Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying
2018-01-01
The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation
International Nuclear Information System (INIS)
Dyvorne, Hadrien; Jajamovich, Guido; Kakite, Suguru; Kuehn, Bernd; Taouli, Bachir
2014-01-01
Highlights: • We assess the precision and reproducibility of liver IVIM diffusion parameters. • Liver IVIM DWI can be performed with 4 b-values with good parameter precision. • Liver IVIM DWI can be performed with 4 b-values with good parameter reproducibility. - Abstract: Purpose: To increase diffusion sampling efficiency in intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) of the liver by reducing the number of diffusion weightings (b-values). Materials and methods: In this IRB approved HIPAA compliant prospective study, 53 subjects (M/F 38/15, mean age 52 ± 13 y) underwent IVIM DWI at 1.5 T using 16 b-values (0–800 s/mm 2 ), with 14 subjects having repeat exams to assess IVIM parameter reproducibility. A biexponential diffusion model was used to quantify IVIM hepatic parameters (PF: perfusion fraction, D: true diffusion and D*: pseudo diffusion). All possible subsets of the 16 b-values were probed, with number of b values ranging from 4 to 15, and corresponding parameters were quantified for each subset. For each b-value subset, global parameter estimation error was computed against the parameters obtained with all 16 b-values and the subsets providing the lowest error were selected. Interscan estimation error was also evaluated between repeat exams to assess reproducibility of the IVIM technique in the liver. The optimal b-values distribution was selected such that the number of b-values was minimal while keeping parameter estimation error below interscan reproducibility error. Results: As the number of b-values decreased, the estimation error increased for all parameters, reflecting decreased precision of IVIM metrics. Using an optimal set of 4 b-values (0, 15, 150 and 800 s/mm 2 ), the errors were 6.5, 22.8 and 66.1% for D, PF and D* respectively. These values lie within the range of test–retest reproducibility for the corresponding parameters, with errors of 12.0, 32.3 and 193.8% for D, PF and D* respectively. Conclusion: A set
Optimal parameters of the SVM for temperature prediction
Directory of Open Access Journals (Sweden)
X. Shi
2015-05-01
Full Text Available This paper established three different optimization models in order to predict the Foping station temperature value. The dimension was reduced to change multivariate climate factors into a few variables by principal component analysis (PCA. And the parameters of support vector machine (SVM were optimized with genetic algorithm (GA, particle swarm optimization (PSO and developed genetic algorithm. The most suitable method was applied for parameter optimization by comparing the results of three different models. The results are as follows: The developed genetic algorithm optimization parameters of the predicted values were closest to the measured value after the analog trend, and it is the most fitting measured value trends, and its homing speed is relatively fast.
Genetic Algorithm Optimizes Q-LAW Control Parameters
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Epstein, F H; Mugler, J P; Brookeman, J R
1994-02-01
A number of pulse sequence techniques, including magnetization-prepared gradient echo (MP-GRE), segmented GRE, and hybrid RARE, employ a relatively large number of variable pulse sequence parameters and acquire the image data during a transient signal evolution. These sequences have recently been proposed and/or used for clinical applications in the brain, spine, liver, and coronary arteries. Thus, the need for a method of deriving optimal pulse sequence parameter values for this class of sequences now exists. Due to the complexity of these sequences, conventional optimization approaches, such as applying differential calculus to signal difference equations, are inadequate. We have developed a general framework for adapting the simulated annealing algorithm to pulse sequence parameter value optimization, and applied this framework to the specific case of optimizing the white matter-gray matter signal difference for a T1-weighted variable flip angle 3D MP-RAGE sequence. Using our algorithm, the values of 35 sequence parameters, including the magnetization-preparation RF pulse flip angle and delay time, 32 flip angles in the variable flip angle gradient-echo acquisition sequence, and the magnetization recovery time, were derived. Optimized 3D MP-RAGE achieved up to a 130% increase in white matter-gray matter signal difference compared with optimized 3D RF-spoiled FLASH with the same total acquisition time. The simulated annealing approach was effective at deriving optimal parameter values for a specific 3D MP-RAGE imaging objective, and may be useful for other imaging objectives and sequences in this general class.
Weak-value amplification and optimal parameter estimation in the presence of correlated noise
Sinclair, Josiah; Hallaji, Matin; Steinberg, Aephraim M.; Tollaksen, Jeff; Jordan, Andrew N.
2017-11-01
We analytically and numerically investigate the performance of weak-value amplification (WVA) and related parameter estimation methods in the presence of temporally correlated noise. WVA is a special instance of a general measurement strategy that involves sorting data into separate subsets based on the outcome of a second "partitioning" measurement. Using a simplified correlated noise model that can be analyzed exactly together with optimal statistical estimators, we compare WVA to a conventional measurement method. We find that WVA indeed yields a much lower variance of the parameter of interest than the conventional technique does, optimized in the absence of any partitioning measurements. In contrast, a statistically optimal analysis that employs partitioning measurements, incorporating all partitioned results and their known correlations, is found to yield an improvement—typically slight—over the noise reduction achieved by WVA. This result occurs because the simple WVA technique is not tailored to any specific noise environment and therefore does not make use of correlations between the different partitions. We also compare WVA to traditional background subtraction, a familiar technique where measurement outcomes are partitioned to eliminate unknown offsets or errors in calibration. Surprisingly, for the cases we consider, background subtraction turns out to be a special case of the optimal partitioning approach, possessing a similar typically slight advantage over WVA. These results give deeper insight into the role of partitioning measurements (with or without postselection) in enhancing measurement precision, which some have found puzzling. They also resolve previously made conflicting claims about the usefulness of weak-value amplification to precision measurement in the presence of correlated noise. We finish by presenting numerical results to model a more realistic laboratory situation of time-decaying correlations, showing that our conclusions hold
On the role of modeling parameters in IMRT plan optimization
International Nuclear Information System (INIS)
Krause, Michael; Scherrer, Alexander; Thieke, Christian
2008-01-01
The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way
Integral Optimization of Systematic Parameters of Flip-Flow Screens
Institute of Scientific and Technical Information of China (English)
翟宏新
2004-01-01
The synthetic index Ks for evaluating flip-flow screens is proposed and systematically optimized in view of the whole system. A series of optimized values of relevant parameters are found and then compared with those of the current industrial specifications. The results show that the optimized value Ks approaches the one of those famous flip-flow screens in the world. Some new findings on geometric and kinematics parameters are useful for improving the flip-flow screens with a low Ks value, which is helpful in developing clean coal technology.
Control parameter optimization for AP1000 reactor using Particle Swarm Optimization
International Nuclear Information System (INIS)
Wang, Pengfei; Wan, Jiashuang; Luo, Run; Zhao, Fuyu; Wei, Xinyu
2016-01-01
Highlights: • The PSO algorithm is applied for control parameter optimization of AP1000 reactor. • Key parameters of the MSHIM control system are optimized. • Optimization results are evaluated though simulations and quantitative analysis. - Abstract: The advanced mechanical shim (MSHIM) core control strategy is implemented in the AP1000 reactor for core reactivity and axial power distribution control simultaneously. The MSHIM core control system can provide superior reactor control capabilities via automatic rod control only. This enables the AP1000 to perform power change operations automatically without the soluble boron concentration adjustments. In this paper, the Particle Swarm Optimization (PSO) algorithm has been applied for the parameter optimization of the MSHIM control system to acquire better reactor control performance for AP1000. System requirements such as power control performance, control bank movement and AO control constraints are reflected in the objective function. Dynamic simulations are performed based on an AP1000 reactor simulation platform in each iteration of the optimization process to calculate the fitness values of particles in the swarm. The simulation platform is developed in Matlab/Simulink environment with implementation of a nodal core model and the MSHIM control strategy. Based on the simulation platform, the typical 10% step load decrease transient from 100% to 90% full power is simulated and the objective function used for control parameter tuning is directly incorporated in the simulation results. With successful implementation of the PSO algorithm in the control parameter optimization of AP1000 reactor, four key parameters of the MSHIM control system are optimized. It has been demonstrated by the calculation results that the optimized MSHIM control system parameters can improve the reactor power control capability and reduce the control rod movement without compromising AO control. Therefore, the PSO based optimization
Utama, D. N.; Ani, N.; Iqbal, M. M.
2018-03-01
Optimization is a process for finding parameter (parameters) that is (are) able to deliver an optimal value for an objective function. Seeking an optimal generic model for optimizing is a computer science study that has been being practically conducted by numerous researchers. Generic model is a model that can be technically operated to solve any varieties of optimization problem. By using an object-oriented method, the generic model for optimizing was constructed. Moreover, two types of optimization method, simulated-annealing and hill-climbing, were functioned in constructing the model and compared to find the most optimal one then. The result said that both methods gave the same result for a value of objective function and the hill-climbing based model consumed the shortest running time.
Optimal filtering values in renogram deconvolution
Energy Technology Data Exchange (ETDEWEB)
Puchal, R.; Pavia, J.; Gonzalez, A.; Ros, D.
1988-07-01
The evaluation of the isotopic renogram by means of the renal retention function (RRF) is a technique that supplies valuable information about renal function. It is not unusual to perform a smoothing of the data because of the sensitivity of the deconvolution algorithms with respect to noise. The purpose of this work is to confirm the existence of an optimal smoothing which minimises the error between the calculated RRF and the theoretical value for two filters (linear and non-linear). In order to test the effectiveness of these optimal smoothing values, some parameters of the calculated RRF were considered using this optimal smoothing. The comparison of these parameters with the theoretical ones revealed a better result in the case of the linear filter than in the non-linear case. The study was carried out simulating the input and output curves which would be obtained when using hippuran and DTPA as tracers.
Optimization of parameters of special asynchronous electric drives
Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.
2018-03-01
The article considers the solution of the problem of parameters optimization of special asynchronous electric drives. The solution of the problem will allow one to project and create special asynchronous electric drives for various industries. The created types of electric drives will have optimum mass-dimensional and power parameters. It will allow one to realize and fulfill the set characteristics of management of technological processes with optimum level of expenses of electric energy, time of completing the process or other set parameters. The received decision allows one not only to solve a certain optimizing problem, but also to construct dependences between the optimized parameters of special asynchronous electric drives, for example, with the change of power, current in a winding of the stator or rotor, induction in a gap or steel of magnetic conductors and other parameters. On the constructed dependences, it is possible to choose necessary optimum values of parameters of special asynchronous electric drives and their components without carrying out repeated calculations.
Application of an Evolutionary Algorithm for Parameter Optimization in a Gully Erosion Model
Energy Technology Data Exchange (ETDEWEB)
Rengers, Francis; Lunacek, Monte; Tucker, Gregory
2016-06-01
Herein we demonstrate how to use model optimization to determine a set of best-fit parameters for a landform model simulating gully incision and headcut retreat. To achieve this result we employed the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), an iterative process in which samples are created based on a distribution of parameter values that evolve over time to better fit an objective function. CMA-ES efficiently finds optimal parameters, even with high-dimensional objective functions that are non-convex, multimodal, and non-separable. We ran model instances in parallel on a high-performance cluster, and from hundreds of model runs we obtained the best parameter choices. This method is far superior to brute-force search algorithms, and has great potential for many applications in earth science modeling. We found that parameters representing boundary conditions tended to converge toward an optimal single value, whereas parameters controlling geomorphic processes are defined by a range of optimal values.
Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei
2018-03-01
Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
A parameter estimation for DC servo motor by using optimization process
International Nuclear Information System (INIS)
Arjoni Amir
2010-01-01
Modeling and simulation parameters of DC servo motor using Matlab Simulink software have been done. The objective to define the DC servo motor parameter estimation is to get DC servo motor parameter values (B, La, Ra, Km, J) which are significant value that can be used for actuation process of control systems. In the analysis of control systems DC the servo motor expressed by transfer function equation to make faster to be analyzed as a component of the actuator. To obtain the data model parameters and initial conditions of the DC servo motors is then carried out the processor modeling and simulation in which the DC servo motor combined with other components. To obtain preliminary data of the DC servo motor parameters as estimated venue, it is obtained from the data factory of the DC servo motor. The initial data parameters of the DC servo motor are applied for the optimization process by using nonlinear least square algorithm and minimize the cost function value so that the DC servo motors parameter values are obtained significantly. The result of the optimization process of the DC servo motor parameter values are B = 0.039881, J= 1.2608e-007, Km = 0.069648, La = 2.3242e-006 and Ra = 1.8837. (author)
METAHEURISTIC OPTIMIZATION METHODS FOR PARAMETERS ESTIMATION OF DYNAMIC SYSTEMS
Directory of Open Access Journals (Sweden)
V. Panteleev Andrei
2017-01-01
Full Text Available The article considers the usage of metaheuristic methods of constrained global optimization: “Big Bang - Big Crunch”, “Fireworks Algorithm”, “Grenade Explosion Method” in parameters of dynamic systems estimation, described with algebraic-differential equations. Parameters estimation is based upon the observation results from mathematical model behavior. Their values are derived after criterion minimization, which describes the total squared error of state vector coordinates from the deduced ones with precise values observation at different periods of time. Paral- lelepiped type restriction is imposed on the parameters values. Used for solving problems, metaheuristic methods of constrained global extremum don’t guarantee the result, but allow to get a solution of a rather good quality in accepta- ble amount of time. The algorithm of using metaheuristic methods is given. Alongside with the obvious methods for solving algebraic-differential equation systems, it is convenient to use implicit methods for solving ordinary differen- tial equation systems. Two ways of solving the problem of parameters evaluation are given, those parameters differ in their mathematical model. In the first example, a linear mathematical model describes the chemical action parameters change, and in the second one, a nonlinear mathematical model describes predator-prey dynamics, which characterize the changes in both kinds’ population. For each of the observed examples there are calculation results from all the three methods of optimization, there are also some recommendations for how to choose methods parameters. The obtained numerical results have demonstrated the efficiency of the proposed approach. The deduced parameters ap- proximate points slightly differ from the best known solutions, which were deduced differently. To refine the results one should apply hybrid schemes that combine classical methods of optimization of zero, first and second orders and
Network optimization including gas lift and network parameters under subsurface uncertainty
Energy Technology Data Exchange (ETDEWEB)
Schulze-Riegert, R.; Baffoe, J.; Pajonk, O. [SPT Group GmbH, Hamburg (Germany); Badalov, H.; Huseynov, S. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Trick, M. [SPT Group, Calgary, AB (Canada)
2013-08-01
Optimization of oil and gas field production systems poses a great challenge to field development due to complex and multiple interactions between various operational design parameters and subsurface uncertainties. Conventional analytical methods are capable of finding local optima based on single deterministic models. They are less applicable for efficiently generating alternative design scenarios in a multi-objective context. Practical implementations of robust optimization workflows integrate the evaluation of alternative design scenarios and multiple realizations of subsurface uncertainty descriptions. Production or economic performance indicators such as NPV (Net Present Value) are linked to a risk-weighted objective function definition to guide the optimization processes. This work focuses on an integrated workflow using a reservoir-network simulator coupled to an optimization framework. The work will investigate the impact of design parameters while considering the physics of the reservoir, wells, and surface facilities. Subsurface uncertainties are described by well parameters such as inflow performance. Experimental design methods are used to investigate parameter sensitivities and interactions. Optimization methods are used to find optimal design parameter combinations which improve key performance indicators of the production network system. The proposed workflow will be applied to a representative oil reservoir coupled to a network which is modelled by an integrated reservoir-network simulator. Gas-lift will be included as an explicit measure to improve production. An objective function will be formulated for the net present value of the integrated system including production revenue and facility costs. Facility and gas lift design parameters are tuned to maximize NPV. Well inflow performance uncertainties are introduced with an impact on gas lift performance. Resulting variances on NPV are identified as a risk measure for the optimized system design. A
Sensitivity of NTCP parameter values against a change of dose calculation algorithm
International Nuclear Information System (INIS)
Brink, Carsten; Berg, Martin; Nielsen, Morten
2007-01-01
Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis with those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models
Optimal design criteria - prediction vs. parameter estimation
Waldl, Helmut
2014-05-01
G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.
Li, Rui
2009-01-01
The target of this work is to extend the canonical Evolution Strategies (ES) from traditional real-valued parameter optimization domain to mixed-integer parameter optimization domain. This is necessary because there exist numerous practical optimization problems from industry in which the set of
Optimal correction and design parameter search by modern methods of rigorous global optimization
International Nuclear Information System (INIS)
Makino, K.; Berz, M.
2011-01-01
Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle
Cosmological parameter estimation using particle swarm optimization
Prasad, Jayanti; Souradeep, Tarun
2012-06-01
Constraining theoretical models, which are represented by a set of parameters, using observational data is an important exercise in cosmology. In Bayesian framework this is done by finding the probability distribution of parameters which best fits to the observational data using sampling based methods like Markov chain Monte Carlo (MCMC). It has been argued that MCMC may not be the best option in certain problems in which the target function (likelihood) poses local maxima or have very high dimensionality. Apart from this, there may be examples in which we are mainly interested to find the point in the parameter space at which the probability distribution has the largest value. In this situation the problem of parameter estimation becomes an optimization problem. In the present work we show that particle swarm optimization (PSO), which is an artificial intelligence inspired population based search procedure, can also be used for cosmological parameter estimation. Using PSO we were able to recover the best-fit Λ cold dark matter (LCDM) model parameters from the WMAP seven year data without using any prior guess value or any other property of the probability distribution of parameters like standard deviation, as is common in MCMC. We also report the results of an exercise in which we consider a binned primordial power spectrum (to increase the dimensionality of problem) and find that a power spectrum with features gives lower chi square than the standard power law. Since PSO does not sample the likelihood surface in a fair way, we follow a fitting procedure to find the spread of likelihood function around the best-fit point.
A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process
Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa
2017-06-01
High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.
Jambor, Ivan; Merisaari, Harri; Aronen, Hannu J; Järvinen, Jukka; Saunavaara, Jani; Kauko, Tommi; Borra, Ronald; Pesola, Marko
2014-05-01
To determine the optimal b-value distribution for biexponential diffusion-weighted imaging (DWI) of normal prostate using both a computer modeling approach and in vivo measurements. Optimal b-value distributions for the fit of three parameters (fast diffusion Df, slow diffusion Ds, and fraction of fast diffusion f) were determined using Monte-Carlo simulations. The optimal b-value distribution was calculated using four individual optimization methods. Eight healthy volunteers underwent four repeated 3 Tesla prostate DWI scans using both 16 equally distributed b-values and an optimized b-value distribution obtained from the simulations. The b-value distributions were compared in terms of measurement reliability and repeatability using Shrout-Fleiss analysis. Using low noise levels, the optimal b-value distribution formed three separate clusters at low (0-400 s/mm2), mid-range (650-1200 s/mm2), and high b-values (1700-2000 s/mm2). Higher noise levels resulted into less pronounced clustering of b-values. The clustered optimized b-value distribution demonstrated better measurement reliability and repeatability in Shrout-Fleiss analysis compared with 16 equally distributed b-values. The optimal b-value distribution was found to be a clustered distribution with b-values concentrated in the low, mid, and high ranges and was shown to improve the estimation quality of biexponential DWI parameters of in vivo experiments. Copyright © 2013 Wiley Periodicals, Inc.
Optimization Design of Multi-Parameters in Rail Launcher System
Directory of Open Access Journals (Sweden)
Yujiao Zhang
2014-05-01
Full Text Available Today the energy storage systems are still encumbering, therefore it is useful to think about the optimization of a railgun system in order to achieve the best performance with the lowest energy input. In this paper, an optimal design method considering 5 parameters is proposed to improve the energy conversion efficiency of a simple railgun. In order to avoid costly trials, the field- circuit method is employed to analyze the operations of different structural railguns with different parameters respectively. And the orthogonal test approach is used to guide the simulation for choosing the better parameter combinations, as well reduce the calculation cost. The research shows that the proposed method gives a better result in the energy efficiency of the system. To improve the energy conversion efficiency of electromagnetic rail launchers, the selection of more parameters must be considered in the design stage, such as the width, height and length of rail, the distance between rail pair, and pulse forming inductance. However, the relationship between these parameters and energy conversion efficiency cannot be directly described by one mathematical expression. So optimization methods must be applied to conduct design. In this paper, a rail launcher with five parameters was optimized by using orthogonal test method. According to the arrangement of orthogonal table, the better parameters’ combination can be obtained through less calculation. Under the condition of different parameters’ value, field and circuit simulation analysis were made. The results show that the energy conversion efficiency of the system is increased by 71.9 % after parameters optimization.
Identification of metabolic system parameters using global optimization methods
Directory of Open Access Journals (Sweden)
Gatzke Edward P
2006-01-01
Full Text Available Abstract Background The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. Methods and results Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. Conclusion The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.
Parameter optimization for surface flux transport models
Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.
2017-11-01
Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.
Optimization of cutting parameters for machining time in turning process
Mavliutov, A. R.; Zlotnikov, E. G.
2018-03-01
This paper describes the most effective methods for nonlinear constraint optimization of cutting parameters in the turning process. Among them are Linearization Programming Method with Dual-Simplex algorithm, Interior Point method, and Augmented Lagrangian Genetic Algorithm (ALGA). Every each of them is tested on an actual example – the minimization of production rate in turning process. The computation was conducted in the MATLAB environment. The comparative results obtained from the application of these methods show: The optimal value of the linearized objective and the original function are the same. ALGA gives sufficiently accurate values, however, when the algorithm uses the Hybrid function with Interior Point algorithm, the resulted values have the maximal accuracy.
Parameter optimization of differential evolution algorithm for automatic playlist generation problem
Alamag, Kaye Melina Natividad B.; Addawe, Joel M.
2017-11-01
With the digitalization of music, the number of collection of music increased largely and there is a need to create lists of music that filter the collection according to user preferences, thus giving rise to the Automatic Playlist Generation Problem (APGP). Previous attempts to solve this problem include the use of search and optimization algorithms. If a music database is very large, the algorithm to be used must be able to search the lists thoroughly taking into account the quality of the playlist given a set of user constraints. In this paper we perform an evolutionary meta-heuristic optimization algorithm, Differential Evolution (DE) using different combination of parameter values and select the best performing set when used to solve four standard test functions. Performance of the proposed algorithm is then compared with normal Genetic Algorithm (GA) and a hybrid GA with Tabu Search. Numerical simulations are carried out to show better results from Differential Evolution approach with the optimized parameter values.
Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine
Directory of Open Access Journals (Sweden)
Bambang Wahono
2014-01-01
Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.
Yu, Tao; Kang, Chao; Zhao, Pan
2018-01-01
The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing. PMID:29385048
Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine
Zhang, L.; Zhuge, W. L.; Peng, J.; Liu, S. J.; Zhang, Y. J.
2013-12-01
In general, the method proposed by Whitfield and Baines is adopted for the turbine preliminary design. In this design procedure for the turbine blade trailing edge geometry, two assumptions (ideal gas and zero discharge swirl) and two experience values (WR and γ) are used to get the three blade trailing edge geometric parameters: relative exit flow angle β6, the exit tip radius R6t and hub radius R6h for the purpose of maximizing the rotor total-to-static isentropic efficiency. The method above is established based on the experience and results of testing using air as working fluid, so it does not provide a mathematical optimal solution to instruct the optimization of geometry parameters and consider the real gas effects of the organic, working fluid which must be taken into consideration for the ORC turbine design procedure. In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency ηts, and the blade trailing edge geometric parameters for a small scale ORC turbine with working fluid R123 are optimized based on this method. The mathematical optimal solution to minimize the exit kinetic energy is deduced, which can be used to design and optimize the exit shroud/hub radius and exit blade angle. And then, the influence of blade trailing edge geometric parameters on turbine efficiency ηts are analysed and the optimal working ranges of these parameters for the equations are recommended in consideration of working fluid R123. This method is used to modify an existing ORC turbine exit kinetic energy loss from 11.7% to 7%, which indicates the effectiveness of the method. However, the internal passage loss increases from 7.9% to 9.4%, so the only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters, such as the recommended ranges that the value of γ is at 0.3 to 0.4, and the value
Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine
International Nuclear Information System (INIS)
Zhang, L; Zhuge, W L; Liu, S J; Zhang, Y J; Peng, J
2013-01-01
In general, the method proposed by Whitfield and Baines is adopted for the turbine preliminary design. In this design procedure for the turbine blade trailing edge geometry, two assumptions (ideal gas and zero discharge swirl) and two experience values (W R and γ) are used to get the three blade trailing edge geometric parameters: relative exit flow angle β 6 , the exit tip radius R 6t and hub radius R 6h for the purpose of maximizing the rotor total-to-static isentropic efficiency. The method above is established based on the experience and results of testing using air as working fluid, so it does not provide a mathematical optimal solution to instruct the optimization of geometry parameters and consider the real gas effects of the organic, working fluid which must be taken into consideration for the ORC turbine design procedure. In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency η ts , and the blade trailing edge geometric parameters for a small scale ORC turbine with working fluid R123 are optimized based on this method. The mathematical optimal solution to minimize the exit kinetic energy is deduced, which can be used to design and optimize the exit shroud/hub radius and exit blade angle. And then, the influence of blade trailing edge geometric parameters on turbine efficiency η ts are analysed and the optimal working ranges of these parameters for the equations are recommended in consideration of working fluid R123. This method is used to modify an existing ORC turbine exit kinetic energy loss from 11.7% to 7%, which indicates the effectiveness of the method. However, the internal passage loss increases from 7.9% to 9.4%, so the only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters, such as the recommended ranges that the value of γ is at 0.3 to 0.4, and the
International Nuclear Information System (INIS)
Gao, Hao
2016-01-01
For the treatment planning during intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT), beam fluence maps can be first optimized via fluence map optimization (FMO) under the given dose prescriptions and constraints to conformally deliver the radiation dose to the targets while sparing the organs-at-risk, and then segmented into deliverable MLC apertures via leaf or arc sequencing algorithms. This work is to develop an efficient algorithm for FMO based on alternating direction method of multipliers (ADMM). Here we consider FMO with the least-square cost function and non-negative fluence constraints, and its solution algorithm is based on ADMM, which is efficient and simple-to-implement. In addition, an empirical method for optimizing the ADMM parameter is developed to improve the robustness of the ADMM algorithm. The ADMM based FMO solver was benchmarked with the quadratic programming method based on the interior-point (IP) method using the CORT dataset. The comparison results suggested the ADMM solver had a similar plan quality with slightly smaller total objective function value than IP. A simple-to-implement ADMM based FMO solver with empirical parameter optimization is proposed for IMRT or VMAT. (paper)
Optimization of Parameters of Asymptotically Stable Systems
Directory of Open Access Journals (Sweden)
Anna Guerman
2011-01-01
Full Text Available This work deals with numerical methods of parameter optimization for asymptotically stable systems. We formulate a special mathematical programming problem that allows us to determine optimal parameters of a stabilizer. This problem involves solutions to a differential equation. We show how to chose the mesh in order to obtain discrete problem guaranteeing the necessary accuracy. The developed methodology is illustrated by an example concerning optimization of parameters for a satellite stabilization system.
Parameter Optimization for Quantitative Signal-Concentration Mapping Using Spoiled Gradient Echo MRI
Directory of Open Access Journals (Sweden)
Gasser Hathout
2012-01-01
Full Text Available Rationale and Objectives. Accurate signal to tracer concentration maps are critical to quantitative MRI. The purpose of this study was to evaluate and optimize spoiled gradient echo (SPGR MR sequences for the use of gadolinium (Gd-DTPA as a kinetic tracer. Methods. Water-gadolinium phantoms were constructed for a physiologic range of gadolinium concentrations. Observed and calculated SPGR signal to concentration curves were generated. Using a percentage error determination, optimal pulse parameters for signal to concentration mapping were obtained. Results. The accuracy of the SPGR equation is a function of the chosen MR pulse parameters, particularly the time to repetition (TR and the flip angle (FA. At all experimental values of TR, increasing FA decreases the ratio between observed and calculated signals. Conversely, for a constant FA, increasing TR increases this ratio. Using optimized pulse parameter sets, it is possible to achieve excellent accuracy (approximately 5% over a physiologic range of concentration tracer concentrations. Conclusion. Optimal pulse parameter sets exist and their use is essential for deriving accurate signal to concentration curves in quantitative MRI.
Iterative choice of the optimal regularization parameter in TV image deconvolution
International Nuclear Information System (INIS)
Sixou, B; Toma, A; Peyrin, F; Denis, L
2013-01-01
We present an iterative method for choosing the optimal regularization parameter for the linear inverse problem of Total Variation image deconvolution. This approach is based on the Morozov discrepancy principle and on an exponential model function for the data term. The Total Variation image deconvolution is performed with the Alternating Direction Method of Multipliers (ADMM). With a smoothed l 2 norm, the differentiability of the value of the Lagrangian at the saddle point can be shown and an approximate model function obtained. The choice of the optimal parameter can be refined with a Newton method. The efficiency of the method is demonstrated on a blurred and noisy bone CT cross section
Janardhanan, S.; Datta, B.
2011-12-01
Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of
Infrared Drying Parameter Optimization
Jackson, Matthew R.
In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a
Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology
Directory of Open Access Journals (Sweden)
Rupert Faltermeier
2015-01-01
Full Text Available Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP and intracranial pressure (ICP. Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP, with the outcome of the patients represented by the Glasgow Outcome Scale (GOS. For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses.
Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology.
Faltermeier, Rupert; Proescholdt, Martin A; Bele, Sylvia; Brawanski, Alexander
2015-01-01
Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model
Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr
2017-10-01
Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations
PARAMETER COORDINATION AND ROBUST OPTIMIZATION FOR MULTIDISCIPLINARY DESIGN
Institute of Scientific and Technical Information of China (English)
HU Jie; PENG Yinghong; XIONG Guangleng
2006-01-01
A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimization. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. Secondly, the parameter coordination method is presented to solve the constraints network model, monitor the potential conflicts due to engineering changes, and obtain the consistency solution space corresponding to the given product specifications. Finally, the robust parameter optimization model is established, and genetic arithmetic is used to obtain the robust optimization parameter. An example of bogie design is analyzed to show the scheme to be effective.
Directory of Open Access Journals (Sweden)
Damilola Isaac Adebiyi
2016-06-01
Full Text Available The cold spray coating process involves many process parameters which make the process very complex, and highly dependent and sensitive to small changes in these parameters. This results in a small operational window of the parameters. Consequently, mathematical optimization of the process parameters is key, not only to achieving deposition but also improving the coating quality. This study focuses on the mathematical identification and experimental justification of the optimum process parameters for cold spray coating of titanium alloy with silicon carbide (SiC. The continuity, momentum and the energy equations governing the flow through the low-pressure cold spray nozzle were solved by introducing a constitutive equation to close the system. This was used to calculate the critical velocity for the deposition of SiC. In order to determine the input temperature that yields the calculated velocity, the distribution of velocity, temperature, and pressure in the cold spray nozzle were analyzed, and the exit values were predicted using the meshing tool of Solidworks. Coatings fabricated using the optimized parameters and some non-optimized parameters are compared. The coating of the CFD-optimized parameters yielded lower porosity and higher hardness.
Optimization of IBF parameters based on adaptive tool-path algorithm
Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi
2018-03-01
As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.
Optimal Laser Phototherapy Parameters for Pain Relief.
Kate, Rohit J; Rubatt, Sarah; Enwemeka, Chukuka S; Huddleston, Wendy E
2018-03-27
Studies on laser phototherapy for pain relief have used parameters that vary widely and have reported varying outcomes. The purpose of this study was to determine the optimal parameter ranges of laser phototherapy for pain relief by analyzing data aggregated from existing primary literature. Original studies were gathered from available sources and were screened to meet the pre-established inclusion criteria. The included articles were then subjected to meta-analysis using Cohen's d statistic for determining treatment effect size. From these studies, ranges of the reported parameters that always resulted into large effect sizes were determined. These optimal ranges were evaluated for their accuracy using leave-one-article-out cross-validation procedure. A total of 96 articles met the inclusion criteria for meta-analysis and yielded 232 effect sizes. The average effect size was highly significant: d = +1.36 (confidence interval [95% CI] = 1.04-1.68). Among all the parameters, total energy was found to have the greatest effect on pain relief and had the most prominent optimal ranges of 120-162 and 15.36-20.16 J, which always resulted in large effect sizes. The cross-validation accuracy of the optimal ranges for total energy was 68.57% (95% CI = 53.19-83.97). Fewer and less-prominent optimal ranges were obtained for the energy density and duration parameters. None of the remaining parameters was found to be independently related to pain relief outcomes. The findings of meta-analysis indicate that laser phototherapy is highly effective for pain relief. Based on the analysis of parameters, total energy can be optimized to yield the largest effect on pain relief.
Parameters control in GAs for dynamic optimization
Directory of Open Access Journals (Sweden)
Khalid Jebari
2013-02-01
Full Text Available The Control of Genetic Algorithms parameters allows to optimize the search process and improves the performance of the algorithm. Moreover it releases the user to dive into a game process of trial and failure to find the optimal parameters.
Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling
Directory of Open Access Journals (Sweden)
Noor Faizah Z.A.
2016-01-01
Full Text Available This paper presents the modeling and optimization of 14nm gate length CMOS transistor which is down-scaled from previous 32nm gate length. High-k metal gate material was used in this research utilizing Hafnium Dioxide (HfO2 as dielectric and Tungsten Silicide (WSi2 and Titanium Silicide (TiSi2 as a metal gate for NMOS and PMOS respectively. The devices are fabricated virtually using ATHENA module and characterized its performance evaluation via ATLAS module; both in Virtual Wafer Fabrication (VWF of Silvaco TCAD Tools. The devices were then optimized through a process parameters variability using L9 Taguchi Method. There were four process parameter with two noise factor of different values were used to analyze the factor effect. The results show that the optimal value for both transistors are well within ITRS 2013 prediction where VTH and IOFF are 0.236737V and 6.995705nA/um for NMOS device and 0.248635 V and 5.26nA/um for PMOS device respectively.
GA based CNC turning center exploitation process parameters optimization
Directory of Open Access Journals (Sweden)
Z. Car
2009-01-01
Full Text Available This paper presents machining parameters (turning process optimization based on the use of artificial intelligence. To obtain greater efficiency and productivity of the machine tool, optimal cutting parameters have to be obtained. In order to find optimal cutting parameters, the genetic algorithm (GA has been used as an optimal solution finder. Optimization has to yield minimum machining time and minimum production cost, while considering technological and material constrains.
Energy Technology Data Exchange (ETDEWEB)
Portnoy, David, E-mail: david.portnoy@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Feuerbach, Robert; Heimberg, Jennifer [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)
2011-10-01
Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the 'threat' set of
International Nuclear Information System (INIS)
Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer
2011-01-01
Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the 'threat' set of spectra
Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer
2011-10-01
Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the "threat" set of spectra
Application of Powell's optimization method to surge arrester circuit models' parameters
Energy Technology Data Exchange (ETDEWEB)
Christodoulou, C.A.; Stathopulos, I.A. [National Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., Zografou Campus, 157 80 Athens (Greece); Vita, V.; Ekonomou, L.; Chatzarakis, G.E. [A.S.PE.T.E. - School of Pedagogical and Technological Education, Department of Electrical Engineering Educators, N. Heraklion, 141 21 Athens (Greece)
2010-08-15
Powell's optimization method has been used for the evaluation of the surge arrester models parameters. The proper modelling of metal-oxide surge arresters and the right selection of equivalent circuit parameters are very significant issues, since quality and reliability of lightning performance studies can be improved with the more efficient representation of the arresters' dynamic behavior. The proposed approach selects optimum arrester model equivalent circuit parameter values, minimizing the error between the simulated peak residual voltage value and this given by the manufacturer. Application of the method in performed on a 120 kV metal oxide arrester. The use of the obtained optimum parameter values reduces significantly the relative error between the simulated and manufacturer's peak residual voltage value, presenting the effectiveness of the method. (author)
Set-valued optimization an introduction with applications
Khan, Akhtar A; Zalinescu, Constantin
2014-01-01
Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution c
Gomez-Cardona, Daniel; Hayes, John W; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong
2018-05-01
and an anterior ROI, located further from the noise streaks region. Optimal results derived from the task-based detectability index metric were compared to other operating points in the parameter space with different noise and spatial resolution trade-offs. The optimal operating points determined through the d' metric depended on the interplay between the major spatial frequency components of each imaging task and the highly shift-variant and anisotropic noise and spatial resolution properties associated with each operating point in the LSC parameter space. This interplay influenced imaging performance the most when the major spatial frequency component of a given imaging task coincided with the direction of spatial resolution loss or with the dominant noise spatial frequency component; this was the case of imaging task II. The performance of imaging tasks I and III was influenced by this interplay in a smaller scale than imaging task II, since the major frequency component of task I was perpendicular to imaging task II, and because imaging task III did not have strong directional dependence. For both LSC methods, there was a strong dependence of the overall d' magnitude and shape of the contours on the spatial location within the phantom, particularly for imaging tasks II and III. The d' value obtained at the optimal operating point for each spatial location and imaging task was similar when comparing the LSC methods studied in this work. A local task-based detectability framework to optimize the selection of parameters for LSC methods was developed. The framework takes into account the potential shift-variant and anisotropic spatial resolution and noise properties to maximize the imaging performance of the CT system. Optimal parameters for a given LSC method depend strongly on the spatial location within the image object. © 2018 American Association of Physicists in Medicine.
Optimizing Methods of Obtaining Stellar Parameters for the H3 Survey
Ivory, KeShawn; Conroy, Charlie; Cargile, Phillip
2018-01-01
The Stellar Halo at High Resolution with Hectochelle Survey (H3) is in the process of observing and collecting stellar parameters for stars in the Milky Way's halo. With a goal of measuring radial velocities for fainter stars, it is crucial that we have optimal methods of obtaining this and other parameters from the data from these stars.The method currently developed is The Payne, named after Cecilia Payne-Gaposchkin, a code that uses neural networks and Markov Chain Monte Carlo methods to utilize both spectra and photometry to obtain values for stellar parameters. This project was to investigate the benefit of fitting both spectra and spectral energy distributions (SED). Mock spectra using the parameters of the Sun were created and noise was inserted at various signal to noise values. The Payne then fit each mock spectrum with and without a mock SED also generated from solar parameters. The result was that at high signal to noise, the spectrum dominated and the effect of fitting the SED was minimal. But at low signal to noise, the addition of the SED greatly decreased the standard deviation of the data and resulted in more accurate values for temperature and metallicity.
Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle
Directory of Open Access Journals (Sweden)
Bambang Wahono
2015-07-01
Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.
Chickpea seeds germination rational parameters optimization
Safonova, Yu A.; Ivliev, M. N.; Lemeshkin, A. V.
2018-05-01
The paper presents the influence of chickpea seeds bioactivation parameters on their enzymatic activity experimental results. Optimal bioactivation process modes were obtained by regression-factor analysis: process temperature - 13.6 °C, process duration - 71.5 h. It was found that in the germination process, the proteolytic, amylolytic and lipolytic enzymes activity increased, and the urease enzyme activity is reduced. The dependences of enzyme activity on chickpea seeds germination conditions were obtained by mathematical processing of experimental data. The calculated data are in good agreement with the experimental ones. This confirms the optimization efficiency based on experiments mathematical planning in order to determine the enzymatic activity of chickpea seeds germination optimal parameters of bioactivated seeds.
A New Method for Determining Optimal Regularization Parameter in Near-Field Acoustic Holography
Directory of Open Access Journals (Sweden)
Yue Xiao
2018-01-01
Full Text Available Tikhonov regularization method is effective in stabilizing reconstruction process of the near-field acoustic holography (NAH based on the equivalent source method (ESM, and the selection of the optimal regularization parameter is a key problem that determines the regularization effect. In this work, a new method for determining the optimal regularization parameter is proposed. The transfer matrix relating the source strengths of the equivalent sources to the measured pressures on the hologram surface is augmented by adding a fictitious point source with zero strength. The minimization of the norm of this fictitious point source strength is as the criterion for choosing the optimal regularization parameter since the reconstructed value should tend to zero. The original inverse problem in calculating the source strengths is converted into a univariate optimization problem which is solved by a one-dimensional search technique. Two numerical simulations with a point driven simply supported plate and a pulsating sphere are investigated to validate the performance of the proposed method by comparison with the L-curve method. The results demonstrate that the proposed method can determine the regularization parameter correctly and effectively for the reconstruction in NAH.
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.
Optimization of geometric parameters of heat exchange pipes pin finning
Akulov, K. A.; Golik, V. V.; Voronin, K. S.; Zakirzakov, A. G.
2018-05-01
The work is devoted to optimization of geometric parameters of the pin finning of heat-exchanging pipes. Pin fins were considered from the point of view of mechanics of a deformed solid body as overhang beams with a uniformly distributed load. It was found out under what geometric parameters of the nib (diameter and length); the stresses in it from the influence of the washer fluid will not exceed the yield strength of the material (aluminum). Optimal values of the geometric parameters of nibs were obtained for different velocities of the medium washed by them. As a flow medium, water and air were chosen, and the cross section of the nibs was round and square. Pin finning turned out to be more than 3 times more compact than circumferential finning, so its use makes it possible to increase the number of fins per meter of the heat-exchanging pipe. And it is well-known that this is the main method for increasing the heat transfer of a convective surface, giving them an indisputable advantage.
Optimization of the fiber laser parameters for local high-temperature impact on metal
Yatsko, Dmitrii S.; Polonik, Marina V.; Dudko, Olga V.
2016-11-01
This paper presents the local laser heating process of surface layer of the metal sample. The aim is to create the molten pool with the required depth by laser thermal treatment. During the heating the metal temperature at any point of the molten zone should not reach the boiling point of the main material. The laser power, exposure time and the spot size of a laser beam are selected as the variable parameters. The mathematical model for heat transfer in a semi-infinite body, applicable to finite slab, is used for preliminary theoretical estimation of acceptable parameters values of the laser thermal treatment. The optimization problem is solved by using an algorithm based on the scanning method of the search space (the zero-order method of conditional optimization). The calculated values of the parameters (the optimal set of "laser radiation power - exposure time - spot radius") are used to conduct a series of natural experiments to obtain a molten pool with the required depth. A two-stage experiment consists of: a local laser treatment of metal plate (steel) and then the examination of the microsection of the laser irradiated region. According to the experimental results, we can judge the adequacy of the ongoing calculations within the selected models.
Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun
2018-03-01
Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.
Directory of Open Access Journals (Sweden)
Mohammd Mohammed S.
2015-01-01
Full Text Available The aim of this work is to develop a method for optimization of operating parameters of a triple pressure heat recovery steam generator. Two types of optimization: (a thermodynamic and (b thermoeconomic were preformed. The purpose of the thermodynamic optimization is to maximize the efficiency of the plant. The selected objective for this purpose is minimization of the exergy destruction in the heat recovery steam generator (HRSG. The purpose of the thermoeconomic optimization is to decrease the production cost of electricity. Here, the total annual cost of HRSG, defined as a sum of annual values of the capital costs and the cost of the exergy destruction, is selected as the objective function. The optimal values of the most influencing variables are obtained by minimizing the objective function while satisfying a group of constraints. The optimization algorithm is developed and tested on a case of CCGT plant with complex configuration. Six operating parameters were subject of optimization: pressures and pinch point temperatures of every three (high, intermediate and low pressure steam stream in the HRSG. The influence of these variables on the objective function and production cost are investigated in detail. The differences between results of thermodynamic and the thermoeconomic optimization are discussed.
