WorldWideScience

Sample records for optimal operating reserves

  1. Day-ahead optimal dispatch for wind integrated power system considering zonal reserve requirements

    International Nuclear Information System (INIS)

    Liu, Fan; Bie, Zhaohong; Liu, Shiyu; Ding, Tao

    2017-01-01

    Highlights: • Analyzing zonal reserve requirements for wind integrated power system. • Modeling day-ahead optimal dispatch solved by chance constrained programming theory. • Determining optimal zonal reserve demand with minimum confidence interval. • Analyzing numerical results on test and large-scale real-life power systems. - Abstract: Large-scale integration of renewable power presents a great challenge for day-ahead dispatch to manage renewable resources while provide available reserve for system security. Considering zonal reserve is an effective way to ensure reserve deliverability when network congested, a random day-ahead dispatch optimization of wind integrated power system for a least operational cost is modeled including zonal reserve requirements and N − 1 security constraints. The random model is transformed into a deterministic one based on the theory of chance constrained programming and a determination method of optimal zonal reserve demand is proposed using the minimum confidence interval. After solving the deterministic model, the stochastic simulation is conducted to verify the validity of solution. Numerical tests and results on the IEEE 39 bus system and a large-scale real-life power system demonstrate the optimal day-ahead dispatch scheme is available and the proposed method is effective for improving reserve deliverability and reducing load shedding after large-capacity power outage.

  2. Economic theory and the application of incentive contracts to procure operating reserves

    International Nuclear Information System (INIS)

    Wang, L.; Yu, C.W.; Wen, F.S.

    2007-01-01

    The ancillary services market plays an important role in the operation of an electricity market, especially for achieving a high level of reliability. Among all ancillary services, operating reserve is an important research focus, with the attention mainly on the optional procurement and pricing methods. These methods differ in many aspects, including the objective, allocation of risks, and feasibility. In this paper, a new approach is proposed to analyze the users' reserve procurement problem and a novel reserve trade mechanism is developed between electricity users and the retailer of the market. First, the differences between the procurement of operating reserve in decentralized and centralized ways are analyzed. The comparison of the equilibrium solutions reveals that the centralized procurement that results in a systemic optimal solution is better than the decentralized procurement that results in a Nash equilibrium solution. Furthermore, an incentive contract based on a Principal-agent model, that is able to induce a systemic optimality as well as a Pareto equilibrium and manage risks at the same time is designed. The proposed model is equitable and beneficial to all participants. An example is served to illustrate the features of the model and the methodology. (author)

  3. Rule Optimization monthly reservoir operation Salvajina

    International Nuclear Information System (INIS)

    Sandoval Garcia, Maria Clemencia; Santacruz Salazar, Santiago; Ramirez Callejas, Carlos A

    2007-01-01

    In the present study a model was designed for the optimization of the rule for monthly operation of the Salvajina dam (Colombia) based in the technology) of dynamic programming. The model maximizes the benefits for electric power generation, ensuring at the same time flood regulation in winter and pollution relief during the summer. For the optimization of the rule of operation, it was necessary to define the levels and volumes of reserve and holding required for the control of flood zones in the Cauca river and to provide an effluent minimal flow and assure a daily flow at the Juanchito station (located 141 km downstream from the dam) of the Cauca river, 90 % of the time during the most critical summer periods.

  4. Heuristic Optimization Techniques for Determining Optimal Reserve Structure of Power Generating Systems

    DEFF Research Database (Denmark)

    Ding, Yi; Goel, Lalit; Wang, Peng

    2012-01-01

    cost of the system will also increase. The reserve structure of a MSS should be determined based on striking a balance between the required reliability and the reserve cost. The objective of reserve management for a MSS is to schedule the reserve at the minimum system reserve cost while maintaining......Electric power generating systems are typical examples of multi-state systems (MSS). Sufficient reserve is critically important for maintaining generating system reliabilities. The reliability of a system can be increased by increasing the reserve capacity, noting that at the same time the reserve...... the required level of supply reliability to its customers. In previous research, Genetic Algorithm (GA) has been used to solve most reliability optimization problems. However, the GA is not very computationally efficient in some cases. In this chapter a new heuristic optimization technique—the particle swarm...

  5. Optimal day-ahead operational planning of microgrids

    International Nuclear Information System (INIS)

    Hosseinnezhad, Vahid; Rafiee, Mansour; Ahmadian, Mohammad; Siano, Pierluigi

    2016-01-01

    Highlights: • A new multi-objective model for optimal day-ahead operational planning of microgrids is proposed. • A new concept called seamlessness is introduced to control the sustainability of microgrid. • A new method is developed to manage the load and renewable energy resources estimation errors. • A new solution based on a combination of numerical and evolutionary approaches is proposed. - Abstract: Providing a cost-efficient, eco-friendly and sustainable energy is one of the main issues in modern societies. In response to this demand, new features of microgrid technology have provided huge potentials while distributing electricity more effectively, economically and securely. Accordingly, this paper presents a new multi-objective generation management model for optimal day-ahead operational planning of medium voltage microgrids. The proposed model optimizes both pollutant emission and operating cost of a microgrid by using multi-objective optimization. Besides, a seamlessness-selective algorithm is integrated into the model, which can be adopted to achieve the desired self-sufficiency level for microgrids along a specified planning horizon. Furthermore, the model is characterized by a reserve-assessment strategy developed to handle the load and renewable energy resources estimation errors. The introduced model is solved using a combination of numerical and evolutionary methods of species-based quantum particle swarm optimization to find the optimal scheduling scheme and minos-based optimal power flow to optimize the operating cost and emission. In addition, the suggested solution approach also incorporates an efficient mechanism for considering energy storage systems and coding the candidate solutions in the evolutionary algorithm. The proposed model is implemented on a test microgrid and is investigated through simulations to study the different aspects of the problem. The results show significant improvements and benefits which are obtained by

  6. 7 CFR 1221.114 - Operating reserve.

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Sorghum Promotion, Research, and Information Board § 1221.114 Operating reserve. The Board may establish an operating monetary reserve and may...

  7. Empirical analysis of optimal strategic petroleum reserve in China

    International Nuclear Information System (INIS)

    Wei, Yi-Ming; Wu, Gang; Liu, Lan-Cui; Fan, Ying

    2008-01-01

    The Chinese government began to prepare for the establishment of strategic petroleum reserve in March 2004. Therefore, answering the question of what level of strategic petroleum reserve would be suitable for China's future economic development becomes essential. Using a decision tree model based on a cost function, this paper quantifies China's optimal strategic petroleum reserve for the period 2005-2020. This approach provides a methodology reference for further quantified discussion on China's SPR. Our results show that: for economic development and security of the energy supply, the strategic petroleum reserve should be the equivalent of 30-60 days of net oil import for an optimal solution, when the oil price is $ 50/bbl; with a reserve of an equivalent of 60-90 days of net oil import to have an optimal solution when oil price is $20-35/bbl. (author)

  8. Coordinating decentralized optimization of truck and shovel mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, R.; Fraser Forbes, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; San Yip, W. [Suncor Energy, Fort McMurray, AB (Canada)

    2006-07-01

    Canada's oil sands contain the largest known reserve of oil in the world. Oil sands mining uses 3 functional processes, ore hauling, overburden removal and mechanical maintenance. The industry relies mainly on truck-and-shovel technology in its open-pit mining operations which contributes greatly to the overall mining operation cost. Coordination between operating units is crucial for achieving an enterprise-wide optimal operation level. Some of the challenges facing the industry include multiple or conflicting objectives such as minimizing the use of raw materials and energy while maximizing production. The large sets of constraints that define the feasible domain pose as challenge, as does the uncertainty in system parameters. One solution lies in assigning truck resources to various activities. This fully decentralized approach would treat the optimization of ore production, waste removal and equipment maintenance independently. It was emphasized that mine-wide optimal operation can only be achieved by coordinating ore hauling and overburden removal processes. For that reason, this presentation proposed a coordination approach for a decentralized optimization system. The approach is based on the Dantzig-Wolfe decomposition and auction-based methods that have been previously used to decompose large-scale optimization problems. The treatment of discrete variables and coordinator design was described and the method was illustrated with a simple truck and shovel mining simulation study. The approach can be applied to a wide range of applications such as coordinating decentralized optimal control systems and scheduling. 16 refs., 3 tabs., 2 figs.

  9. Robust Co-Optimization to Energy and Reserve Joint Dispatch Considering Wind Power Generation and Zonal Reserve Constraints in Real-Time Electricity Markets

    Directory of Open Access Journals (Sweden)

    Chunlai Li

    2017-07-01

    Full Text Available This paper proposes an energy and reserve joint dispatch model based on a robust optimization approach in real-time electricity markets, considering wind power generation uncertainties as well as zonal reserve constraints under both normal and N-1 contingency conditions. In the proposed model, the operating reserves are classified as regulating reserve and spinning reserve according to the response performance. More specifically, the regulating reserve is usually utilized to reduce the gap due to forecasting errors, while the spinning reserve is commonly adopted to enhance the ability for N-1 contingencies. Since the transmission bottlenecks may inhibit the deliverability of reserve, the zonal placement of spinning reserve is considered in this paper to improve the reserve deliverability under the contingencies. Numerical results on the IEEE 118-bus test system show the effectiveness of the proposed model.

  10. Optimal drawdown patterns for strategic petroleum reserves

    Energy Technology Data Exchange (ETDEWEB)

    Kuenne, R E; Blankenship, J W; McCoy, P F

    1979-01-01

    An optimization model is described for determining optimal drawdown trajectories for strategic petroleum reserves during an embargo. Development of the model includes the derivation of a GNP response function which relates GNP (used as a measure of social welfare) and crude oil supply reductions. Two alternative forms of this function are used with the model. Simple algorithms are presented which give rapid solutions for the model. The pattern is one of saving some of the reserve to protect against a possible second embargo occurring beforee refill, and of allocating the remainder during the first embargo subperiod so as to equalize monthly marginal benefits. 6 references.

  11. Seminar 1. Joint Military Operations. Application of the Operational Reserve

    National Research Council Canada - National Science Library

    Copp, A

    1997-01-01

    .... As a means of achieving decisive effect at the operational level of war, the operational reserve should be considered an operational function and should be addressed as both a planning element...

  12. Optimal Operations and Resilient Investments in Steam Networks

    Energy Technology Data Exchange (ETDEWEB)

    Bungener, Stéphane L., E-mail: stephane.bungener@a3.epfl.ch [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Van Eetvelde, Greet [Environmental and Spatial Management, Faculty of Engineering and Architecture, Ghent University, Ghent (Belgium); Maréchal, François [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2016-01-20

    Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.

  13. Optimal Operations and Resilient Investments in Steam Networks

    International Nuclear Information System (INIS)

    Bungener, Stéphane L.; Van Eetvelde, Greet; Maréchal, François

    2016-01-01

    Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.

  14. Optimization of power system operation

    CERN Document Server

    Zhu, Jizhong

    2015-01-01

    This book applies the latest applications of new technologies topower system operation and analysis, including new and importantareas that are not covered in the previous edition. Optimization of Power System Operation covers both traditional andmodern technologies, including power flow analysis, steady-statesecurity region analysis, security constrained economic dispatch,multi-area system economic dispatch, unit commitment, optimal powerflow, smart grid operation, optimal load shed, optimalreconfiguration of distribution network, power system uncertaintyanalysis, power system sensitivity analysis, analytic hierarchicalprocess, neural network, fuzzy theory, genetic algorithm,evolutionary programming, and particle swarm optimization, amongothers. New topics such as the wheeling model, multi-areawheeling, the total transfer capability computation in multipleareas, are also addressed. The new edition of this book continues to provide engineers andac demics with a complete picture of the optimization of techn...

  15. Fundamental Drivers of the Cost and Price of Operating Reserves

    Energy Technology Data Exchange (ETDEWEB)

    Hummon, Marissa [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palchak, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kirby, Brendan [Kirby Consultant; Ma, Ookie [U.S. Department of Energy, Washington, DC (United States)

    2013-07-01

    Operating reserves impose a cost on the electric power system by forcing system operators to keep partially loaded spinning generators available for responding to system contingencies variable demand. In many regions of the United States, thermal power plants provide a large fraction of the operating reserve requirement. Alternative sources of operating reserves, such as demand response and energy storage, may provide more efficient sources of these reserves. However, to estimate the potential value of these services, the cost of reserve services under various grid conditions must first be established. This analysis used a commercial grid simulation tool to evaluate the cost and price of several operating reserve services, including spinning contingency reserves and upward regulation reserves. These reserve products were evaluated in a utility system in the western United States, considering different system flexibilities, renewable energy penetration, and other sensitivities. The analysis demonstrates that the price of operating reserves depend highly on many assumptions regarding the operational flexibility of the generation fleet, including ramp rates and the fraction of fleet available to provide reserves.

  16. Financial Security and Optimal Scale of Foreign Exchange Reserve in China

    Directory of Open Access Journals (Sweden)

    Guangyou Zhou

    2018-05-01

    Full Text Available The study of how foreign exchange reserves maintain financial security is of vital significance. This paper provides simulations and estimations of the optimal scale of foreign exchange reserves under the background of possible shocks to China’s economy due to the further opening of China’s financial market and the sudden stop of capital inflows. Focused on the perspective of financial security, this article tentatively constructs an optimal scale analysis framework that is based on a utility maximization of the foreign exchange reserve, and selects relevant data to simulate the optimal scale of China’s foreign exchange reserves. The results show that: (1 the main reason for the fast growth of the Chinese foreign exchange reserve scale is the structural trouble of its double international payment surplus, which creates long-term appreciation expectations for the exchange rate that make it difficult for international capital inflows and excess foreign exchange reserves to enter the real economic growth mechanism under the model of China’s export-driven economy growth; (2 the average optimal scale of the foreign exchange reserve in case of the sudden stop of capital inflows was calculated through parameter estimation and numerical simulation to be 13.53% of China’s gross domestic product (GDP between 1994 and 2017; (3 with the function of the foreign exchange reserves changing from meeting basic transaction demands to meeting financial security demands, the effect of the foreign exchange reserve maintaining the state’s financial security is becoming more and more obvious. Therefore, the structure of foreign exchange reserve assets should be optimized in China, and we will give full play to the special role of foreign exchange reserve in safeguarding a country’s financial security.

  17. An Online Evaluation of Operating Reserve for System Security

    OpenAIRE

    Le-Ren Chang-Chien; Yin-Juin Lin; Chin-Chung Wu

    2007-01-01

    Utilities use operating reserve for frequency regulation.To ensure that the operating frequency and system security are well maintained, the operating grid codes always specify that the reserve quantity and response rate should meet some prescribed levels. This paper proposes a methodology to evaluate system's contingency reserve for an isolated power network. With the presented algorithm to estimate system's frequency response characteristic, an online allocation of contingency reserve would...

  18. Ensuring the Reliable Operation of the Power Grid: State-Based and Distributed Approaches to Scheduling Energy and Contingency Reserves

    Science.gov (United States)

    Prada, Jose Fernando

    Keeping a contingency reserve in power systems is necessary to preserve the security of real-time operations. This work studies two different approaches to the optimal allocation of energy and reserves in the day-ahead generation scheduling process. Part I presents a stochastic security-constrained unit commitment model to co-optimize energy and the locational reserves required to respond to a set of uncertain generation contingencies, using a novel state-based formulation. The model is applied in an offer-based electricity market to allocate contingency reserves throughout the power grid, in order to comply with the N-1 security criterion under transmission congestion. The objective is to minimize expected dispatch and reserve costs, together with post contingency corrective redispatch costs, modeling the probability of generation failure and associated post contingency states. The characteristics of the scheduling problem are exploited to formulate a computationally efficient method, consistent with established operational practices. We simulated the distribution of locational contingency reserves on the IEEE RTS96 system and compared the results with the conventional deterministic method. We found that assigning locational spinning reserves can guarantee an N-1 secure dispatch accounting for transmission congestion at a reasonable extra cost. The simulations also showed little value of allocating downward reserves but sizable operating savings from co-optimizing locational nonspinning reserves. Overall, the results indicate the computational tractability of the proposed method. Part II presents a distributed generation scheduling model to optimally allocate energy and spinning reserves among competing generators in a day-ahead market. The model is based on the coordination between individual generators and a market entity. The proposed method uses forecasting, augmented pricing and locational signals to induce efficient commitment of generators based on firm

  19. Operational Impacts of Operating Reserve Demand Curves on Production Cost and Reliability: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Krad, Ibrahim; Ibanez, Eduardo; Ela, Erik; Gao, Wenzhong

    2015-10-27

    The electric power industry landscape is continually evolving. As emerging technologies such as wind, solar, electric vehicles, and energy storage systems become more cost-effective and present in the system, traditional power system operating strategies will need to be reevaluated. The presence of wind and solar generation (commonly referred to as variable generation) may result in an increase in the variability and uncertainty of the net load profile. One mechanism to mitigate this is to schedule and dispatch additional operating reserves. These operating reserves aim to ensure that there is enough capacity online in the system to account for the increased variability and uncertainty occurring at finer temporal resolutions. A new operating reserve strategy, referred to as flexibility reserve, has been introduced in some regions. A similar implementation is explored in this paper, and its implications on power system operations are analyzed.

  20. Economic considerations in the optimal size and number of reserve sites

    NARCIS (Netherlands)

    Groeneveld, R.A.

    2005-01-01

    The debate among ecologists on the optimal number of reserve sites under a fixed maximum total reserve area-the single large or several small (SLOSS) problem-has so far neglected the economic aspects of the problem. This paper argues that economic considerations can affect the optimal number and

  1. 7 CFR 623.13 - Wetlands reserve plan of operations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wetlands reserve plan of operations. 623.13 Section... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WETLANDS RESERVE PROGRAM § 623.13 Wetlands reserve plan of operations. (a) After NRCS has accepted the applicant for enrollment in the...

  2. 2007 Posture Statement, Army Reserve: An Operational Force

    National Research Council Canada - National Science Library

    Stultz, Jack C

    2007-01-01

    The 2007 Army Reserve Posture Statement describes how the Army Reserve continues to transform from a strategic reserve to an operational force, meeting today's challenges as it better prepares for future uncertainties...

  3. A Multi-Period Optimization Model for Service Providers Using Online Reservation Systems: An Application to Hotels.

    Science.gov (United States)

    Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang

    2015-01-01

    This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations.

  4. A Multi-Period Optimization Model for Service Providers Using Online Reservation Systems: An Application to Hotels

    Science.gov (United States)

    Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang

    2015-01-01

    This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations. PMID:26147663

  5. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.

    Science.gov (United States)

    Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas

    2011-06-24

    This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Optimal Control and Operation Strategy for Wind Turbines Contributing to Grid Primary Frequency Regulation

    Directory of Open Access Journals (Sweden)

    Mun-Kyeom Kim

    2017-09-01

    Full Text Available This study introduces a frequency regulation strategy to enable the participation of wind turbines with permanent magnet synchronous generators (PMSGs. The optimal strategy focuses on developing the frequency support capability of PMSGs connected to the power system. Active power control is performed using maximum power point tracking (MPPT and de-loaded control to supply the required power reserve following a disturbance. A kinetic energy (KE reserve control is developed to enhance the frequency regulation capability of wind turbines. The coordination with the de-loaded control prevents instability in the PMSG wind system due to excessive KE discharge. A KE optimization method that maximizes the sum of the KE reserves at wind farms is also adopted to determine the de-loaded power reference for each PMSG wind turbine using the particle swarm optimization (PSO algorithm. To validate the effectiveness of the proposed optimal control and operation strategy, three different case studies are conducted using the PSCAD/EMTDC simulation tool. The results demonstrate that the optimal strategy enhances the frequency support contribution from PMSG wind turbines.

  7. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav

    2016-01-01

    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  8. Calculation program development for spinning reserve

    International Nuclear Information System (INIS)

    1979-01-01

    This study is about optimal holding of spinning reserve and optimal operation for it. It deals with the purpose and contents of the study, introduction of the spinning reserve electricity, speciality of the spinning reserve power, the result of calculation, analysis for limited method of optimum load, calculation of requirement for spinning reserve, analysis on measurement of system stability with summary, purpose of the analysis, cause of impact of the accident, basics on measurement of spinning reserve and conclusion. It has the reference on explanation for design of spinning reserve power program and using and trend about spinning reserve power in Korea.

  9. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  10. Optimal Operation of Energy Storage in Power Transmission and Distribution

    Science.gov (United States)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  11. The application of optimization of protection to regulation and operational practice

    International Nuclear Information System (INIS)

    Ilari, O.

    1989-01-01

    Optimization of protection and the problems of its practical application have been of concern for several years to the NEA Committee on Radiation Protection and Public Health. The present paper summarizes the principal conclusions of a meeting on this topic organized by the NEA in March 1988, with the participation of radiation protection, nuclear safety and radioactive waste management experts. From the results of the meeting it appears that there is now as increasingly solid background of knowledge and common understanding of the conceptual aspects of optimization of protection. However, its degree of implementation in the regulatory and operational practices is very uneven. The areas of plant design and operation appear the most promising in terms of examples of concrete application, whilst severe reservations exist in the nuclear safety community on the possibility of applying this approach to the prevention of nuclear accidents. There is also consensus on the fact that optimization of protection can only play a partial and minor role in decisions concerning the choice of radioactive waste disposal options

  12. Optimizing reserve expansion for disjunct populations of San Joaquin kit fox

    Science.gov (United States)

    Robert G. Haight; Brian Cypher; Patrick A. Kelly; Scott Phillips; Katherine Ralls; Hugh P. Possingham

    2004-01-01

    Expanding habitat protection is a common strategy for species conservation. We present a model to optimize the expansion of reserves for disjunct populations of an endangered species. The objective is to maximize the expected number of surviving populations subject to budget and habitat constraints. The model accounts for benefits of reserve expansion in terms of...

  13. Operator assisted optimization of sludge dewatering

    DEFF Research Database (Denmark)

    Grüttner, Henrik

    1991-01-01

    by the operator. By graphical presentation and an advisory service these data are used to support the operator in his dewatering operations and to secure a running optimization of the sludge dewatering. Evaluations show that this system is a useful tool for data collection and presentation and that the data...

  14. Operation optimization of distributed generation using artificial intelligent techniques

    Directory of Open Access Journals (Sweden)

    Mahmoud H. Elkazaz

    2016-06-01

    Full Text Available Future smart grids will require an observable, controllable and flexible network architecture for reliable and efficient energy delivery. The use of artificial intelligence and advanced communication technologies is essential in building a fully automated system. This paper introduces a new technique for online optimal operation of distributed generation (DG resources, i.e. a hybrid fuel cell (FC and photovoltaic (PV system for residential applications. The proposed technique aims to minimize the total daily operating cost of a group of residential homes by managing the operation of embedded DG units remotely from a control centre. The target is formed as an objective function that is solved using genetic algorithm (GA optimization technique. The optimal settings of the DG units obtained from the optimization process are sent to each DG unit through a fully automated system. The results show that the proposed technique succeeded in defining the optimal operating points of the DGs that affect directly the total operating cost of the entire system.

  15. Reservoir Operating Rule Optimization for California's Sacramento Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art6Reservoir operating rules for water resource systems are typically developed by combining intuition, professional discussion, and simulation modeling. This paper describes a joint optimization–simulation approach to develop preliminary economically-based operating rules for major reservoirs in California’s Sacramento Valley, based on optimized results from CALVIN, a hydro-economic optimization model. We infer strategic operating rules from the optimization model results, including storage allocation rules to balance storage among multiple reservoirs, and reservoir release rules to determine monthly release for individual reservoirs. Results show the potential utility of considering previous year type on water availability and various system and sub-system storage conditions, in addition to normal consideration of local reservoir storage, season, and current inflows. We create a simple simulation to further refine and test the derived operating rules. Optimization model results show particular insights for balancing the allocation of water storage among Shasta, Trinity, and Oroville reservoirs over drawdown and refill seasons, as well as some insights for release rules at major reservoirs in the Sacramento Valley. We also discuss the applicability and limitations of developing reservoir operation rules from optimization model results.

  16. Optimal Operation of Radial Distribution Systems Using Extended Dynamic Programming

    DEFF Research Database (Denmark)

    Lopez, Juan Camilo; Vergara, Pedro P.; Lyra, Christiano

    2018-01-01

    An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation o...... approach is illustrated using real-scale systems and comparisons with commercial programming solvers. Finally, generalizations to consider other EDS operation problems are also discussed.......An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation...... of the EDS by setting the values of the controllable variables at each time period. A suitable definition for the stages of the problem makes it possible to represent the optimal ac power flow of radial EDS as a dynamic programming problem, wherein the 'curse of dimensionality' is a minor concern, since...

  17. Naval Reserve Annual Operating Costs

    Science.gov (United States)

    1975-10-29

    C. c ) CPi i 0 0 00 0 le C C.C~r In 1]1 In 00 It .- I to C-38 ’U2 WIX ’W~ - m u. -C-LC m4 C v , v ul FA ?w % -D 1 o r cl jc j, II t %c oK W)i Ir of... platform programs, while Program 11 contains 26 sub-programs each having a separate Reserve program sponsor. The distribution of Program 11 resources is...a mix of specific skills required to bring an active Navy oper-Iating platform to organizational manning. Each SRU is tailored to a specific ship

  18. Operational radiation protection: A guide to optimization

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs

  19. STRUCTURE OPTIMIZATION OF RESERVATION BY PRECISE QUADRATIC REGULARIZATION

    Directory of Open Access Journals (Sweden)

    KOSOLAP A. I.

    2015-11-01

    Full Text Available The problem of optimization of the structure of systems redundancy elements. Such problems arise in the design of complex systems. To improve the reliability of operation of such systems of its elements are duplicated. This increases system cost and improves its reliability. When optimizing these systems is maximized probability of failure of the entire system while limiting its cost or the cost is minimized for a given probability of failure-free operation. A mathematical model of the problem is a discrete backup multiextremal. To search for the global extremum of currently used methods of Lagrange multipliers, coordinate descent, dynamic programming, random search. These methods guarantee a just and local solutions are used in the backup tasks of small dimension. In the work for solving redundancy uses a new method for accurate quadratic regularization. This method allows you to convert the original discrete problem to the maximization of multi vector norm on a convex set. This means that the diversity of the tasks given to the problem of redundancy maximize vector norm on a convex set. To solve the problem, a reformed straightdual interior point methods. Currently, it is the best method for local optimization of nonlinear problems. Transformed the task includes a new auxiliary variable, which is determined by dichotomy. There have been numerous comparative numerical experiments in problems with the number of redundant subsystems to one hundred. These experiments confirm the effectiveness of the method of precise quadratic regularization for solving problems of redundancy.

  20. The Improvement of Particle Swarm Optimization: a Case Study of Optimal Operation in Goupitan Reservoir

    Science.gov (United States)

    Li, Haichen; Qin, Tao; Wang, Weiping; Lei, Xiaohui; Wu, Wenhui

    2018-02-01

    Due to the weakness in holding diversity and reaching global optimum, the standard particle swarm optimization has not performed well in reservoir optimal operation. To solve this problem, this paper introduces downhill simplex method to work together with the standard particle swarm optimization. The application of this approach in Goupitan reservoir optimal operation proves that the improved method had better accuracy and higher reliability with small investment.

  1. The Optimal Operation Criteria for a Gas Turbine Cogeneration System

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2009-04-01

    Full Text Available The study demonstrated the optimal operation criteria of a gas turbine cogeneration system based on the analytical solution of a linear programming model. The optimal operation criteria gave the combination of equipment to supply electricity and steam with the minimum energy cost using the energy prices and the performance of equipment. By the comparison with a detailed optimization result of an existing cogeneration plant, it was shown that the optimal operation criteria successfully provided a direction for the system operation under the condition where the electric power output of the gas turbine was less than the capacity

  2. Optimization of Multipurpose Reservoir Operation with Application Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Elahe Fallah Mehdipour

    2012-12-01

    Full Text Available Optimal operation of multipurpose reservoirs is one of the complex and sometimes nonlinear problems in the field of multi-objective optimization. Evolutionary algorithms are optimization tools that search decision space using simulation of natural biological evolution and present a set of points as the optimum solutions of problem. In this research, application of multi-objective particle swarm optimization (MOPSO in optimal operation of Bazoft reservoir with different objectives, including generating hydropower energy, supplying downstream demands (drinking, industry and agriculture, recreation and flood control have been considered. In this regard, solution sets of the MOPSO algorithm in bi-combination of objectives and compromise programming (CP using different weighting and power coefficients have been first compared that the MOPSO algorithm in all combinations of objectives is more capable than the CP to find solution with appropriate distribution and these solutions have dominated the CP solutions. Then, ending points of solution set from the MOPSO algorithm and nonlinear programming (NLP results have been compared. Results showed that the MOPSO algorithm with 0.3 percent difference from the NLP results has more capability to present optimum solutions in the ending points of solution set.

  3. Quantitative, steady-state properties of Catania's computational model of the operant reserve.

    Science.gov (United States)

    Berg, John P; McDowell, J J

    2011-05-01

    Catania (2005) found that a computational model of the operant reserve (Skinner, 1938) produced realistic behavior in initial, exploratory analyses. Although Catania's operant reserve computational model demonstrated potential to simulate varied behavioral phenomena, the model was not systematically tested. The current project replicated and extended the Catania model, clarified its capabilities through systematic testing, and determined the extent to which it produces behavior corresponding to matching theory. Significant departures from both classic and modern matching theory were found in behavior generated by the model across all conditions. The results suggest that a simple, dynamic operant model of the reflex reserve does not simulate realistic steady state behavior. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Multiple energy supply risks, optimal reserves, and optimal domestic production capacities

    International Nuclear Information System (INIS)

    Zweifel, P.; Ferrari, M.

    1992-01-01

    This study starts from the observation that today's Western trading nations are exposed to multiple risks of energy supplies, e.g. simultaneous shortage of oil and electricity supplies. To cope with these risks, oil can be stockpiled as well as domestic capacity for power production built up. Adopting the viewpoint of a policy maker who aims at minimizing the expected cost of security of supply, optimal simultaneous adjustments of oil stocks and electric production capacities to exogenous changes such as economic growth are derived. Against this benchmark, one-dimensional rules such as 'oil reserves for 90 days' turn out to be not only suboptimal but also to foster adjustments that exacerbate suboptimality. 9 refs., 1 tabs

  5. Stochastic Optimization Model to STudy the Operational Impacts of High Wind Penetrations in Ireland

    DEFF Research Database (Denmark)

    Meibom, Peter; Barth, R.; Hasche, B.

    2011-01-01

    A stochastic mixed integer linear optimization scheduling model minimizing system operation costs and treating load and wind power production as stochastic inputs is presented. The schedules are updated in a rolling manner as more up-to-date information becomes available. This is a fundamental...... change relative to day-ahead unit commitment approaches. The need for reserves dependent on forecast horizon and share of wind power has been estimated with a statistical model combining load and wind power forecast errors with scenarios of forced outages. The model is used to study operational impacts...

  6. UMTS network planning, optimization, and inter-operation with GSM

    CERN Document Server

    Rahnema, Moe

    2008-01-01

    UMTS Network Planning, Optimization, and Inter-Operation with GSM is an accessible, one-stop reference to help engineers effectively reduce the time and costs involved in UMTS deployment and optimization. Rahnema includes detailed coverage from both a theoretical and practical perspective on the planning and optimization aspects of UMTS, and a number of other new techniques to help operators get the most out of their networks. Provides an end-to-end perspective, from network design to optimizationIncorporates the hands-on experiences of numerous researchersSingle

  7. Integrated approach to optimize operation and maintenance costs for operating nuclear power plants

    International Nuclear Information System (INIS)

    2006-06-01

    In the context of increasingly open electricity markets and the 'unbundling' of generating companies from former utility monopolies, an area of major concern is the economic performance of the existing fleet of nuclear power plants. Nuclear power, inevitably, must compete directly with other electricity generation sources. Coping with this competitive pressure is a challenge that the nuclear industry should meet if the nuclear option is to remain a viable one. This competitive environment has significant implications for nuclear plant operations, including, among others, the need for the more cost effective management of plant activities, and the greater use of analytical tools to balance the costs and benefits of proposed activities, in order to optimize operation and maintenance costs, and thus insure the economic competitiveness of existing nuclear power plants. In the framework of the activities on Nuclear Economic Performance Information System (NEPIS), the IAEA embarked in developing guidance on optimization of operation and maintenance costs for nuclear power plants. The report was prepared building on the fundamental that optimization of operation and maintenance costs of a nuclear power plant is a key component of a broader integrated business strategic planning process, having as overall result achievement of organization's business objectives. It provides advice on optimization of O and M costs in the framework of strategic business planning, with additional details on operational planning and controlling. This TECDOC was elaborated in 2004-2005 in the framework of the IAEA's programme on Nuclear Power Plant Operating Performance and Life Cycle Management, with the support of two consultants meetings and one technical meeting and based on contributions provided by participants. It can serve as a useful reference for the management and operation staff within utilities, nuclear power plant operators and regulators and other organizations involved in

  8. Operations Optimization of Hybrid Energy Systems under Variable Markets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Garcia, Humberto E.

