners, 23 OCPs and three toxaphene congeners from SCCPs. However, p,p'-DDD, cis-nonachlor and o,p'-DDD were not completely removed and only 53% of the total toxaphene was removed. This optimized method was successfully and effectively applied for removing interfering pollutants from real soil samples. SCCPs in 17 soil samples from different land use areas within a suburban region were analyzed with the established method. The concentrations of SCCPs in these samples were between 7 and 541 ng g(-1) (mean: 84 ng g(-1)). Similar homologue SCCPs patterns were observed between the soil samples collected from different land use areas. In addition, lower chlorinated (Cl(6/7)) C(10)- and C(11)- SCCPs were the dominant congeners. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Quantitative analysis of soil chromatography. I. Water and radionuclide transport

    International Nuclear Information System (INIS)

    Reeves, M.; Francis, C.W.; Duguid, J.O.

    1977-12-01

    Soil chromatography has been used successfully to evaluate relative mobilities of pesticides and nuclides in soils. Its major advantage over the commonly used suspension technique is that it more accurately simulates field conditions. Under such conditions the number of potential exchange sites is limited both by the structure of the soil matrix and by the manner in which the carrier fluid moves through this structure. The major limitation of the chromatographic method, however, has been its qualitative nature. This document represents an effort to counter this objection. A theoretical basis is specified for the transport both of the carrier eluting fluid and of the dissolved constituent. A computer program based on this theory is developed which optimizes the fit of theoretical data to experimental data by automatically adjusting the transport parameters, one of which is the distribution coefficient k/sub d/. This analysis procedure thus constitutes an integral part of the soil chromatographic method, by means of which mobilities of nuclides and other dissolved constituents in soils may be quantified

  19. Quantitative analysis of soil chromatography. I. Water and radionuclide transport

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Francis, C.W.; Duguid, J.O.

    1977-12-01

    Soil chromatography has been used successfully to evaluate relative mobilities of pesticides and nuclides in soils. Its major advantage over the commonly used suspension technique is that it more accurately simulates field conditions. Under such conditions the number of potential exchange sites is limited both by the structure of the soil matrix and by the manner in which the carrier fluid moves through this structure. The major limitation of the chromatographic method, however, has been its qualitative nature. This document represents an effort to counter this objection. A theoretical basis is specified for the transport both of the carrier eluting fluid and of the dissolved constituent. A computer program based on this theory is developed which optimizes the fit of theoretical data to experimental data by automatically adjusting the transport parameters, one of which is the distribution coefficient k/sub d/. This analysis procedure thus constitutes an integral part of the soil chromatographic method, by means of which mobilities of nuclides and other dissolved constituents in soils may be quantified.

  20. Genetic algorithm applied to a Soil-Vegetation-Atmosphere system: Sensitivity and uncertainty analysis

    Science.gov (United States)

    Schneider, Sébastien; Jacques, Diederik; Mallants, Dirk

    2010-05-01

    Numerical models are of precious help for predicting water fluxes in the vadose zone and more specifically in Soil-Vegetation-Atmosphere (SVA) systems. For such simulations, robust models and representative soil hydraulic parameters are required. Calibration of unsaturated hydraulic properties is known to be a difficult optimization problem due to the high non-linearity of the water flow equations. Therefore, robust methods are needed to avoid the optimization process to lead to non-optimal parameters. Evolutionary algorithms and specifically genetic algorithms (GAs) are very well suited for those complex parameter optimization problems. Additionally, GAs offer the opportunity to assess the confidence in the hydraulic parameter estimations, because of the large number of model realizations. The SVA system in this study concerns a pine stand on a heterogeneous sandy soil (podzol) in the Campine region in the north of Belgium. Throughfall and other meteorological data and water contents at different soil depths have been recorded during one year at a daily time step in two lysimeters. The water table level, which is varying between 95 and 170 cm, has been recorded with intervals of 0.5 hour. The leaf area index was measured as well at some selected time moments during the year in order to evaluate the energy which reaches the soil and to deduce the potential evaporation. Water contents at several depths have been recorded. Based on the profile description, five soil layers have been distinguished in the podzol. Two models have been used for simulating water fluxes: (i) a mechanistic model, the HYDRUS-1D model, which solves the Richards' equation, and (ii) a compartmental model, which treats the soil profile as a bucket into which water flows until its maximum capacity is reached. A global sensitivity analysis (Morris' one-at-a-time sensitivity analysis) was run previously to the calibration, in order to check the sensitivity in the chosen parameter search space. For

  1. Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services

    NARCIS (Netherlands)

    Setälä, H.; Bardgett, R.D.; Birkhofer, K.; Brady, M.; Byrne, L.; de Ruiter, P.C.; de Vries, F.T.; Gardi, C.; Hedlund, K.; Hemerik, L.; Hotes, S.; Liiri, M.; Mortimer, S.R.; Pavao-Zuckerman, M.; Pouyat, R.; Tsiafouli, M.; Van der Putten, W.H.

    2014-01-01

    [KEYWORDS: Agriculture Ecosystem services Land use Management optimization Soil Urban Trade-off] On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services

  2. Concurrent and lagged impacts of an anomalously warm year on autotrophic and heterotrophic components of soil respiration: a deconvolution analysis.

    Science.gov (United States)

    Zhou, Xuhui; Luo, Yiqi; Gao, Chao; Verburg, Paul S J; Arnone, John A; Darrouzet-Nardi, Anthony; Schimel, David S

    2010-07-01

    *Partitioning soil respiration into autotrophic (R(A)) and heterotrophic (R(H)) components is critical for understanding their differential responses to climate warming. *Here, we used a deconvolution analysis to partition soil respiration in a pulse warming experiment. We first conducted a sensitivity analysis to determine which parameters can be identified by soil respiration data. A Markov chain Monte Carlo technique was then used to optimize those identifiable parameters in a terrestrial ecosystem model. Finally, the optimized parameters were employed to quantify R(A) and R(H) in a forward analysis. *Our results displayed that more than one-half of parameters were constrained by daily soil respiration data. The optimized model simulation showed that warming stimulated R(H) and had little effect on R(A) in the first 2 months, but decreased both R(H) and R(A) during the remainder of the treatment and post-treatment years. Clipping of above-ground biomass stimulated the warming effect on R(H) but not on R(A). Overall, warming decreased R(A) and R(H) significantly, by 28.9% and 24.9%, respectively, during the treatment year and by 27.3% and 33.3%, respectively, during the post-treatment year, largely as a result of decreased canopy greenness and biomass. *Lagged effects of climate anomalies on soil respiration and its components are important in assessing terrestrial carbon cycle feedbacks to climate warming.

  3. Off-road vehicle dynamics analysis, modelling and optimization

    CERN Document Server

    Taghavifar, Hamid

    2017-01-01

    This book deals with the analysis of off-road vehicle dynamics from kinetics and kinematics perspectives and the performance of vehicle traversing over rough and irregular terrain. The authors consider the wheel performance, soil-tire interactions and their interface, tractive performance of the vehicle, ride comfort, stability over maneuvering, transient and steady state conditions of the vehicle traversing, modeling the aforementioned aspects and optimization from energetic and vehicle mobility perspectives. This book brings novel figures for the transient dynamics and original wheel terrain dynamics at on-the-go condition.

  4. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming; Zhuang, Qianlai; He, Yujie; Liu, Yaling; Yu, Dongsheng; Zhao, Quanying; Shi, Xuezheng; Xing, Shihe; Wang, Guangxiang

    2016-08-01

    Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of the Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha-1 yr-1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.

  5. Review of sample preparation techniques for the analysis of pesticide residues in soil.

    Science.gov (United States)

    Tadeo, José L; Pérez, Rosa Ana; Albero, Beatriz; García-Valcárcel, Ana I; Sánchez-Brunete, Consuelo

    2012-01-01

    This paper reviews the sample preparation techniques used for the analysis of pesticides in soil. The present status and recent advances made during the last 5 years in these methods are discussed. The analysis of pesticide residues in soil requires the extraction of analytes from this matrix, followed by a cleanup procedure, when necessary, prior to their instrumental determination. The optimization of sample preparation is a very important part of the method development that can reduce the analysis time, the amount of solvent, and the size of samples. This review considers all aspects of sample preparation, including extraction and cleanup. Classical extraction techniques, such as shaking, Soxhlet, and ultrasonic-assisted extraction, and modern techniques like pressurized liquid extraction, microwave-assisted extraction, solid-phase microextraction and QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) are reviewed. The different cleanup strategies applied for the purification of soil extracts are also discussed. In addition, the application of these techniques to environmental studies is considered.

  6. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility.

    Science.gov (United States)

    Wang, Guiyin; Zhang, Shirong; Xu, Xiaoxun; Zhong, Qinmei; Zhang, Chuer; Jia, Yongxia; Li, Ting; Deng, Ouping; Li, Yun

    2016-11-01

    Soil washing, an emerging method for treating soils contaminated by heavy metals, requires an evaluation of its efficiency in simultaneously removing different metals, the quality of the soil following remediation, and the reusability of the recycled washing agent. In this study, we employed N,N-bis (carboxymethyl)-l-glutamic acid (GLDA), a novel and readily biodegradable chelator to remove Cd, Pb, and Zn from polluted soils. We investigated the influence of washing conditions, including GLDA concentration, pH, and contact time on their removal efficiencies. The single factor experiments showed that Cd, Pb, and Zn removal efficiencies reached 70.62, 74.45, and 34.43% in mine soil at a GLDA concentration of 75mM, a pH of 4.0, and a contact time of 60min, and in polluted farmland soil, removal efficiencies were 69.12, 78.30, and 39.50%, respectively. We then employed response surface methodology to optimize the washing parameters. The optimization process showed that the removal efficiencies were 69.50, 88.09, and 40.45% in mine soil and 71.34, 81.02, and 50.95% in polluted farmland soil for Cd, Pb, and Zn, respectively. Moreover, the overall highly effective removal of Cd and Pb was connected mainly to their highly effective removal from the water-soluble, exchangeable, and carbonate fractions. GLDA-washing eliminated the same amount of metals as EDTA-washing, while simultaneously retaining most of the soil nutrients. Removal efficiencies of recycled GLDA were no >5% lower than those of the fresh GLDA. Therefore, GLDA could potentially be used for the rehabilitation of soil contaminated by heavy metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Microzonation Analysis of Cohesionless and Cohesive Soil

    Directory of Open Access Journals (Sweden)

    Tan Choy Soon

    2017-01-01

    Full Text Available Urban seismic risk is a continuous worldwide issue, numerous researchers are putting great effort in dealing with how to minimise the level of the threat. The only way to minimise the social and economic consequences caused but the seismic risk is through comprehensive earthquake scenario analysis such as ground response analysis. This paper intends to examine the characteristic of shear wave velocity and peak ground acceleration on cohesionless and cohesiveness soil. In order to examine the characteristic of shear wave velocity and peak ground acceleration on cohesionless and cohesiveness soil, ground response analysis was performed using Nonlinear Earthquake Site Response Analysis (NERA and Equivalent-linear Earthquake Site Response Analysis (EERA. The value of ground acceleration was initially high at bedrock and vanishes during the propagation process. It is thus, the measured acceleration at surface is therefore much lower as compare to at bedrock. Result shows that seismic waves can travel faster in harder soil as compared to softer soil. Cohesive soil contributes more to the shaking amplification than cohesionless soil such as sand and harder soil. This is known as local site effect. The typical example is the Mexico Earthquake that happened in 1985. As conclusion, peak ground acceleration for cohesive soil is higher than in cohesionless soil.

  8. Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil.

    Science.gov (United States)

    Chen, J; Huang, P T; Zhang, K Y; Ding, F R

    2012-04-01

    To screen and identify biosurfactant producers from petroleum-contaminated soil; to use response surface methodology (RSM) for medium optimization to enhance biosurfactant production; and to study the properties of the newly obtained biosurfactant towards pH, temperature and salinity. We successfully isolated three biosurfactant producers from petroleum-contaminated soil and identified them through 16S rRNA sequence analysis, which exhibit the highest similarities to Acinetobacter beijerinckii (100%), Kocuria marina (99%) and Kineococcus marinus (99%), respectively. A quadratic response model was constructed through RSM designs, leading to a 57·5% increase of the growth-associated biosurfactant production by Acinetobacter sp. YC-X 2 with an optimized medium: beef extract 3·12 g l(-1) ; peptone 20·87 g l(-1) ; NaCl 1·04 g l(-1); and n-hexadecane 1·86 g l(-1). Biosurfactant produced by Acinetobacter sp. YC-X 2 retained its properties during exposure to a wide range of pH values (5-11), high temperatures (up to 121°C) and high salinities [up to 18% (w/v) Na(+) and Ca(2+) ], which was more sensitive to Ca(2+) than Na(+). Two novel biosurfactant producers were isolated from petroleum-contaminated soil. Biosurfactant from Acinetobacter sp. YC-X 2 has good properties to a wide range of pH, high temperature and high salinity, and its production was optimized successfully through RSM. The fact, an increasing demand of high-quality surfactants and the lack of cost-competitive bioprocesses of biosurfactants for commercial utilization, motivates researchers to develop cost-effective strategies for biosurfactant production through isolating new biosurfactant producers with special surface-active properties and optimizing their cultural conditions. Two novel biosurfactant producers in this study will widen our knowledge about this kind of micro-organism. This work is the first application of RSM designs for cultural optimization of biosurfactant produced by Acinetobacter

  9. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yuhui Jiang

    2018-04-01

    Full Text Available Hexachlorobenzene (HCB contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time and the interactions between these variables under the Box-Behnken Design (BBD. A high regression coefficient value (R2 = 0.9807 and low p value (<0.0001 of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m, 17.7% (m/m, and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB → 1,2,3,4-tetrachlorobenzene (TeCB and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils.

  10. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    Science.gov (United States)

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an

  11. Polyaspartate extraction of cadmium ions from contaminated soil: Evaluation and optimization using central composite design.

    Science.gov (United States)

    Mu'azu, Nuhu Dalhat; Haladu, Shamsuddeen A; Jarrah, Nabeel; Zubair, Mukarram; Essa, Mohammad H; Ali, Shaikh A

    2018-01-15

    The occurrences of heavy metal contaminated sites and soils and the need for devising environmentally friendly solutions have become global issues of serious concern. In this study, polyaspartate (a highly biodegradable agent) was synthesized using L-Aspartic acid via a new modified thermal procedure and employed for extraction of cadmium ions (Cd) from contaminated soil. Response surface methodology approach using 3 5 full faced centered central composite design was employed for modeling, evaluating and optimizing the influence of polyaspartate concentration (36-145mM), polyaspartate/soil ratio (5-25), initial heavy metal concentration (100-500mg/kg), initial pH (3-6) and extraction time (6-24h) on Cd ions extracted into the polyaspartate solution and its residual concentration in the treated soil. The Cd extraction efficacy obtained reached up to 98.8%. Increase in Cd extraction efficiency was associated with increase in the polyaspartate and Cd concentration coupled with lower polyaspertate/soil ratio and initial pH. Under the optimal conditions characterized with minimal utilization of the polyaspartate and high Cd ions removal, the extractible Cd in the polyaspartate solution reached up to 84.4mg/L which yielded 85% Cd extraction efficacy. This study demonstrates the suitability of using polyaspartate as an effective environmentally friendly chelating agent for Cd extraction from contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach

    Science.gov (United States)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  13. Optimal land use management for soil erosion control by using an interval-parameter fuzzy two-stage stochastic programming approach.

    Science.gov (United States)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  14. Soil analysis. Modern instrumental technique

    International Nuclear Information System (INIS)

    Smith, K.A.

    1993-01-01

    This book covers traditional methods of analysis and specialist monographs on individual instrumental techniques, which are usually not written with soil or plant analysis specifically in mind. The principles of the techniques are combined with discussions of sample preparation and matrix problems, and critical reviews of applications in soil science and related disciplines. Individual chapters are processed separately for inclusion in the appropriate data bases

  15. Soil pretreatment and fast cell lysis for direct polymerase chain reaction from forest soils for terminal restriction fragment length polymorphism analysis of fungal communities

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    Full Text Available Abstract Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high purity DNA from soil microbiota, five prewashing agents were compared in terms of their efficiency and effectiveness in removing soil contaminants. Residual contaminants were precipitated by adding 0.6 mL of 0.5 M CaCl2. Four cell lysis methods were applied to test their compatibility with the pretreatment (prewashing + Ca2+ flocculation and to ultimately identify the optimal cell lysis method for analyzing fungal communities in forest soils. The results showed that pretreatment with TNP + Triton X-100 + skim milk (100 mM Tris, 100 mM Na4P2O7, 1% polyvinylpyrrolidone, 100 mM NaCl, 0.05% Triton X-100, 4% skim milk, pH 10.0 removed most soil humic contaminants. When the pretreatment was combined with Ca2+ flocculation, the purity of all soil DNA samples was further improved. DNA samples obtained by the fast glass bead-beating method (MethodFGB had the highest purity. The resulting DNA was successfully used, without further purification steps, as a template for polymerase chain reaction targeting fungal internal transcribed spacer regions. The results obtained by terminal restriction fragment length polymorphism analysis indicated that the MethodFGB revealed greater fungal diversity and more distinctive community structure compared with the other methods tested. Our study provides a protocol for fungal cell lysis in soil, which is fast, convenient, and effective for analyzing fungal communities in forest soils.

  16. Introduction of digital soil mapping techniques for the nationwide regionalization of soil condition in Hungary; the first results of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project

    Science.gov (United States)

    Pásztor, László; Laborczi, Annamária; Szatmári, Gábor; Takács, Katalin; Bakacsi, Zsófia; Szabó, József; Dobos, Endre

    2014-05-01

    Due to the former soil surveys and mapping activities significant amount of soil information has accumulated in Hungary. Present soil data requirements are mainly fulfilled with these available datasets either by their direct usage or after certain specific and generally fortuitous, thematic and/or spatial inference. Due to the more and more frequently emerging discrepancies between the available and the expected data, there might be notable imperfection as for the accuracy and reliability of the delivered products. With a recently started project (DOSoReMI.hu; Digital, Optimized, Soil Related Maps and Information in Hungary) we would like to significantly extend the potential, how countrywide soil information requirements could be satisfied in Hungary. We started to compile digital soil related maps which fulfil optimally the national and international demands from points of view of thematic, spatial and temporal accuracy. The spatial resolution of the targeted countrywide, digital, thematic maps is at least 1:50.000 (approx. 50-100 meter raster resolution). DOSoReMI.hu results are also planned to contribute to the European part of GSM.net products. In addition to the auxiliary, spatial data themes related to soil forming factors and/or to indicative environmental elements we heavily lean on the various national soil databases. The set of the applied digital soil mapping techniques is gradually broadened incorporating and eventually integrating geostatistical, data mining and GIS tools. In our paper we will present the first results. - Regression kriging (RK) has been used for the spatial inference of certain quantitative data, like particle size distribution components, rootable depth and organic matter content. In the course of RK-based mapping spatially segmented categorical information provided by the SMUs of Digital Kreybig Soil Information System (DKSIS) has been also used in the form of indicator variables. - Classification and regression trees (CART) were

  17. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  18. Methods for preparing comparative standards and field samples for neutron activation analysis of soil

    International Nuclear Information System (INIS)

    Glasgow, D.C.; Dyer, F.F.; Robinson, L.

    1995-01-01

    One of the more difficult problems associated with comparative neutron activation analysis (CNAA) is the preparation of standards which are tailor-made to the desired irradiation and counting conditions. Frequently, there simply is not a suitable standard available commercially, or the resulting gamma spectrum is convoluted with interferences. In a recent soil analysis project, the need arose for standards which contained about 35 elements. In response, a computer spreadsheet was developed to calculate the appropriate amount of each element so that the resulting gamma spectrum is relatively free of interferences. Incorporated in the program are options for calculating all of the irradiation and counting parameters including activity produced, necessary flux/bombardment time, counting time, and appropriate source-to-detector distance. The result is multi-element standards for CNAA which have optimal concentrations. The program retains ease of use without sacrificing capability. In addition to optimized standard production, a novel soil homogenization technique was developed which is a low cost, highly efficient alternative to commercially available homogenization systems. Comparative neutron activation analysis for large scale projects has been made easier through these advancements. This paper contains details of the design and function of the NAA spreadsheet and innovative sample handling techniques. (author) 7 refs.; 5 tabs

  19. Methods for preparing comparative standards and field samples for neutron activation analysis of soil

    International Nuclear Information System (INIS)

    Glasgow, D.C.; Dyer, F.F.; Robinson, L.

    1994-01-01

    One of the more difficult problems associated with comparative neutron activation analysis (CNAA) is the preparation of standards which are tailor-made to the desired irradiation and counting conditions. Frequently, there simply is not a suitable standard available commercially, or the resulting gamma spectrum is convoluted with interferences. In a recent soil analysis project, the need arose for standards which contained about 35 elements. In response, a computer spreadsheet was developed to calculate the appropriate amount of each element so that the resulting gamma spectrum is relatively free of interferences. Incorporated in the program are options for calculating all of the irradiation and counting parameters including activity produced, necessary flux/bombardment time, counting time, and appropriate source-to-detector distance. The result is multi-element standards for CNAA which have optimal concentrations. The program retains ease of use without sacrificing capability. In addition to optimized standard production, a novel soil homogenization technique was developed which is a low cost, highly efficient alternative to commercially available homogenization systems. Comparative neutron activation analysis for large scale projects has been made easier through these advancements. This paper contains details of the design and function of the NAA spreadsheet and innovative sample handling techniques

  20. Soil Plasticity Model for Analysis of Collapse Load on Layers Soil

    Directory of Open Access Journals (Sweden)

    Md Nujid Masyitah

    2016-01-01

    Full Text Available Natural soil consist of soil deposits which is a soil layer overlying a thick stratum of another soil. The bearing capacity of layered soil studies have been conducted using different approach whether theoretical, experimental and combination of both. Numerical method in computer programme has become a powerful tool in solving complex geotechnical problems. Thus in numerical modelling, stress-strain soil behaviour is well predicted, design and interpreted using appropriate soil model. It is also important to identify parameters and soil model involve in prediction real soil problem. The sand layer overlaid clay layer soil is modelled with Mohr-Coulomb and Drucker-Prager criterion. The bearing capacity in loaddisplacement analysis from COMSOL Multiphysics is obtained and presented. In addition the stress distribution and evolution of plastic strain for each thickness ratio below centre of footing are investigated. The results indicate the linear relation on load-displacement which have similar trend for both soil models while stress and plastic strain increase as thickness ratio increase.

  1. Using 50 years of soil radiocarbon data to identify optimal approaches for estimating soil carbon residence times

    Science.gov (United States)

    Baisden, W. T.; Canessa, S.

    2013-01-01

    In 1959, Athol Rafter began a substantial programme of systematically monitoring the flow of 14C produced by atmospheric thermonuclear tests through organic matter in New Zealand soils under stable land use. A database of ∼500 soil radiocarbon measurements spanning 50 years has now been compiled, and is used here to identify optimal approaches for soil C-cycle studies. Our results confirm the potential of 14C to determine residence times, by estimating the amount of ‘bomb 14C’ incorporated. High-resolution time series confirm this approach is appropriate, and emphasise that residence times can be calculated routinely with two or more time points as little as 10 years apart. This approach is generally robust to the key assumptions that can create large errors when single time-point 14C measurements are modelled. The three most critical assumptions relate to: (1) the distribution of turnover times, and particularly the proportion of old C (‘passive fraction’), (2) the lag time between photosynthesis and C entering the modelled pool, (3) changes in the rates of C input. When carrying out approaches using robust assumptions on time-series samples, multiple soil layers can be aggregated using a mixing equation. Where good archived samples are available, AMS measurements can develop useful understanding for calibrating models of the soil C cycle at regional to continental scales with sample numbers on the order of hundreds rather than thousands. Sample preparation laboratories and AMS facilities can play an important role in coordinating the efficient delivery of robust calculated residence times for soil carbon.

  2. Using 50 years of soil radiocarbon data to identify optimal approaches for estimating soil carbon residence times

    International Nuclear Information System (INIS)

    Baisden, W.T.; Canessa, S.

    2013-01-01

    In 1959, Athol Rafter began a substantial programme of systematically monitoring the flow of 14 C produced by atmospheric thermonuclear tests through organic matter in New Zealand soils under stable land use. A database of ∼500 soil radiocarbon measurements spanning 50 years has now been compiled, and is used here to identify optimal approaches for soil C-cycle studies. Our results confirm the potential of 14 C to determine residence times, by estimating the amount of ‘bomb 14 C’ incorporated. High-resolution time series confirm this approach is appropriate, and emphasise that residence times can be calculated routinely with two or more time points as little as 10 years apart. This approach is generally robust to the key assumptions that can create large errors when single time-point 14 C measurements are modelled. The three most critical assumptions relate to: (1) the distribution of turnover times, and particularly the proportion of old C (‘passive fraction’), (2) the lag time between photosynthesis and C entering the modelled pool, (3) changes in the rates of C input. When carrying out approaches using robust assumptions on time-series samples, multiple soil layers can be aggregated using a mixing equation. Where good archived samples are available, AMS measurements can develop useful understanding for calibrating models of the soil C cycle at regional to continental scales with sample numbers on the order of hundreds rather than thousands. Sample preparation laboratories and AMS facilities can play an important role in coordinating the efficient delivery of robust calculated residence times for soil carbon.

  3. Optimization of mathematical models for soil structure interaction

    International Nuclear Information System (INIS)

    Vallenas, J.M.; Wong, C.K.; Wong, D.L.

    1993-01-01

    Accounting for soil-structure interaction in the design and analysis of major structures for DOE facilities can involve significant costs in terms of modeling and computer time. Using computer programs like SASSI for modeling major structures, especially buried structures, requires the use of models with a large number of soil-structure interaction nodes. The computer time requirements (and costs) increase as a function of the number of interaction nodes to the third power. The added computer and labor cost for data manipulation and post-processing can further increase the total cost. This paper provides a methodology to significantly reduce the number of interaction nodes. This is achieved by selectively increasing the thickness of soil layers modeled based on the need for the mathematical model to capture as input only those frequencies that can actually be transmitted by the soil media. The authors have rarely found that a model needs to capture frequencies as high as 33 Hz. Typically coarser meshes (and a lesser number of interaction nodes) are adequate

  4. Analysis of organic pollutants in the soils of the disused gas plants. Experimental evaluation and recommendations

    International Nuclear Information System (INIS)

    Caron, S.; Carmant, S.

    1997-01-01

    In France, environmental investigations are at the moment carried out on numerous disused gas plants sites, which soils can have been polluted by the by-products generated during the fabrication of the gas (most of the time coal tar). Within the context of those investigations, diagnosis of the pollution of soils by the analytical way is an essential operation on the basis of which the risks are evaluated and the treatments are decided. Moreover, the evolution of the pollution level during the cleaning up of the soils and the efficiency of the treatment can only be measured by the analytical way. Until today, analytical aspects, relative to the study of polluted soils can be discussed. Indeed, in consideration of the heterogeneity of the soils, there are difficulties, on the first hand on sites during the sampling of the soils, on the other hand in the laboratory during the chemical analysis of the organic pollutants. After having evoked this problematic, the paper accounts for the evaluation, done by GDF, of varied analytical methods, used and even recommended by reference oragnizations (included: preparatation of the samples, extraction of the organic pollutants, analysis of the extract and interpretation). Finally, on the basis of the accumulated experinece, some advice are given on how to optimize the number and the kind of samples as well as the combined analysis. (au)

  5. Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Jantzi, Sarah C; Almirall, José R

    2011-07-01

    A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was LIBS limits of detection were LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey's post hoc test and Student's t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.

  6. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Becker, Dave; Simon, Michelle A.; Oostrom, Martinus; Rice, Amy K.; Johnson, Christian D.

    2013-02-08

    Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure.

  7. Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization.

    Science.gov (United States)

    Zhang, Wenting; Huang, Bo

    2015-03-01

    Soil erosion has become a pressing environmental concern worldwide. In addition to such natural factors as slope, rainfall, vegetation cover, and soil characteristics, land-use changes-a direct reflection of human activities-also exert a huge influence on soil erosion. In recent years, such dramatic changes, in conjunction with the increasing trend toward urbanization worldwide, have led to severe soil erosion. Against this backdrop, geographic information system-assisted research on the effects of land-use changes on soil erosion has become increasingly common, producing a number of meaningful results. In most of these studies, however, even when the spatial and temporal effects of land-use changes are evaluated, knowledge of how the resulting data can be used to formulate sound land-use plans is generally lacking. At the same time, land-use decisions are driven by social, environmental, and economic factors and thus cannot be made solely with the goal of controlling soil erosion. To address these issues, a genetic algorithm (GA)-based multi-objective optimization (MOO) approach has been proposed to find a balance among various land-use objectives, including soil erosion control, to achieve sound land-use plans. GA-based MOO offers decision-makers and land-use planners a set of Pareto-optimal solutions from which to choose. Shenzhen, a fast-developing Chinese city that has long suffered from severe soil erosion, is selected as a case study area to validate the efficacy of the GA-based MOO approach for controlling soil erosion. Based on the MOO results, three multiple land-use objectives are proposed for Shenzhen: (1) to minimize soil erosion, (2) to minimize the incompatibility of neighboring land-use types, and (3) to minimize the cost of changes to the status quo. In addition to these land-use objectives, several constraints are also defined: (1) the provision of sufficient built-up land to accommodate a growing population, (2) restrictions on the development of

  8. Time-domain soil-structure interaction analysis of nuclear facilities

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandrakanth; Whittaker, Andrew S.

    2016-01-01

    The Nuclear Regulatory Commission (NRC) regulation 10 CFR Part 50 Appendix S requires consideration of soil-structure interaction (SSI) in nuclear power plant (NPP) analysis and design. Soil-structure interaction analysis for NPPs is routinely carried out using guidance provided in the ASCE Standard 4-98 titled “Seismic Analysis of Safety-Related Nuclear Structures and Commentary”. This Standard, which is currently under revision, provides guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear facilities using deterministic and probabilistic methods. A new appendix has been added to the forthcoming edition of ASCE Standard 4 to provide guidance for time-domain, nonlinear SSI (NLSSI) analysis. Nonlinear SSI analysis will be needed to simulate material nonlinearity in soil and/or structure, static and dynamic soil pressure effects on deeply embedded structures, local soil failure at the foundation-soil interface, nonlinear coupling of soil and pore fluid, uplift or sliding of the foundation, nonlinear effects of gaps between the surrounding soil and the embedded structure and seismic isolation systems, none of which can be addressed explicitly at present. Appendix B of ASCE Standard 4 provides general guidance for NLSSI analysis but will not provide a methodology for performing the analysis. This paper provides a description of an NLSSI methodology developed for application to nuclear facilities, including NPPs. This methodology is described as series of sequential steps to produce reasonable results using any time-domain numerical code. These steps require some numerical capabilities, such as nonlinear soil constitutive models, which are also described in the paper.

  9. Using 50 years of soil radiocarbon data to identify optimal approaches for estimating soil carbon residence times

    Energy Technology Data Exchange (ETDEWEB)

    Baisden, W.T., E-mail: t.baisden@gns.cri.nz [National Isotope Centre, GNS Science, P.O. Box 31312, Lower Hutt (New Zealand); Canessa, S. [National Isotope Centre, GNS Science, P.O. Box 31312, Lower Hutt (New Zealand)

    2013-01-15

    In 1959, Athol Rafter began a substantial programme of systematically monitoring the flow of {sup 14}C produced by atmospheric thermonuclear tests through organic matter in New Zealand soils under stable land use. A database of {approx}500 soil radiocarbon measurements spanning 50 years has now been compiled, and is used here to identify optimal approaches for soil C-cycle studies. Our results confirm the potential of {sup 14}C to determine residence times, by estimating the amount of 'bomb {sup 14}C' incorporated. High-resolution time series confirm this approach is appropriate, and emphasise that residence times can be calculated routinely with two or more time points as little as 10 years apart. This approach is generally robust to the key assumptions that can create large errors when single time-point {sup 14}C measurements are modelled. The three most critical assumptions relate to: (1) the distribution of turnover times, and particularly the proportion of old C ('passive fraction'), (2) the lag time between photosynthesis and C entering the modelled pool, (3) changes in the rates of C input. When carrying out approaches using robust assumptions on time-series samples, multiple soil layers can be aggregated using a mixing equation. Where good archived samples are available, AMS measurements can develop useful understanding for calibrating models of the soil C cycle at regional to continental scales with sample numbers on the order of hundreds rather than thousands. Sample preparation laboratories and AMS facilities can play an important role in coordinating the efficient delivery of robust calculated residence times for soil carbon.

  10. Soil structure interaction analysis for the Hanford Site 241-SY-101 double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Giller, R.A.; Weiner, E.O.

    1991-09-01

    The 241-SY-101 tank is a double-shell waste storage tank buried in the 241-SY tank farm in the 200 West Area of the Hanford Site. This analysis addresses the effects of seismic soil-structure interaction on the tank structure and includes a parametric soil-structure interaction study addressing three configurations: two-dimensional soil structure, a two-dimensional structure-soil-structure, and a three-dimensional soil-structure interaction. This study was designed to determine an optimal method for addressing seismic-soil effects on underground storage tanks. The computer programs calculate seismic-soil pressures on the double-shell tank walls and and seismic acceleration response spectra in the tank. The results of this soil-structure interaction parametric study as produced by the computer programs are given in terms of seismic soil pressures and response spectra. The conclusions of this soil-structure interaction evaluation are that dynamically calculated soil pressures in the 241-SY-101 tank are significantly reduce from those using standard hand calculation methods and that seismic evaluation of underground double-shell waste storage tanks must consider soil-structure interaction effects in order to predict conservative structural response. Appendixes supporting this study are available in Volume 2 of this report

  11. Solid Phase Microextraction (SPME in Determination of Pesticide Residues in Soil Samples

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2011-01-01

    Full Text Available The basic principles and application possibilities of the methods based on solid phase microextraction (SPME in the analysis of pesticide residues in soil samples are presented in the paper. The most important experimental parameters which affect SPME efficacy inpesticide determination (type and thickness of microextraction fiber, duration of microextraction,temperature at which it is conducted, effect of addition of salts (the effect of efflorescence,temperature and time of desorption, the choice of optimal solvent for pesticide exctraction from the soil and the optimal number of extraction steps, as well as general guidelines for their optimization are also shown. In the end, current applications of SPMEmethods in the analysis of pesticide residues in soil samples are presented.

  12. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review

    International Nuclear Information System (INIS)

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-01-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0–0.10 m, or 0–0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component

  13. Optimal soil venting design using Bayesian Decision analysis

    OpenAIRE

    Kaluarachchi, J. J.; Wijedasa, A. H.

    1994-01-01

    Remediation of hydrocarbon-contaminated sites can be costly and the design process becomes complex in the presence of parameter uncertainty. Classical decision theory related to remediation design requires the parameter uncertainties to be stipulated in terms of statistical estimates based on site observations. In the absence of detailed data on parameter uncertainty, classical decision theory provides little contribution in designing a risk-based optimal design strategy. Bayesian decision th...

  14. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types

    NARCIS (Netherlands)

    Bai, Z.H.; Li, H.G.; Yang, X.Y.; Zhou, B.K.; Shi, X.J.; Wang, B.R.; Li, D.C.; Shen, J.B.; Chen, Q.; Qin, W.; Oenema, O.; Zhang, F.S.

    2013-01-01

    Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P

  15. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    Science.gov (United States)

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis

  16. Optimal organization of structural analysis and site inspection for the seismic requalification of Paks NPP

    International Nuclear Information System (INIS)

    Contri, P.

    1996-01-01

    The analysis described in this report deals with a numerical procedure aimed for the assessment of a methodology for the optimal organization of data collection, in the context of seismic requalification of structures and components of existing nuclear power plants. The presented procedure has quite a general application and an example was chosen for the Paks NPP where seismic requalification is in progress. The assessment was carried out in reference to the following main tasks: structure and soil data analysis; numerical model generation; deterministic dynamic analysis description; reliability analysis framework discussion; transfer function calculation via response surface approach; and the sensitivity evaluation

  17. In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Ismaël, Amina; Bousquet, Bruno; Michel-Le Pierrès, Karine; Travaillé, Grégoire; Canioni, Lionel; Roy, Stéphane

    2011-05-01

    Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 μm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other

  18. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    Science.gov (United States)

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.

  19. [Optimization of electrode configuration in soil electrokinetic remediation].

    Science.gov (United States)

    Liu, Fang; Fu, Rong-Bing; Xu, Zhen

    2015-02-01

    Electric field distributions of several different electrode configurations in non-uniform electric field were simulated using MATLAB software, and the electrokinetic remediation device was constructed according to the best electrode configuration. The changes of soil pH and heavy metal residues in different parts of the device during the electrokinetic remediation were also studied. The results showed that, in terms of the effectiveness of the electric field strength, the square (1-D-1) and hexagonal (2-D-3) were the optimal electrode configurations for one-dimensional and two-dimensional respectively and the changes of soil pH, the removal of heavy metals and the distribution of electric field were closely related to one another. An acidic migration band, which could prevent premature precipitation of heavy metals to a certain extent and promote electrokinetic removal of heavy metals, was formed gradually along with the remediation in the whole hexagon device when the cathodic pH was controlled during the remediation of the four cationic metallic ions, Cd2+, Ni2+, Pb2+ and Cu2+. After 480-hour remediation, the total removals of Cd, Ni, Pb and Cu were 86.6%, 86.2%, 67.7% and 73.0%, respectively. Remediation duration and replacement frequency of the electrodes could be adjusted according to the repair target.

  20. Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils

    International Nuclear Information System (INIS)

    Andrade, M.D.; Prasher, S.O.; Hendershot, W.H.

    2007-01-01

    Three experiments were conducted to optimize the use of ethylenediaminetetraacetic acid (EDTA) for reclaiming urban soils contaminated with trace metals. As compared to Na 2 EDTA (NH 4 ) 2 EDTA extracted 60% more Zn and equivalent amounts of Cd, Cu and Pb from a sandy loam. When successively saturating and draining loamy sand columns during a washing cycle, which submerged it once with a (NH 4 ) 2 EDTA wash and four times with deionised water, the post-wash rinses largely contributed to the total cumulative extraction of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn. Both the washing solution and the deionised water rinses were added in a 2:5 liquid to soil (L:S) weight ratio. For equal amounts of EDTA, concentrating the washing solution and applying it and the ensuing rinses in a smaller 1:5 L:S weight ratio, instead of a 2:5 L:S weight ratio, increased the extraction of targeted Cr, Cu, Ni, Pb and Zn. - A single EDTA addition is best utilised in a highly concentrated washing solution given in a small liquid to soil weight ratio

  1. X-ray structure analysis of soil compositions

    International Nuclear Information System (INIS)

    Tillaev, T.; Kalonov, M.; Kuziev, Sh.; Khatamov, Sh.; Suvanov, M.

    1998-01-01

    The analytic characteristics of techniques developed to analyse soil structure by means of X-ray diffraction method are presented. Presence of 8 minerals in Fergana valley soils have been established. It is shown that X-ray structure analysis of soils gives rise to new original possibilities to determine not only their structure but also quantative content and type of chemical compound of element in soil. (author)

  2. Soil-structure interaction analysis of ZPR6 reactor facility

    International Nuclear Information System (INIS)

    Ma, D.C.; Ahmed, H.U.

    1981-01-01

    Due to the computer storage limitation and economic concern, the current practice of soil-structure interaction analysis is limited to two dimensional analysis. The 2-D plane strain finite element program, FLUSH, is one often most used program in the analysis. Seismic response of soil and basement can be determined very well by FLUSH. The response of the structure above ground level, however, is often underestimated. This is mainly due to the three dimensional characteristics of the structures. This paper describes a detailed soil-structure interaction analysis of a rectangular embedded structure in conjunction with FLUSH program. The objective of the analysis is to derive the mean interaction motions at the structure base and the soil dynamic forces exerted on the basement lateral walls. The base motions and lateral soil dynamic forces are the specified boundary conditions for the later 3-D building response analysis. (orig./RW)

  3. A direct method for soil-structure interaction analysis based on frequency-dependent soil masses

    International Nuclear Information System (INIS)

    Danisch, R.; Delinic, K.; Marti, J.; Trbojevic, V.M.

    1993-01-01

    In a soil-structure interaction analysis, the soil, as a subsystem of the global vibrating system, exerts a strong influence on the response of the nuclear reactor building to the earthquake excitation. The volume of resources required for dealing with the soil have led to a number of different types of frequency-domain solutions, most of them based on the impedance function approach. These procedures require coupling the soil to the lumped-mass finite-element model of the reactor building. In most practical cases, the global vibrating system is analysed in the time domain (i.e. modal time history, linear or non-linear direct time-integration). Hence, it follows that the frequency domain solution for soil must be converted to an 'equivalent' soil model in the time domain. Over the past three decades, different approaches have been developed and used for earthquake analysis of nuclear power plants. In some cases, difficulties experienced in modelling the soil have affected the methods of global analysis, thus leading to approaches like the substructuring technique, e.g. 3-step method. In the practical applications, the limitations of each specific method must be taken into account in order to avoid unrealistic results. The aim of this paper is to present the recent development on an equivalent SDOF system for soil including frequency-dependent soil masses. The method will be compared with the classical 3-step method. (author)

  4. Optimization of sampling for the determination of the mean Radium-226 concentration in surface soil

    International Nuclear Information System (INIS)

    Williams, L.R.; Leggett, R.W.; Espegren, M.L.; Little, C.A.

    1987-08-01

    This report describes a field experiment that identifies an optimal method for determination of compliance with the US Environmental Protection Agency's Ra-226 guidelines for soil. The primary goals were to establish practical levels of accuracy and precision in estimating the mean Ra-226 concentration of surface soil in a small contaminated region; to obtain empirical information on composite vs. individual soil sampling and on random vs. uniformly spaced sampling; and to examine the practicality of using gamma measurements in predicting the average surface radium concentration and in estimating the number of soil samples required to obtain a given level of accuracy and precision. Numerous soil samples were collected on each six sites known to be contaminated with uranium mill tailings. Three types of samples were collected on each site: 10-composite samples, 20-composite samples, and individual or post hole samples; 10-composite sampling is the method of choice because it yields a given level of accuracy and precision for the least cost. Gamma measurements can be used to reduce surface soil sampling on some sites. 2 refs., 5 figs., 7 tabs

  5. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets, correlations, and partial least squares regression.

    Science.gov (United States)

    Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen

    2016-02-01

    Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.

  6. Advanced Seismic Fragility Modeling using Nonlinear Soil-Structure Interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talaat, Mohamed [Simpson-Gupertz & Heger, Waltham, MA (United States); Hashimoto, Philip [Simpson-Gupertz & Heger, Waltham, MA (United States)

    2015-09-01

    The goal of this effort is to compare the seismic fragilities of a nuclear power plant system obtained by a traditional seismic probabilistic risk assessment (SPRA) and an advanced SPRA that utilizes Nonlinear Soil-Structure Interaction (NLSSI) analysis. Soil-structure interaction (SSI) response analysis for a traditional SPRA involves the linear analysis, which ignores geometric nonlinearities (i.e., soil and structure are glued together and the soil material undergoes tension when the structure uplifts). The NLSSI analysis will consider geometric nonlinearities.

  7. Isolation and identification of phytase-producing strains from soil samples and optimization of production parameters

    Directory of Open Access Journals (Sweden)

    Masoud Mohammadi

    2017-09-01

    Discussion and conclusion: Penicillium sp. isolated from a soil sample near Qazvin, was able to produce highly active phytase in optimized environmental conditions, which could be a suitable candidate for commercial production of phytase to be used as complement in poultry feeding industries.

  8. Comparison of Optimization and Two-point Methods in Estimation of Soil Water Retention Curve

    Science.gov (United States)

    Ghanbarian-Alavijeh, B.; Liaghat, A. M.; Huang, G.

    2009-04-01

    Soil water retention curve (SWRC) is one of the soil hydraulic properties in which its direct measurement is time consuming and expensive. Since, its measurement is unavoidable in study of environmental sciences i.e. investigation of unsaturated hydraulic conductivity and solute transport, in this study the attempt is to predict soil water retention curve from two measured points. By using Cresswell and Paydar (1996) method (two-point method) and an optimization method developed in this study on the basis of two points of SWRC, parameters of Tyler and Wheatcraft (1990) model (fractal dimension and air entry value) were estimated and then water content at different matric potentials were estimated and compared with their measured values (n=180). For each method, we used both 3 and 1500 kPa (case 1) and 33 and 1500 kPa (case 2) as two points of SWRC. The calculated RMSE values showed that in the Creswell and Paydar (1996) method, there exists no significant difference between case 1 and case 2. However, the calculated RMSE value in case 2 (2.35) was slightly less than case 1 (2.37). The results also showed that the developed optimization method in this study had significantly less RMSE values for cases 1 (1.63) and 2 (1.33) rather than Cresswell and Paydar (1996) method.

  9. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties

    International Nuclear Information System (INIS)

    Wang, A-nan; Teng, Ying; Hu, Xue-feng; Wu, Long-hua; Huang, Yu-juan; Luo, Yong-ming; Christie, Peter

    2016-01-01

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO_2) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L_9(3)"4, only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO_2 dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg"−"1 were found to be a 1:10 soil: water ratio, 40 mW cm"−"2 light intensity, 5% TiO_2 in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5 h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO_2 in soil slurry. This study suggests that TiO_2 photocatalytic oxidation is a promising treatment for removing DPAA from soil. - Highlights: • DPAA was degraded into arsenate through TiO_2 (P25) photocatalytic oxidation. • Soil/water ratio was more influential on the removal of DPAA in soil by TiO_2 (P25). • Soil properties affected the adsorption of DPAA and the generation of OH• by TiO_2.

  10. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  11. Some considerations on the dynamic structure-soil-structure interactions analysis

    International Nuclear Information System (INIS)

    Matthees, W.

    1979-01-01

    A mixed method has been developed for the approximate analysis of soil-structure or structure-soil-structure interaction problems due to earthquakes. In order to produce comparable results of interaction problems as well as for shallow and for deep soils due to the same earthquake excitation (accelerogram) situated always at the lower bedrock boundary, the analysis is performed in two steps: 1) Calculation of the complex transfer function and the response of the upper interior boundary of a layered soil-system which is connected at its top to a soil-structure-system, using the one-dimensional deconvolution. 2) By making a complete interaction analysis of the surface soil-structure-system using the interior boundary excitation of the calculated response from step 1. The depth of the soil-structure-system must be chosen large enough to exclude interaction effects down to the layered soil-system's interior boundary. (orig.)

  12. Manganese contents of soils as determined by activation analysis

    International Nuclear Information System (INIS)

    El-Kholi, A.F.; Hamdy, A.A.; Al Metwally, A.I.; El-Damaty, A.H.