Optimization of Agrobacterium -mediated transformation parameters ...
African Journals Online (AJOL)
Agrobacterium-mediated transformation factors for sweet potato embryogenic calli were optimized using -glucuronidase (GUS) as a reporter. The binary vector pTCK303 harboring the modified GUS gene driven by the CaMV 35S promoter was used. Transformation parameters were optimized including bacterial ...
Bhattacharjya, Rajib Kumar
2018-05-01
The unit hydrograph and the infiltration parameters of a watershed can be obtained from observed rainfall-runoff data by using inverse optimization technique. This is a two-stage optimization problem. In the first stage, the infiltration parameters are obtained and the unit hydrograph ordinates are estimated in the second stage. In order to combine this two-stage method into a single stage one, a modified penalty parameter approach is proposed for converting the constrained optimization problem to an unconstrained one. The proposed approach is designed in such a way that the model initially obtains the infiltration parameters and then searches the optimal unit hydrograph ordinates. The optimization model is solved using Genetic Algorithms. A reduction factor is used in the penalty parameter approach so that the obtained optimal infiltration parameters are not destroyed during subsequent generation of genetic algorithms, required for searching optimal unit hydrograph ordinates. The performance of the proposed methodology is evaluated by using two example problems. The evaluation shows that the model is superior, simple in concept and also has the potential for field application.
Energy Technology Data Exchange (ETDEWEB)
Man, Jun [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA
2016-10-01
The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.
On Revenue-Optimal Dynamic Auctions for Bidders with Interdependent Values
Constantin, Florin; Parkes, David C.
In a dynamic market, being able to update one's value based on information available to other bidders currently in the market can be critical to having profitable transactions. This is nicely captured by the model of interdependent values (IDV): a bidder's value can explicitly depend on the private information of other bidders. In this paper we present preliminary results about the revenue properties of dynamic auctions for IDV bidders. We adopt a computational approach to design single-item revenue-optimal dynamic auctions with known arrivals and departures but (private) signals that arrive online. In leveraging a characterization of truthful auctions, we present a mixed-integer programming formulation of the design problem. Although a discretization is imposed on bidder signals the solution is a mechanism applicable to continuous signals. The formulation size grows exponentially in the dependence of bidders' values on other bidders' signals. We highlight general properties of revenue-optimal dynamic auctions in a simple parametrized example and study the sensitivity of prices and revenue to model parameters.
International Nuclear Information System (INIS)
Moon, S-W; Baek, Y-H; Han, M; Rhee, J-K; Kim, S-D; Oh, J-H
2010-01-01
In this paper, we present a simple and reliable technique for determining the small-signal equivalent circuit model parameters of the 0.1 µm metamorphic high electron mobility transistors (MHEMTs) in a millimeter-wave frequency range. The initial eight extrinsic parameters of the MHEMT are extracted using two S-parameter (scattering parameter) sets measured under the pinched-off and zero-biased cold field-effect transistor conditions by avoiding the forward gate biasing. Furthermore, highly calibration-sensitive values of the R s , L s and C pd are optimized by using a gradient optimization method to improve the modeling accuracy. The accuracy enhancement of this procedure is successfully verified with an excellent correlation between the measured and calculated S-parameters up to 65 GHz
Hybrid computer optimization of systems with random parameters
White, R. C., Jr.
1972-01-01
A hybrid computer Monte Carlo technique for the simulation and optimization of systems with random parameters is presented. The method is applied to the simultaneous optimization of the means and variances of two parameters in the radar-homing missile problem treated by McGhee and Levine.
Energy Technology Data Exchange (ETDEWEB)
Nievaart, V A [Reactor Physics Department, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Moss, R L [Joint Research Centre of the European Commission, Postbus 2, 1755ZG Petten (Netherlands); Kloosterman, J L [Reactor Physics Department, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Hagen, T H J J van der [Reactor Physics Department, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Dam, H van [Reactor Physics Department, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands)
2004-09-21
The values of the parameters used in boron neutron capture therapy (BNCT) to calculate a given dose to human tissue vary with patients due to different physical, biological and/or medical circumstances. Parameters include the tissue dimensions, the {sup 10}B concentration and the relative biological effectiveness (RBE) factors for the different dose components associated with BNCT. Because there is still no worldwide agreement on RBE values, more often than not, average values for these parameters are used. It turns out that the RBE-problem can be circumvented by taking into account all imaginable parameter values. Approaching this quest from another angle: the outcome will also provide the parameters (and values) which influence the optimal source neutron energy. For brain tumours it turns out that the {sup 10}B concentration, the RBE factors for {sup 10}B as well as fast neutrons, together with the dose limit set for healthy tissue, affect the optimal BNCT source neutron energy. By using source neutrons of a few keV together with neutrons of a few eV, it ensures that, under all imaginable circumstances, a maximum of alpha (and lithium) particles can be delivered in the tumour.
Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...
With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th
Development of a parameter optimization technique for the design of automatic control systems
Whitaker, P. H.
1977-01-01
Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.
Heidari, M.; Ranjithan, S.R.
1998-01-01
In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is
Optimization of vibratory welding process parameters using response surface methodology
Energy Technology Data Exchange (ETDEWEB)
Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)
2017-05-15
The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.
Directory of Open Access Journals (Sweden)
The-Vinh Do
2016-03-01
Full Text Available As a successful solution applied to hard machining, the minimum quantity lubricant (MQL has already been established as an alternative to flood coolant processing. The optimization of MQL parameters and cutting parameters under MQL condition are essential and pressing. The study was divided into two parts. In the first part of this study, the Taguchi method was applied to find the optimal values of MQL condition in the hard milling of AISI H13 with consideration of reduced surface roughness. The L9 orthogonal array, the signal-to-noise (S/N ratio and analysis of variance (ANOVA were employed to analyze the effect of the performance characteristics of MQL parameters (i.e., cutting fluid type, pressure, and fluid flow on good surface finish. In the results section, lubricant and pressure of MQL condition are determined to be the most influential factors which give a statistically significant effect on machined surfaces. A verifiable experiment was conducted to demonstrate the reliability of the results. In the second section, the optimized MQL parameters were applied in a series of experiments to find out cutting parameters of hard milling. The Taguchi method was also used to optimize the cutting parameters in order to obtain the best surface roughness. The design of the experiment (DOE was implemented by using the L27 orthogonal array. Based on an analysis of the signal-to-noise response and ANOVA, the optimal values of cutting parameters (i.e., cutting speed, feed rate, depth-of-cut and hardness of workpiece were introduced. The results of the present work indicate feed rate is the factor having the most effect on surface roughness.
Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
International Nuclear Information System (INIS)
Oliva, Diego; Abd El Aziz, Mohamed; Ella Hassanien, Aboul
2017-01-01
Highlights: •We modify the whale algorithm using chaotic maps. •We apply a chaotic algorithm to estimate parameter of photovoltaic cells. •We perform a study of chaos in whale algorithm. •Several comparisons and metrics support the experimental results. •We test the method with data from real solar cells. -- Abstract: The using of solar energy has been increased since it is a clean source of energy. In this way, the design of photovoltaic cells has attracted the attention of researchers over the world. There are two main problems in this field: having a useful model to characterize the solar cells and the absence of data about photovoltaic cells. This situation even affects the performance of the photovoltaic modules (panels). The characteristics of the current vs. voltage are used to describe the behavior of solar cells. Considering such values, the design problem involves the solution of the complex non-linear and multi-modal objective functions. Different algorithms have been proposed to identify the parameters of the photovoltaic cells and panels. Most of them commonly fail in finding the optimal solutions. This paper proposes the Chaotic Whale Optimization Algorithm (CWOA) for the parameters estimation of solar cells. The main advantage of the proposed approach is using the chaotic maps to compute and automatically adapt the internal parameters of the optimization algorithm. This situation is beneficial in complex problems, because along the iterative process, the proposed algorithm improves their capabilities to search for the best solution. The modified method is able to optimize complex and multimodal objective functions. For example, the function for the estimation of parameters of solar cells. To illustrate the capabilities of the proposed algorithm in the solar cell design, it is compared with other optimization methods over different datasets. Moreover, the experimental results support the improved performance of the proposed approach
APPLICATION OF GENETIC ALGORITHMS FOR ROBUST PARAMETER OPTIMIZATION
Directory of Open Access Journals (Sweden)
N. Belavendram
2010-12-01
Full Text Available Parameter optimization can be achieved by many methods such as Monte-Carlo, full, and fractional factorial designs. Genetic algorithms (GA are fairly recent in this respect but afford a novel method of parameter optimization. In GA, there is an initial pool of individuals each with its own specific phenotypic trait expressed as a ‘genetic chromosome’. Different genes enable individuals with different fitness levels to reproduce according to natural reproductive gene theory. This reproduction is established in terms of selection, crossover and mutation of reproducing genes. The resulting child generation of individuals has a better fitness level akin to natural selection, namely evolution. Populations evolve towards the fittest individuals. Such a mechanism has a parallel application in parameter optimization. Factors in a parameter design can be expressed as a genetic analogue in a pool of sub-optimal random solutions. Allowing this pool of sub-optimal solutions to evolve over several generations produces fitter generations converging to a pre-defined engineering optimum. In this paper, a genetic algorithm is used to study a seven factor non-linear equation for a Wheatstone bridge as the equation to be optimized. A comparison of the full factorial design against a GA method shows that the GA method is about 1200 times faster in finding a comparable solution.
Energy Technology Data Exchange (ETDEWEB)
Kafuku, G.; Mbarawa, M. [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, 0001 Pretoria (South Africa)
2010-08-15
The utilization of non-edible feedstock such as moringa oleifera for biodiesel production attracts much attention owing to the issue with regards to avoiding a threat to food supplies. In this study, the optimization of biodiesel production parameters for moringa oleifera oil was carried out. The free fatty acid value of moringa oil was found to be 0.6%, rendering the one step alkaline transesterification method for converting moringa fatty acids to their methyl esters possible. The optimum production parameters: catalyst amount, alcohol amount, temperature, agitation speed and reaction time were determined experimentally and found to be: 1.0 wt% catalyst amount, 30 wt% methanol amount, 60 C reaction temperature, 400 rpm agitation rate and 60 min reaction time. With these optimal conditions the conversion efficiency was 82%. The properties of the moringa biodiesel that was produced were observed to fall within the recommended international biodiesel standards. However, moringa biodiesel showed high values of cloud and pour points of 10 C and 3 C respectively, which present a problem as regards use in cold temperatures. (author)
Homogeneous Gaussian Profile P+-Type Emitters: Updated Parameters and Metal-Grid Optimization
Directory of Open Access Journals (Sweden)
M. Cid
2002-10-01
Full Text Available P+-type emitters were optimized keeping the base parameters constant. Updated internal parameters were considered. The surface recombination velocity was considered variable with the surface doping level. Passivated homogeneous emitters were found to have low emitter recombination density and high collection efficiency. A complete structure p+nn+ was analyzed, taking into account optimized shadowing and metal-contacted factors for laboratory cells as function of the surface doping level and the emitter thickness. The base parameters were kept constant to make the emitter characteristics evident. The most efficient P+-type passivated homogeneous emitters, provide efficiencies around 21% for a wide range of emitter sheet resistivity (50 -- 500 omega/ with the surface doping levels Ns=1×10(19 cm-3 and 5×10(19 cm-3. The output electrical parameters were evaluated considering the recently proposed value n i=9.65×10(9 (cm-3. A non-significant increase of 0.1% in the efficiency was obtained, validating all the conclusions obtained in this work, considering n i=1×10(10 cm-3.
Multi-parameter optimization design of parabolic trough solar receiver
International Nuclear Information System (INIS)
Guo, Jiangfeng; Huai, Xiulan
2016-01-01
Highlights: • The optimal condition can be obtained by multi-parameter optimization. • Exergy and thermal efficiencies are employed as objective function. • Exergy efficiency increases at the expense of heat losses. • The heat obtained by working fluid increases as thermal efficiency grows. - Abstract: The design parameters of parabolic trough solar receiver are interrelated and interact with one another, so the optimal performance of solar receiver cannot be obtained by the convectional single-parameter optimization. To overcome the shortcoming of single-parameter optimization, a multi-parameter optimization of parabolic trough solar receiver is employed based on genetic algorithm in the present work. When the thermal efficiency is taken as the objective function, the heat obtained by working fluid increases while the average temperature of working fluid and wall temperatures of solar receiver decrease. The average temperature of working fluid and the wall temperatures of solar receiver increase while the heat obtained by working fluid decreases generally by taking the exergy efficiency as an objective function. Assuming that the solar radiation intensity remains constant, the exergy obtained by working fluid increases by taking exergy efficiency as the objective function, which comes at the expense of heat losses of solar receiver.
Scarpelli, Matthew; Eickhoff, Jens; Cuna, Enrique; Perlman, Scott; Jeraj, Robert
2018-02-01
The statistical analysis of positron emission tomography (PET) standardized uptake value (SUV) measurements is challenging due to the skewed nature of SUV distributions. This limits utilization of powerful parametric statistical models for analyzing SUV measurements. An ad-hoc approach, which is frequently used in practice, is to blindly use a log transformation, which may or may not result in normal SUV distributions. This study sought to identify optimal transformations leading to normally distributed PET SUVs extracted from tumors and assess the effects of therapy on the optimal transformations. Methods. The optimal transformation for producing normal distributions of tumor SUVs was identified by iterating the Box-Cox transformation parameter (λ) and selecting the parameter that maximized the Shapiro-Wilk P-value. Optimal transformations were identified for tumor SUVmax distributions at both pre and post treatment. This study included 57 patients that underwent 18F-fluorodeoxyglucose (18F-FDG) PET scans (publically available dataset). In addition, to test the generality of our transformation methodology, we included analysis of 27 patients that underwent 18F-Fluorothymidine (18F-FLT) PET scans at our institution. Results. After applying the optimal Box-Cox transformations, neither the pre nor the post treatment 18F-FDG SUV distributions deviated significantly from normality (P > 0.10). Similar results were found for 18F-FLT PET SUV distributions (P > 0.10). For both 18F-FDG and 18F-FLT SUV distributions, the skewness and kurtosis increased from pre to post treatment, leading to a decrease in the optimal Box-Cox transformation parameter from pre to post treatment. There were types of distributions encountered for both 18F-FDG and 18F-FLT where a log transformation was not optimal for providing normal SUV distributions. Conclusion. Optimization of the Box-Cox transformation, offers a solution for identifying normal SUV transformations for when
Optimization of the parameters of power sources excited by β-radiation
Energy Technology Data Exchange (ETDEWEB)
Bulyarskiy, S. V., E-mail: bulyar2954@mail.ru; Lakalin, A. V. [Russian Academy of Sciences, Institute of Nanotechnology of Microelectronics (Russian Federation); Abanin, I. E.; Amelichev, V. V. [Technological Center (Russian Federation); Svetuhin, V. V. [Ulyanovsk State University (Russian Federation)
2017-01-15
The experimental results and calculations of the efficiency of the energy conversion of Ni-63 β-radiation sources to electricity using silicon p–i–n diodes are presented. All calculations are performed taking into account the energy distribution of β-electrons. An expression for the converter open-circuit voltage is derived taking into account the distribution of high-energy electrons in the space-charge region of the p–i–n diode. Ways of optimizing the converter parameters by improving the technology of diodes and optimizing the emitter active layer and i-region thicknesses of the semiconductor converter are shown. The distribution of the conversion losses to the source and radiation detector and the losses to high-energy electron entry into the semiconductor is calculated. Experimental values of the conversion efficiency of 0.4–0.7% are in good agreement with the calculated parameters.
Willigenburg, van L.G.; Koning, de W.L.
2013-01-01
Two different descriptions are used in the literature to formulate the optimal dynamic output feedback control problem for linear dynamical systems with white stochastic parameters and quadratic criteria, called the optimal compensation problem. One describes the matrix valued white stochastic
Directory of Open Access Journals (Sweden)
Bin He
2014-01-01
Full Text Available In city traffic, it is important to improve transportation efficiency and the spacing of platoon should be shortened when crossing the street. The best method to deal with this problem is automatic control of vehicles. In this paper, a mathematical model is established for the platoon’s longitudinal movement. A systematic analysis of longitudinal control law is presented for the platoon of vehicles. However, the parameter calibration for the platoon model is relatively difficult because the platoon model is complex and the parameters are coupled with each other. In this paper, the particle swarm optimization method is introduced to effectively optimize the parameters of platoon. The proposed method effectively finds the optimal parameters based on simulations and makes the spacing of platoon shorter.
International Nuclear Information System (INIS)
Gavrielides, Marios A.; Lo, Joseph Y.; Floyd, Carey E. Jr.
2002-01-01
Our purpose in this study is to develop a parameter optimization technique for the segmentation of suspicious microcalcification clusters in digitized mammograms. In previous work, a computer-aided diagnosis (CAD) scheme was developed that used local histogram analysis of overlapping subimages and a fuzzy rule-based classifier to segment individual microcalcifications, and clustering analysis for reducing the number of false positive clusters. The performance of this previous CAD scheme depended on a large number of parameters such as the intervals used to calculate fuzzy membership values and on the combination of membership values used by each decision rule. These parameters were optimized empirically based on the performance of the algorithm on the training set. In order to overcome the limitations of manual training and rule generation, the segmentation algorithm was modified in order to incorporate automatic parameter optimization. For the segmentation of individual microcalcifications, the new algorithm used a neural network with fuzzy-scaled inputs. The fuzzy-scaled inputs were created by processing the histogram features with a family of membership functions, the parameters of which were automatically extracted from the distribution of the feature values. The neural network was trained to classify feature vectors as either positive or negative. Individual microcalcifications were segmented from positive subimages. After clustering, another neural network was trained to eliminate false positive clusters. A database of 98 images provided training and testing sets to optimize the parameters and evaluate the CAD scheme, respectively. The performance of the algorithm was evaluated with a FROC analysis. At a sensitivity rate of 93.2%, there was an average of 0.8 false positive clusters per image. The results are very comparable with those taken using our previously published rule-based method. However, the new algorithm is more suited to generalize its
Optimization of processing parameters of amaranth grits before grinding into flour
Zharkova, I. M.; Safonova, Yu A.; Slepokurova, Yu I.
2018-05-01
There are the results of experimental studies about the influence of infrared treatment (IR processing) parameters of the amaranth grits before their grinding into flour on the composition and properties of the received product. Using the method called as regressionfactor analysis, the optimal conditions of the thermal processing to the amaranth grits were obtained: the belt speed of the conveyor – 0.049 m/s; temperature of amaranth grits in the tempering silo – 65.4 °C the thickness of the layer of amaranth grits on the belt is 3 - 5 mm and the lamp power is 69.2 kW/m2. The conducted researches confirmed that thermal effect to the amaranth grains in the IR setting allows getting flour with a smaller size of starch grains, with the increased water-holding ability, and with a changed value of its glycemic index. Mathematical processing of experimental data allowed establishing the dependence of the structural and technological characteristics of the amaranth flour on the IR processing parameters of amaranth grits. The obtained results are quite consistent with the experimental ones that proves the effectiveness of optimization based on mathematical planning of the experiment to determine the influence of heat treatment optimal parameters of the amaranth grits on the functional and technological properties of the flour received from it.
Chen, Ying; Lin, Li
2017-07-01
Preeclampsia is a relatively common complication of pregnancy and considered to be associated with different degrees of coagulation dysfunction. This study was developed to evaluate the potential value of coagulation parameters for suggesting preeclampsia during the third trimester of pregnancy. Data from 188 healthy pregnant women, 125 patients with preeclampsia in the third trimester and 120 age-matched nonpregnant women were analyzed. Prothrombin time, prothrombin activity, activated partial thromboplastin time, fibrinogen (Fg), antithrombin, platelet count, mean platelet volume, platelet distribution width and plateletcrit were tested. All parameters, excluding prothrombin time, platelet distribution width and plateletcrit, differed significantly between healthy pregnant women and those with preeclampsia. Platelet count, antithrombin and Fg were significantly lower and mean platelet volume and prothrombin activity were significantly higher in patients with preeclampsia (P preeclampsia was 0.872 for Fg with an optimal cutoff value of ≤2.87g/L (sensitivity = 0.68 and specificity = 0.98). For severe preeclampsia, the area under the curve for Fg reached up to 0.922 with the same optimal cutoff value (sensitivity = 0.84, specificity = 0.98, positive predictive value = 0.96 and negative predictive value = 0.93). Fg is a biomarker suggestive of preeclampsia in the third trimester of pregnancy, and our data provide a potential cutoff value of Fg ≤ 2.87g/L for screening preeclampsia, especially severe preeclampsia. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Optimization of parameters of heat exchangers vehicles
Directory of Open Access Journals (Sweden)
Andrei MELEKHIN
2014-09-01
Full Text Available The relevance of the topic due to the decision of problems of the economy of resources in heating systems of vehicles. To solve this problem we have developed an integrated method of research, which allows to solve tasks on optimization of parameters of heat exchangers vehicles. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The authors have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.
Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li
2015-05-01
In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.
Multivariate optimization of ILC parameters
International Nuclear Information System (INIS)
Bazarov, I.V.; Padamsee, H.S.
2005-01-01
We present results of multiobjective optimization of the International Linear Collider (ILC) which seeks to maximize luminosity at each given total cost of the linac (capital and operating costs of cryomodules, refrigeration and RF). Evolutionary algorithms allow quick exploration of optimal sets of parameters in a complicated system such as ILC in the presence of realistic constraints as well as investigation of various what-if scenarios in potential performance. Among the parameters we varied there were accelerating gradient and Q of the cavities (in a coupled manner following a realistic Q vs. E curve), the number of particles per bunch, the bunch length, number of bunches in the train, etc. We find an optimum which decreases (relative to TESLA TDR baseline) the total linac cost by 22%, capital cost by 25% at the same luminosity of 3 x 10 38 m -2 s -1 . For this optimum the gradient is 35 MV/m, the final spot size is 3.6 nm, and the beam power is 15.9 MV/m. Changing the luminosity by 10 38 m -2 s -1 results in 10% change in the total linac cost and 4% in the capital cost. We have also explored the optimal fronts of luminosity vs. cost for several other scenarios using the same approach. (orig.)
International Nuclear Information System (INIS)
Arafat Hossain, Md; Ganesan, P.; Jewaratnam, J.; Chinna, K.
2017-01-01
Highlights: • Microwave pyrolysis process parameters are optimized by response surface methodology. • Experimental values are well in agreement with the predicted values from model. • Correction coefficients (R 2 ) which had been found near to the 1, satisfied the model. • Errors are less than 10% between the optimized conditions and experimental values. • Higher carbon (%) and porosity have been found in the biochar. - Abstract: Response surface methodology (RSM) based on central composite design (CCD) is used to investigate the optimized experimental conditions for maximum H 2 and biochar yields from microwave pyrolysis of OPF. Input parameters (temperature, microwave power and N 2 flow rate) have been coded which suggest a complete summary of experimental design with a set of experiment for the two responses of H 2 and biochar. Quadratic model has been found fit for the optimization. This method significantly reduces the number of the experiments (Full factorial experiments). Actual vs. predicted plots clearly imply that experimental values are well in agreement with the predicted values for both H 2 and biochar yield. The perturbation plots indicate that H 2 and biochar yields are more sensitive for N 2 flow rate and temperature respectively. The software suggested three optimized experimental conditions for maximum H 2 yield, maximum biochar yield and for both maximum H 2 and biochar yields together. The software results were further validated by conducting relevant experiments. The error was less than 10%, suggesting that the software predictions are quite reliable. Proximate and ultimate analysis of the optimized biochars have showed a big percentage of carbon contents (More than 60 wt.%) and high heating value. SEM and BET analysis show some pores in the biochars which are effective for soil improvements.
A procedure for multi-objective optimization of tire design parameters
Nikola Korunović; Miloš Madić; Miroslav Trajanović; Miroslav Radovanović
2015-01-01
The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zo...
Perera, Dimuthu
Diffusion weighted (DW) Imaging is a non-invasive MR technique that provides information about the tissue microstructure using the diffusion of water molecules. The diffusion is generally characterized by the apparent diffusion coefficient (ADC) parametric map. The purpose of this study is to investigate in silico how the calculation of ADC is affected by image SNR, b-values, and the true tissue ADC. Also, to provide optimal parameter combination depending on the percentage accuracy and precision for prostate peripheral region cancer application. Moreover, to suggest parameter choices for any type of tissue, while providing the expected accuracy and precision. In this research DW images were generated assuming a mono-exponential signal model at two different b-values and for known true ADC values. Rician noise of different levels was added to the DWI images to adjust the image SNR. Using the two DWI images, ADC was calculated using a mono-exponential model for each set of b-values, SNR, and true ADC. 40,000 ADC data were collected for each parameter setting to determine the mean and the standard-deviation of the calculated ADC, as well as the percentage accuracy and precision with respect to the true ADC. The accuracy was calculated using the difference between known and calculated ADC. The precision was calculated using the standard-deviation of calculated ADC. The optimal parameters for a specific study was determined when both the percentage accuracy and precision were minimized. In our study, we simulated two true ADCs (ADC 0.00102 for tumor and 0.00180 mm2/s for normal prostate peripheral region tissue). Image SNR was varied from 2 to 100 and b-values were varied from 0 to 2000s/mm2. The results show that the percentage accuracy and percentage precision were minimized with image SNR. To increase SNR, 10 signal-averagings (NEX) were used considering the limitation in total scan time. The optimal NEX combination for tumor and normal tissue for prostate
Farhat, I. A. H.; Alpha, C.; Gale, E.; Atia, D. Y.; Stein, A.; Isakovic, A. F.
The scaledown of magnetic tunnel junctions (MTJ) and related nanoscale spintronics devices poses unique challenges for energy optimization of their performance. We demonstrate the dependence of the switching current on the scaledown variable, while considering the influence of geometric parameters of MTJ, such as the free layer thickness, tfree, lateral size of the MTJ, w, and the anisotropy parameter of the MTJ. At the same time, we point out which values of the saturation magnetization, Ms, and anisotropy field, Hk, can lead to lowering the switching current and overall decrease of the energy needed to operate an MTJ. It is demonstrated that scaledown via decreasing the lateral size of the MTJ, while allowing some other parameters to be unconstrained, can improve energy performance by a measurable factor, shown to be the function of both geometric and physical parameters above. Given the complex interdependencies among both families of parameters, we developed a particle swarm optimization (PSO) algorithm that can simultaneously lower energy of operation and the switching current density. Results we obtained in scaledown study and via PSO optimization are compared to experimental results. Support by Mubadala-SRC 2012-VJ-2335 is acknowledged, as are staff at Cornell-CNF and BNL-CFN.
The-Vinh Do; Quang-Cherng Hsu
2016-01-01
As a successful solution applied to hard machining, the minimum quantity lubricant (MQL) has already been established as an alternative to flood coolant processing. The optimization of MQL parameters and cutting parameters under MQL condition are essential and pressing. The study was divided into two parts. In the first part of this study, the Taguchi method was applied to find the optimal values of MQL condition in the hard milling of AISI H13 with consideration of reduced surface roughness....
International Nuclear Information System (INIS)
Kao, Jim; Flicker, Dawn; Ide, Kayo; Ghil, Michael
2006-01-01
This paper builds upon our recent data assimilation work with the extended Kalman filter (EKF) method [J. Kao, D. Flicker, R. Henninger, S. Frey, M. Ghil, K. Ide, Data assimilation with an extended Kalman filter for an impact-produced shock-wave study, J. Comp. Phys. 196 (2004) 705-723.]. The purpose is to test the capability of EKF in optimizing a model's physical parameters. The problem is to simulate the evolution of a shock produced through a high-speed flyer plate. In the earlier work, we have showed that the EKF allows one to estimate the evolving state of the shock wave from a single pressure measurement, assuming that all model parameters are known. In the present paper, we show that imperfectly known model parameters can also be estimated accordingly, along with the evolving model state, from the same single measurement. The model parameter optimization using the EKF can be achieved through a simple modification of the original EKF formalism by including the model parameters into an augmented state variable vector. While the regular state variables are governed by both deterministic and stochastic forcing mechanisms, the parameters are only subject to the latter. The optimally estimated model parameters are thus obtained through a unified assimilation operation. We show that improving the accuracy of the model parameters also improves the state estimate. The time variation of the optimized model parameters results from blending the data and the corresponding values generated from the model and lies within a small range, of less than 2%, from the parameter values of the original model. The solution computed with the optimized parameters performs considerably better and has a smaller total variance than its counterpart using the original time-constant parameters. These results indicate that the model parameters play a dominant role in the performance of the shock-wave hydrodynamic code at hand
Zener Diode Compact Model Parameter Extraction Using Xyce-Dakota Optimization.
Energy Technology Data Exchange (ETDEWEB)
Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilcox, Ian Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandoval, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reza, Shahed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
This report presents a detailed process for compact model parameter extraction for DC circuit Zener diodes. Following the traditional approach of Zener diode parameter extraction, circuit model representation is defined and then used to capture the different operational regions of a real diode's electrical behavior. The circuit model contains 9 parameters represented by resistors and characteristic diodes as circuit model elements. The process of initial parameter extraction, the identification of parameter values for the circuit model elements, is presented in a way that isolates the dependencies between certain electrical parameters and highlights both the empirical nature of the extraction and portions of the real diode physical behavior which of the parameters are intended to represent. Optimization of the parameters, a necessary part of a robost parameter extraction process, is demonstrated using a 'Xyce-Dakota' workflow, discussed in more detail in the report. Among other realizations during this systematic approach of electrical model parameter extraction, non-physical solutions are possible and can be difficult to avoid because of the interdependencies between the different parameters. The process steps described are fairly general and can be leveraged for other types of semiconductor device model extractions. Also included in the report are recommendations for experiment setups for generating optimum dataset for model extraction and the Parameter Identification and Ranking Table (PIRT) for Zener diodes.
Beyond bixels: Generalizing the optimization parameters for intensity modulated radiation therapy
International Nuclear Information System (INIS)
Markman, Jerry; Low, Daniel A.; Beavis, Andrew W.; Deasy, Joseph O.
2002-01-01
Intensity modulated radiation therapy (IMRT) treatment planning systems optimize fluence distributions by subdividing the fluence distribution into rectangular bixels. The algorithms typically optimize the fluence intensity directly, often leading to fluence distributions with sharp discontinuities. These discontinuities may yield difficulties in delivery of the fluence distribution, leading to inaccurate dose delivery. We have developed a method for decoupling the bixel intensities from the optimization parameters; either by introducing optimization control points from which the bixel intensities are interpolated or by parametrizing the fluence distribution using basis functions. In either case, the number of optimization search parameters is reduced from the direct bixel optimization method. To illustrate the concept, the technique is applied to two-dimensional idealized head and neck treatment plans. The interpolation algorithms investigated were nearest-neighbor, linear and cubic spline, and radial basis functions serve as the basis function test. The interpolation and basis function optimization techniques were compared against the direct bixel calculation. The number of optimization parameters were significantly reduced relative to the bixel optimization, and this was evident in the reduction of computation time of as much as 58% from the full bixel optimization. The dose distributions obtained using the reduced optimization parameter sets were very similar to the full bixel optimization when examined by dose distributions, statistics, and dose-volume histograms. To evaluate the sensitivity of the fluence calculations to spatial misalignment caused either by delivery errors or patient motion, the doses were recomputed with a 1 mm shift in each beam and compared to the unshifted distributions. Except for the nearest-neighbor algorithm, the reduced optimization parameter dose distributions were generally less sensitive to spatial shifts than the bixel
Directory of Open Access Journals (Sweden)
Y. A. El-Shekeil
2013-01-01
Full Text Available “Kenaf-fibers- (KF-” reinforced “thermoplastic polyurethane (TPU” composites were prepared by the melt-blending method followed by compression molding. Composite specimens were cut from the sheets that were prepared by compression molding. The criteria of optimization were testing the specimens by tensile test and comparing the ultimate tensile strength. The aim of this study is to optimize processing parameters (e.g., processing temperature, time, and speed and fiber size using the Taguchi approach. These four parameters were investigated in three levels each. The L9 orthogonal array was used based on the number of parameters and levels that has been selected. Furthermore, analysis of variance (ANOVA was used to determine the significance of different parameters. The results showed that the optimum values were 180°C, 50 rpm, 13 min, and 125–300 micron for processing temperature, processing speed, processing time, and fiber size, respectively. Using ANOVA, processing temperature showed the highest significance value followed by fiber size. Processing time and speed did not show any significance on the optimization of TPU/KF.
Directory of Open Access Journals (Sweden)
Mehran Tamjidy
2017-05-01
Full Text Available The development of Friction Stir Welding (FSW has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ, a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS and Shannon’s entropy.
Tamjidy, Mehran; Baharudin, B T Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz
2017-05-15
The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.
DEFF Research Database (Denmark)
Abedelmaksoud, Tarek; Mohsen, Sobhy Mohamed; Duedahl-Olesen, Lene
2018-01-01
In this study, optimization of ohmic heating (OH) process parameters (temperature and voltage gradient) to inactivate polyphenoloxidase (PPO) of not-from-concentrate (NFC) apple juice was conducted. Response surface methodology was used for optimization of OH parameters, where the voltage gradient...... and temperature on the PPO activity in the NFC apple juice was evaluated. Then the optimized condition was used to produce the NFC apple juice and the quality parameters were evaluated and compared to NFC apple juice prepared by conventional heating (CH). The studied parameters were: PPO activity, total phenolic......, total carotenoids, ascorbic acid, cloud value, color as well as physical properties (i.e., TSS, acidity, electric conductivity and viscosity). The reduction of PPO activities was 97 and 91% for OH (at 40 V/cm and 80 Â°C) and CH (at 90 Â°C and 60 s), respectively. The reduction of the ascorbic acid...
Parameter identification and optimization of slide guide joint of CNC machine tools
Zhou, S.; Sun, B. B.
2017-11-01
The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.
Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm
Directory of Open Access Journals (Sweden)
Norlina Mohd Sabri
2016-06-01
Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.
PRODUCT OPTIMIZATION METHOD BASED ON ANALYSIS OF OPTIMAL VALUES OF THEIR CHARACTERISTICS
Directory of Open Access Journals (Sweden)
Constantin D. STANESCU
2016-05-01
Full Text Available The paper presents an original method of optimizing products based on the analysis of optimal values of their characteristics . Optimization method comprises statistical model and analytical model . With this original method can easily and quickly obtain optimal product or material .
A procedure for multi-objective optimization of tire design parameters
Directory of Open Access Journals (Sweden)
Nikola Korunović
2015-04-01
Full Text Available The identification of optimal tire design parameters for satisfying different requirements, i.e. tire performance characteristics, plays an essential role in tire design. In order to improve tire performance characteristics, formulation and solving of multi-objective optimization problem must be performed. This paper presents a multi-objective optimization procedure for determination of optimal tire design parameters for simultaneous minimization of strain energy density at two distinctive zones inside the tire. It consists of four main stages: pre-analysis, design of experiment, mathematical modeling and multi-objective optimization. Advantage of the proposed procedure is reflected in the fact that multi-objective optimization is based on the Pareto concept, which enables design engineers to obtain a complete set of optimization solutions and choose a suitable tire design. Furthermore, modeling of the relationships between tire design parameters and objective functions based on multiple regression analysis minimizes computational and modeling effort. The adequacy of the proposed tire design multi-objective optimization procedure has been validated by performing experimental trials based on finite element method.
Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Sopian, K.
2017-11-01
PV power systems have been commercially available and widely used for decades. The performance of a reliable PV system that fulfils the expectations requires correct input data and careful design. Inaccurate input data of the techno-economic feasibility would affect the size, cost aspects, stability and performance of PV power system on the long run. The annual capacity shortage is one of the main input data that should be selected with careful attention. The aim of this study is to reveal the effect of different annual capacity shortages on the techno-economic feasibility parameters and determining the optimal value for Baghdad city location using HOMER simulation tool. Six values of annual capacity shortage percentages (0%, 1%, 2%, 3%, 4%, and 5%), and wide daily load profile range (10 kWh - 100 kWh) are implemented. The optimal annual capacity shortage is the value that always "wins" when each techno-economic feasibility parameter is at its optimal/ reasonable criteria. The results showed that the optimal annual capacity shortage that reduces significantly the cost of PV power system while keeping the PV system with reasonable technical feasibility is 3%. This capacity shortage value can be carried as a reference value in future works for Baghdad city location. Using this approach of analysis at other locations, annual capacity shortage can be always offered as a reference value for those locations.
METHODOLOGY FOR DETERMINING OPTIMAL EXPOSURE PARAMETERS OF A HYPERSPECTRAL SCANNING SENSOR
Directory of Open Access Journals (Sweden)
P. Walczykowski
2016-06-01
Full Text Available The purpose of the presented research was to establish a methodology that would allow the registration of hyperspectral images with a defined spatial resolution on a horizontal plane. The results obtained within this research could then be used to establish the optimum sensor and flight parameters for collecting aerial imagery data using an UAV or other aerial system. The methodology is based on an user-selected optimal camera exposure parameters (i.e. time, gain value and flight parameters (i.e. altitude, velocity. A push-broom hyperspectral imager- the Headwall MicroHyperspec A-series VNIR was used to conduct this research. The measurement station consisted of the following equipment: a hyperspectral camera MicroHyperspec A-series VNIR, a personal computer with HyperSpec III software, a slider system which guaranteed the stable motion of the sensor system, a white reference panel and a Siemens star, which was used to evaluate the spatial resolution. Hyperspectral images were recorded at different distances between the sensor and the target- from 5m to 100m. During the registration process of each acquired image, many exposure parameters were changed, such as: the aperture value, exposure time and speed of the camera’s movement on the slider. Based on all of the registered hyperspectral images, some dependencies between chosen parameters had been developed: - the Ground Sampling Distance – GSD and the distance between the sensor and the target, - the speed of the camera and the distance between the sensor and the target, - the exposure time and the gain value, - the Density Number and the gain value. The developed methodology allowed us to determine the speed and the altitude of an unmanned aerial vehicle on which the sensor would be mounted, ensuring that the registered hyperspectral images have the required spatial resolution.
Directory of Open Access Journals (Sweden)
Wei Gao
2016-01-01
Full Text Available According to the regularization method in the inverse problem of load identification, a new method for determining the optimal regularization parameter is proposed. Firstly, quotient function (QF is defined by utilizing the regularization parameter as a variable based on the least squares solution of the minimization problem. Secondly, the quotient function method (QFM is proposed to select the optimal regularization parameter based on the quadratic programming theory. For employing the QFM, the characteristics of the values of QF with respect to the different regularization parameters are taken into consideration. Finally, numerical and experimental examples are utilized to validate the performance of the QFM. Furthermore, the Generalized Cross-Validation (GCV method and the L-curve method are taken as the comparison methods. The results indicate that the proposed QFM is adaptive to different measuring points, noise levels, and types of dynamic load.
Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah
2011-03-01
The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists
Optimal policy for value-based decision-making.
Tajima, Satohiro; Drugowitsch, Jan; Pouget, Alexandre
2016-08-18
For decades now, normative theories of perceptual decisions, and their implementation as drift diffusion models, have driven and significantly improved our understanding of human and animal behaviour and the underlying neural processes. While similar processes seem to govern value-based decisions, we still lack the theoretical understanding of why this ought to be the case. Here, we show that, similar to perceptual decisions, drift diffusion models implement the optimal strategy for value-based decisions. Such optimal decisions require the models' decision boundaries to collapse over time, and to depend on the a priori knowledge about reward contingencies. Diffusion models only implement the optimal strategy under specific task assumptions, and cease to be optimal once we start relaxing these assumptions, by, for example, using non-linear utility functions. Our findings thus provide the much-needed theory for value-based decisions, explain the apparent similarity to perceptual decisions, and predict conditions under which this similarity should break down.
International Nuclear Information System (INIS)
Rodriguez-Rodriguez, A.; Correa-Alfonso, C.M.; Lopez-Pino, N.; Padilla-Cabal, F.; D'Alessandro, K.; Corrales, Y.; Garcia-Alvarez, J. A.; Perez-Mellor, A.; Baly-Gil, L.; Machado, A.
2011-01-01
A highly detailed characterization of a 130 cm 3 n-type HPGe detector, employed in low - background gamma spectrometry measurements, was done. Precise measured data and several Monte Carlo (MC) calculations have been combined to optimize the detector parameters. HPGe crystal location inside the Aluminum end-cap as well as its dimensions, including the borehole radius and height, were determined from frontal and lateral scans. Additionally, X-ray radiography and Computed Axial Tomography (CT) studies were carried out to complement the information about detector features. Using seven calibrated point sources ( 241 Am, 133 Ba, 57,60 Co, 137 Cs, 22 Na and 152 Eu), photo-peak efficiency curves at three different source - detector distances (SDD) were obtained. Taking into account the experimental values, an optimization procedure by means of MC simulations (MCNPX 2.6 code) were performed. MC efficiency curves were calculated specifying the optimized detector parameters in the MCNPX input files. Efficiency calculation results agree with empirical data, showing relative deviations lesser 10%. (Author)
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Zhang, Xiangsheng; Pan, Feng
2015-01-01
Aimed at the parameters optimization in support vector machine (SVM) for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO) algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effective...
Optimization of the reconstruction parameters in [123I]FP-CIT SPECT
Niñerola-Baizán, Aida; Gallego, Judith; Cot, Albert; Aguiar, Pablo; Lomeña, Francisco; Pavía, Javier; Ros, Domènec
2018-04-01
The aim of this work was to obtain a set of parameters to be applied in [123I]FP-CIT SPECT reconstruction in order to minimize the error between standardized and true values of the specific uptake ratio (SUR) in dopaminergic neurotransmission SPECT studies. To this end, Monte Carlo simulation was used to generate a database of 1380 projection data-sets from 23 subjects, including normal cases and a variety of pathologies. Studies were reconstructed using filtered back projection (FBP) with attenuation correction and ordered subset expectation maximization (OSEM) with correction for different degradations (attenuation, scatter and PSF). Reconstruction parameters to be optimized were the cut-off frequency of a 2D Butterworth pre-filter in FBP, and the number of iterations and the full width at Half maximum of a 3D Gaussian post-filter in OSEM. Reconstructed images were quantified using regions of interest (ROIs) derived from Magnetic Resonance scans and from the Automated Anatomical Labeling map. Results were standardized by applying a simple linear regression line obtained from the entire patient dataset. Our findings show that we can obtain a set of optimal parameters for each reconstruction strategy. The accuracy of the standardized SUR increases when the reconstruction method includes more corrections. The use of generic ROIs instead of subject-specific ROIs adds significant inaccuracies. Thus, after reconstruction with OSEM and correction for all degradations, subject-specific ROIs led to errors between standardized and true SUR values in the range [‑0.5, +0.5] in 87% and 92% of the cases for caudate and putamen, respectively. These percentages dropped to 75% and 88% when the generic ROIs were used.
Multi-objective optimization in quantum parameter estimation
Gong, BeiLi; Cui, Wei
2018-04-01
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.
Optimization of hydraulic turbine governor parameters based on WPA
Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao
2018-01-01
The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.
Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect
Yue Hu; Xilu Zhao; Takao Yamaguchi; Manabu Sasajima; Yoshio Koike; Akira Hara
2016-01-01
This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. Th...
SVM classification model in depression recognition based on mutation PSO parameter optimization
Directory of Open Access Journals (Sweden)
Zhang Ming
2017-01-01
Full Text Available At present, the clinical diagnosis of depression is mainly through structured interviews by psychiatrists, which is lack of objective diagnostic methods, so it causes the higher rate of misdiagnosis. In this paper, a method of depression recognition based on SVM and particle swarm optimization algorithm mutation is proposed. To address on the problem that particle swarm optimization (PSO algorithm easily trap in local optima, we propose a feedback mutation PSO algorithm (FBPSO to balance the local search and global exploration ability, so that the parameters of the classification model is optimal. We compared different PSO mutation algorithms about classification accuracy for depression, and found the classification accuracy of support vector machine (SVM classifier based on feedback mutation PSO algorithm is the highest. Our study promotes important reference value for establishing auxiliary diagnostic used in depression recognition of clinical diagnosis.
Directory of Open Access Journals (Sweden)
Akatsuki eKimura
2015-03-01
Full Text Available Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE in a prediction or to maximize likelihood. A (local maximum of likelihood or (local minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Directory of Open Access Journals (Sweden)
Xiangsheng Zhang
2015-01-01
Full Text Available Aimed at the parameters optimization in support vector machine (SVM for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effectiveness of the proposed algorithm.
Optimization of MIS/IL solar cells parameters using genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Ahmed, K.A.; Mohamed, E.A.; Alaa, S.H. [Faculty of Engineering, Alexandria Univ. (Egypt); Motaz, M.S. [Institute of Graduate Studies and Research, Alexandria Univ. (Egypt)
2004-07-01
This paper presents a genetic algorithm optimization for MIS/IL solar cell parameters including doping concentration NA, metal work function {phi}m, oxide thickness d{sub ox}, mobile charge density N{sub m}, fixed oxide charge density N{sub ox} and the external back bias applied to the inversion grid V. The optimization results are compared with theoretical optimization and shows that the genetic algorithm can be used for determining the optimum parameters of the cell. (orig.)
Optimizing incomplete sample designs for item response model parameters
van der Linden, Willem J.
Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with
Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.
2014-12-01
In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.
Nonlinearity Analysis and Parameters Optimization for an Inductive Angle Sensor
Directory of Open Access Journals (Sweden)
Lin Ye
2014-02-01
Full Text Available Using the finite element method (FEM and particle swarm optimization (PSO, a nonlinearity analysis based on parameter optimization is proposed to design an inductive angle sensor. Due to the structure complexity of the sensor, understanding the influences of structure parameters on the nonlinearity errors is a critical step in designing an effective sensor. Key parameters are selected for the design based on the parameters’ effects on the nonlinearity errors. The finite element method and particle swarm optimization are combined for the sensor design to get the minimal nonlinearity error. In the simulation, the nonlinearity error of the optimized sensor is 0.053% in the angle range from −60° to 60°. A prototype sensor is manufactured and measured experimentally, and the experimental nonlinearity error is 0.081% in the angle range from −60° to 60°.
Optimal parameters uncoupling vibration modes of oscillators
Le, K. C.; Pieper, A.
2017-07-01
This paper proposes a novel optimization concept for an oscillator with two degrees of freedom. By using specially defined motion ratios, we control the action of springs to each degree of freedom of the oscillator. We aim at showing that, if the potential action of the springs in one period of vibration, used as the payoff function for the conservative oscillator, is maximized among all admissible parameters and motions satisfying Lagrange's equations, then the optimal motion ratios uncouple vibration modes. A similar result holds true for the dissipative oscillator having dampers. The application to optimal design of vehicle suspension is discussed.
Wu, Ling; Liu, Xiang-Nan; Zhou, Bo-Tian; Liu, Chuan-Hao; Li, Lu-Feng
2012-12-01
This study analyzed the sensitivities of three vegetation biochemical parameters [chlorophyll content (Cab), leaf water content (Cw), and leaf area index (LAI)] to the changes of canopy reflectance, with the effects of each parameter on the wavelength regions of canopy reflectance considered, and selected three vegetation indices as the optimization comparison targets of cost function. Then, the Cab, Cw, and LAI were estimated, based on the particle swarm optimization algorithm and PROSPECT + SAIL model. The results showed that retrieval efficiency with vegetation indices as the optimization comparison targets of cost function was better than that with all spectral reflectance. The correlation coefficients (R2) between the measured and estimated values of Cab, Cw, and LAI were 90.8%, 95.7%, and 99.7%, and the root mean square errors of Cab, Cw, and LAI were 4.73 microg x cm(-2), 0.001 g x cm(-2), and 0.08, respectively. It was suggested that to adopt vegetation indices as the optimization comparison targets of cost function could effectively improve the efficiency and precision of the retrieval of biochemical parameters based on PROSPECT + SAIL model.
Siddiqua, Shaila; Mamun, Abdullah Al; Enayetul Babar, Sheikh Md
2015-01-01
Renewable biodiesels are needed as an alternative to petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Algae biomass, are a potential source of renewable energy, and they can be converted into energy such as biofuels. This study introduces an integrated method for the production of biodiesel from Chara vulgaris algae collected from the coastal region of Bangladesh. The Box-Behnken design based on response surface methods (RSM) used as the statistical tool to optimize three variables for predicting the best performing conditions (calorific value and yield) of algae biodiesel. The three parameters for production condition were chloroform (X1), sodium chloride concentration (X2) and temperature (X3). Optimal conditions were estimated by the aid of statistical regression analysis and surface plot chart. The optimal condition of biodiesel production parameter for 12 g of dry algae biomass was observed to be 198 ml chloroform with 0.75 % sodium chloride at 65 °C temperature, where the calorific value of biodiesel is 9255.106 kcal/kg and yield 3.6 ml.
Optimization of surface roughness parameters in dry turning
R.A. Mahdavinejad; H. Sharifi Bidgoli
2009-01-01
Purpose: The precision of machine tools on one hand and the input setup parameters on the other hand, are strongly influenced in main output machining parameters such as stock removal, toll wear ratio and surface roughnes.Design/methodology/approach: There are a lot of input parameters which are effective in the variations of these output parameters. In CNC machines, the optimization of machining process in order to predict surface roughness is very important.Findings: From this point of view...
Ginting, E.; Tambunanand, M. M.; Syahputri, K.
2018-02-01
Evolutionary Operation Methods (EVOP) is a method that is designed used in the process of running or operating routinely in the company to enables high productivity. Quality is one of the critical factors for a company to win the competition. Because of these conditions, the research for products quality has been done by gathering the production data of the company and make a direct observation to the factory floor especially the drying department to identify the problem which is the high water content in the mosquito incense coil. PT.X which is producing mosquito coils attempted to reduce product defects caused by the inaccuracy of operating conditions. One of the parameters of good quality insect repellent that is water content, that if the moisture content is too high then the product easy to mold and broken, and vice versa if it is too low the products are easily broken and burn shorter hours. Three factors that affect the value of the optimal water content, the stirring time, drying temperature and drying time. To obtain the required conditions Evolutionary Operation (EVOP) methods is used. Evolutionary Operation (EVOP) is used as an efficient technique for optimization of two or three variable experimental parameters using two-level factorial designs with center point. Optimal operating conditions in the experiment are stirring time performed for 20 minutes, drying temperature at 65°C, and drying time for 130 minutes. The results of the analysis based on the method of Evolutionary Operation (EVOP) value is the optimum water content of 6.90%, which indicates the value has approached the optimal in a production plant that is 7%.
Optimization Design of Multi-Parameters in Rail Launcher System
Yujiao Zhang; Weinan Qin; Junpeng Liao; Jiangjun Ruan
2014-01-01
Today the energy storage systems are still encumbering, therefore it is useful to think about the optimization of a railgun system in order to achieve the best performance with the lowest energy input. In this paper, an optimal design method considering 5 parameters is proposed to improve the energy conversion efficiency of a simple railgun. In order to avoid costly trials, the field- circuit method is employed to analyze the operations of different structural railguns with different paramete...
Optimization of control parameters of a hot cold controller by means of Simplex type methods
Porte, C.; Caron-Poussin, M.; Carot, S.; Couriol, C.; Moreno, M. Martin; Delacroix, A.
1997-01-01
This paper describes a hot/cold controller for regulating crystallization operations. The system was identified with a common method (the Broida method) and the parameters were obtained by the Ziegler-Nichols method. The paper shows that this empirical method will only allow a qualitative approach to regulation and that, in some instances, the parameters obtained are unreliable and therefore cannot be used to cancel variations between the set point and the actual values. Optimization methods were used to determine the regulation parameters and solve this identcation problem. It was found that the weighted centroid method was the best one. PMID:18924791
COMPARING INTRA- AND INTERENVIRONMENTAL PARAMETERS OF OPTIMAL SETTING IN BREEDING EXPERIMENTS
Directory of Open Access Journals (Sweden)
Domagoj Šimić
2004-06-01
Full Text Available A series of biometrical and quantitative-genetic parameters, not well known in Croatia, are being used for the most important agronomic traits to determine optimal genotype setting within a location as well as among locations. Objectives of the study are to estimate and to compare 1 parameters of intra-environment setting (effective mean square error EMSE, in lattice design, relative efficiency RE, of lattice design LD, compared to randomized complete block design RCBD, and repeatability Rep, of a plot value, and 2 operative heritability h2, as a parameter of inter-environment setting in an experiment with 72 maize hybrids. Trials were set up at four environments (two locations in two years evaluating grain yield and stalk rot. EMSE values corresponded across environments for both traits, while the estimations for RE of LD varied inconsistently over environments and traits. Rep estimates were more different over environments than traits. Rep values did not correspond with h2 estimates: Rep estimates for stalk rot were higher than those for grain yield, while h2 for grain yield was higher than for stalk rot in all instances. Our results suggest that due to importance of genotype × environment interaction, there is a need for multienvironment trials for both traits. If the experiment framework should be reduced due to economic or other reasons, decreasing number of locations in a year rather than decreasing number of years of investigation is recommended.
Energy Technology Data Exchange (ETDEWEB)
Hacifazlioglu, Hasan; Toroglu, Ihsan [Department of Mining Engineering, University of Karaelmas, 67100 (Turkey)
2007-07-15
The Jameson flotation cell has been commonly used to treat a variety of ores (lead, zinc, copper etc.), coal and industrial minerals at commercial scale since 1989. It is especially known to be highly efficient at fine and ultrafine coal recovery. However, although the Jameson cell has quite a simple structure, it may be largely inefficient if the design and operating parameters chosen are not appropriate. In this study, the design and operating parameters of a pilot scale Jameson cell were optimized to obtain a desired metallurgical performance in the slime coal flotation. The optimized design parameters are the nozzle type, the height of the nozzle above the pulp level, the downcomer diameter and the immersion depth of the downcomer. Among the operating parameters optimized are the collector dosage, the frother dosage, the percentage of solids and the froth height. In the optimum conditions, a clean coal with an ash content of 14.90% was obtained from the sample slime having 45.30% ash with a combustible recovery of 74.20%. In addition, a new type nozzle was developed for the Jameson cell, which led to an increase of about 9% in the combustible recovery value.
Optimization of electrospinning parameters for chitosan nanofibres
CSIR Research Space (South Africa)
Jacobs, V
2011-06-01
Full Text Available Electrospinning of chitosan, a naturally occurring polysaccharide biopolymer, has been investigated. In this paper, the authors report the optimization of electrospinning process and solution parameters using factorial design approach to obtain...
Optimal Machining Parameters for Achieving the Desired Surface Roughness in Turning of Steel
Directory of Open Access Journals (Sweden)
LB Abhang
2012-06-01
Full Text Available Due to the widespread use of highly automated machine tools in the metal cutting industry, manufacturing requires highly reliable models and methods for the prediction of output performance in the machining process. The prediction of optimal manufacturing conditions for good surface finish and dimensional accuracy plays a very important role in process planning. In the steel turning process the tool geometry and cutting conditions determine the time and cost of production which ultimately affect the quality of the final product. In the present work, experimental investigations have been conducted to determine the effect of the tool geometry (effective tool nose radius and metal cutting conditions (cutting speed, feed rate and depth of cut on surface finish during the turning of EN-31 steel. First and second order mathematical models are developed in terms of machining parameters by using the response surface methodology on the basis of the experimental results. The surface roughness prediction model has been optimized to obtain the surface roughness values by using LINGO solver programs. LINGO is a mathematical modeling language which is used in linear and nonlinear optimization to formulate large problems concisely, solve them, and analyze the solution in engineering sciences, operation research etc. The LINGO solver program is global optimization software. It gives minimum values of surface roughness and their respective optimal conditions.
Directory of Open Access Journals (Sweden)
Arya Anantama R
2015-11-01
Full Text Available Penelitian dilakukan dengan Metode Taguchi untuk menentukan kombinasi optimal dari parameter coffeeroasting. Parameter yang diteliti adalah lamanya waktu roasting sebagai faktor A dan volume biji total untuk sekali proses roasting sebagai faktor B.Eksperimen dilakukan dengan tiga level dan tiga nilai untuk masing-masing faktor. Dari hasil Eksperimen Taguchi didapatkan bahwa level faktor yang memberikan pengaruh yang signifikan terhadap roasted bean adalah faktor A pada level 2 dan faktor B pada level 1. Berdasarkan nilai rata-rata roastedbean dan nilai SNR yang dihasilkan, terlihat bahwa faktor A2 (75 menit dan faktor B1 (2 kg menghasilkan nilai rata-rata roasted bean sesuai dengan nilai yang dituju. Eksperimen Konfirmasi dilakukan dengan menggunakan parameter yang dianggap terbaik. Hasil Eksperimen Konfirmasi menunjukkan kombinasi fakor A2 dengan B1 merupakan kombinasi yang optimal untuk mendapatkan roasted bean kualitas premium. Kata Kunci : coffee roasting; kopi, taguchi; roasted bean Abstract The research is done using Taguchi Method to determine optimum combination of coffee roasting parameters. These parameters consist of roasting time as factor A and total volume of every roasting process as factor B.Experiment is conducted within three levels and three values for each factor. Taguchi Method result shows that significant influence toward roasted bean comes from level 2 on factor A and level 1 on factor B. Based on average value of roasted bean and SNR value, factor A2 (75 minutes and factor B1 (2 kg produced average value of roasted bean in accordance to set value. Confirmation experiment is performed with parameters that are most suitable. The result of confirmation experiment shows combination of A2 and B1 as optimum combination to exercise premium quality roasted bean. Keyword : coffee roasting; coffe; taguchi; roasted bean
Effect of calibration data series length on performance and optimal parameters of hydrological model
Directory of Open Access Journals (Sweden)
Chuan-zhe Li
2010-12-01
Full Text Available In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments, we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates.
Krenn, Julia; Zangerl, Christian; Mergili, Martin
2017-04-01
r.randomwalk is a GIS-based, multi-functional, conceptual open source model application for forward and backward analyses of the propagation of mass flows. It relies on a set of empirically derived, uncertain input parameters. In contrast to many other tools, r.randomwalk accepts input parameter ranges (or, in case of two or more parameters, spaces) in order to directly account for these uncertainties. Parameter spaces represent a possibility to withdraw from discrete input values which in most cases are likely to be off target. r.randomwalk automatically performs multiple calculations with various parameter combinations in a given parameter space, resulting in the impact indicator index (III) which denotes the fraction of parameter value combinations predicting an impact on a given pixel. Still, there is a need to constrain the parameter space used for a certain process type or magnitude prior to performing forward calculations. This can be done by optimizing the parameter space in terms of bringing the model results in line with well-documented past events. As most existing parameter optimization algorithms are designed for discrete values rather than for ranges or spaces, the necessity for a new and innovative technique arises. The present study aims at developing such a technique and at applying it to derive guiding parameter spaces for the forward calculation of rock avalanches through back-calculation of multiple events. In order to automatize the work flow we have designed r.ranger, an optimization and sensitivity analysis tool for parameter spaces which can be directly coupled to r.randomwalk. With r.ranger we apply a nested approach where the total value range of each parameter is divided into various levels of subranges. All possible combinations of subranges of all parameters are tested for the performance of the associated pattern of III. Performance indicators are the area under the ROC curve (AUROC) and the factor of conservativeness (FoC). This
Search Parameter Optimization for Discrete, Bayesian, and Continuous Search Algorithms
2017-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CONTINUOUS SEARCH ALGORITHMS by...to 09-22-2017 4. TITLE AND SUBTITLE SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CON- TINUOUS SEARCH ALGORITHMS 5. FUNDING NUMBERS 6...simple search and rescue acts to prosecuting aerial/surface/submersible targets on mission. This research looks at varying the known discrete and
Derivation of potential model for LiAlO2 by simple and effective optimization of model parameters
International Nuclear Information System (INIS)
Tsuchihira, H.; Oda, T.; Tanaka, S.
2009-01-01
Interatomic potentials of LiAlO 2 were constructed by a simple and effective method. In this method, the model function consists of multiple inverse polynomial functions with an exponential truncation function, and parameters in the potential model can be optimized as a solution of simultaneous linear equations. Potential energies obtained by ab initio calculation are used as fitting targets for model parameter optimization. Lattice constants, elastic properties, defect-formation energy, thermal expansions and the melting point were calculated under the constructed potential models. The results showed good agreement with experimental values and ab initio calculation results, which underscores the validity of the presented method.
An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen
2018-05-01
In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.
Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO
Directory of Open Access Journals (Sweden)
Adel Taieb
2017-01-01
Full Text Available This paper introduces a new development for designing a Multi-Input Multi-Output (MIMO Fuzzy Optimal Model Predictive Control (FOMPC using the Adaptive Particle Swarm Optimization (APSO algorithm. The aim of this proposed control, called FOMPC-APSO, is to develop an efficient algorithm that is able to have good performance by guaranteeing a minimal control. This is done by determining the optimal weights of the objective function. Our method is considered an optimization problem based on the APSO algorithm. The MIMO system to be controlled is modeled by a Takagi-Sugeno (TS fuzzy system whose parameters are identified using weighted recursive least squares method. The utility of the proposed controller is demonstrated by applying it to two nonlinear processes, Continuous Stirred Tank Reactor (CSTR and Tank system, where the proposed approach provides better performances compared with other methods.
Real-time parameter optimization based on neural network for smart injection molding
Lee, H.; Liau, Y.; Ryu, K.
2018-03-01
The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.
Miyauchi, T.; Machimura, T.
2013-12-01
field survey) were weighted for priority. We compared some gradient-based global optimization methods of Dakota starting with the default parameters of Biome-BGC. In the result of sensitive analysis, carbon allocation parameters between coarse root and leaf, between stem and leaf, and SLA had high contribution on both leaf and woody biomass changes. These parameters were selected to be optimized. The measured leaf, above- and below-ground woody biomass carbon density at the last year were 0.22, 1.81 and 0.86 kgC m-2, respectively, whereas those simulated in the non-optimized control case using all default parameters were 0.12, 2.26 and 0.52 kgC m-2, respectively. After optimizing the parameters, the simulated values were improved to 0.19, 1.81 and 0.86 kgC m-2, respectively. The coliny global optimization method gave the better fitness than efficient global and ncsu direct method. The optimized parameters showed the higher carbon allocation rates to coarse roots and leaves and the lower SLA than the default parameters, which were consistent to the general water physiological response in a dry climate. The simulation using the weighted object function resulted in the closer simulations to the measurements at the last year with the lower fitness during the previous years.
Fujito, Yuka; Hayakawa, Yoshihiro; Izumi, Yoshihiro; Bamba, Takeshi
2017-07-28
Supercritical fluid chromatography/mass spectrometry (SFC/MS) has great potential in high-throughput and the simultaneous analysis of a wide variety of compounds, and it has been widely used in recent years. The use of MS for detection provides the advantages of high sensitivity and high selectivity. However, the sensitivity of MS detection depends on the chromatographic conditions and MS parameters. Thus, optimization of MS parameters corresponding to the SFC condition is mandatory for maximizing performance when connecting SFC to MS. The aim of this study was to reveal a way to decide the optimum composition of the mobile phase and the flow rate of the make-up solvent for MS detection in a wide range of compounds. Additionally, we also showed the basic concept for determination of the optimum values of the MS parameters focusing on the MS detection sensitivity in SFC/MS analysis. To verify the versatility of these findings, a total of 441 pesticides with a wide polarity range (logP ow from -4.21 to 7.70) and pKa (acidic, neutral and basic). In this study, a new SFC-MS interface was used, which can transfer the entire volume of eluate into the MS by directly coupling the SFC with the MS. This enabled us to compare the sensitivity or optimum MS parameters for MS detection between LC/MS and SFC/MS for the same sample volume introduced into the MS. As a result, it was found that the optimum values of some MS parameters were completely different from those of LC/MS, and that SFC/MS-specific optimization of the analytical conditions is required. Lastly, we evaluated the sensitivity of SFC/MS using fully optimized analytical conditions. As a result, we confirmed that SFC/MS showed much higher sensitivity than LC/MS when the analytical conditions were fully optimized for SFC/MS; and the high sensitivity also increase the number of the compounds that can be detected with good repeatability in real sample analysis. This result indicates that SFC/MS has potential for
International Nuclear Information System (INIS)
Sivasakthivel, T.; Murugesan, K.; Thomas, H.R.
2014-01-01
Highlights: • Ground Source Heat Pump (GSHP) technology is suitable for both heating and cooling. • Important parameters that affect the GSHP performance has been listed. • Parameters of GSHP system has been optimized for heating and cooling mode. • Taguchi technique and utility concept are developed for GSHP optimization. - Abstract: Use of ground source energy for space heating applications through Ground Source Heat pump (GSHP) has been established as an efficient thermodynamic process. The electricity input to the GSHP can be reduced by increasing the COP of the system. However, the COP of a GSHP system will be different for heating and cooling mode operations. Hence in order to reduce the electricity input to the GSHP, an optimum value of COP has to be determined when GSHP is operated in both heating and cooling modes. In the present research, a methodology is proposed to optimize the operating parameters of a GSHP system which will operate on both heating and cooling modes. Condenser inlet temperature, condenser outlet temperature, dryness fraction at evaporator inlet and evaporator outlet temperature are considered as the influencing parameters of the heat pump. Optimization of these parameters for only heating or only cooling mode operation is achieved by employing Taguchi method for three level variations of the above parameters using an L 9 (3 4 ) orthogonal array. Higher the better concept has been used to get a higher COP. A computer program in FORTAN has been developed to carry out the computations and the results have been analyzed for the optimum conditions using Signal-to-Noise (SN) ratio and Analysis Of Variance (ANOVA) method. Based on this analysis, the maximum COP for only heating and only cooling operation are obtained as 4.25 and 3.32 respectively. By making use of the utility concept both the higher values of COP obtained for heating and cooling modes are optimized to get a single optimum COP for heating and cooling modes. A single
Optimal Design of Shock Tube Experiments for Parameter Inference
Bisetti, Fabrizio; Knio, Omar
2014-01-01
We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Research Center. The unknown parameters are the pre-exponential parameters and the activation
Ye, Hui; Zhu, Lin; Wang, Lin; Liu, Huiying; Zhang, Jun; Wu, Mengqiu; Wang, Guangji; Hao, Haiping
2016-02-11
Multiple reaction monitoring (MRM) is a universal approach for quantitative analysis because of its high specificity and sensitivity. Nevertheless, optimization of MRM parameters remains as a time and labor-intensive task particularly in multiplexed quantitative analysis of small molecules in complex mixtures. In this study, we have developed an approach named Stepped MS(All) Relied Transition (SMART) to predict the optimal MRM parameters of small molecules. SMART requires firstly a rapid and high-throughput analysis of samples using a Stepped MS(All) technique (sMS(All)) on a Q-TOF, which consists of serial MS(All) events acquired from low CE to gradually stepped-up CE values in a cycle. The optimal CE values can then be determined by comparing the extracted ion chromatograms for the ion pairs of interest among serial scans. The SMART-predicted parameters were found to agree well with the parameters optimized on a triple quadrupole from the same vendor using a mixture of standards. The parameters optimized on a triple quadrupole from a different vendor was also employed for comparison, and found to be linearly correlated with the SMART-predicted parameters, suggesting the potential applications of the SMART approach among different instrumental platforms. This approach was further validated by applying to simultaneous quantification of 31 herbal components in the plasma of rats treated with a herbal prescription. Because the sMS(All) acquisition can be accomplished in a single run for multiple components independent of standards, the SMART approach are expected to find its wide application in the multiplexed quantitative analysis of complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
McQuaid, Sarah J; Southekal, Sudeepti; Kijewski, Marie Foley; Moore, Stephen C
2011-01-01
Obtaining the best possible task performance using reconstructed SPECT images requires optimization of both the collimator and reconstruction parameters. The goal of this study is to determine how to perform this optimization, namely whether the collimator parameters can be optimized solely from projection data, or whether reconstruction parameters should also be considered. In order to answer this question, and to determine the optimal collimation, a digital phantom representing a human torso with 16 mm diameter hot lesions (activity ratio 8:1) was generated and used to simulate clinical SPECT studies with parallel-hole collimation. Two approaches to optimizing the SPECT system were then compared in a lesion quantification task: sequential optimization, where collimation was optimized on projection data using the Cramer–Rao bound, and joint optimization, which simultaneously optimized collimator and reconstruction parameters. For every condition, quantification performance in reconstructed images was evaluated using the root-mean-squared-error of 400 estimates of lesion activity. Compared to the joint-optimization approach, the sequential-optimization approach favoured a poorer resolution collimator, which, under some conditions, resulted in sub-optimal estimation performance. This implies that inclusion of the reconstruction parameters in the optimization procedure is important in obtaining the best possible task performance; in this study, this was achieved with a collimator resolution similar to that of a general-purpose (LEGP) collimator. This collimator was found to outperform the more commonly used high-resolution (LEHR) collimator, in agreement with other task-based studies, using both quantification and detection tasks.
Characterization of PV panel and global optimization of its model parameters using genetic algorithm
International Nuclear Information System (INIS)
Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.
2013-01-01
Highlights: • Genetic Algorithm optimization ability had been utilized to extract parameters of PV panel model. • Effect of solar radiation and temperature variations was taken into account in fitness function evaluation. • We used Matlab-Simulink to simulate operation of the PV-panel to validate results. • Different cases were analyzed to ascertain which of them gives more accurate results. • Accuracy and applicability of this approach to be used as a valuable tool for PV modeling were clearly validated. - Abstract: This paper details an improved modeling technique for a photovoltaic (PV) module; utilizing the optimization ability of a genetic algorithm, with different parameters of the PV module being computed via this approach. The accurate modeling of any PV module is incumbent upon the values of these parameters, as it is imperative in the context of any further studies concerning different PV applications. Simulation, optimization and the design of the hybrid systems that include PV are examples of these applications. The global optimization of the parameters and the applicability for the entire range of the solar radiation and a wide range of temperatures are achievable via this approach. The Manufacturer’s Data Sheet information is used as a basis for the purpose of parameter optimization, with an average absolute error fitness function formulated; and a numerical iterative method used to solve the voltage-current relation of the PV module. The results of single-diode and two-diode models are evaluated in order to ascertain which of them are more accurate. Other cases are also analyzed in this paper for the purpose of comparison. The Matlab–Simulink environment is used to simulate the operation of the PV module, depending on the extracted parameters. The results of the simulation are compared with the Data Sheet information, which is obtained via experimentation in order to validate the reliability of the approach. Three types of PV modules
Parameters optimization for magnetic resonance coupling wireless power transmission.
Li, Changsheng; Zhang, He; Jiang, Xiaohua
2014-01-01
Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.
Q-Learning Multi-Objective Sequential Optimal Sensor Parameter Weights
Directory of Open Access Journals (Sweden)
Raquel Cohen
2016-04-01
Full Text Available The goal of our solution is to deliver trustworthy decision making analysis tools which evaluate situations and potential impacts of such decisions through acquired information and add efficiency for continuing mission operations and analyst information.We discuss the use of cooperation in modeling and simulation and show quantitative results for design choices to resource allocation. The key contribution of our paper is to combine remote sensing decision making with Nash Equilibrium for sensor parameter weighting optimization. By calculating all Nash Equilibrium possibilities per period, optimization of sensor allocation is achieved for overall higher system efficiency. Our tool provides insight into what are the most important or optimal weights for sensor parameters and can be used to efficiently tune those weights.
Improved Artificial Fish Algorithm for Parameters Optimization of PID Neural Network
Jing Wang; Yourui Huang
2013-01-01
In order to solve problems such as initial weights are difficult to be determined, training results are easy to trap in local minima in optimization process of PID neural network parameters by traditional BP algorithm, this paper proposed a new method based on improved artificial fish algorithm for parameters optimization of PID neural network. This improved artificial fish algorithm uses a composite adaptive artificial fish algorithm based on optimal artificial fish and nearest artificial fi...
Cosmological parameter estimation using Particle Swarm Optimization
Prasad, J.; Souradeep, T.
2014-03-01
Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.
Cosmological parameter estimation using Particle Swarm Optimization
International Nuclear Information System (INIS)
Prasad, J; Souradeep, T
2014-01-01
Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite
An optimization method for parameters in reactor nuclear physics
International Nuclear Information System (INIS)
Jachic, J.
1982-01-01
An optimization method for two basic problems of Reactor Physics was developed. The first is the optimization of a plutonium critical mass and the bruding ratio for fast reactors in function of the radial enrichment distribution of the fuel used as control parameter. The second is the maximization of the generation and the plutonium burnup by an optimization of power temporal distribution. (E.G.) [pt
Oyster Creek cycle 10 nodal model parameter optimization study using PSMS
International Nuclear Information System (INIS)
Dougher, J.D.
1987-01-01
The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed
GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling
International Nuclear Information System (INIS)
Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas
2015-01-01
Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and
Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal
2017-12-01
Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in
He, L.; Chen, J. M.; Liu, J.; Mo, G.; Zhen, T.; Chen, B.; Wang, R.; Arain, M.
2013-12-01
Terrestrial ecosystem models have been widely used to simulate carbon, water and energy fluxes and climate-ecosystem interactions. In these models, some vegetation and soil parameters are determined based on limited studies from literatures without consideration of their seasonal variations. Data assimilation (DA) provides an effective way to optimize these parameters at different time scales . In this study, an ensemble Kalman filter (EnKF) is developed and applied to optimize two key parameters of an ecosystem model, namely the Boreal Ecosystem Productivity Simulator (BEPS): (1) the maximum photosynthetic carboxylation rate (Vcmax) at 25 °C, and (2) the soil water stress factor (fw) for stomatal conductance formulation. These parameters are optimized through assimilating observations of gross primary productivity (GPP) and latent heat (LE) fluxes measured in a 74 year-old pine forest, which is part of the Turkey Point Flux Station's age-sequence sites. Vcmax is related to leaf nitrogen concentration and varies slowly over the season and from year to year. In contrast, fw varies rapidly in response to soil moisture dynamics in the root-zone. Earlier studies suggested that DA of vegetation parameters at daily time steps leads to Vcmax values that are unrealistic. To overcome the problem, we developed a three-step scheme to optimize Vcmax and fw. First, the EnKF is applied daily to obtain precursor estimates of Vcmax and fw. Then Vcmax is optimized at different time scales assuming fw is unchanged from first step. The best temporal period or window size is then determined by analyzing the magnitude of the minimized cost-function, and the coefficient of determination (R2) and Root-mean-square deviation (RMSE) of GPP and LE between simulation and observation. Finally, the daily fw value is optimized for rain free days corresponding to the Vcmax curve from the best window size. The optimized fw is then used to model its relationship with soil moisture. We found that
International Nuclear Information System (INIS)
Harish, V.S.K.V.; Kumar, Arun
2016-01-01
Highlights: • A BES model based on 1st principles is developed and solved numerically. • Parameters of lumped capacitance model are fitted using the proposed optimization routine. • Validations are showed for different types of building construction elements. • Step response excitations for outdoor air temperature and relative humidity are analyzed. - Abstract: Different control techniques together with intelligent building technology (Building Automation Systems) are used to improve energy efficiency of buildings. In almost all control projects, it is crucial to have building energy models with high computational efficiency in order to design and tune the controllers and simulate their performance. In this paper, a set of partial differential equations are formulated accounting for energy flow within the building space. These equations are then solved as conventional finite difference equations using Crank–Nicholson scheme. Such a model of a higher order is regarded as a benchmark model. An optimization algorithm has been developed, depicted through a flowchart, which minimizes the sum squared error between the step responses of the numerical and the optimal model. Optimal model of the construction element is nothing but a RC-network model with the values of Rs and Cs estimated using the non-linear time invariant constrained optimization routine. The model is validated with comparing the step responses with other two RC-network models whose parameter values are selected based on a certain criteria. Validations are showed for different types of building construction elements viz., low, medium and heavy thermal capacity elements. Simulation results show that the optimal model closely follow the step responses of the numerical model as compared to the responses of other two models.
Optimal construction parameters of electrosprayed trilayer organic photovoltaic devices
International Nuclear Information System (INIS)
Shah, S K; Ali, M; Gunnella, R; Abbas, M; Hirsch, L
2014-01-01
A detailed investigation of the optimal set of parameters employed in multilayer device fabrication obtained through successive electrospray deposited layers is reported. In this scheme, the donor/acceptor (D/A) bulk heterojunction layer is sandwiched between two thin stacked layers of individual donor and acceptor materials. The stacked layers geometry with optimal thicknesses plays a decisive role in improving operation characteristics. Among the parameters of the multilayer organic photovoltaics device, the D/A concentration ratio, blend thickness and stacking layers thicknesses are optimized. Other parameters, such as thermal annealing and the role of top metal contacts, are also discussed. Internal photon to current efficiency is found to attain a strong response in the 500 nm optical region for the most efficient device architectures. Such an observation indicates a clear interplay between photon harvesting of active layers and transport by ancillary stacking layers, opening up the possibility to engineer both the material fine structure and the device architecture to obtain the best photovoltaic response from a complex organic heterostructure. (paper)
Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi
2018-04-01
This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.
Multi-Objective Parameter Selection for Classifers
Directory of Open Access Journals (Sweden)
Christoph Mussel
2012-01-01
Full Text Available Setting the free parameters of classifiers to different values can have a profound impact on their performance. For some methods, specialized tuning algorithms have been developed. These approaches mostly tune parameters according to a single criterion, such as the cross-validation error. However, it is sometimes desirable to obtain parameter values that optimize several concurrent - often conflicting - criteria. The TunePareto package provides a general and highly customizable framework to select optimal parameters for classifiers according to multiple objectives. Several strategies for sampling andoptimizing parameters are supplied. The algorithm determines a set of Pareto-optimal parameter configuration and leaves the ultimate decision on the weighting of objectives to the researcher. Decision support is provided by novel visualization techniques.
Neverov, V. V.; Kozhukhov, Y. V.; Yablokov, A. M.; Lebedev, A. A.
2017-08-01
Nowadays the optimization using computational fluid dynamics (CFD) plays an important role in the design process of turbomachines. However, for the successful and productive optimization it is necessary to define a simulation model correctly and rationally. The article deals with the choice of a grid and computational domain parameters for optimization of centrifugal compressor impellers using computational fluid dynamics. Searching and applying optimal parameters of the grid model, the computational domain and solver settings allows engineers to carry out a high-accuracy modelling and to use computational capability effectively. The presented research was conducted using Numeca Fine/Turbo package with Spalart-Allmaras and Shear Stress Transport turbulence models. Two radial impellers was investigated: the high-pressure at ψT=0.71 and the low-pressure at ψT=0.43. The following parameters of the computational model were considered: the location of inlet and outlet boundaries, type of mesh topology, size of mesh and mesh parameter y+. Results of the investigation demonstrate that the choice of optimal parameters leads to the significant reduction of the computational time. Optimal parameters in comparison with non-optimal but visually similar parameters can reduce the calculation time up to 4 times. Besides, it is established that some parameters have a major impact on the result of modelling.
International Nuclear Information System (INIS)
Widesott, L; Strigari, L; Pressello, M C; Landoni, V; Benassi, M
2008-01-01
We investigated the role and the weight of the parameters involved in the intensity modulated radiation therapy (IMRT) optimization based on the generalized equivalent uniform dose (gEUD) method, for prostate and head-and-neck plans. We systematically varied the parameters (gEUD max and weight) involved in the gEUD-based optimization of rectal wall and parotid glands. We found that the proper value of weight factor, still guaranteeing planning treatment volumes coverage, produced similar organs at risks dose-volume (DV) histograms for different gEUD max with fixed a = 1. Most of all, we formulated a simple relation that links the reference gEUD max and the associated weight factor. As secondary objective, we evaluated plans obtained with the gEUD-based optimization and ones based on DV criteria, using the normal tissue complication probability (NTCP) models. gEUD criteria seemed to improve sparing of rectum and parotid glands with respect to DV-based optimization: the mean dose, the V 40 and V 50 values to the rectal wall were decreased of about 10%, the mean dose to parotids decreased of about 20-30%. But more than the OARs sparing, we underlined the halving of the OARs optimization time with the implementation of the gEUD-based cost function. Using NTCP models we enhanced differences between the two optimization criteria for parotid glands, but no for rectum wall
Complicated problem solution techniques in optimal parameter searching
International Nuclear Information System (INIS)
Gergel', V.P.; Grishagin, V.A.; Rogatneva, E.A.; Strongin, R.G.; Vysotskaya, I.N.; Kukhtin, V.V.
1992-01-01
An algorithm is presented of a global search for numerical solution of multidimentional multiextremal multicriteria optimization problems with complicated constraints. A boundedness of object characteristic changes is assumed at restricted changes of its parameters (Lipschitz condition). The algorithm was realized as a computer code. The algorithm was realized as a computer code. The programme was used to solve in practice the different applied optimization problems. 10 refs.; 3 figs
Investigation and validation of optimal cutting parameters for least ...
African Journals Online (AJOL)
The cutting parameters were analyzed and optimized using Box Behnken procedure in the DESIGN EXPERT environment. The effect of process parameters with the output variable were predicted which indicates that the highest cutting speed has significant role in producing least surface roughness followed by feed and ...
Optimization of measure parameters for an X- and gamma-ray spectrometry portable system
International Nuclear Information System (INIS)
Fernandes, Jaquiel S.; Appoloni, Carlos R.
2008-01-01
In order to optimize the use of a system for in situ gamma (γ)- and X-ray spectrometry composed of a 3x3x1 mm 3 Cadmium Telluride (CdTe) detector with respect to the detection of low-activity radioactive sources, a two level factorial planning was accomplished, involving three factors that could modify the system response. This planning was made with a 137 Cs punctual source, analyzing the X-ray energy line of 32 keV from 137m Ba. It was concluded that, for the system optimization, the best configuration for the involved parameters was to work with the detector at temperature of -22 o C, shaping time of 3 μs and rise time discrimination (RTD) with value 3
Structural parameter optimization design for Halbach permanent maglev rail
International Nuclear Information System (INIS)
Guo, F.; Tang, Y.; Ren, L.; Li, J.
2010-01-01
Maglev rail is an important part of the magnetic levitation launch system. Reducing the manufacturing cost of magnetic levitation rail is the key problem for the development of magnetic levitation launch system. The Halbach permanent array has an advantage that the fundamental spatial field is cancelled on one side of the array while the field on the other side is enhanced. So this array used in the design of high temperature superconducting permanent maglev rail could improve the surface magnetic field and the levitation force. In order to make the best use of Nd-Fe-B (NdFeB) material and reduce the cost of maglev rail, the effect of the rail's structural parameters on levitation force and the utilization rate of NdFeB material are analyzed. The optimal ranges of these structural parameters are obtained. The mutual impact of these parameters is also discussed. The optimization method of these structure parameters is proposed at the end of this paper.
Structural parameter optimization design for Halbach permanent maglev rail
Energy Technology Data Exchange (ETDEWEB)
Guo, F., E-mail: guofang19830119@163.co [R and D Center of Applied Superconductivity, Huazhong University of Science and Technology, Wuhan 430074 (China); Tang, Y.; Ren, L.; Li, J. [R and D Center of Applied Superconductivity, Huazhong University of Science and Technology, Wuhan 430074 (China)
2010-11-01
Maglev rail is an important part of the magnetic levitation launch system. Reducing the manufacturing cost of magnetic levitation rail is the key problem for the development of magnetic levitation launch system. The Halbach permanent array has an advantage that the fundamental spatial field is cancelled on one side of the array while the field on the other side is enhanced. So this array used in the design of high temperature superconducting permanent maglev rail could improve the surface magnetic field and the levitation force. In order to make the best use of Nd-Fe-B (NdFeB) material and reduce the cost of maglev rail, the effect of the rail's structural parameters on levitation force and the utilization rate of NdFeB material are analyzed. The optimal ranges of these structural parameters are obtained. The mutual impact of these parameters is also discussed. The optimization method of these structure parameters is proposed at the end of this paper.
Optimal Design of Shock Tube Experiments for Parameter Inference
Bisetti, Fabrizio
2014-01-06
We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Research Center. The unknown parameters are the pre-exponential parameters and the activation energies in the reaction rate expressions. The control parameters are the initial mixture composition and the temperature. The approach is based on first building a polynomial based surrogate model for the observables relevant to the shock tube experiments. Based on these surrogates, a novel MAP based approach is used to estimate the expected information gain in the proposed experiments, and to select the best experimental set-ups yielding the optimal expected information gains. The validity of the approach is tested using synthetic data generated by sampling the PC surrogate. We finally outline a methodology for validation using actual laboratory experiments, and extending experimental design methodology to the cases where the control parameters are noisy.
Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang
2017-12-01
The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.
Parameter optimization of electrochemical machining process using black hole algorithm
Singh, Dinesh; Shukla, Rajkamal
2017-12-01
Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.
Gmar, Soumaya; Helali, Nawel; Boubakri, Ali; Sayadi, Ilhem Ben Salah; Tlili, Mohamed; Amor, Mohamed Ben
2017-12-01
The aim of this work is to study the desalination of brackish water by electrodialysis (ED). A two level-three factor (23) full factorial design methodology was used to investigate the influence of different physicochemical parameters on the demineralization rate (DR) and the specific power consumption (SPC). Statistical design determines factors which have the important effects on ED performance and studies all interactions between the considered parameters. Three significant factors were used including applied potential, salt concentration and flow rate. The experimental results and statistical analysis show that applied potential and salt concentration are the main effect for DR as well as for SPC. The effect of interaction between applied potential and salt concentration was observed for SPC. A maximum value of 82.24% was obtained for DR under optimum conditions and the best value of SPC obtained was 5.64 Wh L-1. Empirical regression models were also obtained and used to predict the DR and the SPC profiles with satisfactory results. The process was applied for the treatment of real brackish water using the optimal parameters.