    2016-07-01

    Hybrid energy systems (HES) have been proposed to be an important element to enable increasing penetration of clean energy. This paper investigates the operations flexibility of HES, and develops a methodology for operations optimization to maximize its economic value based on predicted renewable generation and market information. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value, and is illustrated by numerical results.

  9. Co-optimization of Energy and Demand-Side Reserves in Day-Ahead Electricity Markets

    Science.gov (United States)

    Surender Reddy, S.; Abhyankar, A. R.; Bijwe, P. R.

    2015-04-01

    This paper presents a new multi-objective day-ahead market clearing (DAMC) mechanism with demand-side reserves/demand response (DR) offers, considering realistic voltage-dependent load modeling. The paper proposes objectives such as social welfare maximization (SWM) including demand-side reserves, and load served error (LSE) minimization. In this paper, energy and demand-side reserves are cleared simultaneously through co-optimization process. The paper clearly brings out the unsuitability of conventional SWM for DAMC in the presence of voltage-dependent loads, due to reduction of load served (LS). Under such circumstances multi-objective DAMC with DR offers is essential. Multi-objective Strength Pareto Evolutionary Algorithm 2+ (SPEA 2+) has been used to solve the optimization problem. The effectiveness of the proposed scheme is confirmed with results obtained from IEEE 30 bus system.

  10. Analytical design of an industrial two-term controller for optimal regulatory control of open-loop unstable processes under operational constraints.

    Science.gov (United States)

    Tchamna, Rodrigue; Lee, Moonyong

    2018-01-01

    This paper proposes a novel optimization-based approach for the design of an industrial two-term proportional-integral (PI) controller for the optimal regulatory control of unstable processes subjected to three common operational constraints related to the process variable, manipulated variable and its rate of change. To derive analytical design relations, the constrained optimal control problem in the time domain was transformed into an unconstrained optimization problem in a new parameter space via an effective parameterization. The resulting optimal PI controller has been verified to yield optimal performance and stability of an open-loop unstable first-order process under operational constraints. The proposed analytical design method explicitly takes into account the operational constraints in the controller design stage and also provides useful insights into the optimal controller design. Practical procedures for designing optimal PI parameters and a feasible constraint set exclusive of complex optimization steps are also proposed. The proposed controller was compared with several other PI controllers to illustrate its performance. The robustness of the proposed controller against plant-model mismatch has also been investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. SIMULTANEOUS SCHEDULING AND OPERATIONAL OPTIMIZATION OF MULTIPRODUCT, CYCLIC CONTINUOUS PLANTS

    Directory of Open Access Journals (Sweden)

    A. Alle

    2002-03-01

    Full Text Available The problems of scheduling and optimization of operational conditions in multistage, multiproduct continuous plants with intermediate storage are simultaneously addressed. An MINLP model, called TSPFLOW, which is based on the TSP formulation for product sequencing, is proposed to schedule the operation of such plants. TSPFLOW yields a one-order-of-magnitude CPU time reduction as well as the solution of instances larger than those formerly reported (Pinto and Grossmann, 1994. Secondly, processing rates and yields are introduced as additional optimization variables in order to state the simultaneous problem of scheduling with operational optimization. Results show that trade-offs are very complex and that the development of a straightforward (rule of thumb method to optimally schedule the operation is less effective than the proposed approach.

  12. SIMULTANEOUS SCHEDULING AND OPERATIONAL OPTIMIZATION OF MULTIPRODUCT, CYCLIC CONTINUOUS PLANTS

    Directory of Open Access Journals (Sweden)

    Alle A.

    2002-01-01

    Full Text Available The problems of scheduling and optimization of operational conditions in multistage, multiproduct continuous plants with intermediate storage are simultaneously addressed. An MINLP model, called TSPFLOW, which is based on the TSP formulation for product sequencing, is proposed to schedule the operation of such plants. TSPFLOW yields a one-order-of-magnitude CPU time reduction as well as the solution of instances larger than those formerly reported (Pinto and Grossmann, 1994. Secondly, processing rates and yields are introduced as additional optimization variables in order to state the simultaneous problem of scheduling with operational optimization. Results show that trade-offs are very complex and that the development of a straightforward (rule of thumb method to optimally schedule the operation is less effective than the proposed approach.

  13. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization.

    Science.gov (United States)

    Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł

    2016-12-01

    One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure

  14. Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations

    Directory of Open Access Journals (Sweden)

    Nah-Oak Song

    2015-08-01

    Full Text Available We propose an optimal electric energy management of a cooperative multi-microgrid community with sequentially coordinated operations. The sequentially coordinated operations are suggested to distribute computational burden and yet to make the optimal 24 energy management of multi-microgrids possible. The sequential operations are mathematically modeled to find the optimal operation conditions and illustrated with physical interpretation of how to achieve optimal energy management in the cooperative multi-microgrid community. This global electric energy optimization of the cooperative community is realized by the ancillary internal trading between the microgrids in the cooperative community which reduces the extra cost from unnecessary external trading by adjusting the electric energy production amounts of combined heat and power (CHP generators and amounts of both internal and external electric energy trading of the cooperative community. A simulation study is also conducted to validate the proposed mathematical energy management models.

  15. Optimizing Reservoir Operation to Adapt to the Climate Change

    Science.gov (United States)

    Madadgar, S.; Jung, I.; Moradkhani, H.

    2010-12-01

    Climate change and upcoming variation in flood timing necessitates the adaptation of current rule curves developed for operation of water reservoirs as to reduce the potential damage from either flood or draught events. This study attempts to optimize the current rule curves of Cougar Dam on McKenzie River in Oregon addressing some possible climate conditions in 21th century. The objective is to minimize the failure of operation to meet either designated demands or flood limit at a downstream checkpoint. A simulation/optimization model including the standard operation policy and a global optimization method, tunes the current rule curve upon 8 GCMs and 2 greenhouse gases emission scenarios. The Precipitation Runoff Modeling System (PRMS) is used as the hydrology model to project the streamflow for the period of 2000-2100 using downscaled precipitation and temperature forcing from 8 GCMs and two emission scenarios. An ensemble of rule curves, each associated with an individual scenario, is obtained by optimizing the reservoir operation. The simulation of reservoir operation, for all the scenarios and the expected value of the ensemble, is conducted and performance assessment using statistical indices including reliability, resilience, vulnerability and sustainability is made.

  16. Optimal Economic Operation of Islanded Microgrid by Using a Modified PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Yiwei Ma

    2015-01-01

    Full Text Available An optimal economic operation method is presented to attain a joint-optimization of cost reduction and operation strategy for islanded microgrid, which includes renewable energy source, the diesel generator, and battery storage system. The optimization objective is to minimize the overall generating cost involving depreciation cost, operation cost, emission cost, and economic subsidy available for renewable energy source, while satisfying various equality and inequality constraints. A novel dynamic optimization process is proposed based on two different operation control modes where diesel generator or battery storage acts as the master unit to maintain the system frequency and voltage stability, and a modified particle swarm optimization algorithm is applied to get faster solution to the practical economic operation problem of islanded microgrid. With the example system of an actual islanded microgrid in Dongao Island, China, the proposed models, dynamic optimization strategy, and solution algorithm are verified and the influences of different operation strategies and optimization algorithms on the economic operation are discussed. The results achieved demonstrate the effectiveness and feasibility of the proposed method.

  17. Design and development of bio-inspired framework for reservoir operation optimization

    Science.gov (United States)

    Asvini, M. Sakthi; Amudha, T.

    2017-12-01

    Frameworks for optimal reservoir operation play an important role in the management of water resources and delivery of economic benefits. Effective utilization and conservation of water from reservoirs helps to manage water deficit periods. The main challenge in reservoir optimization is to design operating rules that can be used to inform real-time decisions on reservoir release. We develop a bio-inspired framework for the optimization of reservoir release to satisfy the diverse needs of various stakeholders. In this work, single-objective optimization and multiobjective optimization problems are formulated using an algorithm known as "strawberry optimization" and tested with actual reservoir data. Results indicate that well planned reservoir operations lead to efficient deployment of the reservoir water with the help of optimal release patterns.

  18. Optimal mode of operation for biomass production

    NARCIS (Netherlands)

    Betlem, Ben H.L.; Roffel, Brian; Mulder, P.

    2002-01-01

    The rate of biomass production is optimised for a predefined feed exhaustion using the residue ratio as a degree of freedom. Three modes of operation are considered: continuous, repeated batch, and repeated fed-batch operation. By means of the Production Curve, the transition points of the optimal

  19. Optimal processor for malfunction detection in operating nuclear reactor

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1990-01-01

    An optimal processor for diagnosing operational transients in a nuclear reactor is described. Basic design of the processor involves real-time processing of noise signal obtained from a particular in core sensor and the optimality is based on minimum alarm failure in contrast to minimum false alarm criterion from the safe and reliable plant operation viewpoint

  20. Optimal Career Progression of Ground Combat Arms Officers in the Marine Reserve

    OpenAIRE

    Reamy, Stephen

    2012-01-01

    The purpose of this thesis is to examine career progression for ground combat arms officers in the Marine Corps Reserve, and to identify gaps between current and optimal career progression. Recent policy changes provide the catalyst for this thesis. On 4 December 2006, the Marine Corps announced the implementation of the Officer Candidate Course-Reserve. At the time, active component manpower practices and historically high retention rates resulted in reduced numbers of officers leaving activ...

  1. Optimal Design and Operation of Permanent Irrigation Systems

    Science.gov (United States)

    Oron, Gideon; Walker, Wynn R.

    1981-01-01

    Solid-set pressurized irrigation system design and operation are studied with optimization techniques to determine the minimum cost distribution system. The principle of the analysis is to divide the irrigation system into subunits in such a manner that the trade-offs among energy, piping, and equipment costs are selected at the minimum cost point. The optimization procedure involves a nonlinear, mixed integer approach capable of achieving a variety of optimal solutions leading to significant conclusions with regard to the design and operation of the system. Factors investigated include field geometry, the effect of the pressure head, consumptive use rates, a smaller flow rate in the pipe system, and outlet (sprinkler or emitter) discharge.

  2. Deterministic operations research models and methods in linear optimization

    CERN Document Server

    Rader, David J

    2013-01-01

    Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear

  3. Optimal Offering Strategies for Wind Power in Energy and Primary Reserve Markets

    DEFF Research Database (Denmark)

    Soares, Tiago; Pinson, Pierre; Jensen, Tue Vissing

    2016-01-01

    generation from the turbines. These offering strategies aim at maximizing expected revenues from both market floors using probabilistic forecasts for wind power generation, complemented with estimated regulation costs and penalties for failing to provide primary reserve. A set of numerical examples, as well......Wind power generation is to play an important role in supplying electric power demand, and will certainly impact the design of future energy and reserve markets. Operators of wind power plants will consequently develop adequate offering strategies, accounting for the market rules...... and the operational capabilities of the turbines, e.g., to participate in primary reserve markets. We consider two different offering strategies for joint participation of wind power in energy and primary reserve markets, based on the idea of proportional and constant splitting of potentially available power...

  4. Optimizing Biorefinery Design and Operations via Linear Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric

    2017-03-28

    The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for

  5. Examples of radiation protection optimization in design and operation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Palacios, E.; Curti, A.; Agatiello, O.; Majchrzak, J.

    1982-01-01

    The practical use of the requirement of optimization of radiological protection is presented. Application examples for designing ventilation systems and for maintenance operations of nuclear plants are given. A method is developed for the application of the optimization requirement to the design of ventilation systems in contaminated environments. Representative values of the main parameters are presented and their relevant features are discussed. A practical example shows actual results for a radioisotope production plant. Causes influencing collective doses incurred by the workers during maintenance operations are analyzed. A method is presented for the optimization of both the level of training of personnel and the apportionment of individual doses. As an example, this methodology is applied to the maintenance operations in a nuclear power plant. (author)

  6. Optimal scope of supply chain network & operations design

    NARCIS (Netherlands)

    Ma, N.

    2014-01-01

    The increasingly complex supply chain networks and operations call for the development of decision support systems and optimization techniques that take a holistic view of supply chain issues and provide support for integrated decision-making. The economic impacts of optimized supply chain are

  7. Optimal control of operation efficiency of belt conveyor systems

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2010-01-01

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study.

  8. Optimal control of operation efficiency of belt conveyor systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shirong [Department of Automation, Wuhan University, Wuhan 430072 (China); Xia, Xiaohua [Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002 (South Africa)

    2010-06-15

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study. (author)

  9. Parametric Optimization of Some Critical Operating System Functions--An Alternative Approach to the Study of Operating Systems Design

    Science.gov (United States)

    Sobh, Tarek M.; Tibrewal, Abhilasha

    2006-01-01

    Operating systems theory primarily concentrates on the optimal use of computing resources. This paper presents an alternative approach to teaching and studying operating systems design and concepts by way of parametrically optimizing critical operating system functions. Detailed examples of two critical operating systems functions using the…

  10. Fuzzy multiobjective models for optimal operation of a hydropower system

    Science.gov (United States)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  11. Design Optimization of Mechanical Components Using an Enhanced Teaching-Learning Based Optimization Algorithm with Differential Operator

    Directory of Open Access Journals (Sweden)

    B. Thamaraikannan

    2014-01-01

    Full Text Available This paper studies in detail the background and implementation of a teaching-learning based optimization (TLBO algorithm with differential operator for optimization task of a few mechanical components, which are essential for most of the mechanical engineering applications. Like most of the other heuristic techniques, TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. A differential operator is incorporated into the TLBO for effective search of better solutions. To validate the effectiveness of the proposed method, three typical optimization problems are considered in this research: firstly, to optimize the weight in a belt-pulley drive, secondly, to optimize the volume in a closed coil helical spring, and finally to optimize the weight in a hollow shaft. have been demonstrated. Simulation result on the optimization (mechanical components problems reveals the ability of the proposed methodology to find better optimal solutions compared to other optimization algorithms.

  12. Service Operations Optimization: Recent Development in Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Bin Shen

    2015-01-01

    Full Text Available Services are the key of success in operation management. Designing the effective strategies by optimization techniques is the fundamental and important condition for performance increase in service operations (SOs management. In this paper, we mainly focus on investigating SOs optimization in the areas of supply chain management, which create the greatest business values. Specifically, we study the recent development of SOs optimization associated with supply chain by categorizing them into four different industries (i.e., e-commerce industry, consumer service industry, public sector, and fashion industry and four various SOs features (i.e., advertising, channel coordination, pricing, and inventory. Moreover, we conduct the technical review on the stylish industries/topics and typical optimization models. The classical optimization approaches for SOs management in supply chain are presented. The managerial implications of SOs in supply chain are discussed.

  13. Greenhouse gases emission assessment in residential sector through buildings simulations and operation optimization

    International Nuclear Information System (INIS)

    Stojiljković, Mirko M.; Ignjatović, Marko G.; Vučković, Goran D.

    2015-01-01

    Buildings use a significant amount of primary energy and largely contribute to greenhouse gases emission. Cost optimality and cost effectiveness, including cost-optimal operation, are important for the adoption of energy efficient and environmentally friendly technologies. The long-term assessment of buildings-related greenhouse gases emission might take into account cost-optimal operation of their energy systems. This is often not the case in the literature. Long-term operation optimization problems are often of large scale and computationally intensive and time consuming. This paper formulates a bottom-up methodology relying on an efficient, but precise operation optimization approach, applicable to long-term problems and use with buildings simulations. We suggest moving-horizon short-term optimization to determine near-optimal operation modes and show that this approach, applied to flexible energy systems without seasonal storage, have satisfactory efficiency and accuracy compared with solving problem for an entire year. We also confirm it as a valuable pre-solve technique. Approach applicability and the importance of energy systems optimization are illustrated with a case study considering buildings envelope improvements and cogeneration and heat storage implementation in an urban residential settlement. EnergyPlus is used for buildings simulations while mixed integer linear programming optimization problems are constructed and solved using the custom-built software and the branch-and-cut solver Gurobi Optimizer. - Highlights: • Bottom-up approach for greenhouse gases emission assessment is presented. • Short-term moving-horizon optimization is used to define operation regimes. • Operation optimization and buildings simulations are connected with modeling tool. • Illustrated optimization method performed efficiently and gave accurate results.

  14. Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation

    Science.gov (United States)

    Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah

    2018-04-01

    The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.

  15. Modified Chaos Particle Swarm Optimization-Based Optimized Operation Model for Stand-Alone CCHP Microgrid

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-07-01

    Full Text Available The optimized dispatch of different distributed generations (DGs in stand-alone microgrid (MG is of great significance to the operation’s reliability and economy, especially for energy crisis and environmental pollution. Based on controllable load (CL and combined cooling-heating-power (CCHP model of micro-gas turbine (MT, a multi-objective optimization model with relevant constraints to optimize the generation cost, load cut compensation and environmental benefit is proposed in this paper. The MG studied in this paper consists of photovoltaic (PV, wind turbine (WT, fuel cell (FC, diesel engine (DE, MT and energy storage (ES. Four typical scenarios were designed according to different day types (work day or weekend and weather conditions (sunny or rainy in view of the uncertainty of renewable energy in variable situations and load fluctuation. A modified dispatch strategy for CCHP is presented to further improve the operation economy without reducing the consumers’ comfort feeling. Chaotic optimization and elite retention strategy are introduced into basic particle swarm optimization (PSO to propose modified chaos particle swarm optimization (MCPSO whose search capability and convergence speed are improved greatly. Simulation results validate the correctness of the proposed model and the effectiveness of MCPSO algorithm in the optimized operation application of stand-alone MG.

  16. Comparison of operation optimization methods in energy system modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2013-01-01

    In areas with large shares of Combined Heat and Power (CHP) production, significant introduction of intermittent renewable power production may lead to an increased number of operational constraints. As the operation pattern of each utility plant is determined by optimization of economics......, possibilities for decoupling production constraints may be valuable. Introduction of heat pumps in the district heating network may pose this ability. In order to evaluate if the introduction of heat pumps is economically viable, we develop calculation methods for the operation patterns of each of the used...... energy technologies. In the paper, three frequently used operation optimization methods are examined with respect to their impact on operation management of the combined technologies. One of the investigated approaches utilises linear programming for optimisation, one uses linear programming with binary...

  17. Operation Characteristics Optimization of Low Power Three-Phase Asynchronous Motors

    Directory of Open Access Journals (Sweden)

    VLAD, I.

    2014-02-01

    Full Text Available Most published papers on low power asynchronous motors were aimed to achieve better operational performances in different operating conditions. The optimal design of the general-purpose motors requires searching and selecting an electric machine to meet minimum operating costs criterion and certain customer imposed restrictive conditions. In this paper, there are many significant simulations providing qualitative and quantitative information on reducing active and reactive energy losses in motors, and on parameters and constructive solution. The optimization study applied the minimal operating costs criterion, and it took into account the starting restrictive conditions. Thirteen variables regarding electromagnetic stresses and main constructive dimensions were considered. The operating costs of the optimized motor decreased with 25.6%, as compared to the existing solution. This paper can be a practical and theoretical support for the development and implementation of modern design methods, based on theoretical and experimental study of stationary and transient processes in low power motors, to increase efficiency and power factor.

  18. Optimal sizing and operation of energy storage systems considering long term assessment

    Directory of Open Access Journals (Sweden)

    Gerardo Guerra

    2018-01-01

    Full Text Available This paper proposes a procedure for estimating the optimal sizing of Photovoltaic Generators and Energy Storage units when they are operated from the utility’s perspective. The goal is to explore the potential improvement on the overall operating conditions of the distribution system to which the Generators and Storage units will be connected. Optimization is conducted by means of a General Parallel Genetic Algorithm that seeks to maximize the technical benefits for the distribution system. The paper proposes an operation strategy for Energy Storage units based on the daily variation of load and generation; the operation strategy is optimized for an evaluation period of one year using hourly power curves. The construction of the yearly Storage operation curve results in a high-dimension optimization problem; as a result, different day-classification methods are applied in order to reduce the dimension of the optimization. Results show that the proposed approach is capable of producing significant improvements in system operating conditions and that the best performance is obtained when the day-classification is based on the similarity among daily power curves.

  19. Total output operation chart optimization of cascade reservoirs and its application

    International Nuclear Information System (INIS)

    Jiang, Zhiqiang; Ji, Changming; Sun, Ping; Wang, Liping; Zhang, Yanke

    2014-01-01

    Highlights: • We propose a new double nested model for cascade reservoirs operation optimization. • We use two methods to extract the output distribution ratio. • The adopted two methods perform better than the widely used methods at present. • Stepwise regression method performs better than mean value method on the whole. - Abstract: With the rapid development of cascade hydropower stations in recent decades, the cascade system composed of multiple reservoirs needs unified operation and management. However, the output distribution problem has not yet been solved reasonably when the total output of cascade system obtained, which makes the full utilization of hydropower resources in cascade reservoirs very difficult. Discriminant criterion method is a traditional and common method to solve the output distribution problem at present, but some shortcomings cannot be ignored in the practical application. In response to the above concern, this paper proposes a new total output operation chart optimization model and a new optimal output distribution model, the two models constitute to a double nested model with the goal of maximizing power generation. This paper takes the cascade reservoirs of Li Xianjiang River in China as an instance to obtain the optimal total output operation chart by the proposed double nested model and the 43 years historical runoff data, progressive searching method and progressive optimality algorithm are used in solving the model. In order to take the obtained total output operation chart into practical operation, mean value method and stepwise regression method are adopted to extract the output distribution ratios on the basis of the optimal simulation intermediate data. By comparing with discriminant criterion method and conventional method, the combined utilization of total output operation chart and output distribution ratios presents better performance in terms of power generation and assurance rate, which proves it is an effective

  20. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2014-12-01

    Full Text Available Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes.

  1. Operational optimization in the downstream; Otimizacao operacional no downstream

    Energy Technology Data Exchange (ETDEWEB)

    Silberman, Luis; Cunha, Filipe Silveira Ramos da [Petroleo Ipiranga, Porto Alegre, RS (Brazil)

    2004-07-01

    On the present competitive down stream's market, there is a great necessity of optimization aiming to guarantee the best price and quality of our clients. Our goal is to attend these expectations while we guarantee an efficient operation. The greatest question is how far we are from the ideal model. This way, a lot of projects have been executed during the last years aiming the operational optimization of all our activities. We divide the projects in 4 areas: Logistic (new modals distribution), Transport (transport optimization - quality and more deliveries with less trucks), Client Support (Internet Ipiranga and Support Center), Distribution Terminals Productivity (automation and environment). This work intend to present our ideal, perfect and complete Downstream Operation model. We will talk about how close we are of this ideal model and we will present the projects that we had already developed and implanted on the automation of the terminals and the logistics area. (author)

  2. Optimization of Operations Resources via Discrete Event Simulation Modeling

    Science.gov (United States)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  3. Naval Reserve Force: Cost and Benefit Analysis of Reducing the Number of Naval Surface Reserve Force Operating Budget Holders

    National Research Council Canada - National Science Library

    Young, Eric

    1997-01-01

    .... This thesis examines one of Commander Naval Surface Reserve Force's initiatives for reducing the current number of Operating Budget holder's Comptroller Departments without sacrificing efficiency...

  4. Optimization of the bank's operating portfolio

    Science.gov (United States)

    Borodachev, S. M.; Medvedev, M. A.

    2016-06-01

    The theory of efficient portfolios developed by Markowitz is used to optimize the structure of the types of financial operations of a bank (bank portfolio) in order to increase the profit and reduce the risk. The focus of this paper is to check the stability of the model to errors in the original data.

  5. A Chronological Reliability Model to Assess Operating Reserve Allocation to Wind Power Plants: Preprint

    International Nuclear Information System (INIS)

    Milligan, M. R.

    2001-01-01

    As the use of wind power plants increases worldwide, it is important to understand the effect these power sources have on the operations of the grid. This paper focuses on the operating reserve impact of wind power plants. Many probabilistic methods have been applied to power system analysis, and some of these are the basis of reliability analysis. This paper builds on a probabilistic technique to allocate the operating reserve burden among power plants in the grid. The method was originally posed by Strbac and Kirschen[1] and uses an allocation that prorates the reserve burden based on expected energy not delivered. Extending this method to include wind power plants allows the reserve burden to be allocated among different plants using the same method, yet incorporates information about the intermittent nature of wind power plants

  6. Site utility system optimization with operation adjustment under uncertainty

    International Nuclear Information System (INIS)

    Sun, Li; Gai, Limei; Smith, Robin

    2017-01-01

    Highlights: • Uncertainties are classified into time-based and probability-based uncertain factors. • Multi-period operation and recourses deal with uncertainty implementation. • Operation scheduling are specified at the design stage to deal with uncertainties. • Steam mains superheating affects steam distribution and power generation in the system. - Abstract: Utility systems must satisfy process energy and power demands under varying conditions. The system performance is decided by the system configuration and individual equipment operating load for boilers, gas turbines, steam turbines, condensers, and let down valves. Steam mains conditions in terms of steam pressures and steam superheating also play important roles on steam distribution in the system and power generation by steam expansion in steam turbines, and should be included in the system optimization. Uncertainties such as process steam power demand changes and electricity price fluctuations should be included in the system optimization to eliminate as much as possible the production loss caused by steam power deficits due to uncertainties. In this paper, uncertain factors are classified into time-based and probability-based uncertain factors, and operation scheduling containing multi-period equipment load sharing, redundant equipment start up, and electricity import to compensate for power deficits, have been presented to deal with the happens of uncertainties, and are formulated as a multi-period item and a recourse item in the optimization model. There are two case studies in this paper. One case illustrates the system design to determine system configuration, equipment selection, and system operation scheduling at the design stage to deal with uncertainties. The other case provides operational optimization scenarios for an existing system, especially when the steam superheating varies. The proposed method can provide practical guidance to system energy efficiency improvement.

  7. Optimal reservoir operation policies using novel nested algorithms

    Science.gov (United States)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested

  8. Optimization of ejector design and operation

    Directory of Open Access Journals (Sweden)

    Kuzmenko Konstantin

    2016-01-01

    Full Text Available The investigation aims at optimization of gas ejector operation. The goal consists in the improvement of the inflator design so that to enable 50 liters of gas inflation within ~30 milliseconds. For that, an experimental facility was developed and fabricated together with the measurement system to study pressure patterns in the inflator path.

  9. Optimization of reserve lithium thionyl chloride battery electrochemical design parameters

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N.; Godshall, N.A.

    1987-01-01

    The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15%) improved battery performance significantly (10% greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell peformance is illustrated. 5 refs., 9 figs., 3 tabs.

  10. Optimization of reserve lithium thionyl chloride battery electrochemical design parameters

    Science.gov (United States)

    Doddapaneni, N.; Godshall, N. A.

    The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15 percent) improved battery performance significantly (10 percent greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell performance is illustrated.

  11. A Particle Swarm Optimization Algorithm for Optimal Operating Parameters of VMI Systems in a Two-Echelon Supply Chain

    Science.gov (United States)

    Sue-Ann, Goh; Ponnambalam, S. G.

    This paper focuses on the operational issues of a Two-echelon Single-Vendor-Multiple-Buyers Supply chain (TSVMBSC) under vendor managed inventory (VMI) mode of operation. To determine the optimal sales quantity for each buyer in TSVMBC, a mathematical model is formulated. Based on the optimal sales quantity can be obtained and the optimal sales price that will determine the optimal channel profit and contract price between the vendor and buyer. All this parameters depends upon the understanding of the revenue sharing between the vendor and buyers. A Particle Swarm Optimization (PSO) is proposed for this problem. Solutions obtained from PSO is compared with the best known results reported in literature.

  12. Operational planning optimization of steam power plants considering equipment failure in petrochemical complex

    International Nuclear Information System (INIS)

    Luo, Xianglong; Zhang, Bingjian; Chen, Ying; Mo, Songping

    2013-01-01

    Highlights: ► We develop a systematic programming methodology to address equipment failure. ► We classify different operation conditions into real periods and virtual periods. ► The formulated MILP models guarantee cost reduction and enough operation safety. ► The consideration of reserving operation redundancy is effective. - Abstract: One or more interconnected steam power plants (SPPs) are constructed in a petrochemical complex to supply utility energy to the process. To avoid large economic penalties or process shutdowns, these SPPs should be flexible and reliable enough to meet the process energy requirement under varying conditions. Unexpected utility equipment failure is inevitable and difficult to be predicted. Most of the conventional methods are based on the assumption that SPPs do not experience any kind of equipment failure. Unfortunately, a process shutdown cannot be avoided when equipment fails unexpectedly. In this paper, a systematic methodology is presented to minimize the total cost under normal conditions while reserving enough flexibility and safety for unexpected equipment failure conditions. The proposed method transforms the different conditions into real periods to indicate normal scenarios and virtual periods to indicate unexpected equipment failure scenarios. The optimization strategy incorporating various operation redundancy scheduling, the transition constraints from equipment failure conditions to normal conditions, and the boiler load increase behavior modeling are presented to save cost and guarantee operation safety. A detailed industrial case study shows that the proposed systematic methodology is effective and practical in coping with equipment failure conditions with only few additional cost penalties

  13. Optimal design of compact and connected nature reserves for multiple species.

    Science.gov (United States)

    Wang, Yicheng; Önal, Hayri

    2016-04-01

    When designing a conservation reserve system for multiple species, spatial attributes of the reserves must be taken into account at species level. The existing optimal reserve design literature considers either one spatial attribute or when multiple attributes are considered the analysis is restricted only to one species. We built a linear integer programing model that incorporates compactness and connectivity of the landscape reserved for multiple species. The model identifies multiple reserves that each serve a subset of target species with a specified coverage probability threshold to ensure the species' long-term survival in the reserve, and each target species is covered (protected) with another probability threshold at the reserve system level. We modeled compactness by minimizing the total distance between selected sites and central sites, and we modeled connectivity of a selected site to its designated central site by selecting at least one of its adjacent sites that has a nearer distance to the central site. We considered structural distance and functional distances that incorporated site quality between sites. We tested the model using randomly generated data on 2 species, one ground species that required structural connectivity and the other an avian species that required functional connectivity. We applied the model to 10 bird species listed as endangered by the state of Illinois (U.S.A.). Spatial coherence and selection cost of the reserves differed substantially depending on the weights assigned to these 2 criteria. The model can be used to design a reserve system for multiple species, especially species whose habitats are far apart in which case multiple disjunct but compact and connected reserves are advantageous. The model can be modified to increase or decrease the distance between reserves to reduce or promote population connectivity. © 2015 Society for Conservation Biology.

  14. Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency

    International Nuclear Information System (INIS)

    Han, In-Su; Park, Sang-Kyun; Chung, Chang-Bock

    2016-01-01

    Highlights: • A proton exchange membrane fuel cell system is operationally optimized. • A constrained optimization problem is formulated to maximize fuel cell efficiency. • Empirical and semi-empirical models for most system components are developed. • Sensitivity analysis is performed to elucidate the effects of major operating variables. • The optimization results are verified by comparison with actual operation data. - Abstract: This paper presents an operation optimization method and demonstrates its application to a proton exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the system. Empirical and semi-empirical models for most of the system components were developed based on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed models were validated by comparing simulation results with the measured ones. Moreover, sensitivity analyses were performed to elucidate the effects of major operating variables on the system efficiency under practical operating constraints. Then, the optimal operating conditions were sought at various system power loads. The optimization results revealed that the efficiency gaps between the worst and best operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify the optimization results, the optimal operating conditions were applied to the fuel cell system, and the measured results were compared with the expected optimal values. The discrepancies between the measured and expected values were found to be trivial, indicating that the proposed operation optimization method was quite successful for a substantial increase in the efficiency of the fuel cell system.