    1976-01-01

    The object of this investigation is to determine total manganese by means of neutron activation analysis and evaluate this technique in comparison with the corresponding data obtained by conventional chemical analysis. Data obtained revealed that the values of total manganese in calcareous soils obtained by both chemical analysis and that by neutron activation analysis were similar. Therefore, activation analysis could be recommended as a quick laboratory, less tedious, and time consuming method for the determination of Mn content in both soils and plants than the conventional chemical techniques due to its great specificity, sensitivity and simplicity. Statistical analysis showed that there is a significant correlation at 5% probability level between manganese content in Soybean plant and total manganese determined by activation and chemical analysis giving the evidence that in the case of those highly calcareous soils of low total manganese content this fraction has to be considered as far as available soil manganese is concerned

  13. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    Science.gov (United States)

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils

    International Nuclear Information System (INIS)

    2013-11-01

    Global climate change is likely to exacerbate plant abiotic stress in the coming decades by increasing water stress and by accelerating soil fertility degradation. To respond to this set of challenges, there is a need to develop agricultural systems with significantly greater productivity and resilience that at the same time use limited natural resources more efficiently. Low phosphorus (N) and nitrogen (P) availabilities are primary limitations to productivity in low input agriculture, and fertilizers are primary resource inputs in intensive agriculture. A critical feature of future agricultural systems will be new crop varieties with improved conversion of soil resources to yields. These new cultivars would have improved productivity in low input systems and decreased input requirements in high input systems. Many scientists are currently turning their attention to roots, the hidden half of the plant, as central to their efforts to produce crops with better yields without causing environmental damage. Several root traits are known to be associated with P and N acquisition efficiency in low N and P soils. These root traits include root hairs, root length, root branching and root density. The identification of root traits for enhanced P and N acquisition is enabling crop breeders to develop new genotypes with better yields in low fertility soils of Africa, Asia and Latin America. However, in order to use a trait as a selection criterion for crop improvement, either direct phenotypic selection or through marker assisted selection, it is necessary to develop protocols to measure accurately the root traits that enhance N and P acquisition in the glasshouse and in the field, which can provide robust and rapid evaluation of many root systems' architectural traits in targeted production environments using different crops. The objective of the Coordinated Research Project on Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils was to develop integrated

  15. Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    Global climate change is likely to exacerbate plant abiotic stress in the coming decades by increasing water stress and by accelerating soil fertility degradation. To respond to this set of challenges, there is a need to develop agricultural systems with significantly greater productivity and resilience that at the same time use limited natural resources more efficiently. Low phosphorus (N) and nitrogen (P) availabilities are primary limitations to productivity in low input agriculture, and fertilizers are primary resource inputs in intensive agriculture. A critical feature of future agricultural systems will be new crop varieties with improved conversion of soil resources to yields. These new cultivars would have improved productivity in low input systems and decreased input requirements in high input systems. Many scientists are currently turning their attention to roots, the hidden half of the plant, as central to their efforts to produce crops with better yields without causing environmental damage. Several root traits are known to be associated with P and N acquisition efficiency in low N and P soils. These root traits include root hairs, root length, root branching and root density. The identification of root traits for enhanced P and N acquisition is enabling crop breeders to develop new genotypes with better yields in low fertility soils of Africa, Asia and Latin America. However, in order to use a trait as a selection criterion for crop improvement, either direct phenotypic selection or through marker assisted selection, it is necessary to develop protocols to measure accurately the root traits that enhance N and P acquisition in the glasshouse and in the field, which can provide robust and rapid evaluation of many root systems' architectural traits in targeted production environments using different crops. The objective of the Coordinated Research Project on Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils was to develop integrated

  16. Development of soil-structure interaction analysis method (II) - Volume 1

    International Nuclear Information System (INIS)

    Chang, S. P.; Ko, H. M.; Park, H. K. and others

    1994-02-01

    This project includes following six items : free field analysis for the determination of site input motions, impedance analysis which simplifies the effects of soil-structure interaction by using lumped parameters, soil-structure interaction analysis including the material nonlinearity of soil depending on the level of strains, strong geometric nonlinearity due to the uplifting of the base, seismic analysis of underground structure such as varied pipes, seismic analysis of liquid storage tanks. Each item contains following contents respectively : state-of-the-art review on each item and data base construction on the past researches, theoretical review on the technology of soil-structure interaction analysis, proposing preferable technology and estimating the domestic applicability, proposing guidelines for evaluation of safety and analysis scheme

  17. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    Science.gov (United States)

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  18. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology

    Science.gov (United States)

    Jiang, Yuhui; Shang, Yixuan; Yu, Shuyao; Liu, Jianguo

    2018-01-01

    Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value (R2 = 0.9807) and low p value (soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils. PMID:29702570

  19. NIRS as an alternative to conventional soil analysis for Greenland soils (focus on SOC)

    DEFF Research Database (Denmark)

    Knadel, Maria; Ogric, Mateja; Adhikari, Kabindra

    Soil organic carbon (SOC) is an important soil property. It is the main constituents of soil organic matter and a good indicator of soil quality. The estimation and mapping of SOC content could be used to select potential agricultural areas in the Arctic areas. However, conventional analysis of SOC...... are time consuming and expensive. They involve a lot of sample preparation, and chemicals and are destructive. Near infrared spectroscopy (NIRS) in the range between 400 and 2500 nm is an alternative method for SOC analysis. It is fast and non-destructive. The aims of this study where to test...... the feasibility of using NIRS to estimate SOC content on a landscape and field scale in Greenland. Partial Least squares regression models were built to correlated soil spectra and their reference SOC data to develop calibration models. Very good predictive ability for both landscape and field scale were obtained...

  20. Bioremediation of endosulfan contaminated soil and water-Optimization of operating conditions in laboratory scale reactors

    International Nuclear Information System (INIS)

    Kumar, Mathava; Philip, Ligy

    2006-01-01

    A mixed bacterial culture consisted of Staphylococcus sp., Bacillus circulans-I and -II has been enriched from contaminated soil collected from the vicinity of an endosulfan processing industry. The degradation of endosulfan by mixed bacterial culture was studied in aerobic and facultative anaerobic conditions via batch experiments with an initial endosulfan concentration of 50 mg/L. After 3 weeks of incubation, mixed bacterial culture was able to degrade 71.58 ± 0.2% and 75.88 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively. The addition of external carbon (dextrose) increased the endosulfan degradation in both the conditions. The optimal dextrose concentration and inoculum size was estimated as 1 g/L and 75 mg/L, respectively. The pH of the system has significant effect on endosulfan degradation. The degradation of alpha endosulfan was more compared to beta endosulfan in all the experiments. Endosulfan biodegradation in soil was evaluated by miniature and bench scale soil reactors. The soils used for the biodegradation experiments were identified as clayey soil (CL, lean clay with sand), red soil (GM, silty gravel with sand), sandy soil (SM, silty sand with gravel) and composted soil (PT, peat) as per ASTM (American society for testing and materials) standards. Endosulfan degradation efficiency in miniature soil reactors were in the order of sandy soil followed by red soil, composted soil and clayey soil in both aerobic and anaerobic conditions. In bench scale soil reactors, endosulfan degradation was observed more in the bottom layers. After 4 weeks, maximum endosulfan degradation efficiency of 95.48 ± 0.17% was observed in red soil reactor where as in composted soil-I (moisture 38 ± 1%) and composted soil-II (moisture 45 ± 1%) it was 96.03 ± 0.23% and 94.84 ± 0.19%, respectively. The high moisture content in compost soil reactor-II increased the endosulfan concentration in the leachate. Known intermediate metabolites of

  1. Smart system for safe and optimal soil investigation in urban areas

    Directory of Open Access Journals (Sweden)

    Ahmad Alqadad

    2017-12-01

    Full Text Available This paper discusses the challenges and difficulties experienced during soil investigation in urban areas using drilling machines and soil sampling. The focus is on the consequences of a lack of data on the subsoil profile and presence of utilities, which could cause major accidents with severe economic and social losses, resulting in constriction activities being delayed and urban services being disrupted. This paper describes certain accidents related to soil investigation in Qatar and their consequences, as well as the lessons learned from these accidents. In order to meet the challenges of soil investigation in urban areas, this paper presents a solution based on smart technology, which includes: (i a geotechnical information system with update data concerning the soil profile, soil surface, utilities locations, and water table level; (ii tools for data management, analysis, and visualization; and (iii a user interface that allows authorities, companies, and citizens to access authorized data via a graphic interface, update data, and send messages and alerts in the case of any incident occurring. Finally, the paper presents a promising perspective for the development of smart drilling devices, which record data related to the functioning of a drilling machine and transmit data to the smart soil investigation system. Keywords: Soil investigation, Smart, Urban area, Drill borehole, GIS, Underground utility

  2. Proceedings of the 44. annual Alberta Soil Science Workshop

    International Nuclear Information System (INIS)

    Hao, X.; Shaw, C.

    2007-01-01

    The Alberta Soil Science Workshop is held annually in order to provide a forum for the discussion of issues related to soil sciences in Alberta. Attendees at the conference discussed a wide range of subjects related to soil sciences and measuring the environmental impacts of oil and gas activities in the province. The role of soil science in sustainable forest management was also examined. Issues related to acid deposition were reviewed, and recent developments in soil chemistry analysis for agricultural practices were discussed. Other topics included wildland soil analysis methods; the long-term impacts of sulphate deposition from industrial activities; and water chemistry in soils, lakes and river in the Boreal regions. Projects initiated to assess cumulative land use impacts on rangeland ecosystems were outlined along with a review of tools developed to optimize soil analysis techniques. One of the 46 presentations featured at this conference has been catalogued separately for inclusion in this database. refs., tabs., figs

  3. Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.

    2012-02-23

    Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at a location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.

  4. Microwave remote sensing of soil moisture for estimation of profile soil property

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Ahuja, L.R.; Jackson, T.J.

    1998-01-01

    Multi-temporal microwave remotely-sensed soil moisture has been utilized for the estimation of profile soil property, viz. the soil hydraulic conductivity. Passive microwave remote sensing was employed to collect daily soil moisture data across the Little Washita watershed, Oklahoma, during 10-18 June 1992. The ESTAR (Electronically Steered Thin Array Radiometer) instrument operating at L -band was flown on a NASA C-130 aircraft. Brightness temperature (TB) data collected at a ground resolution of 200m were employed to derive spatial distribution of surface soil moisture. Analysis of spatial and temporal soil moisture information in conjunction with soils data revealed a direct relation between changes in soil moisture and soil texture. A geographical information system (GIS) based analysis suggested that 2-days initial drainage of soil, measured from remote sensing, was related to an important soil hydraulic property viz. the saturated hydraulic conductivity (Ksat). A hydrologic modelling methodology was developed for estimation of Ksat of surface and sub-surface soil layers. Specifically, soil hydraulic parameters were optimized to obtain a good match between model estimated and field measured soil moisture profiles. Relations between 2-days soil moisture change and Ksat of 0-5 cm, 0-30 cm and 0-60cm depths yielded correla tions of 0.78, 0.82 and 0.71, respectively. These results are comparable to the findings of previous studies involving laboratory-controlled experiments and numerical simulations, and support their extension to the field conditions of the Little Washita watershed. These findings have potential applications of microwave remote sensing to obtain 2-days of soil moisture and then to quickly estimate the spatial distribution of Ksat over large areas. (author)

  5. Microbiological aspects of determination of trichloroacetic acid in soil

    International Nuclear Information System (INIS)

    Matucha, M.; Rohlenová, J.; Forczek, S.T.; Gryndler, M.; Uhlířová, H.; Fuksová, K.; Schroder, P.

    2004-01-01

    Soils have been shown to possess a strong microbial trichloroacetic acid (TCA)-degrading activity. High TCA-degradation rate was also observed during soil extraction with water. For correct measurements of TCA levels in soil all TCA-degrading activities have to be inhibited immediately after sampling before analysis. We used rapid freezing of soil samples (optimally in liquid nitrogen) with subsequent storage and slow thawing before analysis as an efficient technique for suppressing the degradation. Frozen soil samples stored overnight at −20 °C and then thawed slowly exhibited very low residual TCA-degrading activity for several hours. Omitting the above procedure could lead to the confusing differences between the TCA levels previously reported in the literature

  6. ANALYSIS OF EXISTING SCHEMES AND THE OPTIMIZING SETTLEMENT CHOIS OF PILES WORK SCHEMES IN CLAY SOILS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-09-01

    Full Text Available Summary. It were considered and analyzed the existing schemes of piles work in clay soils. 1. Leningrad scientific school, where the formation of pile bearing capacity use as the basis of the thixotropic clay soils hardening and radial soil pressing around the pile shaft during the piles driving with pile-driving equipment for the exploitation period. 2. Odessa scientific school, in which the uplift soil formation from the edge pile use as the basis of the pile bearing capacity during the piles driving, the formation of the pressed zones (platform in the piles edge plane, the gap formation around the pile shaft during its diving by ground pushed moving with the pile edge. 3. Preconditions of the pile bearing capacity formation of the pile by the thixotropic soil hardening in time and the radial soil pressing around the pile shaft can not give an answer to the following questions: 1 Why during the pile driving is formed the gap around the trunk of dived piles, when by condition there is a radial soil hardening around the trunk? 2 Why in the interpiled space is formed the lune (deflection, not the soil mass swelling (due to the radial hardening? 3 By what is formed the calculated soil resistance under the lower end (edge of the pile? which is about 10 times higher than the calculated soil resistance in the edge plane, according to the Building Code V.2.1-10. 2009? The justified answers on all these and other technical and technological matters give perquisites of the Odessa scientific school with additions and authors developments

  7. Nondestructive analysis of plutonium contaminated soil

    International Nuclear Information System (INIS)

    Smith, H.E.; Taylor, L.H.

    1977-01-01

    Plutonium contaminated soil is currently being removed from a covered liquid waste disposal trench near the Pu Processing facility on the Hanford Project. This soil with the plutonium is being mined using remote techniques and equipment. The mined soil is being packaged for placement into retrievable storage, pending possible recovery. To meet the requirements of criticality safety and materials accountability, a nondestructive analysis program has been developed to determine the quantity of plutonium in each packing-storage container. This paper describes the total measurement program: equipment systems, calibration techniques, matrix assumption, instrument control program and a review of laboratory operating experience

  8. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A-nan [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Teng, Ying [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Xue-feng [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Wu, Long-hua; Huang, Yu-juan [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yong-ming, E-mail: ymluo@yic.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Christie, Peter [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-01-15

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO{sub 2}) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L{sub 9}(3){sup 4}, only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO{sub 2} dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg{sup −1} were found to be a 1:10 soil: water ratio, 40 mW cm{sup −2} light intensity, 5% TiO{sub 2} in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5 h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO{sub 2} in soil slurry. This study suggests that TiO{sub 2} photocatalytic oxidation is a promising treatment for removing DPAA from soil. - Highlights: • DPAA was degraded into arsenate through TiO{sub 2} (P25) photocatalytic oxidation. • Soil/water ratio was more influential on the removal of DPAA in soil by TiO{sub 2} (P25). • Soil properties affected the adsorption of DPAA and the generation of OH• by Ti

  9. Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms

    OpenAIRE

    Ayse T. Daloglu; Musa Artar; Korhan Ozgan; Ali İ. Karakas

    2018-01-01

    Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS) and teaching-learning-based optimization (TLBO) algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped...

  10. Multiscale analysis of depth-dependent soil penetration resistance in a tropical soil

    Science.gov (United States)

    Paiva De Lima, Renato; Santos, Djail; Medeiros Bezerra, Joel; Machado Siqueira, Glécio; Paz González, Antonio

    2013-04-01

    Soil penetration resistance (PR) is widely used because it is linked to basic soil properties; it is correlated to root growth and plant production and is also used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent PR profiles and how this information can be used at the field scale. We analyzed multifractality of 50 PR vertical profiles, measured from 0 to 40 cm depth and randomly located on a 6.5 ha sugar cane field in north-eastern Brazil. According to the Soil Taxonomy, the studied soil was classified as an Orthic Podsol The scaling property of each profile was typified by singularity and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. Singularity and Rènyi spectra showed the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to one indicating strong persistence in PR variation with soil depth. Also Hurst exponent was negatively and significantly correlated to coefficient of variation (CV) and skewness of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean, maximum and minimum values of PR; these maps showed the multifractal approach also may complete information provided by descriptive statistics at the field scale.

  11. X-ray fluorescence spectrometry applied to soil analysis

    International Nuclear Information System (INIS)

    Salvador, Vera Lucia Ribeiro; Sato, Ivone Mulako; Scapin Junior, Wilson Santo; Scapin, Marcos Antonio; Imakima, Kengo

    1997-01-01

    This paper studies the X-ray fluorescence spectrometry applied to the soil analysis. A comparative study of the WD-XRFS and ED-XRFS techniques was carried out by using the following soil samples: SL-1, SOIL-7 and marine sediment SD-M-2/TM, from IAEA, and clay, JG-1a from Geological Survey of Japan (GSJ)

  12. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    Science.gov (United States)

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  13. Multifractal analysis of 2D gray soil images

    Science.gov (United States)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (α) and f(α) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 μm pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D

  14. PRODUCT OPTIMIZATION METHOD BASED ON ANALYSIS OF OPTIMAL VALUES OF THEIR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Constantin D. STANESCU

    2016-05-01

    Full Text Available The paper presents an original method of optimizing products based on the analysis of optimal values of their characteristics . Optimization method comprises statistical model and analytical model . With this original method can easily and quickly obtain optimal product or material .

  15. Radionuclide contaminated soil: Laboratory study and economic analysis of soil washing. Final report

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Zhou, H.; Patel, B.; Bowerman, B.; Brower, J.

    1996-01-01

    The objective of the work discussed in this report is to determine if soil washing is a feasible method to remediate contaminated soils from the Hazardous Waste Management Facility (HWMF) at Brookhaven National Laboratory (BNL). The contaminants are predominantly Cs-137 and Sr-90. The authors have assumed that the target activity for Cs-137 is 50 pCi/g and that remediation is required for soils having greater activities. Cs-137 is the limiting contaminant because it is present in much greater quantities than Sr-90. This work was done in three parts, in which they: estimated the volume of contaminated soil as a function of Cs-137 content, determined if simple removal of the fine grained fraction of the soil (the material that is less than 0.063 mm) would effectively reduce the activity of the remaining soil to levels below the 50 pCi/g target, assessed the effectiveness of chemical and mechanical (as well as combinations of the two) methods of soil decontamination. From this analysis the authors were then able to develop a cost estimate for soil washing and for a baseline against which soil washing was compared

  16. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture

    Science.gov (United States)

    We examined the accuracy of several commonly used soil hydraulic functions and associated parameters for predicting observed soil moisture data. We used six combined methods formed by three commonly used soil hydraulic functions – i.e., Brooks and Corey (1964) (BC), Campbell (19...

  17. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    Science.gov (United States)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  18. Optimization of the Use of His₆-OPH-Based Enzymatic Biocatalysts for the Destruction of Chlorpyrifos in Soil.

    Science.gov (United States)

    Senko, Olga; Maslova, Olga; Efremenko, Elena

    2017-11-23

    Applying enzymatic biocatalysts based on hexahistidine-containing organophosphorus hydrolase (His₆-OPH) is suggested for the decomposition of chlorpyrifos, which is actively used in agriculture in many countries. The application conditions were optimized and the following techniques was suggested to ensure the highest efficiency of the enzyme: first, the soil is alkalinized with hydrated calcitic lime Ca(OH)₂, then the enzyme is introduced into the soil at a concentration of 1000 U/kg soil. Non-equilibrium low temperature plasma (NELTP)-modified zeolite is used for immobilization of the relatively inexpensive polyelectrolyte complexes containing the enzyme His₆-OPH and a polyanionic polymer: poly-l-glutamic acid (PLE 50 ) or poly-l-aspartic acid (PLD 50 ). The soil's humidity is then increased up to 60-80%, the top layer (10-30 cm) of soil is thoroughly stirred, and then exposed for 48-72 h. The suggested approach ensures 100% destruction of the pesticide within 72 h in soils containing as much as 100 mg/kg of chlorpyrifos. It was concluded that using this type of His₆-OPH-based enzyme chemical can be the best approach for soils with relatively low humus concentrations, such as sandy and loam-sandy chestnut soils, as well as types of soil with increased alkalinity (pH 8.0-8.4). Such soils are often encountered in desert, desert-steppe, foothills, and subtropical regions where chlorpyrifos is actively used.

  19. Soil Retaining Structures : Development of models for structural analysis

    NARCIS (Netherlands)

    Bakker, K.J.

    2000-01-01

    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these

  20. Global optimization and sensitivity analysis

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1990-01-01

    A new direction for the analysis of nonlinear models of nuclear systems is suggested to overcome fundamental limitations of sensitivity analysis and optimization methods currently prevalent in nuclear engineering usage. This direction is toward a global analysis of the behavior of the respective system as its design parameters are allowed to vary over their respective design ranges. Presented is a methodology for global analysis that unifies and extends the current scopes of sensitivity analysis and optimization by identifying all the critical points (maxima, minima) and solution bifurcation points together with corresponding sensitivities at any design point of interest. The potential applicability of this methodology is illustrated with test problems involving multiple critical points and bifurcations and comprising both equality and inequality constraints

  1. Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination.

    Science.gov (United States)

    Lejon, David P H; Nowak, Virginie; Bouko, Sabrina; Pascault, Noémie; Mougel, Christophe; Martins, Jean M F; Ranjard, Lionel

    2007-09-01

    A molecular fingerprinting assay was developed to assess the diversity of copA genes, one of the genetic determinants involved in bacterial resistance to copper. Consensus primers of the copA genes were deduced from an alignment of sequences from proteobacterial strains. A PCR detection procedure was optimized for bacterial strains and allowed the description of a novel copA genetic determinant in Pseudomonas fluorescens. The copA DNA fingerprinting procedure was optimized for DNA directly extracted from soils differing in their physico-chemical characteristics and in their organic status (SOS). Particular copA genetic structures were obtained for each studied soil and a coinertia analysis with soil physico-chemical characteristics revealed the strong influence of pH, soil texture and the quality of soil organic matter. The molecular phylogeny of copA gene confirmed that specific copA genes clusters are specific for each SOS. Furthermore, this study demonstrates that this approach was sensitive to short-term responses of copA gene diversity to copper additions to soil samples, suggesting that community adaptation is preferentially controlled by the diversity of the innate copA genes rather than by the bioavailability of the metal.

  2. Analysis of static and dynamic pile-soil-jacket behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Mohammad Reza Emami

    1998-12-31

    In the offshore industry, recent extreme storms, severe earthquakes and subsidence of the foundation of jacket platforms have shown that new models and methods must take into account the jacket- pile-soil foundation interaction as well as the non-linear dynamic performance/loading effects. This thesis begins with a review of the state of art pile-soil interaction model, recognizing that most existing pile-soil models have been established based on large diameter pile tests on specific sites. The need for site independent and mechanistic pile-soil interaction models led to the development of new (t-z) and (p-y) disk models. These are validated using the available database from recent large diameter pile tests in the North Sea and Gulf of Mexico. The established static disk models are applied for non-linear static analysis of the jacket-pile-soil system under extreme wave loading. Dynamic pile-soil interaction is studied and a new disk-cone model is developed for the non-linear and non-homogeneous soils. This model is applied to both surface and embedded disks in a soil layer with non-linear properties. Simplified non-linear as well as more complex analysis methods are used to study the dynamic response of the jacket platform under extreme sea and seismic loading. Ductility spectra analysis is introduced and used to study the dynamic performance of the jacket systems near collapse. Case studies are used to illustrate the effects of structural, foundation failure characteristics as well as dynamic loading effects on the overall performance of the jacket-pile-soil systems near ultimate collapse. 175 refs., 429 figs., 70 tabs.

  3. Conference on Convex Analysis and Global Optimization

    CERN Document Server

    Pardalos, Panos

    2001-01-01

    There has been much recent progress in global optimization algo­ rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun­ damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon­ vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en­ dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by th...

  4. Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples

    International Nuclear Information System (INIS)

    Bousquet, B.; Sirven, J.-B.; Canioni, L.

    2007-01-01

    A quantitative analysis of chromium in soil samples is presented. Different emission lines related to chromium are studied in order to select the best one for quantitative features. Important matrix effects are demonstrated from one soil to the other, preventing any prediction of concentration in different soils on the basis of a univariate calibration curve. Finally, a classification of the LIBS data based on a series of Principal Component Analyses (PCA) is applied to a reduced dataset of selected spectral lines related to the major chemical elements in the soils. LIBS data of heterogeneous soils appear to be widely dispersed, which leads to a reconsideration of the sampling step in the analysis process

  5. Analysis of Selected Physicochemical Parameters of Soils Used for ...

    African Journals Online (AJOL)

    Correlation analysis was also employed to examine the relationship between the various parameters in the soil samples. The soil studied can be considered as good sources of essential nutrients and this information will help farmers to solve the problems related to soil nutrients, amount of which fertilizers to be used to ...

  6. Application of Terahertz Radiation to Soil Measurements: Initial Results

    Science.gov (United States)

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  7. Pareto optimality in organelle energy metabolism analysis.

    Science.gov (United States)

    Angione, Claudio; Carapezza, Giovanni; Costanza, Jole; Lió, Pietro; Nicosia, Giuseppe

    2013-01-01

    In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle, we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.

  8. Soil-structure interaction analysis of NPP containments: substructure and frequency domain methods

    International Nuclear Information System (INIS)

    Venancio-Filho, F.; Almeida, M.C.F.; Ferreira, W.G.; De Barros, F.C.P.

    1997-01-01

    Substructure and frequency domain methods for soil-structure interaction are addressed in this paper. After a brief description of mathematical models for the soil and of excitation, the equations for dynamic soil-structure interaction are developed for a rigid surface foundation and for an embedded foundation. The equations for the frequency domain analysis of MDOF systems are provided. An example of soil-structure interaction analysis with frequency-dependent soil properties is given and examples of identification of foundation impedance functions and soil properties are presented. (orig.)

  9. Coupling of impedance functions to nuclear reactor building for soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Danisch, R.; Delinic, K.; Trbojevic, V.M.

    1991-01-01

    Finite element model of a nuclear reactor building is coupled to complex soil impedance functions and soil-structure-interaction analysis is carried out in frequency domain. In the second type of analysis applied in this paper, soil impedance functions are used to evaluate equivalent soil springs and dashpots of soil. These are coupled to the structure model in order to carry out the time marching analysis. Three types of soil profiles are considered: hard, medium and soft. Results of two analyzes are compared on the same structural model. Equivalent soil springs and dashpots are determined using new method based on the least square approximation. (author)

  10. Isogeometric Analysis and Shape Optimization in Fluid Mechanics

    DEFF Research Database (Denmark)

    Nielsen, Peter Nørtoft

    This thesis brings together the fields of fluid mechanics, as the study of fluids and flows, isogeometric analysis, as a numerical method to solve engineering problems using computers, and shape optimization, as the art of finding "best" shapes of objects based on some notion of goodness. The flow...... approximations, and for shape optimization purposes also due to its tight connection between the analysis and geometry models. The thesis is initiated by short introductions to fluid mechanics, and to the building blocks of isogeometric analysis. As the first contribution of the thesis, a detailed description...... isogeometric analysis may serve as a natural framework for shape optimization within fluid mechanics. We construct an efficient regularization measure for avoiding inappropriate parametrizations during optimization, and various numerical examples of shape optimization for fluids are considered, serving...

  11. Interlaboratory Comparetive Studies of Soil/Plant Analysis Methods ...

    African Journals Online (AJOL)

    The information on analytical techniques that are used for soil and plant analyses in different agricultural laboratories of Kenya was gathered and compiled in table forms. Performance of six laboratories was compaired for different elements and parameters of soil and plant samples. Chemical analysis of identical samples ...

  12. Optimal Choice of Soil Hydraulic Parameters for Simulating the Unsaturated Flow: A Case Study on the Island of Miyakojima, Japan

    Directory of Open Access Journals (Sweden)

    Ken Okamoto

    2015-10-01

    Full Text Available We examined the influence of input soil hydraulic parameters on HYDRUS-1D simulations of evapotranspiration and volumetric water contents (VWCs in the unsaturated zone of a sugarcane field on the island of Miyakojima, Japan. We first optimized the parameters for root water uptake and examined the influence of soil hydraulic parameters (water retention curve and hydraulic conductivity on simulations of evapotranspiration. We then compared VWCs simulated using measured soil hydraulic parameters with those using pedotransfer estimates obtained with the ROSETTA software package. Our results confirm that it is important to always use soil hydraulic parameters based on measured data, if available, when simulating evapotranspiration and unsaturated water flow processes, rather than pedotransfer functions.

  13. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  14. Qualitative soil mineral analysis by EDXRF, XRD and AAS probes

    International Nuclear Information System (INIS)

    Singh, Virendra; Agrawal, H.M.

    2012-01-01

    Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements, essential for the soil–plant interaction purpose. X-ray diffraction (XRD) has been a popular technique to search out the phases for different types of samples. For the soil samples, however, employing XRD is not so straightforward due to many practical problems. In the current approach, principal component analysis (PCA) has been used to have an idea of the minerals present, in qualitative manner, in the soil under study. PCA was used on the elemental concentrations data of 17 elements, determined by the energy dispersive X-ray fluorescence (EDXRF) technique. XRD analysis of soil samples has been done also to identify the minerals of major elements. Some prior treatments, like removal of silica by polytetrafluoroethylene (PTFE) slurry and grinding with alcohol, were given to samples to overcome the peak overlapping problems and to attain fine particle size which is important to minimize micro-absorption corrections, to give reproducible peak intensities and to minimize preferred orientation. A 2θ step of 0.05°/min and a longer dwell time than normal were used to reduce interferences from background noise and to increase the counting statistics. Finally, the sequential extraction procedure for metal speciation study has been applied on soil samples. Atomic absorption spectroscopy (AAS) was used to find the concentrations of metal fractions bound to various forms. Applying all the three probes, the minerals in the soils can be studied and identified, successfully. - Highlights: ► Qualitative soil minerals analysis by EDXRF, AAS and XRD methods. ► There is a requirement of other means and methods due to inadequacy of XRD. ► Principal component analysis (PCA) provides an idea of minerals present in soil. ► Trace elements complexes can be determined by AAS probe. ► EDXRF, AAS and XRD, in combination, enable

  15. Substructure method of soil-structure interaction analysis for earthquake loadings

    Energy Technology Data Exchange (ETDEWEB)

    Park, H. G.; Joe, Y. H. [Industrial Development Research Center, Univ. of Incheon, Incheon (Korea, Republic of)

    1997-07-15

    Substructure method has been preferably adopted for soil-structure interaction analysis because of its simplicity and economy in practical application. However, substructure method has some limitation in application and does not always give reliable results especially for embedded structures or layered soil conditions. The objective of this study to validate the reliability of the soil-structure interaction analysis results by the proposed substructure method using lumped-parameter model and suggest a method of seismic design of nuclear power plant structures with specific design conditions. In this study, theoretic background and modeling technique of soil-structure interaction phenomenon have been reviewed and an analysis technique based on substructure method using lumped-parameter model has been suggested. The practicality and reliability of the proposed method have been validated through the application of the method to the seismic analysis of the large-scale seismic test models. A technical guide for practical application and evaluation of the proposed method have been also provided through the various type parametric.

  16. Analysis of soil chemical parameters of an uncleaned crude oil spill ...

    African Journals Online (AJOL)

    Analysis of soil chemical parameters of an uncleaned crude oil spill site at Biara was carried out. Soil samples were collected at 0 -15 cm and 15 – 30 cm soil depths from both polluted and unpolluted sites for analysis. Significant increase in high total hydrocarbon content (1015±80.5 – 1150±90.1 mg/kg) in polluted site was ...

  17. Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta-analysis approach

    OpenAIRE

    Merlin , O; Stefan , V ,; Amazirh , A; Chanzy , A; Ceschia , E; Er-Raki , S; Gentine , P; Tallec , T; Ezzahar , J; Bircher , S; Beringer , J; Khabba , S

    2016-01-01

    International audience; A meta-analysis data-driven approach is developed to represent the soil evaporative efficiency (SEE) defined as the ratio of actual to potential soil evaporation. The new model is tested across a bare soil database composed of more than 30 sites around the world, a clay fraction range of 0.02-0.56, a sand fraction range of 0.05-0.92, and about 30,000 acquisition times. SEE is modeled using a soil resistance ($r_{ss}$) formulation based on surface soil moisture ($\\theta...

  18. Analysis of Pumphouse RCC Frame Structure for Soil Structure Interaction

    OpenAIRE

    Mr A.S. Thombare; Prof. V.P. Kumbhar; Prof. A.H. Kumbhar

    2016-01-01

    When structure is built on ground some elements of structure are direct contact with soil. When loads are applied on structure internal forces are developed in both the structure as well as in soil. It results in deformation of both the components which are independent to each other. This are called soil structure interaction. The analysis is done by using (Bentley STAAD.Pro V8i Version 2007) software. The analysis carried out been pump house structure R.C.C. frame structure find ...

  19. Optimization of environment compatible analysis methods for mineral hydrocarbons in the soil; Optimierung umweltvertraeglicher Analysenverfahren fuer Mineraloelkohlenwasserstoffe im Boden

    Energy Technology Data Exchange (ETDEWEB)

    Flachowsky, J.; Borsdorf, H. [eds.] [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany); Loehmannsroeben, H.G.; Roch, T. [Erlangen-Nuernberg Univ., Erlangen (Germany); Leopom, P. [Umweltbundesamt, Berlin (Germany); Reimers, C. [Technische Univ. Hamburg-Harburg, Hamburg (Germany); Matz, G.; Kuebler, J. [MOBILAB GmbH, Hamburg (Germany); Christall, B. [SOFIA GmbH, Berlin (Germany); Hahn, M.; Matschiner, H. [Elektrochemie Halle GmbH (Germany); Baermann, A. [Dr. Baermann und Partner Mikroanalytik, Hamburg (Germany)

    1997-12-31

    This paper describes several analytical methods for the quantitative chemical analysis of mineral oil hydrocarbons in soils. The measuring methods are investigated on accuracy, errors, sample preparation methods, analysis of reference materials and real materials. (SR) [Deutsch] Mit dieser Schrift praesentiert die Deutsche Bundesstiftung Umwelt der Oeffentlichkeit Ergebnisse zu alternativen umweltvertraeglichen Bestimmungsmethoden fuer Mineraloelkohlenwasserstoffe in Boeden. Es war in erster Linie das Ziel aller beteiligten Forscher und Entwickler, die heute noch in der Anwendung befindliche Vorschrift nach DIN 38409 H18 zur Analytik von Mineraloelkohlenwasserstoffen durch eine sowohl umweltfreundliche als auch insgesamt aussagekraeftige Methode zu substituieren. (orig.)

  20. Determination of hydraulic properties of unsaturated soil via inverse modeling

    International Nuclear Information System (INIS)

    Kodesova, R.

    2004-01-01

    The method for determining the hydraulic properties of unsaturated soil with inverse modeling is presented. A modified cone penetrometer has been designed to inject water into the soil through a screen, and measure the progress of the wetting front with two tensiometer rings positioned above the screen. Cumulative inflow and pressure head readings are analyzed to obtain estimates of the hydraulic parameters describing K(h) and θ(h). Optimization results for tests at one side are used to demonstrate the possibility to evaluate either the wetting branches of the soil hydraulic properties, or the wetting and drying curves simultaneously, via analysis of different parts of the experiment. The optimization results are compared to the results of standard laboratory and field methods. (author)

  1. Applicability of soil-structure interaction analysis methods for earthquake loadings (V)

    International Nuclear Information System (INIS)

    Chang, S. P.; Ko, H. M.; Kim, J. K.; Yoon, J. Y.; Chin, B. M.; Yang, T. S.; Park, J. Y.; Cho, J. R.; Ryu, H.

    1997-07-01

    The ultimate goals of this research are to cultivate the capability of accurate 551 analysis and to develop the effective soil-structure interaction analysis method and computer program by comparing analysis results obtained in Lotung/Hualien lS5T project. In this research, the scope of this study is to establish the method of soil-structure interaction analysis using hyperlement and to develop a computer program of 551 analysis, to do parametric study for the comprehension of the characteristics and the applicability of hyper elements and to verify the validity and the applicability of this method(or program) through the analysis of seismic response of Hualien lS5T project. In this study, we verified the validity and the efficiency of the soil-structure interaction analysis method using hyper elements and developed computer programs using hyper elements. Based on the I-dimensional wave propagation theory, we developed a computer program of free-field analysis considering the primary non-lineriry of seismic responses. And using this program, we computed the effective ground earthquake motions of soil regions. The computer programs using hyper elements can treat non-homogeneity of soil regions very easily and perform the analysis quickly by the usage of the analytical solutions in horizontal direction. 50 this method would be very efficient and practical method

  2. An Overview of Soil Models for Earthquake Response Analysis

    Directory of Open Access Journals (Sweden)

    Halida Yunita

    2015-01-01

    Full Text Available Earthquakes can damage thousands of buildings and infrastructure as well as cause the loss of thousands of lives. During an earthquake, the damage to buildings is mostly caused by the effect of local soil conditions. Depending on the soil type, the earthquake waves propagating from the epicenter to the ground surface will result in various behaviors of the soil. Several studies have been conducted to accurately obtain the soil response during an earthquake. The soil model used must be able to characterize the stress-strain behavior of the soil during the earthquake. This paper compares equivalent linear and nonlinear soil model responses. Analysis was performed on two soil types, Site Class D and Site Class E. An equivalent linear soil model leads to a constant value of shear modulus, while in a nonlinear soil model, the shear modulus changes constantly,depending on the stress level, and shows inelastic behavior. The results from a comparison of both soil models are displayed in the form of maximum acceleration profiles and stress-strain curves.

  3. Application of Statistical Method of Path Analysis to Describe Soil Biological Indices

    Directory of Open Access Journals (Sweden)

    Y. Kooch

    2016-09-01

    Full Text Available Introduction: Among the collection of natural resources in the world, soil is considered as one of the most important components of the environment. Protect and improve the properties of this precious resource, requires a comprehensive and coordinated action that only through a deep understanding of quantitative (not only recognition of the quality the origin, distribution and functionality in a natural ecosystem is possible. Many researchers believe that due to the quick reactions of soil organisms to environmental changes, soil biological survey to estimate soil quality is more important than the chemical and physical properties. For this reason, in many studies the nitrogen mineralization and microbial respiration indices are regarded. The aim of the present study were to study the direct and indirect effects of soil physicochemical characteristics on the most important biological indicators (nitrogen mineralization and microbial respiration, which has not been carefully considered up to now. This research is the first study to provide evidence to the future planning and management of soil sciences. Materials and Methods: For this, a limitation of 20 ha area of Experimental Forest Station of Tarbiat Modares University was considered. Fifty five soil samples, from the top 15 cm of soil, were taken, from which bulk density, texture, organic C, total N, cation exchange capacity (CEC, nitrogen mineralization and microbial respiration were determined at the laboratory. The data stored in Excel as a database. To determine the relationship between biological indices and soil physicochemical characteristics, correlation analysis and factor analysis using principal component analysis (PCA were employed. To investigate all direct and indirect relationships between biological indices and different soil characteristics, path analysis (path analysis was used. Results and Discussion: Results showed significant positive relations between biological indices

  4. Evaluation of soil damping techniques used in soil structure interaction analysis of a nuclear power plant

    International Nuclear Information System (INIS)

    Nelson, T.A.

    1982-01-01

    A prediction of dynamic soil properties at the site of a nuclear power plant plays a very important role in the seismic analysis of the facility. Conventional modal analysis procedures can accommodate virtually any range of equivalent elastic soil stiffness which is used to characterize the site. However, high radiation damping associated with energy dissipation in the soil half-space is difficult to accommodate in an elastic modal solution to the dynamic problem. Several methods are available to combine the soil damping with the structural damping in a composite modal damping coefficient. However, even with this convenient representation, the resulting large fractions of critical damping can make modal solutions to the problems suspect. This paper is based on experience gained in this area during studies performed for the Nuclear Regulatory Commission involving seismic analyses of power plants

  5. Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil.

    Science.gov (United States)

    Al-Sadi, Abdullah M; Al-Oweisi, Fatma A; Edwards, Simon G; Al-Nadabi, Hamed; Al-Fahdi, Ahmed M

    2015-07-28

    Trichoderma is one of the most common fungi in soil. However, little information is available concerning the diversity of Trichoderma in soil with no previous history of cultivation. This study was conducted to investigate the most common species and the level of genetic relatedness of Trichoderma species from uncultivated soil in relation to cultivated soil and potting media. A total of 24, 15 and 13 Trichoderma isolates were recovered from 84 potting media samples, 45 cultivated soil samples and 65 uncultivated soil samples, respectively. Analysis based on the internal transcribed spacer region of the ribosomal RNA (rRNA) and the translation elongation factor gene (EF1) indicated the presence of 9 Trichoderma species: T. harzianum (16 isolates), T. asperellum (13), T. citrinoviride (9), T. orientalis (3), T. ghanense (3), T. hamatum (3), T. longibrachiatum (2), T. atroviride (2), and T. viride (1). All species were found to occur in potting media samples, while five Trichoderma species were recovered from the cultivated soils and four from the uncultivated soils. AFLP analysis of the 52 Trichoderma isolates produced 52 genotypes and 993 polymorphic loci. Low to moderate levels of genetic diversity were found within populations of Trichoderma species (H = 0.0780 to 0.2208). Analysis of Molecular Variance indicated the presence of very low levels of genetic differentiation (Fst = 0.0002 to 0.0139) among populations of the same Trichoderma species obtained from the potting media, cultivated soil and uncultivated soil. The study provides evidence for occurrence of Trichoderma isolates in soil with no previous history of cultivation. The lack of genetic differentiation among Trichoderma populations from potting media, cultivated soil and uncultivated soil suggests that some factors could have been responsible for moving Trichoderma propagules among the three substrates. The study reports for the first time the presence of 4 Trichoderma species in Oman: T

  6. Direct methods of soil-structure interaction analysis for earthquake loadings

    International Nuclear Information System (INIS)

    Yun, J. B.; Kim, J. M.; Kim, Y. S. and others

    1993-07-01

    The objectives of this study are to review the methods of soil- structure interaction system analysis, particularly the direct method, and to carry out the blind prediction analysis of the Forced Vibration Test(FVT) before backfill in the course of Hualien LSST project. The scope and contents of this study are as follows : theoretical review on soil-structure interaction analysis methods, free-field response analysis methods, modelling methods of unbounded exterior region, hualien LSST FVT blind prediction analysis before backfill. The analysis results are found to be very well compared with the field test results

  7. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils

    Directory of Open Access Journals (Sweden)

    M. D. Corre

    2010-08-01

    Full Text Available Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2 production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D calculated based on relationships with soil porosity and moisture ("physically modeled" D. Our objective was to investigate whether these inconsistencies were related to (1 the applied interpolation and solution methods and/or (2 uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2

  8. Global Trend Analysis of Multi-decade Soil Temperature Records Show Soils Resistant to Warming

    Science.gov (United States)

    Frey, S. D.; Jennings, K.

    2017-12-01

    Soil temperature is an important determinant of many subterranean ecological processes including plant growth, nutrient cycling, and carbon sequestration. Soils are expected to warm in response to increasing global surface temperatures; however, despite the importance of soil temperature to ecosystem processes, less attention has been given to examining changes in soil temperature over time. We collected long-term (> 20 years) soil temperature records from approximately 50 sites globally, many with multiple depths (5 - 100 cm), and examined temperature trends over the last few decades. For each site and depth we calculated annual summer means and conducted non-parametric Mann Kendall trend and Sen slope analysis to assess changes in summer soil temperature over the length of each time series. The mean summer soil temperature trend across all sites and depths was not significantly different than zero (mean = 0.004 °C year-1 ± 0.033 SD), suggesting that soils have not warmed over the observation period. Of the subset of sites that exhibit significant increases in temperature over time, site location, depth of measurement, time series length, and neither start nor end date seem to be related to trend strength. These results provide evidence that the thermal regime of soils may have a stronger buffering capacity than expected, having important implications for the global carbon cycle and feedbacks to climate change.

  9. A multivariate analysis of intrinsic soil components influencing the mean-weight diameter of water-stable aggregates

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Chukwu, W.I.E.

    1994-06-01

    A knowledge of the soil properties influencing the water-stability of soil aggregates is needed for selecting those more easily-determined properties that would be useful in areas where lack of facilities makes its direct determination impossible. In this laboratory study we evaluated the main soil physical, chemical and mineralogical properties influencing the stability of macro aggregates of some Italian surface soils in water. The objective is to select a subset of soil properties which predict optimally, soil aggregate stability. The index of stability used is the mean weight diameter of water-stable aggregates whereas the method of evaluation is the principal component analysis (PCA). The range in coefficients of variation (CV) among the properties was least in the physical (12.0-61.0%), medium in the mineralogical (28.0-116.2%) and highest in the chemical (8.2-110.8%) properties. The wider the range in CV in each subset of properties, the greater the number of components extracted by the PCA. The component defining variables, i.e. those with the highest loadings on each component and therefore, provide the best relationship between the variables and aggregate stability, revealed the ratio of total sand/clay and plastic limit as the significant physical properties. The significant chemical properties are Al 2 O 3 , FeO, MgO and MnO which contribute positively to aggregate stability. Feldspar, quartz and muscovite are the significant mineralogical properties each of which is negatively related to aggregate stability. These soil components are useful for developing empirical models for estimating the stability of aggregates of these soils in water. (author). 38 refs, 7 tabs

  10. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    Science.gov (United States)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  11. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    International Nuclear Information System (INIS)

    Elkhoraibi, T.; Hashemi, A.; Ostadan, F.

    2014-01-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  12. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    Energy Technology Data Exchange (ETDEWEB)

    Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.

    2014-04-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  13. Optimization of the Use of His6-OPH-Based Enzymatic Biocatalysts for the Destruction of Chlorpyrifos in Soil

    Directory of Open Access Journals (Sweden)

    Olga Senko

    2017-11-01

    Full Text Available Applying enzymatic biocatalysts based on hexahistidine-containing organophosphorus hydrolase (His6-OPH is suggested for the decomposition of chlorpyrifos, which is actively used in agriculture in many countries. The application conditions were optimized and the following techniques was suggested to ensure the highest efficiency of the enzyme: first, the soil is alkalinized with hydrated calcitic lime Ca(OH2, then the enzyme is introduced into the soil at a concentration of 1000 U/kg soil. Non-equilibrium low temperature plasma (NELTP-modified zeolite is used for immobilization of the relatively inexpensive polyelectrolyte complexes containing the enzyme His6-OPH and a polyanionic polymer: poly-l-glutamic acid (PLE50 or poly-l-aspartic acid (PLD50. The soil’s humidity is then increased up to 60–80%, the top layer (10–30 cm of soil is thoroughly stirred, and then exposed for 48–72 h. The suggested approach ensures 100% destruction of the pesticide within 72 h in soils containing as much as 100 mg/kg of chlorpyrifos. It was concluded that using this type of His6-OPH-based enzyme chemical can be the best approach for soils with relatively low humus concentrations, such as sandy and loam-sandy chestnut soils, as well as types of soil with increased alkalinity (pH 8.0–8.4. Such soils are often encountered in desert, desert-steppe, foothills, and subtropical regions where chlorpyrifos is actively used.

  14. Instrumental neutron activation analysis of soil sample

    International Nuclear Information System (INIS)

    Abdul Khalik Haji Wood.

    1983-01-01

    This paper describes the analysis of soil samples collected from 5 different location around Sungai Lui, Kajang, Selangor, Malaysia. These sample were taken at 22-24 cm from the top of the ground and were analysed using the techniques of Instrumental Neutron Activation Analysis (INAA). The analysis on soil sample taken above 22-24 cm level were done in order to determine if there is any variation in elemental contents at different sampling levels. The results indicate a wide variation in the contents of the samples. About 30 elements have been analysed. The major ones are Na, I, Cl, Mg, Al, K, Ti, Ca and Fe. Trace elements analysed were Ba, Sc, V, Cr, Mn, Ga, As, Zn, Br, Rb, Co, Hf, Zr, Th, U, Sb, Cs, Ce, Sm, Eu, Tb, Dy, Yb, Lu and La. (author)

  15. Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS

    Directory of Open Access Journals (Sweden)

    K. J. Tobin

    2017-09-01

    Full Text Available This study applied the exponential filter to produce an estimate of root-zone soil moisture (RZSM. Four types of microwave-based, surface satellite soil moisture were used. The core remotely sensed data for this study came from NASA's long-lasting AMSR-E mission. Additionally, three other products were obtained from the European Space Agency Climate Change Initiative (CCI. These datasets were blended based on all available satellite observations (CCI-active, CCI-passive, and CCI-combined. All of these products were 0.25° and taken daily. We applied the filter to produce a soil moisture index (SWI that others have successfully used to estimate RZSM. The only unknown in this approach was the characteristic time of soil moisture variation (T. We examined five different eras (1997–2002; 2002–2005; 2005–2008; 2008–2011; 2011–2014 that represented periods with different satellite data sensors. SWI values were compared with in situ soil moisture data from the International Soil Moisture Network at a depth ranging from 20 to 25 cm. Selected networks included the US Department of Energy Atmospheric Radiation Measurement (ARM program (25 cm, Soil Climate Analysis Network (SCAN; 20.32 cm, SNOwpack TELemetry (SNOTEL; 20.32 cm, and the US Climate Reference Network (USCRN; 20 cm. We selected in situ stations that had reasonable completeness. These datasets were used to filter out periods with freezing temperatures and rainfall using data from the Parameter elevation Regression on Independent Slopes Model (PRISM. Additionally, we only examined sites where surface and root-zone soil moisture had a reasonably high lagged r value (r > 0. 5. The unknown T value was constrained based on two approaches: optimization of root mean square error (RMSE and calculation based on the normalized difference vegetation index (NDVI value. Both approaches yielded comparable results; although, as to be expected, the optimization approach generally

  16. Collaborative, Nondestructive Analysis of Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davidson, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eppich, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lindvall, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Parsons-Davis, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramon, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sharp, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Turin, H. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zidi, T. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Belamri, M. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Bounatiro, S. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Benbouzid, S. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Fellouh, A. S. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Idir, T. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Larbah, Y. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Moulay, M. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Noureddine, A. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Rahal, B. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France)

    2017-12-14

    This report summarizes a joint nondestructive analysis exercise that LLNL, LANL, and COMENA discussed through a collaborative meeting in July 2017. This work was performed as one part of a collaboration with Algeria under Action Sheet 7: “Technical Cooperation and Assistance in Nuclear Forensics”. The primary intent of this exercise was for US and Algerian participants to jointly share results of nondestructive analyses (NDA) of a contaminated soil sample provided by the Algerians and to discuss key observations and analytical approaches. While the two samples were analyzed blind at LLNL and LANL, the soil samples were revealed after the exercise to have a common origin, and to have originated as an IAEA soil sample (IAEA-326, Bojanowski et al., 2001) provided to COMENA as part of a previous exercise. Comparative analysis revealed common findings between the laboratories, and also emphasized the need for standardized operating procedures to improve inter-comparability and confidence in conclusions. Recommended handling practices in the presence of sample heterogeneities were also discussed. This exercise provided an opportunity to demonstrate nuclear forensics analytical capabilities at COMENA, LANL, and LLNL, and identified areas that could benefit from future technical exchanges. Plans were made for a follow-on joint exercise in 2018, involving destructive analyses of the CUP-2 uranium ore concentrate standard.