Directory of Open Access Journals (Sweden)
Jingxian Hao
2016-11-01
Full Text Available The rule-based logic threshold control strategy has been frequently used in energy management strategies for hybrid electric vehicles (HEVs owing to its convenience in adjusting parameters, real-time performance, stability, and robustness. However, the logic threshold control parameters cannot usually ensure the best vehicle performance at different driving cycles and conditions. For this reason, the optimization of key parameters is important to improve the fuel economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV is comprehensively analyzed and developed in this study. Seven key parameters to be optimized are extracted. The optimization model of key parameters is proposed from the perspective of fuel economy. The global optimization method, DIRECT algorithm, which has good real-time performance, low computational burden, rapid convergence, is selected to optimize the extracted key parameters globally. The results show that with the optimized parameters, the engine operates more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle energy management strategy from the perspective of fuel economy.
Setting of the Optimal Parameters of Melted Glass
Czech Academy of Sciences Publication Activity Database
Luptáková, Natália; Matejíčka, L.; Krečmer, N.
2015-01-01
Roč. 10, č. 1 (2015), s. 73-79 ISSN 1802-2308 Institutional support: RVO:68081723 Keywords : Striae * Glass * Glass melting * Regression * Optimal parameters Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass
Mode analysis and structure parameter optimization of a novel SiGe-OI rib optical waveguide
Energy Technology Data Exchange (ETDEWEB)
Feng Song; Gao Yong; Yang Yuan [Department of Electronic Engineering, Xi' an University of Technology, Xi' an 710048 (China); Feng Yuchun, E-mail: vonfs@yahoo.com.c [Key Laboratories of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060 (China)
2009-08-15
The mode of a novel SiGe-OI optical waveguide is analyzed, and its single-mode conditions are derived. The Ge content and structure parameters of SiGe-OI optical waveguides are respectively optimized. Under an operation wavelength of 1300 nm, the structures of SiGe-OI rib optical waveguides are built and analyzed with Optiwave software, and the optical field and transmission losses of the SiGe-OI rib optical waveguides are analyzed. The optimization results show that when the structure parameters H, h, W are respectively 500 nm, 250 nm, 500 nm and the Ge content is 5%, the total power loss of SiGe-OI rib waveguides is 0.3683 dB/cm considering the loss of radiation outside the waveguides and materials, which is less than the traditional value of 0.5 dB/cm. The analytical technique for SiGe-OI optical waveguides and structure parameters computed by this paper are proved to be accurate and computationally efficient compared with the beam propagation method (BPM) and the experimental results. (semiconductor devices)
International Nuclear Information System (INIS)
Zarepisheh, Masoud; Uribe-Sanchez, Andres F.; Li, Nan; Jia, Xun; Jiang, Steve B.
2014-01-01
Purpose: To establish a new mathematical framework for radiotherapy treatment optimization with voxel-dependent optimization parameters. Methods: In the treatment plan optimization problem for radiotherapy, a clinically acceptable plan is usually generated by an optimization process with weighting factors or reference doses adjusted for a set of the objective functions associated to the organs. Recent discoveries indicate that adjusting parameters associated with each voxel may lead to better plan quality. However, it is still unclear regarding the mathematical reasons behind it. Furthermore, questions about the objective function selection and parameter adjustment to assure Pareto optimality as well as the relationship between the optimal solutions obtained from the organ-based and voxel-based models remain unanswered. To answer these questions, the authors establish in this work a new mathematical framework equipped with two theorems. Results: The new framework clarifies the different consequences of adjusting organ-dependent and voxel-dependent parameters for the treatment plan optimization of radiation therapy, as well as the impact of using different objective functions on plan qualities and Pareto surfaces. The main discoveries are threefold: (1) While in the organ-based model the selection of the objective function has an impact on the quality of the optimized plans, this is no longer an issue for the voxel-based model since the Pareto surface is independent of the objective function selection and the entire Pareto surface could be generated as long as the objective function satisfies certain mathematical conditions; (2) All Pareto solutions generated by the organ-based model with different objective functions are parts of a unique Pareto surface generated by the voxel-based model with any appropriate objective function; (3) A much larger Pareto surface is explored by adjusting voxel-dependent parameters than by adjusting organ-dependent parameters, possibly
A Novel adaptative Discrete Cuckoo Search Algorithm for parameter optimization in computer vision
Directory of Open Access Journals (Sweden)
loubna benchikhi
2017-10-01
Full Text Available Computer vision applications require choosing operators and their parameters, in order to provide the best outcomes. Often, the users quarry on expert knowledge and must experiment many combinations to find manually the best one. As performance, time and accuracy are important, it is necessary to automate parameter optimization at least for crucial operators. In this paper, a novel approach based on an adaptive discrete cuckoo search algorithm (ADCS is proposed. It automates the process of algorithms’ setting and provides optimal parameters for vision applications. This work reconsiders a discretization problem to adapt the cuckoo search algorithm and presents the procedure of parameter optimization. Some experiments on real examples and comparisons to other metaheuristic-based approaches: particle swarm optimization (PSO, reinforcement learning (RL and ant colony optimization (ACO show the efficiency of this novel method.
Improving CLOPE’s Profit Value and Stability with an Optimized Agglomerative Approach
Directory of Open Access Journals (Sweden)
Yefeng Li
2015-06-01
Full Text Available CLOPE (Clustering with sLOPE is a simple and fast histogram-based clustering algorithm for categorical data. However, given the same data set with the same input parameter, the clustering results by this algorithm would possibly be different if the transactions are input in a different sequence. In this paper, a hierarchical clustering framework is proposed as an extension of CLOPE to generate stable and satisfactory clustering results based on an optimized agglomerative merge process. The new clustering profit is defined as the merge criteria and the cluster graph structure is proposed to optimize the merge iteration process. The experiments conducted on two datasets both demonstrate that the agglomerative approach achieves stable clustering results with a better profit value, but costs much more time due to the worse complexity.
International Nuclear Information System (INIS)
Dobler, Barbara; Pohl, Fabian; Bogner, Ludwig; Koelbl, Oliver
2007-01-01
To evaluate the effects of direct machine parameter optimization in the treatment planning of intensity-modulated radiation therapy (IMRT) for hypopharyngeal cancer as compared to subsequent leaf sequencing in Oncentra Masterplan v1.5. For 10 hypopharyngeal cancer patients IMRT plans were generated in Oncentra Masterplan v1.5 (Nucletron BV, Veenendal, the Netherlands) for a Siemens Primus linear accelerator. For optimization the dose volume objectives (DVO) for the planning target volume (PTV) were set to 53 Gy minimum dose and 59 Gy maximum dose, in order to reach a dose of 56 Gy to the average of the PTV. For the parotids a median dose of 22 Gy was allowed and for the spinal cord a maximum dose of 35 Gy. The maximum DVO to the external contour of the patient was set to 59 Gy. The treatment plans were optimized with the direct machine parameter optimization ('Direct Step & Shoot', DSS, Raysearch Laboratories, Sweden) newly implemented in Masterplan v1.5 and the fluence modulation technique ('Intensity Modulation', IM) which was available in previous versions of Masterplan already. The two techniques were compared with regard to compliance to the DVO, plan quality, and number of monitor units (MU) required per fraction dose. The plans optimized with the DSS technique met the DVO for the PTV significantly better than the plans optimized with IM (p = 0.007 for the min DVO and p < 0.0005 for the max DVO). No significant difference could be observed for compliance to the DVO for the organs at risk (OAR) (p > 0.05). Plan quality, target coverage and dose homogeneity inside the PTV were superior for the plans optimized with DSS for similar dose to the spinal cord and lower dose to the normal tissue. The mean dose to the parotids was lower for the plans optimized with IM. Treatment plan efficiency was higher for the DSS plans with (901 ± 160) MU compared to (1151 ± 157) MU for IM (p-value < 0.05). Renormalization of the IM plans to the mean of the
Directory of Open Access Journals (Sweden)
Jian-cheng WANG
2007-06-01
Full Text Available Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marker information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interference from environment in order to draw more reliable results. The coincidence rate of range (CR was the optimal parameter. Mean Simpson index (MD, mean Shannon-Weaver index of genetic diversity (MI and mean polymorphism information content (MPIC were important evaluating parameters. The variable rate of coefficient of variation (VR could act as an important reference parameter for evaluating the variation degree of core collection. Percentage of polymorphic loci (p could be used as a determination parameter for the size of core collection. Mean difference percentage (MD was a determination parameter for the reliability judgment of core collection. The effective evaluating parameters for core collection selected in the research could be used as criteria for sampling percentage in different plant germplasm populations.
Optimization of machining parameters of turning operations based on multi performance criteria
Directory of Open Access Journals (Sweden)
N.K.Mandal
2013-01-01
Full Text Available The selection of optimum machining parameters plays a significant role to ensure quality of product, to reduce the manufacturing cost and to increase productivity in computer controlled manufacturing process. For many years, multi-objective optimization of turning based on inherent complexity of process is a competitive engineering issue. This study investigates multi-response optimization of turning process for an optimal parametric combination to yield the minimum power consumption, surface roughness and frequency of tool vibration using a combination of a Grey relational analysis (GRA. Confirmation test is conducted for the optimal machining parameters to validate the test result. Various turning parameters, such as spindle speed, feed and depth of cut are considered. Experiments are designed and conducted based on full factorial design of experiment.
Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization
Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa
2018-05-01
In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.
Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
International Nuclear Information System (INIS)
Sun Jun; Zhao Ji; Wu Xiaojun; Fang Wei; Cai Yujie; Xu Wenbo
2010-01-01
Inspired by the motion of electrons in metal conductors in an electric field, we propose a variant of Particle Swarm Optimization (PSO), called Drift Particle Swarm Optimization (DPSO) algorithm, and apply it in estimating the unknown parameters of chaotic dynamic systems. The principle and procedure of DPSO are presented, and the algorithm is used to identify Lorenz system and Chen system. The experiment results show that for the given parameter configurations, DPSO can identify the parameters of the systems accurately and effectively, and it may be a promising tool for chaotic system identification as well as other numerical optimization problems in physics.
Optimization of process and solution parameters in electrospinning polyethylene oxide
CSIR Research Space (South Africa)
Jacobs, V
2011-11-01
Full Text Available This paper reports the optimization of electrospinning process and solution parameters using factorial design approach to obtain uniform polyethylene oxide (PEO) nanofibers. The parameters studied were distance between nozzle and collector screen...
Directory of Open Access Journals (Sweden)
Kaewploy Somsak
2015-01-01
Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa
Hybrid Disease Diagnosis Using Multiobjective Optimization with Evolutionary Parameter Optimization
Directory of Open Access Journals (Sweden)
MadhuSudana Rao Nalluri
2017-01-01
Full Text Available With the widespread adoption of e-Healthcare and telemedicine applications, accurate, intelligent disease diagnosis systems have been profoundly coveted. In recent years, numerous individual machine learning-based classifiers have been proposed and tested, and the fact that a single classifier cannot effectively classify and diagnose all diseases has been almost accorded with. This has seen a number of recent research attempts to arrive at a consensus using ensemble classification techniques. In this paper, a hybrid system is proposed to diagnose ailments using optimizing individual classifier parameters for two classifier techniques, namely, support vector machine (SVM and multilayer perceptron (MLP technique. We employ three recent evolutionary algorithms to optimize the parameters of the classifiers above, leading to six alternative hybrid disease diagnosis systems, also referred to as hybrid intelligent systems (HISs. Multiple objectives, namely, prediction accuracy, sensitivity, and specificity, have been considered to assess the efficacy of the proposed hybrid systems with existing ones. The proposed model is evaluated on 11 benchmark datasets, and the obtained results demonstrate that our proposed hybrid diagnosis systems perform better in terms of disease prediction accuracy, sensitivity, and specificity. Pertinent statistical tests were carried out to substantiate the efficacy of the obtained results.
Yang, Guo Sheng; Wang, Xiao Yang; Li, Xue Dong
2018-03-01
With the establishment of the integrated model of relay protection and the scale of the power system expanding, the global setting and optimization of relay protection is an extremely difficult task. This paper presents a kind of application in relay protection of global optimization improved particle swarm optimization algorithm and the inverse time current protection as an example, selecting reliability of the relay protection, selectivity, quick action and flexibility as the four requires to establish the optimization targets, and optimizing protection setting values of the whole system. Finally, in the case of actual power system, the optimized setting value results of the proposed method in this paper are compared with the particle swarm algorithm. The results show that the improved quantum particle swarm optimization algorithm has strong search ability, good robustness, and it is suitable for optimizing setting value in the relay protection of the whole power system.
Analysis of Camera Parameters Value in Various Object Distances Calibration
International Nuclear Information System (INIS)
Yusoff, Ahmad Razali; Ariff, Mohd Farid Mohd; Idris, Khairulnizam M; Majid, Zulkepli; Setan, Halim; Chong, Albert K
2014-01-01
In photogrammetric applications, good camera parameters are needed for mapping purpose such as an Unmanned Aerial Vehicle (UAV) that encompassed with non-metric camera devices. Simple camera calibration was being a common application in many laboratory works in order to get the camera parameter's value. In aerial mapping, interior camera parameters' value from close-range camera calibration is used to correct the image error. However, the causes and effects of the calibration steps used to get accurate mapping need to be analyze. Therefore, this research aims to contribute an analysis of camera parameters from portable calibration frame of 1.5 × 1 meter dimension size. Object distances of two, three, four, five, and six meters are the research focus. Results are analyzed to find out the changes in image and camera parameters' value. Hence, camera calibration parameter's of a camera is consider different depend on type of calibration parameters and object distances
Beinarts, I; Ļevčenkovs, A; Kuņicina, N
2007-01-01
In article interest is concentrated on the climate parameters optimization in passengers’ salon of public electric transportation vehicles. The article presents mathematical problem for using intelligent agents in mechatronics problems for climate parameters optimal control. Idea is to use fuzzy logic and intelligent algorithms to create coordination mechanism for climate parameters control to save electrical energy, and it increases the level of comfort for passengers. A special interest for...
Optimization of Robotic Spray Painting process Parameters using Taguchi Method
Chidhambara, K. V.; Latha Shankar, B.; Vijaykumar
2018-02-01
Automated spray painting process is gaining interest in industry and research recently due to extensive application of spray painting in automobile industries. Automating spray painting process has advantages of improved quality, productivity, reduced labor, clean environment and particularly cost effectiveness. This study investigates the performance characteristics of an industrial robot Fanuc 250ib for an automated painting process using statistical tool Taguchi’s Design of Experiment technique. The experiment is designed using Taguchi’s L25 orthogonal array by considering three factors and five levels for each factor. The objective of this work is to explore the major control parameters and to optimize the same for the improved quality of the paint coating measured in terms of Dry Film thickness(DFT), which also results in reduced rejection. Further Analysis of Variance (ANOVA) is performed to know the influence of individual factors on DFT. It is observed that shaping air and paint flow are the most influencing parameters. Multiple regression model is formulated for estimating predicted values of DFT. Confirmation test is then conducted and comparison results show that error is within acceptable level.
Use of multilevel modeling for determining optimal parameters of heat supply systems
Stennikov, V. A.; Barakhtenko, E. A.; Sokolov, D. V.
2017-07-01
The problem of finding optimal parameters of a heat-supply system (HSS) is in ensuring the required throughput capacity of a heat network by determining pipeline diameters and characteristics and location of pumping stations. Effective methods for solving this problem, i.e., the method of stepwise optimization based on the concept of dynamic programming and the method of multicircuit optimization, were proposed in the context of the hydraulic circuit theory developed at Melentiev Energy Systems Institute (Siberian Branch, Russian Academy of Sciences). These methods enable us to determine optimal parameters of various types of piping systems due to flexible adaptability of the calculation procedure to intricate nonlinear mathematical models describing features of used equipment items and methods of their construction and operation. The new and most significant results achieved in developing methodological support and software for finding optimal parameters of complex heat supply systems are presented: a new procedure for solving the problem based on multilevel decomposition of a heat network model that makes it possible to proceed from the initial problem to a set of interrelated, less cumbersome subproblems with reduced dimensionality; a new algorithm implementing the method of multicircuit optimization and focused on the calculation of a hierarchical model of a heat supply system; the SOSNA software system for determining optimum parameters of intricate heat-supply systems and implementing the developed methodological foundation. The proposed procedure and algorithm enable us to solve engineering problems of finding the optimal parameters of multicircuit heat supply systems having large (real) dimensionality, and are applied in solving urgent problems related to the optimal development and reconstruction of these systems. The developed methodological foundation and software can be used for designing heat supply systems in the Central and the Admiralty regions in
Thermo-mechanical simulation and parameters optimization for beam blank continuous casting
International Nuclear Information System (INIS)
Chen, W.; Zhang, Y.Z.; Zhang, C.J.; Zhu, L.G.; Lu, W.G.; Wang, B.X.; Ma, J.H.
2009-01-01
The objective of this work is to optimize the process parameters of beam blank continuous casting in order to ensure high quality and productivity. A transient thermo-mechanical finite element model is developed to compute the temperature and stress profile in beam blank continuous casting. By comparing the calculated data with the metallurgical constraints, the key factors causing defects of beam blank can be found out. Then based on the subproblem approximation method, an optimization program is developed to search out the optimum cooling parameters. Those optimum parameters can make it possible to run the caster at its maximum productivity, minimum cost and to reduce the defects. Now, online verifying of this optimization project has been put in practice, which can prove that it is very useful to control the actual production
DeSmitt, Holly J; Domire, Zachary J
2016-12-01
Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.
Hashemi, Mohadeseh; Yadegari, Amir; Yazdanpanah, Ghasem; Omidi, Meisam; Jabbehdari, Sayena; Haghiralsadat, Fatemeh; Yazdian, Fatemeh; Tayebi, Lobat
2017-05-01
Graphene oxide (GO) has been recently introduced as a suitable anticancer drug carrier, which could be loaded with doxorubicin (DOX) as a general chemotherapy agent. Herein, the attempts were made to optimize the effective parameters on both loading and release of DOX on GO. GO and GO-DOX were characterized using transition electron microscopy , zeta potential, Raman spectroscopy, UV-visible spectroscopy, and Fourier transform infrared spectroscopy. In addition, loading and releasing behaviors of DOX on GO were studied in terms of different temperature and pH values. The primary optimized values of pH and temperature for best-loaded amount of DOX were 8.9 and 309 K, respectively. Moreover, we found that the smallest amount of released DOX, in pH of cancer microenvironment (5.4), occurs when DOX had been previously loaded in pH 7.8 and 310 K. Although the highest amount of loaded DOX was in basic pH, the results of efficient release of DOX from the GO-DOX complex and also cellular toxicity assay revealed that the best pH for loading of DOX on GO was 7.8. Therefore, in addition to optimization of parameters for efficient loading of DOX on GO, this study suggested that normalization of a released drug compared with the amount of a loaded drug could be a new approach for optimization of drug loading on nanocarriers. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Directory of Open Access Journals (Sweden)
Stefanos Georganos
2018-02-01
Full Text Available In object-based image analysis (OBIA, the appropriate parametrization of segmentation algorithms is crucial for obtaining satisfactory image classification results. One of the ways this can be done is by unsupervised segmentation parameter optimization (USPO. A popular USPO method does this through the optimization of a “global score” (GS, which minimizes intrasegment heterogeneity and maximizes intersegment heterogeneity. However, the calculated GS values are sensitive to the minimum and maximum ranges of the candidate segmentations. Previous research proposed the use of fixed minimum/maximum threshold values for the intrasegment/intersegment heterogeneity measures to deal with the sensitivity of user-defined ranges, but the performance of this approach has not been investigated in detail. In the context of a remote sensing very-high-resolution urban application, we show the limitations of the fixed threshold approach, both in a theoretical and applied manner, and instead propose a novel solution to identify the range of candidate segmentations using local regression trend analysis. We found that the proposed approach showed significant improvements over the use of fixed minimum/maximum values, is less subjective than user-defined threshold values and, thus, can be of merit for a fully automated procedure and big data applications.
Directory of Open Access Journals (Sweden)
Guo Yu
2016-01-01
Full Text Available As a major step surface mount technology, reflow process is the key factor affecting the quality of the final product. The setting parameters and characteristic value of temperature curve shows a nonlinear relationship. So parameter impacts on characteristic values are analyzed and the parameters adjustment process based on orthogonal experiment is proposed in the paper. First, setting parameters are determined and the orthogonal test is designed according to production conditions. Then each characteristic value for temperature profile is calculated. Further, multi-index orthogonal experiment is analyzed for acquiring the setting parameters which impacts the PCBA product quality greater. Finally, reliability prediction is carried out considering the main influencing parameters for providing a theoretical basis of parameters adjustment and product quality evaluation in engineering process.
Optimization of plasma flow parameters of the magnetoplasma compressor
International Nuclear Information System (INIS)
Dojcinovic, I P; Kuraica, M M; Obradovc, B M; Cvetanovic, N; Puric, J
2007-01-01
Optimization of the working conditions of the magnetoplasma compressor (MPC) has been performed through analysing discharge and compression plasma flow parameters in hydrogen, nitrogen and argon at different pressures. Energy conversion rate, volt-ampere curve exponent and plasma flow velocities have been studied to optimize the efficiency of energy transfer from the supply source to the plasma. It has been found that the most effective energy transfer from the supply to the plasma is in hydrogen as a working gas at 1000 Pa pressure. It was found that the accelerating regime exists for hydrogen up to 3000 Pa pressures, in nitrogen up to 2000 Pa and in argon up to 1000 Pa pressure. At higher pressures MPC in all the gases works in the decelerating regime. At pressures lower than 200 Pa, high cathode erosion is observed. MPC plasma flow parameter optimization is very important because this plasma accelerating system may be of special interest for solid surface modification and other technology applications
Controller Parameter Optimization for Nonlinear Systems Using Enhanced Bacteria Foraging Algorithm
Directory of Open Access Journals (Sweden)
V. Rajinikanth
2012-01-01
Full Text Available An enhanced bacteria foraging optimization (EBFO algorithm-based Proportional + integral + derivative (PID controller tuning is proposed for a class of nonlinear process models. The EBFO algorithm is a modified form of standard BFO algorithm. A multiobjective performance index is considered to guide the EBFO algorithm for discovering the best possible value of controller parameters. The efficiency of the proposed scheme has been validated through a comparative study with classical BFO, adaptive BFO, PSO, and GA based controller tuning methods proposed in the literature. The proposed algorithm is tested in real time on a nonlinear spherical tank system. The real-time results show that, EBFO tuned PID controller gives a smooth response for setpoint tracking performance.
Parameter optimization method for longitudinal vibration absorber of ship shaft system
Directory of Open Access Journals (Sweden)
LIU Jinlin
2017-05-01
Full Text Available The longitudinal vibration of the ship shaft system is the one of the most important factors of hull stern vibration, and it can be effectively minimized by installing a longitudinal vibration absorber. In this way, the vibration and noise of ships can be brought under control. However, the parameters of longitudinal vibration absorbers have a great influence on the vibration characteristics of the shaft system. As such, a certain shafting testing platform was studied as the object on which a finite model was built, and the relationship between longitudinal stiffness and longitudinal vibration in the shaft system was analyzed in a straight alignment state. Furthermore, a longitudinal damping model of the shaft system was built in which the parameters of the vibration absorber were non-dimensionalized, the weight of the vibration absorber was set as a constant, and an optimizing algorithm was used to calculate the optimized stiffness and damping coefficient of the vibration absorber. Finally, the longitudinal vibration frequency response of the shafting testing platform before and after optimizing the parameters of the longitudinal vibration absorber were compared, and the results indicated that the longitudinal vibration of the shafting testing platform was decreased effectively, which suggests that it could provide a theoretical foundation for the parameter optimization of longitudinal vibration absorbers.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-03-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.
Directory of Open Access Journals (Sweden)
Huanqing Cui
2017-03-01
Full Text Available Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.
Energy Technology Data Exchange (ETDEWEB)
Kurosu, Keita [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Takashina, Masaaki; Koizumi, Masahiko [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Moskvin, Vadim P., E-mail: vadim.p.moskvin@gmail.com [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)
2014-10-01
Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.
International Nuclear Information System (INIS)
Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.
2014-01-01
Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation
Deptuła, A.
2014-08-01
In the optimization process, changes in the construction parameters value influence the behaviour of functions depending on time. Weighting logical coefficients for the stabilisation time are taken into consideration here, i.e., a shorter (better) stabilisation time has a more important (bigger) value of the weighting coefficient. An example of applying weighting logical functions in the analysis of a degree of importance of construction parameters of a hydraulic valve is presented in the paper
Optimization of imaging parameters for SPECT scans of [99mTc]TRODAT-1 using Taguchi analysis.
Directory of Open Access Journals (Sweden)
Cheng-Kai Huang
Full Text Available Parkinson's disease (PD is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the basal ganglia. Single photon emission computed tomography (SPECT scans using [99mTc]TRODAT-1 can image dopamine transporters and provide valuable diagnostic information of PD. In this study, we optimized the scanning parameters for [99mTc]TRODAT-1/SPECT using the Taguchi analysis to improve image quality. SPECT scans were performed on forty-five healthy volunteers according to an L9 orthogonal array. Three parameters were considered, including the injection activity, uptake duration, and acquisition time per projection. The signal-to-noise ratio (SNR was calculated from the striatum/occipital activity ratio as an image quality index. Ten healthy subjects and fifteen PD patients were used to verify the optimal parameters. The estimated optimal parameters were 962 MBq for [99mTc]TRODAT-1 injection, 260 min for uptake duration, and 60 s/projection for data acquisition. The uptake duration and time per projection were the two dominant factors which had an F-value of 18.638 (38% and 25.933 (53%, respectively. Strong cross interactions existed between the injection activity/uptake duration and injection activity/time per projection. Therefore, under the consideration of as low as reasonably achievable (ALARA for radiation protection, we can decrease the injection activity to 740 MBq. The image quality remains almost the same for clinical applications.
Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar
2017-10-01
This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.
Error propagation of partial least squares for parameters optimization in NIR modeling
Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng
2018-03-01
A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.
Error propagation of partial least squares for parameters optimization in NIR modeling.
Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng
2018-03-05
A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.
Energy Technology Data Exchange (ETDEWEB)
Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Kumar, L. Satish, E-mail: satish@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Jehadeesan, R., E-mail: jeha@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Rajeswari, S., E-mail: raj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Satya Murty, S.A.V., E-mail: satya@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Balasubramaniyan, V.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)
2011-10-15
Highlights: > We model design optimization of a vital reactor component using Genetic Algorithm. > Real-parameter Genetic Algorithm is used for steam condenser optimization study. > Comparison analysis done with various Genetic Algorithm related mechanisms. > The results obtained are validated with the reference study results. - Abstract: This work explores the use of Real-parameter Genetic Algorithm and analyses its performance in the steam condenser (or Circulating Water System) optimization study of a 500 MW fast breeder nuclear reactor. Choice of optimum design parameters for condenser for a power plant from among a large number of technically viable combination is a complex task. This is primarily due to the conflicting nature of the economic implications of the different system parameters for maximizing the capitalized profit. In order to find the optimum design parameters a Real-parameter Genetic Algorithm model is developed and applied. The results obtained are validated with the reference study results.
Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm
Energy Technology Data Exchange (ETDEWEB)
Chung, Hyeng Hwan; Chung, Dong Il; Chung, Mun Kyu [Dong-AUniversity (Korea); Wang, Yong Peel [Canterbury Univeristy (New Zealand)
1999-06-01
In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer (PSS) with robustness in low frequency oscillation for power system using real variable elitism genetic algorithm (RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristics of PSS, the system eigenvalues criterion and the dynamic characteristics were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory. (author). 20 refs., 15 figs., 8 tabs.
Optimization of parameters for fitting linear accelerator photon beams using a modified CBEAM model
International Nuclear Information System (INIS)
Ayyangar, K.; Daftari, I.; Palta, J.; Suntharalingam, N.
1989-01-01
Measured beam profiles and central-axis depth-dose data for 6- and 25-MV photon beams are used to generate a dose matrix which represents the full beam. A corresponding dose matrix is also calculated using the modified CBEAM model. The calculational model uses the usual set of three parameters to define the intensity at beam edges and the parameter that accounts for collimator transmission. An additional set of three parameters is used for the primary profile factor, expressed as a function of distance from the central axis. An optimization program has been adapted to automatically adjust these parameters to minimize the χ 2 between the measured and calculated data. The average values of the parameters for small (6x6 cm 2 ), medium (10x10 cm 2 ), and large (20x20 cm 2 ) field sizes are found to represent the beam adequately for all field sizes. The calculated and the measured doses at any point agree to within 2% for any field size in the range 4x4 to 40x40 cm 2
Parameter Optimization and Electrode Improvement of Rotary Stepper Micromotor
Sone, Junji; Mizuma, Toshinari; Mochizuki, Shunsuke; Sarajlic, Edin; Yamahata, Christophe; Fujita, Hiroyuki
We developed a three-phase electrostatic stepper micromotor and performed a numerical simulation to improve its performance for practical use and to optimize its design. We conducted its circuit simulation by simplifying its structure, and the effect of springback force generated by supported mechanism using flexures was considered. And we considered new improvement method for electrodes. This improvement and other parameter optimizations achieved the low voltage drive of micromotor.
Sensitive parameters' optimization of the permanent magnet supporting mechanism
Energy Technology Data Exchange (ETDEWEB)
Liu, Yongguang; Gao, Xiaohui; Wang, Yixuan; Yang, Xiaowei [Beihang University, Beijing (China)
2014-07-15
The fast development of the ultra-high speed vertical rotor promotes the study and exploration for the supporting mechanism. It has become the focus of research that how to improve the speed and overcome the vibration when the rotors pass through the low-order critical frequencies. This paper introduces a kind of permanent magnet (PM) supporting mechanism and describes an optimization method of its sensitive parameters, which can make the vertical rotor system reach 80000 r/min smoothly. Firstly we find the sensitive parameters through analyzing the rotor's features in the process of achieving high-speed, then, study these sensitive parameters and summarize the regularities with the method of combining the experiment and the finite element method (FEM), at last, achieve the optimization method of these parameters. That will not only get a stable effect of raising speed and shorten the debugging time greatly, but also promote the extensive application of the PM supporting mechanism in the ultra-high speed vertical rotors.
Optimization of exposure parameters in full field digital mammography
International Nuclear Information System (INIS)
Williams, Mark B.; Raghunathan, Priya; More, Mitali J.; Seibert, J. Anthony; Kwan, Alexander; Lo, Joseph Y.; Samei, Ehsan; Ranger, Nicole T.; Fajardo, Laurie L.; McGruder, Allen; McGruder, Sandra M.; Maidment, Andrew D. A.; Yaffe, Martin J.; Bloomquist, Aili; Mawdsley, Gordon E.
2008-01-01
Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fuji's 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and
Directory of Open Access Journals (Sweden)
Oladipupo Olaosebikan Ogunleye
2015-02-01
Full Text Available Preparation of Polypropylene ternary nanocomposites (PPTN was accomplished by blending multiwall carbon nanotube (MWCNT in polypropylene/clay binary system using a melt intercalation method. The effects of MWCNT loadings (A, melting temperature (B and mixing speed (C were investigated and optimized using central composite design. The analysis of the fitted cubic model clearly indicated that A and B were the main factors influencing the tensile properties at a fixed value of C. However, the analysis of variance showed that the interactions between the process parameters, such as; AB, AC, AB2, A2B and ABC, were highly significant on both tensile strength and Young’s modulus enhancement, while no interaction is significant in all models considered for elongation. The established optimal conditions gave 0.17%, 165 °C, and 120 rpm for A, B and C, respectively. These conditions yielded a percentage increase of 57 and 63% for tensile strength and Young’s modulus respectively compared to the virgin Polypropylene used.
The Optimization of Capital Structure in Maximizing Profit and Corporate Value
Directory of Open Access Journals (Sweden)
Kharisya Ayu Effendi
2017-05-01
Full Text Available The purpose of this research was to determine the optimal capital structure which could maximize profits and corporate value. The benefits of this research were companies knew clearly that optimal capital structure could maximize profits and corporate value. The method used was quantitative descriptive analysis. Moreover, the data used was secondary data in the Jakarta Islamic Index (JII from 2011 to 2015. The results of this research are companies which have optimal capital structure are in line with the trade-off theory models. The capital structure is optimal if the debt levels are to a certain extent so that the corporate value will increase . However, if the debt limit passes the certain degree, profit and corporate value will decrease. Meanwhile, pecking order theory in this research does not conform and cannot be said to be optimal, because of the low debt level describing the opposite result with the theory as low profits.
Vector optimization set-valued and variational analysis
Chen, Guang-ya; Yang, Xiaogi
2005-01-01
This book is devoted to vector or multiple criteria approaches in optimization. Topics covered include: vector optimization, vector variational inequalities, vector variational principles, vector minmax inequalities and vector equilibrium problems. In particular, problems with variable ordering relations and set-valued mappings are treated. The nonlinear scalarization method is extensively used throughout the book to deal with various vector-related problems. The results presented are original and should be interesting to researchers and graduates in applied mathematics and operations research
Energy Technology Data Exchange (ETDEWEB)
Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa [Universiti Teknologi MARA (UiTM), Selangor (Malaysia)
2012-08-15
This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application.
International Nuclear Information System (INIS)
Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa
2012-01-01
This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application
International Nuclear Information System (INIS)
Shojaeizadeh, Ehsan; Veysi, Farzad
2016-01-01
Highlights: • Exergy efficiency optimization of a flat-plate collector with Al_2O_3 nanofluid is studied. • Solar radiation and ambient temperature are assumed to be uncontrollable. • Solar collector inlet temperature is influenced by the presence of reservoir tank. • A suitable exponential correlation is proposed for the optimized exergy efficiency. • This exponential correlation also is used for controlling independent parameters. - Abstract: The current study deals with the exergy efficiency optimization of an Al_2O_3/water nanofluid-based flat-plate solar collector according to a mathematical optimization (Sequential Quadratic Programming (SQP) method). This study takes into account exergy efficiency optimization when solar radiation and ambient temperature parameters are assumed to be uncontrollable and presented to a wide range of transient data of climatic conditions where these might take place during spring and summer seasons of Kermanshah (Iran), and perform two main cases as follows: (1) the fluid temperature at the inlet of solar collector, T_i, is independent of storage tank (open loop); (2) the fluid temperature at the inlet of solar collector, T_i, is influenced by the presence of storage tank (closed loop). In any conditions of each case studies (working fluid with and without nanoparticles), a suitable decreasing exponential correlation as function of T_a/G_t values (i.e. ambient temperature to solar radiation ratio) is developed for the optimized exergy efficiency and also well controlling independent parameters values (mass flow rate of fluid, nanoparticle volume concentration and collector inlet temperature). Also, it is concluded that each of optimized parameters and the optimum exergy efficiency is of a linear relation with each other.
Towards an Automatic Parameter-Tuning Framework for Cost Optimization on Video Encoding Cloud
Directory of Open Access Journals (Sweden)
Xiaowei Li
2012-01-01
Full Text Available The emergence of cloud encoding services facilitates many content owners, such as the online video vendors, to transcode their digital videos without infrastructure setup. Such service provider charges the customers only based on their resource consumption. For both the service provider and customers, lowering the resource consumption while maintaining the quality is valuable and desirable. Thus, to choose a cost-effective encoding parameter, configuration is essential and challenging due to the tradeoff between bitrate, encoding speed, and resulting quality. In this paper, we explore the feasibility of an automatic parameter-tuning framework, based on which the above objective can be achieved. We introduce a simple service model, which combines the bitrate and encoding speed into a single value: encoding cost. Then, we conduct an empirical study to examine the relationship between the encoding cost and various parameter settings. Our experiment is based on the one-pass Constant Rate Factor method in x264, which can achieve relatively stable perceptive quality, and we vary each parameter we choose to observe how the encoding cost changes. The experiment results show that the tested parameters can be independently tuned to minimize the encoding cost, which makes the automatic parameter-tuning framework feasible and promising for optimizing the cost on video encoding cloud.
A choice of the parameters of NPP steam generators on the basis of vector optimization
International Nuclear Information System (INIS)
Lemeshev, V.U.; Metreveli, D.G.
1981-01-01
The optimization problem of the parameters of the designed systems is considered as the problem of multicriterion optimization. It is proposed to choose non-dominant, optimal according to Pareto, parameters. An algorithm is built on the basis of the required and sufficient non-dominant conditions to find non-dominant solutions. This algorithm has been employed to solve the problem on a choice of optimal parameters for the counterflow shell-tube steam generator of NPP of BRGD type [ru
PARAMETER ESTIMATION OF VALVE STICTION USING ANT COLONY OPTIMIZATION
Directory of Open Access Journals (Sweden)
S. Kalaivani
2012-07-01
Full Text Available In this paper, a procedure for quantifying valve stiction in control loops based on ant colony optimization has been proposed. Pneumatic control valves are widely used in the process industry. The control valve contains non-linearities such as stiction, backlash, and deadband that in turn cause oscillations in the process output. Stiction is one of the long-standing problems and it is the most severe problem in the control valves. Thus the measurement data from an oscillating control loop can be used as a possible diagnostic signal to provide an estimate of the stiction magnitude. Quantification of control valve stiction is still a challenging issue. Prior to doing stiction detection and quantification, it is necessary to choose a suitable model structure to describe control-valve stiction. To understand the stiction phenomenon, the Stenman model is used. Ant Colony Optimization (ACO, an intelligent swarm algorithm, proves effective in various fields. The ACO algorithm is inspired from the natural trail following behaviour of ants. The parameters of the Stenman model are estimated using ant colony optimization, from the input-output data by minimizing the error between the actual stiction model output and the simulated stiction model output. Using ant colony optimization, Stenman model with known nonlinear structure and unknown parameters can be estimated.
Directory of Open Access Journals (Sweden)
Milović Nemanja R.
2016-01-01
Full Text Available The objective of this work was to estimate the effects of the operating parameters on the baker's yeast microfiltration through multichannel ceramic membrane. The selected parameters were transmembrane pressure, suspension feed flow, and initial suspension concentration. In order to investigate the influence and interaction effects of these parameters on the microfiltration operation, two responses have been chosen: average permeate flux and flux decline. The Box-Behnken experimental design and response surface methodology was used for result processing and process optimization. According to the obtained results, the most important parameter influencing permeate flux during microfiltration is the initial suspension concentration. The maximum average flux value was achieved at an initial concentration of 0.1 g/L, pressure around 1.25 bars and a flow rate at 16 L/h. [Projekat Ministarstva nauke Republike Srbije, br. TR 31002
International Nuclear Information System (INIS)
Jayalal, M.L.; Kumar, L. Satish; Jehadeesan, R.; Rajeswari, S.; Satya Murty, S.A.V.; Balasubramaniyan, V.; Chetal, S.C.
2011-01-01
Highlights: → We model design optimization of a vital reactor component using Genetic Algorithm. → Real-parameter Genetic Algorithm is used for steam condenser optimization study. → Comparison analysis done with various Genetic Algorithm related mechanisms. → The results obtained are validated with the reference study results. - Abstract: This work explores the use of Real-parameter Genetic Algorithm and analyses its performance in the steam condenser (or Circulating Water System) optimization study of a 500 MW fast breeder nuclear reactor. Choice of optimum design parameters for condenser for a power plant from among a large number of technically viable combination is a complex task. This is primarily due to the conflicting nature of the economic implications of the different system parameters for maximizing the capitalized profit. In order to find the optimum design parameters a Real-parameter Genetic Algorithm model is developed and applied. The results obtained are validated with the reference study results.
Directory of Open Access Journals (Sweden)
Shaolong Chen
2016-01-01
Full Text Available Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.
Optimization of physico-chemical and nutritional parameters for ...
African Journals Online (AJOL)
Optimization of physico-chemical and nutritional parameters for pullulan production by a mutant of thermotolerant Aureobasidium pullulans, in fed batch ... minutes, having killing rate of 70% level, produced 6 g l-1 higher pullulan as compared to the wild type without loosing thermotolerant and non-melanin producing ability.
Optimization of process parameters for synthesis of silica–Ni ...
Indian Academy of Sciences (India)
Optimization of process parameters for synthesis of silica–Ni nanocomposite by design of experiment ... Sol–gel; Ni; design of experiments; nanocomposites. ... Kolkata 700 032, India; Rustech Products Pvt. Ltd., Kolkata 700 045, India ...
Directory of Open Access Journals (Sweden)
Florian Schwarz
Full Text Available BACKGROUND/OBJECTIVES: To evaluate the predictive value of CT-derived measurements of the aortic annulus for prosthesis sizing in transcatheter aortic valve implantation (TAVI and to calculate optimal cutoff values for the selection of various prosthesis sizes. METHODS: The local IRB waived approval for this single-center retrospective analysis. Of 441 consecutive TAVI-patients, 90 were excluded (death within 30 days: 13; more than mild aortic regurgitation: 10; other reasons: 67. In the remaining 351 patients, the CoreValve (Medtronic and the Edwards Sapien XT valve (Edwards Lifesciences were implanted in 235 and 116 patients. Optimal prosthesis size was determined during TAVI by inflation of a balloon catheter at the aortic annulus. All patients had undergone CT-angiography of the heart or body trunk prior to TAVI. Using these datasets, the diameter of the long and short axis as well as the circumference and the area of the aortic annulus were measured. Multi-Class Receiver-Operator-Curve analyses were used to determine the predictive value of all variables and to define optimal cutoff-values. RESULTS: Differences between patients who underwent implantation of the small, medium or large prosthesis were significant for all except the large vs. medium CoreValve (all p's<0.05. Furthermore, mean diameter, annulus area and circumference had equally high predictive value for prosthesis size for both manufacturers (multi-class AUC's: 0.80, 0.88, 0.91, 0.88, 0.88, 0.89. Using the calculated optimal cutoff-values, prosthesis size is predicted correctly in 85% of cases. CONCLUSION: CT-based aortic root measurements permit excellent prediction of the prosthesis size considered optimal during TAVI.
Jain, S C; Miller, J R
1976-04-01
A method, using an optimization scheme, has been developed for the interpretation of spectral albedo (or spectral reflectance) curves obtained from remotely sensed water color data. This method used a two-flow model of the radiation flow and solves for the albedo. Optimization fitting of predicted to observed reflectance data is performed by a quadratic interpolation method for the variables chlorophyll concentration and scattering coefficient. The technique is applied to airborne water color data obtained from Kawartha Lakes, Sargasso Sea, and Nova Scotia coast. The modeled spectral albedo curves are compared to those obtained experimentally, and the computed optimum water parameters are compared to ground truth values. It is shown that the backscattered spectral signal contains information that can be interpreted to give quantitative estimates of the chlorophyll concentration and turbidity in the waters studied.
On the effect of response transformations in sequential parameter optimization.
Wagner, Tobias; Wessing, Simon
2012-01-01
Parameter tuning of evolutionary algorithms (EAs) is attracting more and more interest. In particular, the sequential parameter optimization (SPO) framework for the model-assisted tuning of stochastic optimizers has resulted in established parameter tuning algorithms. In this paper, we enhance the SPO framework by introducing transformation steps before the response aggregation and before the actual modeling. Based on design-of-experiments techniques, we empirically analyze the effect of integrating different transformations. We show that in particular, a rank transformation of the responses provides significant improvements. A deeper analysis of the resulting models and additional experiments with adaptive procedures indicates that the rank and the Box-Cox transformation are able to improve the properties of the resultant distributions with respect to symmetry and normality of the residuals. Moreover, model-based effect plots document a higher discriminatory power obtained by the rank transformation.