  15. Optimal control of load-following operations in a pressurized water reactor

    International Nuclear Information System (INIS)

    Zhao Fuyu; Zhou Dawei

    2000-01-01

    According to the optimal control theory, the problem of load-following operation in a pressurized water reactor is formulated as a nonlinear-quadratic optimal control problem. One-dimensional core model is adopted. A successful optimization algorithm DDPSR is proposed to solving the obtained problem. The research results show that the DDPSR can converge with a long time interval and needs very small iteration number and computing time, and the practical reactor can be fairly operated in an optimal load-following manner and axial offset satisfies the required value from beginning to end. Control characters of boron concentration are discussed specially

  16. The effect of pre-operative optimization on post-operative outcome in Crohn's disease resections

    DEFF Research Database (Denmark)

    El-Hussuna, Alaa; Iesalnieks, Igors; Horesh, Nir

    2017-01-01

    BACKGROUND: The timing of surgical intervention in Crohn's disease (CD) may depend on pre-operative optimization (PO) which includes different interventions to decrease the risk for unfavourable post-operative outcome. The objective of this study was to investigate the effect of multi-model PO on...

  17. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    International Nuclear Information System (INIS)

    Wu, Xia; Wu, Genhua

    2014-01-01

    Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag 61 cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag 61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron

  18. OPF-Based Optimal Location of Two Systems Two Terminal HVDC to Power System Optimal Operation

    Directory of Open Access Journals (Sweden)

    Mehdi Abolfazli

    2013-04-01

    Full Text Available In this paper a suitable mathematical model of the two terminal HVDC system is provided for optimal power flow (OPF and optimal location based on OPF such power injection model. The ability of voltage source converter (VSC-based HVDC to independently control active and reactive power is well represented by the model. The model is used to develop an OPF-based optimal location algorithm of two systems two terminal HVDC to minimize the total fuel cost and active power losses as objective function. The optimization framework is modeled as non-linear programming (NLP and solved by Matlab and GAMS softwares. The proposed algorithm is implemented on the IEEE 14- and 30-bus test systems. The simulation results show ability of two systems two terminal HVDC in improving the power system operation. Furthermore, two systems two terminal HVDC is compared by PST and OUPFC in the power system operation from economical and technical aspects.

  19. Planning for robust reserve networks using uncertainty analysis

    Science.gov (United States)

    Moilanen, A.; Runge, M.C.; Elith, Jane; Tyre, A.; Carmel, Y.; Fegraus, E.; Wintle, B.A.; Burgman, M.; Ben-Haim, Y.

    2006-01-01

    Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence?absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data?erroneous species presence?absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.

  20. Optimal economic and environment operation of micro-grid power systems

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Gualous, Hamid; Lo Brutto, Ottavio A.

    2016-01-01

    Highlights: • Real-time energy management system for Micro-Grid power systems is introduced. • The management system considered cost objective function and emission constraints. • The optimization problem is solved using Binary Particle Swarm Algorithm. • Advanced real-time interface libraries are used to run the optimization code. - Abstract: In this paper, an advanced real-time energy management system is proposed in order to optimize micro-grid performance in a real-time operation. The proposed strategy of the management system capitalizes on the power of binary particle swarm optimization algorithm to minimize the energy cost and carbon dioxide and pollutant emissions while maximizing the power of the available renewable energy resources. Advanced real-time interface libraries are used to run the optimization code. The simulation results are considered for three different scenarios considering the complexity of the proposed problem. The proposed management system along with its control system is experimentally tested to validate the simulation results obtained from the optimization algorithm. The experimental results highlight the effectiveness of the proposed management system for micro-grids operation.

  1. A model based on stochastic dynamic programming for determining China's optimal strategic petroleum reserve policy

    International Nuclear Information System (INIS)

    Zhang Xiaobing; Fan Ying; Wei Yiming

    2009-01-01

    China's Strategic Petroleum Reserve (SPR) is currently being prepared. But how large the optimal stockpile size for China should be, what the best acquisition strategies are, how to release the reserve if a disruption occurs, and other related issues still need to be studied in detail. In this paper, we develop a stochastic dynamic programming model based on a total potential cost function of establishing SPRs to evaluate the optimal SPR policy for China. Using this model, empirical results are presented for the optimal size of China's SPR and the best acquisition and drawdown strategies for a few specific cases. The results show that with comprehensive consideration, the optimal SPR size for China is around 320 million barrels. This size is equivalent to about 90 days of net oil import amount in 2006 and should be reached in the year 2017, three years earlier than the national goal, which implies that the need for China to fill the SPR is probably more pressing; the best stockpile release action in a disruption is related to the disruption levels and expected continuation probabilities. The information provided by the results will be useful for decision makers.

  2. Operating cycle optimization for a Magnus effect-based airborne wind energy system

    International Nuclear Information System (INIS)

    Milutinović, Milan; Čorić, Mirko; Deur, Joško

    2015-01-01

    Highlights: • Operating cycle of a Magnus effect-based AWE system has been optimized. • The cycle trajectory should be vertical and far from the ground based generator. • Vertical trajectory provides high pulling force that drives the generator. • Large distance from the generator is required for the feasibility of the cycle. - Abstract: The paper presents a control variables optimization study for an airborne wind energy production system. The system comprises an airborne module in the form of a buoyant, rotating cylinder, whose rotation in a wind stream induces the Magnus effect-based aerodynamic lift. Through a tether, the airborne module first drives the generator fixed on the ground, and then the generator becomes a motor that lowers the airborne module. The optimization is aimed at maximizing the average power produced at the generator during a continuously repeatable operating cycle. The control variables are the generator-side rope force and the cylinder rotation speed. The optimization is based on a multi-phase problem formulation, where operation is divided into ascending and descending phases, with free boundary conditions and free cycle duration. The presented simulation results show that significant power increase can be achieved by using the obtained optimal operating cycle instead of the initial, empirically based operation control strategy. A brief analysis is also given to provide a physical interpretation of the optimal cycle results

  3. Generation and reserve dispatch in a competitive market using constrained particle swarm optimization

    International Nuclear Information System (INIS)

    Azadani, E. Nasr; Hosseinian, S.H.; Moradzadeh, B.

    2010-01-01

    Competitive bidding for energy and ancillary services is increasingly recognized as an important part of electricity markets. In addition, the transmission capacity limits should be considered to optimize the total market cost. In this paper, a new approach based on constrained particle swarm optimization (CPSO) is developed to deal with the multi-product (energy and reserve) and multi-area electricity market dispatch problem. Constraint handling is based on particle ranking and uniform distribution. CPSO method offers a new solution for optimizing the total market cost in a multi-area competitive electricity market considering the system constraints. The proposed technique shows promising performance for smooth and non smooth cost function as well. Three different systems are examined to demonstrate the effectiveness and the accuracy of the proposed algorithm. (author)

  4. Optimizing integrated airport surface and terminal airspace operations under uncertainty

    Science.gov (United States)

    Bosson, Christabelle S.

    In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is

  5. The optimization of nuclear power plants operation modes in emergency situations

    Science.gov (United States)

    Zagrebayev, A. M.; Trifonenkov, A. V.; Ramazanov, R. N.

    2018-01-01

    An emergency situations resulting in the necessity for temporary reactor trip may occur at the nuclear power plant while normal operating mode. The paper deals with some of the operation c aspects of nuclear power plant operation in emergency situations and during threatened period. The xenon poisoning causes limitations on the variety of statements of the problem of calculating characteristics of a set of optimal reactor power off controls. The article show a possibility and feasibility of new sets of optimization tasks for the operation of nuclear power plants under conditions of xenon poisoning in emergency circumstances.

  6. Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation

    Directory of Open Access Journals (Sweden)

    Malek Jasemi

    2016-11-01

    Full Text Available Nowadays, due to technical and economic reasons, the distributed generation (DG units are widely connected to the low and medium voltage network and created a new structure called micro-grid. Renewable energies (especially wind and solar based DGs are one of the most important generations units among DG units. Because of stochastic behavior of these resources, the optimum and safe management and operation of micro-grids has become one of the research priorities for researchers. So, in this study, the optimal operation of a typical micro-grid is investigated in order to maximize the penetration of renewable energy sources with the lowest operation cost with respect to the limitations for the load supply and the distributed generation resources. The understudy micro-grid consists of diesel generator, battery, wind turbines and photovoltaic panels. The objective function comprises of fuel cost, start-up cost, spinning reserve cost, power purchasing cost from the upstream grid and the sales revenue of the power to the upstream grid. In this paper, the uncertainties of demand, wind speed and solar radiation are considered and the optimization will be made by using the GAMS software and mixed integer planning method (MIP. Article History: Received May 21, 2016; Received in revised form July 11, 2016; Accepted October 15, 2016; Available online How to Cite This Article: Jasemi, M.,  Adabi, F., Mozafari, B., and Salahi, S. (2016 Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation, Int. Journal of Renewable Energy Development, 5(3,233-248. http://dx.doi.org/10.14710/ijred.5.3.233-248

  7. Power system reliability impacts of wind generation and operational reserve requirements

    Directory of Open Access Journals (Sweden)

    Esteban Gil

    2015-06-01

    Full Text Available Due to its variability, wind generation integration presents a significant challenge to power system operators in order to maintain adequate reliability levels while ensuring least cost operation. This paper explores the trade-off between the benefits associated to a higher wind penetration and the additional operational reserve requirements that they impose. Such exploration is valued in terms of its effect on power system reliability, measured as an amount of unserved energy. The paper also focuses on how changing the Value of Lost Load (VoLL can be used to attain different reliability targets, and how wind power penetration and the diversity of the wind energy resource will impact quality of supply (in terms of instances of unserved energy. The evaluation of different penetrations of wind power generation, different wind speed profiles, wind resource diversity, and different operational reserve requirements, is conducted on the Chilean Northern Interconnected System (SING using statistical modeling of wind speed time series and computer simulation through a 24-hour ahead unit commitment algorithm and a Monte Carlo simulation scheme. Results for the SING suggest that while wind generation can significantly reduce generation costs, it can also imply higher security costs to reach acceptable reliability levels.

  8. Synergy optimization and operation management on syndicate complementary knowledge cooperation

    Science.gov (United States)

    Tu, Kai-Jan

    2014-10-01

    The number of multi enterprises knowledge cooperation has grown steadily, as a result of global innovation competitions. I have conducted research based on optimization and operation studies in this article, and gained the conclusion that synergy management is effective means to break through various management barriers and solve cooperation's chaotic systems. Enterprises must communicate system vision and access complementary knowledge. These are crucial considerations for enterprises to exert their optimization and operation knowledge cooperation synergy to meet global marketing challenges.

  9. Operational Strategies for Predictive Dispatch of Control Reserves in View of Stochastic Generation

    DEFF Research Database (Denmark)

    Delikaraoglou, Stefanos; Heussen, Kai; Pinson, Pierre

    2014-01-01

    In view of the predictability and stochasticity of wind power generation, transmission system operators (TSOs) can benefit from predictive dispatch of slow and manual control reserves in order to maintain reactive reserve levels for unpredictable events. While scenario-based approaches for stocha...

  10. Optimal operation of hybrid-SITs under a SBO accident

    International Nuclear Information System (INIS)

    Jeon, In Seop; Heo, Sun; Kang, Hyun Gook

    2016-01-01

    Highlights: • Operation strategy of hybrid-SIT (H-SIT) in station blackout (SBO) is developed. • There are five main factors which have to be carefully treated in the development of the operation strategy. • Optimal value of each main factor is investigated analytically and then through thermal-hydraulic analysis using computer code. • The optimum operation strategy is suggested based on the optimal value of the main factors. - Abstract: A hybrid safety injection tank (H-SIT) is designed to enhance the capability of pressurized water reactors against high-pressure accidents which might be caused by the combined accidents accompanied by station blackout (SBO), and is suggested as a useful alternative to electricity-driven motor injection pumps. The main purpose of the H-SIT is to provide coolant to the core so that core safety can be maintained for a longer period. As H-SITs have a limited inventory, their efficient use in cooling down the core is paramount to maximize the available time for long-term cooling component restoration. Therefore, an optimum operation strategy must be developed to support the operators for the most efficient H-SIT use. In this study, the main factors which have to be carefully treated in the development of an operation strategy are first identified. Then the optimal value of each main factor is investigated analytically, a process useful to get the basis of the global optimum points. Based on these analytical optimum points, a thermal-hydraulic analysis using MARS code is performed to get more accurate values and to verify the results of the analytical study. The available time for long-term cooling component restoration is also estimated. Finally, an integrated optimum operation strategy for H-SITs in SBO is suggested.

  11. Data reconciliation and optimal operation of a Catalytic naphtha reformer

    Directory of Open Access Journals (Sweden)

    Tore Lid

    2008-10-01

    Full Text Available The naphtha reforming process converts low-octane gasoline blending components to high-octane components for use in high-performance gasoline fuels. The reformer also has an important function as the producer of hydrogen to the refinery hydrotreaters. A process model based on a unit model structure, is used for estimation of the process condition using data reconciliation. Measurements are classified as redundant or non redundant and the model variables are classified as observable, barely observable or unobservable. The computed uncertainty of the measured and unmeasured variables shows that even if a variable is observable it may have a very large uncertainty and may thereby be practically unobservable. The process condition at 21 data points, sampled from two years of operation, was reconciled and used to optimize the process operation. There are large seasonal variations in the reformer product price and two operational cases are studied. In case 1, the product price is high and throughput is maximized with respect to process and product quality constraints. In case 2, the product price is low and the throughput is minimized with respect to a low constraint on the hydrogen production. Based on the characteristics of the optimal operation, a "self optimizing" control structure is suggested for each of the two operational cases.

  12. Optimized Skip-Stop Metro Line Operation Using Smart Card Data

    Directory of Open Access Journals (Sweden)

    Peitong Zhang

    2017-01-01

    Full Text Available Skip-stop operation is a low cost approach to improving the efficiency of metro operation and passenger travel experience. This paper proposes a novel method to optimize the skip-stop scheme for bidirectional metro lines so that the average passenger travel time can be minimized. Different from the conventional “A/B” scheme, the proposed Flexible Skip-Stop Scheme (FSSS can better accommodate spatially and temporally varied passenger demand. A genetic algorithm (GA based approach is then developed to efficiently search for the optimal solution. A case study is conducted based on a real world bidirectional metro line in Shenzhen, China, using the time-dependent passenger demand extracted from smart card data. It is found that the optimized skip-stop operation is able to reduce the average passenger travel time and transit agencies may benefit from this scheme due to energy and operational cost savings. Analyses are made to evaluate the effects of that fact that certain number of passengers fail to board the right train (due to skip operation. Results show that FSSS always outperforms the all-stop scheme even when most passengers of the skipped OD pairs are confused and cannot get on the right train.

  13. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  14. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation

  15. Optimal operation of cogeneration units. State of art and perspective

    International Nuclear Information System (INIS)

    Polimeni, S.

    2001-01-01

    Optimal operation of cogeneration plants and of power plant fueling waste products is a complex challenge as they have to fulfill, beyond the contractual obligation of electric power supply, the constraints of supplying the required thermal energy to the user (for cogeneration units) or to burn completely the by-products of the industrial complex where they are integrated. Electrical power market evolution is pushing such units to a more and more volatile operation caused by uncertain selling price levels. This work intends to pinpoint the state of art in the optimization of these units outlining the important differences among the different size and cycles. The effect of the market liberalization on the automation systems and the optimization algorithms will be discussed [it

  16. Nickel-Cadmium Battery Operation Management Optimization Using Robust Design

    Science.gov (United States)

    Blosiu, Julian O.; Deligiannis, Frank; DiStefano, Salvador

    1996-01-01

    In recent years following several spacecraft battery anomalies, it was determined that managing the operational factors of NASA flight NiCd rechargeable battery was very important in order to maintain space flight battery nominal performance. The optimization of existing flight battery operational performance was viewed as something new for a Taguchi Methods application.

  17. Neuro-optimal operation of a variable air volume HVAC and R system

    International Nuclear Information System (INIS)

    Ning Min; Zaheeruddin, M.

    2010-01-01

    Low operational efficiency especially under partial load conditions and poor control are some reasons for high energy consumption of heating, ventilation, air conditioning and refrigeration (HVAC and R) systems. To improve energy efficiency, HVAC and R systems should be efficiently operated to maintain a desired indoor environment under dynamic ambient and indoor conditions. This study proposes a neural network based optimal supervisory operation strategy to find the optimal set points for chilled water supply temperature, discharge air temperature and VAV system fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. Simulation results show that compared to the conventional night reset operation scheme, the optimal operation scheme saves around 10% energy under full load condition and 19% energy under partial load conditions.

  18. Short-term optimal operation of Three-gorge and Gezhouba cascade hydropower stations in non-flood season with operation rules from data mining

    International Nuclear Information System (INIS)

    Ma Chao; Lian Jijian; Wang Junna

    2013-01-01

    Highlights: ► Short-term optimal operation of Three-gorge and Gezhouba hydropower stations was studied. ► Key state variable and exact constraints were proposed to improve numerical model. ► Operation rules proposed were applied in population initiation step for faster optimization. ► Culture algorithm with difference evolution was selected as optimization method. ► Model and method proposed were verified by case study with feasible operation solutions. - Abstract: Information hidden in the characteristics and relationship data of a cascade hydropower stations can be extracted by data-mining approaches to be operation rules and optimization support information. In this paper, with Three-gorge and Gezhouba cascade hydropower stations as an example, two operation rules are proposed due to different operation efficiency of water turbines and tight water volume and hydraulic relationship between two hydropower stations. The rules are applied to improve optimization model with more exact decision and state variables and constraints. They are also used in the population initiation step to develop better individuals with culture algorithm with differential evolution as an optimization method. In the case study, total feasible population and the best solution based on an initial population with an operation rule can be obtained with a shorter computation time than that of a pure random initiated population. Amount of electricity generation in a dispatch period with an operation rule also increases with an average increase rate of 0.025%. For a fixed water discharge process of Three-gorge hydropower station, there is a better rule to decide an operation plan of Gezhouba hydropower station in which total hydraulic head for electricity generation is optimized and distributed with inner-plant economic operation considered.

  19. Optimizing capital and time expenditures for drilling service operations

    Energy Technology Data Exchange (ETDEWEB)

    Zazovskiy, F Ya; Soltysyak, T I

    1980-01-01

    The operational efficiency of drilling services operations management are examined. The structure of time expenditure is analyzed for repair operations according to equipment type employed by the Ivano-Frankovsk Drilling Management under the Ukrneft' enterprise during 1977. The results of this analysis are weighed against a series of service operations carried out at industrial enterprises and connected with technical disruptions. Some of the cases examined include service competion operations outside of the industrial units when technical processes are disrupted only for the change of equipment which has outlived its usefulness and is no longer in series production. First of all, time expended for repair work can be reduced to zero during the drilling of shallow wells which do not require extensive drilling time. The actual savings, both in time and money, as far as repair work is concerned, hinges on the actual time factor for total oil depetion. An equation is provided for optimal time expenditure necessary for repair work and equipment replacement. An actual example is given from the Dolinsk UBR (Drillin Management) under the Ukrneft' enterprise where time spent on actual service operations has appeared to be less than the optimal figure cited in the above material. This is possible because of increased capital expenditures.

  20. OPTIMIZATION OF AGGREGATION AND SEQUENTIAL-PARALLEL EXECUTION MODES OF INTERSECTING OPERATION SETS

    Directory of Open Access Journals (Sweden)

    G. М. Levin

    2016-01-01

    Full Text Available A mathematical model and a method for the problem of optimization of aggregation and of sequential- parallel execution modes of intersecting operation sets are proposed. The proposed method is based on the two-level decomposition scheme. At the top level the variant of aggregation for groups of operations is selected, and at the lower level the execution modes of operations are optimized for a fixed version of aggregation.

  1. Off-Policy Reinforcement Learning: Optimal Operational Control for Two-Time-Scale Industrial Processes.

    Science.gov (United States)

    Li, Jinna; Kiumarsi, Bahare; Chai, Tianyou; Lewis, Frank L; Fan, Jialu

    2017-12-01

    Industrial flow lines are composed of unit processes operating on a fast time scale and performance measurements known as operational indices measured at a slower time scale. This paper presents a model-free optimal solution to a class of two time-scale industrial processes using off-policy reinforcement learning (RL). First, the lower-layer unit process control loop with a fast sampling period and the upper-layer operational index dynamics at a slow time scale are modeled. Second, a general optimal operational control problem is formulated to optimally prescribe the set-points for the unit industrial process. Then, a zero-sum game off-policy RL algorithm is developed to find the optimal set-points by using data measured in real-time. Finally, a simulation experiment is employed for an industrial flotation process to show the effectiveness of the proposed method.

  2. System and method of cylinder deactivation for optimal engine torque-speed map operation

    Science.gov (United States)

    Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min

    2014-11-11

    This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.

  3. Analysis of Optimal Operation of an Energy Integrated Distillation Plant

    DEFF Research Database (Denmark)

    Li, Hong Wen; Hansen, C.A.; Gani, Rafiqul

    2003-01-01

    The efficiency of manufacturing systems can be significantly increased through diligent application of control based on mathematical models thereby enabling more tight integration of decision making with systems operation. In the present paper analysis of optimal operation of an energy integrated...

  4. Positive-operator-valued measure optimization of classical correlations

    NARCIS (Netherlands)

    Hamieh, S; Kobes, R; Zaraket, H

    We study the problem of optimization over positive-operator-valued measures to extract classical correlation in a bipartite quantum system. The proposed method is applied to binary states only. Moreover, to illustrate this method, an explicit example is studied in detail.

  5. Simulation-optimization model of reservoir operation based on target storage curves

    Directory of Open Access Journals (Sweden)

    Hong-bin Fang

    2014-10-01

    Full Text Available This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.

  6. Driving external chemistry optimization via operations management principles.

    Science.gov (United States)

    Bi, F Christopher; Frost, Heather N; Ling, Xiaolan; Perry, David A; Sakata, Sylvie K; Bailey, Simon; Fobian, Yvette M; Sloan, Leslie; Wood, Anthony

    2014-03-01

    Confronted with the need to significantly raise the productivity of remotely located chemistry CROs Pfizer embraced a commitment to continuous improvement which leveraged the tools from both Lean Six Sigma and queue management theory to deliver positive measurable outcomes. During 2012 cycle times were reduced by 48% by optimization of the work in progress and conducting a detailed workflow analysis to identify and address pinch points. Compound flow was increased by 29% by optimizing the request process and de-risking the chemistry. Underpinning both achievements was the development of close working relationships and productive communications between Pfizer and CRO chemists. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Characteristics of the prices of operating reserves and regulation services in competitive electricity markets

    International Nuclear Information System (INIS)

    Wang Peng; Zareipour, Hamidreza; Rosehart, William D.

    2011-01-01

    In this paper, characteristics of the prices of reserves and regulation services in the Ontario, New York and ERCOT electricity markets are studied. More specifically, price variability, price jumps, long-range correlation, and non-linearity of the prices are analyzed using the available measures in the literature. For the Ontario electricity market, the prices of 10-min spinning, 10-min non-spinning, and 30-min operating reserves for the period May 1, 2002 to December 31, 2007 are analyzed. For the New York market, prices of the same reserves plus regulation service are studied for the period February 5, 2005 to December 31, 2008. For the ERCOT market, we analyze the prices of responsive reserve, regulation up and regulation down services, for the period January 1, 2005 to December 31, 2009. The studied characteristics of operating reserve and regulation prices are also compared with those of energy prices. The findings of this paper show that the studied reserve and regulation prices feature extreme volatility, more frequent jumps and spikes, different peak price occurrence time, and lower predictability, compared to the energy prices. - Research highlights: → We examine various statistical characteristics of reserve and regulation prices. → We compare characteristics of reserve and regulation and energy prices. → Reserve and regulation prices feature different patterns from energy prices. → Reserve and regulation prices are more dispersive and volatile than energy price.

  8. A robust optimization based approach for microgrid operation in deregulated environment

    International Nuclear Information System (INIS)

    Gupta, R.A.; Gupta, Nand Kishor

    2015-01-01

    Highlights: • RO based approach developed for optimal MG operation in deregulated environment. • Wind uncertainty modeled by interval forecasting through ARIMA model. • Proposed approach evaluated using two realistic case studies. • Proposed approach evaluated the impact of degree of robustness. • Proposed approach gives a significant reduction in operation cost of microgrid. - Abstract: Micro Grids (MGs) are clusters of Distributed Energy Resource (DER) units and loads. MGs are self-sustainable and generally operated in two modes: (1) grid connected and (2) grid isolated. In deregulated environment, the operation of MG is managed by the Microgrid Operator (MO) with an objective to minimize the total cost of operation. The MG management is crucial in the deregulated power system due to (i) integration of intermittent renewable sources such as wind and Photo Voltaic (PV) generation, and (ii) volatile grid prices. This paper presents robust optimization based approach for optimal MG management considering wind power uncertainty. Time series based Autoregressive Integrated Moving Average (ARIMA) model is used to characterize the wind power uncertainty through interval forecasting. The proposed approach is illustrated through a case study having both dispatchable and non-dispatchable generators through different modes of operation. Further the impact of degree of robustness is analyzed in both cases on the total cost of operation of the MG. A comparative analysis between obtained results using proposed approach and other existing approach shows the strength of proposed approach in cost minimization in MG management

  9. Optimization Methods in Operations Research and Systems Analysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 6. Optimization Methods in Operations Research and Systems Analysis. V G Tikekar. Book Review Volume 2 Issue 6 June 1997 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Multiobjective Optimization Modeling Approach for Multipurpose Single Reservoir Operation

    Directory of Open Access Journals (Sweden)

    Iosvany Recio Villa

    2018-04-01

    Full Text Available The water resources planning and management discipline recognizes the importance of a reservoir’s carryover storage. However, mathematical models for reservoir operation that include carryover storage are scarce. This paper presents a novel multiobjective optimization modeling framework that uses the constraint-ε method and genetic algorithms as optimization techniques for the operation of multipurpose simple reservoirs, including carryover storage. The carryover storage was conceived by modifying Kritsky and Menkel’s method for reservoir design at the operational stage. The main objective function minimizes the cost of the total annual water shortage for irrigation areas connected to a reservoir, while the secondary one maximizes its energy production. The model includes operational constraints for the reservoir, Kritsky and Menkel’s method, irrigation areas, and the hydropower plant. The study is applied to Carlos Manuel de Céspedes reservoir, establishing a 12-month planning horizon and an annual reliability of 75%. The results highly demonstrate the applicability of the model, obtaining monthly releases from the reservoir that include the carryover storage, degree of reservoir inflow regulation, water shortages in irrigation areas, and the energy generated by the hydroelectric plant. The main product is an operational graph that includes zones as well as rule and guide curves, which are used as triggers for long-term reservoir operation.

  11. Optimization of operation cycles in BWRs using neural networks

    International Nuclear Information System (INIS)

    Ortiz S, J. J.; Castillo, A.; Alejandro P, D.

    2011-11-01

    The first results of a system for the optimization of operation cycles in boiling water reactors by means of a multi state recurrent neural network are present in this work. The neural network finds the best combination of fuel cells; fuel reloads and control bars patterns previously designed, according to an energy function that qualifies the performance of the three partial solutions for the solution of the whole problem. The partial solutions are designed by means of optimization systems non couple among them and that can use any optimization technique. The phase of the fuel axial design is not made and the size of the axial areas is fixed during the optimization process. The methodology was applied to design a balance cycle of 18 months for the reactors of the nuclear power station of Laguna Verde. The results show that is possible to find combinations of partial solutions that in set represent good solutions to the complete design problem of an operation cycle of a nuclear reactor. The results are compared with others obtained previously by other techniques. This system was developed in platform Li nux and programmed in Fortran 95 taking advantage of the 8 nuclei of a work station Dell Precision T7400. (Author)

  12. 40 CFR 73.80 - Operation of allowance reserve program for conservation and renewable energy.

    Science.gov (United States)

    2010-07-01

    ... for conservation and renewable energy. 73.80 Section 73.80 Protection of Environment ENVIRONMENTAL... and Renewable Energy Reserve § 73.80 Operation of allowance reserve program for conservation and renewable energy. (a) General. The Administrator will allocate allowances from the Conservation and...

  13. A method for aggregating external operating conditions in multi-generation system optimization models

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Münster, Marie; Ensinas, Adriano Viana

    2016-01-01

    This paper presents a novel, simple method for reducing external operating condition datasets to be used in multi-generation system optimization models. The method, called the Characteristic Operating Pattern (CHOP) method, is a visually-based aggregation method that clusters reference data based...... on parameter values rather than time of occurrence, thereby preserving important information on short-term relations between the relevant operating parameters. This is opposed to commonly used methods where data are averaged over chronological periods (months or years), and extreme conditions are hidden...... in the averaged values. The CHOP method is tested in a case study where the operation of a fictive Danish combined heat and power plant is optimized over a historical 5-year period. The optimization model is solved using the full external operating condition dataset, a reduced dataset obtained using the CHOP...

  14. Economic Optimization Analysis of Chengdu Electric Community Bus Operation

    Science.gov (United States)

    Yidong, Wang; Yun, Cai; Zhengping, Tan; Xiong, Wan

    2018-03-01

    In recent years, the government has strongly supported and promoted electric vehicles and has given priority to demonstration and popularization in the field of public transport. The economy of public transport operations has drawn increasing attention. In this paper, Chengdu wireless charging pure electric community bus is used as the research object, the battery, air conditioning, driver’s driving behavior and other economic influence factors were analyzed, and optimizing the operation plan through case data analysis, through the reasonable battery matching and mode of operation to help businesses effectively save operating costs and enhance economic efficiency.

  15. Optimal Operational Monetary Policy Rules in an Endogenous Growth Model: a calibrated analysis

    OpenAIRE

    Arato, Hiroki

    2009-01-01

    This paper constructs an endogenous growth New Keynesian model and considers growth and welfare effect of Taylor-type (operational) monetary policy rules. The Ramsey equilibrium and optimal operational monetary policy rule is also computed. In the calibrated model, the Ramseyoptimal volatility of inflation rate is smaller than that in standard exogenous growth New Keynesian model with physical capital accumulation. Optimal operational monetary policy rule makes nominal interest rate respond s...

  16. A practical algorithm for optimal operation management of distribution network including fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher; Meymand, Hamed Zeinoddini; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)

    2010-08-15

    Fuel cell power plants (FCPPs) have been taken into a great deal of consideration in recent years. The continuing growth of the power demand together with environmental constraints is increasing interest to use FCPPs in power system. Since FCPPs are usually connected to distribution network, the effect of FCPPs on distribution network is more than other sections of power system. One of the most important issues in distribution networks is optimal operation management (OOM) which can be affected by FCPPs. This paper proposes a new approach for optimal operation management of distribution networks including FCCPs. In the article, we consider the total electrical energy losses, the total electrical energy cost and the total emission as the objective functions which should be minimized. Whereas the optimal operation in distribution networks has a nonlinear mixed integer optimization problem, the optimal solution could be obtained through an evolutionary method. We use a new evolutionary algorithm based on Fuzzy Adaptive Particle Swarm Optimization (FAPSO) to solve the optimal operation problem and compare this method with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO) and Tabu Search (TS) over two distribution test feeders. (author)

  17. An Optimal Operating Strategy for Battery Life Cycle Costs in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yinghua Han

    2014-01-01

    Full Text Available Impact on petroleum based vehicles on the environment, cost, and availability of fuel has led to an increased interest in electric vehicle as a means of transportation. Battery is a major component in an electric vehicle. Economic viability of these vehicles depends on the availability of cost-effective batteries. This paper presents a generalized formulation for determining the optimal operating strategy and cost optimization for battery. Assume that the deterioration of the battery is stochastic. Under the assumptions, the proposed operating strategy for battery is formulated as a nonlinear optimization problem considering reliability and failure number. And an explicit expression of the average cost rate is derived for battery lifetime. Results show that the proposed operating strategy enhances the availability and reliability at a low cost.