  17. Developing SASSA: a Soil Analysis Support System for Archaeologists

    Directory of Open Access Journals (Sweden)

    Clare Wilson

    2008-12-01

    Full Text Available There is constant pressure on field archaeologists to be familiar with the core concepts of a diverse range of specialist disciplines. Soils and sediments are an integral part of archaeological sites, and soil and sedimentary analyses applied to archaeological questions are now recognised as an important branch of geoarchaeology. However, the teaching of soils in archaeology degrees is variable and many archaeologists complain they lack the confidence and skills to describe and interpret properly the deposits they excavate. SASSA (Soil Analysis Support System for Archaeologists is a free-to-use, internet-based system designed to familiarise archaeologists with the concepts and possibilities offered by the scientific study of soils and sediments associated with archaeological sites. The aims of SASSA are: ◦To provide soils training specifically for archaeologists, suitable for either a university or workplace setting. ◦To provide a freely accessible soils and archaeology knowledge base for archaeologists working in either the office or the field. ◦To support archaeologists describing and interpreting soils in the field. ◦To enhance understanding of the types of archaeological questions that soil analysis can help to address. ◦To initiate dialogue between archaeologists, geoarchaeologists, and soil scientists in order to encourage the thoughtful application of soil analyses to archaeological questions. SASSA consists of two core components: a knowledge base and a field tool. The 'front-end' of the website is the knowledge base; this uses wiki technology to allow users to add their own content and encourage dialogue between archaeologists and geoarchaeologists. The field tool uses an XML data structure and decision-tree support system to guide the user through the process of describing and interpreting soils and sediments. SASSA is designed for use on both 'static' (PC and 'mobile' (PDA and laptop hardware in order to provide in situ

  18. Near-field soil-structure interaction analysis using nonlinear hybrid modeling

    International Nuclear Information System (INIS)

    Katayama, I.; Chen, C.; Lee, Y.J.; Jean, W.Y.; Penzien, J.

    1989-01-01

    The hybrid modeling method (Gupta and Penzien 1980) and associated analysis procedure for solving a three-dimensional soil-structure interaction problem was developed by Gupta and Penzien (1981) and Gupta et al.(1982). Subsequently, successive modifications have been made to the original modeling method and analysis procedure allowing more general treatment of the SSI problem (Penzien, 1988). Through many correlation studies of field test data obtained under forced-vibration and earthquake-excitation conditions, it has been shown that the HASSI programs can effectively predict the dynamic response of a soil-structure system, if realistic soil parameters are adopted. In the above, the entire structure-foundation system is considered to respond in a linear fashion. Since the reflected three-dimensional waves at the soil-structure interface decays very rapidly with distance away from the structure (Katayama, 1987 (a)), the response of the soil close to the base of the structure may greatly affect its response; therefore, proper modeling of the non-linear soil behavior characteristic is essential. The nonlinear behavior of near-field soil has been taken into consideration in HASSI-7 by the standard equivalent linearization procedures used in programs SHAKE and FLUSH

  19. Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities.

    Science.gov (United States)

    Ouyang, Wei; Huang, Weijia; Wei, Peng; Hao, Fanghua; Yu, Yongyong

    2016-06-15

    Herbicides are a main source of agricultural diffuse pollution due to their wide application in tillage practices. The aim of this study is to optimize the control efficiency of the herbicide atrazine with the aid of modified soil amendments. The soil amendments were composed of a combination of biochar and gravel. The biochar was created from corn straw with a catalytic pyrolysis of ammonium dihydrogen phosphate. The leaching experiments under four rainfall conditions were measured for the following designs: raw soil, soil amended with gravel, biochar individually and together with gravel. The control efficiency of each design was also identified. With the designed equipment, the atrazine content in the contaminant load layer, gravel substrate layer, biochar amendment layer and soil layer was measured under four types of rainfall intensities (1.25 mm/h, 2.50 mm/h, 5.00 mm/h and 10.00 mm/h). Furthermore, the vertical distribution of atrazine in the soil sections was also monitored. The results showed that the herbicide leaching load increased under the highest rainfall intensity in all designs. The soil with the combination of gravel and biochar provided the highest control efficiency of 87.85% on atrazine when the additional proportion of biochar was 3.0%. The performance assessment under the four kinds of rainfall intensity conditions provided the guideline for the soil amendment configuration. The combination of gravel and biochar is recommended as an efficient method for controlling diffuse herbicide pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Seismic soil structure interaction: analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1985-01-01

    A method for non-linear dynamic effective stress analysis is introduced which is applicable to soil-structure interaction problems. Full interaction including slip between structure and foundation is taken into account and the major factors are included which must be considered when computing dynamic soil response. An experimental investigation was conducted using simulated earthquake tests on centrifuged geotechnical models in order to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically-induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results show clearly the pronounced effect that increasing pore water pressures have on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress non-linear analysis. Based on preliminary results, it appears that the pore water pressure effects can be predicted

  1. Seismic soil-structure interaction: Analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1986-01-01

    A method for nonlinear dynamic effective stress analysis applicable to soil-structure interaction problems is introduced. Full interaction including slip between structure and foundation is taken into account and the major factors that must be considered when computing dynamic soil response are included. An experimental investigation using simulated earthquake tests on centrifuged geotechnical models was conducted to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. The centrifuge tests were conducted in the Geotechnical Centrifuge at Cambridge University, England. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results clearly show the pronounced effect of increasing pore water pressures on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress nonlinear analysis. On the basis of preliminary results, it appears that the effects of pore water pressure can be predicted. (orig.)

  2. Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Fuentes, Edwar; Pinochet, Hugo; Gregori, Ida de; Potin-Gautier, Martine

    2003-01-01

    A sensitive atomic spectrometric method for the redox speciation analysis of antimony in soils is described. The method is based on the selective generation of stibine from Sb(III) in a continuous flow system using atomic fluorescence spectrometry for detection. Sb(V) is masked by citric or oxalic acid in HCl medium. The procedure was optimized with synthetic solutions of Sb(III) and Sb(V). The effect of carboxylic acid and HCl concentration on the recovery of Sb(III) and Sb(V) species from standard solutions, and on the fluorescence signal were studied. Both species were extracted from soil with H 2 O, 0.05 mol l -1 EDTA and 0.25 mol l -1 H 2 SO 4 . Since the soil samples were collected from sites impacted by copper mining activities, the effect of Cu 2+ on the determination of antimony in synthetic solutions and soil extracts was studied. Cu 2+ decreased the Sb(III) signal, but had no effect on the total antimony determination. Therefore, the selective determination of Sb(III) was carried out in citric acid-HCl medium, using the analyte addition technique. Total antimony in soil extracts was determined using the standard calibration technique after reducing Sb(V) to Sb(III) at room temperature with KI-ascorbic acid. The Sb(V) concentration was calculated from the difference between total antimony and Sb(III). The limits of detection (PS Analytical, Excalibur Millennium model) were 17 and 10 ng l -1 for Sb(III) and total antimony, respectively, and the R.S.D. at the 0.5-μg l -1 level were 2.5 and 2.4%, respectively. The total antimony concentration of soils is in the mg kg -1 range; the Sb recovery from the different soils by the extracting solutions was between less than 0.02% and approximately 10%. Similar recoveries were obtained using EDTA and sulfuric acid solutions. Sb(V) was found to be the main antimony species extracted from soils

  3. To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Yiqing Guan

    2013-01-01

    Full Text Available Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents.

  4. Optimization of disintegration behavior of biodegradable poly (hydroxy butanoic acid) copolymer mulch films in soil environment

    Science.gov (United States)

    Mahajan, Viabhav

    Biodegradation of polymeric films used for mulch film applications in agriculture not only eliminates problems of sorting out and disposal of plastics films, but also ensures increased yields in crop growth and cost reduction. One such polymer which is completely biodegradable in the soil is poly 3-hydroxy butanoic acid copolymer, which is a promising alternative to non-biodegradable incumbent polyethylene mulch films. The purpose of mulch film made of poly 3-hydroxy butanoic acid copolymers is to sustain itself during the crop growth and disintegrate and eventually biodegrade back to nature after the crop cycle is over. The disintegration phase of the biodegradation process was evaluated for poly 3-hydroxy butanoic acid copolymer incorporated with no additive, antimicrobial additives, varying amount of crystallinities, another biodegradable polymer, and in different soils, with or without varying soil moisture content. The tools used for quantification were weight loss and visual observation. The test method was standardized using repeatability tests. The onset of disintegration was optimized with addition of right anti-microbial additives, higher crystallinity of film, blending with other biodegradable polymers, compared to virgin poly 3-hydroxy butanoic acid copolymer film. The onset of disintegration time was reduced when soil moisture content was reduced. After the onset of disintegration, the polymer film was physically and mechanically deteriorated, withering away in soil, which is possible to tailor with the crop growth cycle.

  5. Multivariate analysis of selected metals in tannery effluents and related soil.

    Science.gov (United States)

    Tariq, Saadia R; Shah, Munir H; Shaheen, N; Khalique, A; Manzoor, S; Jaffar, M

    2005-06-30

    Effluent and relevant soil samples from 38 tanning units housed in Kasur, Pakistan, were obtained for metal analysis by flame atomic absorption spectrophotometric method. The levels of 12 metals, Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn were determined in the two media. The data were evaluated towards metal distribution and metal-to-metal correlations. The study evidenced enhanced levels of Cr (391, 16.7 mg/L) and Na (25,519, 9369 mg/L) in tannery effluents and relevant soil samples, respectively. The effluent versus soil trace metal content relationship confirmed that the effluent Cr was strongly correlated with soil Cr. For metal source identification the techniques of principal component analysis, and cluster analysis were applied. The principal component analysis yielded two factors for effluents: factor 1 (49.6% variance) showed significant loading for Ca, Fe, Mn, Cr, Cd, Ni, Pb and Zn, referring to a tanning related source for these metals, and factor 2 (12.6% variance) with higher loadings of Na, K, Mg and Co, was associated with the processes during the skin/hide treatment. Similarly, two factors with a cumulative variance of 34.8% were obtained for soil samples: factor 1 manifested the contribution from Mg, Mn, Co, Cd, Ni and Pb, which though soil-based is basically effluent-derived, while factor 2 was found associated with Na, K, Ca, Cr and Zn which referred to a tannery-based source. The dendograms obtained from cluster analysis, also support the observed results. The study exhibits a gross pollution of soils with Cr at levels far exceeding the stipulated safe limit laid down for tannery effluents.

  6. Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils

    Science.gov (United States)

    McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.

    2010-12-01

    Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this

  7. Distributed Algorithms for Time Optimal Reachability Analysis

    DEFF Research Database (Denmark)

    Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand

    2016-01-01

    . We propose distributed computing to accelerate time optimal reachability analysis. We develop five distributed state exploration algorithms, implement them in \\uppaal enabling it to exploit the compute resources of a dedicated model-checking cluster. We experimentally evaluate the implemented...... algorithms with four models in terms of their ability to compute near- or proven-optimal solutions, their scalability, time and memory consumption and communication overhead. Our results show that distributed algorithms work much faster than sequential algorithms and have good speedup in general.......Time optimal reachability analysis is a novel model based technique for solving scheduling and planning problems. After modeling them as reachability problems using timed automata, a real-time model checker can compute the fastest trace to the goal states which constitutes a time optimal schedule...

  8. Rotorcraft Optimization Tools: Incorporating Rotorcraft Design Codes into Multi-Disciplinary Design, Analysis, and Optimization

    Science.gov (United States)

    Meyn, Larry A.

    2018-01-01

    One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use

  9. Development of a pilot size of electrochemical flushing equipment for radioactive soil and concrete

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Moon, Jei Kwon; Choi, Wang Kyu; Yang, Byeong Il; Shon, Jong Sik; Hong, Dae Seok

    2010-01-01

    A pilot size of electrochemical flushing equipment will be manufactured suitable to the contamination characteristics of radioactive soil and concrete stored in KAERI radioactive waste storage. An optimal reagent and an optimal decontamination conditions should be decided through many experiments. - Contamination characterises analysis of TRIGA radioactive soil and concrete - Manufacture of pilot-scale electrochemical flushing equipment - Manufacture and improvement of suitable electrochemical flushing equipment for contamination characteristics in pilot size - Decontamination experiments of electrochemical flushing equipment in a pilot scale

  10. Probability and sensitivity analysis of machine foundation and soil interaction

    Directory of Open Access Journals (Sweden)

    Králik J., jr.

    2009-06-01

    Full Text Available This paper deals with the possibility of the sensitivity and probabilistic analysis of the reliability of the machine foundation depending on variability of the soil stiffness, structure geometry and compressor operation. The requirements to design of the foundation under rotating machines increased due to development of calculation method and computer tools. During the structural design process, an engineer has to consider problems of the soil-foundation and foundation-machine interaction from the safety, reliability and durability of structure point of view. The advantages and disadvantages of the deterministic and probabilistic analysis of the machine foundation resistance are discussed. The sensitivity of the machine foundation to the uncertainties of the soil properties due to longtime rotating movement of machine is not negligible for design engineers. On the example of compressor foundation and turbine fy. SIEMENS AG the affectivity of the probabilistic design methodology was presented. The Latin Hypercube Sampling (LHS simulation method for the analysis of the compressor foundation reliability was used on program ANSYS. The 200 simulations for five load cases were calculated in the real time on PC. The probabilistic analysis gives us more complex information about the soil-foundation-machine interaction as the deterministic analysis.

  11. Sensitivity analysis and calibration of a soil carbon model (SoilGen2 in two contrasting loess forest soils

    Directory of Open Access Journals (Sweden)

    Y. Y. Yu

    2013-01-01

    Full Text Available To accurately estimate past terrestrial carbon pools is the key to understanding the global carbon cycle and its relationship with the climate system. SoilGen2 is a useful tool to obtain aspects of soil properties (including carbon content by simulating soil formation processes; thus it offers an opportunity for both past soil carbon pool reconstruction and future carbon pool prediction. In order to apply it to various environmental conditions, parameters related to carbon cycle process in SoilGen2 are calibrated based on six soil pedons from two typical loess deposition regions (Belgium and China. Sensitivity analysis using the Morris method shows that decomposition rate of humus (kHUM, fraction of incoming plant material as leaf litter (frecto and decomposition rate of resistant plant material (kRPM are the three most sensitive parameters that would cause the greatest uncertainty in simulated change of soil organic carbon in both regions. According to the principle of minimizing the difference between simulated and measured organic carbon by comparing quality indices, the suited values of kHUM, (frecto and kRPM in the model are deduced step by step and validated for independent soil pedons. The difference of calibrated parameters between Belgium and China may be attributed to their different vegetation types and climate conditions. This calibrated model allows more accurate simulation of carbon change in the whole pedon and has potential for future modeling of carbon cycle over long timescales.

  12. Cost benefit analysis for optimization of radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1984-01-01

    ICRP recommends three basic principles for radiation protection. One is the justification of the source. Any use of radiation should be justified with regard to its benefit. The second is the optimization of radiation protection, i.e. all radiation exposure should be kept as low as resonably achievable. And the third principle is that there should be a limit for the radiation dose that any individual receives. Cost benefit assessment or cost benefit analysis is one tool to achieve the optimization, but the optimization is not identical with cost benefit analysis. Basically, in principle, the cost benefit analysis for the optimization of radiation protection is to find the minimum sum of the cost of protection and some cost of detriment. (Mori, K.)

  13. Extraction of rare earth elements from a contaminated cropland soil using nitric acid, citric acid, and EDTA.

    Science.gov (United States)

    Tang, Hailong; Shuai, Weitao; Wang, Xiaojing; Liu, Yangsheng

    2017-08-01

    Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.

  14. Optimization of time characteristics in activation analysis

    International Nuclear Information System (INIS)

    Gurvich, L.G.; Umaraliev, A.T.

    2006-01-01

    Full text: The activation analysis temporal characteristics optimization methods developed at present are aimed at determination of optimal values of the three important parameters - irradiation time, cooling time and measurement time. In the performed works, especially in [1-5] the activation analysis processes are described, the optimal values of optimization parameters are obtained from equations solved, and the computational results are given for these parameters for a number of elements. However, the equations presented in [2] were inaccurate, did not allow one to have optimization parameters results for one element content calculations, and it did not take into account background dependence of time. Therefore, we proposed modified equations to determine the optimal temporal parameters and iteration processes for the solution of these equations. It is well-known that the activity of studied sample during measurements does not change significantly, i.e. measurement time is much shorter than the half-life, thus the processes taking place can be described by the Poisson probability distribution, and in general case one can apply binomial distribution. The equation and iteration processes use in this research describe both probability distributions. Expectedly, the cooling time iteration expressions obtained for one element analysis case are similar for the both distribution types, as the optimised time values occurred to be of the same order as half-life values, whereas the cooling time, as we observed, depends on the ratio of the studied sample's peak value to the background peak, and can be significantly larger than the half-life value. This pattern is general, and can be derived from the optimized time expressions, which is supported by the experimental data on short-living isotopes [3,4]. For the isotopes with large half-lives, up to years, like cobalt-60, the cooling time values given in the above mentioned works are equal to months which, apparently

  15. Analysis of Seasonal Soil Organic Carbon Content at Bukit Jeriau Forest, Fraser Hill, Pahang

    International Nuclear Information System (INIS)

    Ahmad Adnan Mohamed; Ahmad Adnan Mohamed; Sahibin Abd Rahim; David Allan Aitman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin

    2016-01-01

    Soil carbon is the carbon held within the soil, primarily in association with its organic content. The total soil organic carbon study was determined in a plot at Bukit Jeriau forest in Bukit Fraser, Pahang, Malaysia. The aim of this study is to determine the changing of soil organic carbon between wet season and dry season. Soil organic carbon was fined out using titrimetric determination. The soil organic carbon content in wet season is 223.24 t/ ha while dry season is 217.90 t/ ha. The soil pH range in wet season is between 4.32 to 4.45 and in dry season in 3.95 to 4.08 which is considered acidic. Correlation analysis showed that soil organic carbon value is influenced by pH value and climate. Correlation analysis between clay and soil organic carbon with depth showed positively significant differences and clay are very much influenced soil organic carbon content. Correlation analysis between electrical conductivity and soil organic carbon content showed negative significantly difference on wet season and positively significant different in dry season. (author)

  16. Statistical uncertainty analysis of radon transport in nonisothermal, unsaturated soils

    International Nuclear Information System (INIS)

    Holford, D.J.; Owczarski, P.C.; Gee, G.W.; Freeman, H.D.

    1990-10-01

    To accurately predict radon fluxes soils to the atmosphere, we must know more than the radium content of the soil. Radon flux from soil is affected not only by soil properties, but also by meteorological factors such as air pressure and temperature changes at the soil surface, as well as the infiltration of rainwater. Natural variations in meteorological factors and soil properties contribute to uncertainty in subsurface model predictions of radon flux, which, when coupled with a building transport model, will also add uncertainty to predictions of radon concentrations in homes. A statistical uncertainty analysis using our Rn3D finite-element numerical model was conducted to assess the relative importance of these meteorological factors and the soil properties affecting radon transport. 10 refs., 10 figs., 3 tabs

  17. Analysis of soils by glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Duckworth, D.C.; Barshick, C.M.; Smith, D.H.

    1993-01-01

    The analysis of soils by conventional solution-based techniques, such as inductively coupled plasma and thermal ionization mass spectrometry, is complicated by the need for sample dissolution or the combination of a solids atomizer with an auxiliary ionization source. Since time is an important consideration in waste remediation, there exists a need for a method of rapidly analysing many soil samples with little sample preparation; glow discharge mass spectrometry (GDMS) has the potential to meet this need. Because GDMS is a bulk solids technique, sample preparation is simplified in comparison to other methods. Even with the most difficult samples (geological materials, such as soils and volcanic rock), all that is required is grinding, drying and mixing with a conducting host material prior to electrode formation. As a first test of GDMS for soil analysis, a National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) was analysed by direct current GDMS. Fifty-one elements were quantified from a single cathode using ion beam ratios and ''standard'' relative elemental sensitivity factors (RSF). Average errors for the suite of elements were less than a factor of 4 and 1.4 for uncorrected and corrected values, respectively. User-generated RSF values were applied to the analysis of several elements in NIST SRM 2704 Buffalo River Sediment. In the absence of isobaric interferences, accuracies ranging from 0.6 to 73% were observed, demonstrating the potential of the technique for the determination of many elements. The presence of entrained water and inhomogeneity resulting from cathode preparation is thought to affect matrix-to-matrix reproducibility. While further success depends on developing means of circumventing mass spectral interferences and addressing factors affecting plasma chemistry, the immediate goal of developing a screening method for priority metals in soils was met. (Author)

  18. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    Directory of Open Access Journals (Sweden)

    Sanaz Mahmoudpour

    2011-01-01

    Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.

  19. Analysis of Soil Structure Turnover with Garnet Particles and X-Ray Microtomography.

    Directory of Open Access Journals (Sweden)

    Steffen Schlüter

    Full Text Available Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3. We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other.

  20. Analysis of Soil Structure Turnover with Garnet Particles and X-Ray Microtomography.

    Science.gov (United States)

    Schlüter, Steffen; Vogel, Hans-Jörg

    2016-01-01

    Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other.

  1. Application of multilinear regression analysis in modeling of soil ...

    African Journals Online (AJOL)

    The application of Multi-Linear Regression Analysis (MLRA) model for predicting soil properties in Calabar South offers a technical guide and solution in foundation designs problems in the area. Forty-five soil samples were collected from fifteen different boreholes at a different depth and 270 tests were carried out for CBR, ...

  2. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  3. Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model

    Science.gov (United States)

    Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen

    2018-01-01

    According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.

  4. Rotor design optimization using a free wake analysis

    Science.gov (United States)

    Quackenbush, Todd R.; Boschitsch, Alexander H.; Wachspress, Daniel A.; Chua, Kiat

    1993-01-01

    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed.

  5. Convex analysis and global optimization

    CERN Document Server

    Tuy, Hoang

    2016-01-01

    This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints;

  6. Soil-structure interaction analysis by finite element methods - state-of-the-art

    International Nuclear Information System (INIS)

    Seed, H.B.; Lysmer, J.

    1977-01-01

    Analyses of soil-structure interaction effects during earthquakes for nuclear power plant structures are usually made by one of two methods-either by means of an idealized complete interaction analysis involving consideration of a compatible variation of motion in the structure and the adjacent soil, or by means of an inertial interaction analysis in which the motions in the adjacent soil are assumed to be the same at all points above the foundation depth. For embedded structures, consideration of the variation of motions with depth is essential if adequate evaluations of soil and structural response are to be obtained without undue conservatism. The finite element analysis procedure is particularly well suited for evaluating the response of embedded structures since it can readily provide consideration of the variation of soil characteristics with depth, the different non-linear deformation and energy absorbing capacities of the various soil strata, the variation of motions with depth in accordance with the general principles of engineering mechanics, the three-dimensional nature of the problem and the effects of adjacent structures on each other. (Auth.)

  7. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis.

    Science.gov (United States)

    Yi, Xinzhu; Bayen, Stéphane; Kelly, Barry C; Li, Xu; Zhou, Zhi

    2015-12-01

    A solid-phase extraction/liquid chromatography/electrospray ionization/multi-stage mass spectrometry (SPE-LC-ESI-MS/MS) method was optimized in this study for sensitive and simultaneous detection of multiple antibiotics in urban surface waters and soils. Among the seven classes of tested antibiotics, extraction efficiencies of macrolides, lincosamide, chloramphenicol, and polyether antibiotics were significantly improved under optimized sample extraction pH. Instead of only using acidic extraction in many existing studies, the results indicated that antibiotics with low pK a values (antibiotics with high pK a values (>7) were extracted more efficiently under neutral conditions. The effects of pH were more obvious on polar compounds than those on non-polar compounds. Optimization of extraction pH resulted in significantly improved sample recovery and better detection limits. Compared with reported values in the literature, the average reduction of minimal detection limits obtained in this study was 87.6% in surface waters (0.06-2.28 ng/L) and 67.1% in soils (0.01-18.16 ng/g dry wt). This method was subsequently applied to detect antibiotics in environmental samples in a heavily populated urban city, and macrolides, sulfonamides, and lincomycin were frequently detected. Antibiotics with highest detected concentrations were sulfamethazine (82.5 ng/L) in surface waters and erythromycin (6.6 ng/g dry wt) in soils. The optimized sample extraction strategy can be used to improve the detection of a variety of antibiotics in environmental surface waters and soils.

  8. Critical evaluation of distillation procedure for the determination of methylmercury in soil samples.

    Science.gov (United States)

    Perez, Pablo A; Hintelman, Holger; Quiroz, Waldo; Bravo, Manuel A

    2017-11-01

    In the present work, the efficiency of distillation process for extracting monomethylmercury (MMHg) from soil samples was studied and optimized using an experimental design methodology. The influence of soil composition on MMHg extraction was evaluated by testing of four soil samples with different geochemical characteristics. Optimization suggested that the acid concentration and the duration of the distillation process were most significant and the most favorable conditions, established as a compromise for the studied soils, were determined to be a 70 min distillation using an 0.2 M acid. Corresponding limits of detection (LOD) and quantification (LOQ) were 0.21 and 0.7 pg absolute, respectively. The optimized methodology was applied with satisfactory results to soil samples and was compared to a reference methodology based on isotopic dilution analysis followed by gas chromatography-inductively coupled plasma mass spectrometry (IDA-GC-ICP-MS). Using the optimized conditions, recoveries ranged from 82 to 98%, which is an increase of 9-34% relative to the previously used standard operating procedure. Finally, the validated methodology was applied to quantify MMHg in soils collected from different sites impacted by coal fired power plants in the north-central zone of Chile, measuring MMHg concentrations ranging from 0.091 to 2.8 ng g -1 . These data are to the best of our knowledge the first MMHg measurements reported for Chile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Soil texture analysis by laser diffraction - standardization needed

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Palviainen, M.; Kjønaas, O. Janne

    2017-01-01

    Soil texture is a central soil quality property. Laser diffraction (LD) for determination of particle size distribution (PSD) is now widespread due to easy analysis and low cost. However, pretreatment methods and interpretation of the resulting soil PSD’s are not standardized. Comparison of LD data...... with sedimentation and sieving data may cause misinterpretation and confusion. In literature that reports PSD’s based on LD, pretreatment methods, operating procedures and data methods are often underreported or not reported, although literature stressing the importance exists (e.g. Konert and Vandenberghe, 1997...... and many newer; ISO 13320:2009). PSD uncertainty caused by pretreatments and PSD bias caused by plate-shaped clay particles still calls for more method standardization work. If LD is used more generally, new pedotransfer functions for other soil properties (e.g water retention) based on sieving...

  10. Analysis of irradiance losses on a soiled photovoltaic panel using contours

    International Nuclear Information System (INIS)

    Pulipaka, Subrahmanyam; Kumar, Rajneesh

    2016-01-01

    Highlights: • An irradiance loss factor to quantify relationship between irradiance, tilt angle and power of soiled panel is proposed. • Artificial soiling experiment and Sieve analysis are performed to obtain data for developing contours. • Contour analysis is used to observe the deviation in power of a soiled panel from clean panel. • A correction factor to calculate power of a soiled panel is proposed. • The correction factor is expressed in terms of soil particle size composition present on panel. - Abstract: This paper introduces an irradiance loss factor that quantifies the relationship between irradiance, tilt angle and power output of a soiled panel with the soil particle size composition. Artificial soiling experiments were performed using four soil samples at irradiance levels between 200 and 1200 W/m"2 at 18 tilt angles. Biharmonic interpolation was used to develop power contours in terms of irradiance and tilt angle from experimentally obtained data. These contours were compared with ideal ones of a clean panel to observe deviation in the nature of contours for a soiled panel. A correction factor in terms of particle size composition (as a coefficient to tilt angle) was proposed to calculate power output of a tilted soiled panel. The angular loss on a panel with soil sample containing 150 μm particle size in abundance was observed to be 22% and for sample containing 75 μm particles in majority, the loss is 24%. Presence of 300 μm particle size in abundance causes a 23.7% loss, while 52% angular loss was observed for soil with highest composition of less than 75 μm particle size.

  11. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    Science.gov (United States)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  12. Analysis of soil whole- and inner-microaggregate bacterial communities

    Energy Technology Data Exchange (ETDEWEB)

    Mummey, D L; Stahl, P D [University of Wyoming, Laramie, WY (United States). Dept. of Renewable Resources

    2004-07-01

    Although soil structure largely determines energy flows and the distribution and composition of soil microhabitats, little is known about how microbial community composition is influenced by soil structural characteristics and organic matter compartmentalization dynamics. A UV irradiation-based procedure was developed to specifically isolate inner-microaggregate microbial communities, thus providing the means to analyze these communities in relation to their environment. Whole- and inner-microaggregate fractions of undisturbed soil and soils reclaimed after disturbance by surface coal mining were analyzed using 16S rDNA terminal restriction fragment polymorphism (T-RFLP) and sequence analyses to determine salient bacterial community structural characteristics. We hypothesized that inner-microaggregate environments select for definable microbial communities and that, due to their sequestered environment, inner-microaggregate communities would not be significantly impacted by disturbance. However, T-RFLP analysis indicated distinct differences between bacterial populations of inner-microaggregates of undisturbed and reclaimed soils. While both undisturbed and reclaimed inner-microaggregate bacterial communities were dominated by Actinobacteria, undisturbed soils contained only Actinobacteridae, while in inner-microaggregates of reclaimed soils Rubrobacteridae predominate. Spatial stratification of division-level lineages within microaggregates was also seen. The fractionation methods employed in this study therefore represent a valuable tool for defining relationships between biodiversity and soil structure.

  13. Stochastic analysis of radionuclide migration in saturated-unsaturated soils

    International Nuclear Information System (INIS)

    Kawanishi, Moto

    1988-01-01

    In Japan, LLRW (low level radioactive wastes) generated from nuclear power plants shall be started to store concentrically in the Shimokita site from 1990, and those could be transformed into land disposal if the positive safety is confirmed. Therefore, it is hoped that the safety assessment method shall be successed for the land disposal of LLRW. In this study, a stochastic model to analyze the radionuclide migration in saturated-unsaturated soils was constructed. The principal results are summarized as follows. 1) We presented a generalized idea for the modeling of the radionuclide migration in saturated-unsaturated soils as an advective-dispersion phenomena followed by the decay of radionuclides and those adsorption/desorption in soils. 2) Based on the radionuclide migration model mentioned above, we developed a stochastic analysis model on radionuclide migration in saturated-unsaturated soils. 3) From the comparison between the simulated results and the exact solution on a few simple one-dimensional advective-dispersion problems of radionuclides, the good validity of this model was confirmed. 4) From the comparison between the simulated results by this model and the experimental results of radionuclide migration in a one-dimensional unsaturated soil column with rainfall, the good applicability was shown. 5) As the stochastic model such as this has several advantages that it is easily able to represent the image of physical phenomena and has basically no numerical dissipation, this model should be more applicable to the analysis of the complicated radionuclide migration in saturated-unsaturated soils. (author)

  14. Confirmation of soil radiation damping from test versus analysis

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Mukhim, G.S.; Desmond, T.P.

    1987-01-01

    The work was performed to demonstrate that soil-structure interaction effects for nuclear plant structures can be accurately (and conservatively) predicted using the finite element or soil spring methods of soil-structure interaction analysis. Further, the work was done to investigate the relative importance of soil radiation versus soil material damping in the total soil damping analytical treatment. The analytical work was benchmarked with forced vibration tests of a concrete circular slab resting on the soil surface. The applied loading was in the form of a suddenly applied pulse load, or snapback. The measured responses of the slap represent the free vibration of the slab after the pulse load has been applied. This simplifies the interpretation of soil damping, by the use of the logarithmic decay formulation. To make comparisons with the test results, the damping data calculated from the analytical models is also based on the logarithmic decay formulation. An attempt is made to differentiate the observed damped behavior of the concrete slab as being caused by soil radiation versus soil material damping. It is concluded that both the traditional soil radiation and material damping analytical simplifications are validated by the observed responses. It is concluded that arbitrary 'conservative' assumptions traditionally made in nuclear plant soil-structure interaction analyses are indeed arbitrary, and not born out by physical evidence. The amount of conservatism introduced by limiting total soil damping to values like 5% to 10% can be large. For the test slab sizes investigated, total soil damping is about 25%. For full size nuclear plant foundations, total soil damping is commonly in the 35% to 70% range. The authors suggest that full soil damping values (the combined radiation and material damping) should be used in the design, backfit and margin assessment of nuclear plants. (orig./HP)

  15. Preliminary study of soil permeability properties using principal component analysis

    Science.gov (United States)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  16. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery

    Science.gov (United States)

    Hazwani Aziz, Nor; Zainol, Norazwina

    2018-04-01

    Soil fungi have been evaluated for their ability in increasing and recovering nitrogen, phosphorus and potassium content in flooded soil and in promoting the growth of the host plant. Host plant was cultivated in a mixture of fertile forest soil (nutrient-rich soil) and simulated flooded soil (nutrient-poor soil) in an optimized soil condition for two weeks. The soil sample was harvested every day until two weeks of planting and was tested for nitrogen, phosphorus and potassium concentration. Soil fungi were isolated by using dilution plating technique and was identified by Biolog’s Microbial Systems. The concentration of nitrogen, phosphorus, and potassium was found to be increasing after two weeks by two to three times approximately from the initial concentration recorded. Two fungi species were identified with probability more than 90% namely Aspergillus aculeatus and Paecilomyces lilacinus. Both identified fungi were found to be beneficial in enhancing plant growth and increasing the availability of nutrient content in the soil and thus recovering the nutrient content in the flooded soil.

  17. Improved soil particle-size analysis by gamma-ray attenuation

    International Nuclear Information System (INIS)

    Oliveira, J.C.M.; Vaz, C.M.P.; Reichardt, K.; Swartzendruber, D.

    1997-01-01

    The size distribution of particles is useful for physical characterization of soil. This study was conducted to determine whether a new method of soil particle-size analysis by gamma-ray attenuation could be further improved by changing the depth and time of measurement of the suspended particle concentration during sedimentation. In addition to the advantage of nondestructive, undisturbed measurement by gamma-ray attenuation, as compared with conventional pipette or hydrometer methods, the modifications here suggested and employed do substantially decrease the total time for analysis, and will also facilitate total automation and generalize the method for other sedimentation studies. Experimental results are presented for three different Brazilian soil materials, and illustrate the nature of the fine detail provided in the cumulative particle-size distribution as given by measurements obtained during the relatively short time period of 28 min

  18. Transient Analysis of Monopile Foundations Partially Embedded in Liquefied Soil

    DEFF Research Database (Denmark)

    Barari, Amin; Bayat, Mehdi; Meysam, Saadati

    2015-01-01

    Lagrangian Analysis of Continua (FLAC), which captured the fundamental mechanisms of the monopiles in saturated granular soil. The effects of inertia and the kinematic flow of soil are investigated separately, to highlight the importance of considering the combined effect of these phenomena on the seismic...

  19. Compound washing remediation and response surface analysis of lead-contaminated soil in mining area by fermentation broth and saponin.

    Science.gov (United States)

    Zhang, Hongjiao; Wang, Zhengwei; Gao, Yuntao

    2018-03-01

    The development of eluent is the key to soil washing remediation, and a compound eluent was constructed using the prepared citric acid fermentation broth and saponin in this study. It displayed a good washing performance for Pb, Cu, Cr, and Cd in red soil, and the removal rates, especially Pb, gained an improvement compared with a single eluent. Based on this, the compound eluent was applied to remediation of Pb-contaminated soil in mining area; the desorption of Pb is a heterogeneous diffusion process, and Pb in large particle size soil is relatively easy to remove. An available response surface analysis model was established; its P  washing time > saponin concentration, and liquid-to-solid ratio and washing time show interaction. Moreover, the Pb removal rate can reach 56.20% under the optimized conditions: 0.25% saponin concentration, 20 mL/g liquid-to-solid ratio, and 320-min washing time, which is close to the predicted value of 56.20% with a difference of 1.41%. In addition, most of the active Pb was removed and environmental risks were lowered after washing.

  20. Continuum soil modeling in the static analysis of buried structures

    International Nuclear Information System (INIS)

    Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.

    1993-10-01

    Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy's Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement

  1. PRINCIPAL COMPONENT ANALYSIS OF FACTORS DETERMINING PHOSPHATE ROCK DISSOLUTION ON ACID SOILS

    Directory of Open Access Journals (Sweden)

    Yusdar Hilman

    2016-10-01

    Full Text Available Many of the agricultural soils in Indonesia are acidic and low in both total and available phosphorus which severely limits their potential for crops production. These problems can be corrected by application of chemical fertilizers. However, these fertilizers are expensive, and cheaper alternatives such as phosphate rock (PR have been considered. Several soil factors may influence the dissolution of PR in soils, including both chemical and physical properties. The study aimed to identify PR dissolution factors and evaluate their relative magnitude. The experiment was conducted in Soil Chemical Laboratory, Universiti Putra Malaysia and Indonesian Center for Agricultural Land Resources Research and Development from January to April 2002. The principal component analysis (PCA was used to characterize acid soils in an incubation system into a number of factors that may affect PR dissolution. Three major factors selected were soil texture, soil acidity, and fertilization. Using the scores of individual factors as independent variables, stepwise regression analysis was performed to derive a PR dissolution function. The factors influencing PR dissolution in order of importance were soil texture, soil acidity, then fertilization. Soil texture factors including clay content and organic C, and soil acidity factor such as P retention capacity interacted positively with P dissolution and promoted PR dissolution effectively. Soil texture factors, such as sand and silt content, soil acidity factors such as pH, and exchangeable Ca decreased PR dissolution.

  2. Analysis of factors controlling soil phosphorus loss with surface runoff in Huihe National Nature Reserve by principal component and path analysis methods.

    Science.gov (United States)

    He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Bu, He; Wo, Qiang

    2018-01-01

    Phosphorus (P) loss with surface runoff accounts for the P input to and acceleration of eutrophication of the freshwater. Many studies have focused on factors affecting P loss with surface runoff from soils, but rarely on the relationship among these factors. In the present study, rainfall simulation on P loss with surface runoff was conducted in Huihe National Nature Reserve, in Hulunbeier grassland, China, and the relationships between P loss with surface runoff, soil properties, and rainfall conditions were examined. Principal component analysis and path analysis were used to analyze the direct and indirect effects on P loss with surface runoff. The results showed that P loss with surface runoff was closely correlated with soil electrical conductivity, soil pH, soil Olsen P, soil total nitrogen (TN), soil total phosphorus (TP), and soil organic carbon (SOC). The main driving factors which influenced P loss with surface runoff were soil TN, soil pH, soil Olsen P, and soil water content. Path analysis and determination coefficient analysis indicated that the standard multiple regression equation for P loss with surface runoff and each main factor was Y = 7.429 - 0.439 soil TN - 6.834 soil pH + 1.721 soil Olsen-P + 0.183 soil water content (r = 0.487, p runoff. The effect of physical and chemical properties of undisturbed soils on P loss with surface runoff was discussed, and the soil water content and soil Olsen P were strongly positive influences on the P loss with surface runoff.

  3. Neutron-activation analysis of wall soils of ancient architectural monuments

    International Nuclear Information System (INIS)

    Khatamov, Sh.; Zhumamuratov, A.; Ibragimov, T.; Tillyaev, T.; Osinskaya, N.S.; Rakhmanova, T.P.; Pulatov, D.D.

    2001-01-01

    The simplified, relatively inexpensive, and productive multielemental neutron activation techniques for analysis of solid of the architectural monuments of Karakalpakstan have been elaborated. A comparison of the elemental composition of the wall soils of the ancient buildings, constructed at different historical periods, with the composition of the agricultural soils allows us to estimate the present ecological and agrogeochemical states of the agricultural soils and to trace changing the dynamics of about 30 chemical elements. (author)

  4. Digital Mapping of Soil Drainage Classes Using Multitemporal RADARSAT-1 and ASTER Images and Soil Survey Data

    Directory of Open Access Journals (Sweden)

    Mohamed Abou Niang

    2012-01-01

    Full Text Available Discriminant analysis classification (DAC and decision tree classifiers (DTC were used for digital mapping of soil drainage in the Bras-d’Henri watershed (QC, Canada using earth observation data (RADARSAT-1 and ASTER and soil survey dataset. Firstly, a forward stepwise selection was applied to each land use type identified by ASTER image in order to derive an optimal subset of soil drainage class predictors. The classification models were then applied to these subsets for each land use and merged to obtain a digital soil drainage map for the whole watershed. The DTC method provided better classification accuracies (29 to 92% than the DAC method (33 to 79% according to the land use type. A similarity measure (S was used to compare the best digital soil drainage map (DTC to the conventional soil drainage map. Medium to high similarities (0.6≤S<0.9 were observed for 83% (187 km2 of the study area while 3% of the study area showed very good agreement (S≥0.9. Few soil polygons showed very weak similarities (S<0.3. This study demonstrates the efficiency of combining radar and optical remote sensing data with a representative soil dataset for producing digital maps of soil drainage.

  5. Analysis and Optimization of Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    and scheduling policies. In this context, the task of designing such systems is becoming increasingly difficult. The success of new adequate design methods depends on the availability of efficient analysis as well as optimization techniques. In this paper, we present both analysis and optimization approaches...... characteristic to this class of systems: mapping of functionality, the optimization of the access to the communication channel, and the assignment of scheduling policies to processes. Optimization heuristics aiming at producing a schedulable system, with a given amount of resources, are presented....

  6. Efficiency of using construction machines when strengthening foundation soils

    Science.gov (United States)

    Turchin, Vadim; Yudina, Ludmila; Ivanova, Tatyana; Zhilkina, Tatyana; Sychugove, Stanislav; Mackevicius, Rimantas; Danutė, Slizyte

    2017-10-01

    The article describes the efficiency of using construction machines when strengthening foundation base soils, as one of the ways to solve the problem of reducing and optimizing costs during construction. The analysis is presented in regard to inspection results of the soil bodies in the pile foundation base of “School of general education No. 5 in the town of Malgobek” of the republic of Ingushetia. Economical efficiency through reducing the duration of construction due to the automation of production is calculated.

  7. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  8. Image Analysis to Estimate Mulch Residue in Soil

    Directory of Open Access Journals (Sweden)

    Carmen Moreno

    2014-01-01

    Full Text Available Mulching is used to improve the condition of agricultural soils by covering the soil with different materials, mainly black polyethylene (PE. However, problems derived from its use are how to remove it from the field and, in the case of it remaining in the soil, the possible effects on it. One possible solution is to use biodegradable plastic (BD or paper (PP, as mulch, which could present an alternative, reducing nonrecyclable waste and decreasing the environmental pollution associated with it. Determination of mulch residues in the ground is one of the basic requirements to estimate the potential of each material to degrade. This study has the goal of evaluating the residue of several mulch materials over a crop campaign in Central Spain through image analysis. Color images were acquired under similar lighting conditions at the experimental field. Different thresholding methods were applied to binarize the histogram values of the image saturation plane in order to show the best contrast between soil and mulch. Then the percentage of white pixels (i.e., soil area was used to calculate the mulch deterioration. A comparison of thresholding methods and the different mulch materials based on percentage of bare soil area obtained is shown.

  9. Economic analysis of irrigated melon cultivated in greenhouse with and without soil plastic mulching

    Directory of Open Access Journals (Sweden)

    Elvis M. de C. Lima

    Full Text Available ABSTRACT The objective of this study was to analyze technically and economically the irrigated ‘Gália’ melon (Hybrid Nectar, cultivated in greenhouse with and without using plastic mulch covering on the soil. Simultaneously, two experiments were conducted using a completely randomized design (CRD, in which melon plants were submitted to five water availability levels, defined by 50, 75, 100, 125, and 150% of crop evapotranspiration, with four replicates. The difference between experiments were only about the soil covering with plastic mulch: with (CC or without (SC plastic mulch. The economically optimal irrigation depths were 208.83 and 186.88 mm, resulting in yields of 50.85 and 44.51 t ha-1 for the experiments with and without mulching, respectively. The results showing the economically optimal irrigation depths were very close to those that produced the highest yield.

  10. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region

    NARCIS (Netherlands)

    Siegel-Hertz, Katarzyna; Edel-Hermann, Véronique; Chapelle, E.; Terrat, Sébastien; Raaijmakers, Jos M.; Steinberg, Christian

    2018-01-01

    Disease-suppressive soils are soils in which specific soil-borne plant pathogens cause only limited disease although the pathogen and susceptible host plants are both present. Suppressiveness is in most cases of microbial origin. We conducted a comparative metabarcoding analysis of the taxonomic

  11. Determination of bare soil and its seasonal variation using image analysis

    International Nuclear Information System (INIS)

    Pulido Fernandez, M.; Lavado Contador, J. F.; Schnabel, S.; Gomez Gutierrez, A.

    2009-01-01

    Bare soil is of outstanding interest as an indicator of land degradation because it is strongly related with water erosion, particularly in low-vegetated areas as those typical of the Mediterranean rangelands. In areas with high livestock densities, erosion can ultimately get to a partial or total soil loss, particularly at the beginning of the rainy season, when the surface cover is reduce after the dry summer period. Therefore, it is necessary to develop accurate methods allowing the quantification of soil exposed areas and their temporal dynamics. The main goal of this work is the determination of bare soil surface using aerial orthophotomaps and the analysis of the changes resulting from the analysis and classification of images corresponding to two contrasting seasons (summer and spring). (Author) 6 refs.

  12. Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    of a constitutive model for soil is based on a profound knowledge of the soil behaviour upon loading. In the present study it is attempted to get a better understanding of the soil behaviour bv performing a number of triaxial compression tests on sand. The stress-strain behaviour of sand depends strongly......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... and subsequently dilates during shear. The change in the volumetric behaviour of the soil skeleton is commonly referred to as the characteristic state. The stress ratio corresponding to the characteristic state is independent of the mean normal effective stress and the relative density, but depends on the stress...

  13. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum.

    Science.gov (United States)

    Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S

    2015-03-01

    1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds.

  14. FARM LEVEL DYNAMIC ANALYSIS OF SOIL CONSERVATION: AN APPLICATION TO THE PIEDMONT AREA OF VIRGINIA

    OpenAIRE

    Segarra, Eduardo; Taylor, Daniel B.

    1987-01-01

    A conceptual optimal control theory model which considers farm level decision making with respect to soil management is developed. A simplified version of the theoretical model is applied to the Piedmont area of Virginia. The model includes the productivity impacts of both soil erosion and technological progress. Both the theoretical model and its empirical application are improvements over previous efforts. Results suggest that farmers in the study area can achieve substantial reductions in ...