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
Cabeza, I O; López, R; Ruiz-Montoya, M; Díaz, M J
2013-10-15
Composting is one of the most successful biological processes for the treatment of the residues enriched in putrescible materials. The optimization of parameters which have an influence on the stability of the products is necessary in order to maximize recycling and recovery of waste components. The influence of the composting process parameters (aeration, moisture, C/N ratio, and time) on the stability parameters (organic matter, N-losses, chemical oxygen demand, nitrate, biodegradability coefficient) of the compost was studied. The composting experiment was carried out using Municipal Solid Waste (MSW) and Legume Trimming Residues (LTR) in 200 L isolated acrylic barrels following a Box-Behnken central composite experimental design. Second-order polynomial models were found for each of the studied compost stability parameter, which accurately described the relationship between the parameters. The differences among the experimental values and those estimated by using the equations never exceeded 10% of the former. Results of the modelling showed that excluding the time, the C/N ratio is the strongest variable influencing almost all the stability parameters studied in this case, with the exception of N-losses which is strongly dependent on moisture. Moreover, an optimized ratio MSW/LTR of 1/1 (w/w), moisture content in the range of 40-55% and moderate to low aeration rate (0.05-0.175 Lair kg(-)(1) min(-1)) is recommended to maximise degradation and to obtain a stable product during co-composting of MSW and LTR. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optimal parameters for the FFA-Beddoes dynamic stall model
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A; Mert, M [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H A [Risoe National Lab., Roskilde (Denmark)
1999-03-01
Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)
Optimization of TRPO process parameters for americium extraction from high level waste
International Nuclear Information System (INIS)
Chen Jing; Wang Jianchen; Song Chongli
2001-01-01
The numerical calculations for Am multistage fractional extraction by trialkyl phosphine oxide (TRPO) were verified by a hot test. 1750L/t-U high level waste (HLW) was used as the feed to the TRPO process. The analysis used the simple objective function to minimize the total waste content in the TRPO process streams. Some process parameters were optimized after other parameters were selected. The optimal process parameters for Am extraction by TRPO are: 10 stages for extraction and 2 stages for scrubbing; a flow rate ratio of 0.931 for extraction and 4.42 for scrubbing; nitric acid concentration of 1.35 mol/L for the feed and 0.5 mol/L for the scrubbing solution. Finally, the nitric acid and Am concentration profiles in the optimal TRPO extraction process are given
Energy Technology Data Exchange (ETDEWEB)
Nasef, Mohamed Mahmoud, E-mail: mahmoudeithar@fkkksa.utm.my [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia); Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia)
2011-11-15
Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting (G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 {sup o}C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting. - Highlights: > A precursor for phosphoric acid membrane for a high temperature PEM fuel cell was prepared. > The grafting parameters for radiation induced grafting of 1-VIm onto ETFE film were optimized. > Surface response method was used to predict the degree of grafting. > The predicted value agreed well with the experimental data as indicated by a 3% deviation. > The number of the experiments and cost of radiation induced grafting were reduced.
Energy Technology Data Exchange (ETDEWEB)
Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: goswamim@ornl.gov [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)
2017-07-01
Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.
AI-guided parameter optimization in inverse treatment planning
International Nuclear Information System (INIS)
Yan Hui; Yin Fangfang; Guan Huaiqun; Kim, Jae Ho
2003-01-01
An artificial intelligence (AI)-guided inverse planning system was developed to optimize the combination of parameters in the objective function for intensity-modulated radiation therapy (IMRT). In this system, the empirical knowledge of inverse planning was formulated with fuzzy if-then rules, which then guide the parameter modification based on the on-line calculated dose. Three kinds of parameters (weighting factor, dose specification, and dose prescription) were automatically modified using the fuzzy inference system (FIS). The performance of the AI-guided inverse planning system (AIGIPS) was examined using the simulated and clinical examples. Preliminary results indicate that the expected dose distribution was automatically achieved using the AI-guided inverse planning system, with the complicated compromising between different parameters accomplished by the fuzzy inference technique. The AIGIPS provides a highly promising method to replace the current trial-and-error approach
Schwarz, Florian; Lange, Philipp; Zinsser, Dominik; Greif, Martin; Boekstegers, Peter; Schmitz, Christoph; Reiser, Maximilian F; Kupatt, Christian; Becker, Hans C
2014-01-01
To evaluate the predictive value of CT-derived measurements of the aortic annulus for prosthesis sizing in transcatheter aortic valve implantation (TAVI) and to calculate optimal cutoff values for the selection of various prosthesis sizes. The local IRB waived approval for this single-center retrospective analysis. Of 441 consecutive TAVI-patients, 90 were excluded (death within 30 days: 13; more than mild aortic regurgitation: 10; other reasons: 67). In the remaining 351 patients, the CoreValve (Medtronic) and the Edwards Sapien XT valve (Edwards Lifesciences) were implanted in 235 and 116 patients. Optimal prosthesis size was determined during TAVI by inflation of a balloon catheter at the aortic annulus. All patients had undergone CT-angiography of the heart or body trunk prior to TAVI. Using these datasets, the diameter of the long and short axis as well as the circumference and the area of the aortic annulus were measured. Multi-Class Receiver-Operator-Curve analyses were used to determine the predictive value of all variables and to define optimal cutoff-values. Differences between patients who underwent implantation of the small, medium or large prosthesis were significant for all except the large vs. medium CoreValve (all p'sprosthesis size for both manufacturers (multi-class AUC's: 0.80, 0.88, 0.91, 0.88, 0.88, 0.89). Using the calculated optimal cutoff-values, prosthesis size is predicted correctly in 85% of cases. CT-based aortic root measurements permit excellent prediction of the prosthesis size considered optimal during TAVI.
Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling
Energy Technology Data Exchange (ETDEWEB)
Hamrick, Todd [West Virginia Univ., Morgantown, WV (United States)
2011-01-01
Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.
Optimization of nonlinear wave function parameters
International Nuclear Information System (INIS)
Shepard, R.; Minkoff, M.; Chemistry
2006-01-01
An energy-based optimization method is presented for our recently developed nonlinear wave function expansion form for electronic wave functions. This expansion form is based on spin eigenfunctions, using the graphical unitary group approach (GUGA). The wave function is expanded in a basis of product functions, allowing application to closed-shell and open-shell systems and to ground and excited electronic states. Each product basis function is itself a multiconfigurational function that depends on a relatively small number of nonlinear parameters called arc factors. The energy-based optimization is formulated in terms of analytic arc factor gradients and orbital-level Hamiltonian matrices that correspond to a specific kind of uncontraction of each of the product basis functions. These orbital-level Hamiltonian matrices give an intuitive representation of the energy in terms of disjoint subsets of the arc factors, they provide for an efficient computation of gradients of the energy with respect to the arc factors, and they allow optimal arc factors to be determined in closed form for subspaces of the full variation problem. Timings for energy and arc factor gradient computations involving expansion spaces of > 10 24 configuration state functions are reported. Preliminary convergence studies and molecular dissociation curves are presented for some small molecules
Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters
Energy Technology Data Exchange (ETDEWEB)
Cho, K.H. [Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Bucheon 420-767 (Korea, Republic of); Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of); Cho, S.J. [Department of Radiation Oncology, College of Medicine, Eulji University, Seongnam 461-713 (Korea, Republic of); Lee, S. [Department of Radiation Oncology, College of Medicine, Korea University, Seoul 130-701 (Korea, Republic of); Lee, S.H. [Cheil General Hospital and Women' s Healthcare Center, Kwandong University College of Medicine, Seoul 100-380 (Korea, Republic of); Min, C.K.; Kim, Y.H.; Moon, S.K.; Kim, E.S.; Chang, A.R. [Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Bucheon 420-767 (Korea, Republic of); Kwon, S.I., E-mail: sikwon@kyonggi.ac.kr [Department of Medical Physics, Kyonggi University, Suwon 443-760 (Korea, Republic of)
2012-05-21
The dosimetric characteristics of normoxic polymethacrylic acid gels are investigated using optimal CT scanning parameters and the possibility of their clinical application is also considered. The effects of CT scanning parameters (tube voltage, tube current, scan time, slick thickness, field of view, and reconstruction algorithm) are experimentally investigated to determine the optimal parameters for minimizing the amount of noise in images obtained using normoxic polymethacrylic acid gel. In addition, the dose sensitivity, dose response, accuracy, and reproducibility of the normoxic polymethacrylic acid gel are evaluated. CT images are obtained using a head phantom that is fabricated for clinical applications. In addition, IMRT treatment planning is performed using a Tomotherapy radiation treatment planning system. A program for analyzing the results is produced using Visual C. A comparison between the treatment planning and the CT images of irradiated gels is performed. The dose sensitivity is found to be 2.41{+-}0.04 HGy{sup -1}. The accuracies of dose evaluation at doses of 2 Gy and 4 Gy are 3.0% and 2.6%, respectively, and their reproducibilities are 2.0% and 2.1%, respectively. In the comparison of gel and Tomotherpay planning, the pass rate of the {gamma}-index, based on the reference values of a dose error of 3% and a DTA of 3 mm, is 93.7%.
Dose responses in a normoxic polymethacrylic acid gel dosimeter using optimal CT scanning parameters
Cho, K. H.; Cho, S. J.; Lee, S.; Lee, S. H.; Min, C. K.; Kim, Y. H.; Moon, S. K.; Kim, E. S.; Chang, A. R.; Kwon, S. I.
2012-05-01
The dosimetric characteristics of normoxic polymethacrylic acid gels are investigated using optimal CT scanning parameters and the possibility of their clinical application is also considered. The effects of CT scanning parameters (tube voltage, tube current, scan time, slick thickness, field of view, and reconstruction algorithm) are experimentally investigated to determine the optimal parameters for minimizing the amount of noise in images obtained using normoxic polymethacrylic acid gel. In addition, the dose sensitivity, dose response, accuracy, and reproducibility of the normoxic polymethacrylic acid gel are evaluated. CT images are obtained using a head phantom that is fabricated for clinical applications. In addition, IMRT treatment planning is performed using a Tomotherapy radiation treatment planning system. A program for analyzing the results is produced using Visual C. A comparison between the treatment planning and the CT images of irradiated gels is performed. The dose sensitivity is found to be 2.41±0.04 HGy-1. The accuracies of dose evaluation at doses of 2 Gy and 4 Gy are 3.0% and 2.6%, respectively, and their reproducibilities are 2.0% and 2.1%, respectively. In the comparison of gel and Tomotherpay planning, the pass rate of the γ-index, based on the reference values of a dose error of 3% and a DTA of 3 mm, is 93.7%.
Wu, Kang; Ding, Lijian; Zhu, Peng; Li, Shuang; He, Shan
2018-04-22
The aim of this study was to determine the cumulative effect of fermentation parameters and enhance the production of docosahexaenoic acid (DHA) by Thraustochytrium sp. ATCC 26185 using response surface methodology (RSM). Among the eight variables screened for effects of fermentation parameters on DHA production by Plackett-Burman design (PBD), the initial pH, inoculum volume, and fermentation volume were found to be most significant. The Box-Behnken design was applied to derive a statistical model for optimizing these three fermentation parameters for DHA production. The optimal parameters for maximum DHA production were initial pH: 6.89, inoculum volume: 4.16%, and fermentation volume: 140.47 mL, respectively. The maximum yield of DHA production was 1.68 g/L, which was in agreement with predicted values. An increase in DHA production was achieved by optimizing the initial pH, fermentation, and inoculum volume parameters. This optimization strategy led to a significant increase in the amount of DHA produced, from 1.16 g/L to 1.68 g/L. Thraustochytrium sp. ATCC 26185 is a promising resource for microbial DHA production due to the high-level yield of DHA that it produces, and the capacity for large-scale fermentation of this organism.
Energy Technology Data Exchange (ETDEWEB)
Zarepisheh, M; Li, R; Xing, L [Stanford UniversitySchool of Medicine, Stanford, CA (United States); Ye, Y [Stanford Univ, Management Science and Engineering, Stanford, Ca (United States); Boyd, S [Stanford University, Electrical Engineering, Stanford, CA (United States)
2014-06-01
Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves
International Nuclear Information System (INIS)
Zarepisheh, M; Li, R; Xing, L; Ye, Y; Boyd, S
2014-01-01
Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves
Standardless quantification by parameter optimization in electron probe microanalysis
International Nuclear Information System (INIS)
Limandri, Silvina P.; Bonetto, Rita D.; Josa, Víctor Galván; Carreras, Alejo C.; Trincavelli, Jorge C.
2012-01-01
A method for standardless quantification by parameter optimization in electron probe microanalysis is presented. The method consists in minimizing the quadratic differences between an experimental spectrum and an analytical function proposed to describe it, by optimizing the parameters involved in the analytical prediction. This algorithm, implemented in the software POEMA (Parameter Optimization in Electron Probe Microanalysis), allows the determination of the elemental concentrations, along with their uncertainties. The method was tested in a set of 159 elemental constituents corresponding to 36 spectra of standards (mostly minerals) that include trace elements. The results were compared with those obtained with the commercial software GENESIS Spectrum® for standardless quantification. The quantifications performed with the method proposed here are better in the 74% of the cases studied. In addition, the performance of the method proposed is compared with the first principles standardless analysis procedure DTSA for a different data set, which excludes trace elements. The relative deviations with respect to the nominal concentrations are lower than 0.04, 0.08 and 0.35 for the 66% of the cases for POEMA, GENESIS and DTSA, respectively. - Highlights: ► A method for standardless quantification in EPMA is presented. ► It gives better results than the commercial software GENESIS Spectrum. ► It gives better results than the software DTSA. ► It allows the determination of the conductive coating thickness. ► It gives an estimation for the concentration uncertainties.
Parameter optimization for reproducible cardiac 1 H-MR spectroscopy at 3 Tesla.
de Heer, Paul; Bizino, Maurice B; Lamb, Hildo J; Webb, Andrew G
2016-11-01
To optimize data acquisition parameters in cardiac proton MR spectroscopy, and to evaluate the intra- and intersession variability in myocardial triglyceride content. Data acquisition parameters at 3 Tesla (T) were optimized and reproducibility measured using, in total, 49 healthy subjects. The signal-to-noise-ratio (SNR) and the variance in metabolite amplitude between averages were measured for: (i) global versus local power optimization; (ii) static magnetic field (B 0 ) shimming performed during free-breathing or within breathholds; (iii) post R-wave peak measurement times between 50 and 900 ms; (iv) without respiratory compensation, with breathholds and with navigator triggering; and (v) frequency selective excitation, Chemical Shift Selective (CHESS) and Multiply Optimized Insensitive Suppression Train (MOIST) water suppression techniques. Using the optimized parameters intra- and intersession myocardial triglyceride content reproducibility was measured. Two cardiac proton spectra were acquired with the same parameters and compared (intrasession reproducibility) after which the subject was removed from the scanner and placed back in the scanner and a third spectrum was acquired which was compared with the first measurement (intersession reproducibility). Local power optimization increased SNR on average by 22% compared with global power optimization (P = 0.0002). The average linewidth was not significantly different for pencil beam B 0 shimming using free-breathing or breathholds (19.1 Hz versus 17.5 Hz; P = 0.15). The highest signal stability occurred at a cardiac trigger delay around 240 ms. The mean amplitude variation was significantly lower for breathholds versus free-breathing (P = 0.03) and for navigator triggering versus free-breathing (P = 0.03) as well as for navigator triggering versus breathhold (P = 0.02). The mean residual water signal using CHESS (1.1%, P = 0.01) or MOIST (0.7%, P = 0.01) water suppression was significantly lower than using
Optimization of cryogenic cooled EDM process parameters using grey relational analysis
International Nuclear Information System (INIS)
Kumar, S Vinoth; Kumar, M Pradeep
2014-01-01
This paper presents an experimental investigation on cryogenic cooling of liquid nitrogen (LN 2 ) copper electrode in the electrical discharge machining (EDM) process. The optimization of the EDM process parameters, such as the electrode environment (conventional electrode and cryogenically cooled electrode in EDM), discharge current, pulse on time, gap voltage on material removal rate, electrode wear, and surface roughness on machining of AlSiCp metal matrix composite using multiple performance characteristics on grey relational analysis was investigated. The L 18 orthogonal array was utilized to examine the process parameters, and the optimal levels of the process parameters were identified through grey relational analysis. Experimental data were analyzed through analysis of variance. Scanning electron microscopy analysis was conducted to study the characteristics of the machined surface.
The optimal extraction parameters and anti-diabetic activity of ...
African Journals Online (AJOL)
diabetic activity of FIBL on alloxan induced diabetic mice were studied. The optimal extraction parameters of FIBL were obtained by single factor test and orthogonal test, as follows: ethanol concentration 60 %, ratio of solvent to raw material 30 ...
Optimizing chirped laser pulse parameters for electron acceleration in vacuum
Energy Technology Data Exchange (ETDEWEB)
Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza, E-mail: r-massudi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411 (Iran, Islamic Republic of)
2015-11-14
Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.
Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.
2018-02-01
In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.
Murthy, Pappu L. N.; Naghipour Ghezeljeh, Paria; Bednarcyk, Brett A.
2018-01-01
This document describes a recently developed analysis tool that enhances the resident capabilities of the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) and its application. MAC/GMC is a composite material and laminate analysis software package developed at NASA Glenn Research Center. The primary focus of the current effort is to provide a graphical user interface (GUI) capability that helps users optimize highly nonlinear viscoplastic constitutive law parameters by fitting experimentally observed/measured stress-strain responses under various thermo-mechanical conditions for braided composites. The tool has been developed utilizing the MATrix LABoratory (MATLAB) (The Mathworks, Inc., Natick, MA) programming language. Illustrative examples shown are for a specific braided composite system wherein the matrix viscoplastic behavior is represented by a constitutive law described by seven parameters. The tool is general enough to fit any number of experimentally observed stress-strain responses of the material. The number of parameters to be optimized, as well as the importance given to each stress-strain response, are user choice. Three different optimization algorithms are included: (1) Optimization based on gradient method, (2) Genetic algorithm (GA) based optimization and (3) Particle Swarm Optimization (PSO). The user can mix and match the three algorithms. For example, one can start optimization with either 2 or 3 and then use the optimized solution to further fine tune with approach 1. The secondary focus of this paper is to demonstrate the application of this tool to optimize/calibrate parameters for a nonlinear viscoplastic matrix to predict stress-strain curves (for constituent and composite levels) at different rates, temperatures and/or loading conditions utilizing the Generalized Method of Cells. After preliminary validation of the tool through comparison with experimental results, a detailed virtual parametric study is
International Nuclear Information System (INIS)
Rao, R. Venkata; Rai, Dhiraj P.
2017-01-01
Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).
Energy Technology Data Exchange (ETDEWEB)
Rao, R. Venkata; Rai, Dhiraj P. [Sardar Vallabhbhai National Institute of Technology, Gujarat (India)
2017-05-15
Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).
Ju, Jonghyun; Han, Yun-ah; Kim, Seok-min
2013-03-07
The effects of structural design parameters on the performance of nano-replicated photonic crystal (PC) label-free biosensors were examined by the analysis of simulated reflection spectra of PC structures. The grating pitch, duty, scaled grating height and scaled TiO2 layer thickness were selected as the design factors to optimize the PC structure. The peak wavelength value (PWV), full width at half maximum of the peak, figure of merit for the bulk and surface sensitivities, and surface/bulk sensitivity ratio were also selected as the responses to optimize the PC label-free biosensor performance. A parametric study showed that the grating pitch was the dominant factor for PWV, and that it had low interaction effects with other scaled design factors. Therefore, we can isolate the effect of grating pitch using scaled design factors. For the design of PC-label free biosensor, one should consider that: (1) the PWV can be measured by the reflection peak measurement instruments, (2) the grating pitch and duty can be manufactured using conventional lithography systems, and (3) the optimum design is less sensitive to the grating height and TiO2 layer thickness variations in the fabrication process. In this paper, we suggested a design guide for highly sensitive PC biosensor in which one select the grating pitch and duty based on the limitations of the lithography and measurement system, and conduct a multi objective optimization of the grating height and TiO2 layer thickness for maximizing performance and minimizing the influence of parameter variation. Through multi-objective optimization of a PC structure with a fixed grating height of 550 nm and a duty of 50%, we obtained a surface FOM of 66.18 RIU-1 and an S/B ratio of 34.8%, with a grating height of 117 nm and TiO2 height of 210 nm.
Directory of Open Access Journals (Sweden)
Yun-ah Han
2013-03-01
Full Text Available The effects of structural design parameters on the performance of nano-replicated photonic crystal (PC label-free biosensors were examined by the analysis of simulated reflection spectra of PC structures. The grating pitch, duty, scaled grating height and scaled TiO2 layer thickness were selected as the design factors to optimize the PC structure. The peak wavelength value (PWV, full width at half maximum of the peak, figure of merit for the bulk and surface sensitivities, and surface/bulk sensitivity ratio were also selected as the responses to optimize the PC label-free biosensor performance. A parametric study showed that the grating pitch was the dominant factor for PWV, and that it had low interaction effects with other scaled design factors. Therefore, we can isolate the effect of grating pitch using scaled design factors. For the design of PC-label free biosensor, one should consider that: (1 the PWV can be measured by the reflection peak measurement instruments, (2 the grating pitch and duty can be manufactured using conventional lithography systems, and (3 the optimum design is less sensitive to the grating height and TiO2 layer thickness variations in the fabrication process. In this paper, we suggested a design guide for highly sensitive PC biosensor in which one select the grating pitch and duty based on the limitations of the lithography and measurement system, and conduct a multi objective optimization of the grating height and TiO2 layer thickness for maximizing performance and minimizing the influence of parameter variation. Through multi-objective optimization of a PC structure with a fixed grating height of 550 nm and a duty of 50%, we obtained a surface FOM of 66.18 RIU−1 and an S/B ratio of 34.8%, with a grating height of 117 nm and TiO2 height of 210 nm.
Comparisons of criteria in the assessment model parameter optimizations
International Nuclear Information System (INIS)
Liu Xinhe; Zhang Yongxing
1993-01-01
Three criteria (chi square, relative chi square and correlation coefficient) used in model parameter optimization (MPO) process that aims at significant reduction of prediction uncertainties were discussed and compared to each other with the aid of a well-controlled tracer experiment
International Nuclear Information System (INIS)
Zhang, Chu; Zhou, Jianzhong; Li, Chaoshun; Fu, Wenlong; Peng, Tian
2017-01-01
Highlights: • A novel hybrid approach is proposed for wind speed forecasting. • The variational mode decomposition (VMD) is optimized to decompose the original wind speed series. • The input matrix and parameters of ELM are optimized simultaneously by using a hybrid BSA. • Results show that OVMD-HBSA-ELM achieves better performance in terms of prediction accuracy. - Abstract: Reliable wind speed forecasting is essential for wind power integration in wind power generation system. The purpose of paper is to develop a novel hybrid model for short-term wind speed forecasting and demonstrates its efficiency. In the proposed model, a compound structure of extreme learning machine (ELM) based on feature selection and parameter optimization using hybrid backtracking search algorithm (HBSA) is employed as the predictor. The real-valued BSA (RBSA) is exploited to search for the optimal combination of weights and bias of ELM while the binary-valued BSA (BBSA) is exploited as a feature selection method applying on the candidate inputs predefined by partial autocorrelation function (PACF) values to reconstruct the input-matrix. Due to the volatility and randomness of wind speed signal, an optimized variational mode decomposition (OVMD) is employed to eliminate the redundant noises. The parameters of the proposed OVMD are determined according to the center frequencies of the decomposed modes and the residual evaluation index (REI). The wind speed signal is decomposed into a few modes via OVMD. The aggregation of the forecasting results of these modes constructs the final forecasting result of the proposed model. The proposed hybrid model has been applied on the mean half-hour wind speed observation data from two wind farms in Inner Mongolia, China and 10-min wind speed data from the Sotavento Galicia wind farm are studied as an additional case. Parallel experiments have been designed to compare with the proposed model. Results obtained from this study indicate that the
Tax optimization and the firm's value: Evidence from the Tunisian context
Directory of Open Access Journals (Sweden)
Soufiene Assidi
2016-09-01
Full Text Available The paper investigated the relationship between corporate tax optimization and the firm's value in the Tunisian context over an 11 year period. The empirical results revealed that tax optimization, accruals and investment increased the firm's value. After dividing the sample between listed and non-listed firms, we concluded that, compared to non-listed firms, the listed firms were better able to optimize tax through adopting a tax policy. Our findings help decision makers, researchers and practices to better understand the role of tax optimization in the management of firms and, also, in their performance.
Guía-Tello, J. C.; Pech-Canul, M. A.; Trujillo-Vázquez, E.; Pech-Canul, M. I.
2017-08-01
Controlled atmosphere brazing has a widespread industrial use in the production of aluminum automotive heat exchangers. Good-quality joints between the components depend on the initial condition of materials as well as on the brazing process parameters. In this work, the Taguchi method was used to optimize the brazing parameters with respect to corrosion performance for tube-fin mini-assemblies of an automotive condenser. The experimental design consisted of five factors (micro-channel tube type, flux type, peak temperature, heating rate and dwell time), with two levels each. The corrosion behavior in acidified seawater solution pH 2.8 was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. Scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) were used to analyze the microstructural features in the joint zone. The results showed that the parameters that most significantly affect the corrosion rate are the type of flux and the peak temperature. The optimal conditions were: micro-channel tube with 4.2 g/m2 of zinc coating, standard flux, 610 °C peak temperature, 5 °C/min heating rate and 4 min dwell time. The corrosion current density value of the confirmation experiment is in excellent agreement with the predicted value. The electrochemical characterization for selected samples gave indication that the brazing conditions had a more significant effect on the kinetics of the hydrogen evolution reaction than on the kinetics of the metal dissolution reaction.
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
Analytical study of optimal design and gain parameters of double-slot plasmonic waveguides
International Nuclear Information System (INIS)
Handapangoda, Dayan; Rukhlenko, Ivan D; Premaratne, Malin
2013-01-01
We theoretically analyze guided modes in optically active and passive double-slot plasmonic waveguides. We show that for one of the two different mode symmetries supported by the waveguide, a most productive guiding condition can be realized by adjusting the thicknesses of the layers to optimal values. We also derive approximate analytic expressions to calculate the optimal geometrical parameters of the waveguide. Interestingly, our analysis shows that the propagation losses associated with the inverse mode symmetry of the double-slot waveguide are comparatively low, regardless of the dimensions of the waveguide. We further show that the propagation losses become the smallest in the limiting case of a single-slot (metal–dielectric–metal (MDM)) waveguide. For both double- and single-slot waveguides, we show that the gain required to overcome the losses can be reduced by choosing a dielectric with a low refractive index. We also derive accurate analytical expressions to readily estimate the critical gain and modal gain of the waveguides. (paper)
Parameter optimization in the regularized kernel minimum noise fraction transformation
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack
2012-01-01
Based on the original, linear minimum noise fraction (MNF) transformation and kernel principal component analysis, a kernel version of the MNF transformation was recently introduced. Inspired by we here give a simple method for finding optimal parameters in a regularized version of kernel MNF...... analysis. We consider the model signal-to-noise ratio (SNR) as a function of the kernel parameters and the regularization parameter. In 2-4 steps of increasingly refined grid searches we find the parameters that maximize the model SNR. An example based on data from the DLR 3K camera system is given....
OPTIMIZATION OF DYEING PARAMETERS TO DYE COTTON WITH CARROT EXTRACTION
Directory of Open Access Journals (Sweden)
MIRALLES Verónica
2017-05-01
Full Text Available Natural dyes derived from flora and fauna are believed to be safe because of non-toxic, non-carcinogenic and biodegradable nature. Furthermore, natural dyes do not cause pollution and waste water problems. Natural dyes as well as synthetic dyes need the optimum parameters to get a good dyeing. On some occasions, It is necessary the use of mordants to increase the affinity between cellulose fiber and natural dye, but there are other conditions to optimize in the dyeing process, like time, temperature, auxiliary porducts, etc. In addition, the optimum conditions are different depends on the type of dye and the fiber nature. The aim of this work is the use of carrot extract to dye cotton fabric by exhaustion at diverse dyeing conditions. Diffferent dyeing processes were carried out to study the effect of pH condition and the temperature, using 7, 6 and 4 pH values and 95 ºC and 130ºC for an hour. As a result some images of dyed samples are shown. Moreover, to evaluate the colour of each sample CIELAB parameters are analysed obtained by reflexion spectrophotometre. The results showed that the temperature used has an important influence on the colour of the dyed sample.
A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.
Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei
2017-09-21
In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.
Standardless quantification by parameter optimization in electron probe microanalysis
Energy Technology Data Exchange (ETDEWEB)
Limandri, Silvina P. [Instituto de Fisica Enrique Gaviola (IFEG), CONICET (Argentina); Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Medina Allende s/n, (5016) Cordoba (Argentina); Bonetto, Rita D. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco (CINDECA), CONICET, 47 Street 257, (1900) La Plata (Argentina); Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1 and 47 Streets (1900) La Plata (Argentina); Josa, Victor Galvan; Carreras, Alejo C. [Instituto de Fisica Enrique Gaviola (IFEG), CONICET (Argentina); Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Medina Allende s/n, (5016) Cordoba (Argentina); Trincavelli, Jorge C., E-mail: trincavelli@famaf.unc.edu.ar [Instituto de Fisica Enrique Gaviola (IFEG), CONICET (Argentina); Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Medina Allende s/n, (5016) Cordoba (Argentina)
2012-11-15
A method for standardless quantification by parameter optimization in electron probe microanalysis is presented. The method consists in minimizing the quadratic differences between an experimental spectrum and an analytical function proposed to describe it, by optimizing the parameters involved in the analytical prediction. This algorithm, implemented in the software POEMA (Parameter Optimization in Electron Probe Microanalysis), allows the determination of the elemental concentrations, along with their uncertainties. The method was tested in a set of 159 elemental constituents corresponding to 36 spectra of standards (mostly minerals) that include trace elements. The results were compared with those obtained with the commercial software GENESIS Spectrum Registered-Sign for standardless quantification. The quantifications performed with the method proposed here are better in the 74% of the cases studied. In addition, the performance of the method proposed is compared with the first principles standardless analysis procedure DTSA for a different data set, which excludes trace elements. The relative deviations with respect to the nominal concentrations are lower than 0.04, 0.08 and 0.35 for the 66% of the cases for POEMA, GENESIS and DTSA, respectively. - Highlights: Black-Right-Pointing-Pointer A method for standardless quantification in EPMA is presented. Black-Right-Pointing-Pointer It gives better results than the commercial software GENESIS Spectrum. Black-Right-Pointing-Pointer It gives better results than the software DTSA. Black-Right-Pointing-Pointer It allows the determination of the conductive coating thickness. Black-Right-Pointing-Pointer It gives an estimation for the concentration uncertainties.
Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S
2013-01-01
This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.
Optimization of injection molding process parameters for a plastic cell phone housing component
Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya
2016-11-01
To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.
Pandey, Devendra Kumar; Kaur, Prabhjot
2018-03-01
In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).
Optimization of process parameters of pulsed TIG welded maraging steel C300
Deepak, P.; Jualeash, M. J.; Jishnu, J.; Srinivasan, P.; Arivarasu, M.; Padmanaban, R.; Thirumalini, S.
2016-09-01
Pulsed TIG welding technology provides excellent welding performance on thin sections which helps to increase productivity, enhance weld quality, minimize weld costs, and boost operator efficiency and this has drawn the attention of the welding society. Maraging C300 steel is extensively used in defence and aerospace industry and thus its welding becomes an area of paramount importance. In pulsed TIG welding, weld quality depends on the process parameters used. In this work, Pulsed TIG bead-on-plate welding is performed on a 5mm thick maraging C300 plate at different combinations of input parameters: peak current (Ip), base current (Ib) and pulsing frequency (HZ) as per box behnken design with three-levels for each factor. Response surface methodology is utilized for establishing a mathematical model for predicting the weld bead depth. The effect of Ip, Ib and HZ on the weld bead depth is investigated using the developed model. The weld bead depth is found to be affected by all the three parameters. Surface and contour plots developed from regression equation are used to optimize the processing parameters for maximizing the weld bead depth. Optimum values of Ip, Ib and HZ are obtained as 259 A, 120 A and 8 Hz respectively. Using this optimum condition, maximum bead depth of the weld is predicted to be 4.325 mm.
Optimization of CNC end milling process parameters using PCA ...
African Journals Online (AJOL)
Optimization of CNC end milling process parameters using PCA-based Taguchi method. ... International Journal of Engineering, Science and Technology ... To meet the basic assumption of Taguchi method; in the present work, individual response correlations have been eliminated first by means of Principal Component ...
Directory of Open Access Journals (Sweden)
O. V. Fomin
2013-10-01
Full Text Available Purpose. Presentation of features and example of the use of the offered determination algorithm of optimum geometrical parameters for the components of freight cars on the basis of the generalized mathematical models, which is realized using computer. Methodology. The developed approach to search for optimal geometrical parameters can be described as the determination of optimal decision of the selected set of possible variants. Findings. The presented application example of the offered algorithm proved its operation capacity and efficiency of use. Originality. The determination procedure of optimal geometrical parameters for freight car components on the basis of the generalized mathematical models was formalized in the paper. Practical value. Practical introduction of the research results for universal open cars allows one to reduce container of their design and accordingly to increase the carrying capacity almost by100 kg with the improvement of strength characteristics. Taking into account the mass of their park this will provide a considerable economic effect when producing and operating. The offered approach is oriented to the distribution of the software packages (for example Microsoft Excel, which are used by technical services of the most enterprises, and does not require additional capital investments (acquisitions of the specialized programs and proper technical staff training. This proves the correctness of the research direction. The offered algorithm can be used for the solution of other optimization tasks on the basis of the generalized mathematical models.
Directory of Open Access Journals (Sweden)
Jing Li
2017-01-01
Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.
The primary ion source for construction and optimization of operation parameters
International Nuclear Information System (INIS)
Synowiecki, A.; Gazda, E.
1986-01-01
The construction of primary ion source for SIMS has been presented. The influence of individual operation parameters on the properties of ion source has been investigated. Optimization of these parameters has allowed to appreciate usefulness of the ion source for SIMS study. 14 refs., 8 figs., 2 tabs. (author)
Miró, Anton; Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Egea, Jose A; Jiménez, Laureano
2012-05-10
The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.
Optimization of virtual source parameters in neutron scattering instrumentation
International Nuclear Information System (INIS)
Habicht, K; Skoulatos, M
2012-01-01
We report on phase-space optimizations for neutron scattering instruments employing horizontal focussing crystal optics. Defining a figure of merit for a generic virtual source configuration we identify a set of optimum instrumental parameters. In order to assess the quality of the instrumental configuration we combine an evolutionary optimization algorithm with the analytical Popovici description using multidimensional Gaussian distributions. The optimum phase-space element which needs to be delivered to the virtual source by preceding neutron optics may be obtained using the same algorithm which is of general interest in instrument design.
Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim
2018-02-01
We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower
Application of Factorial Design for Gas Parameter Optimization in CO2 Laser Welding
DEFF Research Database (Denmark)
Gong, Hui; Dragsted, Birgitte; Olsen, Flemming Ove
1997-01-01
The effect of different gas process parameters involved in CO2 laser welding has been studied by applying two-set of three-level complete factorial designs. In this work 5 gas parameters, gas type, gas flow rate, gas blowing angle, gas nozzle diameter, gas blowing point-offset, are optimized...... to be a very useful tool for parameter optimi-zation in laser welding process. Keywords: CO2 laser welding, gas parameters, factorial design, Analysis of Variance........ The bead-on-plate welding specimens are evaluated by a number of quality char-acteristics, such as the penetration depth and the seam width. The significance of the gas pa-rameters and their interactions are based on the data found by the Analysis of Variance-ANOVA. This statistic methodology is proven...
Directory of Open Access Journals (Sweden)
Hao Jin
2015-01-01
Full Text Available Steel-spring floating slab tracks are one of the most effective methods to reduce vibrations from underground railways, which has drawn more and more attention in scientific communities. In this paper, the steel-spring floating slab track located in Track Vibration Abatement and Control Laboratory was modeled with four-pole parameter method. The influences of the fastener damping ratio, the fastener stiffness, the steel-spring damping ratio, and the steel-spring stiffness were researched for the rail displacement and the foundation acceleration. Results show that the rail displacement and the foundation acceleration will decrease with the increase of the fastener stiffness or the steel-spring damping ratio. However, the rail displacement and the foundation acceleration have the opposite variation tendency for the fastener damping ratio and the steel-spring stiffness. In order to optimize the rail displacement and the foundation acceleration affected by the fastener damping ratio and the steel-spring stiffness at the same time, a multiobjective ant colony optimization (ACO was employed. Eventually, Pareto optimal frontier of the rail displacement and the foundation acceleration was derived. Furthermore, the desirable values of the fastener damping ratio and the steel-spring stiffness can be obtained according to the corresponding Pareto optimal solution set.
Azmi, Nur Iffah Mohamed; Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Romlay, Fadhlur Rahman Mohd
2018-03-01
Controller that uses PID parameters requires a good tuning method in order to improve the control system performance. Tuning PID control method is divided into two namely the classical methods and the methods of artificial intelligence. Particle swarm optimization algorithm (PSO) is one of the artificial intelligence methods. Previously, researchers had integrated PSO algorithms in the PID parameter tuning process. This research aims to improve the PSO-PID tuning algorithms by integrating the tuning process with the Variable Weight Grey- Taguchi Design of Experiment (DOE) method. This is done by conducting the DOE on the two PSO optimizing parameters: the particle velocity limit and the weight distribution factor. Computer simulations and physical experiments were conducted by using the proposed PSO- PID with the Variable Weight Grey-Taguchi DOE and the classical Ziegler-Nichols methods. They are implemented on the hydraulic positioning system. Simulation results show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE has reduced the rise time by 48.13% and settling time by 48.57% compared to the Ziegler-Nichols method. Furthermore, the physical experiment results also show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE tuning method responds better than Ziegler-Nichols tuning. In conclusion, this research has improved the PSO-PID parameter by applying the PSO-PID algorithm together with the Variable Weight Grey-Taguchi DOE method as a tuning method in the hydraulic positioning system.
Optimization of Milling Parameters Employing Desirability Functions
Ribeiro, J. L. S.; Rubio, J. C. Campos; Abrão, A. M.
2011-01-01
The principal aim of this paper is to investigate the influence of tool material (one cermet and two coated carbide grades), cutting speed and feed rate on the machinability of hardened AISI H13 hot work steel, in order to identify the cutting conditions which lead to optimal performance. A multiple response optimization procedure based on tool life, surface roughness, milling forces and the machining time (required to produce a sample cavity) was employed. The results indicated that the TiCN-TiN coated carbide and cermet presented similar results concerning the global optimum values for cutting speed and feed rate per tooth, outperforming the TiN-TiCN-Al2O3 coated carbide tool.
Sensitivity of the optimal parameter settings for a LTE packet scheduler
Fernandez-Diaz, I.; Litjens, R.; van den Berg, C.A.; Dimitrova, D.C.; Spaey, K.
Advanced packet scheduling schemes in 3G/3G+ mobile networks provide one or more parameters to optimise the trade-off between QoS and resource efficiency. In this paper we study the sensitivity of the optimal parameter setting for packet scheduling in LTE radio networks with respect to various
International Nuclear Information System (INIS)
Vapur, Hueseyin; Bayat, Oktay; Ucurum, Metin
2010-01-01
This study discusses a new coal flotation optimization approach. It is conducted using modified flotation parameters and combustible recovery. The experimental work was evaluated in two stages. In the first stage, recoveries (1, 2, 3, 5 and 8 min of flotation times) of Jameson flotation operating parameters were fitted to first-order kinetic model, R = R ∞ [1 - exp (-kt)] where R was recovery at t time, R ∞ was ultimate recovery and k was the first-order rate constant to draw the time recovery curves in the experimental study. Two parameters, the ultimate recovery (R ∞ ) and first-order rate constant (k), were then obtained from the model to fit an experimental time recovery curve. A modified flotation rate constant (K m ) defined as product of R ∞ and k, i.e., K m = R ∞ * k, and selectivity index (SI) defined as the ratio of the modified rate constant of coal to the modified rate constant of ash (SI)=K m of Coal/K m of Ash), which could be collectively called 'modified flotation parameters'. It was used to determine of the sub and upper values of operation variables. In the second one, combustible recovery (%) and ash content (%) were used to optimization of the Jameson flotation variables and it was found that d 80 = 0.250 mm particle size, 1/1 vegetable oil acids/kerosene ratio, 20% solids pulp density, 0.600 L/min wash water rate and 40 cm downcomer immersion dept could be used to separate efficiently coal from ash. Final concentrate was obtained with 94.83% combustible recovery and 17.86% ash content at optimum conditions after 8 min flotation time.
Optimizing parameters of a technical system using quality function deployment method
Baczkowicz, M.; Gwiazda, A.
2015-11-01
The article shows the practical use of Quality Function Deployment (QFD) on the example of a mechanized mining support. Firstly it gives a short description of this method and shows how the designing process, from the constructor point of view, looks like. The proposed method allows optimizing construction parameters and comparing them as well as adapting to customer requirements. QFD helps to determine the full set of crucial construction parameters and then their importance and difficulty of their execution. Secondly it shows chosen technical system and presents its construction with figures of the existing and future optimized model. The construction parameters were selected from the designer point of view. The method helps to specify a complete set of construction parameters, from the point of view, of the designed technical system and customer requirements. The QFD matrix can be adjusted depending on designing needs and not every part of it has to be considered. Designers can choose which parts are the most important. Due to this QFD can be a very flexible tool. The most important is to define relationships occurring between parameters and that part cannot be eliminated from the analysis.
An Iterative Optimization Algorithm for Lens Distortion Correction Using Two-Parameter Models
Directory of Open Access Journals (Sweden)
Daniel Santana-Cedrés
2016-12-01
Full Text Available We present a method for the automatic estimation of two-parameter radial distortion models, considering polynomial as well as division models. The method first detects the longest distorted lines within the image by applying the Hough transform enriched with a radial distortion parameter. From these lines, the first distortion parameter is estimated, then we initialize the second distortion parameter to zero and the two-parameter model is embedded into an iterative nonlinear optimization process to improve the estimation. This optimization aims at reducing the distance from the edge points to the lines, adjusting two distortion parameters as well as the coordinates of the center of distortion. Furthermore, this allows detecting more points belonging to the distorted lines, so that the Hough transform is iteratively repeated to extract a better set of lines until no improvement is achieved. We present some experiments on real images with significant distortion to show the ability of the proposed approach to automatically correct this type of distortion as well as a comparison between the polynomial and division models.
Directory of Open Access Journals (Sweden)
Zhiqiang GENG
2014-01-01
Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.