  18. Hierarchical Control for Optimal and Distributed Operation of Microgrid Systems

    DEFF Research Database (Denmark)

    Meng, Lexuan

    manages the power flow with external grids, while the economic and optimal operation of MGs is not guaranteed by applying the existing schemes. Accordingly, this project dedicates to the study of real-time optimization methods for MGs, including the review of optimization algorithms, system level...... mathematical modeling, and the implementation of real-time optimization into existing hierarchical control schemes. Efficiency enhancement in DC MGs and optimal unbalance compensation in AC MGs are taken as the optimization objectives in this project. Necessary system dynamic modeling and stability analysis......, a discrete-time domain modeling method is proposed to establish an accurate system level model. Taking into account the different sampling times of real world plant, digital controller and communication devices, the system is modeled with these three parts separately, and with full consideration...

  19. Operational Optimization in Port Container Terminals

    DEFF Research Database (Denmark)

    As a result of the significant increase in worldwide containerized transportation the development of efficient handling systems in marine terminals has become very important for port competitiveness. In order to optimize the productivity the total handling time for containers in the terminal must...... be minimized. An overview of the different operational problems in port container terminals is presented and an aggregated model and solution approach is shown. Next, there will be focused on the yard storage problem and a mathematical formulation and solution proposals will be presented....

  20. Optimization of operating schedule of machines in granite industry using evolutionary algorithms

    International Nuclear Information System (INIS)

    Loganthurai, P.; Rajasekaran, V.; Gnanambal, K.

    2014-01-01

    Highlights: • Operating time of machines in granite industries was studied. • Operating time has been optimized using evolutionary algorithms such as PSO, DE. • The maximum demand has been reduced. • Hence the electricity cost of the industry and feeder stress have been reduced. - Abstract: Electrical energy consumption cost plays an important role in the production cost of any industry. The electrical energy consumption cost is calculated as two part tariff, the first part is maximum demand cost and the second part is energy consumption cost or unit cost (kW h). The maximum demand cost can be reduced without affecting the production. This paper focuses on the reduction of maximum demand by proper operating schedule of major equipments. For this analysis, various granite industries are considered. The major equipments in granite industries are cutting machine, polishing machine and compressor. To reduce the maximum demand, the operating time of polishing machine is rescheduled by optimization techniques such as Differential Evolution (DE) and particle swarm optimization (PSO). The maximum demand costs are calculated before and after rescheduling. The results show that if the machines are optimally operated, the cost is reduced. Both DE and PSO algorithms reduce the maximum demand cost at the same rate for all the granite industries. However, the optimum scheduling obtained by DE reduces the feeder power flow than the PSO scheduling

  1. Optimal operating conditions for external cavity semiconductor laser optical chaos communication system

    International Nuclear Information System (INIS)

    Priyadarshi, S; Pierce, I; Hong, Y; Shore, K A

    2012-01-01

    In optical chaos communications a message is masked in the noise-like broadband output of a chaotic transmitter laser, and message recovery is enabled through the synchronization of the transmitter and the (chaotic) receiver laser. Key issues are to identify the laser operating conditions which provide the highest quality synchronization conditions and those which provide optimized message extraction. In general such operating conditions are not coincident. In this paper numerical simulations are performed with the aim of identifying a regime of operation where the highest quality synchronization and optimizing message extraction efficiency are achieved simultaneously. Use of such an operating regime will facilitate practical deployment of optical chaos communications systems without the need for re-adjustment of laser operating conditions in the field. (paper)

  2. Quantum behaved Particle Swarm Optimization with Differential Mutation operator applied to WWER-1000 in-core fuel management optimization

    International Nuclear Information System (INIS)

    Jamalipour, Mostafa; Sayareh, Reza; Gharib, Morteza; Khoshahval, Farrokh; Karimi, Mahmood Reza

    2013-01-01

    Highlights: ► A new method called QPSO-DM is applied to BNPP in-core fuel management optimization. ► It is found that QPSO-DM performs better than PSO and QPSO. ► This method provides a permissible arrangement for optimum loading pattern. - Abstract: This paper presents a new method using Quantum Particle Swarm Optimization with Differential Mutation operator (QPSO-DM) for optimizing WWER-1000 core fuel management. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have shown good performance on in-core fuel management optimization (ICFMO). The objective of this paper is to show that QPSO-DM performs very well and is comparable to PSO and Quantum Particle Swarm Optimization (QPSO). Most of the strategies for ICFMO are based on maximizing multiplication factor (k eff ) to increase cycle length and minimizing power peaking factor (P q ) in order to improve fuel integrity. PSO, QPSO and QPSO-DM have been implemented to fulfill these requirements for the first operating cycle of WWER-1000 Bushehr Nuclear Power Plant (BNPP). The results show that QPSO-DM performs better than the others. A program has been written in MATLAB to map PSO, QPSO and QPSO-DM for loading pattern optimization. WIMS and CITATION have been used to simulate reactor core for neutronic calculations

  3. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    Science.gov (United States)

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  4. Production scheduling of a lignite mine under quality and reserves uncertainty

    International Nuclear Information System (INIS)

    Galetakis, Michael; Roumpos, Christos; Alevizos, George; Vamvuka, Despina

    2011-01-01

    The effect of uncertainty sources to the stochastic optimization of the combined project of a new surface lignite mine exploitation and power plant operation for electricity generation is investigated. Major sources of uncertainty that were considered are the reserves and the quality of the lignite. Since probability distribution functions for these uncertainties were estimated during the detailed exploration phase of the deposit, the overall goal is then to determine the optimal capacity of the power plant and consequently the optimal production rate of the mine over the time. The optimization objective that was selected is the maximization of the net present value of the project. Emphasis is placed on the sensitivity analysis for the investigation of the effect of quality and reserves uncertainty on project optimization, on the mathematical formulation of risk attitude strategy and on increasing the efficiency of the optimization process by creating a limited set of feasible solutions applying empirical rules. The developed methodology was applied for the determination of the optimal annual production rate of a new surface lignite mine in the area of Ptolemais–Amynteon in Northern Greece. - Highlights: ► Quality and reserves uncertainty affects considerably the production scheduling. ► Stochastic optimization is greatly accelerated by incorporating Taylor's rule. ► Decisions can be made considering different risk level attitudes.

  5. Online Optimization Method for Operation of Generators in a Micro Grid

    Science.gov (United States)

    Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi

    Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.

  6. Nested algorithms for optimal reservoir operation and their embedding in a decision support platform

    NARCIS (Netherlands)

    Delipetrev, B.

    2016-01-01

    Reservoir operation is a multi-objective optimization problem traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation named nested DP (nDP), nested SDP (nSDP), nested reinforcement

  7. Comparison of Heuristic Methods Applied for Optimal Operation of Water Resources

    Directory of Open Access Journals (Sweden)

    Alireza Borhani Dariane

    2009-01-01

    Full Text Available Water resources optimization problems are usually complex and hard to solve using the ordinary optimization methods, or they are at least  not economically efficient. A great number of studies have been conducted in quest of suitable methods capable of handling such problems. In recent years, some new heuristic methods such as genetic and ant algorithms have been introduced in systems engineering. Preliminary applications of these methods in water resources problems have shown that some of them are powerful tools, capable of solving complex problems. In this paper, the application of such heuristic methods as Genetic Algorithm (GA and Ant Colony Optimization (ACO have been studied for optimizing reservoir operation. The Dez Dam reservoir inIranwas chosen for a case study. The methods were applied and compared using short-term (one year and long-term models. Comparison of the results showed that GA outperforms both DP and ACO in finding true global optimum solutions and operating rules.

  8. Optimal distribution of reactivity excess in a system of reactors operating at a variable loading schedule

    International Nuclear Information System (INIS)

    Bolsunov, A.A.; Zagrebaev, A.M.; Naumov, V.I.

    1979-01-01

    Considered is the task of reactivity excess distribution optimization in the system of reactors for the purpose of minimazing the summary power production losses at the fixed loading schedule. Mathematical formulation of the task is presented. Given are the curves, characterizing the dependence of possible degree of the reactor power drop on reactivity excees for non-stationary Xe poisoning at different nominal density of neutron flux. Analyzing the results, it is concluded that in case, when the reactors differ only in neutron flux density the reactor with lower neutron flux density should be involved in the variable operation schedule first as the poisoning of this reactor will be less, and therefore, the losses of the system power production will be less. It is advisable to reserve the reactivity excess in the reactor with greater power or in the reactor with higher burnup rate. It is stressed that the obtained results of the optimization task solution point out the possibility of obtaining the certain ecomonic effect and permit to correct the requirements on mobility of separate power units at system approach to NPP operation in a variable loading schedule

  9. Operator support through modern optimal estimation and control

    International Nuclear Information System (INIS)

    Burdick, G.R.

    1980-01-01

    Applications of Modern Optimal Estimation and Control Theories are late in coming to the nuclear industry. Some features of the theories that might be exploited in nuclear systems applications are described. Activities at the Idaho National Engineering Laboratory relating to operator support using those theories are identified and some implementation challenges are discussed

  10. Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power

    Institute of Scientific and Technical Information of China (English)

    Feng Zhao; Chenghui Zhang; Bo Sun

    2016-01-01

    This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power(CCHP) with storage systems.Initially,the initiative optimization operation strategy of CCHP system in the cooling season,the heating season and the transition season was formulated.The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency,minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy.Furthermore,the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm.Ultimately,the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution(TOPSIS) method.A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method.The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method.The CCHP system has achieved better energy efficiency,environmental protection and economic benefits.

  11. Enhancing State-of-the-art Multi-objective Optimization Algorithms by Applying Domain Specific Operators

    DEFF Research Database (Denmark)

    Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2015-01-01

    optimization problems where the environment does not change dynamically. For that reason, the requirement for convergence in static optimization problems is not as timecritical as for dynamic optimization problems. Most MOEAs use generic variables and operators that scale to static multi-objective optimization...... problem. The domain specific operators only encode existing knowledge about the environment. A comprehensive comparative study is provided to evaluate the results of applying the CONTROLEUM-GA compared to NSGAII, e-NSGAII and e- MOEA. Experimental results demonstrate clear improvements in convergence time...

  12. Nonlinear Burn Control and Operating Point Optimization in ITER

    Science.gov (United States)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  13. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    Science.gov (United States)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  14. Operational characteristics optimization of human-computer system

    Directory of Open Access Journals (Sweden)

    Zulquernain Mallick

    2010-09-01

    Full Text Available Computer operational parameters are having vital influence on the operators efficiency from readability viewpoint. Four parameters namely font, text/background color, viewing angle and viewing distance are analyzed. The text reading task, in the form of English text, was presented on the computer screen to the participating subjects and their performance, measured in terms of number of words read per minute (NWRPM, was recorded. For the purpose of optimization, the Taguchi method is used to find the optimal parameters to maximize operators’ efficiency for performing readability task. Two levels of each parameter have been considered in this study. An orthogonal array, the signal-to-noise (S/N ratio and the analysis of variance (ANOVA were employed to investigate the operators’ performance/efficiency. Results showed that Times Roman font, black text on white background, 40 degree viewing angle and 60 cm viewing distance, the subjects were quite comfortable, efficient and read maximum number of words per minute. Text/background color was dominant parameter with a percentage contribution of 76.18% towards the laid down objective followed by font type at 18.17%, viewing distance 7.04% and viewing angle 0.58%. Experimental results are provided to confirm the effectiveness of this approach.

  15. Optimization of an experimental hybrid microgrid operation: reliability and economic issues

    OpenAIRE

    Milo, Aitor; Gaztañaga, Haizea; Etxeberria Otadui, Ion; Bilbao, Endika; Rodríguez Cortés, Pedro

    2009-01-01

    In this paper a hybrid microgrid system, composed of RES (Renewable Energy System) and CHP (Combined Heat and Power) systems together with a battery based storage system is presented. The microgrid is accompanied by a centralized energy management system (CEMS) in order to optimize the microgrid operation both in grid-connected and in stand-alone modes. In grid-connected mode the optimization of the economic exploitation of the microgrid is privileged by applying optim...

  16. [Numerical simulation and operation optimization of biological filter].

    Science.gov (United States)

    Zou, Zong-Sen; Shi, Han-Chang; Chen, Xiang-Qiang; Xie, Xiao-Qing

    2014-12-01

    BioWin software and two sensitivity analysis methods were used to simulate the Denitrification Biological Filter (DNBF) + Biological Aerated Filter (BAF) process in Yuandang Wastewater Treatment Plant. Based on the BioWin model of DNBF + BAF process, the operation data of September 2013 were used for sensitivity analysis and model calibration, and the operation data of October 2013 were used for model validation. The results indicated that the calibrated model could accurately simulate practical DNBF + BAF processes, and the most sensitive parameters were the parameters related to biofilm, OHOs and aeration. After the validation and calibration of model, it was used for process optimization with simulating operation results under different conditions. The results showed that, the best operation condition for discharge standard B was: reflux ratio = 50%, ceasing methanol addition, influent C/N = 4.43; while the best operation condition for discharge standard A was: reflux ratio = 50%, influent COD = 155 mg x L(-1) after methanol addition, influent C/N = 5.10.

  17. Optimal, Risk-based Operation and Maintenance Planning for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    For offshore wind turbines costs to operation and maintenance are substantial. This paper describes a risk-based life-cycle approach for optimal planning of operation and maintenance. The approach is based on pre-posterior Bayesian decision theory. Deterioration mechanisms such as fatigue...

  18. Genetic Algorithm (GA Method for Optimization of Multi-Reservoir Systems Operation

    Directory of Open Access Journals (Sweden)

    Shervin Momtahen

    2006-01-01

    Full Text Available A Genetic Algorithm (GA method for optimization of multi-reservoir systems operation is proposed in this paper. In this method, the parameters of operating policies are optimized using system simulation results. Hence, any operating problem with any sort of objective function, constraints and structure of operating policy can be optimized by GA. The method is applied to a 3-reservoir system and is compared with two traditional methods of Stochastic Dynamic Programming and Dynamic Programming and Regression. The results show that GA is superior both in objective function value and in computational speed. The proposed method is further improved using a mutation power updating rule and a varying period simulation method. The later is a novel procedure proposed in this paper that is believed to help in solving computational time problem in large systems. These revisions are evaluated and proved to be very useful in converging to better solutions in much less time. The final GA method is eventually evaluated as a very efficient procedure that is able to solve problems of large multi-reservoir system which is usually impossible by traditional methods. In fact, the real performance of the GA method starts where others fail to function.

  19. Disaggregating reserve-to-production ratios: An algorithm for United States oil and gas reserve development

    Science.gov (United States)

    Williams, Charles William

    Reserve-to-production ratios for oil and gas development are utilized by oil and gas producing states to monitor oil and gas reserve and production dynamics. These ratios are used to determine production levels for the manipulation of oil and gas prices while maintaining adequate reserves for future development. These aggregate reserve-to-production ratios do not provide information concerning development cost and the best time necessary to develop newly discovered reserves. Oil and gas reserves are a semi-finished inventory because development of the reserves must take place in order to implement production. These reserves are considered semi-finished in that they are not counted unless it is economically profitable to produce them. The development of these reserves is encouraged by profit maximization economic variables which must consider the legal, political, and geological aspects of a project. This development is comprised of a myriad of incremental operational decisions, each of which influences profit maximization. The primary purpose of this study was to provide a model for characterizing a single product multi-period inventory/production optimization problem from an unconstrained quantity of raw material which was produced and stored as inventory reserve. This optimization was determined by evaluating dynamic changes in new additions to reserves and the subsequent depletion of these reserves with the maximization of production. A secondary purpose was to determine an equation for exponential depletion of proved reserves which presented a more comprehensive representation of reserve-to-production ratio values than an inadequate and frequently used aggregate historical method. The final purpose of this study was to determine the most accurate delay time for a proved reserve to achieve maximum production. This calculated time provided a measure of the discounted cost and calculation of net present value for developing new reserves. This study concluded that

  20. Optimization of operation of energy supply systems with co-generation and absorption refrigeration

    Directory of Open Access Journals (Sweden)

    Stojiljković Mirko M.

    2012-01-01

    Full Text Available Co-generation systems, together with absorption refrigeration and thermal storage, can result in substantial benefits from the economic, energy and environmental point of view. Optimization of operation of such systems is important as a component of the entire optimization process in pre-construction phases, but also for short-term energy production planning and system control. This paper proposes an approach for operational optimization of energy supply systems with small or medium scale co-generation, additional boilers and heat pumps, absorption and compression refrigeration, thermal energy storage and interconnection to the electric utility grid. In this case, the objective is to minimize annual costs related to the plant operation. The optimization problem is defined as mixed integer nonlinear and solved combining modern stochastic techniques: genetic algorithms and simulated annealing with linear programming using the object oriented “ESO-MS” software solution for simulation and optimization of energy supply systems, developed as a part of this research. This approach is applied to optimize a hypothetical plant that might be used to supply a real residential settlement in Niš, Serbia. Results are compared to the ones obtained after transforming the problem to mixed 0-1 linear and applying the branch and bound method.

  1. Development of Inventory Optimization System for Operation Nuclear Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Se-Jin; Park, Jong-Hyuk; Yoo, Sung-Soo; Lee, Sang-Guk [Korea Electric Power Research Institutes, Taejon (Korea, Republic of)

    2006-07-01

    Inventory control of spare parts plays an increasingly important role in operation management. This is why inventory management systems such as manufacturing resources planning(MRP) and enterprise resource planning(ERP) have been added. However, most of these contributions have similar theoretical background. This means the concepts and techniques are mainly based on mathematical assumptions and modeling inventory of spare parts situations. Nuclear utilities in Korea have several problems to manage the optimum level of spare parts though they used MRP System. Because most of items have long lead time and they are imported from United States, Canada, France and so on. We developed the inventory optimization system for Operation Nuclear Plants to resolve these problems. In this paper, we report a data flow process, data load and inventory calculation process. The main contribution of this paper is development of inventory optimization system which can be used in domestic power plants.

  2. Development of Inventory Optimization System for Operation Nuclear Plants

    International Nuclear Information System (INIS)

    Jang, Se-Jin; Park, Jong-Hyuk; Yoo, Sung-Soo; Lee, Sang-Guk

    2006-01-01

    Inventory control of spare parts plays an increasingly important role in operation management. This is why inventory management systems such as manufacturing resources planning(MRP) and enterprise resource planning(ERP) have been added. However, most of these contributions have similar theoretical background. This means the concepts and techniques are mainly based on mathematical assumptions and modeling inventory of spare parts situations. Nuclear utilities in Korea have several problems to manage the optimum level of spare parts though they used MRP System. Because most of items have long lead time and they are imported from United States, Canada, France and so on. We developed the inventory optimization system for Operation Nuclear Plants to resolve these problems. In this paper, we report a data flow process, data load and inventory calculation process. The main contribution of this paper is development of inventory optimization system which can be used in domestic power plants

  3. Comparison of three control strategies for optimization of spray dryer operation

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2017-01-01

    controllers for operation of a four-stage spray dryer. The three controllers are a proportional-integral (PI) controller that is used in industrial practice for spray dryer operation, a linear model predictive controller with real-time optimization (MPC with RTO, MPC-RTO), and an economically optimizing...... nonlinear model predictive controller (E-NMPC). The MPC with RTO is based on the same linear state space model in the MPC and the RTO layer. The E-NMPC consists of a single optimization layer that uses a nonlinear system of ordinary differential equations for its predictions. The PI control strategy has...... the production rate, while minimizing the energy consumption, keeping the residual moisture content of the powder below a maximum limit, and avoiding that the powder sticks to the chamber walls. We use an industrially recorded disturbance scenario in order to produce realistic simulations and conclusions...

  4. Development of Optimal Stressor Scenarios for New Operational Energy Systems

    Science.gov (United States)

    2017-12-01

    OPTIMAL STRESSOR SCENARIOS FOR NEW OPERATIONAL ENERGY SYSTEMS by Geoffrey E. Fastabend December 2017 Thesis Advisor: Alejandro S... ENERGY SYSTEMS 5. FUNDING NUMBERS 6. AUTHOR(S) Geoffrey E. Fastabend 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School...developed and tested simulation model for operational energy related systems in order to develop better stressor scenarios for acceptance testing

  5. Optimization of operating regime of mass-diffusion cascades

    International Nuclear Information System (INIS)

    Chuzhinov, V.A.; Laguntsov, N.I.; Nikolaev, B.I.; Sulaberidze, G.A.

    1975-01-01

    This work deals with questions of the optimization of mass diffusion elements (columns or pumps) in cascades. Since the establishment and operation of real diffusion plants involves substantial outlays of material resources and energy, cascade optimization should be conducted in accordance with the criterion of the possibility of realizing further economies on the method and diffusion process. One of these indicators is the cost of the end product. Formulas are given for calculating the basic expenditures required for the production of an isotope in a cascade, and an analytical formula is obtained for assessing the cost of an enriched isotope mixture. Calculations are made of the influence of the steam flow rate on the cost of 99% 13 CH 4 and its constitutents, taking into account capital and power outlay on the construction and operation of the installation. It is demonstrated that as the result of a discrepancy between optimum power and capital outlays, the steam flow rate corresponding to the minimum cost is less than that corresponding to the maximum fractionating capacity of the column. In each specific case, optimization parameters should be selected having regard to the special features of the fractionating method and the fractionating apparatus. The results may be used in calculations of mass-diffusion fractionating installations, and also in comparisons of the effectiveness of the various methods used in the separation of these and other isotopes. (author)

  6. Optimization of advanced plants operation: The Escrime project

    International Nuclear Information System (INIS)

    Fiche, C.; Papin, B.

    1994-01-01

    The Escrime program aims at defining the optimal share of tasks between humans and computers under normal or accidental plant operation. Basic principles we keep in mind are the following: human operators are likely to be necessary in the operation of future plants because we cannot demonstrate that plant design is error free, so unexpected situation can still happen; automation must not release the operators from their decisional role but only help them avoiding situations of cognitive overload which can lead to increase the risk of errors; the optimum share of tasks between human and automatic systems must be based on a critical analysis of the tasks and of the way they are handled. The last point appeared to be of major importance. The corresponding analysis of the French PWR's operating procedures enabled us to define a unified scheme for plant operation under the form of a hierarchy of goals and means. Beyond this analysis, development of a specific testing facility is under way to check the relevance of the proposed plant operation organization and to test the human-machine cooperation in different situations for various levels of automation. 7 refs, 4 figs

  7. Deriving Optimal End of Day Storage for Pumped-Storage Power Plants in the Joint Energy and Reserve Day-Ahead Scheduling

    Directory of Open Access Journals (Sweden)

    Manuel Chazarra

    2017-06-01

    Full Text Available This paper presents a new methodology to maximise the income and derive the optimal end of day storage of closed-loop and daily-cycle pumped-storage hydropower plants. The plants participate in the day-ahead energy market as a price-taker and in the secondary regulation reserve market as a price-maker, in the context of the Iberian electricity system. The real-time use of the committed reserves is considered in the model formulation. The operation of the plants with the proposed methodology is compared to the ones that use an end of day storage of an empty reservoir or half of the storage capacity. Results show that the proposed methodology increases the maximum theoretical income in all the plants analysed both if they only participate in the day-ahead energy market and if they also participate in the secondary regulation service. It is also shown that the increase in the maximum theoretical income strongly depends on the size of the plant. In addition, it is proven that the end of day storages change notably in the new reserve-driven strategies of pumped-storage hydropower plants and that the proposed methodology is even more recommended if the secondary regulation service is considered.

  8. Effects of Computer Reservation System in the Operations of Travel Agencies

    Directory of Open Access Journals (Sweden)

    Sevillia S. Felicen

    2016-11-01

    Full Text Available In travel industry, the main tool used is the computerized booking systems and now known as Global Distribution Systems or GDS. This paper aimed to determine the effect of using Computer Reservation System among Travel Agencies in terms of technical, human and financial aspect. This will help the Internship office to include the identified travel agencies in their linkages where the students will be deployed for internship. The result of this study will also be helpful and can be utilized in the course travel and tour operations with computer reservation system. The descriptive method of research was used with managers and users/staff of 20 travel agencies as participants of the study. Questionnaire was used as main data gathering instrument utilizing percentage, frequency and weighted mean as statistical tool. Abacus System is the computer reservation system used by all travel agencies in Batangas. All travel agencies offered services such as domestic and international hotel reservation, domestic and international ticketing and package tour. The CRS can connect guest to all forms of travel; it has installed built in system security features that can improve agency’s efficiency and productivity.

  9. Optimal Bidding Strategy of Generation Companies (GenCos in Energy and Spinning Reserve Markets Using Linear Programming

    Directory of Open Access Journals (Sweden)

    Hassan Barati

    2011-10-01

    Full Text Available In this paper a new bidding strategy become modeling to day-ahead markets. The proposed algorithm is related to the point of view of a generation company (Genco that its end is maximized its benefit as a participant in sale markets of active power and spinning reserve. In this method, hourly forecasted energy price (FEP and forecasted reserve price (FRP is used as a reference to model the possible and probable price strategies of Gencos. A bi-level optimization problem That first level, is used to maximize the individual Genco’s payoffs for obtaining the optimal offered quantity of Gencos. The second one, uses the results of the upper sub-problem and minimizes the consumer’s payment with regard to the technical and network constraints, which leads to the awarded generation of the Gencos. In this paper use of the game theory in exist optimization model. The paper proposes a linear programming approach. A six bus system is employed to illustrate the application of the proposed method and to show its high precision and capabilities.

  10. Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system

    International Nuclear Information System (INIS)

    Jing, Z.X.; Jiang, X.S.; Wu, Q.H.; Tang, W.H.; Hua, B.

    2014-01-01

    This paper presents a comprehensive model of a small-scale integrated energy based district heating and cooling (DHC) system located in a residential area of hot-summer and cold-winter zone, which makes joint use of wind energy, solar energy, natural gas and electric energy. The model includes an off-grid wind turbine generator, heat producers, chillers, a water supply network and terminal loads. This research also investigates an optimal operating strategy based on Group Search Optimizer (GSO), through which the daily running cost of the system is optimized in both the heating and cooling modes. The strategy can be used to find the optimal number of operating chillers, optimal outlet water temperature set points of boilers and optimal water flow set points of pumps, taking into account cost functions and various operating constraints. In order to verify the model and the optimal operating strategy, performance tests have been undertaken using MATLAB. The simulation results prove the validity of the model and show that the strategy is able to minimize the system operation cost. The proposed system is evaluated in comparison with a conventional separation production (SP) system. The feasibility of investment for the DHC system is also discussed. The comparative results demonstrate the investment feasibility, the significant energy saving and the cost reduction, achieved in daily operation in an environment, where there are varying heating loads, cooling loads, wind speeds, solar radiations and electricity prices. - Highlights: • A model of a small-scale integrated energy based DHC system is presented. • An off-grid wind generator used for water heating is embedded in the model. • An optimal control strategy is studied to optimize the running cost of the system. • The designed system is proved to be energy efficient and cost effective in operation

  11. Integrated Optimization of Bus Line Fare and Operational Strategies Using Elastic Demand

    Directory of Open Access Journals (Sweden)

    Chunyan Tang

    2017-01-01

    Full Text Available An optimization approach for designing a transit service system is proposed. Its objective would be the maximization of total social welfare, by providing a profitable fare structure and tailoring operational strategies to passenger demand. These operational strategies include full route operation (FRO, limited stop, short turn, and a mix of the latter two strategies. The demand function is formulated to reflect the attributes of these strategies, in-vehicle crowding, and fare effects on demand variation. The fare is either a flat fare or a differential fare structure; the latter is based on trip distance and achieved service levels. This proposed methodology is applied to a case study of Dalian, China. The optimal results indicate that an optimal combination of operational strategies integrated with a differential fare structure results in the highest potential for increasing total social welfare, if the value of parameter ε related to additional service fee is low. When this value increases up to more than a threshold, strategies with a flat fare show greater benefits. If this value increases beyond yet another threshold, the use of skipped stop strategies is not recommended.

  12. [Construction and optimization of ecological network for nature reserves in Fujian Province, China].

    Science.gov (United States)

    Gu, Fan; Huang, Yi Xiong; Chen, Chuan Ming; Cheng, Dong Liang; Guo, Jia Lei

    2017-03-18

    The nature reserve is very important to biodiversity maintenance. However, due to the urbanization, the nature reserve has been fragmented with reduction in area, leading to the loss of species diversity. Establishing ecological network can effectively connect the fragmented habitats and plays an important role in species conversation. In this paper, based on deciding habitat patches and the landscape cost surface in ArcGIS, a minimum cumulative resistance model was used to simulate the potential ecological network of Fujian provincial nature reserves. The connectivity and importance of network were analyzed and evaluated based on comparison of connectivity indices (including the integral index of connectivity and probability of connectivity) and gravity model both before and after the potential ecological network construction. The optimum ecological network optimization measures were proposed. The result demonstrated that woodlands, grasslands and wetlands together made up the important part of the nature reserve ecological network. The habitats with large area had a higher degree of importance in the network. After constructing the network, the connectivity level was significantly improved. Although interaction strength between different patches va-ried greatly, the corridors between patches with large interaction were very important. The research could provide scientific reference and basis for nature protection and planning in Fujian Province.

  13. Assessment of operation reserves in hydrothermal electric systems with high wind generation

    NARCIS (Netherlands)

    Ramos, Andres; Rivier, Michel; García-González, Javier; Latorre, Jesus M.; Morales Espana, G.

    2016-01-01

    In this paper, we propose a method to analyze the amount of operation reserves procured in a system based on two stages. The first stage is a detailed hourly unit commitment and the second stage is a simulation model with a shorter time period. The method is applied to the Spanish hydrothermal

  14. Energy and operation management of a microgrid using particle swarm optimization

    Science.gov (United States)

    Radosavljević, Jordan; Jevtić, Miroljub; Klimenta, Dardan

    2016-05-01

    This article presents an efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM) of a microgrid including different distributed generation units and energy storage devices. The proposed approach employs PSO to minimize the total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM, while satisfying various operating constraints. Owing to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties and market prices, a probabilistic approach in the EOM is introduced. The proposed method is examined and tested on a typical grid-connected microgrid including fuel cell, gas-fired microturbine, wind turbine, photovoltaic and energy storage devices. The obtained results prove the efficiency of the proposed approach to solve the EOM of the microgrids.

  15. A database structure for radiological optimization analyses of decommissioning operations

    International Nuclear Information System (INIS)

    Zeevaert, T.; Van de Walle, B.

    1995-09-01

    The structure of a database for decommissioning experiences is described. Radiological optimization is a major radiation protection principle in practices and interventions, involving radiological protection factors, economic costs, social factors. An important lack of knowledge with respect to these factors exists in the domain of the decommissioning of nuclear power plants, due to the low number of decommissioning operations already performed. Moreover, decommissioning takes place only once for a installation. Tasks, techniques, and procedures are in most cases rather specific, limiting the use of past experiences in the radiological optimization analyses of new decommissioning operations. Therefore, it is important that relevant data or information be acquired from decommissioning experiences. These data have to be stored in a database in a way they can be used efficiently in ALARA analyses of future decommissioning activities

  16. Optimal Operation of Network-Connected Combined Heat and Powers for Customer Profit Maximization

    Directory of Open Access Journals (Sweden)

    Da Xie

    2016-06-01

    Full Text Available Network-connected combined heat and powers (CHPs, owned by a community, can export surplus heat and electricity to corresponding heat and electric networks after community loads are satisfied. This paper proposes a new optimization model for network-connected CHP operation. Both CHPs’ overall efficiency and heat to electricity ratio (HTER are assumed to vary with loading levels. Based on different energy flow scenarios where heat and electricity are exported to the network from the community or imported, four profit models are established accordingly. They reflect the different relationships between CHP energy supply and community load demand across time. A discrete optimization model is then developed to maximize the profit for the community. The models are derived from the intervals determined by the daily operation modes of CHP and real-time buying and selling prices of heat, electricity and natural gas. By demonstrating the proposed models on a 1 MW network-connected CHP, results show that the community profits are maximized in energy markets. Thus, the proposed optimization approach can help customers to devise optimal CHP operating strategies for maximizing benefits.