  15. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  16. Extraction and analysis of 14C-carbofuran radioactivity in soil sample

    International Nuclear Information System (INIS)

    Maizatul Akmam Mhd Nasir; Nashriyah Mat

    2005-01-01

    Carbofuran insecticide or nematicide sprayed onto soil in the agroecosystem will be taken up by plant. Carbofuran residue will pollute the environment and organisms in the food chain. Extraction and analysis of 14 C-carbofuran in soil from lysimeter were carried out. The Liquid Scintillation Counter (LSC) was used to measure radioactivity of 14 C-carbofuran in soil sample. (Author)

  17. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Science.gov (United States)

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  18. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    Science.gov (United States)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  19. Evaluating anaerobic soil disinfestation and other biological soil management methods for open-field tomato production in Florida

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD), amending the soil with composted poultry litter (CPL) and molasses (M), has been shown to be a potential alternative to chemical soil fumigation for tomato production, however, optimization of ASD and the use of other biologically-based soil management practices ...

  20. Soil-structure interaction analysis by finite element methods state-of-the-art

    International Nuclear Information System (INIS)

    Seed, H.B.; Lysmer, J.

    1977-01-01

    Analyses of soil-structure interaction effects during earthquakes for nuclear power plant structures are usually made by one of two methods - either by means of an idealized complete interaction analysis involving consideration of a compatible variation of motions in the structure and the adjacent soil, or by means of an inertial interaction analysis in which the motions in the adjacent soil are assumed to be the same at all points above the foundation depth. For surface structures, the distribution of free-field motions with depth in the underlying soils has no influence on the structural response and thus, provided the analyses are made in accordance with good practice, good results may be obtained by either method of approach. For embedded structures, however, consideration of the variation of motions with depth is essential if adequate evaluations of soil and structural response are to be obtained without undue conservatism. The finite element analysis procedure is particularly well suited for evaluating the response of embedded structures since it can readily provide consideration of the variation of soil characteristics with depth, the different non-linear deformation and energy absorbing capacities of the various soil strata, the variation of motions with depth in accordance with the general principles of engineering mechanics, the three-dimensional nature of the problem and the effects of adjacent structures on each other

  1. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure eliminates the deconvolution calculations and the related assumption-regarding type and direction of earthquake waves-required in the direct method. (Auth.)

  2. Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

    International Nuclear Information System (INIS)

    Lee, D.H.; Lee, K.S.; Cho, Y.J.; Kim, H.J.; Choi, J.M.; Chung, S.O.

    2012-01-01

    Reducing carbon dioxide (CO2) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where CO2 is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, CO2 concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse CO2 enrichment based on accurate monitoring of the added CO2 can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required CO2 concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied CO2. RPI for a greenhouse controlled at lower set point of CO2 concentration (500 μmol * mol -1 ) was greater than that of greenhouse at higher set point (800 μmol * mol -1 ). Evaluation tests to optimize CO2 enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of CO2 but also to maintain the crop profitability

  3. A New Cluster Analysis-Marker-Controlled Watershed Method for Separating Particles of Granular Soils.

    Science.gov (United States)

    Alam, Md Ferdous; Haque, Asadul

    2017-10-18

    An accurate determination of particle-level fabric of granular soils from tomography data requires a maximum correct separation of particles. The popular marker-controlled watershed separation method is widely used to separate particles. However, the watershed method alone is not capable of producing the maximum separation of particles when subjected to boundary stresses leading to crushing of particles. In this paper, a new separation method, named as Monash Particle Separation Method (MPSM), has been introduced. The new method automatically determines the optimal contrast coefficient based on cluster evaluation framework to produce the maximum accurate separation outcomes. Finally, the particles which could not be separated by the optimal contrast coefficient were separated by integrating cuboid markers generated from the clustering by Gaussian mixture models into the routine watershed method. The MPSM was validated on a uniformly graded sand volume subjected to one-dimensional compression loading up to 32 MPa. It was demonstrated that the MPSM is capable of producing the best possible separation of particles required for the fabric analysis.

  4. Optimizing available water capacity using microwave satellite data for improving irrigation management

    Science.gov (United States)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2015-04-01

    This work addresses the improvement of available water capacity by developing a technique for estimating soil hydraulic parameters through the utilization of satellite-retrieved near surface soil moisture. The prototype involves the usage of Monte Carlo analysis to assimilate historical remote sensing soil moisture data available from the Advanced Microwave Scanning Radiometer (AMSR-E) within the hydrological model. The main hypothesis used in this study is that near-surface soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately In the method followed in this study the hydraulic parameters are derived directly from information on the soil moisture state at the AMSR-E footprint scale and the available water capacity is derived for the root zone by coupling of AMSR-E soil moisture with the physically-based hydrological model. The available capacity water, which refers to difference between the field capacity and wilting point of the soil and represent the soil moisture content at 0.33 bar and 15 bar respectively is estimated from the soil hydraulic parameters using the van Genuchten equation. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on Soil Survey Geographic (SSURGO) database within the particular AMSR-E footprint. Using the Monte Carlo simulation, the ranges are narrowed in the region where simulation shows a good match between predicted and near-surface soil moisture from AMSR-E. In this study, the uncertainties in accurately determining the parameters of the nonlinear soil water retention function for large-scale hydrological modeling is the focus of the development of the Bayesian framework. Thus, the model forecasting has been combined with the observational information to optimize the model state and the soil hydraulic parameters simultaneously. The optimization process is divided into

  5. Bacterial community analysis of contaminant soils from Chernobyl

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Chapon, V.; Berthomieu, C.; Piette, L.; Le Marrec, C.; Coppin, F.; Fevrier, L.; Martin-Garin, A.

    2010-01-01

    Complete text of publication follows: Shortly after the Chernobyl accident in 1986, vegetation, contaminated soil and other radioactive debris were buried in situ in trenches. The aims of this work are to analyse the structure of bacterial communities evolving in this environment since 20 years, and to evaluate the potential role of microorganisms in radionuclide migration in soils. Therefore, soil samples exhibiting contrasted radionuclides content were collected in and around the trench number 22. Bacterial communities were examined using a genetic fingerprinting method that allowed a comparative profiling of the samples (DGGE), with universal and group-specific PCR primers. Our results indicate that Chernobyl soil samples host a wide diversity of Bacteria, with stable patterns for Firmicutes and Actinobacteria and more variable for Proteobacteria. A collection of 650 aerobic and anaerobic culturable isolates was also constructed. A phylogenetic analysis of 250 heterotrophic aerobic isolates revealed that 5 phyla are represented: Beta-, Gamma-proteobacteria, Actinobacteria, Bacteroidetes and spore-forming Firmicutes, which is largely dominant. These collection will be screened for the presence of radionuclide-accumulating species in order to estimate the potential influence of microorganisms in radionuclides migration in soils

  6. Handbook of soil analysis. Mineralogical, organic and inorganic methods

    Energy Technology Data Exchange (ETDEWEB)

    Pansu, M. [Centre IRD, 34 - Montpellier (France); Gautheyrou, J.

    2006-07-01

    This handbook is a reference guide for selecting and carrying out numerous methods of soil analysis. It is written in accordance with analytical standards and quality control approaches.It covers a large body of technical information including protocols, tables, formulae, spectrum models, chromatograms and additional analytical diagrams. The approaches are diverse, from the simplest tests to the most sophisticated determination methods in the physical chemistry of mineralogical and organic structures, available and total elements, soil exchange complex, pesticides and contaminants, trace elements and isotopes.As a basic reference, it will be particularly useful to scientists, engineers, technicians, professors and students, in the areas of soil science, agronomy, earth and environmental sciences as well as in related fields such as analytical chemistry, geology, hydrology, ecology, climatology, civil engineering and industrial activities associated with soil. (orig.)

  7. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis

    International Nuclear Information System (INIS)

    Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J.; Dziadowicz, M.; Kopeć, E.; Majewska, U.; Mazurek, M.; Pajek, M.; Sobisz, M.; Stabrawa, I.; Wudarczyk-Moćko, J.; Góźdź, S.

    2015-01-01

    A particular subject of X-ray fluorescence analysis is its application in studies of the multielemental sample of composition in a wide range of concentrations, samples with different matrices, also inhomogeneous ones and those characterized with different grain size. Typical examples of these kinds of samples are soil or geological samples for which XRF elemental analysis may be difficult due to XRF disturbing effects. In this paper the WDXRF technique was applied in elemental analysis concerning different soil and geological samples (therapeutic mud, floral soil, brown soil, sandy soil, calcium aluminum cement). The sample morphology was analyzed using X-ray microtomography technique. The paper discusses the differences between the composition of samples, the influence of procedures with respect to the preparation of samples as regards their morphology and, finally, a quantitative analysis. The results of the studies were statistically tested (one-way ANOVA and correlation coefficients). For lead concentration determination in samples of sandy soil and cement-like matrix, the WDXRF spectrometer calibration was performed. The elemental analysis of the samples was complemented with knowledge of chemical composition obtained by X-ray powder diffraction.

  8. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Dziadowicz, M.; Kopeć, E. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Majewska, U. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Mazurek, M.; Pajek, M.; Sobisz, M.; Stabrawa, I. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Wudarczyk-Moćko, J. [Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Góźdź, S. [Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Institute of Public Health, Jan Kochanowski University, IX Wieków Kielc 19, 25-317 Kielce (Poland)

    2015-12-01

    A particular subject of X-ray fluorescence analysis is its application in studies of the multielemental sample of composition in a wide range of concentrations, samples with different matrices, also inhomogeneous ones and those characterized with different grain size. Typical examples of these kinds of samples are soil or geological samples for which XRF elemental analysis may be difficult due to XRF disturbing effects. In this paper the WDXRF technique was applied in elemental analysis concerning different soil and geological samples (therapeutic mud, floral soil, brown soil, sandy soil, calcium aluminum cement). The sample morphology was analyzed using X-ray microtomography technique. The paper discusses the differences between the composition of samples, the influence of procedures with respect to the preparation of samples as regards their morphology and, finally, a quantitative analysis. The results of the studies were statistically tested (one-way ANOVA and correlation coefficients). For lead concentration determination in samples of sandy soil and cement-like matrix, the WDXRF spectrometer calibration was performed. The elemental analysis of the samples was complemented with knowledge of chemical composition obtained by X-ray powder diffraction.

  9. Path coefficient analysis of zinc dynamics in varying soil environment

    International Nuclear Information System (INIS)

    Rattan, R.K.; Phung, C.V.; Singhal, S.K.; Deb, D.L.; Singh, A.K.

    1994-01-01

    Influence of soil properties on labile zinc, as measured by diethylene-triamine pentaacetic acid (DTPA) and zinc-65, and self-diffusion coefficients of zinc was assessed on 22 surface soil samples varying widely in their characteristics following linear regression and path coefficient analysis techniques. DTPA extractable zinc could be predicted from organic carbon status and pH of the soil with a highly significant coefficient of determination (R 2 =0.84 ** ). Ninety seven per cent variation in isotopically exchangeable zinc was explained by pH, clay content and cation exchange capacity (CEC) of soil. The self-diffusion coefficients (DaZn and DpZn) and buffer power of zinc exhibited exponential relationship with soil properties, pH being the most dominant one. Soil properties like organic matter, clay content etc. exhibited indirect effects on zinc diffusion rates via pH only. (author). 13 refs., 6 tabs

  10. A rotor optimization using regression analysis

    Science.gov (United States)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  11. Characterization of soil chemical properties of strawberry fields using principal component analysis

    Directory of Open Access Journals (Sweden)

    Gláucia Oliveira Islabão

    2013-02-01

    Full Text Available One of the largest strawberry-producing municipalities of Rio Grande do Sul (RS is Turuçu, in the South of the State. The strawberry production system adopted by farmers is similar to that used in other regions in Brazil and in the world. The main difference is related to the soil management, which can change the soil chemical properties during the strawberry cycle. This study had the objective of assessing the spatial and temporal distribution of soil fertility parameters using principal component analysis (PCA. Soil sampling was based on topography, dividing the field in three thirds: upper, middle and lower. From each of these thirds, five soil samples were randomly collected in the 0-0.20 m layer, to form a composite sample for each third. Four samples were taken during the strawberry cycle and the following properties were determined: soil organic matter (OM, soil total nitrogen (N, available phosphorus (P and potassium (K, exchangeable calcium (Ca and magnesium (Mg, soil pH (pH, cation exchange capacity (CEC at pH 7.0, soil base (V% and soil aluminum saturation(m%. No spatial variation was observed for any of the studied soil fertility parameters in the strawberry fields and temporal variation was only detected for available K. Phosphorus and K contents were always high or very high from the beginning of the strawberry cycle, while pH values ranged from very low to very high. Principal component analysis allowed the clustering of all strawberry fields based on variables related to soil acidity and organic matter content.

  12. A simple model for retrieving bare soil moisture from radar-scattering coefficients

    International Nuclear Information System (INIS)

    Chen, K.S.; Yen, S.K.; Huang, W.P.

    1995-01-01

    A simple algorithm based on a rough surface scattering model was developed to invert the bare soil moisture content from active microwave remote sensing data. In the algorithm development, a frequency mixing model was used to relate soil moisture to the dielectric constant. In particular, the Integral Equation Model (IEM) was used over a wide range of surface roughness and radar frequencies. To derive the algorithm, a sensitivity analysis was performed using a Monte Carlo simulation to study the effects of surface parameters, including height variance, correlation length, and dielectric constant. Because radar return is inherently dependent on both moisture content and surface roughness, the purpose of the sensitivity testing was to select the proper radar parameters so as to optimally decouple these two factors, in an attempt to minimize the effects of one while the other was observed. As a result, the optimal radar parameter ranges can be chosen for the purpose of soil moisture content inversion. One thousand samples were then generated with the IEM model followed by multivariate linear regression analysis to obtain an empirical soil moisture model. Numerical comparisons were made to illustrate the inversion performance using experimental measurements. Results indicate that the present algorithm is simple and accurate, and can be a useful tool for the remote sensing of bare soil surfaces. (author)

  13. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    Science.gov (United States)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  14. Analysis of soil samples from OMRE decommissioning project

    International Nuclear Information System (INIS)

    Simpson, O.D.; Chapin, J.A.; Hine, R.E.; Mandler, J.W.; Orme, M.P.; Soli, G.A.

    1979-01-01

    In order to establish that the present Organic Moderated Reactor Experiment (OMRE) site does not exceed the criteria for radioactive contamination, samples obtained from the remainder of the facility that was not removed such as soil, concrete pads, various structural materials, and the leach pond area were analyzed to determine their radioactive content. The results of the analyses performed on soil samples are presented. Results of this study indicate that the activity at the OMRE decommissioned area is confined to localized areas (i.e., the leach pond area and reactor area). Comparisons of radionuclide concentrations measured in soil taken from the lip of the leach pond with concentrations in soil obtained outside the Idaho National Engineering Laboratory (INEL) site boundaries indicate that the concentration in the soil at the edge of the leach pond is at background levels. The vertical augering technique was determined to be the best approach for obtaining shallow soil samples at the INEL. Selection of this technique was based on ease of operation and analytical results. Less area is disturbed per sample than with the horizontal trenching and coring techniques. The radionuclide analysis of the samples shows the existence of a few regions in the reactor and leach pond areas that were still above INEL release criteria. These regions have been or are being further decontaminated

  15. Direct methods of soil-structure interaction analysis for earthquake loadings(II)

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Chung Bang; Lee, S R; Kim, J M; Park, K L; Oh, S B; Choi, J S; Kim, Y S [Korea Advanced Institute of Science Technology, Daejeon (Korea, Republic of)

    1994-07-15

    In this study, methods for 3-D soil-structure interaction analysis have been studied. They are 3-D axisymmetric analysis method, 3-D axisymmetric finite element method incorporating infinite elements, and 3-D boundary element methods. The computer code, named as 'KIESSI - PF', has been developed which is based on the 3-D axisymmetric finite element method coupled with infinite element method. It is able to simulate forced vibration test results of a soil-structure interaction system. The Hualien FVT post-correlation analysis before backfill and the blind prediction analysis after backfill have been carried out using the developed computer code 'KIESSI - PF'.

  16. Direct methods of soil-structure interaction analysis for earthquake loadings(II)

    International Nuclear Information System (INIS)

    Yun, Chung Bang; Lee, S. R.; Kim, J. M.; Park, K. L.; Oh, S. B.; Choi, J. S.; Kim, Y. S.

    1994-07-01

    In this study, methods for 3-D soil-structure interaction analysis have been studied. They are 3-D axisymmetric analysis method, 3-D axisymmetric finite element method incorporating infinite elements, and 3-D boundary element methods. The computer code, named as 'KIESSI - PF', has been developed which is based on the 3-D axisymmetric finite element method coupled with infinite element method. It is able to simulate forced vibration test results of a soil-structure interaction system. The Hualien FVT post-correlation analysis before backfill and the blind prediction analysis after backfill have been carried out using the developed computer code 'KIESSI - PF'

  17. Experimental and theoretical analysis of cracking in drying soils

    OpenAIRE

    Lakshmikantha, M.R.

    2009-01-01

    The thesis focuses on the experimental and theoretical aspects of the process of cracking in drying soils. The results and conclusions were drawn from an exhaustive experimental campaign characterised by innovative multidisciplinary aspects incorporating Fracture Mechanics and classical Soil mechanics, aided with image analysis techniques. A detailed study of the previous works on the topic showed the absence of large scale fully monitored laboratory tests, while the existing studies were per...

  18. Power and performance software analysis and optimization

    CERN Document Server

    Kukunas, Jim

    2015-01-01

    Power and Performance: Software Analysis and Optimization is a guide to solving performance problems in modern Linux systems. Power-efficient chips are no help if the software those chips run on is inefficient. Starting with the necessary architectural background as a foundation, the book demonstrates the proper usage of performance analysis tools in order to pinpoint the cause of performance problems, and includes best practices for handling common performance issues those tools identify. Provides expert perspective from a key member of Intel's optimization team on how processors and memory

  19. Study of quantitative analysis of rare earth elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in soil samples by inductively couple plasma mass spectrometry

    International Nuclear Information System (INIS)

    Truong Duc Toan; Nguyen Giang; Vo Tran Quang Thai; Do Tam Nhan; Nguyen Le Anh; Nguyen Viet Duc; Luong Thi Tham; Truong Thi Phuong Mai

    2015-01-01

    Method for the determination of 16 rare earth elements (REEs) in soil samples without separating by inductively coupled plasma mass spectrometry (ICP-MS) has been studied at Dalat Nuclear Research Institute. The optimal conditions for ICP-MS NexION 300X with three modes: Standard, Collision (KED), and Reaction (DRC) have been studied on the Montana II soil reference material. The result analysis shows that: DRC mode only gives good analysis result for Sc, Y, La, Ce, Pr, Nd, Tm, Yb, and Lu; Standard mode exhibits good analysis results for all elements with error from 1.2 - 29.0% and KED mode is the best one with error less than 15%. The concentrations of elements in the soil samples of Cau Dat, Bao Loc, and Da Lat were determined, which concentrations of REEs in soil samples of Cau Dat are higher than that of the other areas in Lam Dong Province. (author)

  20. Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Leblouba

    2016-01-01

    Full Text Available Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.

  1. Spatial Prediction of Soil Classes by Using Soil Weathering Parameters Derived from vis-NIR Spectroscopy

    Science.gov (United States)

    Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose

    2010-05-01

    There is consensus in the scientific community about the great need of spatial soil information. Conventional mapping methods are time consuming and involve high costs. Digital soil mapping has emerged as an area in which the soil mapping is optimized by the application of mathematical and statistical approaches, as well as the application of expert knowledge in pedology. In this sense, the objective of the study was to develop a methodology for the spatial prediction of soil classes by using soil spectroscopy methodologies related with fieldwork, spectral data from satellite image and terrain attributes in simultaneous. The studied area is located in São Paulo State, and comprised an area of 473 ha, which was covered by a regular grid (100 x 100 m). In each grid node was collected soil samples at two depths (layers A and B). There were extracted 206 samples from transect sections and submitted to soil analysis (clay, Al2O3, Fe2O3, SiO2 TiO2, and weathering index). The first analog soil class map (ASC-N) contains only soil information regarding from orders to subgroups of the USDA Soil Taxonomy System. The second (ASC-H) map contains some additional information related to some soil attributes like color, ferric levels and base sum. For the elaboration of the digital soil maps the data was divided into three groups: i) Predicted soil attributes of the layer B (related to the soil weathering) which were obtained by using a local soil spectral library; ii) Spectral bands data extracted from a Landsat image; and iii) Terrain parameters. This information was summarized by a principal component analysis (PCA) in each group. Digital soil maps were generated by supervised classification using a maximum likelihood method. The trainee information for this classification was extracted from five toposequences based on the analog soil class maps. The spectral models of weathering soil attributes shown a high predictive performance with low error (R2 0.71 to 0.90). The spatial

  2. Analysis and Optimization of Heterogeneous Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2005-01-01

    . The success of such new design methods depends on the availability of analysis and optimization techniques. In this paper, we present analysis and optimization techniques for heterogeneous real-time embedded systems. We address in more detail a particular class of such systems called multi-clusters, composed...... to frames. Optimization heuristics for frame packing aiming at producing a schedulable system are presented. Extensive experiments and a real-life example show the efficiency of the frame-packing approach....

  3. Application of tracer gas studies in the optimal design of soil vapor extraction systems

    International Nuclear Information System (INIS)

    Marley, M.C.; Cody, R.J.; Polonsky, J.D.; Woodward, D.D.; Buterbaugh, G.J.

    1992-01-01

    In the design of an optimal, cost effective vapor extraction system (VE) for the remediation of volatile organic compounds (VOCs), it is necessary to account for heterogeneities in the vadose zone. In some cases, such as those found in relatively homogeneous sands, heterogeneities can be neglected as induced air flow through the subsurface can be considered uniform. The subsurface conditions encountered at many sites (soil/bedrock interfaces, fractured bedrock) will result in preferential subsurface-air flow pathways during the operation of the VES. The use of analytical and numerical compressible fluid flow models calibrated and verified from parameter evaluation tests can be utilized to determine vadose zone permeability tensors in heterogeneous stratifications and can be used to project optimal, full scale VES performance. Model-derived estimations of the effect of uniform and/or preferential air flow pathways on subsurface induced air flow velocities can be enhanced, confirmed utilizing tracer gas studies. A vadose zone tracer gas study entails the injection of an easily detected, preferably inert gas into differing locations within the vadose zone at distances away from the VES extraction well. The VES extraction well is monitored for the detection of the gas. This is an effective field methodology to qualify and quantify the subsurface air flow pathways. It is imperative to gain an understanding of the dynamics of the air flow in the soils and lithologies of each individual site, and design quick and effective methodologies for the characterization of the subsurface to streamline remediation costs and system operations. This paper focuses on the use of compressible fluid flow models and tracer gas studies in the enhancement of the design of vapor extraction systems

  4. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    W. Korres

    2010-05-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  5. Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Young, Chiu-Chung; Chang, Jo-Shu; Chang, Tsung-Chung; Cheng, Sheng-Shung

    2011-11-01

    Bioaugmentation and biostimulation have been widely applied in the remediation of oil contamination. However, ambiguous results have been reported. It is important to reveal the controlling factors on the field for optimal selection of remediation strategy. In this study, an integrated field landfarming technique was carried out to assess the relative effectiveness of five biological approaches on diesel degradation. The limiting factors during the degradation process were discussed. A total of five treatments were tested, including conventional landfarming, nutrient enhancement (NE), biosurfactant addition (BS), bioaugmentation (BA), and combination of bioaugmentation and biosurfactant addition (BAS). The consortium consisted of four diesel-degrading bacteria strains. Rhamnolipid was used as the biosurfactant. The diesel concentration, bacterial population, evolution of CO(2), and bacterial community in the soil were periodically measured. The best overall degradation efficiency was achieved by BAS treatment (90 ± 2%), followed by BA (86 ± 2%), NE (84 ± 3%), BS (78 ± 3%), and conventional landfarming (68 ± 3%). In the early stage, the total petroleum hydrocarbon was degraded 10 times faster than the degradation rates measured during the period from day 30 to 100. At the later stage, the degradation rates were similar among treatments. In the conventional landfarming, contaminated soil contained bacteria ready for diesel degradation. The availability of hydrocarbon was likely the limiting factor in the beginning of the degradation process. At the later stage, the degradation was likely limited by desorption and mass transfer of hydrocarbon in the soil matrix.

  6. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste.

    Science.gov (United States)

    Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang

    2017-01-01

    Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.

  7. A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation

    Science.gov (United States)

    Kumar, Sujay V.; Reichle, Rolf H.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.

    2011-01-01

    Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.

  8. Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review

    Directory of Open Access Journals (Sweden)

    Maria Ferrara

    2018-06-01

    Full Text Available Since the introduction of the recast of the EPBD European Directive 2010/31/EU, many studies on the cost-effective feasibility of nearly zero-energy buildings (NZEBs were carried out either by academic research bodies and by national bodies. In particular, the introduction of the cost-optimal methodology has given a strong impulse to research in this field. This paper presents a comprehensive and significant review on scientific works based on the application of cost-optimal analysis applications in Europe since the EPBD recast entered into force, pointing out the differences in the analyzed studies and comparing their outcomes before the new recast of EPBD enters into force in 2018. The analysis is conducted with special regard to the methods used for the energy performance assessment, the global cost calculation, and for the selection of the energy efficiency measures leading to design optimization. A critical discussion about the assumptions on which the studies are based and the resulting gaps between the resulting cost-optimal performance and the zero energy target is provided together with a summary of the resulting cost-optimal set of technologies to be used for cost-optimal NZEB design in different contexts. It is shown that the cost-optimal approach results as an effective method for delineating the future of NZEB design throughout Europe while emerging criticalities and open research issues are presented.

  9. The analysis of soil cores polluted with certain metals using the Box-Cox transformation

    International Nuclear Information System (INIS)

    Meloun, Milan; Sanka, Milan; Nemec, Pavel; Kritkova, Sona; Kupka, Karel

    2005-01-01

    To define the soil properties for a given area or country including the level of pollution, soil survey and inventory programs are essential tools. Soil data transformations enable the expression of the original data on a new scale, more suitable for data analysis. In the computer-aided interactive analysis of large data files of soil characteristics containing outliers, the diagnostic plots of the exploratory data analysis (EDA) often find that the sample distribution is systematically skewed or reject sample homogeneity. Under such circumstances the original data should be transformed. The Box-Cox transformation improves sample symmetry and stabilizes spread. The logarithmic plot of a profile likelihood function enables the optimum transformation parameter to be found. Here, a proposed procedure for data transformation in univariate data analysis is illustrated on a determination of cadmium content in the plough zone of agricultural soils. A typical soil pollution survey concerns the determination of the elements Be (16 544 values available), Cd (40 317 values), Co (22 176 values), Cr (40 318 values), Hg (32 344 values), Ni (34 989 values), Pb (40 344 values), V (20 373 values) and Zn (36 123 values) in large samples. - A new procedure of statistical analysis, with exploratory data diagnostics and Box-Cox transformation was used

  10. The analysis of soil cores polluted with certain metals using the Box-Cox transformation

    Energy Technology Data Exchange (ETDEWEB)

    Meloun, Milan [Department of Analytical Chemistry, University of Pardubice, CZ532 10 Pardubice (Czech Republic)]. E-mail: milan.meloun@upce.cz; Sanka, Milan [Central Institute for Supervisiting and Testing in Agriculture Division of Agrochemistry, Soil and Plant Nutrition, Hroznova 2, CZ656 06 Brno - Pisarky (Czech Republic); Nemec, Pavel [Central Institute for Supervisiting and Testing in Agriculture Division of Agrochemistry, Soil and Plant Nutrition, Hroznova 2, CZ656 06 Brno - Pisarky (Czech Republic)]. E-mail: pavel.nemec@ukzuz.cz; Kritkova, Sona [Department of Analytical Chemistry, University of Pardubice, CZ532 10 Pardubice (Czech Republic); Kupka, Karel [Trilobyte Statistical Software Ltd., CZ530 02 Pardubice (Czech Republic)]. E-mail: kupka@trilobyte.cz

    2005-09-15

    To define the soil properties for a given area or country including the level of pollution, soil survey and inventory programs are essential tools. Soil data transformations enable the expression of the original data on a new scale, more suitable for data analysis. In the computer-aided interactive analysis of large data files of soil characteristics containing outliers, the diagnostic plots of the exploratory data analysis (EDA) often find that the sample distribution is systematically skewed or reject sample homogeneity. Under such circumstances the original data should be transformed. The Box-Cox transformation improves sample symmetry and stabilizes spread. The logarithmic plot of a profile likelihood function enables the optimum transformation parameter to be found. Here, a proposed procedure for data transformation in univariate data analysis is illustrated on a determination of cadmium content in the plough zone of agricultural soils. A typical soil pollution survey concerns the determination of the elements Be (16 544 values available), Cd (40 317 values), Co (22 176 values), Cr (40 318 values), Hg (32 344 values), Ni (34 989 values), Pb (40 344 values), V (20 373 values) and Zn (36 123 values) in large samples. - A new procedure of statistical analysis, with exploratory data diagnostics and Box-Cox transformation was used.

  11. Radio biogeochemical assessment of the soil near the Issyk-Kul region

    International Nuclear Information System (INIS)

    Kaldybaev, B.; Djenbaev, B.

    2014-01-01

    Full text : Soil is one of the main natural resources, providing for the sustainable development of the country. For environmentally well founded and balanced use and protection of land resources it is necessary to create the optimal structure of arable farming, minimizing negative impacts on the land of diverse of agricultural activities. Determination of chemical elements in the soil was conducted by the methods of X-ray fluorescence analysis and radionuclide by the methods of instrumental gamma spectrometry

  12. Nonlinear dynamic analysis of framed structures including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Mahmood, M.N.; Ahmed, S.Y.

    2008-01-01

    The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)

  13. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  14. Nonlinear analysis approximation theory, optimization and applications

    CERN Document Server

    2014-01-01

    Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.

  15. McMaster Mesonet soil moisture dataset: description and spatio-temporal variability analysis

    Directory of Open Access Journals (Sweden)

    K. C. Kornelsen

    2013-04-01

    Full Text Available This paper introduces and describes the hourly, high-resolution soil moisture dataset continuously recorded by the McMaster Mesonet located in the Hamilton-Halton Watershed in Southern Ontario, Canada. The McMaster Mesonet consists of a network of time domain reflectometer (TDR probes collecting hourly soil moisture data at six depths between 10 cm and 100 cm at nine locations per site, spread across four sites in the 1250 km2 watershed. The sites for the soil moisture arrays are designed to further improve understanding of soil moisture dynamics in a seasonal climate and to capture soil moisture transitions in areas that have different topography, soil and land cover. The McMaster Mesonet soil moisture constitutes a unique database in Canada because of its high spatio-temporal resolution. In order to provide some insight into the dominant processes at the McMaster Mesonet sites, a spatio-temporal and temporal stability analysis were conducted to identify spatio-temporal patterns in the data and to suggest some physical interpretation of soil moisture variability. It was found that the seasonal climate of the Great Lakes Basin causes a transition in soil moisture patterns at seasonal timescales. During winter and early spring months, and at the meadow sites, soil moisture distribution is governed by topographic redistribution, whereas following efflorescence in the spring and summer, soil moisture spatial distribution at the forested site was also controlled by vegetation canopy. Analysis of short-term temporal stability revealed that the relative difference between sites was maintained unless there was significant rainfall (> 20 mm or wet conditions a priori. Following a disturbance in the spatial soil moisture distribution due to wetting, the relative soil moisture pattern re-emerged in 18 to 24 h. Access to the McMaster Mesonet data can be provided by visiting www.hydrology.mcmaster.ca/mesonet.

  16. Enzyme immunoassay for DDT analysis in Lebanese soils

    International Nuclear Information System (INIS)

    Bashour, I.; Dagher, S.; Shammas, G.; Sukkariyah, B.; Kawar, N.

    2000-01-01

    Full text: The use of enzyme-linked immunosorbent assay (ELISA) technique in estimating pesticide residue in soils is a faster, less expensive and easier method to use than the gas chromatography (GC) analysis technique..In the test, DDT pesticide residues in the simple compete with enzyme (horseradish peroxidase)-labeled DDT for a limited number of antibody binding sites on the inside surfaces of the test wells; the envirologix plate kit was tested for the measurement of total DDT in virgin and fortified (0-1000 ng g exp-1) soil samples of different properties from Lebanon. Extraction of DDT from soil was done by shaking the samples for 16 hours on a mechanical shaker with 90% methanol without any clean-up steps. Then the samples were allowed to stand for 30 minutes and an aliquot was taken from the clear supernatant. The DDT in the extract was measured in triplicate by GC and ELISA. The results indicated that the two techniques were highly correlated (r2 =0.9671-0.9973). Differences in soils physical and chemical properties did not accuracy of the detection limits of ELISA when compared to GC-ECD results. Immunoassay technique is a suitable method for rapid and accurate measurement of DDT residue in mineral Lebanese soils

  17. Applications of functional analysis to optimal control problems

    International Nuclear Information System (INIS)

    Mizukami, K.

    1976-01-01

    Some basic concepts in functional analysis, a general norm, the Hoelder inequality, functionals and the Hahn-Banach theorem are described; a mathematical formulation of two optimal control problems is introduced by the method of functional analysis. The problem of time-optimal control systems with both norm constraints on control inputs and on state variables at discrete intermediate times is formulated as an L-problem in the theory of moments. The simplex method is used for solving a non-linear minimizing problem inherent in the functional analysis solution to this problem. Numerical results are presented for a train operation. The second problem is that of optimal control of discrete linear systems with quadratic cost functionals. The problem is concerned with the case of unconstrained control and fixed endpoints. This problem is formulated in terms of norms of functionals on suitable Banach spaces. (author)

  18. Multidisciplinary Analysis and Optimal Design: As Easy as it Sounds?

    Science.gov (United States)

    Moore, Greg; Chainyk, Mike; Schiermeier, John

    2004-01-01

    The viewgraph presentation examines optimal design for precision, large aperture structures. Discussion focuses on aspects of design optimization, code architecture and current capabilities, and planned activities and collaborative area suggestions. The discussion of design optimization examines design sensitivity analysis; practical considerations; and new analytical environments including finite element-based capability for high-fidelity multidisciplinary analysis, design sensitivity, and optimization. The discussion of code architecture and current capabilities includes basic thermal and structural elements, nonlinear heat transfer solutions and process, and optical modes generation.

  19. Evaluation of PLS, LS-SVM, and LWR for quantitative spectroscopic analysis of soils

    Science.gov (United States)

    Soil testing requires the analysis of large numbers of samples in laboratory that are often time consuming and expensive. Mid-infrared spectroscopy (mid-IR) and near-infrared spectroscopy (NIRS) are fast, non-destructive, and inexpensive analytical methods that have been used for soil analysis, in l...

  20. The forensic analysis of soils and sediment taken from the cast of a footprint.

    Science.gov (United States)

    Bull, Peter A; Parker, Adrian; Morgan, Ruth M

    2006-10-16

    The routine production of a cast of a shoe-print taken in soil provides information other than shoe size and gait. Material adhering to the surface of the cast represents the preservation of the moment of footprint impression. The analysis of the interface between the cast and soil is therefore a potentially lucrative source of information for forensic reconstruction. These principles are demonstrated with reference to a murder case which took place in the English Midlands. The cast of a footprint provided evidence of a two-way transfer of material between the sole of a boot and the soil of a recently ploughed field. Lumps of soil, which had dried on a boot, were deposited on the field as the footprints were made. Pollen analysis of these lumps of soil indicated that the perpetrator of the imprint had been standing recently in a nearby stream. Fibre analysis together with physical and chemical characteristics of the soil suggested a provenance for contamination of this mud prior to deposition of the footprint. Carbon/nitrogen ratios of the water taken from the cast showed that distilled water had been used thus excluding the possibility of contamination of the boot-soil interface. It was possible to reconstruct three phases of previous activity of the wearer of the boot prior to leaving the footprint in the field after the murder had taken place. This analysis shows the power of integrating different independent techniques in the analysis of hitherto unrecognised forensic materials.

  1. The analysis of soil cores polluted with certain metals using the Box-Cox transformation.

    Science.gov (United States)

    Meloun, Milan; Sánka, Milan; Nemec, Pavel; Krítková, Sona; Kupka, Karel

    2005-09-01

    To define the soil properties for a given area or country including the level of pollution, soil survey and inventory programs are essential tools. Soil data transformations enable the expression of the original data on a new scale, more suitable for data analysis. In the computer-aided interactive analysis of large data files of soil characteristics containing outliers, the diagnostic plots of the exploratory data analysis (EDA) often find that the sample distribution is systematically skewed or reject sample homogeneity. Under such circumstances the original data should be transformed. The Box-Cox transformation improves sample symmetry and stabilizes spread. The logarithmic plot of a profile likelihood function enables the optimum transformation parameter to be found. Here, a proposed procedure for data transformation in univariate data analysis is illustrated on a determination of cadmium content in the plough zone of agricultural soils. A typical soil pollution survey concerns the determination of the elements Be (16 544 values available), Cd (40 317 values), Co (22 176 values), Cr (40 318 values), Hg (32 344 values), Ni (34 989 values), Pb (40 344 values), V (20 373 values) and Zn (36 123 values) in large samples.

  2. Direct methods of soil-structure interaction analysis for earthquake loadings(II)

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Chung Bang; Lee, S. R.; Kim, J. M.; Park, K. L.; Oh, S. B.; Choi, J. S.; Kim, Y. S. [Korea Advanced Institute of Science Technology, Daejeon (Korea, Republic of)

    1994-07-15

    In this study, methods for 3-D soil-structure interaction analysis have been studied. They are 3-D axisymmetric analysis method, 3-D axisymmetric finite element method incorporating infinite elements, and 3-D boundary element methods. The computer code, named as 'KIESSI - PF', has been developed which is based on the 3-D axisymmetric finite element method coupled with infinite element method. It is able to simulate forced vibration test results of a soil-structure interaction system. The Hualien FVT post-correlation analysis before backfill and the blind prediction analysis after backfill have been carried out using the developed computer code 'KIESSI - PF'.

  3. [Relationships between soil and rocky desertification in typical karst mountain area based on redundancy analysis].

    Science.gov (United States)

    Long, Jian; Liao, Hong-Kai; Li, Juan; Chen, Cai-Yun

    2012-06-01

    Redundancy analysis (RDA) was employed to reveal the relationships between soil and rocky desertification through vegetation investigation and analysis of soil samples collected in typical karst mountain area of southwest Guizhou Province. The results showed that except TP, TK and ACa, all other variables including SOC, TN, MBC, ROC, DOC, available nutrients and basal respiration showed significant downward trends during the rocky desertification process. RDA results showed significant correlations between different types of desertification and soil variables, described as non-degraded > potential desertification > light desertification > moderate desertification > severe desertification. Moreover, RDA showed that using SOC, TN, AN, and BD as soil indicators, 74.4% of the variance information on soil and rocky desertification could be explained. Furthermore, the results of correlation analysis showed that soil variables were significantly affected by surface vegetation. Considering the ecological function of the aboveground vegetation and the soil quality, Zanthoxylum would be a good choice for restoration of local vegetation in karst mountain area.

  4. Incorporation of Passive Microwave Brightness Temperatures in the ECMWF Soil Moisture Analysis

    Directory of Open Access Journals (Sweden)

    Joaquín Muñoz-Sabater

    2015-05-01

    Full Text Available For more than a decade, the European Centre for Medium-Range Weather Forecasts (ECMWF has used in-situ observations of 2 m temperature and 2 m relative humidity to operationally constrain the temporal evolution of model soil moisture. These observations are not available everywhere and they are indirectly linked to the state of the surface, so under various circumstances, such as weak radiative forcing or strong advection, they cannot be used as a proxy for soil moisture reinitialization in numerical weather prediction. Recently, the ECMWF soil moisture analysis has been updated to be able to account for the information provided by microwave brightness temperatures from the Soil Moisture and Ocean Salinity (SMOS mission of the European Space Agency (ESA. This is the first time that ECMWF uses direct information of the soil emission from passive microwave data to globally adjust the estimation of soil moisture by a land-surface model. This paper presents a novel version of the ECMWF Extended Kalman Filter soil moisture analysis to account for remotely sensed passive microwave data. It also discusses the advantages of assimilating direct satellite radiances compared to current soil moisture products, with a view to an operational implementation. A simple assimilation case study at global scale highlights the potential benefits and obstacles of using this new type of information in a global coupled land-atmospheric model.

  5. Processing and statistical analysis of soil-root images

    Science.gov (United States)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2016-04-01

    Importance of the hotspots such as rhizosphere, the small soil volume that surrounds and is influenced by plant roots, calls for spatially explicit methods to visualize distribution of microbial activities in this active site (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere (Spohn and Kuzyakov, 2014). Following further developing of soil zymography -to obtain a higher resolution of enzyme activities - we aimed to 1) quantify the images, 2) determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). To this end, we incubated soil-filled rhizoboxes with maize Zea mays L. and without maize (control box) for two weeks. In situ soil zymography was applied to visualize enzymatic activity of β-glucosidase and phosphatase at soil-root interface. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. Furthermore, we applied "spatial point pattern analysis" to determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). Our results demonstrated that distribution of hotspots at rhizosphere is clumped (aggregated) compare to control box without plant which showed regular (dispersed) pattern. These patterns were similar in all three replicates and for both enzymes. We conclude that improved zymography is promising in situ technique to identify, analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere. Moreover, such different patterns should be considered in assessments and modeling of rhizosphere extension and the corresponding effects on soil properties and functions. Key words: rhizosphere, spatial point pattern, enzyme activity, zymography, maize.

  6. Analysis of benzene, toluene, ethylbenzene and xylenes in soils by headspace and gas chromatography/flame ionization detector

    Directory of Open Access Journals (Sweden)

    Jurandir Pereira Pinto

    2006-02-01

    Full Text Available The constituents of gasoline: benzene, toluene, ethylbenzene and xylenes (BTEX are frequently found in soils due to leaks in fuel storage tanks and they present chronic toxicity. In this work it was developed and validated a methodology of BTEX analysis in soil by gas chromatography/ flame ionization detector and static headspace. The recovery of BTEX in soil samples was evaluated using soils with different textures (sandy and loamy. The analysis method showed good resolution, in a low time of analysis (less than 30 minutes. Limits of quantification of 0.05 mg Kg¯¹ soil for benzene, toluene, ethylbenzene and xylenes are below the guiding values that range from 0.15 to 95 mg Kg¯¹ soil, established to determine soil quality. It was verified that the methodology enables the use of this method for BTEX analysis of soil samples for passive environmental identification of gas stations.

  7. An alternative methodology for the analysis of electrical resistivity data from a soil gas study

    Science.gov (United States)

    Johansson, Sara; Rosqvist, Hâkan; Svensson, Mats; Dahlin, Torleif; Leroux, Virginie

    2011-08-01

    The aim of this paper is to present an alternative method for the analysis of resistivity data. The methodology was developed during a study to evaluate if electrical resistivity can be used as a tool for analysing subsurface gas dynamics and gas emissions from landfills. The main assumption of this study was that variations in time of resistivity data correspond to variations in the relative amount of gas and water in the soil pores. Field measurements of electrical resistivity, static chamber gas flux and weather data were collected at a landfill in Helsingborg, Sweden. The resistivity survey arrangement consisted of nine lines each with 21 electrodes in an investigation area of 16 ×20 m. The ABEM Lund Imaging System provided vertical and horizontal resistivity profiles every second hour. The data were inverted in Res3Dinv using L1-norm-based optimization method with a standard least-squares formulation. Each horizontal soil layer was then represented as a linear interpolated raster model. Different areas underneath the gas flux measurement points were defined in the resistivity model of the uppermost soil layer, and the vertical extension of the zones could be followed at greater depths in deeper layer models. The average resistivity values of the defined areas were calculated and plotted on a time axis, to provide graphs of the variation in resistivity with time in a specific section of the ground. Residual variation of resistivity was calculated by subtracting the resistivity variations caused by the diurnal temperature variations from the measured resistivity data. The resulting residual resistivity graphs were compared with field data of soil moisture, precipitation, soil temperature and methane flux. The results of the study were qualitative, but promising indications of relationships between electrical resistivity and variations in the relative amount of gas and water in the soil pores were found. Even though more research and better data quality is

  8. Optimized strategy of 1H and 13C solid-state NMR methods to investigate water dynamics in soil organic matter as well as the influence of crystallinity of poly(methylene) segments

    Science.gov (United States)

    Bertmer, Marko; Jaeger, Alexander; Schwarz, Jette; Schaumann, Gabriele

    2010-05-01

    Water plays a crucial role in soil organic matter (SOM) having various different functions such as transport of material, elution of ,e. g., pollutants in soil, and also the sequestration of humic substances. Furthermore, the generation and quantification of hydrophilic and hydrophobic regions in soil has several effects on SOM which can also include the storage amount and time of certain material, especially chemical pollutants. The importance of water in soil is also documented by the multitude of scientific approaches to characterize soils including diffusion NMR to study the water channel structure in soil. Our focus is on the study of water dynamics and soil structure to elucidate mechanisms of physicochemical aging. The approach uses the application of various solid-state NMR techniques - including 1H and 13C NMR - to get a multitude of information on SOM. In non-rotating samples, 1H lines are usually very broad and unstructured. Nevertheless, this rather simple technique allows for a differentiation of 1H containing chemicals based on their dynamics in soil. This includes rather solid soil components and solid as well as mobile water molecules. Based on an optimized 1H solid-state NMR strategy to study soil material together with a straightforward lineshape analysis, a series of soils and peats are characterized. Although even 1H NMR with sample spinning (MAS) often gives only limited information on different structures, we present results on the application of 2D 1H-1H phase-modulated Lee-Goldburg sequences (PMLG), that show already at medium spinning speeds the separation of functional groups. Their quantification can be correlated with sample composition, type of sample conditioning, and other parameters such as cation type or concentration and heat treatment. We are especially interested to correlate NMR data with DSC measurements based on a certain heat treatment of the soils. Our proposed model describes the presence of water in soil as a matrix

  9. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    International Nuclear Information System (INIS)

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated

  10. Soil Protection measures based on the analysis if sediment sources in a commercial farm at the Guadalquivir Valley (Spain)

    Science.gov (United States)

    Albert, Enrique; Brígido, Consuelo; Herrera, Pascual; Migallón, Jose Ignacio; Taguas, Encarnación V.

    2016-04-01

    High soil losses are associated with agricultural areas dedicated to traditional crops in Spain (olive, grapevine, almond and sunflower, among others) and they caused by interacting drivers such as frequent intense events, steep/hilly slopes and unsuitable managements (De Santisteban et al., 2006). These crops are essential for the Spanish economy but at the same time, they constitute important areas of soil degradation. This work has been promoted by a farm owner interested in improving the sustainability of his farm as well as solving traffic problems derived from a gully. An analysis based on a modeling approach and field measurements was carried out in order to diagnose the main sediment sources of a farm with traditional Mediterranean crops (sunflower and olives) and to propose actions for optimizing soil conservation efforts. Firstly, an environmental study to characterize meteorological and topographical features, soil properties and managements was performed. The farm was divided in different areas belonging to the same hydrological catchment, land-use and management. Secondly, splash and inter-rill erosion were evaluated in each spatial unit through the RUSLE model. Rills and gullies in the catchment were also measured by using orthophotographies and a tape in the field to calculate their corresponding sediment volume. Finally, a plan of soil protection measures was designed and presented to the owner who will apply the proposed actions, mainly cover crop seeding and construction of check dams. REFERENCES: De Santisteban, L. M., J. Casalí, and J. J. López. 2006. Assessing soil erosion rates in cultivated areas of Navarre (Spain). Earth Surf. Process. Landforms 31: 487-506.

  11. Hybrid electrokinetic method applied to mix contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, H.; Maria, E. [Dept. of Building Civil and Environmental Engineering, Concordia Univ., Montreal (Canada)

    2001-07-01

    Several industrials and municipal areas in North America are contaminated with heavy metals and petroleum products. This mix contamination presents a particularly difficult task for remediation when is exposed in clayey soil. The objective of this research was to find a method to cleanup mix contaminated clayey soils. Finally, a multifunctional hybrid electrokinetic method was investigated. Clayey soil was contaminated with lead and nickel (heavy metals) at the level of 1000 ppm and phenanthrene (PAH) of 600 ppm. Electrokinetic surfactant supply system was applied to mobilize, transport and removal of phenanthrene. A chelation agent (EDTA) was also electrokinetically supplied to mobilize heavy metals. The studies were performed on 8 lab scale electrokinetic cells. The mix contaminated clayey soil was subjected to DC total voltage gradient of 0.3 V/cm. Supplied liquids (surfactant and EDTA) were introduced in different periods of time (22 days, 42 days) in order to optimize the most excessive removal of contaminants. The ph, electrical parameters, volume supplied, and volume discharged was monitored continuously during each experiment. At the end of these tests soil and cathalyte were subjected to physico-chemical analysis. The paper discusses results of experiments including the optimal energy use, removal efficiency of phenanthrene, as well, transport and removal of heavy metals. The results of this study can be applied for in-situ hybrid electrokinetic technology to remediate clayey sites contaminated with petroleum product mixed with heavy metals (e.g. manufacture Gas Plant Sites). (orig.)