Anderson, Jeffrey R; Barrett, Steven F
2009-01-01
Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This
Directory of Open Access Journals (Sweden)
K.E. Kaharudin
2015-12-01
Full Text Available This paper presents a study of optimizing input process parameters on leakage current (IOFF in silicon-on-insulator (SOI Vertical Double-Gate,Metal Oxide Field-Effect-Transistor (MOSFET by using L36 Taguchi method. The performance of SOI Vertical DG-MOSFET device is evaluated in terms of its lowest leakage current (IOFF value. An orthogonal array, main effects, signal-to-noise ratio (SNR and analysis of variance (ANOVA are utilized in order to analyze the effect of input process parameter variation on leakage current (IOFF. Based on the results, the minimum leakage current ((IOFF of SOI Vertical DG-MOSFET is observed to be 0.009 nA/µm or 9 ρA/µm while keeping the drive current (ION value at 434 µA/µm. Both the drive current (ION and leakage current (IOFF values yield a higher ION/IOFF ratio (48.22 x 106 for low power consumption application. Meanwhile, polysilicon doping tilt angle and polysilicon doping energy are recognized as the most dominant factors with each of the contributing factor effects percentage of 59% and 25%.
Directory of Open Access Journals (Sweden)
Biswajit Das
2016-06-01
Full Text Available With the major application of MMCs, it is thus necessary to develop an appropriate technology for their efficient machining. Milling is the most common and versatile technology among different machining processes, characterized by an extensive range of metal cutting capacity that places it in a central role in the manufacturing industries. In the present study an attempt has been made to find out the most optimal level of process parameters for CNC milling of Al–4.5%Cu–TiC metal matrix composites using grey-fuzzy algorithm. Taguchi's L25 orthogonal array design is used for performing CNC milling operation on the composite plates. The Grey fuzzy optimization of CNC milling parameters consist of three different output characteristics; such as, cutting force Fc, surface roughness Ra and surface roughness Rz. It was found that a cutting speed of 600 rpm, feed of 40 mm/min and a depth of cut of 0.30 mm is the optimal combination of CNC milling parameters that has produced a high value of grey fuzzy reasoning grade of 0.8191 which is close to the reference value. ANOVA analysis is carried out and it is found that among three different process parameters, the cutting speed played a major role on the determination of GFRG.
Fault detection of feed water treatment process using PCA-WD with parameter optimization.
Zhang, Shirong; Tang, Qian; Lin, Yu; Tang, Yuling
2017-05-01
Feed water treatment process (FWTP) is an essential part of utility boilers; and fault detection is expected for its reliability improvement. Classical principal component analysis (PCA) has been applied to FWTPs in our previous work; however, the noises of T 2 and SPE statistics result in false detections and missed detections. In this paper, Wavelet denoise (WD) is combined with PCA to form a new algorithm, (PCA-WD), where WD is intentionally employed to deal with the noises. The parameter selection of PCA-WD is further formulated as an optimization problem; and PSO is employed for optimization solution. A FWTP, sustaining two 1000MW generation units in a coal-fired power plant, is taken as a study case. Its operation data is collected for following verification study. The results show that the optimized WD is effective to restrain the noises of T 2 and SPE statistics, so as to improve the performance of PCA-WD algorithm. And, the parameter optimization enables PCA-WD to get its optimal parameters in an automatic way rather than on individual experience. The optimized PCA-WD is further compared with classical PCA and sliding window PCA (SWPCA), in terms of four cases as bias fault, drift fault, broken line fault and normal condition, respectively. The advantages of the optimized PCA-WD, against classical PCA and SWPCA, is finally convinced with the results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Belwanshi, Vinod; Topkar, Anita
2016-01-01
Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.
Belwanshi, Vinod; Topkar, Anita
2016-05-01
Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.
Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune
The design of a measured program devoted to parameter identification of structural dynamic systems is considered, the design problem is formulated as an optimization problem due to minimize the total expected cost of the measurement program. All the calculations are based on a priori knowledge...... and engineering judgement. One of the contribution of the approach is that the optimal nmber of sensors can be estimated. This is sown in an numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement program for estimating the modal damping parameters...
Directory of Open Access Journals (Sweden)
Omprakash Sahu
2017-12-01
Full Text Available Organic pollutants have an adverse effect on the neighboring environment. Industrial activates are the major sources of different organic pollutants. These primary pollutants react with surrounding and forms secondary pollutant, which persists for a long time. The present investigation has been carried out on the surface of activated sawdust for phenol eliminations. The process parameters initial concentration, contact time, adsorbent dose and pH were optimized by the response surface methodology (RSM. The numerical optimization of sawdust (SD, initial concentration 10 mg/l, contact time 1.5 h, adsorbent dose 4 g and pH 2, the optimum response result was 78.3% adsorption. Analysis of variance (ANOVA was used to judge the adequacy of the central composite design and quadratic model found to be suitable. The coefficient of determination values was found to be maximum Adj R2 0.7223, and Pre R2 0.5739 and significant regression at 95% confidence level values.
Multiobjective Optimization of Turning Cutting Parameters for J-Steel Material
Directory of Open Access Journals (Sweden)
Adel T. Abbas
2016-01-01
Full Text Available This paper presents a multiobjective optimization study of cutting parameters in turning operation for a heat-treated alloy steel material (J-Steel with Vickers hardness in the range of HV 365–395 using uncoated, unlubricated Tungsten-Carbide tools. The primary aim is to identify proper settings of the cutting parameters (cutting speed, feed rate, and depth of cut that lead to reasonable compromises between good surface quality and high material removal rate. Thorough exploration of the range of cutting parameters was conducted via a five-level full-factorial experimental matrix of samples and the Pareto trade-off frontier is identified. The trade-off among the objectives was observed to have a “knee” shape, in which certain settings for the cutting parameters can achieve both good surface quality and high material removal rate within certain limits. However, improving one of the objectives beyond these limits can only happen at the expense of a large compromise in the other objective. An alternative approach for identifying the trade-off frontier was also tested via multiobjective implementation of the Efficient Global Optimization (m-EGO algorithm. The m-EGO algorithm was successful in identifying two points within the good range of the trade-off frontier with 36% fewer experimental samples.
Accuracy Analysis and Parameters Optimization in Urban Flood Simulation by PEST Model
Keum, H.; Han, K.; Kim, H.; Ha, C.
2017-12-01
The risk of urban flooding has been increasing due to heavy rainfall, flash flooding and rapid urbanization. Rainwater pumping stations, underground reservoirs are used to actively take measures against flooding, however, flood damage from lowlands continues to occur. Inundation in urban areas has resulted in overflow of sewer. Therefore, it is important to implement a network system that is intricately entangled within a city, similar to the actual physical situation and accurate terrain due to the effects on buildings and roads for accurate two-dimensional flood analysis. The purpose of this study is to propose an optimal scenario construction procedure watershed partitioning and parameterization for urban runoff analysis and pipe network analysis, and to increase the accuracy of flooded area prediction through coupled model. The establishment of optimal scenario procedure was verified by applying it to actual drainage in Seoul. In this study, optimization was performed by using four parameters such as Manning's roughness coefficient for conduits, watershed width, Manning's roughness coefficient for impervious area, Manning's roughness coefficient for pervious area. The calibration range of the parameters was determined using the SWMM manual and the ranges used in the previous studies, and the parameters were estimated using the automatic calibration method PEST. The correlation coefficient showed a high correlation coefficient for the scenarios using PEST. The RPE and RMSE also showed high accuracy for the scenarios using PEST. In the case of RPE, error was in the range of 13.9-28.9% in the no-parameter estimation scenarios, but in the scenario using the PEST, the error range was reduced to 6.8-25.7%. Based on the results of this study, it can be concluded that more accurate flood analysis is possible when the optimum scenario is selected by determining the appropriate reference conduit for future urban flooding analysis and if the results is applied to various
Statistical optimization of process parameters for the production of ...
African Journals Online (AJOL)
In this study, optimization of process parameters such as moisture content, incubation temperature and initial pH (fixed) for the improvement of citric acid production from oil palm empty fruit bunches through solid state bioconversion was carried out using traditional one-factor-at-a-time (OFAT) method and response surface ...
Taguchi Optimization of Cutting Parameters in Turning AISI 1020 MS with M2 HSS Tool
Sonowal, Dharindom; Sarma, Dhrupad; Bakul Barua, Parimal; Nath, Thuleswar
2017-08-01
In this paper the effect of three cutting parameters viz. Spindle speed, Feed and Depth of Cut on surface roughness of AISI 1020 mild steel bar in turning was investigated and optimized to obtain minimum surface roughness. All the experiments are conducted on HMT LB25 lathe machine using M2 HSS cutting tool. Ranges of parameters of interest have been decided through some preliminary experimentation (One Factor At a Time experiments). Finally a combined experiment has been carried out using Taguchi’s L27 Orthogonal Array (OA) to study the main effect and interaction effect of the all three parameters. The experimental results were analyzed with raw data ANOVA (Analysis of Variance) and S/N data (Signal to Noise ratio) ANOVA. Results show that Spindle speed, Feed and Depth of Cut have significant effects on both mean and variation of surface roughness in turning AISI 1020 mild steel. Mild two factors interactions are observed among the aforesaid factors with significant effects only on the mean of the output variable. From the Taguchi parameter optimization the optimum factor combination is found to be 630 rpm spindle speed, 0.05 mm/rev feed and 1.25 mm depth of cut with estimated surface roughness 2.358 ± 0.970 µm. A confirmatory experiment was conducted with the optimum factor combination to verify the results. In the confirmatory experiment the average value of surface roughness is found to be 2.408 µm which is well within the range (0.418 µm to 4.299 µm) predicted for confirmatory experiment.
Optimal Value of Series Capacitors for Uniform Field Distribution in Transmission Line MRI Coils
DEFF Research Database (Denmark)
Zhurbenko, Vitaliy
2016-01-01
Transmission lines are often used as coils in high field magnetic resonance imaging (MRI). Due to the distributed nature of transmission lines, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the coil....... The equations for optimal values of evenly distributed capacitors are derived and expressed in terms of the implemented transmission line parameters.The achieved magnetic field homogeneity is estimated under quasistatic approximation and compared to the regular transmission line resonator. Finally, a more...... practical case of a microstrip line coil with two series capacitors is considered....
Fernandes, Virgínia C.; Vera, Jose L.; Domingues, Valentina F.; Silva, Luís M. S.; Mateus, Nuno; Delerue-Matos, Cristina
2012-12-01
Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET), maximum excitation energy or " q" value (q), and isolation mass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit. Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.
Directory of Open Access Journals (Sweden)
Baofeng Cai
2017-08-01
Full Text Available The Interconnected River System Network Project (IRSNP is a significant water supply engineering project, which is capable of effectively utilizing flood resources to generate ecological value, by connecting 198 lakes and ponds in western Jilin, northeast China. In this article, an optimization research approach has been proposed to maximize the incremental value of IRSNP ecosystem services. A double-sided chance-constrained integer linear program (DCCILP method has been proposed to support the optimization, which can deal with uncertainties presented as integers or random parameters that appear on both sides of the decision variable at the same time. The optimal scheme indicates that after rational optimization, the total incremental value of ecosystem services from the interconnected river system network project increased 22.25%, providing an increase in benefits of 3.26 × 109 ¥ compared to the original scheme. Most of the functional area is swamp wetland, which provides the greatest ecological benefits. Adjustment services increased obviously, implying that the optimization scheme prioritizes ecological benefits rather than supply and production services.
Density-based penalty parameter optimization on C-SVM.
Liu, Yun; Lian, Jie; Bartolacci, Michael R; Zeng, Qing-An
2014-01-01
The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall.
Intermolecular Force Field Parameters Optimization for Computer Simulations of CH4 in ZIF-8
Directory of Open Access Journals (Sweden)
Phannika Kanthima
2016-01-01
Full Text Available The differential evolution (DE algorithm is applied for obtaining the optimized intermolecular interaction parameters between CH4 and 2-methylimidazolate ([C4N2H5]− using quantum binding energies of CH4-[C4N2H5]− complexes. The initial parameters and their upper/lower bounds are obtained from the general AMBER force field. The DE optimized and the AMBER parameters are then used in the molecular dynamics (MD simulations of CH4 molecules in the frameworks of ZIF-8. The results show that the DE parameters are better for representing the quantum interaction energies than the AMBER parameters. The dynamical and structural behaviors obtained from MD simulations with both sets of parameters are also of notable differences.
Efficiency Optimization Control of IPM Synchronous Motor Drives with Online Parameter Estimation
Directory of Open Access Journals (Sweden)
Sadegh Vaez-Zadeh
2011-04-01
Full Text Available This paper describes an efficiency optimization control method for high performance interior permanent magnet synchronous motor drives with online estimation of motor parameters. The control system is based on an input-output feedback linearization method which provides high performance control and simultaneously ensures the minimization of the motor losses. The controllable electrical loss can be minimized by the optimal control of the armature current vector. It is shown that parameter variations except at near the nominal conditions have undesirable effect on the controller performance. Therefore, a parameter estimation method based on the second method of Lyapunov is presented which guarantees the stability and convergence of the estimation. The extensive simulation results show the feasibility of the proposed controller and observer and their desirable performances.
Directory of Open Access Journals (Sweden)
Fan Chen
2016-01-01
Full Text Available In order to achieve the precision and efficient processing of nanocomposite ceramics, the ultrasound-aided electrolytic in process dressing method was proposed. But how to realize grinding parameter optimization, that is, the maximum processing efficiency, on the premise of the assurance of best workpiece quality is a problem that needs to be solved urgently. Firstly, this research investigated the influence of grinding parameters on material removal rate and critical ductile depth, and their mathematic models based on the existing models were developed to simulate the material removal process. Then, on the basis of parameter sensitivity analysis based on partial derivative, the sensitivity models of material removal rates on grinding parameter were established and computed quantitatively by MATLAB, and the key grinding parameter for optimal grinding process was found. Finally, the theoretical analyses were verified by experiments: the material removal rate increases with the increase of grinding parameters, including grinding depth (ap, axial feeding speed (fa, workpiece speed (Vw, and wheel speed (Vs; the parameter sensitivity of material removal rate was in a descending order as ap>fa>Vw>Vs; the most sensitive parameter (ap was optimized and it was found that the better machining result has been obtained when ap was about 3.73 μm.
Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.
2017-09-01
In injection moulding process, the defects will always encountered and affected the final product shape and functionality. This study is concerning on minimizing warpage and optimizing the process parameter of injection moulding part. Apart from eliminating product wastes, this project also giving out best recommended parameters setting. This research studied on five parameters. The optimization showed that warpage have been improved 42.64% from 0.6524 mm to 0.30879 mm in Autodesk Moldflow Insight (AMI) simulation result and Genetic Algorithm (GA) respectively.
The estimation of parameter compaction values for pavement subgrade stabilized with lime
Lubis, A. S.; Muis, Z. A.; Simbolon, C. A.
2018-02-01
The type of soil material, field control, maintenance and availability of funds are several factors that must be considered in compaction of the pavement subgrade. In determining the compaction parameters in laboratory desperately requires considerable materials, time and funds, and reliable laboratory operators. If the result of soil classification values can be used to estimate the compaction parameters of a subgrade material, so it would save time, energy, materials and cost on the execution of this work. This is also a clarification (cross check) of the work that has been done by technicians in the laboratory. The study aims to estimate the compaction parameter values ie. maximum dry unit weight (γdmax) and optimum water content (Wopt) of the soil subgrade that stabilized with lime. The tests that conducted in the laboratory of soil mechanics were to determine the index properties (Fines and Liquid Limit/LL) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) > 10% were made with additional 3% lime for 30 samples. By using the Goswami equation, the compaction parameter values can be estimated by equation γd max # = -0,1686 Log G + 1,8434 and Wopt # = 2,9178 log G + 17,086. From the validation calculation, there was a significant positive correlation between the compaction parameter values laboratory and the compaction parameter values estimated, with a 95% confidence interval as a strong relationship.
Laser Welding Process Parameters Optimization Using Variable-Fidelity Metamodel and NSGA-II
Directory of Open Access Journals (Sweden)
Wang Chaochao
2017-01-01
Full Text Available An optimization methodology based on variable-fidelity (VF metamodels and nondominated sorting genetic algorithm II (NSGA-II for laser bead-on-plate welding of stainless steel 316L is presented. The relationships between input process parameters (laser power, welding speed and laser focal position and output responses (weld width and weld depth are constructed by VF metamodels. In VF metamodels, the information from two levels fidelity models are integrated, in which the low-fidelity model (LF is finite element simulation model that is used to capture the general trend of the metamodels, and high-fidelity (HF model which from physical experiments is used to ensure the accuracy of metamodels. The accuracy of the VF metamodel is verified by actual experiments. To slove the optimization problem, NSGA-II is used to search for multi-objective Pareto optimal solutions. The results of verification experiments show that the obtained optimal parameters are effective and reliable.
Models for setting ATM parameter values
DEFF Research Database (Denmark)
Blaabjerg, Søren; Gravey, A.; Romæuf, L.
1996-01-01
essential to set traffic characteristic values that are relevant to the considered cell stream, and that ensure that the amount of non-conforming traffic is small. Using a queueing model representation for the GCRA formalism, several methods are available for choosing the traffic characteristics. This paper......In ATM networks, a user should negotiate at connection set-up a traffic contract which includes traffic characteristics and requested QoS. The traffic characteristics currently considered are the Peak Cell Rate, the Sustainable Cell Rate, the Intrinsic Burst Tolerance and the Cell Delay Variation...... (CDV) tolerance(s). The values taken by these traffic parameters characterize the so-called ''Worst Case Traffic'' that is used by CAC procedures for accepting a new connection and allocating resources to it. Conformance to the negotiated traffic characteristics is defined, at the ingress User...
Selection of noise parameters for Kalman filter
Institute of Scientific and Technical Information of China (English)
Ka-Veng Yuen; Ka-In Hoi; Kai-Meng Mok
2007-01-01
The Bayesian probabilistic approach is proposed to estimate the process noise and measurement noise parameters for a Kalman filter. With state vectors and covariance matrices estimated by the Kalman filter, the likehood of the measurements can be constructed as a function of the process noise and measurement noise parameters. By maximizing the likklihood function with respect to these noise parameters, the optimal values can be obtained. Furthermore, the Bayesian probabilistic approach allows the associated uncertainty to be quantified. Examples using a single-degree-of-freedom system and a ten-story building illustrate the proposed method. The effect on the performance of the Kalman filter due to the selection of the process noise and measurement noise parameters was demonstrated. The optimal values of the noise parameters were found to be close to the actual values in the sense that the actual parameters were in the region with significant probability density. Through these examples, the Bayesian approach was shown to have the capability to provide accurate estimates of the noise parameters of the Kalman filter, and hence for state estimation.
Sue-Ann, Goh; Ponnambalam, S. G.
This paper focuses on the operational issues of a Two-echelon Single-Vendor-Multiple-Buyers Supply chain (TSVMBSC) under vendor managed inventory (VMI) mode of operation. To determine the optimal sales quantity for each buyer in TSVMBC, a mathematical model is formulated. Based on the optimal sales quantity can be obtained and the optimal sales price that will determine the optimal channel profit and contract price between the vendor and buyer. All this parameters depends upon the understanding of the revenue sharing between the vendor and buyers. A Particle Swarm Optimization (PSO) is proposed for this problem. Solutions obtained from PSO is compared with the best known results reported in literature.
Huang, Hui; Ning, Jixian
2017-01-01
Prederivatives play an important role in the research of set optimization problems. First, we establish several existence theorems of prederivatives for γ -paraconvex set-valued mappings in Banach spaces with [Formula: see text]. Then, in terms of prederivatives, we establish both necessary and sufficient conditions for the existence of Pareto minimal solution of set optimization problems.
Optimization of machining parameters of hard porcelain on a CNC ...
African Journals Online (AJOL)
Optimization of machining parameters of hard porcelain on a CNC machine by Taguchi-and RSM method. ... Journal Home > Vol 10, No 1 (2018) > ... The conduct of experiments was made by employing the Taguchi's L27 Orthogonal array to ...
Positive-operator-valued measure optimization of classical correlations
Hamieh, S; Kobes, R; Zaraket, H
We study the problem of optimization over positive-operator-valued measures to extract classical correlation in a bipartite quantum system. The proposed method is applied to binary states only. Moreover, to illustrate this method, an explicit example is studied in detail.
Optimization of time characteristics in activation analysis
International Nuclear Information System (INIS)
Gurvich, L.G.; Umaraliev, A.T.
2006-01-01
Full text: The activation analysis temporal characteristics optimization methods developed at present are aimed at determination of optimal values of the three important parameters - irradiation time, cooling time and measurement time. In the performed works, especially in [1-5] the activation analysis processes are described, the optimal values of optimization parameters are obtained from equations solved, and the computational results are given for these parameters for a number of elements. However, the equations presented in [2] were inaccurate, did not allow one to have optimization parameters results for one element content calculations, and it did not take into account background dependence of time. Therefore, we proposed modified equations to determine the optimal temporal parameters and iteration processes for the solution of these equations. It is well-known that the activity of studied sample during measurements does not change significantly, i.e. measurement time is much shorter than the half-life, thus the processes taking place can be described by the Poisson probability distribution, and in general case one can apply binomial distribution. The equation and iteration processes use in this research describe both probability distributions. Expectedly, the cooling time iteration expressions obtained for one element analysis case are similar for the both distribution types, as the optimised time values occurred to be of the same order as half-life values, whereas the cooling time, as we observed, depends on the ratio of the studied sample's peak value to the background peak, and can be significantly larger than the half-life value. This pattern is general, and can be derived from the optimized time expressions, which is supported by the experimental data on short-living isotopes [3,4]. For the isotopes with large half-lives, up to years, like cobalt-60, the cooling time values given in the above mentioned works are equal to months which, apparently
Decision and Inhibitory Rule Optimization for Decision Tables with Many-valued Decisions
Alsolami, Fawaz
2016-04-25
‘If-then’ rule sets are one of the most expressive and human-readable knowledge representations. This thesis deals with optimization and analysis of decision and inhibitory rules for decision tables with many-valued decisions. The most important areas of applications are knowledge extraction and representation. The benefit of considering inhibitory rules is connected with the fact that in some situations they can describe more knowledge than the decision ones. Decision tables with many-valued decisions arise in combinatorial optimization, computational geometry, fault diagnosis, and especially under the processing of data sets. In this thesis, various examples of real-life problems are considered which help to understand the motivation of the investigation. We extend relatively simple results obtained earlier for decision rules over decision tables with many-valued decisions to the case of inhibitory rules. The behavior of Shannon functions (which characterize complexity of rule systems) is studied for finite and infinite information systems, for global and local approaches, and for decision and inhibitory rules. The extensions of dynamic programming for the study of decision rules over decision tables with single-valued decisions are generalized to the case of decision tables with many-valued decisions. These results are also extended to the case of inhibitory rules. As a result, we have algorithms (i) for multi-stage optimization of rules relative to such criteria as length or coverage, (ii) for counting the number of optimal rules, (iii) for construction of Pareto optimal points for bi-criteria optimization problems, (iv) for construction of graphs describing relationships between two cost functions, and (v) for construction of graphs describing relationships between cost and accuracy of rules. The applications of created tools include comparison (based on information about Pareto optimal points) of greedy heuristics for bi-criteria optimization of rules
Optimization of parameters for the inline-injection system at Brookhaven Accelerator Test Facility
International Nuclear Information System (INIS)
Parsa, Z.; Ko, S.K.
1995-01-01
We present some of our parameter optimization results utilizing code PARMLEA, for the ATF Inline-Injection System. The new solenoid-Gun-Solenoid -- Drift-Linac Scheme would improve the beam quality needed for FEL and other experiments at ATF as compared to the beam quality of the original design injection system. To optimize the gain in the beam quality we have considered various parameters including the accelerating field gradient on the photoathode, the Solenoid field strengths, separation between the gun and entrance to the linac as well as the (type size) initial charge distributions. The effect of the changes in the parameters on the beam emittance is also given
Exploring Parameter Tuning for Analysis and Optimization of a Computational Model
Mollee, J.S.; Fernandes de Mello Araujo, E.; Klein, M.C.A.
2017-01-01
Computational models of human processes are used for many different purposes and in many different types of applications. A common challenge in using such models is to find suitable parameter values. In many cases, the ideal parameter values are those that yield the most realistic simulation
Directory of Open Access Journals (Sweden)
Naoyuki Ukon
Full Text Available Focusing on whole-body uniformity in small-animal single-photon emission computed tomography (SPECT, we examined the optimal helical acquisition parameters using five-pinhole collimators for mouse imaging. SPECT images of an 80-mm-long cylindrical phantom with 99mTc solution were acquired using an Inveon multimodality imaging platform. The bed travels used in this study were 0, 30, 60, 90 and 120 mm, and the numbers of revolutions traversed during the SPECT scan were 1.0, 2.0, 3.0, 4.0, 5.0 and 7.0, respectively. Artifacts that degrade uniformity in reconstructed images were conspicuous when the bed travel was smaller than the object length. Regarding the distal-to-center ratio (DCR of SPECT values in the object’s axial direction, the DCR nearest to the ideal ratio of 1.00 was 1.02 in the optimal uniformity with 4.0 revolutions and a bed travel of 120 mm. Moreover, the helical acquisition using these parameters suppressed the formation of artifacts. We proposed the optimal parameters in whole-body helical SPECT; the bed travel was sufficiently larger than the object length; the 4.0 or more revolutions were required for a pitch of approximately 30 mm/revolution. The optimal acquisition parameters in SPECT to preserve uniformity would contribute to the accurate quantification of whole-body biodistribution. Keywords: Helical acquisition, Multipinhole collimator, Computed tomography, SPECT
Dynamic Value Engineering Method Optimizing the Risk on Real Time Operating System
Directory of Open Access Journals (Sweden)
Prashant Kumar Patra
2014-04-01
Full Text Available The value engineering is the umbrella of the many more sub-system like quality assurance, quality control, quality function design and development for manufacturability. The system engineering & value engineering is two part of the coin. The value engineering is the high level of technology management for every aspect of engineering fields. The value engineering is the high utilization of System Product (i.e. Processor, Memory & Encryption key, Services, Business and Resources at minimal cost. The high end operating system providing highest services at optimal cost & time. The value engineering provides the maximum performance, accountability, reliability, integrity and availability of processor, memory, encryption key and other inter dependency sub-components. The value engineering is the ratio of the maximum functionality of individual components to the optimal cost. VE=k [(P, M, E, C, A]/optimal cost. Where k is the proportionality constant. The VE is directly proportional to performance of individual components and inversely proportional to the minimal cost. The VE is directly proportional to the risk assessment. The VE maximize the business throughput & decision process mean while minimize the risk and down time. We have to develop the dynamic value engineering model & mechanism for risk optimization over a complex real time operating system This proposed composition model definite will be resolve our objective at top high level. Product
Directory of Open Access Journals (Sweden)
Li Junyi
2015-01-01
Full Text Available A fractional order PID (FOPID controller, which is suitable for control system designing for being insensitive to the variation in system parameter, is proposed for hydroturbine governing system in the paper. The simultaneous optimization for several parameters of controller, that is, Ki, Kd, Kp, λ, and μ, is done by a recently developed metaheuristic nature-inspired algorithm, namely, the firefly algorithm (FA, for the first time, where the selecting, moving, attractiveness behavior between fireflies and updating of brightness, and decision range are studied in detail to simulate the optimization process. Investigation clearly reveals the advantages of the FOPID controller over the integer controllers in terms of reduced oscillations and settling time. The present work also explores the superiority of FA based optimization technique in finding optimal parameters of the controller. Further, convergence characteristics of the FA are compared with optimum integer order PID (IOPID controller to justify its efficiency. What is more, analysis confirms the robustness of FOPID controller under isolated load operation conditions.
Mohmad Kahar, Mohd Nizam; Noraziah, A.
2017-01-01
In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system’s gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics. PMID:28441390
Optimization of WEDM process parameters using deep cryo-treated Inconel 718 as work material
Directory of Open Access Journals (Sweden)
Bijaya Bijeta Nayak
2016-03-01
Full Text Available The present work proposes an experimental investigation and optimization of various process parameters during taper cutting of deep cryo-treated Inconel 718 in wire electrical discharge machining process. Taguchi's design of experiment is used to gather information regarding the process with less number of experimental runs considering six input parameters such as part thickness, taper angle, pulse duration, discharge current, wire speed and wire tension. Since traditional Taguchi method fails to optimize multiple performance characteristics, maximum deviation theory is applied to convert multiple performance characteristics into an equivalent single performance characteristic. Due to the complexity and non-linearity involved in this process, good functional relationship with reasonable accuracy between performance characteristics and process parameters is difficult to obtain. To address this issue, the present study proposes artificial neural network (ANN model to determine the relationship between input parameters and performance characteristics. Finally, the process model is optimized to obtain a best parametric combination by a new meta-heuristic approach known as bat algorithm. The results of the proposed algorithm show that the proposed method is an effective tool for simultaneous optimization of performance characteristics during taper cutting in WEDM process.
A simple and fast method to determine the parameters for fuzzy c-means cluster analysis
DEFF Research Database (Denmark)
Schwämmle, Veit; Jensen, Ole Nørregaard
2010-01-01
MOTIVATION: Fuzzy c-means clustering is widely used to identify cluster structures in high-dimensional datasets, such as those obtained in DNA microarray and quantitative proteomics experiments. One of its main limitations is the lack of a computationally fast method to set optimal values...... of algorithm parameters. Wrong parameter values may either lead to the inclusion of purely random fluctuations in the results or ignore potentially important data. The optimal solution has parameter values for which the clustering does not yield any results for a purely random dataset but which detects cluster...... formation with maximum resolution on the edge of randomness. RESULTS: Estimation of the optimal parameter values is achieved by evaluation of the results of the clustering procedure applied to randomized datasets. In this case, the optimal value of the fuzzifier follows common rules that depend only...
Directory of Open Access Journals (Sweden)
R. Marsh
2013-10-01
Full Text Available The key physical parameters for the "eb_go_gs" configuration of version 2.7.4 of GENIE, an Earth system model of intermediate complexity (EMIC, are tuned using a multi-objective genetic algorithm. An ensemble of 90 parameter sets is tuned using two ocean and two atmospheric state variables as targets. These are "Pareto-optimal", representing a range of trade-offs between the four tuning targets. For the leading five parameter sets, simulations are evaluated alongside a simulation with untuned "default" parameters, comparing selected variables and diagnostics that describe the state of the atmosphere, ocean and sea ice. Further experiments are undertaken with these selected parameter sets to compare equilibrium climate sensitivities and transient climate responses. The pattern of warming under doubled CO2 is strongly shaped by changes in the Atlantic meridional overturning circulation (AMOC, while the pattern and rate of warming under rising CO2 is closely linked to changing sea ice extent. One of the five tuned parameter sets is identified as marginally optimal, and the objective function (error landscape is further analysed in the vicinity of the tuned values of this parameter set. "Cliffs" along some dimensions motivate closer inspection of corresponding variations in the AMOC. This reveals that bifurcations in the AMOC are highly sensitive to parameters that are not typically associated with MOC stability. Specifically, the state of the AMOC is sensitive to parameters governing the wind-driven circulation and atmospheric heat transport. For the GENIE configuration presented here, the marginally optimal parameter set is recommended for single simulations, although the leading five parameter sets may be used in ensemble mode to admit a constrained degree of parametric uncertainty in climate prediction.
Han, Lu; Gao, Kun; Gong, Chen; Zhu, Zhenyu; Guo, Yue
2017-08-01
On-orbit Modulation Transfer Function (MTF) is an important indicator to evaluate the performance of the optical remote sensors in a satellite. There are many methods to estimate MTF, such as pinhole method, slit method and so on. Among them, knife-edge method is quite efficient, easy-to-use and recommended in ISO12233 standard for the wholefrequency MTF curve acquisition. However, the accuracy of the algorithm is affected by Edge Spread Function (ESF) fitting accuracy significantly, which limits the range of application. So in this paper, an optimized knife-edge method using Powell algorithm is proposed to improve the ESF fitting precision. Fermi function model is the most popular ESF fitting model, yet it is vulnerable to the initial values of the parameters. Considering the characteristics of simple and fast convergence, Powell algorithm is applied to fit the accurate parameters adaptively with the insensitivity to the initial parameters. Numerical simulation results reveal the accuracy and robustness of the optimized algorithm under different SNR, edge direction and leaning angles conditions. Experimental results using images of the camera in ZY-3 satellite show that this method is more accurate than the standard knife-edge method of ISO12233 in MTF estimation.
Directory of Open Access Journals (Sweden)
Abdelhafid HASNI
2009-03-01
Full Text Available Although natural ventilation plays an important role in the affecting greenhouse climate, as defined by temperature, humidity and CO2 concentration, particularly in Mediterranean countries, little information and data are presently available on full-scale greenhouse ventilation mechanisms. In this paper, we present a new method for selecting the parameters based on a particle swarm optimization (PSO algorithm which optimize the choice of parameters by minimizing a cost function. The simulator was based on a published model with some minor modifications as we were interested in the parameter of ventilation. The function is defined by a reduced model that could be used to simulate and predict the greenhouse environment, as well as the tuning methods to compute their parameters. This study focuses on the dynamic behavior of the inside air temperature and humidity during ventilation. Our approach is validated by comparison with some experimental results. Various experimental techniques were used to make full-scale measurements of the air exchange rate in a 400 m2 plastic greenhouse. The model which we propose based on natural ventilation parameters optimized by a particle swarm optimization was compared with the measurements results.
Sun, T T; Liu, W H; Zhang, Y Q; Li, L H; Wang, R; Ye, Y Y
2017-08-01
Objective: To explore the differential between the value of dynamic contrast-enhanced MRI quantitative pharmacokinetic parameters and relative pharmacokinetic quantitative parameters in breast lesions. Methods: Retrospective analysis of 255 patients(262 breast lesions) who was obtained by clinical palpation , ultrasound or full-field digital mammography , and then all lessions were pathologically confirmed in Zhongda Hospital, Southeast University from May 2012 to May 2016. A 3.0 T MRI scanner was used to obtain the quantitative MR pharmacokinetic parameters: volume transfer constant (K(trans)), exchange rate constant (k(ep))and extravascular extracellular volume fraction (V(e)). And measured the quantitative pharmacokinetic parameters of normal glands tissues which on the same side of the same level of the lesions; and then calculated the value of relative pharmacokinetic parameters: rK(rans)、rk(ep) and rV(e).To explore the diagnostic value of two pharmacokinetic parameters in differential diagnosis of benign and malignant breast lesions using receiver operating curves and model of logistic regression. Results: (1)There were significant differences between benign lesions and malignant lesions in K(trans) and k(ep) ( t =15.489, 15.022, respectively, P 0.05). The areas under the ROC curve(AUC)of K(trans), k(ep) and V(e) between malignant and benign lesions were 0.933, 0.948 and 0.387, the sensitivity of K(trans), k(ep) and V(e) were 77.1%, 85.0%, 51.0% , and the specificity of K(trans), k(ep) and V(e) were 96.3%, 93.6%, 60.8% for the differential diagnosis of breast lesions if taken the maximum Youden's index as cut-off. (2)There were significant differences between benign lesions and malignant lesions in rK(trans), rk(ep) and rV(e) ( t =14.177, 11.726, 2.477, respectively, P quantitative pharmacokinetic parameters and the prediction probability of relative quantitative pharmacokinetic parameters( Z =0.867, P =0.195). Conclusion: There was no significant
Aleksandrova, Irina
2016-01-01
The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type ??32 and ??80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility function has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing
Mesoloras, Geraldine
Yttrium-90 (90Y) microsphere therapy is being utilized as a treatment option for patients with primary and metastatic liver cancer due to its ability to target tumors within the liver. The success of this treatment is dependent on many factors, including the extent and type of disease and the nature of prior treatments received. Metabolic activity, as determined by PET imaging, may correlate with the number of viable cancer cells and reflect changes in viable cancer cell volume. However, contouring of PET images by hand is labor intensive and introduces an element of irreproducibility into the determination of functional target/tumor volume (FTV). A computer-assisted method to aid in the automatic contouring of FTV has the potential to substantially improve treatment individualization and outcome assessment. Commercial software to determine FTV in FDG-avid primary and metastatic liver tumors has been evaluated and optimized. Volumes determined using the automated technique were compared to those from manually drawn contours identified using the same cutoff in the standard uptake value (SUV). The reproducibility of FTV is improved through the introduction of an optimal threshold value determined from phantom experiments. Application of the optimal threshold value from the phantom experiments to patient scans was in good agreement with hand-drawn determinations of the FTV. It is concluded that computer-assisted contouring of the FTV for primary and metastatic liver tumors improves reproducibility and increases accuracy, especially when combined with the selection of an optimal SUV threshold determined from phantom experiments. A method to link the pre-treatment assessment of functional (PET based) and anatomical (CT based) parameters to post-treatment survival and time to progression was evaluated in 22 patients with colorectal cancer liver metastases treated using 90Y microspheres and chemotherapy. The values for pre-treatment parameters that were the best
Directory of Open Access Journals (Sweden)
Tashkova Katerina
2011-10-01
Full Text Available Abstract Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA, particle-swarm optimization (PSO, and differential evolution (DE, as well as a local-search derivative-based algorithm 717 (A717 to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE clearly and significantly outperform the local derivative-based method (A717. Among the three meta-heuristics, differential evolution (DE performs best in terms of the objective function, i.e., reconstructing the output, and in terms of
Tashkova, Katerina; Korošec, Peter; Silc, Jurij; Todorovski, Ljupčo; Džeroski, Sašo
2011-10-11
We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and
International Nuclear Information System (INIS)
Miranda, A.; Echevarria, J.F.; Rondon, S.; Leiva, P.; Sendoya, F.A.; Amalfi, J.; Lopez, M.; Dominguez, H.
1999-01-01
The paper deals with the study of the main parameters of thermal cycle in Orbital Automatic Weld, as a particular process of the GTAW Weld technique. Also is concerned with the investigation of microstructural and mechanical properties of welded joints made with Orbital Technique in SA 210 Steel, a particular alloy widely use during the construction of Economizers of Power Plants. A number of PC software were used in this sense in order to anticipate the main mechanical and structural characteristics of Weld metal and the Heat Affected Zone (HAZ). The papers also might be of great value during selection of optimal Weld parameters to produce sound and high quality Welds during the construction / assembling of structural components in high requirements industrial sectors and also to make a reliable prediction of weld properties
Energy Technology Data Exchange (ETDEWEB)
Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A
2009-02-26
The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.
Multi-parameter optimization of a nanomagnetic system for spintronic applications
International Nuclear Information System (INIS)
Morales Meza, Mishel; Zubieta Rico, Pablo F.; Horley, Paul P.; Sukhov, Alexander; Vieira, Vítor R.
2014-01-01
Magnetic properties of nano-particles feature many interesting physical phenomena that are essentially important for the creation of a new generation of spin-electronic devices. The magnetic stability of the nano-particles can be improved by formation of ordered particle arrays, which should be optimized over several parameters. Here we report successful optimization regarding inter-particle distance and applied field frequency allowing to obtain about three-times reduction of coercivity of a particle array compared to that of a single particle, which opens new perspectives for development of new spintronic devices
Multi-parameter optimization of a nanomagnetic system for spintronic applications
Energy Technology Data Exchange (ETDEWEB)
Morales Meza, Mishel [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Zubieta Rico, Pablo F. [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Querétaro, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, 76230 Querétaro (Mexico); Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Sukhov, Alexander [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale) (Germany); Vieira, Vítor R. [Centro de Física das Interacções Fundamentais (CFIF), Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal)
2014-11-15
Magnetic properties of nano-particles feature many interesting physical phenomena that are essentially important for the creation of a new generation of spin-electronic devices. The magnetic stability of the nano-particles can be improved by formation of ordered particle arrays, which should be optimized over several parameters. Here we report successful optimization regarding inter-particle distance and applied field frequency allowing to obtain about three-times reduction of coercivity of a particle array compared to that of a single particle, which opens new perspectives for development of new spintronic devices.
Extreme values of meteorological parameters observed at Kalpakkam during the period 1968-1999
International Nuclear Information System (INIS)
Balagurunathan, M.R.; Chandresekharan, E.; Rajan, M.P.; Gurg, R.P.
2001-05-01
In the design phase of engineering structures, an understanding of extreme weather conditions that may occur at the site of interest is very essential, so that the structures can be designed to withstand climatological stresses during its life time. In this report an analysis of extreme values of meteorological parameters at Kalpakkam for the period 1968-99, which provide an insight into such situations is described. The extreme value analysis reveals that all the variables obey Fisher-Tippet Type-I extreme value distribution function. Parameter values of extreme value analysis functions are presented for the variables studied and the 50- and 100- year return period extreme values are arrived at. Frequency distribution of rainfall parameters is investigated. Time series of annual rainfall data suggests a cycle of 2-3 years period. (author)
Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.
2017-06-01
In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.
International Nuclear Information System (INIS)
Avenhaus, R.; Heil, J.
1979-01-01
In this paper analyses are made of the values of those parameters that characterize the present safeguards system that is applied to a national fuel cycle; those values have to be fixed quantitatively so that all actions of the safeguards authority are specified precisely. The analysis starts by introducing three categories of quantities: The design parameters (number of MBAs, inventory frequency, variance of MUF, verification effort and false-alarm probability) describe those quantities whose values have to be specified before the safeguards system can be implemented. The performance criteria (probability of detection, expected detection time, goal quantity) measure the effectiveness of a safeguards system; and the standards (threshold amount and critical time) characterize the magnitude of the proliferation problem. The means by which the values of the individual design parameters can be determined with the help of the performance criteria; which qualitative arguments can narrow down the arbitrariness of the choice of values of the remaining parameters; and which parameter values have to be fixed more or less arbitrarily, are investigated. As a result of these considerations, which include the optimal allocation of a given inspection effort, the problem of analysing the structure of the safeguards system is reduced to an evaluation of the interplay of only a few parameters, essentially the quality of the measurement system (variance of MUF), verification effort, false-alarm probability, goal quantity and probability of detection
Dynamic Pressure Gradient Model of Axial Piston Pump and Parameters Optimization
Directory of Open Access Journals (Sweden)
Shi Jian
2014-01-01
Full Text Available The unsteady pressure gradient can cause flow noise in prepressure rising of piston pump, and the fluid shock comes up due to the large pressure difference of the piston chamber and discharge port in valve plate. The flow fluctuation control is the optimization objective in previous study, which cannot ensure the steady pressure gradient. Our study is to stabilize the pressure gradient in prepressure rising and control the pressure of piston chamber approaching to the pressure in discharge port after prepressure rising. The models for nonoil shock and dynamic pressure of piston chamber in prepressure rising are established. The parameters of prepressure rising angle, cross angle, wrap angle of V-groove, vertex angle of V-groove, and opening angle of V-groove were optimized, based on which the pressure of the piston chamber approached the pressure in discharge port after prepressure rising, and the pressure gradient is more steady compared to the original parameters. The max pressure gradient decreased by 70.8% and the flow fluctuation declined by 21.4%, which showed the effectivness of optimization.