  17. Optimal operation of smart houses by a real-time rolling horizon algorithm

    NARCIS (Netherlands)

    Paterakis, N.G.; Pappi, I.N.; Catalão, J.P.S.; Erdinc, O.

    2016-01-01

    In this paper, a novel real-time rolling horizon optimization framework for the optimal operation of a smart household is presented. A home energy management system (HEMS) model based on mixed-integer linear programming (MILP) is developed in order to minimize the energy procurement cost considering

  18. Optimization of the Brillouin operator on the KNL architecture

    Science.gov (United States)

    Dürr, Stephan

    2018-03-01

    Experiences with optimizing the matrix-times-vector application of the Brillouin operator on the Intel KNL processor are reported. Without adjustments to the memory layout, performance figures of 360 Gflop/s in single and 270 Gflop/s in double precision are observed. This is with Nc = 3 colors, Nv = 12 right-hand-sides, Nthr = 256 threads, on lattices of size 323 × 64, using exclusively OMP pragmas. Interestingly, the same routine performs quite well on Intel Core i7 architectures, too. Some observations on the much harderWilson fermion matrix-times-vector optimization problem are added.

  19. Optimal Operation of Electric Vehicles in Competitive Electricity Markets and Its Impact on Distribution Power Systems

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. The impact of the optimal operation strategy for electric vehicles together with the optimal load response to spot market price on the distribution power system with high wind power penetrations...... are also discussed in the paper. Simulation results show that the proposed optimal operation strategy is an effective measure to achieve minimum energy costs of the PEV. The optimal operation strategy of the PEV and the optimal load response may have significant effects on the distribution power system......Since the hourly spot market price is available one day ahead in Denmark, the electricity price could be transferred to the consumers and they may make some optimal charge and discharge schedules for their electric vehicles in order to minimize their energy costs. This paper presents an optimal...

  20. Optimal offering and operating strategies for wind-storage systems with linear decision rules

    DEFF Research Database (Denmark)

    Ding, Huajie; Pinson, Pierre; Hu, Zechun

    2016-01-01

    The participation of wind farm-energy storage systems (WF-ESS) in electricity markets calls for an integrated view of day-ahead offering strategies and real-time operation policies. Such an integrated strategy is proposed here by co-optimizing offering at the day-ahead stage and operation policy...... to be used at the balancing stage. Linear decision rules are seen as a natural approach to model and optimize the real-time operation policy. These allow enhancing profits from balancing markets based on updated information on prices and wind power generation. Our integrated strategies for WF...

  1. A New Tool for Environmental and Economic Optimization of Hydropower Operations

    Science.gov (United States)

    Saha, S.; Hayse, J. W.

    2012-12-01

    As part of a project funded by the U.S. Department of Energy, researchers from Argonne, Oak Ridge, Pacific Northwest, and Sandia National Laboratories collaborated on the development of an integrated toolset to enhance hydropower operational decisions related to economic value and environmental performance. As part of this effort, we developed an analytical approach (Index of River Functionality, IRF) and an associated software tool to evaluate how well discharge regimes achieve ecosystem management goals for hydropower facilities. This approach defines site-specific environmental objectives using relationships between environmental metrics and hydropower-influenced flow characteristics (e.g., discharge or temperature), with consideration given to seasonal timing, duration, and return frequency requirements for the environmental objectives. The IRF approach evaluates the degree to which an operational regime meets each objective and produces a score representing how well that regime meets the overall set of defined objectives. When integrated with other components in the toolset that are used to plan hydropower operations based upon hydrologic forecasts and various constraints on operations, the IRF approach allows an optimal release pattern to be developed based upon tradeoffs between environmental performance and economic value. We tested the toolset prototype to generate a virtual planning operation for a hydropower facility located in the Upper Colorado River basin as a demonstration exercise. We conducted planning as if looking five months into the future using data for the recently concluded 2012 water year. The environmental objectives for this demonstration were related to spawning and nursery habitat for endangered fishes using metrics associated with maintenance of instream habitat and reconnection of the main channel with floodplain wetlands in a representative reach of the river. We also applied existing mandatory operational constraints for the

  2. Multi-objective market clearing of joint energy and reserves auctions ensuring power system security

    International Nuclear Information System (INIS)

    Aghaei, J.; Shayanfar, H.; Amjady, N.

    2009-01-01

    A model and solution approach to day-ahead market clearing of joint energy and reserves auctions is proposed in this paper. The model represents the clearing system used by ISO in charge of both the market operation and system security. A Multiobjective Mathematical Programming (MMP) formulation is implemented for provision of ancillary services (Automatic Generation Control or AGC, Spinning, Non-spinning and operational reserves) as well as energy in simultaneous auctions by pool-based aggregated market scheme. System security is taken into account in the market clearing procedure as the extra objective functions of the optimization problem. So, in the MMP formulation of the market clearing process, the objective functions (generation cost and security indices) are optimized while meeting AC power flow constraints, system reserve requirements and lost opportunity cost (LOC) considerations. The model is applied to the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS), and simulation studies are carried out to examine the effectiveness of the proposed method

  3. Economic-environmental energy and reserve scheduling of smart distribution systems: A multiobjective mathematical programming approach

    International Nuclear Information System (INIS)

    Zakariazadeh, Alireza; Jadid, Shahram; Siano, Pierluigi

    2014-01-01

    Highlights: • Environmental/economical scheduling of energy and reserve. • Simultaneous participation of loads in both energy and reserve scheduling. • Aggregate wind generation and demand uncertainties in a stochastic model. • Stochastic scheduling of energy and reserve in a distribution system. • Demand response providers’ participation in energy and reserve scheduling. - Abstract: In this paper a stochastic multi-objective economical/environmental operational scheduling method is proposed to schedule energy and reserve in a smart distribution system with high penetration of wind generation. The proposed multi-objective framework, based on augmented ε-constraint method, is used to minimize the total operational costs and emissions and to generate Pareto-optimal solutions for the energy and reserve scheduling problem. Moreover, fuzzy decision making process is employed to extract one of the Pareto-optimal solutions as the best compromise non-dominated solution. The wind power and demand forecast errors are considered in this approach and the reserve can be furnished by the main grid as well as distributed generators and responsive loads. The consumers participate in both energy and reserve markets using various demand response programs. In order to facilitate small and medium loads participation in demand response programs, a Demand Response Provider (DRP) aggregates offers for load reduction. In order to solve the proposed optimization model, the Benders decomposition technique is used to convert the large scale mixed integer non-linear problem into mixed-integer linear programming and non-linear programming problems. The effectiveness of the proposed scheduling approach is verified on a 41-bus distribution test system over a 24-h period

  4. Production optimization of remotely operated gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Juell, Aleksander

    2012-07-01

    From the introduction: The Remote Operations in Oklahoma Intended for Education (ROOKIE) project is a remote field laboratory constructed as a part of this research project. ROOKIE was initiated to provide data in research on production optimization of low productivity gas wells. In addition to this, ROOKIE is used as a teaching tool. Much of the remote operations technology used in the ROOKIE project has been used by the industry for several decades. The first use of remote data acquisition in Oklahoma was in 1989, as described by Luppens [7]. Even though this, for the most part, is old technology, the ROOKIE project is the first remote operations project set up with research and teaching as the main focus. This chapter will discuss the process of establishing the remote field laboratory and the data storage facilities. Results from the project will also be discussed. All testing, instrumentation installation, and modifications to the wells discussed in this chapter was performed by the author. The communication system between the well and NTNU, and the storage database was installed and configured by the author.(Author)

  5. Optimal operation of a micro-combined cooling, heating and power system driven by a gas engine

    International Nuclear Information System (INIS)

    Kong, X.Q.; Wang, R.Z.; Li, Y.; Huang, X.H.

    2009-01-01

    The objective of this paper is to investigate the problem of energy management and optimal operation of cogeneration system for micro-combined cooling, heating and power production (CCHP). The energy system mainly consists of a gas engine, an adsorption chiller, a gas boiler, a heat exchanger and an electric chiller. On the basis of an earlier experimental research of the micro-CCHP system, a non-linear-programming cost-minimization optimization model is presented to determine the optimum operational strategies for the system. It is shown that energy management and optimal operation of the micro-CCHP system is dependent upon load conditions to be satisfied and energy cost. In view of energy cost, it would not be optimal to operate the gas engine when the electric-to-gas cost ratio (EGCR) is very low. With higher EGCR, the optimum operational strategy of the micro-CCHP system is independent of energy cost

  6. Monthly Optimal Reservoirs Operation for Multicrop Deficit Irrigation under Fuzzy Stochastic Uncertainties

    Directory of Open Access Journals (Sweden)

    Liudong Zhang

    2014-01-01

    Full Text Available An uncertain monthly reservoirs operation and multicrop deficit irrigation model was proposed under conjunctive use of underground and surface water for water resources optimization management. The objective is to maximize the total crop yield of the entire irrigation districts. Meanwhile, ecological water remained for the downstream demand. Because of the shortage of water resources, the monthly crop water production function was adopted for multiperiod deficit irrigation management. The model reflects the characteristics of water resources repetitive transformation in typical inland rivers irrigation system. The model was used as an example for water resources optimization management in Shiyang River Basin, China. Uncertainties in reservoir management shown as fuzzy probability were treated through chance-constraint parameter for decision makers. Necessity of dominance (ND was used to analyse the advantages of the method. The optimization results including reservoirs real-time operation policy, deficit irrigation management, and the available water resource allocation could be used to provide decision support for local irrigation management. Besides, the strategies obtained could help with the risk analysis of reservoirs operation stochastically.

  7. A Survey of Recent Research on Optimization Models and Algorithms for Operations Management from the Process View

    Directory of Open Access Journals (Sweden)

    Hongying Fei

    2017-01-01

    Full Text Available Over the past decades, optimization in operations management has grown ever more popular not only in the academic literature but also in practice. However, the problems have varied a lot, and few literature reviews have provided an overview of the models and algorithms that are applied to the optimization in operations management. In this paper, we first classify crucial optimization areas of operations management from the process point of view and then analyze the current status and trends of the studies in those areas. The purpose of this study is to give an overview of optimization modelling and resolution approaches, which are applied to operations management.

  8. Optimal Bidding of a Microgrid Based on Probabilistic Analysis of Island Operation

    Directory of Open Access Journals (Sweden)

    Siyoung Lee

    2016-10-01

    Full Text Available Island operation of a microgrid increases operation survivability and reliability when there is a large accident in a main grid. However, because a microgrid typically has limited generation capability, a microgrid operator (MGO has to take the risk of island operation into account in its market participation and generation scheduling to ensure efficient operation. In this paper, a microgrid islanding event is interpreted as a trade suspension of a contract, and a set of islanding rules is presented in the form of a market rule. The risk of island operation is evaluated by modeling the microgrid islanding stochastically using an islanding probability function, which is defined in the form of a conditional probability to reflect the influence of outside conditions. An optimal bidding strategy is obtained for the MGO by formulating and solving an optimization problem to minimize the expected operating cost. The effectiveness of the proposed method was investigated by numerical simulations in which the proposed method and two other methods were applied to the same microgrid. Numerical sensitivity analyses of the coefficients of the islanding probability function were conducted to determine how an MGO copes with changes in outside conditions.

  9. Optimal Planning and Operation Management of a Ship Electrical Power System with Energy Storage System

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Meng, Lexuan

    2016-01-01

    Next generation power management at all scales is highly relying on the efficient scheduling and operation of different energy sources to maximize efficiency and utility. The ability to schedule and modulate the energy storage options within energy systems can also lead to more efficient use...... of the generating units. This optimal planning and operation management strategy becomes increasingly important for off-grid systems that operate independently of the main utility, such as microgrids or power systems on marine vessels. This work extends the principles of optimal planning and economic dispatch...... for the proposed plan is derived based on the solution from a mixed-integer nonlinear programming (MINLP) problem. Simulation results showed that including well-sized energy storage options together with optimal operation management of generating units can improve the economic operation of the test system while...

  10. Cooperative Optimal Operation of Wind-Storage Facilities

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa; Hu, Weihao; Chen, Zhe

    2014-01-01

    investment cost. We suggest benefitting the storage unit as a regulation service provider beside its normal operation for mitigating wind power imbalances. This idea comes from the fact that storage units have a fast ramping capability which is necessary to meet close to real-time regulation needs......As the penetration of wind power increases in power systems across the world, wind forecast errors become an emerging problem. Storage units are reliable tools to be used in cooperation with wind farms to mitigate imbalance penalties. Nevertheless they are not still economically viable due to huge....... In this paper a framework is proposed to formulate the optimal design of storage unit’s operation under different scenarios. These scenarios include whether the wind farm is actually generating more or less than the scheduled level submitted to day-ahead market. The results emphasize that the deployment...

  11. Reprint of: Production scheduling of a lignite mine under quality and reserves uncertainty

    International Nuclear Information System (INIS)

    Galetakis, Michael; Roumpos, Christos; Alevizos, George; Vamvuka, Despina

    2012-01-01

    The effect of uncertainty sources to the stochastic optimization of the combined project of a new surface lignite mine exploitation and power plant operation for electricity generation is investigated. Major sources of uncertainty that were considered are the reserves and the quality of the lignite. Since probability distribution functions for these uncertainties were estimated during the detailed exploration phase of the deposit, the overall goal is then to determine the optimal capacity of the power plant and consequently the optimal production rate of the mine over the time. The optimization objective that was selected is the maximization of the net present value of the project. Emphasis is placed on the sensitivity analysis for the investigation of the effect of quality and reserves uncertainty on project optimization, on the mathematical formulation of risk attitude strategy and on increasing the efficiency of the optimization process by creating a limited set of feasible solutions applying empirical rules. The developed methodology was applied for the determination of the optimal annual production rate of a new surface lignite mine in the area of Ptolemais–Amynteon in Northern Greece. - Highlights: ► Quality and reserves uncertainty affects considerably the production scheduling. ► Stochastic optimization is greatly accelerated by incorporating Taylor's rule. ► Decisions can be made considering different risk level attitudes.

  12. Eliminate the Army and Air Force Reserves: Building a Robust National Guard to Meet 21st Century Operational Challenges

    Science.gov (United States)

    2016-04-04

    TITLE AND SUBTITLE ELIMINATE THE ARMY AND AIR FORCE RESERVES: BUILDING A ROBUST NATIONAL GUARD TO MEET 21ST CENTURY OPERATIONAL CHALLENGES 5a...STAFF COLLEGE JOINT ADVANCED WARFIGHTING SCHOOL ELIMINATE THE ARMY AND AIR FORCE RESERVES: BUILDING A ROBUST NATIONAL GUARD TO... ELIMINATE THE ARMY AND AIR FORCE RESERVES: BUILDING A ROBUST NATIONAL GUARD TO MEET 21ST CENTURY OPERATIONAL CHALLENGES by

  13. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    Science.gov (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  14. Creation of Power Reserves Under the Market Economy Conditions

    Science.gov (United States)

    Mahnitko, A.; Gerhards, J.; Lomane, T.; Ribakov, S.

    2008-09-01

    The main task of the control over an electric power system (EPS) is to ensure reliable power supply at the least cost. In this case, requirements to the electric power quality, power supply reliability and cost limitations on the energy resources must be observed. The available power reserve in an EPS is the necessary condition to keep it in operation with maintenance of normal operating variables (frequency, node voltage, power flows via the transmission lines, etc.). The authors examine possibilities to create power reserves that could be offered for sale by the electric power producer. They consider a procedure of price formation for the power reserves and propose a relevant mathematical model for a united EPS, the initial data being the fuel-cost functions for individual systems, technological limitations on the active power generation and consumers' load. As the criterion of optimization the maximum profit for the producer is taken. The model is exemplified by a concentrated EPS. The computations have been performed using the MATLAB program.

  15. A systemic approach for optimal cooling tower operation

    International Nuclear Information System (INIS)

    Cortinovis, Giorgia F.; Paiva, Jose L.; Song, Tah W.; Pinto, Jose M.

    2009-01-01

    The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate.

  16. An Improved Multi-Objective Artificial Bee Colony Optimization Algorithm with Regulation Operators

    Directory of Open Access Journals (Sweden)

    Jiuyuan Huo

    2017-02-01

    Full Text Available To achieve effective and accurate optimization for multi-objective optimization problems, a multi-objective artificial bee colony algorithm with regulation operators (RMOABC inspired by the intelligent foraging behavior of honey bees was proposed in this paper. The proposed algorithm utilizes the Pareto dominance theory and takes advantage of adaptive grid and regulation operator mechanisms. The adaptive grid technique is used to adaptively assess the Pareto front maintained in an external archive and the regulation operator is used to balance the weights of the local search and the global search in the evolution of the algorithm. The performance of RMOABC was evaluated in comparison with other nature inspired algorithms includes NSGA-II and MOEA/D. The experiments results demonstrated that the RMOABC approach has better accuracy and minimal execution time.

  17. Risk spreading, connectivity, and optimal reserve spacing.

    Science.gov (United States)

    Blowes, Shane A; Connolly, Sean R

    2012-01-01

    Two important processes determining the dynamics of spatially structured populations are dispersal and the spatial covariance of demographic fluctuations. Spatially explicit approaches to conservation, such as reserve networks, must consider the tension between these two processes and reach a balance between distances near enough to maintain connectivity, but far enough to benefit from risk spreading. Here, we model this trade-off. We show how two measures of metapopulation persistence depend on the shape of the dispersal kernel and the shape of the distance decay in demographic covariance, and we consider the implications of this trade-off for reserve spacing. The relative rates of distance decay in dispersal and demographic covariance determine whether the long-run metapopulation growth rate, and quasi-extinction risk, peak for adjacent patches or intermediately spaced patches; two local maxima in metapopulation persistence are also possible. When dispersal itself fluctuates over time, the trade-off changes. Temporal variation in mean distance that propagules are dispersed (i.e., propagule advection) decreases metapopulation persistence and decreases the likelihood that persistence will peak for adjacent patches. Conversely, variation in diffusion (the extent of random spread around mean dispersal) increases metapopulation persistence overall and causes it to peak at shorter inter-patch distances. Thus, failure to consider temporal variation in dispersal processes increases the risk that reserve spacings will fail to meet the objective of ensuring metapopulation persistence. This study identifies two phenomena that receive relatively little attention in empirical work on reserve spacing, but that can qualitatively change the effectiveness of reserve spacing strategies: (1) the functional form of the distance decay in covariance among patch-specific demographic rates and (2) temporal variation in the shape of the dispersal kernel. The sensitivity of metapopulation

  18. Research on Cascade Reservoirs’ Short-Term Optimal Operation under the Effect of Reverse Regulation

    Directory of Open Access Journals (Sweden)

    Changming Ji

    2018-06-01

    Full Text Available Currently research on joint operation of a large reservoir and its re-regulating reservoir focuses on either water quantity regulation or water head regulation. The accuracy of relevant models is in need of improvement if the influence of factors such as water flow hysteresis and the aftereffect of tail water level variation are taken into consideration. In this paper, given the actual production of Pankou-Xiaoxuan cascade hydropower stations that combines two operation modes (‘electricity to water’ and ‘water to electricity’, a coupling model of their short-term optimal operation is developed, which considers Xiaoxuan reservoir’s regulating effect on Pankou reservoir’s outflow volume and water head. Factors such as water flow hysteresis and the aftereffect of tail water level variation are also considered to enhance the model’s accuracy. The Backward Propagation (BP neural network is employed for precise calculation of the downstream reservoir’s inflow and the upstream reservoir’s tail water level. Besides, we put forth Accompanying Progressive Optimality Algorithm (APOA to solve the coupling model with aftereffect. An example is given to verify the scientificity of the proposed model and the advantages of APOA. Through analysis of the model calculation results, the optimal operation rules of the cascade reservoirs are obtained in terms of water quantity regulation and water head regulation, which can provide scientific reference for cascade reservoirs’ optimal operation.

  19. Reserve selection with land market feedbacks.

    Science.gov (United States)

    Butsic, Van; Lewis, David J; Radeloff, Volker C

    2013-01-15

    How to best site reserves is a leading question for conservation biologists. Recently, reserve selection has emphasized efficient conservation: maximizing conservation goals given the reality of limited conservation budgets, and this work indicates that land market can potentially undermine the conservation benefits of reserves by increasing property values and development probabilities near reserves. Here we propose a reserve selection methodology which optimizes conservation given both a budget constraint and land market feedbacks by using a combination of econometric models along with stochastic dynamic programming. We show that amenity based feedbacks can be accounted for in optimal reserve selection by choosing property price and land development models which exogenously estimate the effects of reserve establishment. In our empirical example, we use previously estimated models of land development and property prices to select parcels to maximize coarse woody debris along 16 lakes in Vilas County, WI, USA. Using each lake as an independent experiment, we find that including land market feedbacks in the reserve selection algorithm has only small effects on conservation efficacy. Likewise, we find that in our setting heuristic (minloss and maxgain) algorithms perform nearly as well as the optimal selection strategy. We emphasize that land market feedbacks can be included in optimal reserve selection; the extent to which this improves reserve placement will likely vary across landscapes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Integrated Emission Management strategy for cost-optimal engine-aftertreatment operation

    NARCIS (Netherlands)

    Cloudt, R.P.M.; Willems, F.P.T.

    2011-01-01

    A new cost-based control strategy is presented that optimizes engine-aftertreatment performance under all operating conditions. This Integrated Emission Management strategy minimizes fuel consumption within the set emission limits by on-line adjustment of air management based on the actual state of

  1. Power-limited low-thrust trajectory optimization with operation point detection

    Science.gov (United States)

    Chi, Zhemin; Li, Haiyang; Jiang, Fanghua; Li, Junfeng

    2018-06-01

    The power-limited solar electric propulsion system is considered more practical in mission design. An accurate mathematical model of the propulsion system, based on experimental data of the power generation system, is used in this paper. An indirect method is used to deal with the time-optimal and fuel-optimal control problems, in which the solar electric propulsion system is described using a finite number of operation points, which are characterized by different pairs of thruster input power. In order to guarantee the integral accuracy for the discrete power-limited problem, a power operation detection technique is embedded in the fourth-order Runge-Kutta algorithm with fixed step. Moreover, the logarithmic homotopy method and normalization technique are employed to overcome the difficulties caused by using indirect methods. Three numerical simulations with actual propulsion systems are given to substantiate the feasibility and efficiency of the proposed method.

  2. Machine concept optimization for pumped-storage plants through combined dispatch simulation for wholesale and reserve markets

    International Nuclear Information System (INIS)

    Engels, Klaus; Harasta, Michaela; Braitsch, Werner; Moser, Albert; Schaefer, Andreas

    2012-01-01

    In Germany's energy markets of today, pumped-storage power plants offer excellent business opportunities due to their outstanding flexibility. However, the energy-economic simulation of pumped-storage plants, which is necessary to base the investment decision on a sound business case, is a highly complex matter since the plant's capacity must be optimized in a given plant portfolio and between two relevant markets: the scheduled wholesale and the reserve market. This mathematical optimization problem becomes even more complex when the question is raised as to which type of machine should be used for a pumped-storage new build option. For the first time, it has been proven possible to simulate the optimum dispatch of different pumped-storage machine concepts within two relevant markets - the scheduled wholesale and the reserve market - thereby greatly supporting the investment decision process. The methodology and findings of a cooperation study between E.ON and RWTH Aachen University in respect of the German pumped-storage extension project 'Waldeck 2+' are described, showing the latest development in dispatch simulation for generation portfolios. (authors)

  3. Optimal operation of integrated processes. Studies on heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Glemmestad, Bjoern

    1997-12-31

    Separators, reactors and a heat exchanger network (HEN) for heat recovery are important parts of an integrated plant. This thesis deals with the operation of HENs, in particular, optimal operation. The purpose of heat integration is to save energy, but the HEN also introduces new interactions and feedback into the overall plant. A prerequisite for optimisation is that there are extra degrees of freedom left after regulatory control is implemented. It is shown that extra degrees of freedom may not always be utilized for energy optimisation, and a quantitative expression for the degrees of freedom that can be so utilized are presented. A simplified expression that is often valid is also deduced. The thesis presents some improvements and generalisations of a structure based method that has been proposed earlier. Structural information is used to divide possible manipulations into three categories depending on how each manipulation affects the utility consumption. By means of these categories and two heuristic rules for operability, the possible manipulations are ordered in a priority table. This table is used to determine which manipulation should be preferred and which manipulation should be selected if an active manipulation is saturated. It is shown that the method may correspond to split-range control. A method that uses parametric information in addition to structural information is proposed. In this method, the optimal control structure is found through solving an integer programming problem. The thesis also proposes a method that combines the use of steady state optimisation and optimal selection of measurements. 86 refs., 46 figs., 8 tabs.

  4. Optimization and planning of operating theatre activities: an original definition of pathways and process modeling.

    Science.gov (United States)

    Barbagallo, Simone; Corradi, Luca; de Ville de Goyet, Jean; Iannucci, Marina; Porro, Ivan; Rosso, Nicola; Tanfani, Elena; Testi, Angela

    2015-05-17

    The Operating Room (OR) is a key resource of all major hospitals, but it also accounts for up 40% of resource costs. Improving cost effectiveness, while maintaining a quality of care, is a universal objective. These goals imply an optimization of planning and a scheduling of the activities involved. This is highly challenging due to the inherent variable and unpredictable nature of surgery. A Business Process Modeling Notation (BPMN 2.0) was used for the representation of the "OR Process" (being defined as the sequence of all of the elementary steps between "patient ready for surgery" to "patient operated upon") as a general pathway ("path"). The path was then both further standardized as much as possible and, at the same time, keeping all of the key-elements that would allow one to address or define the other steps of planning, and the inherent and wide variability in terms of patient specificity. The path was used to schedule OR activity, room-by-room, and day-by-day, feeding the process from a "waiting list database" and using a mathematical optimization model with the objective of ending up in an optimized planning. The OR process was defined with special attention paid to flows, timing and resource involvement. Standardization involved a dynamics operation and defined an expected operating time for each operation. The optimization model has been implemented and tested on real clinical data. The comparison of the results reported with the real data, shows that by using the optimization model, allows for the scheduling of about 30% more patients than in actual practice, as well as to better exploit the OR efficiency, increasing the average operating room utilization rate up to 20%. The optimization of OR activity planning is essential in order to manage the hospital's waiting list. Optimal planning is facilitated by defining the operation as a standard pathway where all variables are taken into account. By allowing a precise scheduling, it feeds the process of

  5. Optimization of conventional rule curves coupled with hedging rules for reservoir operation

    DEFF Research Database (Denmark)

    Taghian, Mehrdad; Rosbjerg, Dan; Haghighi, Ali

    2014-01-01

    As a common approach to reservoir operating policies, water levels at the end of each time interval should be kept at or above the rule curve. In this study, the policy is captured using rationing of the target yield to reduce the intensity of severe water shortages. For this purpose, a hybrid...... to achieve the optimal water allocation and the target storage levels for reservoirs. As a case study, a multipurpose, multireservoir system in southern Iran is selected. The results show that the model has good performance in extracting the optimum policy for reservoir operation under both normal...... model is developed to optimize simultaneously both the conventional rule curve and the hedging rule. In the compound model, a simple genetic algorithm is coupled with a simulation program, including an inner linear programming algorithm. In this way, operational policies are imposed by priority concepts...

  6. Field redevelopment optimization to unlock reserves and enhance production

    Directory of Open Access Journals (Sweden)

    AHMED AL-HASHAMI

    2013-09-01

    Full Text Available A cluster area "H" consists of 4 carbonate gas fields producing dry gas from N-A reservoir in the Northern area of Oman. These fields are producing with different maturity levels since 1968. An FDP (Field Development Plan study was done in 2006 which proposed drilling of 7 additional vertical wells beside the already existing 5 wells to develop the reserves and enhance gas production from the fields. The FDP well planning was based on a seismic amplitude "Qualitative Interpretation (QI" study that recommended drilling the areas with high amplitudes as an indication for gas presence, and it ignored the low amplitude areas even if it is structurally high. A follow up study was conducted in 2010 for "H" area fields using the same seismic data and the well data drilled post FDP. The new static and dynamic work revealed the wrong aspect of the 2006 QI study, and proved with evidence from well logs and production data that low seismic amplitudes in high structural areas have sweet spots of good reservoir quality rock. This has led to changing the old appraisal strategy and planning more wells in low amplitude areas with high structure and hence discovering new blocks that increased the reserves of the fields.Furthermore, water production in these fields started much earlier than FDP expectation. The subsurface team have integrated deeply with the operation team and started a project to find new solutions to handle the water production and enhance the gas rate. The subsurface team also started drilling horizontal wells in the fields to increase the UR, delay the water production and also reduce the wells total CAPEX by drilling less horizontal wells compared to many vertical as they have higher production and recovery. These subsurface and surface activities have successfully helped to stabilize and increase the production of "H" area cluster by developing more reserves and handling the water production.

  7. Optimization of costs of Port Operations in Nigeria: A Scenario For ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... +Department of Maritime Management Technology,. Federal ... Abstract. This study attempts to optimize the cost of port operations in Nigeria. ..... Slack. Original Value. Lower. Bound. Upper Bound. Const. 1. 0. 685.7727. 672.

  8. Optimal Operation and Dispatch of Voltage Regulation Devices Considering High Penetrations of Distributed Photovoltaic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Mather, Barry A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cho, Gyu-Jung [Sungkyunkwan University; Oh, Yun-Sik [Sungkyunkwan University; Kim, Min-Sung [Sungkyunkwan University; Kim, Ji-Soo [Sungkyunkwan University; Kim, Chul-Hwan [Sungkyunkwan University

    2017-06-29

    Voltage regulation devices have been traditionally installed and utilized to support distribution voltages. Installations of distributed energy resources (DERs) in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile for a feeder; therefore, in the distribution system planning stage of the optimal operation and dispatch of voltage regulation devices, possible high penetrations of DERs should be considered. In this paper, we model the IEEE 34-bus test feeder, including all essential equipment. An optimization method is adopted to determine the optimal siting and operation of the voltage regulation devices in the presence of distributed solar power generation. Finally, we verify the optimal configuration of the entire system through the optimization and simulation results.

  9. Scenario based optimization of a container vessel with respect to its projected operating conditions

    Science.gov (United States)

    Wagner, Jonas; Binkowski, Eva; Bronsart, Robert

    2014-06-01

    In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS) is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC) the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

  10. Improving Deterministic Reserve Requirements for Security Constrained Unit Commitment and Scheduling Problems in Power Systems

    Science.gov (United States)

    Wang, Fengyu

    Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve. As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired. One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones. Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch

  11. Simulation and OR (operations research) in combination for practical optimization

    NARCIS (Netherlands)

    van Dijk, N.; van der Sluis, E.; Haijema, R.; Al-Ibrahim, A.; van der Wal, J.; Kuhl, M.E.; Steiger, N.M.; Armstrong, F.B.; Joines, J.A.

    2005-01-01

    Should we pool capacities or not? This is a question that one can regularly be confronted with in operations and service management. It is a question that necessarily requires a combination of queueing (as OR discipline) and simulation (as evaluative tool) and further steps for optimization. It will

  12. Optimization of fuel-cell tram operation based on two dimension dynamic programming

    Science.gov (United States)

    Zhang, Wenbin; Lu, Xuecheng; Zhao, Jingsong; Li, Jianqiu

    2018-02-01

    This paper proposes an optimal control strategy based on the two-dimension dynamic programming (2DDP) algorithm targeting at minimizing operation energy consumption for a fuel-cell tram. The energy consumption model with the tram dynamics is firstly deduced. Optimal control problem are analyzed and the 2DDP strategy is applied to solve the problem. The optimal tram speed profiles are obtained for each interstation which consist of three stages: accelerate to the set speed with the maximum traction power, dynamically adjust to maintain a uniform speed and decelerate to zero speed with the maximum braking power at a suitable timing. The optimal control curves of all the interstations are connected with the parking time to form the optimal control method of the whole line. The optimized speed profiles are also simplified for drivers to follow.