  12. Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation

    OpenAIRE

    Tao, Hsiao-Hang; Slade, Eleanor M.; Willis, Katherine J.; Caliman, Jean Pierre; Snaddon, Jake Lanion

    2016-01-01

    Optimizing the use of available soil management practices in oil palm plantations is crucial to enhance long-term soil fertility and productivity. However, this needs a thorough understanding of the functional responses of soil biota to these management practices. To address this knowledge gap, we used the bait lamina method to investigate the effects of different soil management practices on soil fauna feeding activity, and whether feeding activity was associated with management-mediated cha...

  13. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Directory of Open Access Journals (Sweden)

    G. M. Siqueira

    2013-07-01

    Full Text Available Soil penetration resistance (PR is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV, skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  14. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Science.gov (United States)

    Siqueira, G. M.; Silva, E. F. F.; Montenegro, A. A. A.; Vidal Vázquez, E.; Paz-Ferreiro, J.

    2013-07-01

    Soil penetration resistance (PR) is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV), skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  15. Evaluating the soil physical quality under long-term field experiments in Southern Italy

    Science.gov (United States)

    Castellini, Mirko; Stellacci, Anna Maria; Iovino, Massimo; Rinaldi, Michele; Ventrella, Domenico

    2017-04-01

    Long-term field experiments performed in experimental farms are important research tools to assess the soil physical quality (SPQ) given that relatively stable conditions can be expected in these soils. However, different SPQ indicators may sometimes provide redundant or conflicting results, making difficult an SPQ evaluation (Castellini et al., 2014). As a consequence, it is necessary to apply appropriate statistical procedures to obtain a minimum set of key indicators. The study was carried out at the Experimental Farm of CREA-SCA (Foggia) in two long-term field experiments performed on durum wheat. The first long-term experiment is aiming at evaluating the effects of two residue management systems (burning, B or soil incorporation of crop residues, I) while the second at comparing the effect of tillage (conventional tillage, CT) and sod-seeding (direct drilling, DD). In order to take into account both optimal and non-optimal soil conditions, five SPQ indicators were monitored at 5-6 sampling dates during the crop season (i.e., between November and June): soil bulk density (BD), macroporosity (PMAC), air capacity (AC), plant available water capacity (PAWC) and relative field capacity (RFC). Two additional data sets, collected on DD plot in different cropping seasons and in Sicilian soils differing for texture, depth and land use (N=140), were also used with the aim to check the correlation among indicators. Impact of soil management was assessed by comparing SPQ evaluated under different management systems with optimal reference values reported in literature. Two techniques of multivariate analysis (principal component analysis, PCA and stepwise discriminant analysis, SDA) were applied to select the most suitable indicator to facilitate the judgment on SPQ. Regardless of the considered management system, sampling date or auxiliary data set, correlation matrices always showed significant negative relationships between RFC and AC. Decreasing RFC at increasing AC is

  16. Soil infiltration based on bp neural network and grey relational analysis

    Directory of Open Access Journals (Sweden)

    Wang Juan

    2013-02-01

    Full Text Available Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.

  17. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    The effect of the wall-ground separation depends on the relation between the fundamental frequency of the SSI system and that of the surface layer. The maximum accelerations of the upper floors are increased if the side soil is soft. The building shear force is decreased below the ground level if the fundamental frequency of the SSI system is nearly equal to that of the surface layer. The floor response spectra are slightly increased in the high frequency range. Yielding of the soil occurred only in case that the side soil is soft, and the yield zone was restricted in the upper part of the surface layer. Therefore, the material nonlinearity did not affect the results so much. The results of the sway-rocking model (lumped mass model) analysis showed good agreements with those of the FEM models. (orig./HP)

  18. Evaluation of Analysis by Cross-Validation, Part II: Diagnostic and Optimization of Analysis Error Covariance

    Directory of Open Access Journals (Sweden)

    Richard Ménard

    2018-02-01

    Full Text Available We present a general theory of estimation of analysis error covariances based on cross-validation as well as a geometric interpretation of the method. In particular, we use the variance of passive observation-minus-analysis residuals and show that the true analysis error variance can be estimated, without relying on the optimality assumption. This approach is used to obtain near optimal analyses that are then used to evaluate the air quality analysis error using several different methods at active and passive observation sites. We compare the estimates according to the method of Hollingsworth-Lönnberg, Desroziers et al., a new diagnostic we developed, and the perceived analysis error computed from the analysis scheme, to conclude that, as long as the analysis is near optimal, all estimates agree within a certain error margin.

  19. Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms

    Directory of Open Access Journals (Sweden)

    Ayse T. Daloglu

    2018-01-01

    Full Text Available Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS and teaching-learning-based optimization (TLBO algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped bracing types are considered in the study. Optimum solutions of examples are carried out by a computer program coded in MATLAB interacting with SAP2000-OAPI for two-way data exchange. The stress constraints according to AISC-ASD (American Institute of Steel Construction-Allowable Stress Design, maximum lateral displacement constraints, interstorey drift constraints, and beam-to-column connection constraints are taken into consideration in the optimum design process. The parameters of the foundation model are calculated depending on soil surface displacements by using an iterative approach. The results obtained in the study show that bracing types and soil-structure interaction play very important roles in the optimum design of steel space frames. Finally, the techniques used in the optimum design seem to be quite suitable for practical applications.

  20. Design optimization and uncertainty analysis of SMA morphing structures

    International Nuclear Information System (INIS)

    Oehler, S D; Hartl, D J; Lopez, R; Malak, R J; Lagoudas, D C

    2012-01-01

    The continuing implementation of shape memory alloys (SMAs) as lightweight solid-state actuators in morphing structures has now motivated research into finding optimized designs for use in aerospace control systems. This work proposes methods that use iterative analysis techniques to determine optimized designs for morphing aerostructures and consider the impact of uncertainty in model variables on the solution. A combination of commercially available and custom coded tools is utilized. ModelCenter, a suite of optimization algorithms and simulation process management tools, is coupled with the Abaqus finite element analysis suite and a custom SMA constitutive model to assess morphing structure designs in an automated fashion. The chosen case study involves determining the optimized configuration of a morphing aerostructure assembly that includes SMA flexures. This is accomplished by altering design inputs representing the placement of active components to minimize a specified cost function. An uncertainty analysis is also conducted using design of experiment methods to determine the sensitivity of the solution to a set of uncertainty variables. This second study demonstrates the effective use of Monte Carlo techniques to simulate the variance of model variables representing the inherent uncertainty in component fabrication processes. This paper outlines the modeling tools used to execute each case study, details the procedures for constructing the optimization problem and uncertainty analysis, and highlights the results from both studies. (paper)

  1. Evaluation of granular soil properties in seismic analysis of nuclear structures

    International Nuclear Information System (INIS)

    Bica, A.; Riera, J.D.; Nanni, L.F.

    1983-01-01

    The seismic analysis of nuclear power plant structures founded on soils, as well as related soil-structure interaction studies, are often made by means of 'equivalent' linear models of soil behavior, represented by effective values of damping and of Young's modulus. Such approach requires resorting to iteration on the material properties, thus leading to a 'multilinear' analysis which can be justified in practice on account of the scarce knowledge of constitutive equations applicable to soils under a general three-dimensional stress state. It is therefore important to establish bounds on the applicability of the multilinear solutions, and to develop reliable procedures for the evaluation of the soil properties to be used in seismic analyses. The paper focuses attention on the dynamic properties of sandy soils. To that effect, an extensive program was conducted using a triaxial dynamic testing apparatus developed at the UFRGS, and the results compared with existing experimental evidence, including data from resonant-column testing. Linear and nonlinear regression techniques applied to the experimental data led to new equations relating damping and soil stiffness to the dependent variables, and permitted as well the determination of the expected error of the estimated parameters. It was found that an increasing frequency, slightly increases both Young's modulus and the effective damping ratio. In addition, the influence of the content of fines was found to be significant. This variable does not appear in several available empirical equations, which only consider the confining pressure, the void ratio and the amplitude of the cyclic shear deformations as relevant variables. (orig.)

  2. Time series analysis of soil Radon-222 recorded at Kutch region, Gujarat, India

    International Nuclear Information System (INIS)

    Madhusudan Rao, K.; Rastogi, B.K.; Barman, Chiranjib; Chaudhuri, Hirok

    2013-01-01

    Kutch region in Gujarat lies in a seismic vulnerable zone (seismic zone-v). After the devastating Bhuj earthquake (7.7M) of January 26, 2001 in the Kutch region several researcher focused their attention to monitor geophysical and geochemical precursors for earthquakes in the region. In order to find out the possible geochemical precursory signals for earthquake events, we monitored radioactive gas radon-222 in sub surface soil gas at Kutch region. We have analysed the recorded soil radon-222 time series by means of nonlinear techniques such as FFT power spectral analysis, empirical mode decomposition, multi-fractal analysis along with other linear statistical methods. Some fascinating and fruitful results originated out the nonlinear analysis of the said time series have been discussed in the present paper. The entire analytical method aided us to recognize the nature and pattern of soil radon-222 emanation process. Moreover the recording and statistical and non-linear analysis of soil radon data at Kutch region will assist us to understand the preparation phase of an imminent seismic event in the region. (author)

  3. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Investigation and analysis of heavy metal pollution related to soil-Panax notoginseng system].

    Science.gov (United States)

    Chen, Lu; Mi, Yan-Hua; Lin, Xin; Liu, Da-Hui; Zeng, Min; Chen, Xiao-Yan

    2014-07-01

    In this study, five heavy metals contamination of soil and different parts of Panax notoginseng in the plantation area was investigated. Analysis of heavy metals correlation between the planting soil and P. notoginseng; and the absorption and accumulation characteristics and translocation of soil heavy metals by P. notoginseng plants was revealed. Through field investigation and laboratory analytical methods, analysis of China's 30 different soil P. notoginseng origin and content of heavy metals in five different parts of the P. notoginseng plant content of heavy metals. The results revealed that the soil heavy metals should not be neglected in the plantation area Referring to the national soil quality standards (GB15608-1995), the excessive degree of soil heavy metals pollution showed Hg > As > Cd > Cr in the plantation area, and Pb content of soil was in the scope of the standard. Refer to 'Green Industry Standards for Import and Export of Medical Plants and Preparations', the excessive degree of heavy metals content of P. notoginseng plants showed As > Pb > Cr > Cd, and Hg content of plants was in the scope of the standard. Concentrations of five heavy metals of underground parts of P. notoginseng plants are higher than aboveground, and heavy metals elements are more concentrated in the root, followed by the rhizome of P. notoginseng plants. Heavy metal accumulation characteristics of the different parts of the P. notoginseng of the overall performance is the root > the rhizome > the root tuber > leaves > stems. From the point of view BCF value analysis of various parts of the P. notoginseng plants to absorb heavy metals in soil, BCF values of all samples were less than 1, description P. notoginseng not belong Hyperaccumulator. From the view of transportation and related analysis of the soil-P. notoginseng systems, the rhizome of P. notoginseng and the content of As and Cr in soil was significantly correlated, the root of P. notoginseng and the content of Cd in

  5. Trace element analysis of soil type collected from the Manjung and central Perak

    Energy Technology Data Exchange (ETDEWEB)

    Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che [Blok 18, Makmal Analisis Kimia (Aca/Bas), Agensi Nuklear Malaysia, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  6. Analysis of Foundation of Tall R/C Chimney Incorporating Flexibility of Soil

    Science.gov (United States)

    Jayalekshmi, B. R.; Jisha, S. V.; Shivashankar, R.

    2017-09-01

    Three dimensional Finite Element (FE) analysis was carried out for 100 and 400 m high R/C chimneys having piled annular raft and annular raft foundations considering the flexibility of soil subjected to across-wind load. Stiffness of supporting soil and foundation were varied to evaluate the significance of Soil-Structure Interaction (SSI). The integrated chimney-foundation-soil system was analysed by finite element software ANSYS based on direct method of SSI assuming linear elastic material behaviour. FE analyses were carried out for two cases of SSI namely, (1) chimney with annular raft foundation and (2) chimney with piled annular raft foundation. The responses in raft such as bending moments and settlements were evaluated for both the cases and compared to those obtained from the conventional method of analysis of annular raft foundation. It is found that the responses in raft vary considerably depending on the stiffness of the underlying soil and the stiffness of foundation. Piled raft foundations are better suited for tall chimneys to be constructed in loose or medium sand.

  7. Soil-structure interaction effects in seismic analysis of turbine generator building on rock-like foundation

    International Nuclear Information System (INIS)

    Park, Chi Seon; Lee, Sang Hoon; Yoo, Kwang Hoon

    2004-01-01

    Soil properties supporting structure may become criteria determining methodologies for seismic response analysis of a structure. Regulatory Guide describes that a fixed-base assumption is acceptable for structures supported on rock or rock-like materials defined by a shear wave velocity of 3,500 ft/sec or greater at a shear strain of 10 -3 percent or smaller when considering preloaded soil conditions due to the structure. Seismic analyses for the Korean nuclear power plant (NPP) structures satisfying the above site soil condition have been completed through the fixed-base analysis. However, dynamic responses for relatively stiff structures such as NPP structures still have soil-structure interaction (SSI) effects. In other words, the fixed-base analysis does not always yield conservative results to be compared with SSI analysis. The SSI effects due to different stiff soil properties for Turbine Generator Building (TGB) structure to be constructed at Kori site of South Korea are investigated in views of floor response spectra (FRS) and member forces

  8. XRF analysis of soils contaminated by dust falls

    International Nuclear Information System (INIS)

    Marumo, Katsumi; Onoki, Yuka; Wada, Nobuhiko; Okano, Hideki

    2013-01-01

    Dust falls from the chimneys of waste incineration plants, coal-fired power plants, and refineries may contaminate soil over vast areas. Using an auger machine at 72 sites around a refinery in the Kanto area, Japan, we obtained 216 soil samples for a screening survey of potentially contaminated land. Qualitative and quantitative chemical analyses of zinc, lead, and cadmium were performed using a transmission X-ray fluorescence spectrometer (TXRF). X-ray fluorescence (XRF) chemical analytical data suggested that contaminated soil extends up to 3 km away from the chimneys of the refinery. Using calibration curves for the intensity ratios of Zn Kα X-ray to Mo Kβ Compton scatter X-ray [(Zn Kα)/(Mo-Kβ-Compton)], Pb Lβ X-ray to Mo-Kβ-Compton scatter X-ray [(Pb Lβ)/(Mo-Kβ-Compton)], and Cd Kα X-ray to Mo-Kβ Compton scatter X-ray [(Cd Kβ)/(Mo-Kβ-Compton)] of 30 reference materials, we obtained the Zn, Pb, and Cd concentrations of these 216 soil samples. The Pb and Cd concentrations from the XRF chemical analytical data were very similar to the Pb and Cd leachabilities determined by 1 M HC1 leaching test (MOE-approved method No. 19), suggesting that the chemical forms in which Pb and Cd occur are an adsorbed phase and a carbonate phase, which can be easily dissolved by 1 M HC1. XRF spectra of individual soil particles, obtained by spot-sized X-ray beams passed through a 1.5-mm-diameter and a 0.5-mm-diameter collimators, suggested that most of the soil fractions contained Zn and Pb. The levels of brightness of the X-ray images of these Zn- and Pb-bearing fractions were monitored with an X-ray CCD camera attached to the TXRF. Most of the soil fractions were transparent at the maximum X-ray tube voltage (50 kV), suggesting that the soil samples are suitable for the quantitative XRF chemical analysis of Zn and Pb. (author)

  9. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    OpenAIRE

    Mahmoudpour, Sanaz; Attarnejad, Reza; Behnia, Cambyse

    2011-01-01

    Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite el...

  10. Development of Soil Compaction Analysis Software (SCAN Integrating a Low Cost GPS Receiver and Compactometer

    Directory of Open Access Journals (Sweden)

    Dongha Lee

    2012-02-01

    Full Text Available A software for soil compaction analysis (SCAN has been developed for evaluating the compaction states using the data from the GPS as well as a compactometer attached on the roller. The SCAN is distinguished from other previous software for intelligent compaction (IC in that it can use the results from various types of GPS positioning methods, and it also has an optimal structure for remotely managing the large amounts of data gathered from numerous rollers. For this, several methods were developed: (1 improving the accuracy of low cost GPS receiver’s positioning results; (2 modeling the trajectory of a moving roller using a GPS receiver’s results and linking it with the data from the compactometer; and (3 extracting the information regarding the compaction states of the ground from the modeled trajectory, using spatial analysis methods. The SCAN was verified throughout various field compaction tests, and it has been confirmed that it can be a very effective tool in evaluating field compaction states.

  11. [Screening and optimization of cholesterol conversion strain].

    Science.gov (United States)

    Fan, Dan; Xiong, Bingjian; Pang, Cuiping; Zhu, Xiangdong

    2014-10-04

    Bacterial strain SE-1 capable of transforming cholesterol was isolated from soil and characterized. The transformation products were identified. Fermentation conditions were optimized for conversion. Cholesterol was used as sole carbon source to isolate strain SE-1. Morphology, physiological and biochemical characteristics of strain SE-1 were studied. 16S rRNA gene was sequenced and subjected to phylogenetic analysis. Fermentation supernatants were extracted with chloroform, the transformation products were analyzed by silica gel thin layer chromatography and Sephadex LH20. Their structures were identified by 1H-NMR and 13C-NMR. Fermentation medium including carbon and nitrogen, methods of adding substrates and fermentation conditions for Strain SE-1 were optimized. Strain SE-1 was a Gram-negative bacterium, exhibiting the highest homologs to Burkholderia cepacia based on the physiological analysis. The sequence analysis of 16S rRNA gene of SE-1 strain and comparison with related Burkholderia show that SE-1 strain was very close to B. cepacia (Genbank No. U96927). The similarity was 99%. The result of silica gel thin layer chromatography shows that strain SE-1 transformed cholesterol to two products, 7beta-hydroxycholesterol and the minor product was 7-oxocholesterol. The optimum culture conditions were: molasses 5%, (NH4 )2SO4 0.3%, 4% of inoculation, pH 7.5 and 36 degrees C. Under the optimum culture condition, the conversion rate reached 34.4% when concentration of cholesterol-Tween 80 was 1 g/L. Cholesterol 7beta-hydroxylation conversion rate under optimal conditions was improved by 20.8%. Strain SE-1 isolated from soil is capable of converting cholesterol at lab-scale.

  12. Integrated intelligent instruments using supercritical fluid technology for soil analysis

    International Nuclear Information System (INIS)

    Liebman, S.A.; Phillips, C.; Fitzgerald, W.; Levy, E.J.

    1994-01-01

    Contaminated soils pose a significant challenge for characterization and remediation programs that require rapid, accurate and comprehensive data in the field or laboratory. Environmental analyzers based on supercritical fluid (SF) technology have been designed and developed for meeting these global needs. The analyzers are designated the CHAMP Systems (Chemical Hazards Automated Multimedia Processors). The prototype instrumentation features SF extraction (SFE) and on-line capillary gas chromatographic (GC) analysis with chromatographic and/or spectral identification detectors, such as ultra-violet, Fourier transform infrared and mass spectrometers. Illustrations are given for a highly automated SFE-capillary GC/flame ionization (FID) configuration to provide validated screening analysis for total extractable hydrocarbons within ca. 5--10 min, as well as a full qualitative/quantitative analysis in 25--30 min. Data analysis using optional expert system and neural networks software is demonstrated for test gasoline and diesel oil mixtures in this integrated intelligent instrument approach to trace organic analysis of soils and sediments

  13. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

    2016-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular

  14. Numerical analysis of the construction of Odelouca Dam using a Subloading Surface Soil Model

    OpenAIRE

    Brito, A.; Maranha, J. R.; Caldeira, L.

    2014-01-01

    Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil, and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca dam construction. In this analysis the explicit finite difference program FLAC is used. An unconventional elastoplastic soil model, a Subloadin...

  15. Numerical investigation of soil and buried structures using finite element analysis

    Directory of Open Access Journals (Sweden)

    Meysam Shirzad Shahrivar

    2017-02-01

    Full Text Available Today the important of studying soil effect on behavior of soil  contacted structures such as foundations, piles,  retaining wall and other similar structures is so much that neglecting of soil-structure interaction effect can cause to untrue results. In this paper soil-structure interaction simulation was done by using Finite element method analysis with ABAQUS version 6.13-14.The results has been presented based on pile function in contact with soil, vertical stresses in soil and structures, pore pressure in drained and undrained condition and underground water level.Final conclusions revealed that pore pressure effect is not uniform on all parts of pile and amount of pore pressure increment in top elements is lower than down elements of  pile.Further it was proven that average amount of vertical stress on end of pile is    of this stress on top of the pile. thus it was concluded that 70% of pile bearing capacity is depend on friction of soil and pile contact surface.

  16. Allowable residual contamination levels of radionuclides in soil from pathway analysis

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Baes, C.F. III

    1987-01-01

    The Remedial Action Program (RAP) at Oak Ridge National Laboratory will include well drilling, facility upgrades, and other waste management operations likely to involve soils contaminated with radionuclides. A preliminary protocol and generalized criteria for handling contaminated soils is needed to coordinate and plan RAP activities, but there exists only limited information on contaminate nature and distribution at ORNL RAP sites. Furthermore, projections of long-term decommissioning and closure options for these sites are preliminary. They have adapted a pathway analysis model, DECOM, to quantify risks to human health from radionuclides in soil and used it to outline preliminary criteria for determining the fate of contaminated soil produced during RAP activities. They assumed that the site could be available for unrestricted use immediately upon decontamination. The pathways considered are consumption of food grown on the contaminated soil, including direct ingestion of soil from poorly washed vegetables, direct radiation from the ground surface, inhalation of resuspended radioactive soil, and drinking water from a well drilled through or near the contaminated soil. We will discuss the assumptions and simplifications implicit in DECOM, the site-specific data required, and the results of initial calculations for the Oak Ridge Reservation

  17. Grey Wolf Optimizer Based on Powell Local Optimization Method for Clustering Analysis

    Directory of Open Access Journals (Sweden)

    Sen Zhang

    2015-01-01

    Full Text Available One heuristic evolutionary algorithm recently proposed is the grey wolf optimizer (GWO, inspired by the leadership hierarchy and hunting mechanism of grey wolves in nature. This paper presents an extended GWO algorithm based on Powell local optimization method, and we call it PGWO. PGWO algorithm significantly improves the original GWO in solving complex optimization problems. Clustering is a popular data analysis and data mining technique. Hence, the PGWO could be applied in solving clustering problems. In this study, first the PGWO algorithm is tested on seven benchmark functions. Second, the PGWO algorithm is used for data clustering on nine data sets. Compared to other state-of-the-art evolutionary algorithms, the results of benchmark and data clustering demonstrate the superior performance of PGWO algorithm.

  18. On the origin of some red soils from Sardinia (Italy). A neutron activation analysis investigation

    International Nuclear Information System (INIS)

    Genova, N.; Meloni, S.; Oddone, M.; Pavia Univ.; Melis, P.

    2001-01-01

    In Sardinia, the Italian island in the middle of the Mediterranean Sea, there are many red soils developed on limestone or dolomite. Soil and underlying bedrock samples from 5 different sites have been submitted to chemical and mineralogical characterization, by using standard X-ray diffraction analysis, spectrochemical methods and instrumental neutron activation analysis. Obtained results are presented and discussed in terms of precision and accuracy. Trace element concentration variation with depth is discussed as well as the enrichment/depletion ratios between soils and rocks, and the rare-earth element distribution. Data analysis suggests for some soils a formation process based on the evolution of the underlying bedrock, and for the other soils a formation process partly based on the evolution of the local rock but with meaningful contributions of external sources, both eolian and/or alluvial. (author)

  19. Soil properties related to 60Co bioavailability in tropical soils

    International Nuclear Information System (INIS)

    Bartoly, Flavia; Wasserman, Maria Angelica; Rochedo, Elaine Ruas Rodriguez; Viana, Aline Gonzalez; Souza, Rodrigo Camara; Oliveira, Giselle Rodrigues; Reis, Wagner Goncalves Soares; Perez, Daniel Vidal

    2005-01-01

    This work presents the results of field experiments to obtain soil to plants Transfer factor (TF) for 60 Co in reference plants cultivated in Ferralsol, Acrisol and Nitisol. These soils represent the majority of Brazilian agricultural area. Values of TF varied from 0.001 to 0.05 for corn and from 0.001 to 0.81 for cabbage. Results of 60 Co TF were discussed in relation to the physical and chemical properties of the soils and 60 Co geochemical partition. The sequential chemical extraction showed that more than 40% of the 60 Co present in the soils are associated to manganese oxides. These results will provide regional values for parameters used in the environmental radiological modeling aiming to optimize the planning of emergency interventions or the waste management related to tropical soils. (author)

  20. Soils radiological characterization under a nuclear facility - 59046

    International Nuclear Information System (INIS)

    Aubonnet, Emilie; Dubot, Didier

    2012-01-01

    Nowadays, nuclear industry is facing a crucial need in establishing radiological characterization for the appraisal and the monitoring of any remediation work. Regarding its experience in this domain, the French Alternative Energies and Atomic Energy Commission (CEA) of Fontenay-aux- Roses, established an important feedback and developed over the last 10 years a sound methodology for radiological characterization. This approach is based on several steps: - historical investigations; - assumption and confirmation of the contamination; - surface characterization; - in-depth characterization; - rehabilitation objectives; - remediation process. The amount of measures, samples and analysis is optimized for data processing using geo-statistics. This approach is now used to characterize soils under facilities. The paper presents the radiological characterization of soils under a facility basement. This facility has been built after the first generation of nuclear facilities, replacing a plutonium facility which has been dismantled in 1960. The presentation details the different steps of radiological characterization from historical investigations to optimization of excavation depths, impact studies and contaminated volumes. (authors)

  1. Seismic simulation analysis of nuclear reactor building by soil-building interaction model

    International Nuclear Information System (INIS)

    Muto, K.; Kobayashi, T.; Motohashi, S.; Kusano, N.; Mizuno, N.; Sugiyama, N.

    1981-01-01

    Seismic simulation analysis were performed for evaluating soil-structure interaction effects by an analytical approach using a 'Lattice Model' developed by the authors. The purpose of this paper is to check the adequacy of this procedure for analyzing soil-structure interaction by means of comparing computed results with recorded ones. The 'Lattice Model' approach employs a lumped mass interactive model, in which not only the structure but also the underlying and/or surrounding soil are modeled as descretized elements. The analytical model used for this study extends about 310 m in the horizontal direction and about 103 m in depth. The reactor building is modeled as three shearing-bending sticks (outer wall, inner wall and shield wall) and the underlying and surrounding soil are divided into four shearing sticks (column directly beneath the reactor building, adjacent, near and distant columns). A corresponding input base motion for the 'Lattice Model' was determined by a deconvolution analysis using a recorded motion at elevation -18.5 m in the free-field. The results of this simulation analysis were shown to be in reasonably good agreement with the recorded ones in the forms of the distribution of ground motions and structural responses, acceleration time histories and related response spectra. These results showed that the 'Lattice Model' approach was an appropriate one to estimate the soil-structure interaction effects. (orig./HP)

  2. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure method eliminates the deconvolution calculations and the related assumption -regarding type and direction of earthquake waves- required in the direct method. The substructure method is computationally efficient because the two substructures-the structure and the soil region- are analyzed separately; and, more important, it permits taking advantage of the important feature that response to earthquake ground motion is essentially contained in the lower few natural modes of vibration of the structure on fixed base. For sites where essentially similar soils extend to large depths and there is no obvious rigid boundary such as a soil-rock interface, numerical results for earthquake response of a nuclear reactor structure are presented to demonstrate that the commonly used finite element method may lead to unacceptable errors; but the substructure method leads to reliable results

  3. Comparison of Soil Models in the Thermodynamic Analysis of a Submarine Pipeline Buried in Seabed Sediments

    Directory of Open Access Journals (Sweden)

    Magda Waldemar

    2017-12-01

    Full Text Available This paper deals with mathematical modelling of a seabed layer in the thermodynamic analysis of a submarine pipeline buried in seabed sediments. The existing seabed soil models: a “soil ring” and a semi-infinite soil layer are discussed in a comparative analysis of the shape factor of a surrounding soil layer. The meaning of differences in the heat transfer coefficient of a soil layer is illustrated based on a computational example of the longitudinal temperaturę profile of a -kilometer long crude oil pipeline buried in seabed sediments.

  4. Harnessing the soil microbiome for increased drought resistance

    Science.gov (United States)

    Dr. Manter is a Research Soil Scientist in the Soil Management and Sugar Beet Research Unit (SMSBRU) of the USDA-Agricultural Research Service in Fort Collins, Colorado. His research examines soil biology and plant-microbial interactions aimed at optimizing soil health. Research emphasis is on dev...

  5. Aerodynamic multi-objective integrated optimization based on principal component analysis

    Directory of Open Access Journals (Sweden)

    Jiangtao HUANG

    2017-08-01

    Full Text Available Based on improved multi-objective particle swarm optimization (MOPSO algorithm with principal component analysis (PCA methodology, an efficient high-dimension multi-objective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency, the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil, and the proposed method is integrated into aircraft multi-disciplinary design (AMDEsign platform, which contains aerodynamics, stealth and structure weight analysis and optimization module. Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.

  6. Earthquake response analysis considering structure-soil-structure interaction

    International Nuclear Information System (INIS)

    Shiomi, T.; Takahashi, K.; Oguro, E.

    1981-01-01

    This paper proposes a numerical method of earthquake response analysis considering the structure-soil-structure interaction between two adjacent buildings. In this paper an analytical study is presented in order to show some typical features of coupling effects of two reactor buildings of the BWR-type nuclear power plant. The technical approach is a kind of substructure method, which at first evaluates the compliance properties with the foundation-soil-foundation interaction and then uses the compliance in determining seismic responses of two super-structures during earthquake motions. For this purpose, it is assumed that the soil medium is an elastic half space for modeling and that the rigidity of any type of structures such as piping facilities connecting the adjacent buildings is negligible. The technical approach is mainly based on the following procedures. Supersturcture stiffness is calculated by using the method which has been developed in our laboratory based on the Thin-Wall Beam Theory. Soil stiffness is expressed by a matrix with 12 x 12 elements as a function of frequency, which is calculated using the soil compliance functions proposed in Dr. Tajimi's Theory. These stiffness values may be expressed by complex numbers for modeling the damping mechanism of superstructures. We can solve eigenvalue problems with frequency dependent stiffness and the large-scale matrix using our method which is based on condensing the matrix to the suitable size by Rayleigh-Ritz method. Earthquake responses can be solved in the frequency domain by Fourier Transform. (orig./RW)

  7. Analysis and design optimization of flexible pavement

    Energy Technology Data Exchange (ETDEWEB)

    Mamlouk, M.S.; Zaniewski, J.P.; He, W.

    2000-04-01

    A project-level optimization approach was developed to minimize total pavement cost within an analysis period. Using this approach, the designer is able to select the optimum initial pavement thickness, overlay thickness, and overlay timing. The model in this approach is capable of predicting both pavement performance and condition in terms of roughness, fatigue cracking, and rutting. The developed model combines the American Association of State Highway and Transportation Officials (AASHTO) design procedure and the mechanistic multilayer elastic solution. The Optimization for Pavement Analysis (OPA) computer program was developed using the prescribed approach. The OPA program incorporates the AASHTO equations, the multilayer elastic system ELSYM5 model, and the nonlinear dynamic programming optimization technique. The program is PC-based and can run in either a Windows 3.1 or a Windows 95 environment. Using the OPA program, a typical pavement section was analyzed under different traffic volumes and material properties. The optimum design strategy that produces the minimum total pavement cost in each case was determined. The initial construction cost, overlay cost, highway user cost, and total pavement cost were also calculated. The methodology developed during this research should lead to more cost-effective pavements for agencies adopting the recommended analysis methods.

  8. Inverse Modeling of Soil Hydraulic Parameters Based on a Hybrid of Vector-Evaluated Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Yi-Bo Li

    2018-01-01

    Full Text Available The accurate estimation of soil hydraulic parameters (θs, α, n, and Ks of the van Genuchten–Mualem model has attracted considerable attention. In this study, we proposed a new two-step inversion method, which first estimated the hydraulic parameter θs using objective function by the final water content, and subsequently estimated the soil hydraulic parameters α, n, and Ks, using a vector-evaluated genetic algorithm and particle swarm optimization (VEGA-PSO method based on objective functions by cumulative infiltration and infiltration rate. The parameters were inversely estimated for four types of soils (sand, loam, silt, and clay under an in silico experiment simulating the tension disc infiltration at three initial water content levels. The results indicated that the method is excellent and robust. Because the objective function had multilocal minima in a tiny range near the true values, inverse estimation of the hydraulic parameters was difficult; however, the estimated soil water retention curves and hydraulic conductivity curves were nearly identical to the true curves. In addition, the proposed method was able to estimate the hydraulic parameters accurately despite substantial measurement errors in initial water content, final water content, and cumulative infiltration, proving that the method was feasible and practical for field application.

  9. Y-12 site-specific earthquake response analysis and soil liquefaction assessment

    International Nuclear Information System (INIS)

    Ahmed, S.B.; Hunt, R.J.; Manrod, W.E. III.

    1995-01-01

    A site-specific earthquake response analysis and soil liquefaction assessment were performed for the Oak Ridge Y-12 Plant. The main purpose of these studies was to use the results of the analyses for evaluating the safety of the performance category -1, -2, and -3 facilities against the natural phenomena seismic hazards. Earthquake response was determined for seven (7), one dimensional soil columns (Fig. 12) using two horizontal components of the PC-3 design basis 2000-year seismic event. The computer program SHAKE 91 (Ref. 7) was used to calculate the absolute response accelerations on top of ground (soil/weathered shale) and rock outcrop. The SHAKE program has been validated for horizontal response calculations at periods less than 2.0 second at several sites and consequently is widely accepted in the geotechnical earthquake engineering area for site response analysis

  10. Mathematical Model and Analysis of Negative Skin Friction of Pile Group in Consolidating Soil

    Directory of Open Access Journals (Sweden)

    Gangqiang Kong

    2013-01-01

    Full Text Available In order to calculate negative skin friction (NSF of pile group embedded in a consolidating soil, the dragload calculating formulas of single pile were established by considering Davis one-dimensional nonlinear consolidation soils settlement and hyperbolic load-transfer of pile-soil interface. Based on effective influence area theory, a simple semiempirical mathematical model of analysis for predicting the group effect of pile group under dragload was described. The accuracy and reliability of mathematical models built in this paper were verified by practical engineering comparative analysis. Case studies were studied, and the prediction values were found to be in good agreement with those of measured values. Then, the influences factors, such as, soil consolidation degree, the initial volume compressibility coefficient, and the stiffness of bearing soil, were analyzed and discussed. The results show that the mathematical models considering nonlinear soil consolidation and group effect can reflect the practical NSF of pile group effectively and accurately. The results of this paper can provide reference for practical pile group embedded in consolidating soil under NSF design and calculation.

  11. Exploring optimal fertigation strategies for orange production, using soil-crop modelling

    NARCIS (Netherlands)

    Qin, Wei; Heinen, Marius; Assinck, Falentijn B.T.; Oenema, Oene

    2016-01-01

    Water and nitrogen (N) are two key limiting factors in orange (Citrus sinensis) production. The amount and the timing of water and N application are critical, but optimal strategies have not yet been well established. This study presents an analysis of 47 fertigation strategies examined by a

  12. NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS

    International Nuclear Information System (INIS)

    WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A.; PRIOR, S.

    2003-01-01

    Global warming is promoted by anthropogenic CO 2 emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site

  13. The relative influence of electrokinetic remediation design on the removal of As, Cu, Pb and Sb from shooting range soils

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2018-01-01

    to simultaneously optimise the removal by applying a stirred set-up, placement of the anode directly in the soil suspension, sieving the soil (analysis is a valuable tool for evaluating remediation measures depending soil...... and analysis was applied for assessing the efficiency of electrodialytic remediation treatment and variable importance varied for each of the studied metals. In general, applying a stirred set-up improved the metal removal, acidification time and reduced the energy consumption. The placement of the anode...... directly in the soil did not significantly influence the removal of Al, Mg, Mn, As and Pb, while moderately influencing the removal of Cu. Multivariate analysis (projections onto latent structures) revealed similar variable importance and optimal settings for removal of Cu and Pb. It is hence possible...

  14. A meta-analysis of the response of soil moisture to experimental warming

    International Nuclear Information System (INIS)

    Xu, Wenfang; Yuan, Wenping; Dong, Wenjie; Xia, Jiangzhou; Liu, Dan; Chen, Yang

    2013-01-01

    Soil moisture is an important variable for regulating carbon, water and energy cycles of terrestrial ecosystems. However, numerous inconsistent conclusions have been reported regarding the responses of soil moisture to warming. In this study, we conducted a meta-analysis for examination of the response of soil moisture to experimental warming across global warming sites including several ecosystem types. The results showed that soil moisture decreased in response to warming treatments when compared with control treatments in most ecosystem types. The largest reduction of soil moisture was observed in forests, while intermediate reductions were observed in grassland and cropland, and they were both larger than the reductions observed in shrubland and tundra ecosystems. Increases (or no change) in soil moisture also occurred in some ecosystems. Taken together, these results showed a trend of soil drying in most ecosystems, which may have exerted profound impacts on a variety of terrestrial ecosystem processes as well as feedbacks to the climate system. (letter)

  15. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    Science.gov (United States)

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. © 2015 John Wiley & Sons Ltd.

  16. Recent Advances in Multidisciplinary Analysis and Optimization, part 3

    Science.gov (United States)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: aircraft design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  17. Classification of Effective Soil Depth by Using Multinomial Logistic Regression Analysis

    Science.gov (United States)

    Chang, C. H.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Classification of effective soil depth is a task of determining the slopeland utilizable limitation in Taiwan. The "Slopeland Conservation and Utilization Act" categorizes the slopeland into agriculture and husbandry land, land suitable for forestry and land for enhanced conservation according to the factors including average slope, effective soil depth, soil erosion and parental rock. However, sit investigation of the effective soil depth requires a cost-effective field work. This research aimed to classify the effective soil depth by using multinomial logistic regression with the environmental factors. The Wen-Shui Watershed located at the central Taiwan was selected as the study areas. The analysis of multinomial logistic regression is performed by the assistance of a Geographic Information Systems (GIS). The effective soil depth was categorized into four levels including deeper, deep, shallow and shallower. The environmental factors of slope, aspect, digital elevation model (DEM), curvature and normalized difference vegetation index (NDVI) were selected for classifying the soil depth. An Error Matrix was then used to assess the model accuracy. The results showed an overall accuracy of 75%. At the end, a map of effective soil depth was produced to help planners and decision makers in determining the slopeland utilizable limitation in the study areas.

  18. Optimization and Validation of the Developed Uranium Isotopic Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Kang, M. Y.; Kim, Jinhyeong; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    γ-ray spectroscopy is a representative non-destructive assay for nuclear material, and less time-consuming and less expensive than the destructive analysis method. The destructive technique is more precise than NDA technique, however, there is some correction algorithm which can improve the performance of γ-spectroscopy. For this reason, an analysis code for uranium isotopic analysis is developed by Applied Nuclear Physics Group in Seoul National University. Overlapped γ- and x-ray peaks in the 89-101 keV X{sub α}-region are fitted with Gaussian and Lorentzian distribution peak functions, tail and background functions. In this study, optimizations for the full-energy peak efficiency calibration and fitting parameters of peak tail and background are performed, and validated with 24 hour acquisition of CRM uranium samples. The optimization of peak tail and background parameters are performed with the validation by using CRM uranium samples. The analysis performance is improved in HEU samples, but more optimization of fitting parameters is required in LEU sample analysis. In the future, the optimization research about the fitting parameters with various type of uranium samples will be performed. {sup 234}U isotopic analysis algorithms and correction algorithms (coincidence effect, self-attenuation effect) will be developed.

  19. Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Harte, M.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...

  20. Direct methods of soil-structure interaction analysis for earthquake loadings (III)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J B; Lee, S R; Kim, J M; Park, K R; Choi, J S; Oh, S B [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-06-15

    In this study, direct methods for seismic analysis of soil-structure interaction system have been studied. A computer program 'KIESSI-QK' has been developed based on the finite element technique coupled with infinite element formulation. A substructuring method isolating the displacement solution of near field soil region was adopted. The computer program developed was verified using a free-field site response problem. The post-correlation analysis for the forced vibration tests after backfill of the Hualien LSST project has been carried out. The seismic analyses for the Hualien and Lotung LSST structures have been also performed utilizing the developed computer program 'KIESSI-QK'.

  1. FINOSEIS: A new approach to offshore-building foundation soil analysis using high resolution reflection seismic and Scholte-wave dispersion analysis

    Science.gov (United States)

    Wilken, Dennis; Wölz, Susanne; Müller, Christof; Rabbel, Wolfgang

    2009-05-01

    As part of the FINOSEIS project we present the development of new seismic acquisition and inversion concepts for offshore-building foundation soil analysis. FINOSEIS is a subproject of the FINO3 project, which is aimed at the construction of an offshore research platform based in 28 m water depth, hosting eight research projects dealing with offshore wind energy topics. Our investigations focus on the determination of seismic parameters and structural information of the building plot of FINO3. We infer the shear-wave velocity structure by exploiting the dispersive properties of Scholte-waves and use high resolution 2.5D reflection seismic acquisition to determine seismic stratigraphy in three dimensions. Our work is motivated regarding possible hazards to offshore foundations such as wind parks and the FINO3 platform itself, e.g. permanent mechanical load by wind- and wave-forces possibly leading to an impairment of the soil. We conducted a pre-investigation of the site of the future platform in order to help finding a suitable foundation soil by improving common site investigation methods. In May 2006 we did a survey covering an area of 2 km square employing high resolution 2.5D reflection seismic. Along three 2 km airgun profiles Scholte-waves were recorded with Ocean-Bottom-Seismometers. Spectral analysis of these led to pseudo-2D shear-wave velocity models along the profiles. The reflection seismic area is characterized by glacial stratigraphy and diffractions documented within the penetration range of 30 m. With respect to the topography of the identified horizons as well as to the distribution of diffracting objects, a suitable foundation area for the platform was suggested. The results of the Scholte-wave experiment provide valuable information for further inversion models as well as for the dimensioning of further measurements. We also implemented an inversion strategy using the particle swarm optimization method. The inverted layers of shear-wave velocity

  2. Modeling soil parameters using hyperspectral image reflectance in subtropical coastal wetlands

    Science.gov (United States)

    Anne, Naveen J. P.; Abd-Elrahman, Amr H.; Lewis, David B.; Hewitt, Nicole A.

    2014-12-01

    Developing spectral models of soil properties is an important frontier in remote sensing and soil science. Several studies have focused on modeling soil properties such as total pools of soil organic matter and carbon in bare soils. We extended this effort to model soil parameters in areas densely covered with coastal vegetation. Moreover, we investigated soil properties indicative of soil functions such as nutrient and organic matter turnover and storage. These properties include the partitioning of mineral and organic soil between particulate (>53 μm) and fine size classes, and the partitioning of soil carbon and nitrogen pools between stable and labile fractions. Soil samples were obtained from Avicennia germinans mangrove forest and Juncus roemerianus salt marsh plots on the west coast of central Florida. Spectra corresponding to field plot locations from Hyperion hyperspectral image were extracted and analyzed. The spectral information was regressed against the soil variables to determine the best single bands and optimal band combinations for the simple ratio (SR) and normalized difference index (NDI) indices. The regression analysis yielded levels of correlation for soil variables with R2 values ranging from 0.21 to 0.47 for best individual bands, 0.28 to 0.81 for two-band indices, and 0.53 to 0.96 for partial least-squares (PLS) regressions for the Hyperion image data. Spectral models using Hyperion data adequately (RPD > 1.4) predicted particulate organic matter (POM), silt + clay, labile carbon (C), and labile nitrogen (N) (where RPD = ratio of standard deviation to root mean square error of cross-validation [RMSECV]). The SR (0.53 μm, 2.11 μm) model of labile N with R2 = 0.81, RMSECV= 0.28, and RPD = 1.94 produced the best results in this study. Our results provide optimism that remote-sensing spectral models can successfully predict soil properties indicative of ecosystem nutrient and organic matter turnover and storage, and do so in areas with dense

  3. Soil structure interaction analysis for the US NRC seismic safety margins research program

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1979-01-01

    The soil structure interaction project is described. The initial portion of this task concentrates on defining the state-of-the-art in the analysis of the soil structure interaction phenomenon, an assessment of those aspects of the phenomenon which significantly affect structural response, and recommendations for future development of analytical techniques and their verification. A series of benchmark analytical and test problems for which analytical techniques may be evaluated are also sought. This assessment is to be performed in the context of nuclear power plant structures; i.e., massive stiff structures arranged functionally on a particular site. The best estimate methodology will be utilized to develop transfer functions for the overall systems model. These transfer functions will operate on the free-field ground motion yielding the structural base mat response and selected in-structure response quantities for the particular site being analyzed. The transfer functions will depend on a number of parameters, e.g., soil configuration, soil material properties, frequency of the excitation, structural properties, etc. A limited comparison of alternative methods of analysis including a nonlinear analysis will be performed

  4. Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm

    Science.gov (United States)

    Pak, Chan-gi; Li, Wesley

    2009-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!

  5. Soil settlement analysis in soft soil by using preloading system and prefabricated vertical draining runway of Kualanamu Airport

    Science.gov (United States)

    Roesyanto; Iskandar, R.; Silalahi, S. A.; Fadliansyah

    2018-02-01

    The method of soil improvement, using the combination of prefabricated vertical drain (PVD) and preloading, was used to accelerate the process of consolidation and the consolidation settlement in the runway of Kualanamu International Airport, which was constructed on the soft soil sediment like silty clay. In this research, the investigated area was the runway of Kualanamu International Airport zone I which had 11 meter-thickness of soft soil. Geotechnic instruments surveyed was settlement plate. Monitoring was done toward the behavior of landfill such as basic soil settlement. The result were compared with the analysis of finite element method of full scale in Mohr-Coulomb model by verifying the vertical drain of asymmetric unit cell and equivalent plane strain unit cell condition. The results of the research showed that there were an interesting behavior between the data in field observation and finite element of Mohr-Coulomb model. It was also found that the result of soil settlement of finite element method of Mohr-Coulomb model was closed to the result of settlement plate monitoring.

  6. Analysis of the average daily radon variations in the soil air

    International Nuclear Information System (INIS)

    Holy, K.; Matos, M.; Boehm, R.; Stanys, T.; Polaskova, A.; Hola, O.

    1998-01-01

    In this contribution the search of the relation between the daily variations of the radon concentration and the regular daily oscillations of the atmospheric pressure are presented. The deviation of the radon activity concentration in the soil air from the average daily value reaches only a few percent. For the dry summer months the average daily course of the radon activity concentration can be described by the obtained equation. The analysis of the average daily courses could give the information concerning the depth of the gas permeable soil layer. The soil parameter is determined by others method with difficulty

  7. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    Science.gov (United States)

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching. Accounting for controls on leaching not included in PSD via an alternative index, however, seems problematic as in Flanders for example groundwater o-P turned out to be higher in finer textured soils or soils with higher pedogenic Fe content, probably because of their lower pedogenic Al content and higher soil pH. Path analysis of extensive soil and groundwater datasets seems a viable way to identify prime local determinants of soil P leaching and could be further on used for 'ground-truthing' more complex P-migration simulation

  8. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    Science.gov (United States)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  9. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    Science.gov (United States)

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural

  10. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    Science.gov (United States)

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  11. Physical and chemical properties of the Martian soil: Review of resources

    Science.gov (United States)

    Stoker, C. R.; Gooding, James L.; Banin, A.; Clark, Benton C.; Roush, Ted

    1991-01-01

    The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.