Noszczyk-Nowak, Agnieszka; Cepiel, Alicja; Janiszewski, Adrian; Pasławski, Robert; Gajek, Jacek; Pasławska, Urszula; Nicpoń, Józef
2016-01-01
Swine are a well-recognized animal model for human cardiovascular diseases. Despite the widespread use of porcine model in experimental electrophysiology, still no reference values for intracardiac electrical activity and conduction parameters determined during an invasive electrophysiology study (EPS) have been developed in this species thus far. The aim of the study was to develop a set of normal values for intracardiac electrical activity and conduction parameters determined during an invasive EPS of swine. The study included 36 healthy domestic swine (24-40 kg body weight). EPS was performed under a general anesthesia with midazolam, propofol and isoflurane. The reference values for intracardiac electrical activity and conduction parameters were calculated as arithmetic means ± 2 standard deviations. The reference values were determined for AH, HV and PA intervals, interatrial conduction time at its own and imposed rhythm, sinus node recovery time (SNRT), corrected sinus node recovery time (CSNRT), anterograde and retrograde Wenckebach points, atrial, atrioventricular node and ventricular refractory periods. No significant correlations were found between body weight and heart rate of the examined pigs and their electrophysiological parameters. The hereby presented reference values can be helpful in comparing the results of various studies, as well as in more accurately estimating the values of electrophysiological parameters that can be expected in a given experiment.
Mechanical Design Optimization Using Advanced Optimization Techniques
Rao, R Venkata
2012-01-01
Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...
Directory of Open Access Journals (Sweden)
E. N. Ishakova
2016-05-01
Full Text Available A method for multi-criteria optimization of the design parameters for technological object is described. The existing optimization methods are overviewed, and works in the field of basic research and applied problems are analyzed. The problem is formulated, based on the process requirements, making it possible to choose the geometrical dimensions of machine tips and the flow rate of the process, so that the resulting technical and economical parameters were optimal. In the problem formulation application of the performance method adapted to a particular domain is described. Task implementation is shown; the method of characteristics creation for the studied object in view of some restrictions for parameters in both analytical and graphical representation. On the basis of theoretical research the software system is developed that gives the possibility to automate the discovery of optimal solutions for specific problems. Using available information sources, that characterize the object of study, it is possible to establish identifiers, add restrictions from the one side, and in the interval as well. Obtained result is a visual depiction of dependence of the main study parameters on the others, which may have an impact on both the flow of the process, and the quality of products. The resulting optimal area shows the use of different design options for technological object in an acceptable kinematic range that makes it possible for the researcher to choose the best design solution.
Optimal relations of the parameters ensuring safety during reactor start-up
International Nuclear Information System (INIS)
Yurkevich, G.P.
2004-01-01
Procedure and equations for the determination of optimal ratio between parameters allowing safe removal of reactor in critical state are suggested. Initial pulse frequency of pulsed start-up channel and power of neutron source are decreased by reduced rate of changing reactivity during automatic start-up, disposition of pulsed neutron detector in the range with neutron flux density to 5·10 12 s -1 cm -2 at standard power, separate signal of period for the use in chains of automatic start-up and emergency protection, reduction of pulses frequency of the start-up channel (the frequency is equal to 4000 c -1 ). Procedure and equations for the determination of optimal parameters are effected with the account of statistic character of pulsed detector frequency and false outlet signal [ru
Optimal allocation of sensors for state estimation of distributed parameter systems
International Nuclear Information System (INIS)
Sunahara, Yoshifumi; Ohsumi, Akira; Mogami, Yoshio.
1978-01-01
The purpose of this paper is to present a method for finding the optimal allocation of sensors for state estimation of linear distributed parameter systems. This method is based on the criterion that the error covariance associated with the state estimate becomes minimal with respect to the allocation of the sensors. A theorem is established, giving the sufficient condition for optimizing the allocation of sensors to make minimal the error covariance approximated by a modal expansion. The remainder of this paper is devoted to illustrate important phases of the general theory of the optimal measurement allocation problem. To do this, several examples are demonstrated, including extensive discussions on the mutual relation between the optimal allocation and the dynamics of sensors. (author)
Site-specific parameter values for the Nuclear Regulatory Commission's food pathway dose model
International Nuclear Information System (INIS)
Hamby, D.M.
1992-01-01
Routine operations at the Savannah River Site (SRS) in Western South Carolina result in radionuclide releases to the atmosphere and to the Savannah River. The resulting radiation doses to the off-site maximum individual and the off-site population within 80 km of the SRS are estimated on a yearly basis. These estimates are currently generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose-model parameters for facilities without resources to develop site-specific values. A survey of land- and water-use characteristics for the Savannah River area has been conducted to determine site-specific values for water recreation, consumption, and agricultural parameters used in the NRC Regulatory Guide 1.109 (1977) dosimetric models. These site parameters include local characteristics of meat, milk, and vegetable production; recreational and commercial activities on the Savannah River; and meat, milk, vegetable, and seafood consumption rates. This paper describes how parameter data were obtained at the Savannah River Site and the impacts of such data on off-site dose. Dose estimates using site-specific parameter values are compared to estimates using the NRC default values
Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT
2018-02-01
Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).
Baseline values of immunologic parameters in the lizard Salvator merianae (Teiidae, Squamata)
Mestre, Ana Paula; Amavet, Patricia Susana; Siroski, Pablo Ariel
2017-01-01
The genus Salvator is widely distributed throughout South America. In Argentina, the species most abundant widely distributed is Salvator merianae. Particularly in Santa Fe province, the area occupied by populations of these lizards overlaps with areas where agriculture was extended. With the aim of established baseline values for four immunologic biomarkers widely used, 36 tegu lizards were evaluated tacking into account different age classes and both sexes. Total leukocyte counts were not different between age classes. Of the leucocytes count, eosinophils levels were higher in neonates compared with juvenile and adults; nevertheless, the heterophils group was the most prevalent leukocyte in the peripheral blood in all age classes. Lymphocytes, monocytes, heterophils, azurophils and basophils levels did not differ with age. Natural antibodies titres were higher in the adults compared with neonates and juveniles lizards. Lastly, complement system activity was low in neonates compared with juveniles and adults. Statistical analysis within each age group showed that gender was not a factor in the outcomes. Based on the results, we concluded that S. merianae demonstrated age (but not gender) related differences in the immune parameters analyzed. Having established baseline values for these four widely-used immunologic biomarkers, ongoing studies will seek to optimize the use of the S. merianae model in future research. PMID:28652981
Baseline values of immunologic parameters in the lizard Salvator merianae (Teiidae, Squamata).
Mestre, Ana Paula; Amavet, Patricia Susana; Siroski, Pablo Ariel
2017-01-01
The genus Salvator is widely distributed throughout South America. In Argentina, the species most abundant widely distributed is Salvator merianae . Particularly in Santa Fe province, the area occupied by populations of these lizards overlaps with areas where agriculture was extended. With the aim of established baseline values for four immunologic biomarkers widely used, 36 tegu lizards were evaluated tacking into account different age classes and both sexes. Total leukocyte counts were not different between age classes. Of the leucocytes count, eosinophils levels were higher in neonates compared with juvenile and adults; nevertheless, the heterophils group was the most prevalent leukocyte in the peripheral blood in all age classes. Lymphocytes, monocytes, heterophils, azurophils and basophils levels did not differ with age. Natural antibodies titres were higher in the adults compared with neonates and juveniles lizards. Lastly, complement system activity was low in neonates compared with juveniles and adults. Statistical analysis within each age group showed that gender was not a factor in the outcomes. Based on the results, we concluded that S. merianae demonstrated age (but not gender) related differences in the immune parameters analyzed. Having established baseline values for these four widely-used immunologic biomarkers, ongoing studies will seek to optimize the use of the S. merianae model in future research.
Baseline values of immunologic parameters in the lizard Salvator merianae (Teiidae, Squamata
Directory of Open Access Journals (Sweden)
Ana Paula Mestre
2017-05-01
Full Text Available The genus Salvator is widely distributed throughout South America. In Argentina, the species most abundant widely distributed is Salvator merianae. Particularly in Santa Fe province, the area occupied by populations of these lizards overlaps with areas where agriculture was extended. With the aim of established baseline values for four immunologic biomarkers widely used, 36 tegu lizards were evaluated tacking into account different age classes and both sexes. Total leukocyte counts were not different between age classes. Of the leucocytes count, eosinophils levels were higher in neonates compared with juvenile and adults; nevertheless, the heterophils group was the most prevalent leukocyte in the peripheral blood in all age classes. Lymphocytes, monocytes, heterophils, azurophils and basophils levels did not differ with age. Natural antibodies titres were higher in the adults compared with neonates and juveniles lizards. Lastly, complement system activity was low in neonates compared with juveniles and adults. Statistical analysis within each age group showed that gender was not a factor in the outcomes. Based on the results, we concluded that S. merianae demonstrated age (but not gender related differences in the immune parameters analyzed. Having established baseline values for these four widely-used immunologic biomarkers, ongoing studies will seek to optimize the use of the S. merianae model in future research.
Value as a parameter to consider in operational strategies for CSP plants
de Meyer, Oelof; Dinter, Frank; Govender, Saneshan
2017-06-01
This paper introduced a value parameter to consider when analyzing operational strategies for CSP plants. The electric system in South Africa, used as case study, is severely constrained with an influx of renewables in the early phase of deployment. The energy demand curve for the system is analyzed showing the total wind and solar photovoltaic contributions for winter and summer. Due to the intermittent nature and meteorological operating conditions of wind and solar photovoltaic plants, the value of CSP plants within the electric system is introduced. Analyzing CSP plants based on the value parameter alone will remain only a philosophical view. Currently there is no quantifiable measure to translate the philosophical view or subjective value and it solely remains the position of the stakeholder. By introducing three other parameters, Cost, Plant and System to a holistic representation of the Operating Strategies of generation plants, the Value parameter can be translated into a quantifiable measure. Utilizing the country's current procurement program as case study, CSP operating under the various PPA within the Bid Windows are analyzed. The Value Cost Plant System diagram developed is used to quantify the value parameter. This paper concluded that no value is obtained from CSP plants operating under the Bid Window 1 & 2 Power Purchase Agreement. However, by recognizing the dispatchability potential of CSP plants in Bid Window 3 & 3.5, the value of CSP in the electric system can be quantified utilizing Value Added Relationship VCPS-diagram. Similarly ancillary services to the system were analyzed. One of the relationships that have not yet been explored within the industry is an interdependent relationship. It was emphasized that the cost and value structure is shared between the plant and system. Although this relationship is functional when the plant and system belongs to the same entity, additional value is achieved by marginalizing the cost structure. A
Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.
2017-03-01
Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.
Optimization of reserve lithium thionyl chloride battery electrochemical design parameters
Energy Technology Data Exchange (ETDEWEB)
Doddapaneni, N.; Godshall, N.A.
1987-01-01
The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15%) improved battery performance significantly (10% greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell peformance is illustrated. 5 refs., 9 figs., 3 tabs.
Optimization of reserve lithium thionyl chloride battery electrochemical design parameters
Doddapaneni, N.; Godshall, N. A.
The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15 percent) improved battery performance significantly (10 percent greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell performance is illustrated.
Directory of Open Access Journals (Sweden)
Branka Marasović
2009-03-01
Full Text Available In this paper we select an optimal portfolio on the Croatian capital market by using the multicriterial programming. In accordance with the modern portfolio theory maximisation of returns at minimal risk should be the investment goal of any successful investor. However, contrary to the expectations of the modern portfolio theory, the tests carried out on a number of financial markets reveal the existence of other indicators important in portfolio selection. Considering the importance of variables other than return and risk, selection of the optimal portfolio becomes a multicriterial problem which should be solved by using the appropriate techniques.In order to select an optimal portfolio, absolute values of criteria, like return, risk, price to earning value ratio (P/E, price to book value ratio (P/B and price to sale value ratio (P/S are included in our multicriterial model. However the problem might occur as the mean values of some criteria are significantly different for different sectors and because financial managers emphasize that comparison of the same criteria for different sectors could lead us to wrong conclusions. In the second part of the paper, relative values of previously stated criteria (in relation to mean value of sector are included in model for selecting optimal portfolio. Furthermore, the paper shows that if relative values of criteria are included in multicriterial model for selecting optimal portfolio, return in subsequent period is considerably higher than if absolute values of the same criteria were used.
Directory of Open Access Journals (Sweden)
Elfar O. M. R.
2016-01-01
Full Text Available In this research, the friction stir welding of dissimilar commercial pure aluminium and brass (CuZn30 plates was investigated and the process parameters were optimized using Taguchi L9 orthogonal array. The considered process parameters were the rotational speed, traverse speed and pin offset. The optimum setting was determined with reference to ultimate tensile strength of the joint. The predicted optimum value of ultimate tensile strength was confirmed by experimental run using optimum parameters. Analysis of variance revealed that traverse speed is the most significant factor in controlling the joint tensile strength and pin offset also plays a significant role. In this investigation, the optimum tensile strength is 50% of aluminium base metal. Metallographic examination revealed that intermetallic compounds were formed in the interface of the optimum joint where the tensile failure was observed to take place.
Worst-case tolerance optimization of antenna systems
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans
1980-01-01
The application of recently developed algorithms to antenna systems design is demonstrated by the worst-case tolerance optimization of linear broadside arrays, using both spacings and excitation coefficients as design parameters. The resulting arrays are optimally immunized against deviations...... of the design parameters from their nominal values....
Directory of Open Access Journals (Sweden)
Ajinath Eknath Shirsat
2015-01-01
Full Text Available The purpose of present study was to optimize rizatriptan (RZT chitosan (CS nanoparticles using ionic gelation method by application of quality by design (QbD approach. Based on risk assessment, effect of three variables, that is CS %, tripolyphosphate % and stirring speed were studied on critical quality attributes (CQAs; particle size and entrapment efficiency. Central composite design (CCD was implemented for design of experimentation with 20 runs. RZT CS nanoparticles were characterized for particle size, polydispersity index, entrapment efficiency, in-vitro release study, differential scanning calorimetric, X-ray diffraction, scanning electron microscopy (SEM. Based on QbD approach, design space (DS was optimized with a combination of selected variables with entrapment efficiency > 50% w/w and a particle size between 400 and 600 nm. Validation of model was performed with 3 representative formulations from DS for which standard error of − 0.70-3.29 was observed between experimental and predicted values. In-vitro drug release followed initial burst release 20.26 ± 2.34% in 3-4 h with sustained drug release of 98.43 ± 2.45% in 60 h. Lower magnitude of standard error for CQAs confirms the validation of selected CCD model for optimization of RZT CS nanoparticles. In-vitro drug release followed dual mechanism via, diffusion and polymer erosion. RZT CS nanoparticles were prepared successfully using QbD approach with the understanding of the high risk process and formulation parameters involved and optimized DS with a multifactorial combination of critical parameters to obtain predetermined RZT loaded CS nanoparticle specifications.
1997-12-01
In this paper we present a model for the value of a firm based on observable variables and parameters: the annual turnover, the expenses, interest rates. This value is the solution of a parabolic partial differential equation. We show how the value of the company depends on its legal status such as its liability (that is, whether it is a Limited Company or a sole trader/partnership). We give examples of how the operating procedures can be optimized (for example, whether the firm should close down, relocate etc.). Finally, we show how the model can be used to value the debt issued by the firm.
Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan
2016-08-22
Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Performance Evaluation and Parameter Optimization of SoftCast Wireless Video Broadcast
Directory of Open Access Journals (Sweden)
Dongxue Yang
2015-08-01
Full Text Available Wireless video broadcast plays an imp ortant role in multimedia communication with the emergence of mobile video applications. However, conventional video broadcast designs suffer from a cliff effect due to separated source and channel encoding. The newly prop osed SoftCast scheme employs a cross-layer design, whose reconstructed video quality is prop ortional to the channel condition. In this pap er, we provide the p erformance evaluation and the parameter optimization of the SoftCast system. Optimization principles on parameter selection are suggested to obtain a b etter video quality, o ccupy less bandwidth and/or utilize lower complexity. In addition, we compare SoftCast with H.264 in the LTE EPA scenario. The simulation results show that SoftCast provides a b etter p erformance in the scalability to channel conditions and the robustness to packet losses.
Directory of Open Access Journals (Sweden)
M. Satheesh
2014-01-01
Full Text Available The high pressure differential across the wall of pressure vessels is potentially dangerous and has caused many fatal accidents in the history of their development and operation. For this reason the structural integrity of weldments is critical to the performance of pressure vessels. In recent years much research has been conducted to the study of variations in welding parameters and consumables on the mechanical properties of pressure vessel steel weldments to optimize weld integrity and ensure pressure vessels are safe. The quality of weld is a very important working aspect for the manufacturing and construction industries. Because of high quality and reliability, Submerged Arc Welding (SAW is one of the chief metal joining processes employed in industry. This paper addresses the application of desirability function approach combined with fuzzy logic analysis to optimize the multiple quality characteristics (bead reinforcement, bead width, bead penetration and dilution of submerged arc welding process parameters of SA 516 Grade 70 steels(boiler steel. Experiments were conducted using Taguchi’s L27 orthogonal array with varying the weld parameters of welding current, arc voltage, welding speed and electrode stickout. By analyzing the response table and response graph of the fuzzy reasoning grade, optimal parameters were obtained. Solutions from this method can be useful for pressure vessel manufacturers and operators to search an optimal solution of welding condition.
Kumar, S.; Singh, A.; Dhar, A.
2017-08-01
The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.
Forest value and optimal rotations in continuous cover forestry
DEFF Research Database (Denmark)
Jacobsen, Jette Bredahl; Jensen, Frank; Thorsen, Bo Jellesmark
The Faustmann forest rotation model is a celebrated contribution in economics. The model provides a forest value expression and allows a solution to the optimal rotation problem valid for perpetual rotations of even-aged forest stands. However, continuous forest cover forest management systems......, but rigorous mathematical model of the continuous cover forest, which strictly focuses on the area use dynamics that such an uneven-aged forest must have in equilibrium. This implies explicitly accounting for area reallocation and for weighting the productivity of each age class by the area occupied. The model...... allows for a simple expression for forest value and the derivation of conditions for the optimal rotation age. The model also makes straightforward comparisons with the well-known Faustmann model possible. We present results for unrestricted as well as area-restricted versions of the models. We find...
Forest value and optimal rotations in continuous cover forestry
DEFF Research Database (Denmark)
Jacobsen, Jette Bredahl; Jensen, Frank; Thorsen, Bo Jellesmark
2018-01-01
The Faustmann forest rotation model is a celebrated contribution in economics. The model provides a forest value expression and allows a solution to the optimal rotation problem valid for perpetual rotations of even-aged forest stands. However, continuous forest cover forest management systems......, but rigorous mathematical model of the continuous cover forest, which strictly focuses on the area use dynamics that such an uneven-aged forest must have in equilibrium. This implies explicitly accounting for area reallocation and for weighting the productivity of each age class by the area occupied. We...... present results for unrestricted as well as area-restricted versions of the models. We find that land values are unambiguously higher in the continuous cover forest models compared with the even-aged models. Under area restrictions, the optimal rotation age in a continuous cover forest model...
Parametric optimal control of uncertain systems under an optimistic value criterion
Li, Bo; Zhu, Yuanguo
2018-01-01
It is well known that the optimal control of a linear quadratic model is characterized by the solution of a Riccati differential equation. In many cases, the corresponding Riccati differential equation cannot be solved exactly such that the optimal feedback control may be a complex time-oriented function. In this article, a parametric optimal control problem of an uncertain linear quadratic model under an optimistic value criterion is considered for simplifying the expression of optimal control. Based on the equation of optimality for the uncertain optimal control problem, an approximation method is presented to solve it. As an application, a two-spool turbofan engine optimal control problem is given to show the utility of the proposed model and the efficiency of the presented approximation method.
Ring rolling process simulation for geometry optimization
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.
Xian, Guangming
2018-03-01
A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.
Optimization of basic parameters of cyclic operation of underground gas storages
Directory of Open Access Journals (Sweden)
Віктор Олександрович Заєць
2015-04-01
Full Text Available The problem of optimization of process parameters of cyclic operation of underground gas storages in gas mode is determined in the article. The target function is defined, expressing necessary capacity of compressor station for gas injection in the storage. Its minimization will find the necessary technological parameters, such as flow and reservoir pressure change over time. Limitations and target function are reduced to a linear form. Solution of problems is made by the simplex method
Sizing optimization of skeletal structures using teaching-learning based optimization
Directory of Open Access Journals (Sweden)
Vedat Toğan
2017-03-01
Full Text Available Teaching Learning Based Optimization (TLBO is one of the non-traditional techniques to simulate natural phenomena into a numerical algorithm. TLBO mimics teaching learning process occurring between a teacher and students in a classroom. A parameter named as teaching factor, TF, seems to be the only tuning parameter in TLBO. Although the value of the teaching factor, TF, is determined by an equation, the value of 1 or 2 has been used by the researchers for TF. This study intends to explore the effect of the variation of teaching factor TF on the performances of TLBO. This effect is demonstrated in solving structural optimization problems including truss and frame structures under the stress and displacement constraints. The results indicate that the variation of TF in the TLBO process does not change the results obtained at the end of the optimization procedure when the computational cost of TLBO is ignored.
Optimizing value utilizing Toyota Kata methodology in a multidisciplinary clinic.
Merguerian, Paul A; Grady, Richard; Waldhausen, John; Libby, Arlene; Murphy, Whitney; Melzer, Lilah; Avansino, Jeffrey
2015-08-01
Value in healthcare is measured in terms of patient outcomes achieved per dollar expended. Outcomes and cost must be measured at the patient level to optimize value. Multidisciplinary clinics have been shown to be effective in providing coordinated and comprehensive care with improved outcomes, yet tend to have higher cost than typical clinics. We sought to lower individual patient cost and optimize value in a pediatric multidisciplinary reconstructive pelvic medicine (RPM) clinic. The RPM clinic is a multidisciplinary clinic that takes care of patients with anomalies of the pelvic organs. The specialties involved include Urology, General Surgery, Gynecology, and Gastroenterology/Motility. From May 2012 to November 2014 we performed time-driven activity-based costing (TDABC) analysis by measuring provider time for each step in the patient flow. Using observed time and the estimated hourly cost of each of the providers we calculated the final cost at the individual patient level, targeting clinic preparation. We utilized Toyota Kata methodology to enhance operational efficiency in an effort to optimize value. Variables measured included cost, time to perform a task, number of patients seen in clinic, percent value-added time (VAT) to patients (face to face time) and family experience scores (FES). At the beginning of the study period, clinic costs were $619 per patient. We reduced conference time from 6 min/patient to 1 min per patient, physician preparation time from 8 min to 6 min and increased Medical Assistant (MA) preparation time from 9.5 min to 20 min, achieving a cost reduction of 41% to $366 per patient. Continued improvements further reduced the MA preparation time to 14 min and the MD preparation time to 5 min with a further cost reduction to $194 (69%) (Figure). During this study period, we increased the number of appointments per clinic. We demonstrated sustained improvement in FES with regards to the families overall experience with their providers
Zhang, Chi; Li, Yi; Zhang, Wenlong; Wang, Peifang; Wang, Chao
2018-03-01
Waterborne viruses with a low infectious dose and a high pathogenic potential pose a serious risk for humans all over the world, calling for a cost-effective and environmentally-friendly inactivation method. Optimizing operational parameters during the disinfection process is a facile and efficient way to achieve the satisfactory viral inactivation efficiency. Here, the antiviral effects of a metal-free visible-light-driven graphitic carbon nitride (g-C 3 N 4 ) photocatalyst were optimized by varying operating parameters with response surface methodology (RSM). Twenty sets of viral inactivation experiments were performed by changing three operating parameters, namely light intensity, photocatalyst loading and reaction temperature, at five levels. According to the experimental data, a semi-empirical model was developed with a high accuracy (determination coefficient R 2 = 0.9908) and then applied to predict the final inactivation efficiency of MS2 (a model virus) after 180 min exposure to the photocatalyst and visible light illumination. The corresponding optimal values were found to be 199.80 mW/cm 2 , 135.40 mg/L and 24.05 °C for light intensity, photocatalyst loading and reaction temperature, respectively. Under the optimized conditions, 8 log PFU/mL of viruses could be completely inactivated by g-C 3 N 4 without regrowth within 240 min visible light irradiation. Our study provides not only an extended application of RSM in photocatalytic viral inactivation but also a green and effective method for water disinfection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Some Properties of Multiple Parameters Linear Programming
Directory of Open Access Journals (Sweden)
Maoqin Li
2010-01-01
Full Text Available We consider a linear programming problem in which the right-hand side vector depends on multiple parameters. We study the characters of the optimal value function and the critical regions based on the concept of the optimal partition. We show that the domain of the optimal value function f can be decomposed into finitely many subsets with disjoint relative interiors, which is different from the result based on the concept of the optimal basis. And any directional derivative of f at any point can be computed by solving a linear programming problem when only an optimal solution is available at the point.
Some Properties of Multiple Parameters Linear Programming
Directory of Open Access Journals (Sweden)
Yan Hong
2010-01-01
Full Text Available Abstract We consider a linear programming problem in which the right-hand side vector depends on multiple parameters. We study the characters of the optimal value function and the critical regions based on the concept of the optimal partition. We show that the domain of the optimal value function can be decomposed into finitely many subsets with disjoint relative interiors, which is different from the result based on the concept of the optimal basis. And any directional derivative of at any point can be computed by solving a linear programming problem when only an optimal solution is available at the point.
Stochastic optimization methods
Marti, Kurt
2005-01-01
Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.
Optimal CT scanning parameters for commonly used tumor ablation applicators
International Nuclear Information System (INIS)
Eltorai, Adam E.M.; Baird, Grayson L.; Monu, Nicholas; Wolf, Farrah; Seidler, Michael; Collins, Scott; Kim, Jeomsoon; Dupuy, Damian E.
2017-01-01
Highlights: • This study aimed to determine optimal scanning parameters for commonly-used tumor ablation applicators. • The findings illustrate the overall interaction of the effects of kVp, ASiR, and reconstruction algorithm within and between probes, so that radiologists may easily reference optimal imaging performance. • Optimum combinations for each probe are provided. - Abstract: Purpose: CT-beam hardening artifact can make tumor margin visualization and its relationship to the ablation applicator tip challenging. To determine optimal scanning parameters for commonly-used applicators. Materials and methods: Applicators were placed in ex-vivo cow livers with implanted mock tumors, surrounded by bolus gel. Various CT scans were performed at 440 mA with 5 mm thickness changing kVp, scan time, ASiR, scan type, pitch, and reconstruction algorithm. Four radiologists blindly scored the images for image quality and artifact quantitatively. Results: A significant relationship between probe, kVp level, ASiR level, and reconstruction algorithm was observed concerning both image artifact and image quality (both p = <0.0001). Specifically, there are certain combinations of kVp, ASiR, and reconstruction algorithm that yield better images than other combinations. In particular, one probe performed equivalently or better than any competing probe considered here, regardless of kVp, ASiR, and reconstruction algorithm combination. Conclusion: The findings illustrate the overall interaction of the effects of kVp, ASiR, and reconstruction algorithm within and between probes, so that radiologists may easily reference optimal imaging performance for a certain combinations of kVp, ASiR, reconstruction algorithm and probes at their disposal. Optimum combinations for each probe are provided.
Optimal CT scanning parameters for commonly used tumor ablation applicators
Energy Technology Data Exchange (ETDEWEB)
Eltorai, Adam E.M. [Warren Alpert Medical School of Brown University (United States); Baird, Grayson L. [Department of Diagnostic Imaging (United States); Warren Alpert Medical School of Brown University (United States); Lifespan Biostatistics Core (United States); Rhode Island Hospital (United States); Monu, Nicholas; Wolf, Farrah; Seidler, Michael [Department of Diagnostic Imaging (United States); Warren Alpert Medical School of Brown University (United States); Rhode Island Hospital (United States); Collins, Scott [Department of Diagnostic Imaging (United States); Rhode Island Hospital (United States); Kim, Jeomsoon [Department of Medical Physics (United States); Rhode Island Hospital (United States); Dupuy, Damian E., E-mail: ddupuy@comcast.net [Department of Diagnostic Imaging (United States); Warren Alpert Medical School of Brown University (United States); Rhode Island Hospital (United States)
2017-04-15
Highlights: • This study aimed to determine optimal scanning parameters for commonly-used tumor ablation applicators. • The findings illustrate the overall interaction of the effects of kVp, ASiR, and reconstruction algorithm within and between probes, so that radiologists may easily reference optimal imaging performance. • Optimum combinations for each probe are provided. - Abstract: Purpose: CT-beam hardening artifact can make tumor margin visualization and its relationship to the ablation applicator tip challenging. To determine optimal scanning parameters for commonly-used applicators. Materials and methods: Applicators were placed in ex-vivo cow livers with implanted mock tumors, surrounded by bolus gel. Various CT scans were performed at 440 mA with 5 mm thickness changing kVp, scan time, ASiR, scan type, pitch, and reconstruction algorithm. Four radiologists blindly scored the images for image quality and artifact quantitatively. Results: A significant relationship between probe, kVp level, ASiR level, and reconstruction algorithm was observed concerning both image artifact and image quality (both p = <0.0001). Specifically, there are certain combinations of kVp, ASiR, and reconstruction algorithm that yield better images than other combinations. In particular, one probe performed equivalently or better than any competing probe considered here, regardless of kVp, ASiR, and reconstruction algorithm combination. Conclusion: The findings illustrate the overall interaction of the effects of kVp, ASiR, and reconstruction algorithm within and between probes, so that radiologists may easily reference optimal imaging performance for a certain combinations of kVp, ASiR, reconstruction algorithm and probes at their disposal. Optimum combinations for each probe are provided.
Effects of Random Values for Particle Swarm Optimization Algorithm
Directory of Open Access Journals (Sweden)
Hou-Ping Dai
2018-02-01
Full Text Available Particle swarm optimization (PSO algorithm is generally improved by adaptively adjusting the inertia weight or combining with other evolution algorithms. However, in most modified PSO algorithms, the random values are always generated by uniform distribution in the range of [0, 1]. In this study, the random values, which are generated by uniform distribution in the ranges of [0, 1] and [−1, 1], and Gauss distribution with mean 0 and variance 1 ( U [ 0 , 1 ] , U [ − 1 , 1 ] and G ( 0 , 1 , are respectively used in the standard PSO and linear decreasing inertia weight (LDIW PSO algorithms. For comparison, the deterministic PSO algorithm, in which the random values are set as 0.5, is also investigated in this study. Some benchmark functions and the pressure vessel design problem are selected to test these algorithms with different types of random values in three space dimensions (10, 30, and 100. The experimental results show that the standard PSO and LDIW-PSO algorithms with random values generated by U [ − 1 , 1 ] or G ( 0 , 1 are more likely to avoid falling into local optima and quickly obtain the global optima. This is because the large-scale random values can expand the range of particle velocity to make the particle more likely to escape from local optima and obtain the global optima. Although the random values generated by U [ − 1 , 1 ] or G ( 0 , 1 are beneficial to improve the global searching ability, the local searching ability for a low dimensional practical optimization problem may be decreased due to the finite particles.
Determination of radial profile of ICF hot spot's state by multi-objective parameters optimization
International Nuclear Information System (INIS)
Dong Jianjun; Deng Bo; Cao Zhurong; Ding Yongkun; Jiang Shaoen
2014-01-01
A method using multi-objective parameters optimization is presented to determine the radial profile of hot spot temperature and density. And a parameter space which contain five variables: the temperatures at center and the interface of fuel and remain ablator, the maximum model density of remain ablator, the mass ratio of remain ablator to initial ablator and the position of interface between fuel and the remain ablator, is used to described the hot spot radial temperature and density. Two objective functions are set as the variances of normalized intensity profile from experiment X-ray images and the theory calculation. Another objective function is set as the variance of experiment average temperature of hot spot and the average temperature calculated by theoretical model. The optimized parameters are obtained by multi-objective genetic algorithm searching for the five dimension parameter space, thereby the optimized radial temperature and density profiles can be determined. The radial temperature and density profiles of hot spot by experiment data measured by KB microscope cooperating with X-ray film are presented. It is observed that the temperature profile is strongly correlated to the objective functions. (authors)
Optimal Selection of the Sampling Interval for Estimation of Modal Parameters by an ARMA- Model
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning
1993-01-01
Optimal selection of the sampling interval for estimation of the modal parameters by an ARMA-model for a white noise loaded structure modelled as a single degree of- freedom linear mechanical system is considered. An analytical solution for an optimal uniform sampling interval, which is optimal...
Shang, Han Lin
2015-01-01
The Box-Cox transformation can sometimes yield noticeable improvements in model simplicity, variance homogeneity and precision of estimation, such as in modelling and forecasting age-specific fertility. Despite its importance, there have been few studies focusing on the optimal selection of Box-Cox transformation parameters in demographic forecasting. A simple method is proposed for selecting the optimal Box-Cox transformation parameter, along with an algorithm based on an in-sample forecast ...
Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver
Kang, Ling; Zhou, Liwei
2018-02-01
Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.
Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory
Tu, X.; Zhao, P.; Zhou, Y. F.
2017-12-01
In this paper, we focus on how to improve the identification efficiency of friction parameters in a robot joint. First, the static friction model that has only linear dependencies with respect to their parameters is adopted so that the servomotor dynamics can be linearized. In this case, the traditional exciting trajectory based on Fourier series is modified by replacing the constant term with quintic polynomial to ensure the boundary continuity of speed and acceleration. Then, the Fourier-related parameters are optimized by genetic algorithm(GA) in which the condition number of regression matrix is set as the fitness function. At last, compared with the constant-velocity tracking experiment, the friction parameters from the exciting trajectory experiment has the similar result with the advantage of time reduction.
PI Stabilization for Congestion Control of AQM Routers with Tuning Parameter Optimization
Directory of Open Access Journals (Sweden)
S. Chebli
2016-09-01
Full Text Available In this paper, we consider the problem of stabilizing network using a new proportional- integral (PI based congestion controller in active queue management (AQM router; with appropriate model approximation in the first order delay systems, we seek a stability region of the controller by using the Hermite- Biehler theorem, which isapplicable to quasipolynomials. A Genetic Algorithm technique is employed to derive optimal or near optimal PI controller parameters.
International Nuclear Information System (INIS)
Subramanian, Swetha; Mast, T Douglas
2015-01-01
Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature. (note)
Subramanian, Swetha; Mast, T Douglas
2015-10-07
Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.
Optimization of rotational arc station parameter optimized radiation therapy
Energy Technology Data Exchange (ETDEWEB)
Dong, P.; Ungun, B. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Boyd, S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Xing, L., E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)
2016-09-15
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was
Optimization of rotational arc station parameter optimized radiation therapy
International Nuclear Information System (INIS)
Dong, P.; Ungun, B.; Boyd, S.; Xing, L.
2016-01-01
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was
Reference values of clinical chemistry and hematology parameters in rhesus monkeys (Macaca mulatta).
Chen, Younan; Qin, Shengfang; Ding, Yang; Wei, Lingling; Zhang, Jie; Li, Hongxia; Bu, Hong; Lu, Yanrong; Cheng, Jingqiu
2009-01-01
Rhesus monkey models are valuable to the studies of human biology. Reference values for clinical chemistry and hematology parameters of rhesus monkeys are required for proper data interpretation. Whole blood was collected from 36 healthy Chinese rhesus monkeys (Macaca mulatta) of either sex, 3 to 5 yr old. Routine chemistry and hematology parameters, and some special coagulation parameters including thromboelastograph and activities of coagulation factors were tested. We presented here the baseline values of clinical chemistry and hematology parameters in normal Chinese rhesus monkeys. These data may provide valuable information for veterinarians and investigators using rhesus monkeys in experimental studies.
Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.
2014-06-01
Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input
Energy Technology Data Exchange (ETDEWEB)
He, L., E-mail: li.he@ryerson.ca [Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Huang, G.H. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); College of Urban Environmental Sciences, Peking University, Beijing 100871 (China); Lu, H.W. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)
2010-04-15
Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the 'true' ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes.
Ghadai, R. K.; Das, P. P.; Shivakoti, I.; Mondal, S. C.; Swain, B. P.
2017-07-01
Diamond-like carbon (DLC) coatings are widely used in medical, manufacturing and aerospace industries due to their excellent mechanical, biological, optical and tribological properties. The selection of optimal process parameters for efficient characteristics of DLC film is always a challenging issue for the materials science researchers. The optimal combination of the process parameters involved in the deposition of DLC films provide a better result, which subsequently help other researchers to choose the process parameters. In the present work Grey Relation Analysis (GRA) and Fuzzy-logic are being used for the optimization of process parameters in DLC film coating by using plasma assist chemical vapour deposition (PACVD) technique. The bias voltage, bias frequency, deposition pressure, gas composition are considered as input process parameters and hardness (GPa), Young's modulus (GPa), ratio between diamond to graphic fraction, (Id/Ig) ratio are considered as response parameters. The input parameters are optimized by grey fuzzy analysis. The contribution of individual input parameter is done by ANOVA. In this analysis found that bias voltage having the least influence and gas composition has highest influence in the PACVD deposited DLC films. The grey fuzzy analysis results indicated that optimum results for bias voltage, bias frequency, deposition pressure, gas composition for the DLC thin films are -50 V, 6 kHz, 4 μbar and 60:40 % respectively.
Robust Optimization for Household Load Scheduling with Uncertain Parameters
Directory of Open Access Journals (Sweden)
Jidong Wang
2018-04-01
Full Text Available Home energy management systems (HEMS face many challenges of uncertainty, which have a great impact on the scheduling of home appliances. To handle the uncertain parameters in the household load scheduling problem, this paper uses a robust optimization method to rebuild the household load scheduling model for home energy management. The model proposed in this paper can provide the complete robust schedules for customers while considering the disturbance of uncertain parameters. The complete robust schedules can not only guarantee the customers’ comfort constraints but also cooperatively schedule the electric devices for cost minimization and load shifting. Moreover, it is available for customers to obtain multiple schedules through setting different robust levels while considering the trade-off between the comfort and economy.
Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm
Directory of Open Access Journals (Sweden)
Peng Li
2016-01-01
Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.
High-resolution MRI of the labyrinth. Optimization of scan parameters with 3D-FSE
International Nuclear Information System (INIS)
Sakata, Motomichi; Harada, Kuniaki; Shirase, Ryuji; Kumagai, Akiko; Ogasawara, Masashi
2005-01-01
The aim of our study was to optimize the parameters of high-resolution MRI of the labyrinth with a 3D fast spin-echo (3D-FSE) sequence. We investigated repetition time (TR), echo time (TE), Matrix, field of view (FOV), and coil selection in terms of CNR (contrast-to-noise ratio) and SNR (signal-to-noise ratio) by comparing axial images and/or three-dimensional images. The optimal 3D-FSE sequence parameters were as follows: 1.5 Tesla MR unit (Signa LX, GE Medical Systems), 3D-FSE sequence, dual 3-inch surface coil, acquisition time=12.08 min, TR=5000 msec, TE=300 msec, 3 number of excitations (NEX), FOV=12 cm, matrix=256 x 256, slice thickness=0.5 mm/0.0 sp, echo train=64, bandwidth=±31.5 kHz. High-resolution MRI of the labyrinth using the optimized 3D-FSE sequence parameters permits visualization of important anatomic details (such as scala tympani and scala vestibuli), making it possible to determine inner ear anomalies and the patency of cochlear turns. To obtain excellent heavily T2-weighted axial and three-dimensional images in the labyrinth, high CNR, SNR, and spatial resolution are significant factors at the present time. Furthermore, it is important not only to optimize the scan parameters of 3D-FSE but also to select an appropriate coil for high-resolution MRI of the labyrinth. (author)
Study of dose calculation and beam parameters optimization with genetic algorithm in IMRT
International Nuclear Information System (INIS)
Chen Chaomin; Tang Mutao; Zhou Linghong; Lv Qingwen; Wang Zhuoyu; Chen Guangjie
2006-01-01
Objective: To study the construction of dose calculation model and the method of automatic beam parameters selection in IMRT. Methods: The three-dimension convolution dose calculation model of photon was constructed with the methods of Fast Fourier Transform. The objective function based on dose constrain was used to evaluate the fitness of individuals. The beam weights were optimized with genetic algorithm. Results: After 100 iterative analyses, the treatment planning system produced highly conformal and homogeneous dose distributions. Conclusion: the throe-dimension convolution dose calculation model of photon gave more accurate results than the conventional models; genetic algorithm is valid and efficient in IMRT beam parameters optimization. (authors)
Optimization of refrigeration machinery
Energy Technology Data Exchange (ETDEWEB)
Wall, Goeran [University Coll. of Eskilstuna/Vaesteraas (SE)
1991-11-01
This paper reports the application of thermoeconomics to the optimization of a heat pump. The method is suited for application to thermodynamic processes and yields exergy losses. The marginal cost of an arbitary variable can also be calculated. The efficiencies of the compressor, condenser, evaporator and electric motor are chosen as variables to be optimized. Parameters such as the price of electricity and the temperature of the delivered heat may vary between optimizations, and results are presented for different parameter values. The results show that the efficiency of the electric motor is the most important variable. (author).
Optimization of turning process parameters by using grey-Taguchi
African Journals Online (AJOL)
DR OKE
... India continue to choose the operating conditions solely on the basis of handbook values .... Surface Roughness Measuring instrument ... process control parameters like spindle speed, feed and depth of cut. ..... and Industrial Engineering.
Optimal stability polynomials for numerical integration of initial value problems
Ketcheson, David I.
2013-01-08
We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step size and corresponding method for a given problem when the spectrum of the initial value problem is known. The problem is expressed in terms of a general least deviation feasibility problem. Its solution is obtained by a new fast, accurate, and robust algorithm based on convex optimization techniques. Global convergence of the algorithm is proven in the case that the order of approximation is one and in the case that the spectrum encloses a starlike region. Examples demonstrate the effectiveness of the proposed algorithm even when these conditions are not satisfied.
Recommended food chain parameter values and distributions for use around CANDU sites in Ontario
Energy Technology Data Exchange (ETDEWEB)
Peterson, S R
1996-07-01
Site-specific parameter values should be used whenever possible to increase the accuracy of dose predictions. Parameter values specific to agricultural practices and human lifestyles in southern Ontario are presented for use in CSA-N288.1-M87 (Canadian Standards Association Guidelines for Calculating Derived Release Limits for Radioactive Material in Airborne and Liquid Effluents for Normal Operation of Nuclear Facilities) and CHERPAC (Chalk River Environmental Research Pathways Analysis Code). Use of these values in place of the default parameter values in CSA-N288.1-M87 is shown to reduce the predicted dose by nearly a factor of 2. (author). 27 refs., 6 tabs., 1 fig.
Recommended food chain parameter values and distributions for use around CANDU sites in Ontario
International Nuclear Information System (INIS)
Peterson, S.R.
1996-07-01
Site-specific parameter values should be used whenever possible to increase the accuracy of dose predictions. Parameter values specific to agricultural practices and human lifestyles in southern Ontario are presented for use in CSA-N288.1-M87 (Canadian Standards Association Guidelines for Calculating Derived Release Limits for Radioactive Material in Airborne and Liquid Effluents for Normal Operation of Nuclear Facilities) and CHERPAC (Chalk River Environmental Research Pathways Analysis Code). Use of these values in place of the default parameter values in CSA-N288.1-M87 is shown to reduce the predicted dose by nearly a factor of 2. (author). 27 refs., 6 tabs., 1 fig
Directory of Open Access Journals (Sweden)
Mladenović Zorica
2006-01-01
Full Text Available In this paper different aspects of value-at-risk estimation are considered. Daily returns of CISCO, INTEL and NASDAQ stock indices are analyzed for period: September 1996 - September 2006. Methods that incorporate time varying variability and heavy tails of the empirical distributions of returns are implemented. The main finding of the paper is that standard econometric methods underestimate the value-at-risk parameter if heavy tails of the empirical distribution are not explicitly taken into account. .