  13. Engineering to Control Noise, Loading, and Optimal Operating Points

    International Nuclear Information System (INIS)

    Mitchell R. Swartz

    2000-01-01

    Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems

  14. Energy Hub’s Structural and Operational Optimization for Minimal Energy Usage Costs in Energy Systems

    Directory of Open Access Journals (Sweden)

    Thanh Tung Ha

    2018-03-01

    Full Text Available The structural and optimal operation of an Energy Hub (EH has a tremendous influence on the hub’s performance and reliability. This paper envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability. The generalized energy system structure is presented theoretically with all selective hub sub-modules, including electric heater (EHe and solar sources block sub-modules. To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions and is modeled mathematically in a General Algebraic Modeling System (GAMS, which indicates the optimal hub structure’s corresponding elements with binary variables (0, 1. Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated. These case studies demonstrate the effectiveness of the suggested model and methodology. Finally, avenues for future research are also prospected.

  15. Topology Optimization Design of 3D Continuum Structure with Reserved Hole Based on Variable Density Method

    Directory of Open Access Journals (Sweden)

    Bai Shiye

    2016-05-01

    Full Text Available An objective function defined by minimum compliance of topology optimization for 3D continuum structure was established to search optimal material distribution constrained by the predetermined volume restriction. Based on the improved SIMP (solid isotropic microstructures with penalization model and the new sensitivity filtering technique, basic iteration equations of 3D finite element analysis were deduced and solved by optimization criterion method. All the above procedures were written in MATLAB programming language, and the topology optimization design examples of 3D continuum structure with reserved hole were examined repeatedly by observing various indexes, including compliance, maximum displacement, and density index. The influence of mesh, penalty factors, and filter radius on the topology results was analyzed. Computational results showed that the finer or coarser the mesh number was, the larger the compliance, maximum displacement, and density index would be. When the filtering radius was larger than 1.0, the topology shape no longer appeared as a chessboard problem, thus suggesting that the presented sensitivity filtering method was valid. The penalty factor should be an integer because iteration steps increased greatly when it is a noninteger. The above modified variable density method could provide technical routes for topology optimization design of more complex 3D continuum structures in the future.

  16. Optimal dimensioning of low-energy district heating networks with operational planning

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    in design stage resulted in satisfaction of heat demand of the house in low temperature operation. In this paper the operational planning of the low-energy DH systems was investigated to reduce the dimensions of the distribution network with consideration given both to current high-heat and future low......-heat demand situations. The operational planning was based on boosting (increasing) the supply temperature at peak-demand situations which occur rarely over a year period. Hence optimal pipe dimensions of low-energy DH systems were investigated based on the dynamic response of in-house heating systems...... of operational planning in comparison to DH network dimensioned according to high heat demand situation....

  17. Optimal recovery of linear operators in non-Euclidean metrics

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, K Yu [Moscow State Aviation Technological University, Moscow (Russian Federation)

    2014-10-31

    The paper looks at problems concerning the recovery of operators from noisy information in non-Euclidean metrics. A number of general theorems are proved and applied to recovery problems for functions and their derivatives from the noisy Fourier transform. In some cases, a family of optimal methods is found, from which the methods requiring the least amount of original information are singled out. Bibliography: 25 titles.

  18. How does network design constrain optimal operation of intermittent water supply?

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2015-11-01

    Urban water distribution systems do not always supply water continuously or reliably. As pipes fill and empty, pressure transients may contribute to degraded infrastructure and poor water quality. To help understand and manage this undesirable side effect of intermittent water supply--a phenomenon affecting hundreds of millions of people in cities around the world--we study the relative contributions of fixed versus dynamic properties of the network. Using a dynamical model of unsteady transition pipe flow, we study how different elements of network design, such as network geometry, pipe material, and pipe slope, contribute to undesirable pressure transients. Using an optimization framework, we then investigate to what extent network operation decisions such as supply timing and inflow rate may mitigate these effects. We characterize some aspects of network design that make them more or less amenable to operational optimization.

  19. Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System

    Directory of Open Access Journals (Sweden)

    Anh-Duc Nguyen

    2018-06-01

    Full Text Available The increased penetration of renewables is beneficial for power systems but it poses several challenges, i.e., uncertainty in power supply, power quality issues, and other technical problems. Backup generators or storage system have been proposed to solve this problem but there are limitations remaining due to high installation and maintenance cost. Furthermore, peak load is also an issue in the power distribution system. Due to the adjustable characteristics of loads, strategies on demand side such as demand response (DR are more appropriate in order to deal with these challenges. Therefore, this paper studies how DR programs influence the operation of the multi-microgrid (MMG. The implementation is executed based on a hierarchical energy management system (HiEMS including microgrid EMSs (MG-EMSs responsible for local optimization in each MG and community EMS (C-EMS responsible for community optimization in the MMG. Mixed integer linear programming (MILP-based mathematical models are built for MMG optimal operation. Five scenarios consisting of single DR programs and DR groups are tested in an MMG test system to evaluate their impact on MMG operation. Among the five scenarios, some DR programs apply curtailing strategies, resulting in a study about the influence of base load value and curtailable load percentage on the amount of curtailed load and shifted load as well as the operation cost of the MMG. Furthermore, the impact of DR programs on the amount of external and internal trading power in the MMG is also examined. In summary, each individual DR program or group could be handy in certain situations depending on the interest of the MMG such as external trading, self-sufficiency or operation cost minimization.

  20. Operation optimization of a distributed energy system considering energy costs and exergy efficiency

    International Nuclear Information System (INIS)

    Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V.

    2015-01-01

    Highlights: • Operation optimization model of a Distributed Energy System (DES). • Multi-objective strategy to optimize energy cost and exergy efficiency. • Exergy analysis in building energy supply systems. - Abstract: With the growing demand of energy on a worldwide scale, improving the efficiency of energy resource use has become one of the key challenges. Application of exergy principles in the context of building energy supply systems can achieve rational use of energy resources by taking into account the different quality levels of energy resources as well as those of building demands. This paper is on the operation optimization of a Distributed Energy System (DES). The model involves multiple energy devices that convert a set of primary energy carriers with different energy quality levels to meet given time-varying user demands at different energy quality levels. By promoting the usage of low-temperature energy sources to satisfy low-quality thermal energy demands, the waste of high-quality energy resources can be reduced, thereby improving the overall exergy efficiency. To consider the economic factor as well, a multi-objective linear programming problem is formulated. The Pareto frontier, including the best possible trade-offs between the economic and exergetic objectives, is obtained by minimizing a weighted sum of the total energy cost and total primary exergy input using branch-and-cut. The operation strategies of the DES under different weights for the two objectives are discussed. The operators of DESs can choose the operation strategy from the Pareto frontier based on costs, essential in the short run, and sustainability, crucial in the long run. The contribution of each energy device in reducing energy costs and the total exergy input is also analyzed. In addition, results show that the energy cost can be much reduced and the overall exergy efficiency can be significantly improved by the optimized operation of the DES as compared with the

  1. Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response

    International Nuclear Information System (INIS)

    Vahid-Pakdel, M.J.; Nojavan, Sayyad; Mohammadi-ivatloo, B.; Zare, Kazem

    2017-01-01

    Highlights: • Studying heating market impact on energy hub operation considering price uncertainty. • Investigating impact of implementation of heat demand response on hub operation. • Presenting stochastic method to consider wind generation and prices uncertainties. - Abstract: Multi carrier energy systems or energy hubs has provided more flexibility for energy management systems. On the other hand, due to mutual impact of different energy carriers in energy hubs, energy management studies become more challengeable. The initial patterns of energy demands from grids point of view can be modified by optimal scheduling of energy hubs. In this work, optimal operation of multi carrier energy system has been studied in the presence of wind farm, electrical and thermal storage systems, electrical and thermal demand response programs, electricity market and thermal energy market. Stochastic programming is implemented for modeling the system uncertainties such as demands, market prices and wind speed. It is shown that adding new source of heat energy for providing demand of consumers with market mechanism changes the optimal operation point of multi carrier energy system. Presented mixed integer linear formulation for the problem has been solved by executing CPLEX solver of GAMS optimization software. Simulation results shows that hub’s operation cost reduces up to 4.8% by enabling the option of using thermal energy market for meeting heat demand.

  2. The Optimal Timing of Stage-2-Palliation After the Norwood Operation.

    Science.gov (United States)

    Meza, James M; Hickey, Edward; McCrindle, Brian; Blackstone, Eugene; Anderson, Brett; Overman, David; Kirklin, James K; Karamlou, Tara; Caldarone, Christopher; Kim, Richard; DeCampli, William; Jacobs, Marshall; Guleserian, Kristine; Jacobs, Jeffrey P; Jaquiss, Robert

    2018-01-01

    The effect of the timing of stage-2-palliation (S2P) on survival through single ventricle palliation remains unknown. This study investigated the optimal timing of S2P that minimizes pre-S2P attrition and maximizes post-S2P survival. The Congenital Heart Surgeons' Society's critical left ventricular outflow tract obstruction cohort was used. Survival analysis was performed using multiphase parametric hazard analysis. Separate risk factors for death after the Norwood and after S2P were identified. Based on the multivariable models, infants were stratified as low, intermediate, or high risk. Cumulative 2-year, post-Norwood survival was predicted. Optimal timing was determined using conditional survival analysis and plotted as 2-year, post-Norwood survival versus age at S2P. A Norwood operation was performed in 534 neonates from 21 institutions. The S2P was performed in 71%, at a median age of 5.1 months (IQR: 4.3 to 6.0), and 22% died after Norwood. By 5 years after S2P, 10% of infants had died. For low- and intermediate-risk infants, performing S2P after age 3 months was associated with 89% ± 3% and 82% ± 3% 2-year survival, respectively. Undergoing an interval cardiac reoperation or moderate-severe right ventricular dysfunction before S2P were high-risk features. Among high-risk infants, 2-year survival was 63% ± 5%, and even lower when S2P was performed before age 6 months. Performing S2P after age 3 months may optimize survival of low- and intermediate-risk infants. High-risk infants are unlikely to complete three-stage palliation, and early S2P may increase their risk of mortality. We infer that early referral for cardiac transplantation may increase their chance of survival. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. A framework for stochastic simulation of distribution practices for hotel reservations

    Energy Technology Data Exchange (ETDEWEB)

    Halkos, George E.; Tsilika, Kyriaki D. [Laboratory of Operations Research, Department of Economics, University of Thessaly, Korai 43, 38 333, Volos (Greece)

    2015-03-10

    The focus of this study is primarily on the Greek hotel industry. The objective is to design and develop a framework for stochastic simulation of reservation requests, reservation arrivals, cancellations and hotel occupancy with a planning horizon of a tourist season. In Greek hospitality industry there have been two competing policies for reservation planning process up to 2003: reservations coming directly from customers and a reservations management relying on tour operator(s). Recently the Internet along with other emerging technologies has offered the potential to disrupt enduring distribution arrangements. The focus of the study is on the choice of distribution intermediaries. We present an empirical model for the hotel reservation planning process that makes use of a symbolic simulation, Monte Carlo method, as, requests for reservations, cancellations, and arrival rates are all sources of uncertainty. We consider as a case study the problem of determining the optimal booking strategy for a medium size hotel in Skiathos Island, Greece. Probability distributions and parameters estimation result from the historical data available and by following suggestions made in the relevant literature. The results of this study may assist hotel managers define distribution strategies for hotel rooms and evaluate the performance of the reservations management system.

  4. A framework for stochastic simulation of distribution practices for hotel reservations

    International Nuclear Information System (INIS)

    Halkos, George E.; Tsilika, Kyriaki D.

    2015-01-01

    The focus of this study is primarily on the Greek hotel industry. The objective is to design and develop a framework for stochastic simulation of reservation requests, reservation arrivals, cancellations and hotel occupancy with a planning horizon of a tourist season. In Greek hospitality industry there have been two competing policies for reservation planning process up to 2003: reservations coming directly from customers and a reservations management relying on tour operator(s). Recently the Internet along with other emerging technologies has offered the potential to disrupt enduring distribution arrangements. The focus of the study is on the choice of distribution intermediaries. We present an empirical model for the hotel reservation planning process that makes use of a symbolic simulation, Monte Carlo method, as, requests for reservations, cancellations, and arrival rates are all sources of uncertainty. We consider as a case study the problem of determining the optimal booking strategy for a medium size hotel in Skiathos Island, Greece. Probability distributions and parameters estimation result from the historical data available and by following suggestions made in the relevant literature. The results of this study may assist hotel managers define distribution strategies for hotel rooms and evaluate the performance of the reservations management system

  5. Application of ELD and load forecast in optimal operation of industrial boiler plants equipped with thermal stores

    International Nuclear Information System (INIS)

    Cao Jiacong

    2007-01-01

    Optimal operation of industrial boiler plants with objects of high energy efficiency and low fuel cost is still well worth investigating when energy problem becomes a world's concern, for there are a great number of boiler plants serving industries. The optimization of operation is a measure that is less expensive and easier to carry out than many other measures. Economic load dispatch (ELD) is an effective approach to optimal operation of industrial boiler plants. In the paper a newly developed method referred to as the method of minimum-departure model (MDM) is used in the ELD for boiler plants. It is more convenient for carrying out ELD when boiler plants are equipped with thermal energy stores that usually adopt the working mode of optimal segmentation of a daily load curve. In the case of industrial boiler plants, ELD needs a prerequisite, viz., the accurate load forecast, which is performed using artificial neural networks in this paper. A computer program for the optimal operation was completed and applied to an example, which results the minimum daily fuel cost of the whole boiler plant

  6. The management of the state reserving system in the aspect of the regional economic security supporting

    Directory of Open Access Journals (Sweden)

    Aleksandr Yefimovich Zemskov

    2011-06-01

    Full Text Available This paper reviews the role of the state material reserve system to ensure economic security of the region. A classification of reserves ensuring economic security of the region was elaborated. A scheme of systematic and structural representation of the state material reserve in order to improve the economic security of the region was suggested. Optimization of operational control of the territorial offices, factories, and settlements of custody within the framework of the state material reserve is one of the most effective instruments to enhance the functioning of the whole system. To solve the problem of technological processes optimization of products acquisition and storage in manufacturings, plants and points of consignment storage of the state material reserve, a static economic-mathematical model was developed. The results can be used to develop appropriate computer systems for support of effective management decisions in the system of state of material reserve.

  7. Multi-objective optimal operation of smart reconfigurable distribution grids

    Directory of Open Access Journals (Sweden)

    Abdollah Kavousi-Fard

    2016-02-01

    Full Text Available Reconfiguration is a valuable technique that can support the distribution grid from different aspects such as operation cost and loss reduction, reliability improvement, and voltage stability enhancement. An intelligent and efficient optimization framework, however, is required to reach the desired efficiency through the reconfiguration strategy. This paper proposes a new multi-objective optimization model to make use of the reconfiguration strategy for minimizing the power losses, improving the voltage profile, and enhancing the load balance in distribution grids. The proposed model employs the min-max fuzzy approach to find the most satisfying solution from a set of nondominated solutions in the problem space. Due to the high complexity and the discrete nature of the proposed model, a new optimization method based on harmony search (HS algorithm is further proposed. Moreover, a new modification method is suggested to increase the harmony memory diversity in the improvisation stage and increase the convergence ability of the algorithm. The feasibility and satisfying performance of the proposed model are examined on the IEEE 32-bus distribution system.

  8. Solving optimum operation of single pump unit problem with ant colony optimization (ACO) algorithm

    International Nuclear Information System (INIS)

    Yuan, Y; Liu, C

    2012-01-01

    For pumping stations, the effective scheduling of daily pump operations from solutions to the optimum design operation problem is one of the greatest potential areas for energy cost-savings, there are some difficulties in solving this problem with traditional optimization methods due to the multimodality of the solution region. In this case, an ACO model for optimum operation of pumping unit is proposed and the solution method by ants searching is presented by rationally setting the object function and constrained conditions. A weighted directed graph was constructed and feasible solutions may be found by iteratively searching of artificial ants, and then the optimal solution can be obtained by applying the rule of state transition and the pheromone updating. An example calculation was conducted and the minimum cost was found as 4.9979. The result of ant colony algorithm was compared with the result from dynamic programming or evolutionary solving method in commercial software under the same discrete condition. The result of ACO is better and the computing time is shorter which indicates that ACO algorithm can provide a high application value to the field of optimal operation of pumping stations and related fields.

  9. Scenario based optimization of a container vessel with respect to its projected operating conditions

    Directory of Open Access Journals (Sweden)

    Wagner Jonas

    2014-06-01

    Full Text Available In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel’s calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

  10. Scenario based optimization of a container vessel with respect to its projected operating conditions

    Directory of Open Access Journals (Sweden)

    Jonas Wagner

    2014-06-01

    Full Text Available In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

  11. Application study of evolutionary operation methods in optimization of process parameters for mosquito coils industry

    Science.gov (United States)

    Ginting, E.; Tambunanand, M. M.; Syahputri, K.

    2018-02-01

    Evolutionary Operation Methods (EVOP) is a method that is designed used in the process of running or operating routinely in the company to enables high productivity. Quality is one of the critical factors for a company to win the competition. Because of these conditions, the research for products quality has been done by gathering the production data of the company and make a direct observation to the factory floor especially the drying department to identify the problem which is the high water content in the mosquito incense coil. PT.X which is producing mosquito coils attempted to reduce product defects caused by the inaccuracy of operating conditions. One of the parameters of good quality insect repellent that is water content, that if the moisture content is too high then the product easy to mold and broken, and vice versa if it is too low the products are easily broken and burn shorter hours. Three factors that affect the value of the optimal water content, the stirring time, drying temperature and drying time. To obtain the required conditions Evolutionary Operation (EVOP) methods is used. Evolutionary Operation (EVOP) is used as an efficient technique for optimization of two or three variable experimental parameters using two-level factorial designs with center point. Optimal operating conditions in the experiment are stirring time performed for 20 minutes, drying temperature at 65°C, and drying time for 130 minutes. The results of the analysis based on the method of Evolutionary Operation (EVOP) value is the optimum water content of 6.90%, which indicates the value has approached the optimal in a production plant that is 7%.

  12. Supporting the Maritime Information Dominance: Optimizing Tactical Network for Biometric Data Sharing in Maritime Interdiction Operations

    Science.gov (United States)

    2015-03-01

    biometric data collection. Capture role- player mock biometric data including finger prints, iris scans, and facial recognition photos. (MOC training...MARITIME INFORMATION DOMINANCE: OPTIMIZING TACTICAL NETWORK FOR BIOMETRIC DATA SHARING IN MARITIME INTERDICTION OPERATIONS by Adam R. Sinsel...MARITIME INFORMATION DOMINANCE: OPTIMIZING TACTICAL NETWORK FOR BIOMETRIC DATA SHARING IN MARITIME INTERDICTION OPERATIONS 6. AUTHOR(S) Adam R

  13. Optimal year-round operation of a concentrated solar energy plant in the south of Europe

    International Nuclear Information System (INIS)

    Martín, Lidia; Martín, Mariano

    2013-01-01

    We present the year-round optimization of the operation of a concentrated solar power facility evaluating the molten salts storage, the power block and cooling. We locate the plant in the south of Europe, Almería (Spain), where high solar radiation is available. The operation of the plant is a function of the solar incidence as well as the climate and atmospheric conditions. The optimization of the system is formulated as a multiperiod Non-linear Programming problem (NLP) that is solved for the optimal production of electricity over a year defining the main operating variables of the thermal and cooling cycles. For a maximum of 25 MW in summer and a minimum of 9.5 MW in winter the annual production cost of electricity is 0.15 €/kWh consuming an average of 2.1 L water /kWh. The investment for the plant is 260 M€. Scale-up studies reveal that the production cost can decrease by half while the investment per unit of power should become competitive with current coal based power plants if solar and coal facilities present similar production capacities. -- Highlights: • Plant design so far relies on process simulation and only partial optimization studies. • We optimize the operation of a concentrated solar power plant. • The facility involves solar field, molten salts, steam and electricity generation and cooling. • The results are promising and validate literature sensitive studies

  14. Operation Optimization in a Smart Micro-Grid in the Presence of Distributed Generation and Demand Response

    Directory of Open Access Journals (Sweden)

    Yongli Wang

    2018-03-01

    Full Text Available With the application of distributed generation and the development of smart grid technology, micro-grid, an economic and stable power grid, tends to play an important role in the demand side management. Because micro-grid technology and demand response have been widely applied, what Demand Response actions can realize the economic operation of micro-grid has become an important issue for utilities. In this proposed work, operation optimization modeling for micro-grid is done considering distributed generation, environmental factors and demand response. The main contribution of this model is to optimize the cost in the context of considering demand response and system operation. The presented optimization model can reduce the operation cost of micro-grid without bringing discomfort to the users, thus increasing the consumption of clean energy effectively. Then, to solve this operational optimization problem, genetic algorithm is used to implement objective function and DR scheduling strategy. In addition, to validate the proposed model, it is employed on a smart micro-grid from Tianjin. The obtained numerical results clearly indicate the impact of demand response on economic operation of micro-grid and development of distributed generation. Besides, a sensitivity analysis on the natural gas price is implemented according to the situation of China, and the result shows that the natural gas price has a great influence on the operation cost of the micro-grid and effect of demand response.

  15. A quantum particle swarm optimizer with chaotic mutation operator

    International Nuclear Information System (INIS)

    Coelho, Leandro dos Santos

    2008-01-01

    Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm that shares many similarities with evolutionary computation techniques. However, the PSO is driven by the simulation of a social psychological metaphor motivated by collective behaviors of bird and other social organisms instead of the survival of the fittest individual. Inspired by the classical PSO method and quantum mechanics theories, this work presents a novel Quantum-behaved PSO (QPSO) using chaotic mutation operator. The application of chaotic sequences based on chaotic Zaslavskii map instead of random sequences in QPSO is a powerful strategy to diversify the QPSO population and improve the QPSO's performance in preventing premature convergence to local minima. The simulation results demonstrate good performance of the QPSO in solving a well-studied continuous optimization problem of mechanical engineering design

  16. Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices

    DEFF Research Database (Denmark)

    Lund, Henrik; Salgi, Georges; Elmegaard, Brian

    2009-01-01

    on electricity spot markets by storing energy when electricity prices are low and producing electricity when prices are high. In order to make a profit on such markets, CAES plant operators have to identify proper strategies to decide when to sell and when to buy electricity. This paper describes three...... plants will not be able to achieve such optimal operation, since the fluctuations of spot market prices in the coming hours and days are not known. Consequently, two simple practical strategies have been identified and compared to the results of the optimal strategy. This comparison shows that...... independent computer-based methodologies which may be used for identifying the optimal operation strategy for a given CAES plant, on a given spot market and in a given year. The optimal strategy is identified as the one which provides the best business-economic net earnings for the plant. In practice, CAES...

  17. Replacing reserve requirements

    OpenAIRE

    Edward J. Stevens

    1993-01-01

    An examination of the fading significance of the Federal Reserve System's reserve requirements and the recent flowering of required clearing balances, a rapidly growing feature of Reserve Bank operations.

  18. Optimal Operation of the Integrated Electrical and Heating Systems to Accommodate the Intermittent Renewable Sources

    DEFF Research Database (Denmark)

    Li, Jinghua; Fang, Jiakun; Zeng, Qing

    2016-01-01

    The integration of electrical and heating systems has great potential to enhance the flexibility of power systems to accommodate more renewable power such as the wind and solar. This study was to investigate an optimal way to integrate the energy of both systems in urban areas. The amount of energy...... the effectiveness of the proposed solution. The results showed that coordinated optimization of the energy distribution have significant benefits for reducing wind curtailment, operation cost, and energy losses. The proposed model and methodology could help system operators with decision support in the emerging...... conversion between the electrical system and heating system was optimally decided so that the demand within both systems could be met at the least operational cost. Besides, the best node to join with the electrical system and heating system was chosen by consideration of the energy transmission loss...

  19. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous.

    Science.gov (United States)

    Lochmatter, Samuel; Holliger, Christof

    2014-08-01

    The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Safer operating conditions and optimal scaling-up process for cyclohexanone peroxide reaction

    International Nuclear Information System (INIS)

    Zang, Na; Qian, Xin-Ming; Liu, Zhen-Yi; Shu, Chi-Min

    2015-01-01

    Highlights: • Thermal hazard of cyclohexanone peroxide reaction was measured by experimental techniques. • Levenberg–Marquardt algorithm was adopted to evaluate kinetic parameters. • Safer operating conditions at laboratory scale were acquired by BDs and TDs. • The verified safer operating conditions were used to obtain the optimal scale-up parameters applied in industrial plants. - Abstract: The cyclohexanone peroxide reaction process, one of the eighteen hazardous chemical processes identified in China, is performed in indirectly cooled semibatch reactors. The peroxide reaction is added to a mixture of hydrogen peroxide and nitric acid, which form heterogeneous liquid–liquid systems. A simple and general procedure for building boundary and temperature diagrams of peroxide process is given here to account for the overall kinetic expressions. Such a procedure has been validated by comparison with experimental data. Thermally safer operating parameters were obtained at laboratory scale, and the scaled-up procedure was performed to give the minimum dosing time in an industrial plant, which is in favor of maximizing industrial reactor productivity. The results are of great significance for governing the peroxide reaction process apart from the thermal runaway region. It also greatly aids in determining optimization on operating parameters in industrial plants.

  1. Manufacturing enterprise’s logistics operational cost simulation and optimization from the perspective of inter-firm network

    Directory of Open Access Journals (Sweden)

    Chun Fu

    2015-05-01

    Full Text Available Purpose: By studying the case of a Changsha engineering machinery manufacturing firm, this paper aims to find out the optimization tactics to reduce enterprise’s logistics operational cost. Design/methodology/approach: This paper builds the structure model of manufacturing enterprise’s logistics operational costs from the perspective of inter-firm network and simulates the model based on system dynamics. Findings: It concludes that applying system dynamics in the research of manufacturing enterprise’s logistics cost control can better reflect the relationship of factors in the system. And the case firm can optimize the logistics costs by implement joint distribution. Research limitations/implications: This study still lacks comprehensive consideration about the variables quantities and quantitative of the control factors. In the future, we should strengthen the collection of data and information about the engineering manufacturing firms and improve the logistics operational cost model. Practical implications: This study puts forward some optimization tactics to reduce enterprise’s logistics operational cost. And it is of great significance for enterprise’s supply chain management optimization and logistics cost control. Originality/value: Differing from the existing literatures, this paper builds the structure model of manufacturing enterprise’s logistics operational costs from the perspective of inter-firm network and simulates the model based on system dynamics.

  2. Liberating and regulating of active effect reserves in the Norwegian power system

    International Nuclear Information System (INIS)

    Bakken, Bjoern H.

    2000-01-01

    implemented as a fully automatic load-monitoring regulator when new cable connections are put into operation. The following concepts should primarily be studied in new research projects: 1) To evaluate advantages and disadvantages by a common Nordic regulatory zone. 2) An optimal prioritization of regulatory objects based on marginal losses and sensitivities. 3) A formal survey of the construction of the present operation criteria and reserve requirements in Scandinavia. 4) The design and testing of a fully automatic market orientated secondary regulation

  3. Optimizing Water Use and Hydropower Production in Operational Reservoir System Scheduling with RiverWare

    Science.gov (United States)

    Magee, T. M.; Zagona, E. A.

    2017-12-01

    Practical operational optimization of multipurpose reservoir systems is challenging for several reasons. Each purpose has its own constraints which may conflict with those of other purposes. While hydropower generation typically provides the bulk of the revenue, it is also among the lowest priority purposes. Each river system has important details that are specific to the location such as hydrology, reservoir storage capacity, physical limitations, bottlenecks, and the continuing evolution of operational policy. In addition, reservoir operations models include discrete, nonlinear, and nonconvex physical processes and if-then operating policies. Typically, the forecast horizon for scheduling needs to be extended far into the future to avoid near term (e.g., a few hours or a day) scheduling decisions that result in undesirable future states; this makes the computational effort much larger than may be expected. Put together, these challenges lead to large and customized mathematical optimization problems which must be solved efficiently to be of practical use. In addition, the solution process must be robust in an operational setting. We discuss a unique modeling approach in RiverWare that meets these challenges in an operational setting. The approach combines a Preemptive Linear Goal Programming optimization model to handle prioritized policies complimented by preprocessing and postprocessing with Rulebased Simulation to improve the solution with regard to nonlinearities, discrete issues, and if-then logic. An interactive policy language with a graphical user interface allows modelers to customize both the optimization and simulation based on the unique aspects of the policy for their system while the routine physical aspect of operations are modeled automatically. The modeler is aided by a set of compiled predefined functions and functions shared by other modelers. We illustrate the success of the approach with examples from daily use at the Tennessee Valley

  4. Search Improvement Process-Chaotic Optimization-Particle Swarm Optimization-Elite Retention Strategy and Improved Combined Cooling-Heating-Power Strategy Based Two-Time Scale Multi-Objective Optimization Model for Stand-Alone Microgrid Operation

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-11-01

    Full Text Available The optimal dispatching model for a stand-alone microgrid (MG is of great importance to its operation reliability and economy. This paper aims at addressing the difficulties in improving the operational economy and maintaining the power balance under uncertain load demand and renewable generation, which could be even worse in such abnormal conditions as storms or abnormally low or high temperatures. A new two-time scale multi-objective optimization model, including day-ahead cursory scheduling and real-time scheduling for finer adjustments, is proposed to optimize the operational cost, load shedding compensation and environmental benefit of stand-alone MG through controllable load (CL and multi-distributed generations (DGs. The main novelty of the proposed model is that the synergetic response of CL and energy storage system (ESS in real-time scheduling offset the operation uncertainty quickly. And the improved dispatch strategy for combined cooling-heating-power (CCHP enhanced the system economy while the comfort is guaranteed. An improved algorithm, Search Improvement Process-Chaotic Optimization-Particle Swarm Optimization-Elite Retention Strategy (SIP-CO-PSO-ERS algorithm with strong searching capability and fast convergence speed, was presented to deal with the problem brought by the increased errors between actual renewable generation and load and prior predictions. Four typical scenarios are designed according to the combinations of day types (work day or weekend and weather categories (sunny or rainy to verify the performance of the presented dispatch strategy. The simulation results show that the proposed two-time scale model and SIP-CO-PSO-ERS algorithm exhibit better performance in adaptability, convergence speed and search ability than conventional methods for the stand-alone MG’s operation.

  5. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub

    International Nuclear Information System (INIS)

    Ma, Tengfei; Wu, Junyong; Hao, Liangliang

    2017-01-01

    Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.

  6. Pre-operative Functional Cardiovascular Reserve Is Associated with Acute Kidney Injury after Intervention.

    Science.gov (United States)

    Saratzis, A; Shakespeare, J; Jones, O; Bown, M J; Mahmood, A; Imray, C H E

    2017-05-01

    Acute kidney injury (AKI) is a common complication after endovascular intervention, associated with poor short and long-term outcomes. However, the mechanisms underlying AKI development remain poorly understood. The impact of pre-existing cardiovascular disease and low cardiovascular reserve (CVR) in AKI is unclear; it remains unknown whether AKI is primarily related to pre-existing comorbidity or to procedural parameters. The association between CVR and AKI after EVAR was therefore assessed. This is a case control study. From a database of 484 patients, 292 undergoing elective endovascular aneurysm repair (EVAR) of an infrarenal abdominal aortic aneurysm (AAA) in two tertiary centres were included. Of these, 73 patients who had developed AKI after EVAR were case matched, based on pre-operative estimated glomerular filtration rate (eGFR; within 5 mL/min/1.73 m 2 ) and age, with patients who had not developed AKI. Cardiopulmonary exercise testing (CPET) was used to assess CVR using the anaerobic threshold (AT). Development of AKI was defined using the Kidney Disease Improving Outcomes (KDIGO) guidance. Associations between CVR (based on AT levels) and AKI development were then analysed. Pre-operative AT levels were significantly different between those who did and did not develop AKI (12.1±2.9 SD vs. 14.8±3.0 mL/min/kg, p < .001). In multivariate analysis, a higher level of AT (per 1 mL/min/kg) was associated with a lower odds ratio (OR) of 0.72 (95% CI, 0.63-0.82, p < .001), relative to AKI development. A pre-operative AT level of < 11 mL/min/kg was associated with post-operative AKI development in adjusted analysis, with an OR of 7.8 (95% CI, 3.75-16.51, p < .001). The area under the curve (receiver operating characteristic) for AT as a predictor of post-operative AKI was 0.81 (standard error, 0.06, 95% CI, 0.69-0.93, p < .001). Poor CVR was strongly associated with the development of AKI. This provides pathophysiological insights into the

  7. Optimal operating rules definition in complex water resource systems combining fuzzy logic, expert criteria and stochastic programming

    Science.gov (United States)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2016-04-01

    This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to

  8. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system

    Science.gov (United States)

    Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei

    2017-08-01

    The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.