  12. Optimal depth-based regional frequency analysis

    Science.gov (United States)

    Wazneh, H.; Chebana, F.; Ouarda, T. B. M. J.

    2013-06-01

    Classical methods of regional frequency analysis (RFA) of hydrological variables face two drawbacks: (1) the restriction to a particular region which can lead to a loss of some information and (2) the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently, based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA) approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function ϕ (e.g., φ minimizing estimation errors). In order to avoid a subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of ϕ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region's homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA) method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.

  13. Mixed-Integer Nonconvex Quadratic Optimization Relaxations and Performance Analysis

    Science.gov (United States)

    2016-10-11

    stationary point. These results are the state of art in complexity analysis of non-convex optimization. “Complexity of Unconstrained L2-Lp Minimization...Parameter Optimized Radiation Therapy ( SPORT )” (M Zarepisheh, Y Ye, S Boyd, R Li, L Xing), Medical Physics 41(6) (2014) 292-292. Station parameter...optimized radiation therapy ( SPORT ) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in

  14. Turbine Airfoil Optimization Using Quasi-3D Analysis Codes

    Directory of Open Access Journals (Sweden)

    Sanjay Goel

    2009-01-01

    Full Text Available A new approach to optimize the geometry of a turbine airfoil by simultaneously designing multiple 2D sections of the airfoil is presented in this paper. The complexity of 3D geometry modeling is circumvented by generating multiple 2D airfoil sections and constraining their geometry in the radial direction using first- and second-order polynomials that ensure smoothness in the radial direction. The flow fields of candidate geometries obtained during optimization are evaluated using a quasi-3D, inviscid, CFD analysis code. An inviscid flow solver is used to reduce the execution time of the analysis. Multiple evaluation criteria based on the Mach number profile obtained from the analysis of each airfoil cross-section are used for computing a quality metric. A key contribution of the paper is the development of metrics that emulate the perception of the human designer in visually evaluating the Mach Number distribution. A mathematical representation of the evaluation criteria coupled with a parametric geometry generator enables the use of formal optimization techniques in the design. The proposed approach is implemented in the optimal design of a low-pressure turbine nozzle.

  15. Simulated optimization of crop yield through irrigation system design and operation based on the spatial variability of soil hydrodynamic properties

    International Nuclear Information System (INIS)

    Gurovich, L.; Stern, J.; Ramos, R.

    1983-01-01

    Spatial autocorrelation and kriging techniques were applied to soil infiltrability data from a 20 hectare field, to separate homogeneous irrigation units. Border irrigation systems were designed for each unit and combinations of units by using DESIGN, a computer model based on soil infiltrability and hydraulics of surface water flow, which enables optimal irrigation systems to be designed. Water depths effectively infiltrated at different points along the irrigation run were determined, and the agronomic irrigation efficiency of the unit evaluated. A modification of Hanks' evapotranspiration model, PLANTGRO, was used to evaluate plant growth, relative crop yield and soil-water economy throughout the growing season, at several points along each irrigation unit. The effect of different irrigation designs on total field yield and total water used for irrigation was evaluated by integrating yield values corresponding to each point, volume and inflow time during each irrigation. For relevant data from winter wheat grown in the central area of Chile during 1981, simulation by an interactive and sequentially recurrent use of DESIGN and PLANTGRO models, was carried out. The results obtained indicate that, when a field is separated into homogeneous irrigation units on the basis of the spatial variability of soil infiltrability and the border irrigation systems are designed according to soil characteristics, both a significant yield increase and less water use can be obtained by comparison with other criteria of field zonification for irrigation management. The use of neutrometric determinations to assess soil-water content during the growing season, as a validation of the results obtained in this work, is discussed. (author)

  16. Orthogonal Analysis Based Performance Optimization for Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Lei Song

    2016-01-01

    Full Text Available Geometrical shape of a vertical axis wind turbine (VAWT is composed of multiple structural parameters. Since there are interactions among the structural parameters, traditional research approaches, which usually focus on one parameter at a time, cannot obtain performance of the wind turbine accurately. In order to exploit overall effect of a novel VAWT, we firstly use a single parameter optimization method to obtain optimal values of the structural parameters, respectively, by Computational Fluid Dynamics (CFD method; based on the results, we then use an orthogonal analysis method to investigate the influence of interactions of the structural parameters on performance of the wind turbine and to obtain optimization combination of the structural parameters considering the interactions. Results of analysis of variance indicate that interactions among the structural parameters have influence on performance of the wind turbine, and optimization results based on orthogonal analysis have higher wind energy utilization than that of traditional research approaches.

  17. Modeling, Analysis, and Optimization Issues for Large Space Structures

    Science.gov (United States)

    Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)

    1983-01-01

    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.

  18. Analysis of medicinal plants and soil sample from Haridwar region by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Maharia, R.S.; Dutta, R.K.; Acharya, R.; Reddy, A.V.R.

    2009-01-01

    Samples of leaves and stems of four medicinal plants namely Kalmegh, Amaltas, Moalshri, and Arusa were analysed by Instrumental Neutron Activation Analysis. Soil from same location was analyzed. Though concentrations of many elements were determined in the plant samples, results of selected elements namely Na, K, Mn, Fe, Co, Cr, Zn and As are discussed in this paper. The results show that all medicinal plants analyzed have lower elemental contents except Zn compared to the soil. (author)

  19. Structure optimization and simulation analysis of the quartz micromachined gyroscope

    Directory of Open Access Journals (Sweden)

    Xuezhong Wu

    2014-02-01

    Full Text Available Structure optimization and simulation analysis of the quartz micromachined gyroscope are reported in this paper. The relationships between the structure parameters and the frequencies of work mode were analysed by finite element analysis. The structure parameters of the quartz micromachined gyroscope were optimized to reduce the difference between the frequencies of the drive mode and the sense mode. The simulation results were proved by testing the prototype gyroscope, which was fabricated by micro-electromechanical systems (MEMS technology. Therefore, the frequencies of the drive mode and the sense mode can match each other by the structure optimization and simulation analysis of the quartz micromachined gyroscope, which is helpful in the design of the high sensitivity quartz micromachined gyroscope.

  20. Characterization and optimization of antibiotic resistant bacterial strains for polyhydroxyalkanoates (phas) production

    International Nuclear Information System (INIS)

    Rehman, S. U.; Jamil, N.; Hussain, S.

    2005-01-01

    In this investigation, sugarcane soil, sewage water and soil containing long chain hydrocarbons was screened to obtain bacterial strains that were able to synthesize poly-beta-hydroxyalkanoates (PHA). The potential to synthesize PHA was tested qualitatively by Sudan Black staining of colonies growing in glucose and sucrose. Sixteen bacterial strains were isolated, purified and characterized for Gram reaction, biochemical analysis and PHA production. Isolates showed a wide range of tolerance to different commonly used antibiotics. PHA extraction was done by solvent extraction and hypochlorite digestion method. PHA production was optimized for different nitrogen concentrations. (author)

  1. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    Science.gov (United States)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  2. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  3. Numerical combination for nonlinear analysis of structures coupled to layered soils

    Directory of Open Access Journals (Sweden)

    Wagner Queiroz Silva

    Full Text Available This paper presents an alternative coupling strategy between the Boundary Element Method (BEM and the Finite Element Method (FEM in order to create a computational code for the analysis of geometrical nonlinear 2D frames coupled to layered soils. The soil is modeled via BEM, considering multiple inclusions and internal load lines, through an alternative formulation to eliminate traction variables on subregions interfaces. A total Lagrangean formulation based on positions is adopted for the consideration of the geometric nonlinear behavior of frame structures with exact kinematics. The numerical coupling is performed by an algebraic strategy that extracts and condenses the equivalent soil's stiffness matrix and contact forces to be introduced into the frame structures hessian matrix and internal force vector, respectively. The formulation covers the analysis of shallow foundation structures and piles in any direction. Furthermore, the piles can pass through different layers. Numerical examples are shown in order to illustrate and confirm the accuracy and applicability of the proposed technique.

  4. Sensitivity Analysis of the USLE Soil Erodibility Factor to Its Determining Parameters

    Science.gov (United States)

    Mitova, Milena; Rousseva, Svetla

    2014-05-01

    Soil erosion is recognized as one of the most serious soil threats worldwide. Soil erosion prediction is the first step in soil conservation planning. The Universal Soil Loss Equation (USLE) is one of the most widely used models for soil erosion predictions. One of the five USLE predictors is the soil erodibility factor (K-factor), which evaluates the impact of soil characteristics on soil erosion rates. Soil erodibility nomograph defines K-factor depending on soil characteristics, such as: particle size distribution (fractions finer that 0.002 mm and from 0.1 to 0.002 mm), organic matter content, soil structure and soil profile water permeability. Identifying the soil characteristics, which mostly influence the K-factor would give an opportunity to control the soil loss through erosion by controlling the parameters, which reduce the K-factor value. The aim of the report is to present the results of analysis of the relative weight of these soil characteristics in the K-factor values. The relative impact of the soil characteristics on K-factor was studied through a series of statistical analyses of data from the geographic database for soil erosion risk assessments in Bulgaria. Degree of correlation between K-factor values and the parameters that determine it was studied by correlation analysis. The sensitivity of the K-factor was determined by studying the variance of each parameter within the range between minimum and maximum possible values considering average value of the other factors. Normalizing transformation of data sets was applied because of the different dimensions and the orders of variation of the values of the various parameters. The results show that the content of particles finer than 0.002 mm has the most significant relative impact on the soil erodibility, followed by the content of particles with size from 0.1 mm to 0.002 mm, the class of the water permeability of the soil profile, the content of organic matter and the aggregation class. The

  5. Analysis of sewage sludge and cover soil by neutron activation analysis

    International Nuclear Information System (INIS)

    Moon, J.H.; Lim, J.M.; Kim, S.H.; Chung, Y.S.

    2008-01-01

    The Korean government reported that in 2005, 4395 tons/day of sewage sludge were generated from sewage disposal facilities in Korea and only 11.03% of it was reused. In addition, as a direct landfill of sewage sludge was forbidden from June 2003, research for a relevant disposal technique has been increasing. In this study, the aims were to analyze the collected sewage sludge samples and to evaluate the possibility for their reuse by a comparison of the elemental contents from a sewage sludge and a cover soil. Sludge samples were collected from a sewage disposal plant in Daejeon city and the cover soil was produced by a dilution of a sewage sludge with quicklime. Instrumental neutron activation analysis was employed to determine the elemental contents in the samples. Twenty seven elements were analyzed and their concentrations were compared. (author)

  6. Post-liquefaction soil-structure interaction for buried structures: Sensitivity analysis studies

    International Nuclear Information System (INIS)

    Pires, J.A.; Ang, H.S.; Katayama, I.; Satoh, M.

    1993-01-01

    The post liquefaction behavior of buried conduits is analyzed and sensitivity analysis is conducted to investigate the damage potential of the forces induced in the buried lifelines following seismically induced liquefaction of the surrounding soil. Various lifeline configurations and loading conditions are considered. The loading conditions considered are: buoyancy forces and permanent ground displacements parallel to the lifeline axis. Pertinent parameters for the soil-lifeline interaction following liquefaction are identified. (author)

  7. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    Science.gov (United States)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil

  8. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water.

    Science.gov (United States)

    Franz, Eelco; Schijven, Jack; de Roda Husman, Ana Maria; Blaak, Hetty

    2014-06-17

    The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.

  9. Direct methods of soil-structure interaction analysis for earthquake loadings (III)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. B.; Lee, S. R.; Kim, J. M.; Park, K. R.; Choi, J. S.; Oh, S. B. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-06-15

    In this study, direct methods for seismic analysis of soil-structure interaction system have been studied. A computer program 'KIESSI-QK' has been developed based on the finite element technique coupled with infinite element formulation. A substructuring method isolating the displacement solution of near field soil region was adopted. The computer program developed was verified using a free-field site response problem. The post-correlation analysis for the forced vibration tests after backfill of the Hualien LSST project has been carried out. The seismic analyses for the Hualien and Lotung LSST structures have been also performed utilizing the developed computer program 'KIESSI-QK'.

  10. Seismic response analysis of soil-structure interactive system using a coupled three-dimensional FE-IE method

    International Nuclear Information System (INIS)

    Ryu, Jeong-Soo; Seo, Choon-Gyo; Kim, Jae-Min; Yun, Chung-Bang

    2010-01-01

    This paper proposes a slightly new three-dimensional radial-shaped dynamic infinite elements fully coupled to finite elements for an analysis of soil-structure interaction system in a horizontally layered medium. We then deal with a seismic analysis technique for a three-dimensional soil-structure interactive system, based on the coupled finite-infinite method in frequency domain. The dynamic infinite elements are simulated for the unbounded domain with wave functions propagating multi-generated wave components. The accuracy of the dynamic infinite element and effectiveness of the seismic analysis technique may be demonstrated through a typical compliance analysis of square surface footing, an L-shaped mat concrete footing on layered soil medium and two kinds of practical seismic analysis tests. The practical analyses are (1) a site response analysis of the well-known Hualien site excited by all travelling wave components (primary, shear, Rayleigh waves) and (2) a generation of a floor response spectrum of a nuclear power plant. The obtained dynamic results show good agreement compared with the measured response data and numerical values of other soil-structure interaction analysis package.

  11. Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ettehadtavakkol, Amin, E-mail: amin.ettehadtavakkol@ttu.edu [Texas Tech University (United States); Jablonowski, Christopher [Shell Exploration and Production Company (United States); Lake, Larry [University of Texas at Austin (United States)

    2017-04-15

    Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.

  12. Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs

    International Nuclear Information System (INIS)

    Ettehadtavakkol, Amin; Jablonowski, Christopher; Lake, Larry

    2017-01-01

    Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.

  13. Uncertainty of Deardorff’s soil moisture model based on continuous TDR measurements for sandy loam soil

    Directory of Open Access Journals (Sweden)

    Brandyk Andrzej

    2016-03-01

    Full Text Available Knowledge on soil moisture is indispensable for a range of hydrological models, since it exerts a considerable influence on runoff conditions. Proper tools are nowadays applied in order to gain in-sight into soil moisture status, especially of uppermost soil layers, which are prone to weather changes and land use practices. In order to establish relationships between meteorological conditions and topsoil moisture, a simple model would be required, characterized by low computational effort, simple structure and low number of identified and calibrated parameters. We demonstrated, that existing model for shallow soils, considering mass exchange between two layers (the upper and the lower, as well as with the atmosphere and subsoil, worked well for sandy loam with deep ground water table in Warsaw conurbation. GLUE (Generalized Likelihood Uncertainty Estimation linked with GSA (Global Sensitivity Analysis provided for final determination of parameter values and model confidence ranges. Including the uncertainty in a model structure, caused that the median soil moisture solution of the GLUE was shifted from the one optimal in deterministic sense. From the point of view of practical model application, the main shortcoming were the underestimated water exchange rates between the lower soil layer (ranging from the depth of 0.1 to 0.2 m below ground level and subsoil. General model quality was found to be satisfactory and promising for its utilization for establishing measures to regain retention in urbanized conditions.

  14. Characterizing vertical heterogeneity of permafrost soils in support of ABoVE radar retrievals

    Science.gov (United States)

    Tabatabaeenejad, A.; Chen, R. H.; Silva, A.; Schaefer, K. M.; Moghaddam, M.

    2017-12-01

    Permafrost-affected soils, including the top active layer and underlying permafrost, have unique seasonal variations in terms of soil temperature, soil moisture, and freeze/thaw-state profiles. The presence of a perennially frozen and impermeable substrate maintains the required temperature gradient for the descending thawing front, and causes meltwater to accumulate and form the saturated zone in the active layer. Radar backscattering measurements are sensitive to dielectric properties of subsurface soils, which are strongly correlated with unfrozen water content and soil texture/composition. To enable accurate radar retrievals, we need to properly characterize soil profile heterogeneity, which can be modeled with layered soil or depth-dependent functions. To this end, we first cross compare the measured radar backscatter and model-predicted radar backscatter using in-situ dielectric profile measurements as well as mathematical or hydrologic-based profile functions. Since radar signal's backscatter has limited penetration, to fully capture the true heterogeneity profile, we determine the optimal profile function by minimizing the error between predicted and measured radar backscatter signals as well as between in-situ and fitted profiles. The in-situ soil profile data (temperature, dielectric constant, unfrozen water content, organic/mineral soils) are collected from the Soil Moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) sensor networks and from the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in August 2017 (concurrent with the ABoVE August flights over Alaska North Slope) while the radar data are acquired by NASA's P-band AirMOSS and L-band UAVSAR as part of the ABoVE airborne campaign. The retrieval results using our new heterogeneity model will be compared with the results from retrievals that model soil as a layered medium. This analysis can advance the accuracy of retrieval of active layer properties using low-frequency SAR

  15. Assessing earthworm and sewage sludge impacts on microbiological and biochemical soil quality using multivariate analysis

    Directory of Open Access Journals (Sweden)

    Hanye Jafari Vafa

    2017-06-01

    Full Text Available Introduction: Land application of organic wastes and biosolids such as municipal sewage sludge has been an important and attractive practice for improving different properties of agricultural soils with low organic matter content in semi-arid regions, due to an increase of soil organic matter level and fertility. However, application of this organic waste may directly or indirectly affect soil bio-indicators such as microbial and enzymatic activities through a change in the activity of other soil organisms such as earthworms. Earthworms are the most important soil saprophagous fauna and much of the faunal biomass is attributed to the presence of these organisms in the soil. Therefore, it is crucial to evaluate the effect of earthworm activity on soil microbial and biochemical attributes, in particularly when soils are amended with urban sewage sludge. The purpose of this study was to evaluate the earthworm effects on biochemical and microbiological properties of a calcareous soil amended with municipal sewage sludge using Factor Analysis (FA. Materials and Methods: In the present study, the experimental treatments were sewage sludge (without and with 1.5% sewage sludge as the first factor and earthworm (no earthworm, Eiseniafoetida from epigeic group, Allolobophracaliginosa from endogeic group and a mixture of the two species as the second factor. The study was setup as 2×4 full factorial experiment arranged in a completely randomized design with three replications for each treatment under greenhouse conditions over 90 days. A calcareous soil from the 0-30 cm layer with clay loam texture was obtained from a farmland field under fallow without cultivation history for ten years. The soil was air-dried and passed through a 2-mm sieve for the experiment. Sewage sludge as the soil organic amendment was collected from Wastewater Treatment Plant in Shahrekord. Sewage sludge was air-dried and grounded to pass through a 1-mm sieve for a uniform mixture

  16. Dryland soil hydrological processes and their impacts on the nitrogen balance in a soil-maize system of a freeze-thawing agricultural area.

    Directory of Open Access Journals (Sweden)

    Wei Ouyang

    Full Text Available Understanding the fates of soil hydrological processes and nitrogen (N is essential for optimizing the water and N in a dryland crop system with the goal of obtaining a maximum yield. Few investigations have addressed the dynamics of dryland N and its association with the soil hydrological process in a freeze-thawing agricultural area. With the daily monitoring of soil water content and acquisition rates at 15, 30, 60 and 90 cm depths, the soil hydrological process with the influence of rainfall was identified. The temporal-vertical soil water storage analysis indicated the local albic soil texture provided a stable soil water condition for maize growth with the rainfall as the only water source. Soil storage water averages at 0-20, 20-40 and 40-60 cm were observed to be 490.2, 593.8, and 358 m3 ha-1, respectively, during the growing season. The evapo-transpiration (ET, rainfall, and water loss analysis demonstrated that these factors increased in same temporal pattern and provided necessary water conditions for maize growth in a short period. The dry weight and N concentration of maize organs (root, leaf, stem, tassel, and grain demonstrated the N accumulation increased to a peak in the maturity period and that grain had the most N. The maximum N accumulative rate reached about 500 mg m-2d-1 in leaves and grain. Over the entire growing season, the soil nitrate N decreased by amounts ranging from 48.9 kg N ha-1 to 65.3 kg N ha-1 over the 90 cm profile and the loss of ammonia-N ranged from 9.79 to 12.69 kg N ha-1. With soil water loss and N balance calculation, the N usage efficiency (NUE over the 0-90 cm soil profile was 43%. The soil hydrological process due to special soil texture and the temporal features of rainfall determined the maize growth in the freeze-thawing agricultural area.

  17. Analytical Evaluation to Determine Selected PAHs in a Contaminated Soil With Type II Fuel

    International Nuclear Information System (INIS)

    Garcia Alonso, S.; Perez Pastor, R. M.; Sevillano Castano, M. L.; Garcia Frutos, F. J.

    2010-01-01

    A study on the optimization of an ultrasonic extraction method for selected PAHs determination in soil contaminated by type II fuel and by using HPLC with fluorescence detector is presented. The main objective was optimize the analytical procedure, minimizing the volume of solvent and analysis time and avoiding possible loss by evaporation. This work was carried out as part of a project that investigated a remediation process of agricultural land affected by an accidental spillage of fuel (Plan Nacional I + D + i, CTM2007-64 537). The paper is structured as: Optimization of wavelengths in the chromatographic conditions to improve resolution in the analysis of fuel samples. Optimization of the main parameters affecting in the extraction process by sonication. Comparison of results with those obtained by accelerated solvent extraction. (Author) 3 refs.

  18. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    Directory of Open Access Journals (Sweden)

    Helder Fraga

    Full Text Available The Iberian viticultural regions are convened according to the Denomination of Origin (DO and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  19. Fixed point theory, variational analysis, and optimization

    CERN Document Server

    Al-Mezel, Saleh Abdullah R; Ansari, Qamrul Hasan

    2015-01-01

    ""There is a real need for this book. It is useful for people who work in areas of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics.""-Nan-Jing Huang, Sichuan University, Chengdu, People's Republic of China

  20. Applied satellite remote sensing to runoff analysis: Through the effective depth of soil layer

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Kondoh, T.; Kida, T.; Nishikawa, H.

    2002-01-01

    The thickness of the soil layers in which tree roots are able to develop freely influences forest composition and growth. Trees growing in shallow soil are usually less well supplied with water and mineral nutrients than those growing in deeper soil. A soil may be deep in an absolute sense but, because of a relatively impervious layer, such as hardpan or because of a high water-table, may be shallow in a physiological sense. Penetrability measurements have been found useful in evaluating the influence of different forest types on the physical properties of soils. Commonly the penetrability of soils can be measured by using the Hasegawa-formed soil penetrometer and can be judged as the soil softness content (SSC). Previous studies report soil with more than 1.9 cm/drop of SSC to be highly permeable and therefore roots are more likely to be extensively developed. Based upon this theory the depth of soil layer with more than 1.9 cm/drop of SSC can be defined as the Effective Depth of Soil Layer (EDSL). We examined the relationship between the Ratio Vegetation Index (RVI) and the EDSL and established a 'Runoff Simulation Model (RSM)' based upon the theory of the Storage Function Model method. The conclusions are that (1) a strong positive correlation between the RVI (ground measured) and the EDSL was given, (2) applying results of conclusion (1) to satellite analysis a similar correlation between the RVI (satellite analysis of JERS 1/OPS data) and the EDSL was observed and (3) the simulated storm-runoff hydro graph coincides with the observed one well

  1. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance.

    Science.gov (United States)

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-04-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.

  2. Computer-Aided Communication Satellite System Analysis and Optimization.

    Science.gov (United States)

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  3. Experimental study on the foundation of soft soil solidification formula based on the Design - Expert software search

    Science.gov (United States)

    Qian, Chaojun; Li, Dahua; Zhang, xian; Zhou, Dongqing; Zhang, Baoliang

    2017-08-01

    Xuan city + 1100 kv search for converter station in Anhui province, in the process of foundation treatment, there is a cloth with a large number of lacustrine soft soil can not reach the need of engineering construction, so we want to cure the soft soil. By combining ratio of blast furnace slag (GGBS), gypsum, exciting agent CaO as a main curing agent for combination of reinforcing soft soil, the indoor unconfined compressive strength test, the influence factors on blast furnace slag, exciting agent and dosage of gypsum as impact factors, response value is 7 d and 28 d unconfined compressive strength of solidified soil, the experimental method is the Box - Behnken. The results show that the 7 d gypsum and the interaction of the blast furnace slag is obvious; 28 d exciting agent and gypsum interaction is obvious. By the analysis plaster, CaO, GGBSIn 7 d optimal proportion is 3.71%, 3.62%, 12.18%, the actual strength of the solidified soil age 1479.33 kPa; 28 d optimal proportion was 4.08%, 4.50%, 11.6%, the actual strength of the solidified soil age 2936.78 kPa. In the soil and the water curing effect of GGBS solidified soil, thereby GGBS this is a kind of new solidification material that can be used as the engineering foundation treatment of soft soil stabilizer has a certain value.

  4. Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Châteaurenard Region

    Directory of Open Access Journals (Sweden)

    Katarzyna Siegel-Hertz

    2018-04-01

    Full Text Available Disease-suppressive soils are soils in which specific soil-borne plant pathogens cause only limited disease although the pathogen and susceptible host plants are both present. Suppressiveness is in most cases of microbial origin. We conducted a comparative metabarcoding analysis of the taxonomic diversity of fungal and bacterial communities from suppressive and non-suppressive (conducive soils as regards Fusarium wilts sampled from the Châteaurenard region (France. Bioassays based on Fusarium wilt of flax confirmed that disease incidence was significantly lower in the suppressive soil than in the conducive soil. Furthermore, we succeeded in partly transferring Fusarium wilt-suppressiveness to the conducive soil by mixing 10% (w/w of the suppressive soil into the conducive soil. Fungal diversity differed significantly between the suppressive and conducive soils. Among dominant fungal operational taxonomic units (OTUs affiliated to known genera, 17 OTUs were detected exclusively in the suppressive soil. These OTUs were assigned to the Acremonium, Chaetomium, Cladosporium, Clonostachys, Fusarium, Ceratobasidium, Mortierella, Penicillium, Scytalidium, and Verticillium genera. Additionally, the relative abundance of specific members of the bacterial community was significantly higher in the suppressive and mixed soils than in the conducive soil. OTUs found more abundant in Fusarium wilt-suppressive soils were affiliated to the bacterial genera Adhaeribacter, Massilia, Microvirga, Rhizobium, Rhizobacter, Arthrobacter, Amycolatopsis, Rubrobacter, Paenibacillus, Stenotrophomonas, and Geobacter. Several of the fungal and bacterial genera detected exclusively or more abundantly in the Fusarium wilt-suppressive soil included genera known for their activity against F. oxysporum. Overall, this study supports the potential role of known fungal and bacterial genera in Fusarium wilt suppressive soils from Châteaurenard and pinpoints new bacterial and fungal

  5. Optimal depth-based regional frequency analysis

    Directory of Open Access Journals (Sweden)

    H. Wazneh

    2013-06-01

    Full Text Available Classical methods of regional frequency analysis (RFA of hydrological variables face two drawbacks: (1 the restriction to a particular region which can lead to a loss of some information and (2 the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently, based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function ϕ (e.g., φ minimizing estimation errors. In order to avoid a subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of ϕ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region's homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.

  6. Time Optimal Reachability Analysis Using Swarm Verification

    DEFF Research Database (Denmark)

    Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand

    2016-01-01

    Time optimal reachability analysis employs model-checking to compute goal states that can be reached from an initial state with a minimal accumulated time duration. The model-checker may produce a corresponding diagnostic trace which can be interpreted as a feasible schedule for many scheduling...... and planning problems, response time optimization etc. We propose swarm verification to accelerate time optimal reachability using the real-time model-checker Uppaal. In swarm verification, a large number of model checker instances execute in parallel on a computer cluster using different, typically randomized...... search strategies. We develop four swarm algorithms and evaluate them with four models in terms scalability, and time- and memory consumption. Three of these cooperate by exchanging costs of intermediate solutions to prune the search using a branch-and-bound approach. Our results show that swarm...

  7. Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis.

    Science.gov (United States)

    da Silva, Fernando Bruno Vieira; do Nascimento, Clístenes Williams Araújo; Araújo, Paula Renata Muniz; da Silva, Luiz Henrique Vieira; da Silva, Roberto Felipe

    2016-08-01

    Brazil is the world's largest sugarcane producer and soils in the northeastern part of the country have been cultivated with the crop for over 450 years. However, so far, there has been no study on the status of heavy metal accumulation in these long-history cultivated soils. To fill the gap, we collect soil samples from 60 sugarcane fields in order to determine the contents of Cd, Cr, Cu, Ni, Pb, and Zn. We used multivariate analysis to distinguish between natural and anthropogenic sources of these metals in soils. Analytical determinations were performed in ICP-OES after microwave acid solution digestion. Mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 1.9, 18.8, 6.4, 4.9, 11.2, and 16.2 mg kg(-1), respectively. The principal component one was associated with lithogenic origin and comprised the metals Cr, Cu, Ni, and Zn. Cluster analysis confirmed that 68 % of the evaluated sites have soil heavy metal concentrations close to the natural background. The Cd concentration (principal component two) was clearly associated with anthropogenic sources with P fertilization being the most likely source of Cd to soils. On the other hand, the third component (Pb concentration) indicates a mixed origin for this metal (natural and anthropogenic); hence, Pb concentrations are probably related not only to the soil parent material but also to industrial emissions and urbanization in the vicinity of the agricultural areas.

  8. Dynamic analysis of a reactor building on alluvial soil

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Paul, D.K.; Warudkar, A.S.

    1977-01-01

    The reactor building consists of reinforced concrete internal framed structure enclosed in double containment shells of prestressed and reinforced concrete all resting on a common massive raft. The external cylindrical shell is capped by a spherical dome while the internal shell carries a cellular gird slab. The building is partially buried under ground. The soil consists of alluvial going to 1000 m depth. The site lies in a moderate seismic zone. The paper presents the dynamic analysis of the building including soil-structure interaction. The mathematical model consists of four parallel, suitably interconnected struxtures, namely inner containment, outer containment, internal frame and the calandria vault. Each one of the parallel structures consists of lumped-mass beam elements. The soil below the raft and on the sides of outer containment shell is represented by elastic springs in both horizontal and vertical directions. The various assumpions required to be made in developing the mathematical model are briefly discussed in the paper. (Auth.)

  9. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    In the earthquake response analysis for a rigid and massive structure as a nuclear reactor building, it is important to estimate the effect of soil-structure interaction (SSI) appropriately. In case of strong earthquakes, the nonlinearity, such as the wall-ground separation, the base mat uplift of sliding, makes the behavior of the soil-structure system complex. But, if the nuclear reactor building is embedded in a relatively soft ground with surface layer, the wall-ground separation plays the most important role in the response of soil-structure system. Because, it is expected that the base uplift and slide would be less significant due to the effect of the embedment, and the wall-ground friction is usually neglected in design. But, the nonlinearity of ground may have some effect on the wall-ground separation and the response of the structure. These problems have been studied by use of FEM. Others used joint elements between the ground and the structure which does not resist tensile force. Others studied the effect of wall-ground separation with non-tension springs. But the relationship between the ground condition and the effect of the separation has not been clarified yet. To clarify the effect the analyses by FE model and lumped mass model (sway-rocking model) are performed and compared. The key parameter is the ground profile, namely the stiffness of the side soil

  10. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  11. Spatial analysis and hazard assessment on soil total nitrogen in the middle subtropical zone of China

    Science.gov (United States)

    Lu, Peng; Lin, Wenpeng; Niu, Zheng; Su, Yirong; Wu, Jinshui

    2006-10-01

    Nitrogen (N) is one of the main factors affecting environmental pollution. In recent years, non-point source pollution and water body eutrophication have become increasing concerns for both scientists and the policy-makers. In order to assess the environmental hazard of soil total N pollution, a typical ecological unit was selected as the experimental site. This paper showed that Box-Cox transformation achieved normality in the data set, and dampened the effect of outliers. The best theoretical model of soil total N was a Gaussian model. Spatial variability of soil total N at NE60° and NE150° directions showed that it had a strip anisotropic structure. The ordinary kriging estimate of soil total N concentration was mapped. The spatial distribution pattern of soil total N in the direction of NE150° displayed a strip-shaped structure. Kriging standard deviations (KSD) provided valuable information that will increase the accuracy of total N mapping. The probability kriging method is useful to assess the hazard of N pollution by providing the conditional probability of N concentration exceeding the threshold value, where we found soil total N>2.0g/kg. The probability distribution of soil total N will be helpful to conduct hazard assessment, optimal fertilization, and develop management practices to control the non-point sources of N pollution.

  12. Measurements of Soil Carbon by Neutron-Gamma Analysis in Static and Scanning Modes.

    Science.gov (United States)

    Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen

    2017-08-24

    The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detectors, split electronics to separate gamma spectra due to INS and thermo-neutron capture (TNC) processes, and software for gamma spectra acquisition and data processing. This method has several advantages over other methods in that it is a non-destructive in situ method that measures the average carbon content in large soil volumes, is negligibly impacted by local sharp changes in soil carbon, and can be used in stationary or scanning modes. The result of the INS method is the carbon content from a site with a footprint of ~2.5 - 3 m 2 in the stationary regime, or the average carbon content of the traversed area in the scanning regime. The measurement range of the current INS system is >1.5 carbon weight % (standard deviation ± 0.3 w%) in the upper 10 cm soil layer for a 1 hmeasurement.

  13. Forensic Comparison of Soil Samples Using Nondestructive Elemental Analysis.

    Science.gov (United States)

    Uitdehaag, Stefan; Wiarda, Wim; Donders, Timme; Kuiper, Irene

    2017-07-01

    Soil can play an important role in forensic cases in linking suspects or objects to a crime scene by comparing samples from the crime scene with samples derived from items. This study uses an adapted ED-XRF analysis (sieving instead of grinding to prevent destruction of microfossils) to produce elemental composition data of 20 elements. Different data processing techniques and statistical distances were evaluated using data from 50 samples and the log-LR cost (C llr ). The best performing combination, Canberra distance, relative data, and square root values, is used to construct a discriminative model. Examples of the spatial resolution of the method in crime scenes are shown for three locations, and sampling strategy is discussed. Twelve test cases were analyzed, and results showed that the method is applicable. The study shows how the combination of an analysis technique, a database, and a discriminative model can be used to compare multiple soil samples quickly. © 2016 American Academy of Forensic Sciences.

  14. Studying soil properties using visible and near infrared spectral analysis

    Science.gov (United States)

    Moretti, S.; Garfagnoli, F.; Innocenti, L.; Chiarantini, L.

    2009-04-01

    This research is carried out inside the DIGISOIL Project, whose purposes are the integration and improvement of in situ and proximal measurement technologies, for the assessment of soil properties and soil degradation indicators, going form the sensing technologies to their integration and their application in digital soil mapping. The study area is located in the Virginio river basin, about 30 km south of Firenze, in the Chianti area, where soils with agricultural suitability have a high economic value connected to the production of internationally famous wines and olive oils. The most common soil threats, such as erosion and landslide, may determine huge economic losses, which must be considered in farming management practices. This basin has a length of about 23 km for a basin area of around 60,3 Km2. Geological formations outcropping in the area are Pliocene to Pleistocene marine and lacustrine sediments in beds with almost horizontal bedding. Vineyards, olive groves and annual crops are the main types of land use. A typical Mediterranean climate prevails with a dry summer followed by intense and sometimes prolonged rainfall in autumn, decreasing in winter. In this study, three types of VNIR and SWIR techniques, operating at different scales and in different environments (laboratory spectroscopy, portable field spectroscopy) are integrated to rapidly quantify various soil characteristics, in order to acquire data for assessing the risk of occurrence for typically agricultural practice-related soil threats (swelling, compaction, erosion, landslides, organic matter decline, ect.) and to collect ground data in order to build up a spectral library to be used in image analysis from air-borne and satellite sensors. Difficulties encountered in imaging spectroscopy, such as influence of measurements conditions, atmospheric attenuation, scene dependency and sampling representation are investigated and mathematical pre-treatments, using proper algorithms, are applied and

  15. Numerical Analysis of Soil Settlement Prediction and Its Application In Large-Scale Marine Reclamation Artificial Island Project

    Directory of Open Access Journals (Sweden)

    Zhao Jie

    2017-11-01

    Full Text Available In an artificial island construction project based on the large-scale marine reclamation land, the soil settlement is a key to affect the late safe operation of the whole field. To analyze the factors of the soil settlement in a marine reclamation project, the SEM method in the soil micro-structural analysis method is used to test and study six soil samples such as the representative silt, mucky silty clay, silty clay and clay in the area. The structural characteristics that affect the soil settlement are obtained by observing the SEM charts at different depths. By combining numerical calculation method of Terzaghi’s one-dimensional and Biot’s two-dimensional consolidation theory, the one-dimensional and two-dimensional creep models are established and the numerical calculation results of two consolidation theories are compared in order to predict the maximum settlement of the soils 100 years after completion. The analysis results indicate that the micro-structural characteristics are the essential factor to affect the settlement in this area. Based on numerical analysis of one-dimensional and two-dimensional settlement, the settlement law and trend obtained by two numerical analysis method is similar. The analysis of this paper can provide reference and guidance to the project related to the marine reclamation land.

  16. Cluster analysis for portfolio optimization

    OpenAIRE

    Vincenzo Tola; Fabrizio Lillo; Mauro Gallegati; Rosario N. Mantegna

    2005-01-01

    We consider the problem of the statistical uncertainty of the correlation matrix in the optimization of a financial portfolio. We show that the use of clustering algorithms can improve the reliability of the portfolio in terms of the ratio between predicted and realized risk. Bootstrap analysis indicates that this improvement is obtained in a wide range of the parameters N (number of assets) and T (investment horizon). The predicted and realized risk level and the relative portfolio compositi...

  17. The modelling influence of water content to mechanical parameter of soil in analysis of slope stability

    Science.gov (United States)

    Gusman, M.; Nazki, A.; Putra, R. R.

    2018-04-01

    One of the parameters in slope stability analysis is the shear strength of the soil. Changes in soil shear strength characteristics lead to a decrease in safety factors on the slopes. This study aims to see the effect of increased moisture content on soil mechanical parameters. The case study study was conducted on the slopes of Sitinjau Lauik Kota Padang. The research method was done by laboratory analysis and simple liniear regression analysis and multiple. Based on the test soil results show that the increase in soil water content causes a decrease in cohesion values and internal shear angle. The relationship of moisture content to cohesion is described in equation Y = 55.713-0,6X with R2 = 0.842. While the relationship of water content to shear angle in soil is described in the equation Y = 38.878-0.258X with R2 = 0.915. From several simulations of soil water level improvement, calculation of safety factor (SF) of slope. The calculation results show that the increase of groundwater content is very significant affect the safety factor (SF) slope. SF slope values are in safe condition when moisture content is 50% and when it reaches maximum water content 73.74% slope safety factor value potentially for landslide.

  18. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El Haddad, J. [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Villot-Kadri, M.; Ismaël, A.; Gallou, G. [IVEA Solution, Centre Scientifique d' Orsay, Bât 503, 91400 Orsay (France); Michel, K.; Bruyère, D.; Laperche, V. [BRGM, Service Métrologie, Monitoring et Analyse, 3 avenue Claude Guillemin, B.P 36009, 45060 Orléans Cedex (France); Canioni, L. [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Bousquet, B., E-mail: bruno.bousquet@u-bordeaux1.fr [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France)

    2013-01-01

    Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils. - Highlights: ► We perform on-site quantitative LIBS analysis of soil samples. ► We demonstrate that univariate analysis is not convenient. ► We exploit artificial neural networks for LIBS analysis. ► Spectral lines other than the ones from the analyte must be introduced.

  19. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    El Haddad, J.; Villot-Kadri, M.; Ismaël, A.; Gallou, G.; Michel, K.; Bruyère, D.; Laperche, V.; Canioni, L.; Bousquet, B.

    2013-01-01

    Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils. - Highlights: ► We perform on-site quantitative LIBS analysis of soil samples. ► We demonstrate that univariate analysis is not convenient. ► We exploit artificial neural networks for LIBS analysis. ► Spectral lines other than the ones from the analyte must be introduced

  20. Proximal gamma-ray spectroscopy to predict soil properties using windows and full-spectrum analysis methods.

    Science.gov (United States)

    Mahmood, Hafiz Sultan; Hoogmoed, Willem B; van Henten, Eldert J

    2013-11-27

    Fine-scale spatial information on soil properties is needed to successfully implement precision agriculture. Proximal gamma-ray spectroscopy has recently emerged as a promising tool to collect fine-scale soil information. The objective of this study was to evaluate a proximal gamma-ray spectrometer to predict several soil properties using energy-windows and full-spectrum analysis methods in two differently managed sandy loam fields: conventional and organic. In the conventional field, both methods predicted clay, pH and total nitrogen with a good accuracy (R2 ≥ 0.56) in the top 0-15 cm soil depth, whereas in the organic field, only clay content was predicted with such accuracy. The highest prediction accuracy was found for total nitrogen (R2 = 0.75) in the conventional field in the energy-windows method. Predictions were better in the top 0-15 cm soil depths than in the 15-30 cm soil depths for individual and combined fields. This implies that gamma-ray spectroscopy can generally benefit soil characterisation for annual crops where the condition of the seedbed is important. Small differences in soil structure (conventional vs. organic) cannot be determined. As for the methodology, we conclude that the energy-windows method can establish relations between radionuclide data and soil properties as accurate as the full-spectrum analysis method.

  1. Soil pollution in Central district of Saint-Petersburg (Russia)

    Science.gov (United States)

    Terekhina, Natalia; Ufimtseva, Margarita

    2015-04-01

    Analysis of soil samples of upper horizon for the content of chemical elements (Fe, Mn, Cu, Zn, Pb, Ni, Cr, Co, Cd, Ba, Sr) was carried out by atomic emission with inductively coupled plasma. A relative indicator of soil contamination degree is a concentration coefficient, representing the ratio of metal content in tested soil samples to the local background value of the corresponding element. Total pollution index is calculated by the concentration coefficients, which are greater than 1, taking into account the hazard class of metals (1 class - Zn, Pb ,Cd; 2 - class Cr, Ni, Cu ,Со; 3 class - Fe, Mn, Sr, Ba). Analysis of trace element of urban soils demonstrated mosaic patterns of pollution for Central district. The method of correlation sets constructing and factor analysis revealed three groups of chemical elements having a strong and significant association with each other: Pb-Cu-Cd-Zn-Ba, Ni-Cr-Co, Fe-Mn. Elements of the first group are characterized by high values of concentration coefficient and are the main pollutants - their average content is 3-11 times higher than background values. Strontium does not have strong correlation with the other elements, and its lowest concentration coefficient indicates that the element can not be regarded as a pollutant. The spatial distribution of the total pollution index identified several sources of pollution, the origin of which may be different. The main reason is probably the impact of vehicle emissions, although local pollution of soil is possible (the soils, contaminated during reconstruction of lawns, dumping of construction materials, etc.). Differentiated assessment of database shows that 48% of samples refer to dangerous pollution category, 37% - to moderately dangerous category, 15% - to allowable category. Thus, almost half of the district is characterized as dangerous in terms of soil contamination. Solution of the problem of soil contamination is recommended in three ways: reducing the intensity of

  2. Neutron-activation analysis for investigation of biochemical manganese in soils cotton soweol zone of Uzbekistan

    International Nuclear Information System (INIS)

    Zhumamuratov, A.; Tillaev, T.; Khatamov, Sh.; Suvanov, M.; Osinskaya, N.S.; Rakhmanova, T.P.

    2004-01-01

    Full text: For many years we neutron activation analysis of soils sampled from different areas of landscape-geochemical regions of Uzbekistan including zone of extreme ecological catastrophe of Aral. Content of manganese and some other elements in the 'soil-cotton' system was investigated. Neutron-activation method of manganese determining with productivity up to 400 samples on shift with detection limit of 1,1 10 -5 % and discrepancies not more than 10%. Was developed extremely uniform distribution of manganese in cotton sowed soils of the Republic (340-1800mg/kg) is determined. Practically all soils of cotton-sowed zone of Republic are with lack of manganese. Distribution of manganese on soil profile of separate organs of cotton (leaves seeds etc.) was studied. Correlation between gross concentration of manganese and its active part extracted by distilled water on the basis of quantity analysis was found. Successive comparison of gross content of manganese in the soil with crop capacity of cotton in different zones of Republic made it possible to find interconnection between these quantities, which proves necessity of using micro-additions of manganese in the soils where its low concentration is detected

  3. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  4. Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils.

    Science.gov (United States)

    Zhang, Yulin; Mason, Sean; McNeill, Ann; McLaughlin, Michael J

    2013-09-15

    Potassium (K) and phosphorus (P) are two important macronutrients for crops, and are usually applied to soils as granular fertilizer before seeding. Therefore, accurate soil tests prior to planting to predict crop response to fertilizers are important in optimizing crop yields. Traditional methods used for testing both available K and P in soils, which are based on chemical extraction procedures, are to be soil-type dependent, and the predictive relationships across a broad range of soils are generally poor. The diffusive gradients in thin films (DGT) technique, based on diffusion theory, is extensively used to measure the diffusive supply of trace elements, metals and some nutrients in soils and water. When DGT is used to assess plant-available P in soils, a good relationship is found between crop response to P fertilizer and concentrations of P in soil measured by DGT, and therefore the DGT method provides a more precise recommendation of P fertilizer requirements. Adaptation of the DGT method to measure plant-available K in soils has already been attempted [1], but limitations were reported due to the non-uniform size of the resin gel, decreased K binding rate of the gel at long deployment times and a limited ability to measure a wide range of K concentrations. To eliminate these problems, a new resin gel has been developed by combining Amberlite and ferrihydrite. This mixed Amberlite and ferrihydrite (MAF) gel has improved properties in terms of handling and even distribution of Amberlite in the gel. The elution efficiencies of the MAF gel for K and P were 90% and 96%, respectively. The diffusion coefficient of K through the diffusive gel was 1.30 × 10(-5)cm(2)s(-1) at 22 ± 1°C and was stable through time. Since ferrihydrite is already used in DGT P testing, the ability of the MAF gel to assess available P simultaneously was also assessed. The MAF gel performed the same as the traditional ferrihydrite gel for available P assessment in a wide variety of

  5. Applicability of soil-structure interaction analysis methods for earthquake loadings (IV)

    International Nuclear Information System (INIS)

    Chang, S. P.; Ko, H. M.; Kim, J. K.; Yoon, J. Y.; Chin, B. M.; Yang, T. S.; Park, D. H.; Chung, W.; Park, J. Y.

    1996-07-01

    The ultimate goals of this research are to cultivate the capability of accurate SSI analysis and to develop the effective soil-structure interaction analysis method and computer program by comparing analysis results obtained in Lotung/Hualien LSST project. In this research, computer analysis program using hyper element was developed to analyze the forced vibration test and seismic test of the on-going Hualien LSST project. Prediction analysis and post-prediction analysis for Hualien LSST forced vibration and seismic response were executed by developed program. Thus this report is mainly composed of two parts. One is the summary of theoretical background of hyper element and the other is prediction analysis and post-prediction analysis results for Hualien LSST forced vibration and seismic response tests executed by developed program. Also, a coupling method of hyper element and generalized three-dimensional finite element or general axisymmetric finite element was presented for the further development of computer analysis program related to three dimensional hybrid soil-structure interaction and for the verification, the dynamic stiffness' of rigid circular /rectangular foundation are calculated. It is confirmed that program using hyper element is efficient and practical because it can consider non-homogeneity easily and execute the analysis in short time by using analytic solution m horizontal direction

  6. Analysis and optimization of kinematic pair force in control rod drive mechanism

    International Nuclear Information System (INIS)

    Sun Zhenguo; Liu Sen; Ran Xiaobing; Dai Changnian; Li Yuezhong

    2015-01-01

    Function expressions of kinematic pair force with latch dimensions, friction coefficient, link angle and external load was obtained by theoretical analysis, and the expression was verified by the motion analysis software. Key parameters of kinematic pair were confirmed, and their effect trends with force of parts were obtained. They show that the available method of kinematic pair optimization is increasing the space of latch holes. Using the motion analysis software, the forces of parts before and after optimization was compared. The result shows that the forces of parts were improved after the optimization. (authors)

  7. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].

    Science.gov (United States)

    Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui

    2015-05-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.

  8. Optimal sample size of signs for classification of radiational and oily soils

    International Nuclear Information System (INIS)

    Babayev, M.P.; Iskenderov, S.M.; Aghayev, R.A.