Diagnostic value of hematological parameters in patients with osteoarthritis
Directory of Open Access Journals (Sweden)
Serdar Hira
2017-03-01
Results: There were no significant differences in WBC, RDW, PLT, RPR levels between two groups. NLR and PLR values were significantly higher in the osteoarthritis group than in the control group. RBC, MPV and PDW values were significantly lower in the osteoarthritis group than in the control group (all . MPV and RBC were negatively correlated with ESR and CRP in osteoarthritis patients. Conclusion: Hematological inflammatory markers might be useful parameters that could be used in patients with osteoarthritis. [Cukurova Med J 2017; 42(1.000: 120-125
Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles
Morelli, Eugene A.; Klein, Vladislav
1990-01-01
A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.
Optimization of process parameters in precipitation for consistent quality UO2 powder production
International Nuclear Information System (INIS)
Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N.
2013-01-01
Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO 2 powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO 2 powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO 2 powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)
Directory of Open Access Journals (Sweden)
Zhenhua Wang
2016-04-01
Full Text Available In this article, the cutting parameters optimization method for aluminum alloy AlMn1Cu in high-speed milling was studied in order to properly select the high-speed cutting parameters. First, a back propagation neural network model for predicting surface roughness of AlMn1Cu was proposed. The prediction model can improve the prediction accuracy and well work out the higher-order nonlinear relationship between surface roughness and cutting parameters. Second, considering the constraints of technical requirements on surface roughness, a mathematical model for optimizing cutting parameters based on the Bayesian neural network prediction model of surface roughness was established so as to obtain the maximum machining efficiency. The genetic algorithm adopting the homogeneous design to initialize population as well as steady-state reproduction without duplicates was also presented. The application indicates that the algorithm can effectively avoid precocity, strengthen global optimization, and increase the calculation efficiency. Finally, a case was presented on the application of the proposed cutting parameters optimization algorithm to optimize the cutting parameters.
DEVELOPMENT OF VADOSE-ZONE HYDRAULIC PARAMETER VALUES
Energy Technology Data Exchange (ETDEWEB)
ROGERS PM
2008-01-21
Several approaches have been developed to establish a relation between the soil-moisture retention curve and readily available soil properties. Those relationships are referred to as pedotransfer functions. Described in this paper are the rationale, approach, and corroboration for use of a nonparametric pedotransfer function for the estimation of soil hydraulic-parameter values at the yucca Mountain area in Nevada for simulations of net infiltration. This approach, shown to be applicable for use at Yucca Mountain, is also applicable for use at the Hanford Site where the underlying data were collected.
DEVELOPMENT OF VADOSE ZONE HYDRAULIC PARAMETER VALUES
International Nuclear Information System (INIS)
ROGERS PM
2008-01-01
Several approaches have been developed to establish a relation between the soil-moisture retention curve and readily available soil properties. Those relationships are referred to as pedotransfer functions. Described in this paper are the rationale, approach, and corroboration for use of a nonparametric pedotransfer function for the estimation of soil hydraulic-parameter values at the yucca Mountain area in Nevada for simulations of net infiltration. This approach, shown to be applicable for use at Yucca Mountain, is also applicable for use at the Hanford Site where the underlying data were collected
Efficiently enclosing the compact binary parameter space by singular-value decomposition
International Nuclear Information System (INIS)
Cannon, Kipp; Hanna, Chad; Keppel, Drew
2011-01-01
Gravitational-wave searches for the merger of compact binaries use matched filtering as the method of detecting signals and estimating parameters. Such searches construct a fine mesh of filters covering a signal parameter space at high density. Previously it has been shown that singular-value decomposition can reduce the effective number of filters required to search the data. Here we study how the basis provided by the singular-value decomposition changes dimension as a function of template-bank density. We will demonstrate that it is sufficient to use the basis provided by the singular-value decomposition of a low-density bank to accurately reconstruct arbitrary points within the boundaries of the template bank. Since this technique is purely numerical, it may have applications to interpolating the space of numerical relativity waveforms.
He, L; Huang, G H; Lu, H W
2010-04-15
Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the "true" ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes. 2009 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-08-25
This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of the hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.
Directory of Open Access Journals (Sweden)
Yu Huang
Full Text Available Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.
Optimization of Cutting Parameters on Delamination of Drilling Glass-Polyester Composites
Directory of Open Access Journals (Sweden)
Majid Habeeb Faidh-Allah
2018-02-01
Full Text Available This paper attempted to study the effect of cutting parameters (spindle speed and feed rate on delamination phenomena during the drilling glass-polyester composites. Drilling process was done by CNC machine with 10 mm diameter of high-speed steel (HSS drill bit. Taguchi technique with L16 orthogonal layout was used to analyze the effective parameters on delamination factor. The optimal experiment was no. 13 with spindle speed 1273 rpm and feed 0.05 mm/rev with minimum delamination factor 1.28.
Saturne II synchroton injector parameters operation and control: computerization and optimization
International Nuclear Information System (INIS)
Lagniel, J.M.
1983-01-01
The injector control system has been studied, aiming at the beam quality improvement, the increasing of the versatility, and a better machine availability. It has been choosen to realize the three following functions: - acquisition of the principal parameters of the process, so as to control them quickly and to be warned if one of them is wrong (monitoring); - the control of those parameters, one by one or by families (starting, operating point); - the research of an optimal control (on a model or on the process itself) [fr
Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems
Directory of Open Access Journals (Sweden)
Erdem Demircioglu
2015-01-01
Full Text Available This paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN. To achieve the best ANN performance, Particle Swarm Optimization (PSO and Differential Evolution (DE are applied with ANN’s conventional training algorithm in optimization of the modeling performance. In this study, the slot parameters are assumed as slot distance to the radiating patch edge, slot width, and length. Bandwidth enhancement is applied to a formerly designed MMPA fed by a microstrip transmission line attached to the center pin of 50 ohm SMA connecter. The simulated antennas are fabricated and measured. Measurement results are utilized for training the artificial intelligence models. The ANN provides 98% model accuracy for rectangular slots and 97% for square slots; however, ANFIS offer 90% accuracy with lack of resonance frequency tracking.
Boland, J. S., III
1973-01-01
The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.
Moazami Goodarzi, Hamed; Kazemi, Mohammad Hosein
2018-05-01
Microgrid (MG) clustering is regarded as an important driver in improving the robustness of MGs. However, little research has been conducted on providing appropriate MG clustering. This article addresses this shortfall. It proposes a novel multi-objective optimization approach for finding optimal clustering of autonomous MGs by focusing on variables such as distributed generation (DG) droop parameters, the location and capacity of DG units, renewable energy sources, capacitors and powerline transmission. Power losses are minimized and voltage stability is improved while virtual cut-set lines with minimum power transmission for clustering MGs are obtained. A novel chaotic grey wolf optimizer (CGWO) algorithm is applied to solve the proposed multi-objective problem. The performance of the approach is evaluated by utilizing a 69-bus MG in several scenarios.
Optimization of process parameters in welding of dissimilar steels using robot TIG welding
Navaneeswar Reddy, G.; VenkataRamana, M.
2018-03-01
Robot TIG welding is a modern technique used for joining two work pieces with high precision. Design of Experiments is used to conduct experiments by varying weld parameters like current, wire feed and travelling speed. The welding parameters play important role in joining of dissimilar stainless steel SS 304L and SS430. In this work, influences of welding parameter on Robot TIG Welded specimens are investigated using Response Surface Methodology. The Micro Vickers hardness tests of the weldments are measured. The process parameters are optimized to maximize the hardness of the weldments.
Directory of Open Access Journals (Sweden)
Xiaomeng Yin
2018-01-01
Full Text Available With respect to the nonlinear hypersonic vehicle (HV dynamics, achieving a satisfactory tracking control performance under uncertainties is always a challenge. The high-order sliding mode control (HOSMC method with strong robustness has been applied to HVs. However, there are few methods for determining suitable HOSMC parameters for an efficacious control of HV, given that the uncertainties are randomly distributed. In this study, we introduce a hybrid fireworks algorithm- (FWA- based parameter optimization into HV control design to satisfy the design requirements with high probability. First, the complex relation between design parameters and the cost function that evaluates the likelihood of system instability and violation of design requirements is modeled via stochastic robustness analysis. Subsequently, we propose an efficient hybrid FWA to solve the complex optimization problem concerning the uncertainties. The efficiency of the proposed hybrid FWA-based optimization method is demonstrated in the search of the optimal HV controller, in which the proposed method exhibits a better performance when compared with other algorithms.
Energetical optimization and parameters selection for a fixed faceted mirror concentrator
International Nuclear Information System (INIS)
Nicolas, R.O.; Duran, J.C.; Dawidowski, L.E.
1990-01-01
A method which allows to select the parameters of a cylindrical solar collector by means of an energetical optimization is presented. In particular, the energy collected by the operating fluid and the collection efficiency of a Fixed Faceted Mirror Concentrator (FFMC) are obtained and compared for different sets of parameters. To this end, the two-dimensional optical analysis for non-perfect cylindrical concentrators presented previously is used. Some graphs analyzing the variations of the yearly efficiency of the FFMC as a function of those parameters are given. Finally, the possibility of using a second concentrator in the receiver plane of the FFMC in order to improve the whole efficiency of the prototype is also analyzed. (Author)
Factorization and the synthesis of optimal feedback gains for distributed parameter systems
Milman, Mark H.; Scheid, Robert E.
1990-01-01
An approach based on Volterra factorization leads to a new methodology for the analysis and synthesis of the optimal feedback gain in the finite-time linear quadratic control problem for distributed parameter systems. The approach circumvents the need for solving and analyzing Riccati equations and provides a more transparent connection between the system dynamics and the optimal gain. The general results are further extended and specialized for the case where the underlying state is characterized by autonomous differential-delay dynamics. Numerical examples are given to illustrate the second-order convergence rate that is derived for an approximation scheme for the optimal feedback gain in the differential-delay problem.
Optimal process parameters for phosphorus spin-on-doping of germanium
Energy Technology Data Exchange (ETDEWEB)
Boldrini, Virginia [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, Padova (Italy); Carturan, Sara Maria, E-mail: sara.carturan@lnl.infn.it [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, Padova (Italy); Maggioni, Gianluigi; Napolitani, Enrico [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, Padova (Italy); Napoli, Daniel Ricardo [INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, Padova (Italy); Camattari, Riccardo [INFN Sezione di Ferrara, Dipartimento di Fisica, Università di Ferrara, Via Saragat 1, 44122, Ferrara (Italy); De Salvador, Davide [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, Padova (Italy)
2017-01-15
Highlights: • Optimized protocol for the application of phosphorus spin-on-doping to Ge surface. • Homogeneous n-type Ge layers, fully electrically active, are obtained. • Crucial parameters for SOD curing are relative humidity, time and temperature. • Characterization of Ge loss from the surface into the SOD film by diffusion. • Spike annealing in standard tube chamber furnace are performed. - Abstract: The fabrication of homogeneously doped germanium layers characterized by total electrical activation is currently a hot topic in many fields, such as microelectronics, photovoltaics, optics and radiation detectors. Phosphorus spin-on-doping technique has been implemented on Ge wafers, by developing a protocol for the curing process and subsequent diffusion annealing for optimal doping. Parameters such as relative humidity and curing time turned out to affect the surface morphology, the degree of reticulation reached by the dopant source and the amount of dopant available for diffusion. After spike annealing in a conventional furnace, diffusion profiles and electrical properties have been measured. Ge loss from the surface during high-temperature annealing, due to diffusion into the source film, has been observed and quantified.
Institute of Scientific and Technical Information of China (English)
李一哲; 张廷龙; 刘秋雨; 李英
2018-01-01
The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present.However,there are many parameters for these models,and weather the reasonable values of these parameters were taken,have important impact on the models simulation results.In the past,the sensitivity and the optimization of model parameters were analyzed and discussed in many researches.But the temporal and spatial heterogeneity of the optimal parameters is less concerned.In this paper,the BIOME-BGC model was used as an example.In the evergreen broad-leaved forest,deciduous broad-leaved forest and C3 grassland,the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type.The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site.Then we constructed the temporal heterogeneity judgment index,the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters.The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types,but the selected sensitive parameters were mostly consistent.The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types.The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity.In addition,the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial
SU-D-12A-06: A Comprehensive Parameter Analysis for Low Dose Cone-Beam CT Reconstruction
International Nuclear Information System (INIS)
Lu, W; Yan, H; Gu, X; Jiang, S; Jia, X; Bai, T; Zhou, L
2014-01-01
Purpose: There is always a parameter in compressive sensing based iterative reconstruction (IR) methods low dose cone-beam CT (CBCT), which controls the weight of regularization relative to data fidelity. A clear understanding of the relationship between image quality and parameter values is important. The purpose of this study is to investigate this subject based on experimental data and a representative advanced IR algorithm using Tight-frame (TF) regularization. Methods: Three data sets of a Catphan phantom acquired at low, regular and high dose levels are used. For each tests, 90 projections covering a 200-degree scan range are used for reconstruction. Three different regions-of-interest (ROIs) of different contrasts are used to calculate contrast-to-noise ratios (CNR) for contrast evaluation. A single point structure is used to measure modulation transfer function (MTF) for spatial-resolution evaluation. Finally, we analyze CNRs and MTFs to study the relationship between image quality and parameter selections. Results: It was found that: 1) there is no universal optimal parameter. The optimal parameter value depends on specific task and dose level. 2) There is a clear trade-off between CNR and resolution. The parameter for the best CNR is always smaller than that for the best resolution. 3) Optimal parameters are also dose-specific. Data acquired under a high dose protocol require less regularization, yielding smaller optimal parameter values. 4) Comparing with conventional FDK images, TF-based CBCT images are better under a certain optimally selected parameters. The advantages are more obvious for low dose data. Conclusion: We have investigated the relationship between image quality and parameter values in the TF-based IR algorithm. Preliminary results indicate optimal parameters are specific to both the task types and dose levels, providing guidance for selecting parameters in advanced IR algorithms. This work is supported in part by NIH (1R01CA154747-01)
Application of the Value Optimization Model of Key Factors Based on DSEM
Directory of Open Access Journals (Sweden)
Chao Su
2016-01-01
Full Text Available The key factors of the damping solvent extraction method (DSEM for the analysis of the unbounded medium are the size of bounded domain, the artificial damping ratio, and the finite element mesh density. To control the simulation accuracy and computational efficiency of the soil-structure interaction, this study establishes a value optimization model of key factors that is composed of the design variables, the objective function, and the constraint function system. Then the optimum solutions of key factors are obtained by the optimization model. According to some comparisons of the results provided by the different initial conditions, the value optimization model of key factors is feasible to govern the simulation accuracy and computational efficiency and to analyze the practical unbounded medium-structure interaction.
Application of HGSO to security based optimal placement and parameter setting of UPFC
International Nuclear Information System (INIS)
Tarafdar Hagh, Mehrdad; Alipour, Manijeh; Teimourzadeh, Saeed
2014-01-01
Highlights: • A new method for solving the security based UPFC placement and parameter setting problem is proposed. • The proposed method is a global method for all mixed-integer problems. • The proposed method has the ability of the parallel search in binary and continues space. • By using the proposed method, most of the problems due to line contingencies are solved. • Comparison studies are done to compare the performance of the proposed method. - Abstract: This paper presents a novel method to solve security based optimal placement and parameter setting of unified power flow controller (UPFC) problem based on hybrid group search optimization (HGSO) technique. Firstly, HGSO is introduced in order to solve mix-integer type problems. Afterwards, the proposed method is applied to the security based optimal placement and parameter setting of UPFC problem. The focus of the paper is to enhance the power system security through eliminating or minimizing the over loaded lines and the bus voltage limit violations under single line contingencies. Simulation studies are carried out on the IEEE 6-bus, IEEE 14-bus and IEEE 30-bus systems in order to verify the accuracy and robustness of the proposed method. The results indicate that by using the proposed method, the power system remains secure under single line contingencies
Error reduction and parameter optimization of the TAPIR method for fast T1 mapping.
Zaitsev, M; Steinhoff, S; Shah, N J
2003-06-01
A methodology is presented for the reduction of both systematic and random errors in T(1) determination using TAPIR, a Look-Locker-based fast T(1) mapping technique. The relations between various sequence parameters were carefully investigated in order to develop recipes for choosing optimal sequence parameters. Theoretical predictions for the optimal flip angle were verified experimentally. Inversion pulse imperfections were identified as the main source of systematic errors in T(1) determination with TAPIR. An effective remedy is demonstrated which includes extension of the measurement protocol to include a special sequence for mapping the inversion efficiency itself. Copyright 2003 Wiley-Liss, Inc.
Directory of Open Access Journals (Sweden)
Guozhen Hu
2017-12-01
Full Text Available A loosely coupled inductive power transfer (IPT system for industrial track applications has been researched in this paper. The IPT converter using primary Inductor-Capacitor-Inductor (LCL network and secondary parallel-compensations is analyzed combined coil design for optimal operating efficiency. Accurate mathematical analytical model and expressions of self-inductance and mutual inductance are proposed to achieve coil parameters. Furthermore, the optimization process is performed combined with the proposed resonant compensations and coil parameters. The results are evaluated and discussed using finite element analysis (FEA. Finally, an experimental prototype is constructed to verify the proposed approach and the experimental results show that the optimization can be better applied to industrial track distributed IPT system.
International Nuclear Information System (INIS)
Udayakumar, T.; Raja, K.; Afsal Husain, T.M.; Sathiya, P.
2014-01-01
Highlights: • Corrosion resistance and impact strength – predicted by response surface methodology. • Burn off length has highest significance on corrosion resistance. • Friction force is a strong determinant in changing impact strength. • Pareto front points generated by genetic algorithm aid to fix input control variable. • Pareto front will be a trade-off between corrosion resistance and impact strength. - Abstract: Friction welding finds widespread industrial use as a mass production process for joining materials. Friction welding process allows welding of several materials that are extremely difficult to fusion weld. Friction welding process parameters play a significant role in making good quality joints. To produce a good quality joint it is important to set up proper welding process parameters. This can be done by employing optimization techniques. This paper presents a multi objective optimization method for optimizing the process parameters during friction welding process. The proposed method combines the response surface methodology (RSM) with an intelligent optimization algorithm, i.e. genetic algorithm (GA). Corrosion resistance and impact strength of friction welded super duplex stainless steel (SDSS) (UNS S32760) joints were investigated considering three process parameters: friction force (F), upset force (U) and burn off length (B). Mathematical models were developed and the responses were adequately predicted. Direct and interaction effects of process parameters on responses were studied by plotting graphs. Burn off length has high significance on corrosion current followed by upset force and friction force. In the case of impact strength, friction force has high significance followed by upset force and burn off length. Multi objective optimization for maximizing the impact strength and minimizing the corrosion current (maximizing corrosion resistance) was carried out using GA with the RSM model. The optimization procedure resulted in
Optimal stability polynomials for numerical integration of initial value problems
Ketcheson, David I.; Ahmadia, Aron
2013-01-01
We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step
Optimization of CW-OSL parameters for improved dose detection threshold in Al2O3:C
International Nuclear Information System (INIS)
Rawat, N.S.; Dhabekar, B.; Kulkarni, M.S.; Muthe, K.P.; Mishra, D.R.; Soni, A.; Gupta, S.K.; Babu, D.A.R.
2014-01-01
Continuous wave optically stimulated luminescence (CW-OSL) is relatively a simple technique that offers good signal to noise ratio (SNR) and involves simple instrumentation. This study reports the influence and optimization of CW-OSL parameters on minimum detectable dose (MDD) using α-Al 2 O 3 :C phosphor. It is found that at a given stimulation intensity MDD in CW-OSL mode depends on signal integration time. At lower integration times MDD is inferior. It exhibits an improvement for intermediate values, shows a plateau region and deteriorates as integration time increases further. MDD is found to be ∼127 μGy at 4 mW/cm 2 stimulation intensity for integration time of 0.1 s, which improves to ∼10.5 μGy for 60 s. At stimulation intensity of 72 mW/cm 2 , MDD is 37 μGy for integration time of 60 s and improves significantly to 7 μGy for 1 s. - Highlights: • CW-OSL parameters are optimized to obtain best SNR and MDD in Al 2 O 3 :C. • MDD is found to depend on signal integration time and stimulation intensity. • With time, MDD initially improves, stabilizes then deteriorates. • At a given intensity, MDD is optimum for a certain range of integration time
Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set
Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.
2017-12-01
In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of
Flores, Jorge L.; García-Torales, G.; Ponce Ávila, Cristina
2006-08-01
This paper describes an in situ image recognition system designed to inspect the quality standards of the chocolate pops during their production. The essence of the recognition system is the localization of the events (i.e., defects) in the input images that affect the quality standards of pops. To this end, processing modules, based on correlation filter, and segmentation of images are employed with the objective of measuring the quality standards. Therefore, we designed the correlation filter and defined a set of features from the correlation plane. The desired values for these parameters are obtained by exploiting information about objects to be rejected in order to find the optimal discrimination capability of the system. Regarding this set of features, the pop can be correctly classified. The efficacy of the system has been tested thoroughly under laboratory conditions using at least 50 images, containing 3 different types of possible defects.
Directory of Open Access Journals (Sweden)
J.S. Pang
2014-08-01
Full Text Available This paper introduces the application of Taguchi optimization methodology in optimizing the cutting parameters of end-milling process for machining the halloysite nanotubes (HNTs with aluminium reinforced epoxy hybrid composite material under dry condition. The machining parameters which are chosen to be evaluated in this study are the depth of cut (d, cutting speed (S and feed rate (f. While, the response factors to be measured are the surface roughness of the machined composite surface and the cutting force. An orthogonal array of the Taguchi method was set-up and used to analyse the effect of the milling parameters on the surface roughness and cutting force. The result from this study shows that the application of the Taguchi method can determine the best combination of machining parameters that can provide the optimal machining response conditions which are the lowest surface roughness and lowest cutting force value. For the best surface finish, A1–B3–C3 (d = 0.4 mm, S = 1500 rpm, f = 60 mmpm is found to be the optimized combination of levels for all the three control factors from the analysis. Meanwhile, the optimized combination of levels for all the three control factors from the analysis which provides the lowest cutting force was found to be A2–B2–C2 (d = 0.6 mm, S = 1000 rpm, f = 40 mmpm.
DEFF Research Database (Denmark)
Pingen, Georg; Evgrafov, Anton; Maute, Kurt
2009-01-01
We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion...
Shape optimization of high power centrifugal compressor using multi-objective optimal method
Energy Technology Data Exchange (ETDEWEB)
Kang, Hyun Soo; Lee, Jeong Min; Kim, Youn Jea [School of Mechanical Engineering, Sungkyunkwan University, Seoul (Korea, Republic of)
2015-03-15
In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.
Shape optimization of high power centrifugal compressor using multi-objective optimal method
International Nuclear Information System (INIS)
Kang, Hyun Soo; Lee, Jeong Min; Kim, Youn Jea
2015-01-01
In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively
International Nuclear Information System (INIS)
Ahmadi, Mohamadreza; Mojallali, Hamed
2012-01-01
Highlights: ► A new meta-heuristic optimization algorithm. ► Integration of invasive weed optimization and chaotic search methods. ► A novel parameter identification scheme for chaotic systems. - Abstract: This paper introduces a novel hybrid optimization algorithm by taking advantage of the stochastic properties of chaotic search and the invasive weed optimization (IWO) method. In order to deal with the weaknesses associated with the conventional method, the proposed chaotic invasive weed optimization (CIWO) algorithm is presented which incorporates the capabilities of chaotic search methods. The functionality of the proposed optimization algorithm is investigated through several benchmark multi-dimensional functions. Furthermore, an identification technique for chaotic systems based on the CIWO algorithm is outlined and validated by several examples. The results established upon the proposed scheme are also supplemented which demonstrate superior performance with respect to other conventional methods.
Adaptive extremal optimization by detrended fluctuation analysis
International Nuclear Information System (INIS)
Hamacher, K.
2007-01-01
Global optimization is one of the key challenges in computational physics as several problems, e.g. protein structure prediction, the low-energy landscape of atomic clusters, detection of community structures in networks, or model-parameter fitting can be formulated as global optimization problems. Extremal optimization (EO) has become in recent years one particular, successful approach to the global optimization problem. As with almost all other global optimization approaches, EO is driven by an internal dynamics that depends crucially on one or more parameters. Recently, the existence of an optimal scheme for this internal parameter of EO was proven, so as to maximize the performance of the algorithm. However, this proof was not constructive, that is, one cannot use it to deduce the optimal parameter itself a priori. In this study we analyze the dynamics of EO for a test problem (spin glasses). Based on the results we propose an online measure of the performance of EO and a way to use this insight to reformulate the EO algorithm in order to construct optimal values of the internal parameter online without any input by the user. This approach will ultimately allow us to make EO parameter free and thus its application in general global optimization problems much more efficient
Handbook of parameter values for the prediction of radionuclide transfer to wildlife
Energy Technology Data Exchange (ETDEWEB)
NONE
2014-06-15
This handbook provides generic parameter values for estimating the transfer of radionuclides from environmental media to wildlife for the purpose of assessing potential radiation exposure under equilibrium conditions. These data are intended for use where site specific data are either not available or not required, and to parameterize generic assessment models. They are based on a comprehensive review of the available literature, including many Russian language publications that have not previously been available in English. The publication addresses the limitations of the parameter values and the applicability of data. Some general background information on the assessment of potential impacts of radioactive releases on wildlife is also included. It complements the existing handbook in the same IAEA series with parameter to assess the radiological impact to humans.
Correlating substituent parameter values to electron transport properties of molecules
International Nuclear Information System (INIS)
Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl
2004-01-01
There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values (σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared (R 2 ) of 0.863
An analysis to optimize the process parameters of friction stir welded ...
African Journals Online (AJOL)
The friction stir welding (FSW) of steel is a challenging task. Experiments are conducted here, with a tool having a conical pin of 0.4mm clearance. The process parameters are optimized by using the Taguchi technique based on Taguchi's L9 orthogonal array. Experiments have been conducted based on three process ...
Gribling, Sander; de Laat, David; Laurent, Monique
2017-01-01
In this paper we study bipartite quantum correlations using techniques from tracial polynomial optimization. We construct a hierarchy of semidefinite programming lower bounds on the minimal entanglement dimension of a bipartite correlation. This hierarchy converges to a new parameter: the minimal
Permanently split capacitor motor-study of the design parameters
Sarac, Vasilija; Stefanov, Goce
2017-09-01
Paper analyzes the influence of various design parameters on torque of permanently split capacitor motor. Motor analytical model is derived and it is used for calculating the performance characteristics of basic motor model. The acquired analytical model is applied in optimization software that uses genetic algorithms (GA) as an optimization method. Optimized motor model with increased torque is derived by varying three motor parameters in GA program: winding turns ratio, average air gap flux density and motor stack length. Increase of torque has been achieved for nominal operation but also at motor starting. Accuracy of the derived models is verified by Simulink. The acquired values of several motor parameters from transient characteristics of Simulink models are compared with the corresponding values obtained from analytical models of both motors, basic and optimized. Numerical analysis, based on finite element method (FEM), is also performed for both motor models. As a result of the FEM analysis, magnetic flux density in motor cross-section is calculated and adequate conclusions are derived in relation to core saturation and air gap flux density in both motor models.
Kaur, Guneet; Srivastava, Ashok K; Chand, Subhash
2012-09-01
1,3-propanediol (1,3-PD) is a chemical compound of immense importance primarily used as a raw material for fiber and textile industry. It can be produced by the fermentation of glycerol available abundantly as a by-product from the biodiesel plant. The present study was aimed at determination of key kinetic parameters of 1,3-PD fermentation by Clostridium diolis. Initial experiments on microbial growth inhibition were followed by optimization of nutrient medium recipe by statistical means. Batch kinetic data from studies in bioreactor using optimum concentration of variables obtained from statistical medium design was used for estimation of kinetic parameters of 1,3-PD production. Direct use of raw glycerol from biodiesel plant without any pre-treatment for 1,3-PD production using this strain investigated for the first time in this work gave results comparable to commercial glycerol. The parameter values obtained in this study would be used to develop a mathematical model for 1,3-PD to be used as a guide for designing various reactor operating strategies for further improving 1,3-PD production. An outline of protocol for model development has been discussed in the present work.
de Roo, Arjan; Sözer, Hasan; Aksit, Mehmet
Customers of today's complex embedded systems demand the optimization of multiple system qualities under varying operational conditions. To be able to influence the system qualities, the system must have parameters that can be adapted. Constraints may be defined on the value of these parameters.
International Nuclear Information System (INIS)
Xunjing, L.
1981-12-01
The vector-valued measure defined by the well-posed linear boundary value problems is discussed. The maximum principle of the optimal control problem with non-convex constraint is proved by using the vector-valued measure. Especially, the necessary conditions of the optimal control of elliptic systems is derived without the convexity of the control domain and the cost function. (author)
ECOS: values of parameters to be used for domestic animals
International Nuclear Information System (INIS)
Thorne, M.C.
1984-03-01
This report constitutes the database description for the domestic animals section of the biosphere code ECOS. Two categories of data are supplied, element-independent and element-dependent. The element-independent data comprise rates of food, water and soil consumption, inhalation rates and masses of animal tissues. The element-dependent data consist of f 1 (fractional gastrointestinal absorption), fsub(D) (fractional systematic deposition after inhalation) and NRF (weighted integrated retention function) values. All parameter values given are justified. (author)
Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar
2014-03-01
The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.
Natural selection and optimality
International Nuclear Information System (INIS)
Torres, J.L.
1989-01-01
It is assumed that Darwin's principle translates into optimal regimes of operation along metabolical pathways in an ecological system. Fitness is then defined in terms of the distance of a given individual's thermodynamic parameters from their optimal values. The method is illustrated testing maximum power as a criterion of merit satisfied in ATP synthesis. (author). 26 refs, 2 figs
Directory of Open Access Journals (Sweden)
Khaled Loukhaoukha
2013-01-01
Full Text Available We present a new optimal watermarking scheme based on discrete wavelet transform (DWT and singular value decomposition (SVD using multiobjective ant colony optimization (MOACO. A binary watermark is decomposed using a singular value decomposition. Then, the singular values are embedded in a detailed subband of host image. The trade-off between watermark transparency and robustness is controlled by multiple scaling factors (MSFs instead of a single scaling factor (SSF. Determining the optimal values of the multiple scaling factors (MSFs is a difficult problem. However, a multiobjective ant colony optimization is used to determine these values. Experimental results show much improved performances of the proposed scheme in terms of transparency and robustness compared to other watermarking schemes. Furthermore, it does not suffer from the problem of high probability of false positive detection of the watermarks.
Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar
2018-02-01
The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.
Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.
2018-01-01
Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection
Parameter Analysis of the VPIN (Volume synchronized Probability of Informed Trading) Metric
Energy Technology Data Exchange (ETDEWEB)
Song, Jung Heon; Wu, Kesheng; Simon, Horst D.
2014-03-01
VPIN (Volume synchronized Probability of Informed trading) is a leading indicator of liquidity-induced volatility. It is best known for having produced a signal more than hours before the Flash Crash of 2010. On that day, the market saw the biggest one-day point decline in the Dow Jones Industrial Average, which culminated to the market value of $1 trillion disappearing, but only to recover those losses twenty minutes later (Lauricella 2010). The computation of VPIN requires the user to set up a handful of free parameters. The values of these parameters significantly affect the effectiveness of VPIN as measured by the false positive rate (FPR). An earlier publication reported that a brute-force search of simple parameter combinations yielded a number of parameter combinations with FPR of 7%. This work is a systematic attempt to find an optimal parameter set using an optimization package, NOMAD (Nonlinear Optimization by Mesh Adaptive Direct Search) by Audet, le digabel, and tribes (2009) and le digabel (2011). We have implemented a number of techniques to reduce the computation time with NOMAD. Tests show that we can reduce the FPR to only 2%. To better understand the parameter choices, we have conducted a series of sensitivity analysis via uncertainty quantification on the parameter spaces using UQTK (Uncertainty Quantification Toolkit). Results have shown dominance of 2 parameters in the computation of FPR. Using the outputs from NOMAD optimization and sensitivity analysis, We recommend A range of values for each of the free parameters that perform well on a large set of futures trading records.
Directory of Open Access Journals (Sweden)
Chinmaya P. Mohanty
2017-04-01
Full Text Available Although significant research has gone into the field of electrical discharge machining (EDM, analysis related to the machining efficiency of the process with different electrodes has not been adequately made. Copper and brass are frequently used as electrode materials but graphite can be used as a potential electrode material due to its high melting point temperature and good electrical conductivity. In view of this, the present work attempts to compare the machinability of copper, graphite and brass electrodes while machining Inconel 718 super alloy. Taguchi’s L27 orthogonal array has been employed to collect data for the study and analyze effect of machining parameters on performance measures. The important performance measures selected for this study are material removal rate, tool wear rate, surface roughness and radial overcut. Machining parameters considered for analysis are open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and electrode material. From the experimental analysis, it is observed that electrode material, discharge current and pulse-on-time are the important parameters for all the performance measures. Utility concept has been implemented to transform a multiple performance characteristics into an equivalent performance characteristic. Non-linear regression analysis is carried out to develop a model relating process parameters and overall utility index. Finally, the quantum behaved particle swarm optimization (QPSO and particle swarm optimization (PSO algorithms have been used to compare the optimal level of cutting parameters. Results demonstrate the elegance of QPSO in terms of convergence and computational effort. The optimal parametric setting obtained through both the approaches is validated by conducting confirmation experiments.
Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate
International Nuclear Information System (INIS)
Li Jun; Altschuler, Martin D; Hahn, Stephen M; Zhu, Timothy C
2008-01-01
results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure
Optimal time points sampling in pathway modelling.
Hu, Shiyan
2004-01-01
Modelling cellular dynamics based on experimental data is at the heart of system biology. Considerable progress has been made to dynamic pathway modelling as well as the related parameter estimation. However, few of them gives consideration for the issue of optimal sampling time selection for parameter estimation. Time course experiments in molecular biology rarely produce large and accurate data sets and the experiments involved are usually time consuming and expensive. Therefore, to approximate parameters for models with only few available sampling data is of significant practical value. For signal transduction, the sampling intervals are usually not evenly distributed and are based on heuristics. In the paper, we investigate an approach to guide the process of selecting time points in an optimal way to minimize the variance of parameter estimates. In the method, we first formulate the problem to a nonlinear constrained optimization problem by maximum likelihood estimation. We then modify and apply a quantum-inspired evolutionary algorithm, which combines the advantages of both quantum computing and evolutionary computing, to solve the optimization problem. The new algorithm does not suffer from the morass of selecting good initial values and being stuck into local optimum as usually accompanied with the conventional numerical optimization techniques. The simulation results indicate the soundness of the new method.
A New Five-Parameter Fréchet Model for Extreme Values
Directory of Open Access Journals (Sweden)
Muhammad Ahsan ul Haq
2017-09-01
Full Text Available A new five parameter Fréchet model for Extreme Values was proposed and studied. Various mathematical properties including moments, quantiles, and moment generating function were derived. Incomplete moments and probability weighted moments were also obtained. The maximum likelihood method was used to estimate the model parameters. The flexibility of the derived model was accessed using two real data set applications.
Directory of Open Access Journals (Sweden)
Delaram Houshmand Kouchi
2017-05-01
Full Text Available The successful application of hydrological models relies on careful calibration and uncertainty analysis. However, there are many different calibration/uncertainty analysis algorithms, and each could be run with different objective functions. In this paper, we highlight the fact that each combination of optimization algorithm-objective functions may lead to a different set of optimum parameters, while having the same performance; this makes the interpretation of dominant hydrological processes in a watershed highly uncertain. We used three different optimization algorithms (SUFI-2, GLUE, and PSO, and eight different objective functions (R2, bR2, NSE, MNS, RSR, SSQR, KGE, and PBIAS in a SWAT model to calibrate the monthly discharges in two watersheds in Iran. The results show that all three algorithms, using the same objective function, produced acceptable calibration results; however, with significantly different parameter ranges. Similarly, an algorithm using different objective functions also produced acceptable calibration results, but with different parameter ranges. The different calibrated parameter ranges consequently resulted in significantly different water resource estimates. Hence, the parameters and the outputs that they produce in a calibrated model are “conditioned” on the choices of the optimization algorithm and objective function. This adds another level of non-negligible uncertainty to watershed models, calling for more attention and investigation in this area.
Physiochemical parameters optimization for enhanced nisin production by Lactococcus lactis (MTCC 440
Directory of Open Access Journals (Sweden)
Puspadhwaja Mall
2010-02-01
Full Text Available The influence of various physiochemical parameters on the growth of Lactococcus lactis sub sp. lactis MTCC 440 was studied at shake flask level for 20 h. Media optimization (MRS broth was studied to achieve enhanced growth of the organism and also nisin production. Bioassay of nisin was done with agar diffusion method using Streptococcus agalactae NCIM 2401 as indicator strain. MRS broth (6%, w/v with 0.15μg/ml of nisin supplemented with 0.5% (v/v skimmed milk was found to be the best for nisin production as well as for growth of L lactis. The production of nisin was strongly influenced by the presence of skimmed milk and nisin in MRS broth. The production of nisin was affected by the physical parameters and maximum nisin production was at 30(0C while the optimal temperature for biomass production was 37(0C.
Ray, Shonket; Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina
2016-03-01
This work details a methodology to obtain optimal parameter values for a locally-adaptive texture analysis algorithm that extracts mammographic texture features representative of breast parenchymal complexity for predicting falsepositive (FP) recalls from breast cancer screening with digital mammography. The algorithm has two components: (1) adaptive selection of localized regions of interest (ROIs) and (2) Haralick texture feature extraction via Gray- Level Co-Occurrence Matrices (GLCM). The following parameters were systematically varied: mammographic views used, upper limit of the ROI window size used for adaptive ROI selection, GLCM distance offsets, and gray levels (binning) used for feature extraction. Each iteration per parameter set had logistic regression with stepwise feature selection performed on a clinical screening cohort of 474 non-recalled women and 68 FP recalled women; FP recall prediction was evaluated using area under the curve (AUC) of the receiver operating characteristic (ROC) and associations between the extracted features and FP recall were assessed via odds ratios (OR). A default instance of mediolateral (MLO) view, upper ROI size limit of 143.36 mm (2048 pixels2), GLCM distance offset combination range of 0.07 to 0.84 mm (1 to 12 pixels) and 16 GLCM gray levels was set. The highest ROC performance value of AUC=0.77 [95% confidence intervals: 0.71-0.83] was obtained at three specific instances: the default instance, upper ROI window equal to 17.92 mm (256 pixels2), and gray levels set to 128. The texture feature of sum average was chosen as a statistically significant (p<0.05) predictor and associated with higher odds of FP recall for 12 out of 14 total instances.
International Nuclear Information System (INIS)
Carver, M.B.; Austin, C.F.; Ross, N.E.
1980-02-01
This report discusses the mechanics of automated parameter identification in simulation packages, and reviews available integration and optimization algorithms and their interaction within the recently developed optimization options in the FORSIM and MACKSIM simulation packages. In the MACKSIM mass-action chemical kinetics simulation package, the form and structure of the ordinary differential equations involved is known, so the implementation of an optimizing option is relatively straightforward. FORSIM, however, is designed to integrate ordinary and partial differential equations of abritrary definition. As the form of the equations is not known in advance, the design of the optimizing option is more intricate, but the philosophy could be applied to most simulation packages. In either case, however, the invocation of the optimizing interface is simple and user-oriented. Full details for the use of the optimizing mode for each program are given; specific applications are used as examples. (O.T.)
Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks
DEFF Research Database (Denmark)
Heide, J; Zhang, Qi; Fitzek, F H P
2013-01-01
This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...... reduction in the number of transmitted packets can be achieved. However, NC introduces additional computations and potentially a non-negligible transmission overhead, both of which depend on the chosen coding parameters. Therefore it is necessary to consider the trade-off that these coding parameters...... present in order to obtain the lowest energy consumption per transmitted bit. This problem is analyzed and suitable coding parameters are determined for the popular Tmote Sky platform. Compared to the use of traditional RLNC, these parameters enable a reduction in the energy spent per bit which grows...
Value assessment for reservoir recovery optimization
International Nuclear Information System (INIS)
Saito, R.; De Castro, G.N.; Mezzomo, C.; Schiozer, D.J.
2001-01-01
This paper analyzes the managerial flexibility embedded in oil and gas exploration and production. The analysis includes the economic impact of using different production techniques on the valuation of oil reserves. Two methodologies are used to evaluate the simulation of engineering techniques: (1) the real option approach; and (2) the discounted cash flow (DCF) method. Given the external variables (e.g., oil price, interest rate), this paper evaluates the best engineering technique for oil recovery by using a valuation approach. We conclude that by appropriately combining different production techniques, the value of oil reserves can increase under the real option approach and can be higher than the value assessed under the DCF method. Since oil recovery includes many managerial choices, we argue that the real option approach is more appropriate than the DCF method. The paper concludes that concession time and dividend yield are the most sensitive parameters for the valuation of oil reserves
Value assessment for reservoir recovery optimization
Energy Technology Data Exchange (ETDEWEB)
Saito, R.; De Castro, G.N. [EAESP/FGV, Av. Nove de Julho, 2029-10 andar, 01313-902, SP Sao Paulo (Brazil); Mezzomo, C.; Schiozer, D.J. [Fundacao Getulio Vargas, Avenida Nove de Julho, 2029, 10th floor, 01313-902, SP Sao Paulo (Brazil)
2001-12-29
This paper analyzes the managerial flexibility embedded in oil and gas exploration and production. The analysis includes the economic impact of using different production techniques on the valuation of oil reserves. Two methodologies are used to evaluate the simulation of engineering techniques: (1) the real option approach; and (2) the discounted cash flow (DCF) method. Given the external variables (e.g., oil price, interest rate), this paper evaluates the best engineering technique for oil recovery by using a valuation approach. We conclude that by appropriately combining different production techniques, the value of oil reserves can increase under the real option approach and can be higher than the value assessed under the DCF method. Since oil recovery includes many managerial choices, we argue that the real option approach is more appropriate than the DCF method. The paper concludes that concession time and dividend yield are the most sensitive parameters for the valuation of oil reserves.
Directory of Open Access Journals (Sweden)
Shui-Ting Zhou
2017-01-01
Full Text Available This study is about the impact of the performance and the sensitivity analysis for parameters of the torsion bar suspension in the electric sight-seeing car, which the authors’ laboratory designed and which is used in the authors’ university. The suspension stiffness was calculated by using the virtual work principle, the vector algebra, and tensor of finite rotation methods and was verified by the ADAMS software. Based on the random vibration analysis method, the paper analyzed the dynamic tire load (DTL, suspension working space (SWS, and comfort performance parameters. For the purpose of decreasing the displacement of the suspension and limiting the frequency of impacting the stop block, the paper examined the three parameters and optimized the basic parameters of the torsion bar. The results show that the method achieves a great effect and contributes an accurate value for the general layout design.