  9. Themoeconomic optimization of triple pressure heat recovery steam generator operating parameters for combined cycle plants

    Directory of Open Access Journals (Sweden)

    Mohammd Mohammed S.

    2015-01-01

    Full Text Available The aim of this work is to develop a method for optimization of operating parameters of a triple pressure heat recovery steam generator. Two types of optimization: (a thermodynamic and (b thermoeconomic were preformed. The purpose of the thermodynamic optimization is to maximize the efficiency of the plant. The selected objective for this purpose is minimization of the exergy destruction in the heat recovery steam generator (HRSG. The purpose of the thermoeconomic optimization is to decrease the production cost of electricity. Here, the total annual cost of HRSG, defined as a sum of annual values of the capital costs and the cost of the exergy destruction, is selected as the objective function. The optimal values of the most influencing variables are obtained by minimizing the objective function while satisfying a group of constraints. The optimization algorithm is developed and tested on a case of CCGT plant with complex configuration. Six operating parameters were subject of optimization: pressures and pinch point temperatures of every three (high, intermediate and low pressure steam stream in the HRSG. The influence of these variables on the objective function and production cost are investigated in detail. The differences between results of thermodynamic and the thermoeconomic optimization are discussed.

  10. Optimization of operating parameters of hybrid vertical down-flow constructed wetland systems for domestic sewerage treatment.

    Science.gov (United States)

    Huang, Zhujian; Zhang, Xianning; Cui, Lihua; Yu, Guangwei

    2016-09-15

    In this work, three hybrid vertical down-flow constructed wetland (HVDF-CW) systems with different compound substrates were fed with domestic sewage and their pollutants removal performance under different hydraulic loading and step-feeding ratio was investigated. The results showed that the hydraulic loading and step-feeding ratio were two crucial factors determining the removal efficiency of most pollutants, while substrate types only significantly affected the removal of COD and NH4(+)-N. Generally, the lower the hydraulic loading, the better removal efficiency of all contaminants, except for TN. By contrast, the increase of step-feeding ratio would slightly reduce the removal rate of ammonium and TP but obviously promoted the TN removal. Therefore, the optimal operation of this CWs could be achieved with low hydraulic loading combined with 50% of step-feeding ratio when TN removal is the priority, whereas medium or low hydraulic loading without step-feeding would be suitable when TN removal is not taken into consideration. The obtained results in this study can provide us with a guideline for design and optimization of hybrid vertical flow constructed wetland systems to improve the pollutants removal from domestic sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Joint optimization of economic production quantity and preventive maintenance with considering multi-products and reserve time

    International Nuclear Information System (INIS)

    Liu, Xuejuan; Wang, Binrong

    2017-01-01

    Purpose: We deal with the problem of the joint determination of optimal economic production quantity (EPQ) and optimal preventive maintenance (PM) for a system that can produce multiple products alternately. The objective is to find the optimal number of production cycles and the PM policy simultaneously by minimizing the cost model. Design/methodology/approach: Considering the products go through the system in a sequence and a complete run of all products forms a production cycle. In each cycle, beyond production time we also consider some reserve time for maintenance and setup, shortage and overproduction may occur. We study the integrated problem based on two PM policies, and explain the situation with the other PM policies. The delay – time concept is used to model PM decisions. Findings: Using the integrated EPQ and PM model, we can calculate the optimal production planning and PM schedule simultaneously, especially we consider multiple products in each production cycle, which is more practical and economic than previous works. Originality/value: In modern companies, the production planning and maintenance schedule share the same system, and traditional research about two activities is separated, that always generate conflicts, such as inadequate or excessive maintenance, and shortages, etc., so we develop the integrated EPQ and PM model to avoid these undesirable effects.

  12. Joint optimization of economic production quantity and preventive maintenance with considering multi-products and reserve time

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuejuan; Wang, Binrong

    2017-07-01

    Purpose: We deal with the problem of the joint determination of optimal economic production quantity (EPQ) and optimal preventive maintenance (PM) for a system that can produce multiple products alternately. The objective is to find the optimal number of production cycles and the PM policy simultaneously by minimizing the cost model. Design/methodology/approach: Considering the products go through the system in a sequence and a complete run of all products forms a production cycle. In each cycle, beyond production time we also consider some reserve time for maintenance and setup, shortage and overproduction may occur. We study the integrated problem based on two PM policies, and explain the situation with the other PM policies. The delay – time concept is used to model PM decisions. Findings: Using the integrated EPQ and PM model, we can calculate the optimal production planning and PM schedule simultaneously, especially we consider multiple products in each production cycle, which is more practical and economic than previous works. Originality/value: In modern companies, the production planning and maintenance schedule share the same system, and traditional research about two activities is separated, that always generate conflicts, such as inadequate or excessive maintenance, and shortages, etc., so we develop the integrated EPQ and PM model to avoid these undesirable effects.

  13. Data driven approaches for diagnostics and optimization of NPP operation

    International Nuclear Information System (INIS)

    Pliska, J.; Machat, Z.

    2014-01-01

    The efficiency and heat rate is an important indicator of both the health of the power plant equipment and the quality of power plant operation. To achieve this challenges powerful tool is a statistical data processing of large data sets which are stored in data historians. These large data sets contain useful information about process quality and equipment and sensor health. The paper discusses data-driven approaches for model building of main power plant equipment such as condenser, cooling tower and the overall thermal cycle as well using multivariate regression techniques based on so called a regression triplet - data, model and method. Regression models comprise a base for diagnostics and optimization tasks. Diagnostics and optimization tasks are demonstrated on practical cases - diagnostics of main power plant equipment to early identify equipment fault, and optimization task of cooling circuit by cooling water flow control to achieve for a given boundary conditions the highest power output. (authors)

  14. Optimal design and operation of a thermal storage system for a chilled water plant serving pharmaceutical buildings

    Energy Technology Data Exchange (ETDEWEB)

    Henze, Gregor P. [University of Nebraska, Architectural Engineering, Omaha, NE 68182 (United States); Biffar, Bernd; Kohn, Dietmar [Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach D-88400 (Germany); Becker, Martin P. [University of Applied Sciences Biberach, Architectural Engineering, Biberach D-88400 (Germany)

    2008-07-01

    A group of buildings in the pharmaceutical industry located in Southern Germany is experiencing a trend of growing cooling loads to be met by the chilled water plant composed of 10 chillers of greatly varying cost effectiveness. With a capacity shortfall inevitable, the question arises whether to install an additional chiller or improve the utilization of the existing chillers, in particular those with low operating costs per unit cooling, through the addition of a chilled water thermal energy storage (TES) system. To provide decision support in this matter, an optimization environment was developed and validated that adopts mixed integer programming as the approach to optimizing the chiller dispatch for any load condition, while an overarching dynamic programming based optimization approach optimizes the charge/discharge strategy of the TES system. In this fashion, the chilled water plant optimization is decoupled but embedded in the TES control optimization. The approach was selected to allow for arbitrary constraints and optimization horizons, while ensuring a global optimum to the problem. Optimization scenarios have been defined that include current load conditions as well cooling loads that are elevated by 25% from current conditions in order to reflect the expected growth in cooling demand in the near future; both scenarios analyzed the impact of storage capacity by investigating several TES tank capacities. The annual optimization runs revealed that - based on the elevated cooling load scenario - the smallest TES system pays back the incremental investment necessary for the TES system in about three years; based on today's cooling loads the static payback is approximately six years. As the efficiency and cost of operating the existing chillers vary over a wide range, the TES system allows for a reduction in operating costs for the chilled water plant by avoiding the operation of inefficient chillers (such as the single-stage absorption type) and

  15. Optimal Operation of Industrial Batch Crystallizers : A Nonlinear Model-based Control Approach

    NARCIS (Netherlands)

    Mesbah, A.

    2010-01-01

    Batch crystallization is extensively employed in the chemical, pharmaceutical, and food industries to separate and purify high value-added chemical substances. Despite their widespread application, optimal operation of batch crystallizers is particularly challenging. The difficulties primarily

  16. Dynamic Value Engineering Method Optimizing the Risk on Real Time Operating System

    Directory of Open Access Journals (Sweden)

    Prashant Kumar Patra

    2014-04-01

    Full Text Available The value engineering is the umbrella of the many more sub-system like quality assurance, quality control, quality function design and development for manufacturability. The system engineering & value engineering is two part of the coin. The value engineering is the high level of technology management for every aspect of engineering fields. The value engineering is the high utilization of System Product (i.e. Processor, Memory & Encryption key, Services, Business and Resources at minimal cost. The high end operating system providing highest services at optimal cost & time. The value engineering provides the maximum performance, accountability, reliability, integrity and availability of processor, memory, encryption key and other inter dependency sub-components. The value engineering is the ratio of the maximum functionality of individual components to the optimal cost. VE=k [(P, M, E, C, A]/optimal cost. Where k is the proportionality constant. The VE is directly proportional to performance of individual components and inversely proportional to the minimal cost. The VE is directly proportional to the risk assessment. The VE maximize the business throughput & decision process mean while minimize the risk and down time. We have to develop the dynamic value engineering model & mechanism for risk optimization over a complex real time operating system This proposed composition model definite will be resolve our objective at top high level. Product

  17. Optimal operation planning of radioactive waste processing system by fuzzy theory

    International Nuclear Information System (INIS)

    Yang, Jin Yeong; Lee, Kun Jai

    2000-01-01

    This study is concerned with the applications of linear goal programming and fuzzy theory to the analysis of management and operational problems in the radioactive processing system (RWPS). The developed model is validated and verified using actual data obtained from the RWPS at Kyoto University in Japan. The solution by goal programming and fuzzy theory would show the optimal operation point which is to maximize the total treatable radioactive waste volume and minimize the released radioactivity of liquid waste even under the restricted resources. (orig.)

  18. The primary ion source for construction and optimization of operation parameters

    International Nuclear Information System (INIS)

    Synowiecki, A.; Gazda, E.

    1986-01-01

    The construction of primary ion source for SIMS has been presented. The influence of individual operation parameters on the properties of ion source has been investigated. Optimization of these parameters has allowed to appreciate usefulness of the ion source for SIMS study. 14 refs., 8 figs., 2 tabs. (author)

  19. Condenser design optimization and operation characteristics of a novel miniature loop heat pipe

    International Nuclear Information System (INIS)

    Wan Zhenping; Wang Xiaowu; Tang Yong

    2012-01-01

    Highlights: ► A novel miniature LHP (mLHP) system was presented. ► Optimal design of condenser was considered. ► The heat transfer performance was investigated experimentally. - Abstract: Loop heat pipe (LHP) is a promising means for electronics cooling since LHP is a exceptionally efficient heat transfer device. In this paper, a novel miniature LHP (mLHP) system is presented and optimal design of condenser is considered seeing that evaporators have been able to handle very high-heat fluxes with low-heat transfer resistances since most of the previous researchers focused on the evaporator of mLHP. The arrayed pins were designed and machined out on the bottom of condenser to enhance condensation heat transfer. The parameters of the arrayed pins, including layout, cross-section shape and area, were optimized by finite element analysis. Tests were carried out on the mLHP with a CPU thermal simulator using forced air convection condenser cooling to validate the optimization. The operation characteristics of the mLHP with optimal design parameters of condenser were investigated experimentally. The experimental results show that the mLHP can reject head load 200 W while maintaining the cooled object temperatures below 100 °C, and for a variable power applied to the evaporator, the system presents reliable startups and continuous operation.

  20. Accounting for tourism benefits in marine reserve design

    Science.gov (United States)

    2017-01-01

    Marine reserve design often considers potential benefits to conservation and/or fisheries but typically ignores potential revenues generated through tourism. Since tourism can be the main source of economic benefits for many marine reserves worldwide, ignoring tourism objectives in the design process might lead to sub-optimal outcomes. To incorporate tourism benefits into marine reserve design, we develop a bioeconomic model that tracks tourism and fisheries revenues through time for different management options and location characteristics. Results from the model show that accounting for tourism benefits will ultimately motivate greater ocean protection. Our findings demonstrate that marine reserves are part of the optimal economic solution even in situations with optimal fisheries management and low tourism value relative to fisheries. The extent of optimal protection depends on specific location characteristics, such as tourism potential and other local amenities, and the species recreational divers care about. Additionally, as tourism value increases, optimal reserve area also increases. Finally, we demonstrate how tradeoffs between the two services depend on location attributes and management of the fishery outside marine reserve borders. Understanding when unavoidable tradeoffs will arise helps identify those situations where communities must choose between competing interests. PMID:29267364

  1. Optimal Intermittent Operation of Water Distribution Networks under Water Shortage

    Directory of Open Access Journals (Sweden)

    mohamad Solgi

    2017-07-01

    Full Text Available Under water shortage conditions, it is necessary to exercise water consumption management practices in water distribution networks (WDN. Intermittent supply of water is one such practice that makes it possible to supply consumption nodal demands with the required pressure via water cutoff to some consumers during certain hours of the day. One of the most important issues that must be observed in this management practice is the equitable and uniform water distribution among the consumers. In the present study, uniformity in water distribution and minimum supply of water to all consumers are defined as justice and equity, respectively. Also, an optimization model has been developed to find an optimal intermittent supply schedule that ensures maximum number of demand nodes are supplied with water while the constraints on the operation of water distribution networks are also observed. To show the efficiency of the proposed model, it has been used in the Two-Loop distribution network under several different scenarios of water shortage. The optimization model has been solved using the honey bee mating optimization algorithm (HBMO linked to the hydraulic simulator EPANET. The results obtained confirm the efficiency of the proposed model in achieving an optimal intermittent supply schedule. Moreover, the model is found capable of distributing the available water in an equitable and just manner among all the consumers even under severe water shoratges.

  2. Workforce Optimization for Bank Operation Centers: A Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Sefik Ilkin Serengil

    2017-12-01

    Full Text Available Online Banking Systems evolved and improved in recent years with the use of mobile and online technologies, performing money transfer transactions on these channels can be done without delay and human interaction, however commercial customers still tend to transfer money on bank branches due to several concerns. Bank Operation Centers serve to reduce the operational workload of branches. Centralized management also offers personalized service by appointed expert employees in these centers. Inherently, workload volume of money transfer transactions changes dramatically in hours. Therefore, work-force should be planned instantly or early to save labor force and increase operational efficiency. This paper introduces a hybrid multi stage approach for workforce planning in bank operation centers by the application of supervised and unsu-pervised learning algorithms. Expected workload would be predicted as supervised learning whereas employees are clus-tered into different skill groups as unsupervised learning to match transactions and proper employees. Finally, workforce optimization is analyzed for proposed approach on production data.

  3. Core design and operation optimization methods based on time-dependent perturbation theory

    International Nuclear Information System (INIS)

    Greenspan, E.

    1983-08-01

    A general approach for the optimization of nuclear reactor core design and operation is outlined; it is based on two cornerstones: a newly developed time-dependent (or burnup-dependent) perturbation theory for nonlinear problems and a succesive iteration technique. The resulting approach is capable of handling realistic reactor models using computational methods of any degree of sophistication desired, while accounting for all the constraints imposed. Three general optimization strategies, different in the way for handling the constraints, are formulated. (author)

  4. Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing

    Science.gov (United States)

    Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.

    2018-04-01

    A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.

  5. A Novel Optimization Method on Logistics Operation for Warehouse & Port Enterprises Based on Game Theory

    Directory of Open Access Journals (Sweden)

    Junyang Li

    2013-09-01

    Full Text Available Purpose: The following investigation aims to deal with the competitive relationship among different warehouses & ports in the same company. Design/methodology/approach: In this paper, Game Theory is used in carrying out the optimization model. Genetic Algorithm is used to solve the model. Findings: Unnecessary competition will rise up if there is little internal communication among different warehouses & ports in one company. This paper carries out a novel optimization method on warehouse & port logistics operation model. Originality/value: Warehouse logistics business is a combination of warehousing services and terminal services which is provided by port logistics through the existing port infrastructure on the basis of a port. The newly proposed method can help to optimize logistics operation model for warehouse & port enterprises effectively. We set Sinotrans Guangdong Company as an example to illustrate the newly proposed method. Finally, according to the case study, this paper gives some responses and suggestions on logistics operation in Sinotrans Guangdong warehouse & port for its future development.

  6. Analytical design of proportional-integral controllers for the optimal control of first-order processes with operational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Hien Cao Thi; Lee, Moonyong [Yeungnam University, Gyeongsan (Korea, Republic of)

    2013-12-15

    A novel analytical design method of industrial proportional-integral (PI) controllers was developed for the optimal control of first-order processes with operational constraints. The control objective was to minimize a weighted sum of the controlled variable error and the rate of change in the manipulated variable under the maximum allowable limits in the controlled variable, manipulated variable and the rate of change in the manipulated variable. The constrained optimal servo control problem was converted to an unconstrained optimization to obtain an analytical tuning formula. A practical shortcut procedure for obtaining optimal PI parameters was provided based on graphical analysis of global optimality. The proposed PI controller was found to guarantee global optimum and deal explicitly with the three important operational constraints.

  7. Optimal operating conditions for maximum biogas production in anaerobic bioreactors

    International Nuclear Information System (INIS)

    Balmant, W.; Oliveira, B.H.; Mitchell, D.A.; Vargas, J.V.C.; Ordonez, J.C.

    2014-01-01

    The objective of this paper is to demonstrate the existence of optimal residence time and substrate inlet mass flow rate for maximum methane production through numerical simulations performed with a general transient mathematical model of an anaerobic biodigester introduced in this study. It is herein suggested a simplified model with only the most important reaction steps which are carried out by a single type of microorganisms following Monod kinetics. The mathematical model was developed for a well mixed reactor (CSTR – Continuous Stirred-Tank Reactor), considering three main reaction steps: acidogenesis, with a μ max of 8.64 day −1 and a K S of 250 mg/L, acetogenesis, with a μ max of 2.64 day −1 and a K S of 32 mg/L, and methanogenesis, with a μ max of 1.392 day −1 and a K S of 100 mg/L. The yield coefficients were 0.1-g-dry-cells/g-pollymeric compound for acidogenesis, 0.1-g-dry-cells/g-propionic acid and 0.1-g-dry-cells/g-butyric acid for acetogenesis and 0.1 g-dry-cells/g-acetic acid for methanogenesis. The model describes both the transient and the steady-state regime for several different biodigester design and operating conditions. After model experimental validation, a parametric analysis was performed. It was found that biogas production is strongly dependent on the input polymeric substrate and fermentable monomer concentrations, but fairly independent of the input propionic, acetic and butyric acid concentrations. An optimisation study was then conducted and optimal residence time and substrate inlet mass flow rate were found for maximum methane production. The optima found were very sharp, showing a sudden drop of methane mass flow rate variation from the observed maximum to zero, within a 20% range around the optimal operating parameters, which stresses the importance of their identification, no matter how complex the actual bioreactor design may be. The model is therefore expected to be a useful tool for simulation, design, control and

  8. Multi-Objective Distribution Network Operation Based on Distributed Generation Optimal Placement Using New Antlion Optimizer Considering Reliability

    Directory of Open Access Journals (Sweden)

    KHANBABAZADEH Javad

    2016-10-01

    Full Text Available Distribution network designers and operators are trying to deliver electrical energy with high reliability and quality to their subscribers. Due to high losses in the distribution systems, using distributed generation can improves reliability, reduces losses and improves voltage profile of distribution network. Therefore, the choice of the location of these resources and also determining the amount of their generated power to maximize the benefits of this type of resource is an important issue which is discussed from different points of view today. In this paper, a new multi-objective optimal location and sizing of distributed generation resources is performed to maximize its benefits on the 33 bus distribution test network considering reliability and using a new Antlion Optimizer (ALO. The benefits for DG are considered as system losses reduction, system reliability improvement and benefits from the sale electricity and voltage profile improvement. For each of the mentioned benefits, the ALO algorithm is used to optimize the location and sizing of distributed generation resources. In order to verify the proposed approach, the obtained results have been analyzed and compared with the results of particle swarm optimization (PSO algorithm. The results show that the ALO has shown better performance in optimization problem solution versus PSO.

  9. Realization of universal optimal quantum machines by projective operators and stochastic maps

    International Nuclear Information System (INIS)

    Sciarrino, F.; Sias, C.; Ricci, M.; De Martini, F.

    2004-01-01

    Optimal quantum machines can be implemented by linear projective operations. In the present work a general qubit symmetrization theory is presented by investigating the close links to the qubit purification process and to the programmable teleportation of any generic optimal antiunitary map. In addition, the contextual realization of the N→M cloning map and of the teleportation of the N→(M-N) universal-NOT (UNOT) gate is analyzed by a very general angular momentum theory. An extended set of experimental realizations by state symmetrization linear optical procedures is reported. These include the 1→2 cloning process, the UNOT gate and the quantum tomographic characterization of the optimal partial transpose map of polarization encoded qubits

  10. An Optimization of ASI Operation Band in KSNP

    International Nuclear Information System (INIS)

    Park, C.O.; Um, K.S.; Lee, J.I.; Choi, T.S.; Yoo, J.S.; Kim, J.S.; Kim, J.J.; Ryu, S.H.; Choi, J.D.; Kwon, J.T.; Lee, C.C.; Kim, J.I.; Suh, D.S.

    2002-01-01

    A power level dependent ASI LCO (Limiting Condition for Operation) is developed for the Korea Standard Nuclear Power Plant to improve the plant operability in the low power range and to gain the additional thermal margin in the high power range. The ASI LCO for COLSS (Core Operating Limit Supervisory System) in the low power range between 20% and 40% is relaxed to ±0.57 from ±0.27 so as to enhance the plant operability especially during the fast return-to-power maneuvering after trip. In contrast, the ASI LCO in the high power range between 80% and 100% is tightened to ±0.17 from ±0.27 to recover unnecessarily eroded thermal margin that could otherwise be easily utilized for enhancing capacity factor like the power up-rating. In addition to the COLSS ASI optimization, the CPC ASI range trip set point is expanded from ±0.5 to ±0.7 to allow the COLSS LCO change and to enhance the plant operability for power range below 20% by virtually eliminating the possibility of ASI range trip. Safety evaluations for the limiting accidents of concern have been carried out to demonstrate that the power dependent ASI LCO does not cause any un-compliance with safety criteria and provides considerable thermal margin gain in the high power range. Thermal margin evaluation to date indicates that ±0.1 ASI reduction near full power level can lead to ∼2% overpower margin gain and more than 85 K gain in LOCA PCT. (authors)

  11. Optimizing Environmental Flow Operation Rules based on Explicit IHA Constraints

    Science.gov (United States)

    Dongnan, L.; Wan, W.; Zhao, J.

    2017-12-01

    Multi-objective operation of reservoirs are increasingly asked to consider the environmental flow to support ecosystem health. Indicators of Hydrologic Alteration (IHA) is widely used to describe environmental flow regimes, but few studies have explicitly formulated it into optimization models and thus is difficult to direct reservoir release. In an attempt to incorporate the benefit of environmental flow into economic achievement, a two-objective reservoir optimization model is developed and all 33 hydrologic parameters of IHA are explicitly formulated into constraints. The benefit of economic is defined by Hydropower Production (HP) while the benefit of environmental flow is transformed into Eco-Index (EI) that combined 5 of the 33 IHA parameters chosen by principal component analysis method. Five scenarios (A to E) with different constraints are tested and solved by nonlinear programming. The case study of Jing Hong reservoir, located in the upstream of Mekong basin, China, shows: 1. A Pareto frontier is formed by maximizing on only HP objective in scenario A and on only EI objective in scenario B. 2. Scenario D using IHA parameters as constraints obtains the optimal benefits of both economic and ecological. 3. A sensitive weight coefficient is found in scenario E, but the trade-offs between HP and EI objectives are not within the Pareto frontier. 4. When the fraction of reservoir utilizable capacity reaches 0.8, both HP and EI capture acceptable values. At last, to make this modelmore conveniently applied to everyday practice, a simplified operation rule curve is extracted.

  12. Adequacy of operating reserves for power systems in future european wind power scenarios

    DEFF Research Database (Denmark)

    Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr

    2015-01-01

    operating reserves. To study the effects of these imbalances, anticipated wind scenarios for European power systems are modelled for 2020 and 2030. Wind power forecasts for different time scales and real-time available wind power are modelled. Based on these studies, this paper qualitatively analyzes......Wind power generation is expected to increase in Europe by large extent in future. This will increase variability and uncertainty in power systems. Imbalances caused due to uncertainty in wind power forecast can trigger frequency instability in the system. These imbalances are handled using...... the adequacy of primary and secondary reserves requirements for future European power systems. This paper also discusses the challenges due to the uncertainty in wind power forecasts and their possible solutions for wind installation scenarios for 2020 and 2030....

  13. Optimal Operation of EVs and HPs in the Nordic Power System

    DEFF Research Database (Denmark)

    Liu, Zhaoxi

    penetration level in the market environment. • The feasibility investigation of EVs and HPs to provide frequency reserves to the Nordic power system. To accomplish the researches mentioned above, the driving patterns of the vehicles in the Nordic region and the impacts of the EV and HP demand on the day...... that both EVs and HPs can provide considerable frequency reserves to the power system along the day in the Nordic region. Vehicle-to-Grid (V2G) technologies which enable the EVs to discharge the batteries in the reserve operations can further utilize the capacity of the EVs and consequently increase...

  14. Operational Excellence through Schedule Optimization and Production Simulation of Application Specific Integrated Circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Flory, John Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Padilla, Denise D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gauthier, John H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zwerneman, April Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Steven P [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Upcoming weapon programs require an aggressive increase in Application Specific Integrated Circuit (ASIC) production at Sandia National Laboratories (SNL). SNL has developed unique modeling and optimization tools that have been instrumental in improving ASIC production productivity and efficiency, identifying optimal operational and tactical execution plans under resource constraints, and providing confidence in successful mission execution. With ten products and unprecedented levels of demand, a single set of shared resources, highly variable processes, and the need for external supplier task synchronization, scheduling is an integral part of successful manufacturing. The scheduler uses an iterative multi-objective genetic algorithm and a multi-dimensional performance evaluator. Schedule feasibility is assessed using a discrete event simulation (DES) that incorporates operational uncertainty, variability, and resource availability. The tools provide rapid scenario assessments and responses to variances in the operational environment, and have been used to inform major equipment investments and workforce planning decisions in multiple SNL facilities.

  15. Optimal Operation and Stabilising Control of the Concentric Heat-Integrated Distillation Column

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Skogestad, Sigurd; Huusom, Jakob Kjøbsted

    2016-01-01

    A systematic control structure design method is applied on the concentric heat integrated distillation column (HIDiC) separating benzene and toluene. A degrees of freedom analysis is provided for identifying potential manipulated and controlled variables. Optimal operation is mapped and active...

  16. Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space

    Science.gov (United States)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2015-09-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their

  17. The time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Lai, Yinping [Department of Automation,Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation,Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)

    2016-12-15

    In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.

  18. The time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator

    International Nuclear Information System (INIS)

    Wang, Hesheng; Lai, Yinping; Chen, Weidong

    2016-01-01

    In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.

  19. What is the optimal myocardial preservation strategy at re-operation for aortic valve replacement in the presence of a patent internal thoracic artery?

    Science.gov (United States)

    Park, Chan B; Suri, Rakesh M; Burkhart, Harold M; Greason, Kevin L; Dearani, Joseph A; Schaff, Hartzell V; Sundt, Thoralf M

    2011-06-01

    The optimal myocardial preservation strategy at re-operation for aortic valve replacement (AVR) after prior coronary artery bypass grafting (CABG) in the presence of a patent internal thoracic artery (ITA) remains undefined. Patients undergoing AVR after prior CABG at our institution between 1 January 1996 and 31 December 2007 were identified; operative notes and outcomes were reviewed. Of 628 patients with prior CABG undergoing AVR with or without concomitant procedures, 427 patients had a patent ITA. In 390, management of the ITA was detailed in the operative note, including 251 in whom it was clamped and 139 in whom it was left uncontrolled. Groups were demographically similar, although re-operative CABG was more frequent in the clamped group (42% vs 23%, poptimal perfusion temperature when the ITA was left uncontrolled. Efforts to control the patent ITA at re-operation for AVR after prior CABG increase risk of injury and may actually increase operative mortality rate compared with leaving this critical graft open and perfusing the heart. Copyright © 2010 European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Cost related sensitivity analysis for optimal operation of a grid-parallel PEM fuel cell power plant

    Science.gov (United States)

    El-Sharkh, M. Y.; Tanrioven, M.; Rahman, A.; Alam, M. S.

    Fuel cell power plants (FCPP) as a combined source of heat, power and hydrogen (CHP&H) can be considered as a potential option to supply both thermal and electrical loads. Hydrogen produced from the FCPP can be stored for future use of the FCPP or can be sold for profit. In such a system, tariff rates for purchasing or selling electricity, the fuel cost for the FCPP/thermal load, and hydrogen selling price are the main factors that affect the operational strategy. This paper presents a hybrid evolutionary programming and Hill-Climbing based approach to evaluate the impact of change of the above mentioned cost parameters on the optimal operational strategy of the FCPP. The optimal operational strategy of the FCPP for different tariffs is achieved through the estimation of the following: hourly generated power, the amount of thermal power recovered, power trade with the local grid, and the quantity of hydrogen that can be produced. Results show the importance of optimizing system cost parameters in order to minimize overall operating cost.

  1. Effects of a Capital Investment and a Discount Rate on the Optimal Operational Duration of an HLW Repository

    International Nuclear Information System (INIS)

    Kim, Sung Ki; Lee, Min Soo; Choi, Heui Joo; Choi, Jong Won

    2008-01-01

    This study aims to estimate the effects of a capital investment and a discount rate on the optimal operational duration of an HLW repository. According to the previous researches of the KRS(Korea Reference System) for an HLW repository, the amounts of 7,068,200 C$K and 2,636.2 MEUR are necessary to construct and operate surface and underground facilities. Since these huge costs can be a burden to some national economies, a study for a cost optimization should be performed. So we aim to drive the dominant cost driver for an optimal operational duration. A longer operational duration may be needed to dispose of more spent fuels continuously from a nuclear power plant, or to attain a retrievability of an HLW repository at a depth of 500 m below the ground level in a stable plutonic rock body. In this sense, an extended operational duration for an HLW repository affects the overall disposal costs of a repository. In this paper, only the influence of a capital investment and a discount rate was estimated from the view of optimized economics. Because these effects must be significant factors to minimize the overall disposal costs based on minimizing the sum of operational costs and capital investments

  2. Multi-objective optimization for the maximization of the operating share of cogeneration system in District Heating Network

    International Nuclear Information System (INIS)

    Franco, Alessandro; Versace, Michele

    2017-01-01

    Highlights: • Combined Heat and Power plants and civil/residential energy uses. • CHP plant supported by auxiliary boilers and thermal energy storage. • Definition of optimal operational strategies for cogeneration plants for District Heating. • Optimal-sized Thermal Energy Storage and a hybrid operational strategy. • Maximization of cogeneration share and reduction of time of operation of auxiliary boilers. - Abstract: The aim of the paper is to define optimal operational strategies for Combined Heat and Power plants connected to civil/residential District Heating Networks. The role of a reduced number of design variables, including a Thermal Energy Storage system and a hybrid operational strategy dependent on the storage level, is considered. The basic principle is to reach maximum efficiency of the system operation through the utilization of an optimal-sized Thermal Energy Storage. Objective functions of both energetic and combined energetic and economic can be considered. In particular, First and Second Law Efficiency, thermal losses of the storage, number of starts and stops of the combined heat and power unit are considered. Constraints are imposed to nullify the waste of heat and to operate the unit at its maximum efficiency for the highest possible number of consecutive operating hours, until the thermal tank cannot store more energy. The methodology is applied to a detailed case study: a medium size district heating system, in an urban context in the northern Italy, powered by a combined heat and power plant supported by conventional auxiliary boilers. The issues involving this type of thermal loads are also widely investigated in the paper. An increase of Second Law Efficiency of the system of 26% (from 0.35 to 0.44) can be evidenced, while the First Law Efficiency shifts from about 0.74 to 0.84. The optimization strategy permits of combining the economic benefit of cogeneration with the idea of reducing the energy waste and exergy losses.