    2012-01-01

    Full text : This article tells about classification of radiational and oily soils that should be in essence a compact intelligence system which contains maximum information on classes of soil objects in the accepted feature space. The stored experience shows that the volume of the most informative soil signs can make up maximum 7-8 indexes. More correct approach to our opinion for a sample of the most informative (most important) indexes is the method of testing and mistakes, that is the experimental method, allowing to make use a wide experience and intuition of the researcher, or group of the researchers, engaged for many years in the field of soil science. At this operational stage of the formal device of soils classification, to say more concrete, the assessment section of selfdescriptiveness of soil signs of this formal device, in our opinion, is purely mathematized and in some cases even not reflect the true picture. In this case it will be calculated 21 pair of correlative elements between the selected soil signs as a measure of the linear communication. The volume of the correlative row will be equal to 6, as the increase in volume of the correlative row can sharply increase the volume calculation. Pertinently to note that, it is the first time an attempt is made to create correlative matrixes of the most important signs of radiation and oily soils

  9. Optimizing removal of arsenic, chromium, copper, pentachlorophenol and polychlorodibenzo-dioxins/furans from the 1-4 mm fraction of polluted soil using an attrition process.

    Science.gov (United States)

    Guemiza, Karima; Coudert, Lucie; Tran, Lan Huong; Metahni, Sabrine; Blais, Jean-François; Besner, Simon; Mercier, Guy

    2017-08-01

    The objective of this study was to evaluate, at a pilot scale, the performance of an attrition process for removing As, Cr, Cu, pentachlorophenol (PCP) and polychlorodibenzodioxins and furans (PCDDF) from a 1-4 mm soil fraction. A Box-Behnken experimental design was utilized to evaluate the influence of several parameters (temperature, surfactant concentration and pulp density) and to optimize the main operating parameters of this attrition process. According to the results, the concentration of surfactant (cocamidopropylbetaine-BW) was the main parameter influencing both PCP and PCDDF removal from the 1-4 mm soil fraction by attrition. The behavior of each 2,3,7,8-PCDD/F congener during the attrition process was studied. The results indicated that the concentration of surfactant had a significant and positive effect on the removal of almost all of the dioxin and furan. The removal of 56%, 55%, 50%, 67% and 62% of the contaminants were obtained for As, Cr, Cu, PCP and PCDDF, respectively, using the optimized conditions ([BW]= 2% (w.w-1), T = 25°C and PD = 40% (w.w-1)). These results showed that attrition in the presence of a surfactant can be efficiently used to remediate the coarse fractions of soil contaminated by As, Cr, Cu, PCP and PCDDF.

  10. A neural network model for estimating soil phosphorus using terrain analysis

    Directory of Open Access Journals (Sweden)

    Ali Keshavarzi

    2015-12-01

    Full Text Available Artificial neural network (ANN model was developed and tested for estimating soil phosphorus (P in Kouhin watershed area (1000 ha, Qazvin province, Iran using terrain analysis. Based on the soil distribution correlation, vegetation growth pattern across the topographically heterogeneous landscape, the topographic and vegetation attributes were used in addition to pedologic information for the development of ANN model in area for estimating of soil phosphorus. Totally, 85 samples were collected and tested for phosphorus contents and corresponding attributes were estimated by the digital elevation model (DEM. In order to develop the pedo-transfer functions, data linearity was checked, correlated and 80% was used for modeling and ANN was tested using 20% of collected data. Results indicate that 68% of the variation in soil phosphorus could be explained by elevation and Band 1 data and significant correlation was observed between input variables and phosphorus contents. There was a significant correlation between soil P and terrain attributes which can be used to derive the pedo-transfer function for soil P estimation to manage nutrient deficiency. Results showed that P values can be calculated more accurately with the ANN-based pedo-transfer function with the input topographic variables along with the Band 1.

  11. A meta-analysis of soil microbial biomass responses to forest disturbances

    Directory of Open Access Journals (Sweden)

    Sandra Robin Holden

    2013-06-01

    Full Text Available Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm and biotic (insect, pathogen disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7%, 19.1%, and 41.7% reductions in microbial biomass, respectively. In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics.

  12. Chiral separation and enantioselective degradation of vinclozolin in soils.

    Science.gov (United States)

    Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng

    2014-03-01

    Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.

  13. Ecological and soil hydraulic implications of microbial responses to stress - A modeling analysis

    Science.gov (United States)

    Brangarí, Albert C.; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier; Manzoni, Stefano

    2018-06-01

    A better understanding of microbial dynamics in porous media may lead to improvements in the design and management of a number of technological applications, ranging from the degradation of contaminants to the optimization of agricultural systems. To this aim, there is a recognized need for predicting the proliferation of soil microbial biomass (often organized in biofilms) under different environments and stresses. We present a general multi-compartment model to account for physiological responses that have been extensively reported in the literature. The model is used as an explorative tool to elucidate the ecological and soil hydraulic consequences of microbial responses, including the production of extracellular polymeric substances (EPS), the induction of cells into dormancy, and the allocation and reuse of resources between biofilm compartments. The mechanistic model is equipped with indicators allowing the microorganisms to monitor environmental and biological factors and react according to the current stress pressures. The feedbacks of biofilm accumulation on the soil water retention are also described. Model runs simulating different degrees of substrate and water shortage show that adaptive responses to the intensity and type of stress provide a clear benefit to microbial colonies. Results also demonstrate that the model may effectively predict qualitative patterns in microbial dynamics supported by empirical evidence, thereby improving our understanding of the effects of pore-scale physiological mechanisms on the soil macroscale phenomena.

  14. Soil texture and climatc conditions for biocrust growth limitation: a meta analysis

    Science.gov (United States)

    Fischer, Thomas; Subbotina, Mariia

    2015-04-01

    Along with afforestation, attempts have been made to combat desertification by managing soil crusts, and is has been reported that recovery rates of biocrusts are dependent on many factors, including the type, severity, and extent of disturbance; structure of the vascular plant community; conditions of adjoining substrates; availability of inoculation material; and climate during and after disturbance (Belnap & Eldridge 2001). Because biological soil crusts are known to be more stable on and to prefer fine substrates (Belnap 2001), the question arises as to how successful crust management practices can be applied to coarser soil. In previous studies we observed similar crust biomasses on finer soils under arid and on coarser soils under temperate conditions. We hypothesized that the higher water holding capacity of finer substrates would favor crust development, and that the amount of silt and clay in the substrate that is required for enhanced crust development would vary with changes in climatic conditions. In a global meta study, climatic and soil texture threshold values promoting BSC growth were derived. While examining literature sources, it became evident that the amount of studies to be incorporated into this meta analysis was reversely related to the amount of common environmental parameters they share. We selected annual mean precipitaion, mean temperature and the amount of silt and clay as driving variables for crust growth. Response variable was the "relative crust biomass", which was computed per literature source as the ratio between each individual crust biomass value of the given study to the study maximum value reported. We distinguished lichen, green algal, cyanobacterial and moss crusts. To quantify threshold conditions at which crust biomass responded to differences in texture and climate, we (I) determined correlations between bioclimatic variables, (II) calculated linear models to determine the effect of typical climatic variables with soil

  15. Procedure for plutonium analysis of large (100g) soil and sediment samples

    International Nuclear Information System (INIS)

    Meadows, J.W.T.; Schweiger, J.S.; Mendoza, B.; Stone, R.

    1975-01-01

    A method for the complete dissolution of large soil or sediment samples is described. This method is in routine usage at Lawrence Livermore Laboratory for the analysis of fall-out levels of Pu in soils and sediments. Intercomparison with partial dissolution (leach) techniques shows the complete dissolution method to be superior for the determination of plutonium in a wide variety of environmental samples. (author)

  16. [Monitoring and SWOT analysis of Ascaris eggs pollution in soil of rural China].

    Science.gov (United States)

    Zhu, Hui-hui; Zhou, Chang-hai; Zang, Wei; Zhang, Xue-qiang; Chen, Ying-dan

    2014-06-01

    To understand the status of Ascaris eggs pollution in soil at national monitoring spots of soil-transmitted nematodiasis, so as to provide the evidence for making countermeasures and evaluating the control effect. Ten households were selected from each of the 22 national monitoring spots annually according to the National Surveillance Program of Soil-Transmitted Nematodiasis (Trial), and the soil samples from vegetable gardens, toilet periphery, courtyards and kitchens were collected and examined by using the modified floatation test with saturated sodium nitrate. Fertilized or unfertilized eggs as well as live or dead fertilized eggs were discriminated and identified. In addition, a SWOT analysis of monitoring of Ascaris eggs pollution in the soil of rural China was carried out. A total of 1 090 households were monitored in 22 monitoring spots from 2006 to 2010. The total detection rate of Ascaris eggs in the soil was 30.73%, and the detection rates of fertilized, unfertilized and live fertilized eggs were 13.21%, 26.42% and 20.28%, respectively. The total detection rates of Ascaris eggs in the vegetable garden, toilet periphery, courtyard and kitchen were 16.51%, 13.49%, 14.22% and 10.73% respectively. The SWOT analysis demonstrated that the monitoring work had both advantages and disadvantages, and was faced with opportunities as well as threats. The pollution status of Ascaris eggs in the soil is still quite severe at some national monitoring spots, and the counter-measures such as implementing hazard-free treatment of stool, improving water supply and sanitation and reforming environment should be taken to protect people from being infected.

  17. Trafficability Analysis at Traffic Crossing and Parameters Optimization Based on Particle Swarm Optimization Method

    Directory of Open Access Journals (Sweden)

    Bin He

    2014-01-01

    Full Text Available In city traffic, it is important to improve transportation efficiency and the spacing of platoon should be shortened when crossing the street. The best method to deal with this problem is automatic control of vehicles. In this paper, a mathematical model is established for the platoon’s longitudinal movement. A systematic analysis of longitudinal control law is presented for the platoon of vehicles. However, the parameter calibration for the platoon model is relatively difficult because the platoon model is complex and the parameters are coupled with each other. In this paper, the particle swarm optimization method is introduced to effectively optimize the parameters of platoon. The proposed method effectively finds the optimal parameters based on simulations and makes the spacing of platoon shorter.

  18. Prompt Gamma Ray Analysis of Soil Samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.H. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  19. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Bhaumik, Lopamudra; Raychowdhury, Prishati

    2013-01-01

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S a (T 1 )is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure

  20. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)

    2013-12-15

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.

  1. Calibrating a Soil-Vegetation-Atmosphere system with a genetical algorithm

    Science.gov (United States)

    Schneider, S.; Jacques, D.; Mallants, D.

    2009-04-01

    Accuracy of model prediction is well known for being very sensitive to the quality of the calibration of the model. It is also known that quantifying soil hydraulic parameters in a Soil-Vegetation-Atmosphere (SVA) system is a highly non-linear parameter estimation problem, and that robust methods are needed to avoid the optimization process to lead to non-optimal parameters. Evolutionary algorithms and specifically genetic algorithms (GAs) are very well suited for those complex parameter optimization problems. The SVA system in this study concerns a pine stand on a heterogeneous sandy soil (podzol) in the north of Belgium (Campine region). Throughfall and other meteorological data and water contents at different soil depths have been recorded during one year at a daily time step. The water table level, which is varying between 95 and 170 cm, has been recorded with a frequency of 0.5 hours. Based on the profile description, four soil layers have been distinguished in the podzol and used for the numerical simulation with the hydrus1D model (Simunek and al., 2005). For the inversion procedure the MYGA program (Yedder, 2002), which is an elitism GA, was used. Optimization was based on the water content measurements realized at the depths of 10, 20, 40, 50, 60, 70, 90, 110, and 120 cm to estimate parameters describing the unsaturated hydraulic soil properties of the different soil layers. Comparison between the modeled and measured water contents shows a good similarity during the simulated year. Impacts of short and intensive events (rainfall) on the water content of the soil are also well reproduced. Errors on predictions are on average equal to 5%, which is considered as a good result. A. Ben Haj Yedder. Numerical optimization and optimal control : (molecular chemistry applications). PhD thesis, Ecole Nationale des Ponts et Chaussées, 2002. Šimůnek, J., M. Th. van Genuchten, and M. Šejna, The HYDRUS-1D software package for simulating the one-dimensional movement

  2. Thermodynamic limits set relevant constraints to the soil-plant-atmosphere system and to optimality in terrestrial vegetation

    Science.gov (United States)

    Kleidon, Axel; Renner, Maik

    2016-04-01

    , which then links this thermodynamic approach to optimality in vegetation. We also contrast this approach to common, semi-empirical approaches of surface-atmosphere exchange and discuss how thermodynamics may set a broader range of transport limitations and optimality in the soil-plant-atmosphere system.

  3. Laser ablation inductively coupled plasma mass spectrometry analysis of agricultural soils using the sol-gel technique of pellet preparation

    International Nuclear Information System (INIS)

    Hubova, I.; Hola, M.; Vaculovic, T.; Pinkas, J.; Prokes, L.; Stefan, I.; Kanicky, V.

    2009-01-01

    Full text: Monitoring of metals in agricultural soils is gaining importance as they are accumulated by plants. A LAICPQMS method with Nd:YAG 213 nm laser has been developed for determination of Cr, Ni, Cu, Zn and Pb in soil pellets prepared by the sol-gel technique. LA-ICPMS analysis of archive samples was verified by XRF of wax-soil pellets and ICPMS with nebulization of solutions obtained by total soil decomposition and by analysis of reference materials. Sequention extraction was used for fractionation analysis. (author)

  4. Optimizing Nuclear Reaction Analysis (NRA) using Bayesian Experimental Design

    International Nuclear Information System (INIS)

    Toussaint, Udo von; Schwarz-Selinger, Thomas; Gori, Silvio

    2008-01-01

    Nuclear Reaction Analysis with 3 He holds the promise to measure Deuterium depth profiles up to large depths. However, the extraction of the depth profile from the measured data is an ill-posed inversion problem. Here we demonstrate how Bayesian Experimental Design can be used to optimize the number of measurements as well as the measurement energies to maximize the information gain. Comparison of the inversion properties of the optimized design with standard settings reveals huge possible gains. Application of the posterior sampling method allows to optimize the experimental settings interactively during the measurement process.

  5. stabilized lateritic soil

    African Journals Online (AJOL)

    user

    this work to optimize the amount of bagasse ash content in cement-stabilized lateritic soil. Geometric .... can handle or consider all the properties involved at the same time to ...... Bearig Ratio of Used oil contaminated Lateritic soils” Nigerian ...

  6. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    Science.gov (United States)

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Science.gov (United States)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  8. Community structure analysis of soil ammonia oxidizers during vegetation restoration in southwest China.

    Science.gov (United States)

    Liang, Yueming; He, Xunyang; Liang, Shichu; Zhang, Wei; Chen, Xiangbi; Feng, Shuzheng; Su, Yirong

    2014-03-01

    Soil ammonia oxidizers play a critical role in nitrogen cycling and ecological restoration. The composition and structure of soil ammonia oxidizers and their impacting factors were studied in four typical ecosystem soils, tussock (T), shrub (S), secondary forest (SF), and primary forest (PF), during vegetation restoration in the Karst region of Southwest China. The composition and structure of the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities were characterized by sequencing the amoA and arch-amoA genes, respectively. The diversity of soil ammonia oxidizers (except in S) and plant Shannon diversity index gradually increased with vegetation restoration, and the ammonia oxidizer communities differed significantly (p soils. AOB Nitrosospira cluster 3b only appeared in PF and SF soils, while Nitrosospira cluster 3a species were found in all soils. Changes in AOB paralleled the changes in soil ammonium content that occurred with vegetation restoration. Redundancy analysis showed that the distribution of dominant AOB species was linked to pH, soil urease activity, and soil C/N ratio, whereas the distribution of dominant AOA species was mainly influenced by litter nitrogen content and C/N ratio. These results suggested that the composition and structure of the AOB community were more sensitive to changes in vegetation and soil ammonium content, and may be an important indicator of nitrogen availability in Karst ecosystem soils. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Damping layout optimization for ship's cabin noise reduction based on statistical energy analysis

    Directory of Open Access Journals (Sweden)

    WU Weiguo

    2017-08-01

    Full Text Available An optimization analysis study concerning the damping control of ship's cabin noise was carried out in order to improve the effect and reduce the weight of damping. Based on the Statistical Energy Analysis (SEA method, a theoretical deduction and numerical analysis of the first-order sensitivity analysis of the A-weighted sound pressure level concerning the damping loss factor of the subsystem were carried out. On this basis, a mathematical optimization model was proposed and an optimization program developed. Next, the secondary development of VA One software was implemented through the use of MATLAB, while the cabin noise damping control layout optimization system was established. Finally, the optimization model of the ship was constructed and numerical experiments of damping control optimization conducted. The damping installation region was divided into five parts with different damping thicknesses. The total weight of damping was set as an objective function and the A-weighted sound pressure level of the target cabin was set as a constraint condition. The best damping thickness was obtained through the optimization program, and the total damping weight was reduced by 60.4%. The results show that the damping noise reduction effect of unit weight is significantly improved through the optimization method. This research successfully solves the installation position and thickness selection problems in the acoustic design of damping control, providing a reliable analysis method and guidance for the design.

  10. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    Science.gov (United States)

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  11. Soil functional zone management: a vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems

    Directory of Open Access Journals (Sweden)

    Alwyn eWilliams

    2016-02-01

    Full Text Available There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimetre-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services; and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage and moisture regulation (regulating and supporting services. These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown. We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple

  12. ACT Payload Shroud Structural Concept Analysis and Optimization

    Science.gov (United States)

    Zalewski, Bart B.; Bednarcyk, Brett A.

    2010-01-01

    Aerospace structural applications demand a weight efficient design to perform in a cost effective manner. This is particularly true for launch vehicle structures, where weight is the dominant design driver. The design process typically requires many iterations to ensure that a satisfactory minimum weight has been obtained. Although metallic structures can be weight efficient, composite structures can provide additional weight savings due to their lower density and additional design flexibility. This work presents structural analysis and weight optimization of a composite payload shroud for NASA s Ares V heavy lift vehicle. Two concepts, which were previously determined to be efficient for such a structure are evaluated: a hat stiffened/corrugated panel and a fiber reinforced foam sandwich panel. A composite structural optimization code, HyperSizer, is used to optimize the panel geometry, composite material ply orientations, and sandwich core material. HyperSizer enables an efficient evaluation of thousands of potential designs versus multiple strength and stability-based failure criteria across multiple load cases. HyperSizer sizing process uses a global finite element model to obtain element forces, which are statistically processed to arrive at panel-level design-to loads. These loads are then used to analyze each candidate panel design. A near optimum design is selected as the one with the lowest weight that also provides all positive margins of safety. The stiffness of each newly sized panel or beam component is taken into account in the subsequent finite element analysis. Iteration of analysis/optimization is performed to ensure a converged design. Sizing results for the hat stiffened panel concept and the fiber reinforced foam sandwich concept are presented.

  13. Soil Moisture Retrieval and Spatiotemporal Pattern Analysis Using Sentinel-1 Data of Dahra, Senegal

    Directory of Open Access Journals (Sweden)

    Zhiqu Liu

    2017-11-01

    Full Text Available The spatiotemporal pattern of soil moisture is of great significance for the understanding of the water exchange between the land surface and the atmosphere. The two-satellite constellation of the Sentinel-1 mission provides C-band synthetic aperture radar (SAR observations with high spatial and temporal resolutions, which are suitable for soil moisture monitoring. In this paper, we aim to assess the capability of pattern analysis based on the soil moisture retrieved from Sentinel-1 time-series data of Dahra in Senegal. The look-up table (LUT method is used in the retrieval with the backscattering coefficients that are simulated by the advanced integrated equation Model (AIEM for the soil layer and the Michigan microwave canopy scattering (MIMICS model for the vegetation layer. The temporal trend of Sentinel-1A soil moisture is evaluated by the ground measurements from the site at Dahra, with an unbiased root-mean-squared deviation (ubRMSD of 0.053 m3/m3, a mean average deviation (MAD of 0.034 m3/m3, and an R value of 0.62. The spatial variation is also compared with the existing microwave products at a coarse scale, which confirms the reliability of the Sentinel-1A soil moisture. The spatiotemporal patterns are analyzed by empirical orthogonal functions (EOF, and the geophysical factors that are affecting soil moisture are discussed. The first four EOFs of soil moisture explain 77.2% of the variance in total and the primary EOF explains 66.2%, which shows the dominant pattern at the study site. Soil texture and the normalized difference vegetation index are more closely correlated with the primary pattern than the topography and temperature in the study area. The investigation confirms the potential for soil moisture retrieval and spatiotemporal pattern analysis using Sentinel-1 images.

  14. Analysis of radioactive waste contamination in soils. Part 1: integral transformations

    International Nuclear Information System (INIS)

    Romani, Z.V.; Cotta, R.M.; Perez-Guerreo, J.S.; Heilbron Filho, P.F.L.

    1997-01-01

    The migration of radioactive waste in soils and other porous media is studied through the hybrid numerical-analytical solution of the mass convection-diffusion equations for this phenomenon. Initially, a radionuclide leak function is derived to model the phenomenon that occurs after the failure of the engineering barriers of the repository. This function is obtained from a first order ordinary differential equation which is solved numerically. Subsequently, the migration of this radioactive waste through the soil and the aquifer below the repository is studied; the soil and the aquifer are modeled as two saturated and coupled porous media. The convection-diffusion equations obtained for the concentration field in each medium studied are solved through the use of the Generalized Integral Transform Technique (G.I.T.T.), which provides automatic error control and relatively low computational cost for a user-prescribed accuracy. This work is part of the joint project COPPE/CNEN on the analysis of radioactive waste contamination in soils. (author)

  15. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.

    Science.gov (United States)

    Uematsu, Shinichiro; Smolders, Erik; Sweeck, Lieve; Wannijn, Jean; Van Hees, May; Vandenhove, Hildegarde

    2015-08-15

    The high variability of the soil-to-plant transfer factor of radiocaesium (RCs) compels a detailed analysis of the radiocaesium interception potential (RIP) of soil, which is one of the specific factors ruling the RCs transfer. The range of the RIP values for agricultural soils in the Fukushima accident affected area has not yet been fully surveyed. Here, the RIP and other major soil chemical properties were characterised for 51 representative topsoils collected in the vicinity of the Fukushima contaminated area. The RIP ranged a factor of 50 among the soils and RIP values were lower for Andosols compared to other soils, suggesting a role of soil mineralogy. Correlation analysis revealed that the RIP was most strongly and negatively correlated to soil organic matter content and oxalate extractable aluminium. The RIP correlated weakly but positively to soil clay content. The slope of the correlation between RIP and clay content showed that the RIP per unit clay was only 4.8 mmol g(-1) clay, about threefold lower than that for clays of European soils, suggesting more amorphous minerals and less micaceous minerals in the clay fraction of Japanese soils. The negative correlation between RIP and soil organic matter may indicate that organic matter can mask highly selective sorption sites to RCs. Multiple regression analysis with soil organic matter and cation exchange capacity explained the soil RIP (R(2)=0.64), allowing us to map soil RIP based on existing soil map information. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The soil indicator of forest health in the Forest Inventory and Analysis Program

    Science.gov (United States)

    Michael C. Amacher; Charles H. Perry

    2010-01-01

    Montreal Process Criteria and Indicators (MPCI) were established to monitor forest conditions and trends to promote sustainable forest management. The Soil Indicator of forest health was developed and implemented within the USFS Forest Inventory and Analysis (FIA) program to assess condition and trends in forest soil quality in U.S. forests regardless of ownership. The...

  17. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.H.

    1994-01-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays

  18. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils.

    Science.gov (United States)

    Wang, Quanzhen; Gu, Muyu; Ma, Xiaomin; Zhang, Hongjuan; Wang, Yafang; Cui, Jian; Gao, Wei; Gui, Jing

    2015-11-01

    Soil pollution with heavy metals is an increasingly serious threat to the environment, food security, and human health. Therefore, it is urgent to develop economic and highly efficient soil restoration technology for environmental improvement; phytoremediation is an option that is safe, has low cost, and is environmentally friendly. However, in selecting hyperaccumulators or tolerant plants, theories and operation technologies for optimal restoration should be satisfied. In this study, the switchgrass growth response and performance of phytoextraction under the coupling effect of Cd and pH were investigated by evaluating seed germination, seedling growth, and the Cd content in the plant to evaluate the potential use of switchgrass as a phytoremediation plant in cadmium contaminated soil. This study conducted three sets of independent experiments with five levels of Cd concentrations, including two orthogonal matrix designs of combining Cd with pH values. The results showed that switchgrass was germinated well under all treatments (Cd concentration of 0-500 μM), but the seedling growth was significantly affected by Cd and pH, as shown by multivariate regression analyses. Hormesis was found during the growth of switchgrass plants exposed to low Cd concentrations under hydroponic conditions, and switchgrass plants were capable of developing with a Cd concentration of 100-175 μM and pH of 4.1-5.9. Mild acidic conditions can enhance the ability of Cd to accumulate in switchgrass. Switchgrass was moderately tolerant to Cd and may be used as a phytoremediation plant for Cd-contaminated soils in the future. Our results also suggest that hormetic effects should be taken into consideration in the phytoremediation of Cd-contaminated soils. We discuss the physiological and biochemical mechanisms contributing to the effective application of the plant for the phytoremediation of Cd-contaminated soils.

  19. Optimizing human activity patterns using global sensitivity analysis.

    Science.gov (United States)

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  20. Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation

    Science.gov (United States)

    Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara

    2018-03-01

    The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.

  1. Analysis of uplift loads of precast-concrete piles in porous soils

    Directory of Open Access Journals (Sweden)

    Stélio Maia Menezes

    2006-01-01

    Full Text Available This paper presents the analysis of uplift load tests in three precast-concrete piles carried out in a collapsible sandy soil. The piles with 12 meters (m length and 0.17 x 0.17 square meter (m2 cross section were instrumented with strain gauges, in order to know the load transfer in depth. Three tests performed in a slow maintained load way were conducted in a natural condition of moisture content soil. A fourth test was carried out after the previous soaking of the soil around the pile head. The tests were performed in the experimental research site at the Universidade Estadual Paulista “Júlio de Mesquita Filho” (Unesp. The results obtained were evaluated by analytical and empirical methods.

  2. Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils

    Directory of Open Access Journals (Sweden)

    Reuben N. Okparanma

    2013-01-01

    Full Text Available Visible and near-infrared (VisNIR spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500 nm for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH, in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25 mg kg−1, and coefficient of determination (r2 of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon.

  3. Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils

    Science.gov (United States)

    Okparanma, Reuben N.; Mouazen, Abdul M.

    2013-01-01

    Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500 nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25 mg kg−1, and coefficient of determination (r 2) of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon. PMID:24453798

  4. Stability numerical analysis of soil cave in karst area to drawdown of underground water level

    Science.gov (United States)

    Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei

    2018-05-01

    With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.

  5. Optimal river monitoring network using optimal partition analysis: a case study of Hun River, Northeast China.

    Science.gov (United States)

    Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao

    2018-01-09

    River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.

  6. Optimization of Multiple Seepage Piping Parameters to Maximize the Critical Hydraulic Gradient in Bimsoils

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-10-01

    Full Text Available Seepage failure in the form of piping can strongly influence the stability of block-in-matrix-soils (bimsoils, as well as weaken and affect the performance of bimsoil structures. The multiple-factor evaluation and optimization play a crucial role in controlling the seepage failure in bimsoil. The aim of this study is to improve the ability to control the piping seepage failure in bimsoil. In this work, the response surface method (RSM was employed to evaluate and optimize the multiple piping parameters to maximize the critical hydraulic gradient (CHG, in combination with experimental modeling based on a self-developed servo-controlled flow-erosion-stress coupled testing system. All of the studied specimens with rock block percentage (RBP of 30%, 50%, and 70% were produced as a cylindrical shape (50 mm diameter and 100 mm height by compaction tests. Four uncertain parameters, such as RBP, soil matrix density, confining pressure, and block morphology were used to fit an optimal response of the CHG. The sensitivity analysis reveals the influential order of the studied factors to CHG. It is found that RBP is the most sensitive factor, the CHG decreases with the increase of RBP, and CHG increases with the increase of confining pressure, soil matrix density, and block angularity.

  7. Comparing the performance of various digital soil mapping approaches to map physical soil properties

    Science.gov (United States)

    Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2015-04-01

    Spatial information on physical soil properties is intensely expected, in order to support environmental related and land use management decisions. One of the most widely used properties to characterize soils physically is particle size distribution (PSD), which determines soil water management and cultivability. According to their size, different particles can be categorized as clay, silt, or sand. The size intervals are defined by national or international textural classification systems. The relative percentage of sand, silt, and clay in the soil constitutes textural classes, which are also specified miscellaneously in various national and/or specialty systems. The most commonly used is the classification system of the United States Department of Agriculture (USDA). Soil texture information is essential input data in meteorological, hydrological and agricultural prediction modelling. Although Hungary has a great deal of legacy soil maps and other relevant soil information, it often occurs, that maps do not exist on a certain characteristic with the required thematic and/or spatial representation. The recent developments in digital soil mapping (DSM), however, provide wide opportunities for the elaboration of object specific soil maps (OSSM) with predefined parameters (resolution, accuracy, reliability etc.). Due to the simultaneous richness of available Hungarian legacy soil data, spatial inference methods and auxiliary environmental information, there is a high versatility of possible approaches for the compilation of a given soil map. This suggests the opportunity of optimization. For the creation of an OSSM one might intend to identify the optimum set of soil data, method and auxiliary co-variables optimized for the resources (data costs, computation requirements etc.). We started comprehensive analysis of the effects of the various DSM components on the accuracy of the output maps on pilot areas. The aim of this study is to compare and evaluate different

  8. Method Development for Pesticide Residue Analysis in Farmland Soil using High Perfomance Liquid Chromatography

    Science.gov (United States)

    Theresia Djue Tea, Marselina; Sabarudin, Akhmad; Sulistyarti, Hermin

    2018-01-01

    A method for the determination of diazinon and chlorantraniliprole in soil samples has been developed. The analyte was extracted with acetonitrile from farmland soil sample. Determination and quantification of diazinon and chlorantraniliprole were perfomed by high perfomance liquid chromatography (HPLC) with an UV detector. Several parameters of HPLC method were optimized with respect to sensitivity, high resolution of separation, and accurate determination of diazinon and chlorantraniliprole. Optimum conditions for the separation of two pesticides were eluent composition of acetonitrile:water ratio of 60:40, 0.4 mL/min of flow rate, and 220 nm of wavelength. Under the optimum conditions, diazinon linearity was in the range from 1-25 ppm with R2 of 0.9976, 1.19 mgL-1 LOD, and 3.98 mgL-1 LOQ; while the linearity of chlorantraniliprole was in the range from 0.2-5 mgL-1 with R2 of 0.9972, 0.39 mgL-1 LOD, and 1.29 mgL-1 LOQ. When the method was applied to the soil sample, both pesticides showed acceptable recoveries for real sample of more than 85%: thus, the developed method meets the validation requirement. Under this developed method, the concentrations of both pesticides in the soil samples were below the LOD and LOQ (0.577 mgL-1 for diazinon and 0.007 mgL-1 for chlorantraniliprole). Therefore, it can be concluded that the soil samples used in this study have neither diazinon nor chlorantraniliprole.

  9. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  10. Soil-structure interaction analysis by Green function

    International Nuclear Information System (INIS)

    Muto, Kiyoshi; Kobayashi, Toshio; Nakahara, Mitsuharu.

    1985-01-01

    Using the method of discretized Green function which had been suggested by the authors, the parametric study of the effects of base mat foundation thickness and soil stiffness were conducted. There was no upper structure effects from the response and reaction stress of the soil by employing different base mat foundation thicknesses. However, the response stress of base mat itself had considerable effect on the base mat foundation stress. The harder the soil, became larger accelerations, and smaller displacements on the upper structure. The upper structure lines of force were directed onto the soil. In the case of soft soil, the reaction soil stress were distributed evenly over the entire reactor building area. Common characteristics of all cases, in-plane shear deformation of the upper floor occured and in-plane acceleration and displacement at the center of the structure become larger. Also, the soil stresses around the shield wall of the base mat foundation became large cecause of the effect of the shield wall bending. (Kubozono, M.)

  11. Nonlinear seismic soil-structure interaction analysis of nuclear power plant structures

    International Nuclear Information System (INIS)

    Khanna, J.K.; Setlur, A.V.; Pathak, D.V.

    1977-01-01

    The heterogeneous and nonlinear soil medium and the detailed three-dimensional structure are synthesized to determine the seismic response to soil-structure systems. The approach is particularly attractive in a design office environment since it: a) leads to interactive motion at the soil-structure interface; b) uses existing public domain programs such as SAPIV, LUSH and FLUSH with marginal modifications; and c) meets current regulatory requirements for soil-structure interaction analysis. Past methods differ from each other depending on the approach adopted for soil and structure representations and procedures for solving the governing differential equations. Advantages and limitations of these methods are reviewed. In the current approach, the three-dimensional structure is represented by the dynamic characteristics of its fixed base condition. This representation is ideal when structures are designed to be within elastic range. An important criterion is the design of the nuclear power plant structures. Model damping coefficients are varied to reflect the damping properties of different structural component materials. The detailed structural model is systematically reduced to reflect important dynamic behavior with simultaneous storing of intermediate information for retrieval of detailed structural response. Validity of the approach has been established with simple numerical experiments. (Auth.)

  12. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    Science.gov (United States)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  13. Managing soil natural capital

    DEFF Research Database (Denmark)

    Cong, Ronggang; Termansen, Mette; Brady, Mark

    2017-01-01

    Farmers are exposed to substantial weather and market related risks. Rational farmers seek to avoid large losses. Future climate change and energy price fluctuations therefore make adaptating to increased risks particularly important for them. Managing soil natural capital—the capacity of the soil...... to generate ecosystem services of benefit to farmers—has been proven to generate the double dividend: increasing farm profit and reducing associated risk. In this paper we explore whether managing soil natural capital has a third dividend: reducing the downside risk (increasing the positive skewness of profit......). This we refer to as the prudence effect which can be viewed as an adaptation strategy for dealing with future uncertainties through more prudent management of soil natural capital. We do this by developing a dynamic stochastic portfolio model to optimize the stock of soil natural capital—as indicated...

  14. Phytoextraction and estimating optimal time for remediation of Cd-contaminated soils by Spinach

    Directory of Open Access Journals (Sweden)

    Somayyeh Eisazadeh Lazarjan

    2016-05-01

    Full Text Available The so-called phytoextraction in which hyperaccumulator plants are used to remediate the contaminated soils is proven to be an efficient method. The objective of this study was to investigate the capability of Spinach for phytoremediation of cadmium from Cd-contaminated soils and determine the efficiency extent of spinach for phytoremediation. For this purpose, a randomized block experimental design whit five treatments including 0, 15, 30, 60 and 120 mg Cd/ kg soil and three replications was established in the greenhouse. After contamination the soils with different levels of cadmium, spinach seeds were planted. When plants were fully developed, plants were harvested and their cadmium contents in shoot and roots as well as the soil-cadmium were measured. The results indicated that by increasing Cd concentration in soil, the major Cd accumulation was occurred in the roots rather than shoots. Maximum cadmium concentration within the shoots and roots was 73.7 and 75.86 mg/kg soil, respectively. According to Spinach ability to absorb high concentration of cadmium in the root zone and its high biomass and capability of Cadmium accumulation in shoots, Spinach can be used as hyperaccumulator plant to remediate cadmium from Cd-contaminated soils. But, according to minimum remediation time and maximum dry matter for the 30 mg Cd/ kg soil, maximum Cd extracted by shoots in hectare/year was in 30 mg Cd/ kg soil. It can be concluded that Spinach is a suitable plant for phytoremediation of slightly and to moderately cadmium contaminated soils.

  15. Analysis of agricultural soils by using energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Anjos, Marcelino Jose dos

    2000-03-01

    In this work, we describe an Energy Dispersive x-ray Fluorescence System with a x-ray tube excitation for trace analysis of environmental samples (soil). The system was used to analyze the contamination of metals in treated soils with doses of 10, 20 and 30 ton/ha of compound organic of urban garbage of the type Fertilurb and 10 ton/ha of aviary bed (manure of birds). Samples of roots and foliages of plant radishes cultivated in these soils were also analyzed. The soil samples were collected in five different depths of 0,5, 5-10, 10-20, 20-40 and 40-60 cm. The experimental set-up is composed by an OXFORD X-ray (30 kV, 50 μA and W anode), an ORTEC Si-Li detector, with an energy resolution of about 180 eV at 5.9 keV and an ORTEC multichannel-analyser. The X-ray spectrum tube is quasi-monochromatic by using of Ti filter. Samples were prepared in pellet form with superficial density in the range of 100 mg/cm 2 . The fundamental parameter method was used in order to verify the elemental concentration. It was possible to determine the concentrations of thirteen elements: K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr, Y, Zr and Pb in the treated soils with compounds organic. The results indicate that the values found for K, Ca, Rb, Sr, Zr and Pb are significantly above the upper confidence limits for the control soil (α = 0.05). There is a real different between these elements compared to their relationship in the control soils, (α=0,05). There is a real difference between these elements compared to their relationship in the control soils, confirming the influence of the organic compounds in the soil. (author)

  16. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Science.gov (United States)

    Krasinski, Adam

    2015-02-01

    The application of screw displacement piles (SDP) is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque) during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  17. Forest harvesting reduces the soil metagenomic potential for biomass decomposition.

    Science.gov (United States)

    Cardenas, Erick; Kranabetter, J M; Hope, Graeme; Maas, Kendra R; Hallam, Steven; Mohn, William W

    2015-11-01

    Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.

  18. Structure soil structure interaction effects: Seismic analysis of safety related collocated concrete structures

    International Nuclear Information System (INIS)

    Joshi, J.R.

    2000-01-01

    The Process, Purification and Stack Buildings are collocated safety related concrete shear wall structures with plan dimensions in excess of 100 feet. An important aspect of their seismic analysis was the determination of structure soil structure interaction (SSSI) effects, if any. The SSSI analysis of the Process Building, with one other building at a time, was performed with the SASSI computer code for up to 50 frequencies. Each combined model had about 1500 interaction nodes. Results of the SSSI analysis were compared with those from soil structure interaction (SSI) analysis of the individual buildings, done with ABAQUS and SASSI codes, for three parameters: peak accelerations, seismic forces and the in-structure floor response spectra (FRS). The results may be of wider interest due to the model size and the potential applicability to other deep soil layered sites. Results obtained from the ABAQUS analysis were consistently higher, as expected, than those from the SSI and SSSI analyses using the SASSI. The SSSI effect between the Process and Purification Buildings was not significant. The Process and Stack Building results demonstrated that under certain conditions a massive structure can have an observable effect on the seismic response of a smaller and less stiff structure

  19. X-ray fluorescence and gamma-ray spectrometry combined with multivariate analysis for topographic studies in agricultural soil

    International Nuclear Information System (INIS)

    Castilhos, Natara D.B. de; Melquiades, Fábio L.; Thomaz, Edivaldo L.; Bastos, Rodrigo Oliveira

    2015-01-01

    Physical and chemical properties of soils play a major role in the evaluation of different geochemical signature, soil quality, discrimination of land use type, soil provenance and soil degradation. The objectives of the present study are the soil elemental characterization and soil differentiation in topographic sequence and depth, using Energy Dispersive X-Ray Fluorescence (EDXRF) as well as gamma-ray spectrometry data combined with Principal Component Analysis (PCA). The study area is an agricultural region of Boa Vista catchment which is located at Guamiranga municipality, Brazil. PCA analysis was performed with four different data sets: spectral data from EDXRF, spectral data from gamma-ray spectrometry, concentration values from EDXRF measurements and concentration values from gamma-ray spectrometry. All PCAs showed similar results, confirmed by hierarchical cluster analysis, allowing the data grouping into top, bottom and riparian zone samples, i.e. the samples were separated due to its landscape position. The two hillslopes present the same behavior independent of the land use history. There are distinctive and characteristic patterns in the analyzed soil. The methodologies presented are promising and could be used to infer significant information about the region to be studied. - Highlights: • Characterization of topographic sequence of two hillslopes from agricultural soil. • Employment of EDXRF and gamma-ray spectrometry data combined with PCA. • The combination of green analytical methodologies with chemometric studies allowed soil differentiation. • The innovative methodology is promising for direct characterization of agricultural catchments

  20. Bioremediation of oil-contaminated soils by composting

    Science.gov (United States)

    Golodyaev, G. P.; Kostenkov, N. M.; Oznobikhin, V. I.

    2009-08-01

    Composting oil-contaminated soils under field conditions with the simultaneous optimization of their physicochemical and agrochemical parameters revealed the high efficiency of the soil purification, including that from benz[a]pyrene. The application of fertilizers and lime favored the intense development of indigenous microcenoses and the effective destruction of the oil. During the 95-day experimental period, the average daily rate of the oil decomposition was 157 mg/kg of soil. After the completion of the process, the soil became ecologically pure.

  1. Analysis of arsenic and calcium in soil samples by laser ablation mass spectrometry

    International Nuclear Information System (INIS)

    Beccaglia, Ana M.; Rinaldi, Carlos A.; Ferrero, Juan C.

    2006-01-01

    We present an analytical procedure based on laser ablation mass spectrometry (LAMS) in order to detect and quantify arsenic and calcium in soil samples and we analyze the diverse factors that influence the precision of LAMS, such as laser fluence and matrix effect. The results indicate that a Zn matrix is a good choice for the analysis of those metals in soil samples. This work also provides a method for the direct determination of As in soil samples whose concentrations are lower than 100 ppm with a 70 ppm minimum detection limits (MDL)

  2. On the relation between flexibility analysis and robust optimization for linear systems

    KAUST Repository

    Zhang, Qi

    2016-03-05

    Flexibility analysis and robust optimization are two approaches to solving optimization problems under uncertainty that share some fundamental concepts, such as the use of polyhedral uncertainty sets and the worst-case approach to guarantee feasibility. The connection between these two approaches has not been sufficiently acknowledged and examined in the literature. In this context, the contributions of this work are fourfold: (1) a comparison between flexibility analysis and robust optimization from a historical perspective is presented; (2) for linear systems, new formulations for the three classical flexibility analysis problems—flexibility test, flexibility index, and design under uncertainty—based on duality theory and the affinely adjustable robust optimization (AARO) approach are proposed; (3) the AARO approach is shown to be generally more restrictive such that it may lead to overly conservative solutions; (4) numerical examples show the improved computational performance from the proposed formulations compared to the traditional flexibility analysis models. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3109–3123, 2016

  3. Determination of organophosphate flame retardants in soil and fish using ultrasound-assisted extraction, solid-phase clean-up, and liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Lorenzo, María; Campo, Julián; Picó, Yolanda

    2018-03-22

    A solid-liquid extraction method in combination with high-performance liquid chromatography and tandem mass spectrometry was developed and optimized for extraction and analysis of organophosphorus flame retardants in soil and fish. Methanol was chosen as the optimum extraction solvent, not only in terms of extraction efficiency, but also for its broader analyte coverage. The subsequent clean-up by solid-phase extraction is required to eliminate matrix coextractives and reduce matrix effects. Recoveries of the optimized method were 50-121% for soil and 47-123% for biota, both with high precision (RSDs solid-phase extraction cartridge clogging that increase variability and analysis time. The method was successfully applied for the determination of organophosphorus flame retardants in soil and fish from L'Albufera Natural Park (Valencia, Spain). Target compounds were detected in all soil and fish samples with values varying from 13.8 to 89.7 ng/g dry weight and from 3.3 to 53.0 ng/g wet weight, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analysis and optimization of blood-testing procedures.

    NARCIS (Netherlands)

    Bar-Lev, S.K.; Boxma, O.J.; Perry, D.; Vastazos, L.P.

    2017-01-01

    This paper is devoted to the performance analysis and optimization of blood testing procedures. We present a queueing model of two queues in series, representing the two stages of a blood-testing procedure. Service (testing) in stage 1 is performed in batches, whereas it is done individually in

  5. Uncertainty in soil-structure interaction analysis arising from differences in analytical techniques

    International Nuclear Information System (INIS)

    Maslenikov, O.R.; Chen, J.C.; Johnson, J.J.

    1982-07-01

    This study addresses uncertainties arising from variations in different modeling approaches to soil-structure interaction of massive structures at a nuclear power plant. To perform a comprehensive systems analysis, it is necessary to quantify, for each phase of the traditional analysis procedure, both the realistic seismic response and the uncertainties associated with them. In this study two linear soil-structure interaction techniques were used to analyze the Zion, Illinois nuclear power plant: a direct method using the FLUSH computer program and a substructure approach using the CLASSI family of computer programs. In-structure response from two earthquakes, one real and one synthetic, was compared. Structure configurations from relatively simple to complicated multi-structure cases were analyzed. The resulting variations help quantify uncertainty in structure response due to analysis procedures

  6. Classification of Surface and Deep Soil Samples Using Linear Discriminant Analysis

    International Nuclear Information System (INIS)

    Wasim, M.; Ali, M.; Daud, M.

    2015-01-01

    A statistical analysis was made of the activity concentrations measured in surface and deep soil samples for natural and anthropogenic gamma-emitting radionuclides. Soil samples were obtained from 48 different locations in Gilgit, Pakistan covering about 50 km/sup 2/ areas at an average altitude of 1550 m above sea level. From each location two samples were collected: one from the top soil (2-6 cm) and another from a depth of 6-10 cm. Four radionuclides including /sup 226/Ra, /sup 232/Th, /sup 40/K and /sup 137/Cs were quantified. The data was analyzed using t-test to find out activity concentration difference between the surface and depth samples. At the surface, the median activity concentrations were 23.7, 29.1, 4.6 and 115 Bq kg/sup -1/ for 226Ra, 232Th, 137Cs and 40K respectively. For the same radionuclides, the activity concentrations were respectively 25.5, 26.2, 2.9 and 191 Bq kg/sup -1/ for the depth samples. Principal component analysis (PCA) was applied to explore patterns within the data. A positive significant correlation was observed between the radionuclides /sup 226/Ra and /sup 232/Th. The data from PCA was further utilized in linear discriminant analysis (LDA) for the classification of surface and depth samples. LDA classified surface and depth samples with good predictability. (author)

  7. Optimal Design, Reliability And Sensitivity Analysis Of Foundation Plate

    Directory of Open Access Journals (Sweden)

    Tvrdá Katarína

    2015-12-01

    Full Text Available This paper deals with the optimal design of thickness of a plate rested on Winkler’s foundation. First order method was used for the optimization, while maintaining different restrictive conditions. The aim is to obtain a minimum volume of the foundation plate. At the end some probabilistic and safety analysis of the deflection of the foundation using LHS Monte Carlo method are presented.

  8. Soil moisture effects during bioventing in fuel-contaminated arid soils

    International Nuclear Information System (INIS)

    Zwick, T.C.; Leeson, A.; Hinchee, R.E.; Hoeppel, R.E.; Bowling, L.

    1995-01-01

    This study evaluated the effects of soil moisture addition on microbial activity during bioventing of dry, sandy soils at the Marine Corps Air Ground Combat Center (MCAGCC), Twentynine Palms, California. Soils at the site have been contaminated to a depth of approximately 80 ft (24 m) with gasoline, JP-5 jet fuel, and diesel fuel. Based on the low soil moisture measured at the site (2 to 3% by weight), it was determined that soil moisture may be limiting biodegradation. To evaluate the effect that moisture addition had on microbial activity under field conditions, a subsurface drip irrigation system was installed above the fuel hydrocarbon plume. Irrigation water was obtained from two monitoring wells on the site, where groundwater was approximately 192 ft (59 m) below ground surface. Advancement of the wetting front was monitored. In situ respiration rates increased significantly after moisture addition. The results of this study provide evidence for the potential applicability of moisture addition in conjunction with bioventing for site remediation in arid environments. Further work is planned to investigate optimization of moisture addition

  9. Joint optimization of algorithmic suites for EEG analysis.

    Science.gov (United States)

    Santana, Eder; Brockmeier, Austin J; Principe, Jose C

    2014-01-01

    Electroencephalogram (EEG) data analysis algorithms consist of multiple processing steps each with a number of free parameters. A joint optimization methodology can be used as a wrapper to fine-tune these parameters for the patient or application. This approach is inspired by deep learning neural network models, but differs because the processing layers for EEG are heterogeneous with different approaches used for processing space and time. Nonetheless, we treat the processing stages as a neural network and apply backpropagation to jointly optimize the parameters. This approach outperforms previous results on the BCI Competition II - dataset IV; additionally, it outperforms the common spatial patterns (CSP) algorithm on the BCI Competition III dataset IV. In addition, the optimized parameters in the architecture are still interpretable.

  10. Independent principal component analysis for simulation of soil water content and bulk density in a Canadian Watershed

    Directory of Open Access Journals (Sweden)

    Alaba Boluwade

    2016-09-01

    Full Text Available Accurate characterization of soil properties such as soil water content (SWC and bulk density (BD is vital for hydrologic processes and thus, it is importance to estimate θ (water content and ρ (soil bulk density among other soil surface parameters involved in water retention and infiltration, runoff generation and water erosion, etc. The spatial estimation of these soil properties are important in guiding agricultural management decisions. These soil properties vary both in space and time and are correlated. Therefore, it is important to find an efficient and robust technique to simulate spatially correlated variables. Methods such as principal component analysis (PCA and independent component analysis (ICA can be used for the joint simulations of spatially correlated variables, but they are not without their flaws. This study applied a variant of PCA called independent principal component analysis (IPCA that combines the strengths of both PCA and ICA for spatial simulation of SWC and BD using the soil data set from an 11 km2 Castor watershed in southern Quebec, Canada. Diagnostic checks using the histograms and cumulative distribution function (cdf both raw and back transformed simulations show good agreement. Therefore, the results from this study has potential in characterization of water content variability and bulk density variation for precision agriculture.

  11. Site Response Analysis Using DeepSoil: Case Study of Bangka Site, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Iswanto, Eko Rudi; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    Indonesia government declared through Act No. 17 year 2007 on the National Long-Term Development Plant Year 2005-2025 and Presidential Decree No. 5 year 2006 on the National Energy Policy (Indonesia 2007; Indonesia 2006), that nuclear energy is stated as a part of the national energy system. In order to undertake the above national policy, National Nuclear Energy Agency of Indonesia, as the promotor for the utilization of nuclear energy will conduct site study, which is a part of infrastructure preparation for NPP construction. Thorough preparation and steps are needed to operate an NPP and it takes between 10 to 15 years from the preliminary study (site selection, financial study, etc.) up to project implementation (manufacturing, construction, commissioning). During project implementation, it is necessary to prepare various documents relevant for permit application such as Safety Evaluation Report for site permit, Preliminary Safety Analysis Report and Environment Impact Assessment Report for construction permit. Considering the continuously increasing electricity energy demand, it is necessary to prepare for alternative NPP sites. The safety requirements of NPP's are stringent; amongst the various requirements is the ability to safely shut down in the wake of a possible earthquake. Ground response analysis of a potential site therefore needs to be carried out, parameter that affect the resistance of an NPP to earthquakes such as peak strain profiles is analysed. The objective of this paper is to analyse the ground response of the selected site for a NPP, using The Mw 7.9 in Sikuai Island, West Sumatra on September 12, 2007 as present input motion. This analysis will be carried out using a ground response analysis program, DeepSoil. In addition to this, an attempt was made to define the site specific input motion characteristics of the selected site for use in DeepSoil (DeepSoil 5.0). A site investigation at the WB site was performed primarily on the PS

  12. Multiobjective Optimization of ELID Grinding Process Using Grey Relational Analysis Coupled with Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    S. Prabhu

    2014-06-01

    Full Text Available Carbon nanotube (CNT mixed grinding wheel has been used in the electrolytic in-process dressing (ELID grinding process to analyze the surface characteristics of AISI D2 Tool steel material. CNT grinding wheel is having an excellent thermal conductivity and good mechanical property which is used to improve the surface finish of the work piece. The multiobjective optimization of grey relational analysis coupled with principal component analysis has been used to optimize the process parameters of ELID grinding process. Based on the Taguchi design of experiments, an L9 orthogonal array table was chosen for the experiments. The confirmation experiment verifies the proposed that grey-based Taguchi method has the ability to find out the optimal process parameters with multiple quality characteristics of surface roughness and metal removal rate. Analysis of variance (ANOVA has been used to verify and validate the model. Empirical model for the prediction of output parameters has been developed using regression analysis and the results were compared for with and without using CNT grinding wheel in ELID grinding process.

  13. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    Science.gov (United States)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  14. Global Optimization using Interval Analysis : Interval Optimization for Aerospace Applications

    NARCIS (Netherlands)

    Van Kampen, E.

    2010-01-01

    Optimization is an important element in aerospace related research. It is encountered for example in trajectory optimization problems, such as: satellite formation flying, spacecraft re-entry optimization and airport approach and departure optimization; in control optimization, for example in

  15. Optimizing the Physical, Mechanical and Hygrothermal Performance of Compressed Earth Bricks

    Directory of Open Access Journals (Sweden)

    Esther Obonyo

    2011-03-01

    Full Text Available The paper is based on findings from research that assesses the potential for enhancing the performance of compressed earth bricks. A set of experiments was carried out to assess the potential for enhancing the bricks’ physical, mechanical and hygrothermal performance through the design of an optimal stabilization strategy. Three different types of bricks were fabricated: soil-cement, soil-cement-lime, and soil-cement-fiber. The different types of bricks did not exhibit significant differences in performances when assessed on the basis of porosity, density, water absorption, and compressive strength. However, upon exposure to elevated moisture and temperature conditions, the soil-cement-fiber bricks had the highest residual strength (87%. The soil-cement and soil-cement-lime bricks had residual strength values of 48.19 and 46.20% respectively. These results suggest that, like any other cement-based material, compressed earth brick properties are affected by hydration-triggered chemical and structural changes occurring in the matrix that would be difficult to isolate using tests that focus on “bulk” changes. The discussion in this paper presents findings from a research effort directed at quantifying the specific changes through an analysis of the microstructure.

  16. Experiments Planning, Analysis, and Optimization

    CERN Document Server

    Wu, C F Jeff

    2011-01-01

    Praise for the First Edition: "If you . . . want an up-to-date, definitive reference written by authors who have contributed much to this field, then this book is an essential addition to your library."-Journal of the American Statistical Association Fully updated to reflect the major progress in the use of statistically designed experiments for product and process improvement, Experiments, Second Edition introduces some of the newest discoveries-and sheds further light on existing ones-on the design and analysis of experiments and their applications in system optimization, robustness, and tre

  17. Sensitivity Analysis for Design Optimization Integrated Software Tools, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposed project is to provide a new set of sensitivity analysis theory and codes, the Sensitivity Analysis for Design Optimization Integrated...

  18. Combination of soil classification and some selected soil properties ...

    African Journals Online (AJOL)

    The advantage in the combined use of soil classification and top soil analysis for explaining crop yield variation was examined. Soil properties and yields of maize (Zea mays L) on different soil types were measured on farmers' fields for 2 years. Yield prediction improved from 2 per cent at the Order and Association levels to ...

  19. Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level.

    Science.gov (United States)

    Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian

    2013-12-01

    Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    Science.gov (United States)

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  1. Soil Particle Size Analysis by Laser Diffractometry: Result Comparison with Pipette Method

    Science.gov (United States)

    Šinkovičová, Miroslava; Igaz, Dušan; Kondrlová, Elena; Jarošová, Miriam

    2017-10-01

    Soil texture as the basic soil physical property provides a basic information on the soil grain size distribution as well as grain size fraction representation. Currently, there are several methods of particle dimension measurement available that are based on different physical principles. Pipette method based on the different sedimentation velocity of particles with different diameter is considered to be one of the standard methods of individual grain size fraction distribution determination. Following the technical advancement, optical methods such as laser diffraction can be also used nowadays for grain size distribution determination in the soil. According to the literature review of domestic as well as international sources related to this topic, it is obvious that the results obtained by laser diffractometry do not correspond with the results obtained by pipette method. The main aim of this paper was to analyse 132 samples of medium fine soil, taken from the Nitra River catchment in Slovakia, from depths of 15-20 cm and 40-45 cm, respectively, using laser analysers: ANALYSETTE 22 MicroTec plus (Fritsch GmbH) and Mastersizer 2000 (Malvern Instruments Ltd). The results obtained by laser diffractometry were compared with pipette method and the regression relationships using linear, exponential, power and polynomial trend were derived. Regressions with the three highest regression coefficients (R2) were further investigated. The fit with the highest tightness was observed for the polynomial regression. In view of the results obtained, we recommend using the estimate of the representation of the clay fraction (analysis is done according to laser diffractometry. The advantages of laser diffraction method comprise the short analysis time, usage of small sample amount, application for the various grain size fraction and soil type classification systems, and a wide range of determined fractions. Therefore, it is necessary to focus on this issue further to address the

  2. Soil Erosion Analysis in a Small Forested Catchment Supported by ArcGIS Model Builder

    Directory of Open Access Journals (Sweden)

    CSÁFORDI, Péter

    2012-01-01

    Full Text Available To implement the analysis of soil erosion with the USLE in a GIS environment, a new workflow has been developed with the ArcGIS Model Builder. The aim of this four-part framework is to accelerate data processing and to ensure comparability of soil erosion risk maps. The first submodel generates the stream network with connected catchments, computes slope conditions and the LS factor in USLE based on the DEM. The second submodel integrates stream lines, roads, catchment boundaries, land cover, land use, and soil maps. This combined dataset is the basis for the preparation of other USLE-factors. The third submodel estimates soil loss, and creates zonal statistics of soil erosion. The fourth submodel classifies soil loss into categories enabling the comparison of modelled and observed soil erosion. The framework was applied in a small forested catchment in Hungary. Although there is significant deviation between the erosion of different land covers, the predicted specific soil loss does not increase above the tolerance limit in any area unit. The predicted surface soil erosion in forest subcompartments mostly depends on the slope conditions.

  3. Economic analysis of alternatives for optimizing energy use in manufacturing companies

    International Nuclear Information System (INIS)

    Méndez-Piñero, Mayra Ivelisse; Colón-Vázquez, Melitza

    2013-01-01

    The manufacturing companies are one of the main consumers of energy. The increment in global warming and the instability in the petroleum oil market have motivated companies to find alternatives to reduce energy use. In the academic literature several researchers have demonstrated that optimization models can be successfully used to reduce energy use. This research presents the use of an optimization model to identify feasible economic alternatives to reduce energy use. The economic analysis methods used were the payback and the internal rate of return. The optimization model developed in this research was applied and validated using an electronic manufacturing company case study. The results demonstrate that the main variables affecting the economic feasibility of the alternatives are the economic analysis method and the initial implementation costs. Several scenarios were analyzed and the best results show that the manufacturing company could save up to $78,000 in three years if the recommendations based on the optimization model results are implemented. - Highlights: • Evaluate top consumers of energy in manufacturing: A/C, compressed air, and lighting • Economic analysis of alternatives to optimize energy used in manufacturing • Comparison of payback method and internal rate of return method with real data • Results demonstrate that the company could generate savings in energy use

  4. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Directory of Open Access Journals (Sweden)

    Krasinski Adam

    2015-02-01

    Full Text Available The application of screw displacement piles (SDP is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  5. Meta-analysis on Macropore Flow Velocity in Soils

    Science.gov (United States)

    Liu, D.; Gao, M.; Li, H. Y.; Chen, X.; Leung, L. R.

    2017-12-01

    Macropore flow is ubiquitous in the soils and an important hydrologic process that is not well explained using traditional hydrologic theories. Macropore Flow Velocity (MFV) is an important parameter used to describe macropore flow and quantify its effects on runoff generation and solute transport. However, the dominant factors controlling MFV are still poorly understood and the typical ranges of MFV measured at the field are not defined clearly. To address these issues, we conducted a meta-analysis based on a database created from 246 experiments on MFV collected from 76 journal articles. For a fair comparison, a conceptually unified definition of MFV is introduced to convert the MFV measured with different approaches and at various scales including soil core, field, trench or hillslope scales. The potential controlling factors of MFV considered include scale, travel distance, hydrologic conditions, site factors, macropore morphologies, soil texture, and land use. The results show that MFV is about 2 3 orders of magnitude larger than the corresponding values of saturated hydraulic conductivity. MFV is much larger at the trench and hillslope scale than at the field profile and soil core scales and shows a significant positive correlation with the travel distance. Generally, higher irrigation intensity tends to trigger faster MFV, especially at field profile scale, where MFV and irrigation intensity have significant positive correlation. At the trench and hillslope scale, the presence of large macropores (diameter>10 mm) is a key factor determining MFV. The geometric mean of MFV for sites with large macropores was found to be about 8 times larger than those without large macropores. For sites with large macropores, MFV increases with the macropore diameter. However, no noticeable difference in MFV has been observed among different soil texture and land use. Comparing the existing equations to describe MFV, the Poiseuille equation significantly overestimated the

  6. Methods to Quantify Nickel in Soils and Plant Tissues

    Directory of Open Access Journals (Sweden)

    Bruna Wurr Rodak

    2015-06-01

    Full Text Available In comparison with other micronutrients, the levels of nickel (Ni available in soils and plant tissues are very low, making quantification very difficult. The objective of this paper is to present optimized determination methods of Ni availability in soils by extractants and total content in plant tissues for routine commercial laboratory analyses. Samples of natural and agricultural soils were processed and analyzed by Mehlich-1 extraction and by DTPA. To quantify Ni in the plant tissues, samples were digested with nitric acid in a closed system in a microwave oven. The measurement was performed by inductively coupled plasma/optical emission spectrometry (ICP-OES. There was a positive and significant correlation between the levels of available Ni in the soils subjected to Mehlich-1 and DTPA extraction, while for plant tissue samples the Ni levels recovered were high and similar to the reference materials. The availability of Ni in some of the natural soil and plant tissue samples were lower than the limits of quantification. Concentrations of this micronutrient were higher in the soil samples in which Ni had been applied. Nickel concentration differed in the plant parts analyzed, with highest levels in the grains of soybean. The grain, in comparison with the shoot and leaf concentrations, were better correlated with the soil available levels for both extractants. The methods described in this article were efficient in quantifying Ni and can be used for routine laboratory analysis of soils and plant tissues.

  7. Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta-analysis approach

    Science.gov (United States)

    Merlin, O.; Stefan, V. G.; Amazirh, A.; Chanzy, A.; Ceschia, E.; Er-Raki, S.; Gentine, P.; Tallec, T.; Ezzahar, J.; Bircher, S.; Beringer, J.; Khabba, S.

    2016-05-01

    A meta-analysis data-driven approach is developed to represent the soil evaporative efficiency (SEE) defined as the ratio of actual to potential soil evaporation. The new model is tested across a bare soil database composed of more than 30 sites around the world, a clay fraction range of 0.02-0.56, a sand fraction range of 0.05-0.92, and about 30,000 acquisition times. SEE is modeled using a soil resistance (rss) formulation based on surface soil moisture (θ) and two resistance parameters rss,ref and θefolding. The data-driven approach aims to express both parameters as a function of observable data including meteorological forcing, cut-off soil moisture value θ1/2 at which SEE=0.5, and first derivative of SEE at θ1/2, named Δθ1/2-1. An analytical relationship between >(rss,ref;θefolding) and >(θ1/2;Δθ1/2-1>) is first built by running a soil energy balance model for two extreme conditions with rss = 0 and rss˜∞ using meteorological forcing solely, and by approaching the middle point from the two (wet and dry) reference points. Two different methods are then investigated to estimate the pair >(θ1/2;Δθ1/2-1>) either from the time series of SEE and θ observations for a given site, or using the soil texture information for all sites. The first method is based on an algorithm specifically designed to accomodate for strongly nonlinear SEE>(θ>) relationships and potentially large random deviations of observed SEE from the mean observed SEE>(θ>). The second method parameterizes θ1/2 as a multi-linear regression of clay and sand percentages, and sets Δθ1/2-1 to a constant mean value for all sites. The new model significantly outperformed the evaporation modules of ISBA (Interaction Sol-Biosphère-Atmosphère), H-TESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land), and CLM (Community Land Model). It has potential for integration in various land-surface schemes, and real calibration capabilities using combined thermal and microwave

  8. Bioremediation of chlorpyrifos contaminated soil by two phase bioslurry reactor: Processes evaluation and optimization by Taguchi's design of experimental (DOE) methodology.

    Science.gov (United States)

    Pant, Apourv; Rai, J P N

    2018-04-15

    Two phase bioreactor was constructed, designed and developed to evaluate the chlorpyrifos remediation. Six biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature and soil micro flora load) were evaluated by design of experimental (DOE) methodology employing Taguchi's orthogonal array (OA). The selected six factors were considered at two levels L-8 array (2^7, 15 experiments) in the experimental design. The optimum operating conditions obtained from the methodology showed enhanced chlorpyrifos degradation from 283.86µg/g to 955.364µg/g by overall 70.34% of enhancement. In the present study, with the help of few well defined experimental parameters a mathematical model was constructed to understand the complex bioremediation process and optimize the approximate parameters upto great accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Soil quality, theory and applications. a critical analysis

    Directory of Open Access Journals (Sweden)

    Elio Coppola

    2009-04-01

    Full Text Available In its common meaning, the concept of “soil quality” is based on evaluating criteria that are subjective and “anthropocentric” rather than objective and “pedocentric”. Several “desirable” or “undesirable” soil conditions and characteristics are considered from the human point of view, disregarding the pedogenetic features. Such an approach perilously leads to support the idea of a “pedogenetic discrimination”, which a priori privileges “superior” vs. “inferior” soils, thus discrediting a large part of soil Subgroups, Great Groups, Suborders, and even whole taxonomic Orders. So, a number of soil functions, such as genic reserve guarantee of space-temporal bio-diversity, environmental good cradle of civilization, foundation of the landscape, as well as upholder of man heritage, are neglected at all. If “quality” only concerned rich and fertile soils, there would be the great and looming risk to definitively take “poor” soils away from agriculture, landscape and global pedological reserve. It is necessary to reconsider the concept of “soil quality” as “soil functionality”, that is to say “aptitude of soil to express its own potential”, bringing out the essential environmental, socio-economic and cultural soil roles on the basis of the inherent conditions and characteristics arising from its peculiar pedogenetic history.

  10. Analysis and optimization of a camber morphing wing model

    Directory of Open Access Journals (Sweden)

    Bing Li

    2016-09-01

    Full Text Available This article proposes a camber morphing wing model that can continuously change its camber. A mathematical model is proposed and a kinematic simulation is performed to verify the wing’s ability to change camber. An aerodynamic model is used to test its aerodynamic characteristics. Some important aerodynamic analyses are performed. A comparative analysis is conducted to explore the relationships between aerodynamic parameters, the rotation angle of the trailing edge, and the angle of attack. An improved artificial fish swarm optimization algorithm is proposed, referred to as the weighted adaptive artificial fish-swarm with embedded Hooke–Jeeves search method. Some comparison tests are used to test the performance of the improved optimization algorithm. Finally, the proposed optimization algorithm is used to optimize the proposed camber morphing wing model.

  11. Indoor Soiling Method and Outdoor Statistical Risk Analysis of Photovoltaic Power Plants

    Science.gov (United States)

    Rajasekar, Vidyashree

    This is a two-part thesis. Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules. Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives. The indoor and outdoor soiling studies were jointly

  12. Tank farms backlog soil sample and analysis results supporting a contained-in determination

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, C.L., Fluor Daniel Hanford

    1997-02-27

    Soil waste is generated from Tank Farms and associated Tank Farms facilities operations. The soil is a mixed waste because it is an environmental media which contains tank waste, a listed mixed waste. The soil is designated with the listed waste codes (FOO1 through F005) which have been applied to all tank wastes. The scope of this report includes Tank Farms soil managed under the Backlog program. The Backlog Tank Farm soil in storage consists of drums and 5 boxes (originally 828 drums). The Backlog Waste Program dealt with 2276 containers of solid waste generated by Tank Farms operations during the time period from 1989 through early 1993. The containers were mismanaged by being left in the field for an extended period of time without being placed into permitted storage. As a corrective action for this situation, these containers were placed in interim storage at the Central Waste Complex (CWC) pending additional characterization. The Backlog Waste Analysis Plan (BWAP) (RL 1993) was written to define how Backlog wastes would be evaluated for proper designation and storage. The BWAP was approved in August 1993 and all work required by the BWAP was completed by July 1994. This document presents results of testing performed in 1992 & 1996 that supports the attainment of a Contained-In Determination for Tank Farm Backlog soils. The analytical data contained in this report is evaluated against a prescribed decision rule. If the decision rule is satisfied then the Washington State Department of ecology (Ecology) may grant a Contained-In Determination. A Contained-In Determination for disposal to an unlined burial trench will be requested from Ecology . The decision rule and testing requirements provided by Ecology are described in the Tank Farms Backlog Soil Sample Analysis Plan (SAP) (WHC 1996).

  13. Truss topology optimization with simultaneous analysis and design

    Science.gov (United States)

    Sankaranarayanan, S.; Haftka, Raphael T.; Kapania, Rakesh K.

    1992-01-01

    Strategies for topology optimization of trusses for minimum weight subject to stress and displacement constraints by Simultaneous Analysis and Design (SAND) are considered. The ground structure approach is used. A penalty function formulation of SAND is compared with an augmented Lagrangian formulation. The efficiency of SAND in handling combinations of general constraints is tested. A strategy for obtaining an optimal topology by minimizing the compliance of the truss is compared with a direct weight minimization solution to satisfy stress and displacement constraints. It is shown that for some problems, starting from the ground structure and using SAND is better than starting from a minimum compliance topology design and optimizing only the cross sections for minimum weight under stress and displacement constraints. A member elimination strategy to save CPU time is discussed.

  14. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis.

    Science.gov (United States)

    Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi

    2018-04-01

    This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.

  15. Preliminary characterizations study on three soil samples from the Idaho National Engineering Laboratory warm waste pond

    International Nuclear Information System (INIS)

    Burchett, R.T.; Richardson, W.S.; Hay, S.

    1994-01-01

    Three soil samples (Soil 1,2,and 3) from the Warm Waste Pond (WWP) system at the Test Reactor Area (TRA) of the Idaho National Engineering Laboratory (INEL) were sent to the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama, for soil characterization and analysis. Each sample was vigorously washed and separated by particle size using wet sieving and vertical-column hydroclassification. The resulting fractions were analyzed for radioactivity by gamma spectroscopy. The following conclusions are based on the results of these analyses: (1) The three samples examined are dissimilar in many characteristics examined in the study. (2) The optimal parameters for vigorously washing the soil samples are a washing time of 30 min 350 rpm using a liquid-to-solid ratio of 4/1 (volume of water/volume of soil). (3) The only size fraction from Soil 1 that is below the 690 picocuries per gram (pCi/g) cesium-137 Record of Division (ROD) criterion is the +25.4-mm(+1-in) fraction, which represents 17 percent of the total soil. (4) There is no size fraction from Soil 2 that is below the 690 pCi/g cesium-137 criterion. (5) At optimal conditions, at least 66 percent of Soil 3 can be recovered with a cesium-137 activity level below the 690 pCi/g criterion. (6) For Soil 3, lowering the liquid-to-solid ratio from 4/1 to 2/1 during vigorous washing produces a higher weight-percent recovery of soil below the 690 pCi/g criterion. At a liquid-to-solid ratio of 2/1, 76 percent of the soil can be recovered with a concentration below the removal criterion, indicating that attrition followed by particle-size separation represents a potential method for remediation

  16. AGROPHYSICAL ASPECTS OF TECHNOLOGICAL LOAD REGULATION ON SOIL COVER IN THE MODERN AGROLANDSCAPES

    Directory of Open Access Journals (Sweden)

    Barvinskyi A.V.

    2016-05-01

    crops and could lead eventually to lower soil fertility on 50-60 % (Bondarev, 1989. To reduce the load process should be at soil-climatic zones and the landscape in general - to optimize the lands structure and sowing areas through technological distribution of arable land with regard to their suitability for growing of majorcropsgroups; at a particular catchment (slope -to makeenvironmental assessment of certain technologicaloperations and technologies ofcrops growing in general; ensure environmental sustainability improvement of soil by increasing organic matter content and saturation of soil absorbing complex by calcium, and reducing mechanical stress on the soil of agricultural machinery by introducing the principles of conservative farming. According to experimental data obtained in the long stationary experiment, created in Kyiv agrosoil area, improve the environmental sustainability of light loamy gray forest soils requires an integrated systems approach with a view to the simultaneous optimization of both agro-chemical and physical properties. The combination of fertilization and liming, contributing to the saturation of the soil absorbing complex of calcium and magnesium to 70-73%, increase humus content to 1,6-1,7%, the growth factor structuring of 1,35 to 1,49, indicating increased the potentialability of the soil to the formation of microstructure. Thus, the studied soil bulk density decreased from 1,48 to 1,42 g/cm3, and water permeability increased from 48,9 to 60,7 mm/h. However, regression analysis of the data shows that optimizing the equilibrium bulk density of light loamy soils should increase the humus content to 2,2-2,4%, as improved physical-chemical and agrochemical properties of topsoil without substantial transformation of organic matter content is not leads to significant and sustainable changes in their physical properties.

  17. Dynamic optimization of a FCC converter unit: numerical analysis

    Directory of Open Access Journals (Sweden)

    E. Almeida Nt

    2011-03-01

    Full Text Available Fluidized-bed Catalytic Cracking (FCC is a process subject to frequent variations in the operating conditions (including feed quality and feed rate. The production objectives usually are the maximization of LPG and gasoline production. This fact makes the FCC converter unit an excellent opportunity for real-time optimization. The present work aims to apply a dynamic optimization in an industrial FCC converter unit, using a mechanistic dynamic model, and to carry out a numerical analysis of the solution procedure. A simultaneous approach was used to discretize the system of differential-algebraic equations and the resulting large-scale NLP problem was solved using the IPOPT solver. This study also does a short comparison between the results obtained by a potential dynamic real-time optimization (DRTO against a possible steady-state real-time optimization (RTO application. The results demonstrate that the application of dynamic real-time optimization of a FCC converter unit can bring significant benefits in production.

  18. Optimization analysis of a new vane MRF damper

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J Q; Feng, Z Z; Jing, Q [Department of Technical Support Engineering, Academy of Armored Force Engineering, Beijing, 100072 (China)], E-mail: zhangjq63@yahoo.com.cn

    2009-02-01

    The primary purpose of this study was to provide the optimization analysis certain characteristics and benefits of a vane MRF damper. Based on the structure of conventional vane hydraulic damper for heavy vehicle, a narrow arc gap between clapboard and rotary vane axle, which one rotates relative to the other, was designed for MRF valve and the mathematical model of damping was deduced. Subsequently, the finite element analysis of electromagnetic circuit was done by ANSYS to perform the optimization process. Some ways were presented to augment the damping adjustable multiple under the condition of keeping initial damping forces and to increase fluid dwell time through the magnetic field. The results show that the method is useful in the design of MR dampers and the damping adjustable range of vane MRF damper can meet the requirement of heavy vehicle semi-active suspension system.

  19. Improvements of the Vis-NIRS Model in the Prediction of Soil Organic Matter Content Using Spectral Pretreatments, Sample Selection, and Wavelength Optimization

    Science.gov (United States)

    Lin, Z. D.; Wang, Y. B.; Wang, R. J.; Wang, L. S.; Lu, C. P.; Zhang, Z. Y.; Song, L. T.; Liu, Y.

    2017-07-01

    A total of 130 topsoil samples collected from Guoyang County, Anhui Province, China, were used to establish a Vis-NIR model for the prediction of organic matter content (OMC) in lime concretion black soils. Different spectral pretreatments were applied for minimizing the irrelevant and useless information of the spectra and increasing the spectra correlation with the measured values. Subsequently, the Kennard-Stone (KS) method and sample set partitioning based on joint x-y distances (SPXY) were used to select the training set. Successive projection algorithm (SPA) and genetic algorithm (GA) were then applied for wavelength optimization. Finally, the principal component regression (PCR) model was constructed, in which the optimal number of principal components was determined using the leave-one-out cross validation technique. The results show that the combination of the Savitzky-Golay (SG) filter for smoothing and multiplicative scatter correction (MSC) can eliminate the effect of noise and baseline drift; the SPXY method is preferable to KS in the sample selection; both the SPA and the GA can significantly reduce the number of wavelength variables and favorably increase the accuracy, especially GA, which greatly improved the prediction accuracy of soil OMC with Rcc, RMSEP, and RPD up to 0.9316, 0.2142, and 2.3195, respectively.

  20. An improved analysis of gravity drainage experiments for estimating the unsaturated soil hydraulic functions

    Science.gov (United States)

    Sisson, James B.; van Genuchten, Martinus Th.

    1991-04-01

    The unsaturated hydraulic properties are important parameters in any quantitative description of water and solute transport in partially saturated soils. Currently, most in situ methods for estimating the unsaturated hydraulic conductivity (K) are based on analyses that require estimates of the soil water flux and the pressure head gradient. These analyses typically involve differencing of field-measured pressure head (h) and volumetric water content (θ) data, a process that can significantly amplify instrumental and measurement errors. More reliable methods result when differencing of field data can be avoided. One such method is based on estimates of the gravity drainage curve K'(θ) = dK/dθ which may be computed from observations of θ and/or h during the drainage phase of infiltration drainage experiments assuming unit gradient hydraulic conditions. The purpose of this study was to compare estimates of the unsaturated soil hydraulic functions on the basis of different combinations of field data θ, h, K, and K'. Five different data sets were used for the analysis: (1) θ-h, (2) K-θ, (3) K'-θ (4) K-θ-h, and (5) K'-θ-h. The analysis was applied to previously published data for the Norfolk, Troup, and Bethany soils. The K-θ-h and K'-θ-h data sets consistently produced nearly identical estimates of the hydraulic functions. The K-θ and K'-θ data also resulted in similar curves, although results in this case were less consistent than those produced by the K-θ-h and K'-θ-h data sets. We conclude from this study that differencing of field data can be avoided and hence that there is no need to calculate soil water fluxes and pressure head gradients from inherently noisy field-measured θ and h data. The gravity drainage analysis also provides results over a much broader range of hydraulic conductivity values than is possible with the more standard instantaneous profile analysis, especially when augmented with independently measured soil water retention data.

  1. Anoxic conditions drive phosphorus limitation in humid tropical forest soil microorganisms

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Weber, P. K.; Blazewicz, S.; Silver, W. L.

    2017-12-01

    The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) of soil microorganisms (C:N:P ratios) regulates transfers of energy and nutrients to higher trophic levels. In humid tropical forests that grow on P-depleted soils, the ability of microbes to concentrate P from their surroundings likely plays a critical role in P-retention and ultimately in forest productivity. Models predict that climate change will cause dramatic changes in rainfall patterns in the humid tropics and field studies have shown these changes can affect the redox state of tropical forest soils, influencing soil respiration and biogeochemical cycling. However, the responses of soil microorganisms to changing environmental conditions are not well known. Here, we incubated humid tropical soils under oxic or anoxic conditions with substrates differing in both C:P stoichiometry and lability, to assess how soil microorganisms respond to different redox regimes. We found that under oxic conditions, microbial C:P ratios were similar to the global optimal ratio (55:1), indicating most microbial cells can adapt to persistent aerated conditions in these soils. However, under anoxic conditions, the ability of soil microbes to acquire soil P declined and their C:P ratios shifted away from the optimal ratio. NanoSIMS elemental imaging of single cells extracted from soil revealed that under anoxic conditions, C:P ratios were above the microbial optimal value in 83% of the cells, in comparison to 41% under oxic conditions. These data suggest microbial growth efficiency switched from being energy limited under oxic conditions to P-limited under anoxic conditions, indicating that, microbial growth in low P humid tropical forests soils may be most constrained by P-limitation when conditions are oxygen-limited. We suggest that differential microbial responses to soil redox states could have important implications for productivity of humid tropical forests under future climate scenarios.

  2. Adjoint-based Mesh Optimization Method: The Development and Application for Nuclear Fuel Analysis

    International Nuclear Information System (INIS)

    Son, Seongmin; Lee, Jeong Ik

    2016-01-01

    In this research, methods for optimizing mesh distribution is proposed. The proposed method uses adjoint base optimization method (adjoint method). The optimized result will be obtained by applying this meshing technique to the existing code input deck and will be compared to the results produced from the uniform meshing method. Numerical solutions are calculated form an in-house 1D Finite Difference Method code while neglecting the axial conduction. The fuel radial node optimization was first performed to match the Fuel Centerline Temperature (FCT) the best. This was followed by optimizing the axial node which the Peak Cladding Temperature (PCT) is matched the best. After obtaining the optimized radial and axial nodes, the nodalization is implemented into the system analysis code and transient analyses were performed to observe the optimum nodalization performance. The developed adjoint-based mesh optimization method in the study is applied to MARS-KS, which is a nuclear system analysis code. Results show that the newly established method yields better results than that of the uniform meshing method from the numerical point of view. It is again stressed that the optimized mesh for the steady state can also give better numerical results even during a transient analysis

  3. Evaluation and optimization of nucleic acid extraction methods for the molecular analysis of bacterial communities associated with corrored steel

    NARCIS (Netherlands)

    Marty, F.; Ghiglione, J.-F.; Païsse, S.; Gueuné, H.; Quillet, L.; van Loosdrecht, M.C.M.; Muyzer, G.

    2012-01-01

    Different DNA and RNA extraction approaches were evaluated and protocols optimized on in situ corrosion products from carbon steel in marine environments. Protocols adapted from the PowerSoil DNA/RNA Isolation methods resulted in the best nucleic acid (NA) extraction performances (ie combining high

  4. Automotive Exterior Noise Optimization Using Grey Relational Analysis Coupled with Principal Component Analysis

    Science.gov (United States)

    Chen, Shuming; Wang, Dengfeng; Liu, Bo

    This paper investigates optimization design of the thickness of the sound package performed on a passenger automobile. The major characteristics indexes for performance selected to evaluate the processes are the SPL of the exterior noise and the weight of the sound package, and the corresponding parameters of the sound package are the thickness of the glass wool with aluminum foil for the first layer, the thickness of the glass fiber for the second layer, and the thickness of the PE foam for the third layer. In this paper, the process is fundamentally with multiple performances, thus, the grey relational analysis that utilizes grey relational grade as performance index is especially employed to determine the optimal combination of the thickness of the different layers for the designed sound package. Additionally, in order to evaluate the weighting values corresponding to various performance characteristics, the principal component analysis is used to show their relative importance properly and objectively. The results of the confirmation experiments uncover that grey relational analysis coupled with principal analysis methods can successfully be applied to find the optimal combination of the thickness for each layer of the sound package material. Therefore, the presented method can be an effective tool to improve the vehicle exterior noise and lower the weight of the sound package. In addition, it will also be helpful for other applications in the automotive industry, such as the First Automobile Works in China, Changan Automobile in China, etc.

  5. Optimization of cooling tower performance analysis using Taguchi method

    Directory of Open Access Journals (Sweden)

    Ramkumar Ramakrishnan

    2013-01-01

    Full Text Available This study discuss the application of Taguchi method in assessing maximum cooling tower effectiveness for the counter flow cooling tower using expanded wire mesh packing. The experiments were planned based on Taguchi’s L27 orthogonal array .The trail was performed under different inlet conditions of flow rate of water, air and water temperature. Signal-to-noise ratio (S/N analysis, analysis of variance (ANOVA and regression were carried out in order to determine the effects of process parameters on cooling tower effectiveness and to identity optimal factor settings. Finally confirmation tests verified this reliability of Taguchi method for optimization of counter flow cooling tower performance with sufficient accuracy.

  6. Miniaturized test system for soil respiration induced by volatile pollutants

    International Nuclear Information System (INIS)

    Kaufmann, Karin; Chapman, Stephen J.; Campbell, Colin D.; Harms, Hauke; Hoehener, Patrick

    2006-01-01

    A miniaturized method based on 96-well microtitre plates was developed and used to study respiration in pristine and contaminated soils following addition of volatile substrates. Small soil samples were exposed to fuel components, which were volatilized from spatially separate reservoirs of 2,2,4,4,6,8,8-heptamethylnonane (HMN) as an organic carrier. Respiration was determined as CO 2 production by means of a pH-indicator and bicarbonate-containing agar, or as 14 CO 2 evolution from 14 C-labelled substrates. Substrate concentrations inducing maximum microbial activity or inhibition were determined and CO 2 production profiles examined by multivariate analysis. When high concentrations of fuel components were applied, distinction of hydrocarbon exposed soils from unexposed soil was achieved within 6 h of incubation. With low concentrations, adequate distinction was achieved after 24 h, probably as a result of community adaptation. Nutrient limitation was identified with the 14 C method for toluene, and the optimal N and P amendment determined. Further potential applications of this rapid and inexpensive method are outlined. - A new method to study soil respiration is used when volatile organic contaminants are added

  7. Analytical analysis of soil-moisture and trace-contaminant transport

    International Nuclear Information System (INIS)

    Larson, N.M.; Reeves, M.

    1976-03-01

    A transport model is presented which predicts the coupled movement of both water and trace contaminants through a layered and unsaturated soil-moisture zone. In order to achieve computation speeds suitable for watershed implementations, moisture properties are approximated as exponential functions of pressure head, and lateral flows are treated as sinks in a basically vertical one-dimensional analysis. In addition, only advection by the Darcy-flow velocities and linear adsorption by the soil matrix are considered in depicting movement of the trace contaminant. Formal solution of the resulting transport equations is obtained through use of both eigenfunction-expansion and coordinate-transformation methods. Numerical solution is effected by means of a program written in FORTRAN IV and implemented on an IBM 360/91 computer. Two example calculations illustrate both strengths and weaknesses of our model

  8. Sensitivity Analysis of Deviation Source for Fast Assembly Precision Optimization

    Directory of Open Access Journals (Sweden)

    Jianjun Tang

    2014-01-01

    Full Text Available Assembly precision optimization of complex product has a huge benefit in improving the quality of our products. Due to the impact of a variety of deviation source coupling phenomena, the goal of assembly precision optimization is difficult to be confirmed accurately. In order to achieve optimization of assembly precision accurately and rapidly, sensitivity analysis of deviation source is proposed. First, deviation source sensitivity is defined as the ratio of assembly dimension variation and deviation source dimension variation. Second, according to assembly constraint relations, assembly sequences and locating, deviation transmission paths are established by locating the joints between the adjacent parts, and establishing each part’s datum reference frame. Third, assembly multidimensional vector loops are created using deviation transmission paths, and the corresponding scalar equations of each dimension are established. Then, assembly deviation source sensitivity is calculated by using a first-order Taylor expansion and matrix transformation method. Finally, taking assembly precision optimization of wing flap rocker as an example, the effectiveness and efficiency of the deviation source sensitivity analysis method are verified.

  9. Data Assimilation using observed streamflow and remotely-sensed soil moisture for improving sub-seasonal-to-seasonal forecasting

    Science.gov (United States)

    Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.

    2017-12-01

    Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.

  10. Numerical Analysis of Helical Pile-Soil Interaction under Compressive Loads

    Science.gov (United States)

    Polishchuk, A. I.; Maksimov, F. A.

    2017-11-01

    The results of the field tests of full-scale steel helical piles in clay soils intended for prefabricated temporary buildings foundations are presented in this article. The finite element modeling was used for the evaluation of stress distribution of the clay soil around helical piles. An approach of modeling of the screw-pile geometry has been proposed through the Finite Element Analysis. Steel helical piles with a length of 2.0 m, shaft diameter of 0.108 m and a blade diameter of 0.3 m were used in the experiments. The experiments have shown the efficiency of double-bladed helical piles in the clay soils compared to single-bladed piles. It has been experimentally established that the introduction of the second blade into the pile shaft provides an increase of the bearing capacity in clay soil up to 30% compared to a single-bladed helical pile with similar geometrical dimensions. The numerical results are compared with the measurements obtained by a large scale test and the bearing capacity has been estimated. It has been found that the model results fit the field results. For a double-bladed helical pile it was revealed that shear stresses upon pile loading are formed along the lateral surface forming a cylindrical failure surface.

  11. Value of Soil Organic Carbon in Agricultural Lands

    Energy Technology Data Exchange (ETDEWEB)

    Wander, M.; Nissen, T. [Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Ave. Urbana IL 61801 (United States)

    2004-10-01

    Immediate efforts to increase soil carbon sequestration and minimize terrestrial greenhouse gas emissions are needed to mitigate global warming. Whether or not terrestrial stocks become sinks or net sources of C over the next century will depend upon how fast and at what level we are able to stabilize carbon dioxide levels. The cost of soil C sequestration is at present relatively low compared to other C emission reduction technologies making soil C sinks an important short-term solution to be used while competing technologies are developed. However, efforts to use C sequestration in soils as CO2 emissions offsets have faced numerous challenges. Difficulties associated with C stock validation (direct measurement) and the impermanence and saturability of soil C reservoirs raise concerns over whether soil C reservoirs are good long-term investments. Pragmatism has led to the development of indirect inventorying of the C reserves held at national and regional scales. Such indirect accounting systems will advance as validation methods are refined and as process models improve their ability to accurately predict how existing soil condition and specific land management practices will influence soil C storage and NO2 and CH4 emissions. Improved documentation of the value of environmental services and sustained productive potential derived from optimized land use and associated increases in soil quality will also add to the estimated value of soil C sinks. Policies must evolve simultaneously with the theoretical and technical tools needed to promote optimization of land use practices to mitigate climate change now and to minimize future contributions of soil C to atmospheric CO2.

  12. Seismic soil structure interaction analysis for asymmetrical buildings supported on piled raft for the 2015 Nepal earthquake

    Science.gov (United States)

    Badry, Pallavi; Satyam, Neelima

    2017-01-01

    Seismic damage surveys and analyses conducted on modes of failure of structures during past earthquakes observed that the asymmetrical buildings show the most vulnerable effect throughout the course of failures (Wegner et al., 2009). Thus, all asymmetrical buildings significantly fails during the shaking events and it is really needed to focus on the accurate analysis of the building, including all possible accuracy in the analysis. Apart from superstructure geometry, the soil behavior during earthquake shaking plays a pivotal role in the building collapse (Chopra, 2012). Fixed base analysis where the soil is considered to be infinitely rigid cannot simulate the actual scenario of wave propagation during earthquakes and wave transfer mechanism in the superstructure (Wolf, 1985). This can be well explained in the soil structure interaction analysis, where the ground movement and structural movement can be considered with the equal rigor. In the present study the object oriented program has been developed in C++ to model the SSI system using the finite element methodology. In this attempt the seismic soil structure interaction analysis has been carried out for T, L and C types piled raft supported buildings in the recent 25th April 2015 Nepal earthquake (M = 7.8). The soil properties have been considered with the appropriate soil data from the Katmandu valley region. The effect of asymmetry of the building on the responses of the superstructure is compared with the author's research work. It has been studied/observed that the shape or geometry of the superstructure governs the response of the superstructure subjected to the same earthquake load.

  13. An expert system for integrated structural analysis and design optimization for aerospace structures

    Science.gov (United States)

    1992-04-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and

  14. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils.

    Science.gov (United States)

    Alguacil, Maria Del Mar; Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-06-01

    We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors

  15. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils

    Science.gov (United States)

    Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-01-01

    ABSTRACT We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. IMPORTANCE Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels

  16. Removal of uranium from gravel using soil washing method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ilgook; Kim, Kye-Nam; Kim, Seung-Soo; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The development of nuclear technology has led to increasing radioactive waste containing uranium being released and disposed in the nuclear sites. Fine grained soils with a size of less than 4 mm are normally decontaminated using soil washing and electro-kinetic technologies. However, there have been few studies on the decontamination of gravels with a size of more than 4 mm. Therefore, it is necessary to study the decontamination of gravel contaminated with radionuclides. The main objective of the present study on soil washing was to define the optimal condition for acid treatment of uranium-polluted gravel. In this study, soil washing method was applied to remove uranium from gravel. The gravel was crushed and classified as particle sizes. The gravel particles were treated with sulfuric acid in a shaking incubator at 60 .deg. C and 150 rpm for 3 h. The optimal particle size of gravel for soil washing in removal of uranium was between 0.45 and 2.0 mm.

  17. Optimal analysis of structures by concepts of symmetry and regularity

    CERN Document Server

    Kaveh, Ali

    2013-01-01

    Optimal analysis is defined as an analysis that creates and uses sparse, well-structured and well-conditioned matrices. The focus is on efficient methods for eigensolution of matrices involved in static, dynamic and stability analyses of symmetric and regular structures, or those general structures containing such components. Powerful tools are also developed for configuration processing, which is an important issue in the analysis and design of space structures and finite element models. Different mathematical concepts are combined to make the optimal analysis of structures feasible. Canonical forms from matrix algebra, product graphs from graph theory and symmetry groups from group theory are some of the concepts involved in the variety of efficient methods and algorithms presented. The algorithms elucidated in this book enable analysts to handle large-scale structural systems by lowering their computational cost, thus fulfilling the requirement for faster analysis and design of future complex systems. The ...

  18. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd.

    Science.gov (United States)

    Lu, Huanping; Li, Zhian; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2015-01-01

    The main goal of phytoremediation is to improve ecosystem functioning. Soil biochemical properties are considered as effective indicators of soil quality and are sensitive to various environmental stresses, including heavy metal contamination. The biochemical response in a soil contaminated with cadmium was tested after several treatments aimed to reduce heavy metal availability including liming, biochar addition and phytoextraction using Amaranthus tricolor L. Two biochars were added to the soil: eucalyptus pyrolysed at 600 °C (EB) and poultry litter at 400 °C (PLB). Two liming treatments were chosen with the aim of bringing soil pH to the same values as in the treatments EB and PLB. The properties studied included soil microbial biomass C, soil respiration and the activities of invertase, β-glucosidase, β-glucosaminidase, urease and phosphomonoesterase. Both phytoremediation and biochar addition improved soil biochemical properties, although results were enzyme specific. For biochar addition these changes were partly, but not exclusively, mediated by alterations in soil pH. A careful choice of biochar must be undertaken to optimize the remediation process from the point of view of metal phytoextraction and soil biological activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Optimization of mobile analysis of radionuclides

    International Nuclear Information System (INIS)

    Labaska, M.

    2016-01-01

    This thesis is focused on optimization of separation and determination of radionuclides which can be used in mobile or field analysis. Mentioned methods are part of procedures and methods of mobile radiometric laboratory which is being developed for Slovak Armed forces. The main principle of these methods is the separation of analytes using high performance liquid chromatography using both reverse phase liquid chromatography and ion exchange chromatography. Chromatography columns such as Dionex IonPack"("R") CS5A, Dionex IonPack"("R") CS3 and Hypersil"("R") BDS C18 have been used. For detection of stabile nuclides, conductivity detection and UV/VIS detection have been employed. Separation of alkali and alkali earth metals. transition metals and lanthanides has been optimized. Combination of chromatographic separation and flow scintillation analysis has been also studied. Radioactive isotopes "5"5Fe, "2"1"0Pb, "6"0Co, "8"5Sr and "1"3"4Cs have been chosen as analytes for nuclear detection techniques. Utilization of well-type and planar NaI(Tl) detector has been investigated together with cloud point extraction. For micelle mediated extraction two possible ligands have been studied - 8-hydroxyquinoline and ammonium pyrolidinedithiocarbamate. Recoveries of cloud point extraction were in range between 80 to 90%. This thesis is also focused on possible application of liquid scintillation analysis with cloud point extraction of analytes. Radioactive standard containing "5"5Fe, "2"1"0Pb, "6"0Co, "8"5Sr and "1"3"4Cs has been separated using liquid chromatography and fractions of individual isotopes have been collected, extracted using cloud point extraction and measured using liquid scintillation analysis. Finally, cloud point extraction coupled with ICP-MS have been studied. (author)

  20. Strength analysis and lightweight research of a fertilizing and soil covering vehicle

    Science.gov (United States)

    Sun, Heng-Hui; Zhang, Zheng-Yong; Liu, Yang; Xu, Hai-Ming; Chen, En-Wei

    2018-03-01

    In this paper, parametric modeling is carried out for the frame part of a kind of fertilizing and soil covering vehicle to define boundary conditions such as load, constraint, etc. when the frame is under the working condition of normal full load. ANSYS software is used to produce finite element model of frame, and to analyze and solve the model, so as to obtain stress and stain variation diagram of each part of frame under working condition of normal full load. The calculation result shows that: the structure of frame is able to meet the strength requirement, and the maximum value of stress is located at joint between frame and external hinge, which should be appropriately improved in thickening way. According to the result of finite element, the scheme with size optimization is employed to design the frame in lightweight way. The research result of this paper provides the theoretical basis for the design of frame of fertilizing and soil covering vehicle, which has deep theoretical significance and application value.