  3. New bidding strategy formulation for day-ahead energy and reserve markets based on evolutionary programming

    International Nuclear Information System (INIS)

    Attaviriyanupap, Pathom; Kita, Hiroyuki; Tanaka, Eiichi; Hasegawa, Jun

    2005-01-01

    In this paper, a new bidding strategy for a day-ahead market is formulated. The proposed algorithm is developed from the viewpoint of a generation company wishing to maximize a profit as a participant in the deregulated power and reserve markets. Separate power and reserve markets are considered, both are operated by clearing price auction system. The optimal bidding parameters for both markets are determined by solving an optimization problem that takes unit commitment constraints such as generating limits and unit minimum up/down time constraints into account. This is a non-convex and non-differentiable which is difficult to solve by traditional optimization techniques. In this paper, evolutionary programming is used to solve the problem. The algorithm is applied to both single-sided and double-sided auctions, numerical simulations are carried out to demonstrate the performance of the proposed scheme compared with those obtained from a sequential quadratic programming. (author)

  4. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems.

    Science.gov (United States)

    Kurek, Wojciech; Ostfeld, Avi

    2013-01-30

    A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A prediction of Power Duration Curve from the Optimal Operation of the Multi Reservoirs System

    Directory of Open Access Journals (Sweden)

    Abdul Wahab Younis

    2013-04-01

    Full Text Available  This study aims of predication Power Duration Curves(PDC resulting from the optimal operation of the multi reservoirs system which comprises the reservoirs of Bakhma dam,Dokan dam and Makhool dam for the division of years over 30 years.Discrete Differential Dynamic Programming(DDDP has been employed to find the optimal operation of the said reservoirs.    PDC representing the relationship between the generated hydroelectric power and percentage of operation time equaled or exceeded . The importance of these curves lies in knowing the volume of electric power available for that percentage of operation time. The results have shown that the sum of yearly hydroelectric power for average Release and for the single operation was 5410,1604,2929(Mwfor the reservoirs of Bakhma, Dokan, Makhool dams, which resulted from the application of independent DDDP technology. Also, the hydroelectric power whose generation can be guranteed for 90% of the time is 344.91,107.7,188.15 (Mw for the single operation and 309.1,134.08,140.7 (Mw for the operation as a one system for the reservoirs of Bakhma, Dokan, and Makhool dams respectively.

  6. Risk averse optimal operation of a virtual power plant using two stage stochastic programming

    International Nuclear Information System (INIS)

    Tajeddini, Mohammad Amin; Rahimi-Kian, Ashkan; Soroudi, Alireza

    2014-01-01

    VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mixed integer linear programming in order to maximize a GenCo (generation companies) expected profit. Furthermore, the CVaR (Conditional Value at Risk) is used as a risk measure technique in order to control the risk of low profit scenarios. The uncertain parameters, including the PV power output, wind power output and day-ahead market prices are modelled through scenarios. The proposed model is successfully applied to a real case study to show its applicability and the results are presented and thoroughly discussed. - Highlights: • Virtual power plant modelling considering a set of energy generating and conversion units. • Uncertainty modelling using two stage stochastic programming technique. • Risk modelling using conditional value at risk. • Flexible operation of renewable energy resources. • Electricity price uncertainty in day ahead energy markets

  7. Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage

    Science.gov (United States)

    Leśko, Michał; Bujalski, Wojciech

    2017-12-01

    The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.

  8. Energy and Reserve under Distributed Energy Resources Management-Day-Ahead, Hour-Ahead and Real-Time

    DEFF Research Database (Denmark)

    Soares, Tiago; Silva, Marco; Sousa, Tiago

    2017-01-01

    and evaluates a generic model for day-ahead, intraday (hour-ahead) and real-time scheduling, considering the joint optimization of energy and reserve in the scope of the virtual power player concept. The model aims to minimize the operation costs in the point of view of one aggregator agent taking into account...

  9. Framework for Combined Diagnostics, Prognostics and Optimal Operation of a Subsea Gas Compression System

    OpenAIRE

    Verheyleweghen, Adriaen; Jaeschke, Johannes

    2017-01-01

    The efficient and safe operation of subsea gas and oil production systems sets strict requirements to equipment reliability to avoid unplanned breakdowns and costly maintenance interventions. Because of this, condition monitoring is employed to assess the status of the system in real-time. However, the condition of the system is usually not considered explicitly when finding the optimal operation strategy. Instead, operational constraints on flow rates, pressures etc., based on worst-case sce...

  10. Factors affecting the optimal performance of a high-yield pulping operation

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, G [Noranda Technology Centre, Pointe-Claire, PQ (Canada); Paris, J [Ecole Polytechnique, Montreal, PQ (Canada); Valada, J L [Quebec Univ., Trois-Rivieres, PQ (Canada)

    1995-06-01

    Strategies for operating a chemical-mechanical pulp mill were investigated from data based on process models from some one hundred pilot scale pulping runs. Optimal values for 55 process and pulp quality variables have been calculated by applying a genetic algorithm search to a fuzzy model of the overall system. Best pulp quality was achieved and maintained when the chemical pretreatment was conducted at moderately low temperatures using a high SO{sub 2} concentration, which produced high sulphonation and high yield at the same time. By characterizing the quality of the pulp at the fibre level, optimization results were said to be more easily transferable to other high yield pulping systems. 19 refs., 6 tabs.

  11. Optimal operation strategy of battery energy storage system to real-time electricity price in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    markets in some ways, is chosen as the studied power system in this paper. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studies in the paper. Simulation results show, that the proposed optimal operation strategy is an effective measure to achieve......Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...

  12. Multi-Objective Optimization of the Hedging Model for reservoir Operation Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    sadegh sadeghitabas

    2015-12-01

    Full Text Available Multi-objective problems rarely ever provide a single optimal solution, rather they yield an optimal set of outputs (Pareto fronts. Solving these problems was previously accomplished by using some simplifier methods such as the weighting coefficient method used for converting a multi-objective problem to a single objective function. However, such robust tools as multi-objective meta-heuristic algorithms have been recently developed for solving these problems. The hedging model is one of the classic problems for reservoir operation that is generally employed for mitigating drought impacts in water resources management. According to this method, although it is possible to supply the total planned demands, only portions of the demands are met to save water by allowing small deficits in the current conditions in order to avoid or reduce severe deficits in future. The approach heavily depends on economic and social considerations. In the present study, the meta-heuristic algorithms of NSGA-II, MOPSO, SPEA-II, and AMALGAM are used toward the multi-objective optimization of the hedging model. For this purpose, the rationing factors involved in Taleghan dam operation are optimized over a 35-year statistical period of inflow. There are two objective functions: a minimizing the modified shortage index, and b maximizing the reliability index (i.e., two opposite objectives. The results show that the above algorithms are applicable to a wide range of optimal solutions. Among the algorithms, AMALGAM is found to produce a better Pareto front for the values of the objective function, indicating its more satisfactory performance.

  13. Orthogonal optimization of a water hydraulic pilot-operated pressure-reducing valve

    Science.gov (United States)

    Mao, Xuyao; Wu, Chao; Li, Bin; Wu, Di

    2017-12-01

    In order to optimize the comprehensive characteristics of a water hydraulic pilot-operated pressure-reducing valve, numerical orthogonal experimental design was adopted. Six parameters of the valve, containing diameters of damping plugs, volume of spring chamber, half cone angle of main spool, half cone angle of pilot spool, mass of main spool and diameter of main spool, were selected as the orthogonal factors, and each factor has five different levels. An index of flowrate stability, pressure stability and pressure overstrike stability (iFPOS) was used to judge the merit of each orthogonal attempt. Embedded orthogonal process turned up and a final optimal combination of these parameters was obtained after totally 50 numerical orthogonal experiments. iFPOS could be low to a fairly low value which meant that the valve could have much better stabilities. During the optimization, it was also found the diameters of damping plugs and main spool played important roles in stability characteristics of the valve.

  14. Optimization of operating parameters for gas-phase photocatalytic splitting of H2S by novel vermiculate packed tubular reactor.

    Science.gov (United States)

    Preethi, V; Kanmani, S

    2016-10-01

    Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Advances of radioisotope for design, intensification and optimization of processes and operations in chemical industry

    International Nuclear Information System (INIS)

    Joshi, J.B.

    2002-01-01

    Full text: In chemical industries different processes and operations involve a variety of multiphase contacting schemes for optimal production schedule in terms of ease of handling, time and money. A number of parameters will have to be optimized for this purpose. Further more, during the operation of a process plant, a number of problems such as reduction in process efficiency, deterioration in product quality etc. are encountered due to malfunctioning of one or more components. The successful operation of an industry depends on the early detection of the problems for appropriate remedial action. These are conveniently carried out by the application of radioisotopes either directly or in sealed condition depending upon the problem to be addressed. In this talk both types of radiotracer applications are discussed by taking specific examples

  16. Operating cost reduction by optimization of I and C backfitting strategy

    International Nuclear Information System (INIS)

    Kraft, Heinz-U.

    2002-01-01

    Full text: The safe and economic operation of a nuclear power plant requires a large scope of automation systems to act properly in combination. The associated maintenance costs, necessary to test these systems periodically and to repair or to replace them partly or completely, are one important factor in the overall operating costs of a nuclear power plant. Reducing these costs by reducing the maintenance effort could decrease the availability of the power plant and by this way increase the operating costs significantly. The minimization of the overall operating costs requires a well-balanced maintenance strategy taking into account all these opposite influences. The replacement of an existing I and C system by a new one reduces the maintenance cost in the long term and increases the plant availability. However, it requires some investments in the short term. On the other hand the repair of an I and C system avoids investments, but it doesn't solve the aging problems. That means maintenance costs will increase in the long term and the plant availability could be decreased. An optimized maintenance strategy can be elaborated on a plant specific base taking into account the residual lifetime of the plant, the properties of the installed I and C systems as well as their influence on the plant availability. As a general result of such an optimization performed by FANP it has been found as a rule that the replacement of I and C systems becomes the most economic way the longer the expected lifetime is and the stronger the I and C system influences, the availability of the plant. (author)

  17. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  18. Risk-informed optimal routing of ships considering different damage scenarios and operational conditions

    International Nuclear Information System (INIS)

    Decò, Alberto; Frangopol, Dan M.

    2013-01-01

    The aim of this paper is the development of a risk-informed decision tool for the optimal mission-oriented routing of ships. The strength of the hull is investigated by modeling the midship section with finite elements and by analyzing different damage levels depending on the propagation of plastification throughout the section. Vertical and horizontal flexural interaction is investigated. Uncertainties associated with geometry and material properties are accounted for by means of the implementation of the response surface method. Load effects are evaluated using strip theory. Reliability analysis is performed for several ship operational conditions and considering four different limit states. Then, risk is assessed by including the direct losses associated with five investigated damage states. The effects of corrosion on aged ships are included in the proposed approach. Polar representation of load effects, reliability, and direct risk are presented for a large spectrum of operational conditions. Finally, the optimal routing of ships is obtained by minimizing both the estimated time of arrival and the expected direct risk, which are clearly conflicting objectives. The optimization process provides feasible solutions belonging to the Pareto front. The proposed approach is applied to a Joint High Speed Sealift

  19. Electromagnetic Problems Solving by Conformal Mapping: A Mathematical Operator for Optimization

    Directory of Open Access Journals (Sweden)

    Wesley Pacheco Calixto

    2010-01-01

    Full Text Available Having the property to modify only the geometry of a polygonal structure, preserving its physical magnitudes, the Conformal Mapping is an exceptional tool to solve electromagnetism problems with known boundary conditions. This work aims to introduce a new developed mathematical operator, based on polynomial extrapolation. This operator has the capacity to accelerate an optimization method applied in conformal mappings, to determinate the equipotential lines, the field lines, the capacitance, and the permeance of some polygonal geometry electrical devices with an inner dielectric of permittivity ε. The results obtained in this work are compared with other simulations performed by the software of finite elements method, Flux 2D.

  20. Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation

    International Nuclear Information System (INIS)

    Pang, X.; Rybarcyk, L.J.

    2014-01-01

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster

  1. Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation

    Energy Technology Data Exchange (ETDEWEB)

    Pang, X., E-mail: xpang@lanl.gov; Rybarcyk, L.J.

    2014-03-21

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster.

  2. A stochastic security approach to energy and spinning reserve scheduling considering demand response program

    International Nuclear Information System (INIS)

    Partovi, Farzad; Nikzad, Mehdi; Mozafari, Babak; Ranjbar, Ali Mohamad

    2011-01-01

    In this paper a new algorithm for allocating energy and determining the optimum amount of network active power reserve capacity and the share of generating units and demand side contribution in providing reserve capacity requirements for day-ahead market is presented. In the proposed method, the optimum amount of reserve requirement is determined based on network security set by operator. In this regard, Expected Load Not Supplied (ELNS) is used to evaluate system security in each hour. The proposed method has been implemented over the IEEE 24-bus test system and the results are compared with a deterministic security approach, which considers certain and fixed amount of reserve capacity in each hour. This comparison is done from economic and technical points of view. The promising results show the effectiveness of the proposed model which is formulated as mixed integer linear programming (MILP) and solved by GAMS software. -- Highlights: → Determination of optimal spinning reserve capacity requirement in order to satisfy desired security level set by system operator based on stochastic approach. → Scheduling energy and spinning reserve markets simultaneously. → Comparing the stochastic approach with deterministic approach to determine the advantages and disadvantages of each. → Examine the effect of demand response participation in reserve market to provide spinning reserve.

  3. Optimization of bridging agents size distribution for drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Alex; Andrade, Alex Rodrigues de; Pires Junior, Idvard Jose; Martins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)]. E-mails: awaldmann@petrobras.com.br; andradear.gorceix@petrobras.com.br; idvard.gorceix@petrobras.com.br; aleibsohn@petrobras.com.br

    2008-07-01

    The conventional drilling technique is based on positive hydrostatic pressure against well walls to prevent inflows of native fluids into the well. Such inflows can cause security problems for the team well and to probe. As the differential pressure of the well to reservoir is always positive, the filtrate of the fluid tends to invade the reservoir rock. Minimize the invasion of drilling fluid is a relevant theme in the oil wells drilling operations. In the design of drilling fluid, a common practice in the industry is the addition of bridging agents in the composition of the fluid to form a cake of low permeability at well walls and hence restrict the invasive process. The choice of drilling fluid requires the optimization of the concentration, shape and size distribution of particles. The ability of the fluid to prevent the invasion is usually evaluated in laboratory tests through filtration in porous media consolidated. This paper presents a description of the methods available in the literature for optimization of the formulation of bridging agents to drill-in fluids, predicting the pore throat from data psychotherapy, and a sensitivity analysis of the main operational parameters. The analysis is based on experimental results of the impact of the size distribution and concentration of bridging agents in the filtration process of drill-in fluids through porous media submitted to various different differential of pressure. The final objective is to develop a software for use of PETROBRAS, which may relate different types and concentrations of bridging agents with the properties of the reservoir to minimize the invasion. (author)

  4. Model development and optimization of operating conditions to maximize PEMFC performance by response surface methodology

    International Nuclear Information System (INIS)

    Kanani, Homayoon; Shams, Mehrzad; Hasheminasab, Mohammadreza; Bozorgnezhad, Ali

    2015-01-01

    Highlights: • The optimization of the operating parameters in a serpentine PEMFC is done using RSM. • The RSM model can predict the cell power over the wide range of operating conditions. • St-An, St-Ca and RH-Ca have an optimum value to obtain the best performance. • The interactions of the operating conditions affect the output power significantly. • The cathode and anode stoichiometry are the most effective parameters on the power. - Abstract: Optimization of operating conditions to obtain maximum power in PEMFCs could have a significant role to reduce the costs of this emerging technology. In the present experimental study, a single serpentine PEMFC is used to investigate the effects of operating conditions on the electrical power production of the cell. Four significant parameters including cathode stoichiometry, anode stoichiometry, gases inlet temperature, and cathode relative humidity are studied using Design of Experiment (DOE) to obtain an optimal power. Central composite second order Response Surface Methodology (RSM) is used to model the relationship between goal function (power) and considered input parameters (operating conditions). Using this statistical–mathematical method leads to obtain a second-order equation for the cell power. This model considers interactions and quadratic effects of different operating conditions and predicts the maximum or minimum power production over the entire working range of the parameters. In this range, high stoichiometry of cathode and low stoichiometry of anode results in the minimum cell power and contrary the medium range of fuel and oxidant stoichiometry leads to the maximum power. Results show that there is an optimum value for the anode stoichiometry, cathode stoichiometry and relative humidity to reach the best performance. The predictions of the model are evaluated by experimental tests and they are in a good agreement for different ranges of the parameters

  5. Optimal operation for 3 control parameters of Texaco coal-water slurry gasifier with MO-3LM-CDE algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Cuiwen; Zhang, Yakun; Gu, Xingsheng [Ministry of Education, East China Univ. of Science and Technology, Shanghai (China). Key Lab. of Advanced Control and Optimization for Chemical Processes

    2013-07-01

    Optimizing operation parameters for Texaco coal-water slurry gasifier with the consideration of multiple objectives is a complicated nonlinear constrained problem concerning 3 BP neural networks. In this paper, multi-objective 3-layer mixed cultural differential evolution (MO-3LM-CDE) algorithms which comprise of 4 multi-objective strategies and a 3LM-CDE algorithm are firstly presented. Then they are tested in 6 benchmark functions. Finally, the MO-3LM-CDE algorithms are applied to optimize 3 control parameters of the Texaco coal-water slurry gasifier in methanol production of a real-world chemical plant. The simulation results show that multi-objective optimal results are better than the respective single-objective optimal operations.

  6. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    Science.gov (United States)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  7. Optimizing the Performance of a 50cc Compression Ignition Two-Stroke Engine Operating on Dimethyl Ether

    DEFF Research Database (Denmark)

    Hansen, Kim Rene; Dolriis, J.D.; Hansson, C.

    2011-01-01

    The paper describes the optimization of a 50cc crankcase scavenged two-stroke diesel engine operating on dimethyl ether (DME). The optimization is primarily done with respect to engine efficiency. The underlying idea behind the work is that the low weight, low internal friction and low engine...

  8. Efficient operation scheduling for adsorption chillers using predictive optimization-based control methods

    Science.gov (United States)

    Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz

    2017-10-01

    Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.

  9. Greenhouse gas emissions from operating reserves used to backup large-scale wind power.

    Science.gov (United States)

    Fripp, Matthias

    2011-11-01

    Wind farms provide electricity with no direct emissions. However, their output cannot be forecasted perfectly, even a short time ahead. Consequently, power systems with large amounts of wind power may need to keep extra fossil-fired generators turned on and ready to provide power if wind farm output drops unexpectedly. In this work, I introduce a new model for estimating the uncertainty in short-term wind power forecasts, and how this uncertainty varies as wind power is aggregated over larger regions. I then use this model to estimate the reserve requirements in order to compensate for wind forecast errors to a 99.999% level of reliability, and an upper limit on the amount of carbon dioxide that would be emitted if natural gas power plants are used for this purpose. I find that for regions larger than 500 km across, operating reserves will undo 6% or less of the greenhouse gas emission savings that would otherwise be expected from wind power.

  10. Pricing the Ramping Reserve and Capacity Reserve in Real Time Markets

    OpenAIRE

    Ye, Hongxing; Li, Zuyi

    2015-01-01

    The increasing penetration of renewable energy in recent years has led to more uncertainties in power systems. In order to maintain system reliability and security, electricity market operators need to keep certain reserves in the Security-Constrained Economic Dispatch (SCED) problems. A new concept, deliverable generation ramping reserve, is proposed in this paper. The prices of generation ramping reserves and generation capacity reserves are derived in the Affine Adjustable Robust Optimizat...

  11. Writing otorhinolaryngology head & neck surgery operative reports.

    Science.gov (United States)

    Laccourreye, O; Rubin, F; Villeneuve, A; Bonfils, P

    2017-09-01

    Only about ten articles devoted to operative reports have been published in the medical literature, but this document is essential, both medically and legally, to ensure optimal management of operated patients. In this technical note, based on published studies on this subject, the authors describe the key features of operating reports after otorhinolaryngology head & neck surgery and emphasize the need to write this document during the minutes after the end of the operation, the importance of standardization and its teaching role during surgical training. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Optimal Protection Coordination for Microgrid under Different Operating Modes

    Directory of Open Access Journals (Sweden)

    Ming-Ta Yang

    2013-01-01

    Full Text Available Significant consequences result when a microgrid is connected to a distribution system. This study discusses the impacts of bolted three-phase faults and bolted single line-to-ground faults on the protection coordination of a distribution system connected by a microgrid which operates in utility-only mode or in grid-connected mode. The power system simulation software is used to build the test system. The linear programming method is applied to optimize the coordination of relays, and the relays coordination simulation software is used to verify if the coordination time intervals (CTIs of the primary/backup relay pairs are adequate. In addition, this study also proposes a relays protection coordination strategy when the microgrid operates in islanding mode during a utility power outage. Because conventional CO/LCO relays are not capable of detecting high impedance fault, intelligent electrical device (IED combined with wavelet transformer and neural network is proposed to accurately detect high impedance fault and identify the fault phase.

  13. A short-term scheduling for the optimal operation of biorefineries

    International Nuclear Information System (INIS)

    Grisi, E.F.; Yusta, J.M.; Khodr, H.M.

    2011-01-01

    This work presents an analysis of the inherent potentialities and characteristics of the sugarcane industries that produce sugar, bioethanol, biogas and bioelectricity and that are being described as ''Biorefineries''. These Biorefineries are capable of producing bio-energy under diverse forms, intended for their own internal consumption and for external sales and marketing. A complex model and simulation are carried out of the processes of a sugarcane industry, with the data characteristic as well as the production costs, prices of products and considerations on the energy demand by basic processes. A Mixed-Integer Linear Programming (MILP) optimization problem formulation and an analysis of optimal solutions in short-term operation are described, taking into account the production cost functions of each commodity and the incomes obtained from selling electricity and other products. The objective is to maximize the hourly plant economic profit in the different scenarios considered in a real case study. (author)

  14. Optimization of cascade hydropower system operation by genetic algorithm to maximize clean energy output

    Directory of Open Access Journals (Sweden)

    Aida Tayebiyan

    2016-06-01

    Full Text Available Background: Several reservoir systems have been constructed for hydropower generation around the world. Hydropower offers an economical source of electricity with reduce carbon emissions. Therefore, it is such a clean and renewable source of energy. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue. Yet, reservoir systems are inefficiently operated and manage according to policies determined at the construction time. It is worth noting that with little enhancement in operation of reservoir system, there could be an increase in efficiency of the scheme for many consumers. Methods: This research develops simulation-optimization models that reflect discrete hedging policy (DHP to manage and operate hydropower reservoir system and analyse it in both single and multireservoir system. Accordingly, three operational models (2 single reservoir systems and 1 multi-reservoir system were constructed and optimized by genetic algorithm (GA. Maximizing the total power generation in horizontal time is chosen as an objective function in order to improve the functional efficiency in hydropower production with consideration to operational and physical limitations. The constructed models, which is a cascade hydropower reservoirs system have been tested and evaluated in the Cameron Highland and Batang Padang in Malaysia. Results: According to the given results, usage of DHP for hydropower reservoir system operation could increase the power generation output to nearly 13% in the studied reservoir system compared to present operating policy (TNB operation. This substantial increase in power production will enhance economic development. Moreover, the given results of single and multi-reservoir systems affirmed that hedging policy could manage the single system much better than operation of the multi-reservoir system. Conclusion: It can be summarized that DHP is an efficient and feasible policy, which could be used

  15. Optimized green operation of LTE networks in the presence of multiple electricity providers

    KAUST Repository

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2012-01-01

    Energy efficiency aspects in cellular networks can significantly contribute to the reduction of greenhouse gas emissions and help to save the environment. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Besides, introducing renewable energies as alternative power sources becomes a real challenge to network operators. In this paper, we propose a method that reduces the energy consumption of BSs by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from different retailers (Renewable energy and electricity retailers). We formulate an optimization problem that leads to the maximization of the profit of a Long-Term Evolution (LTE) cellular operator, and at the same time to the minimization of CO2 emissions in green wireless cellular networks without affecting the desired Quality of Service. © 2012 IEEE.

  16. Optimized green operation of LTE networks in the presence of multiple electricity providers

    KAUST Repository

    Ghazzai, Hakim

    2012-12-01

    Energy efficiency aspects in cellular networks can significantly contribute to the reduction of greenhouse gas emissions and help to save the environment. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Besides, introducing renewable energies as alternative power sources becomes a real challenge to network operators. In this paper, we propose a method that reduces the energy consumption of BSs by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from different retailers (Renewable energy and electricity retailers). We formulate an optimization problem that leads to the maximization of the profit of a Long-Term Evolution (LTE) cellular operator, and at the same time to the minimization of CO2 emissions in green wireless cellular networks without affecting the desired Quality of Service. © 2012 IEEE.

  17. Optimization of the operating conditions of gas-turbine power stations considering the effect of equipment deterioration

    Science.gov (United States)

    Aminov, R. Z.; Kozhevnikov, A. I.

    2017-10-01

    In recent years in most power systems all over the world, a trend towards the growing nonuniformity of energy consumption and generation schedules has been observed. The increase in the portion of renewable energy sources is one of the important challenges for many countries. The ill-predictable character of such energy sources necessitates a search for practical solutions. Presently, the most efficient method for compensating for nonuniform generation of the electric power by the renewable energy sources—predominantly by the wind and solar energy—is generation of power at conventional fossil-fuel-fired power stations. In Russia, this problem is caused by the increasing portion in the generating capacity structure of the nuclear power stations, which are most efficient when operating under basic conditions. Introduction of hydropower and pumped storage hydroelectric power plants and other energy-storage technologies does not cover the demand for load-following power capacities. Owing to a simple design, low construction costs, and a sufficiently high economic efficiency, gas turbine plants (GTPs) prove to be the most suitable for covering the nonuniform electric-demand schedules. However, when the gas turbines are operated under varying duty conditions, the lifetime of the primary thermostressed components is considerably reduced and, consequently, the repair costs increase. A method is proposed for determination of the total operating costs considering the deterioration of the gas turbine equipment under varying duty and start-stop conditions. A methodology for optimization of the loading modes for the gas turbine equipment is developed. The consideration of the lifetime component allows varying the optimal operating conditions and, in some cases, rejecting short-time stops of the gas turbine plants. The calculations performed in a wide range of varying fuel prices and capital investments per gas turbine equipment unit show that the economic effectiveness can

  18. Service Capacity Reserve under Uncertainty by Hospital’s ER Analogies: A Practical Model for Car Services

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Pérez Salaverría

    2014-01-01

    Full Text Available We define a capacity reserve model to dimension passenger car service installations according to the demographic distribution of the area to be serviced by using hospital’s emergency room analogies. Usually, service facilities are designed applying empirical methods, but customers arrive under uncertain conditions not included in the original estimations, and there is a gap between customer’s real demand and the service’s capacity. Our research establishes a valid methodology and covers the absence of recent researches and the lack of statistical techniques implementation, integrating demand uncertainty in a unique model built in stages by implementing ARIMA forecasting, queuing theory, and Monte Carlo simulation to optimize the service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Our model has proved to be a useful tool for optimal decision making under uncertainty integrating the prediction of the cost implicit in the reserve capacity to serve unexpected demand and defining a set of new process indicators, such us capacity, occupancy, and cost of capacity reserve never studied before. The new indicators are intended to optimize the service operation. This set of new indicators could be implemented in the information systems used in the passenger car services.

  19. The Application of GA, SMPSO and HGAPSO in Optimal Reservoirs Operation

    Directory of Open Access Journals (Sweden)

    Alireza Moghaddam

    2017-02-01

    Full Text Available Introduction: The reservoir operation is a multi-objective optimization problem with large-scale which consider reliability and the needs of hydrology, energy, agriculture and the environment. There were not the any algorithms with this ability which consider all the above-mentioned demands until now. Almost the existing algorithms usually solve a simple form of the problem for their limitations. In the recent decay the application of meta-heuristic algorithms were introduced into the water resources problem to overcome on some complexity, such as non-linear, non-convex and description of these problems which limited the mathematical optimization methods. In this paper presented a Simple Modified Particle Swarm Optimization Algorithm (SMPSO with applying a new factor in Particle Swarm Optimization (PSO algorithm. Then a new suggested hybrid method which called HGAPSO developed based on combining with Genetic algorithm (GA. In the end, the performance of GA, MPSO and HGAPSO algorithms on the reservoir operation problem is investigated with considering water supplying as objective function in a period of 60 months according to inflow data. Materials and Methods: The GA is one of the newer programming methods which use of the theory of evolution and survival in biology and genetics principles. GA has been developed as an effective method in optimization problems which doesn’t have the limitation of classical methods. The SMPSO algorithm is the member of swarm intelligence methods that a solution is a population of birds which know as a particle. In this collection, the birds have the individual artificial intelligence and develop the social behavior and their coordinate movement toward a specific destination. The goal of this process is the communication between individual intelligence with social interaction. The new modify factor in SMPSO makes to improve the speed of convergence in optimal answer. The HGAPSO is a suggested combination of GA

  20. Optimal Operation and Management of Smart Grid System with LPC and BESS in Fault Conditions

    Directory of Open Access Journals (Sweden)

    Ryuto Shigenobu

    2016-12-01

    Full Text Available Distributed generators (DG using renewable energy sources (RESs have been attracting special attention within distribution systems. However, a large amount of DG penetration causes voltage deviation and reverse power flow in the smart grid. Therefore, the smart grid needs a solution for voltage control, power flow control and power outage prevention. This paper proposes a decision technique of optimal reference scheduling for a battery energy storage system (BESS, inverters interfacing with a DG and voltage control devices for optimal operation. Moreover, the reconfiguration of the distribution system is made possible by the installation of a loop power flow controller (LPC. Two separate simulations are provided to maintain the reliability in the stable power supply and economical aspects. First, the effectiveness of the smart grid with installed BESS or LPC devices is demonstrated in fault situations. Second, the active smart grid using LCPs is proposed. Real-time techniques of the dual scheduling algorithm are applied to the system. The aforementioned control objective is formulated and solved using the particle swarm optimization (PSO algorithm with an adaptive inertia weight (AIW function. The effectiveness of the optimal operation in ordinal and fault situations is verified by numerical simulations.

  1. Optimizing Operation Indices Considering Different Types of Distributed Generation in Microgrid Applications

    Directory of Open Access Journals (Sweden)

    Niloofar Ghanbari

    2018-04-01

    Full Text Available The need for independent power generation has increased in recent years, especially with the growing demand in microgrid systems. In a microgrid with several generations of different types and with all kinds of loads of variable nature, an optimal power balance in the system has to be achieved. This optimal objective, which results in minimal energy losses over a specific period of time, requires an optimal location and sizing of the distributed generations (DGs in a microgrid. This paper proposes a new optimization method in which both optimal location of the DGs and their generation profile according to the load demand profile as well as the type of DG are determined during the life time of the DGs. The types of DGs that are considered in this paper are diesel generators and wind turbine. The method is based on simultaneously minimizing the cost of the investment and operation of the DGs, the cost of power delivered by the the external grid as well as the cost of power losses in the network. The proposed method is tested on the IEEE standard radial distribution network considering time-varying loads and the wind speed every hour of a day.

  2. Optimal reducibility of all W states equivalent under stochastic local operations and classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Swapan; Parashar, Preeti [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 BT Road, Kolkata (India)

    2011-11-15

    We show that all multipartite pure states that are stochastic local operation and classical communication (SLOCC) equivalent to the N-qubit W state can be uniquely determined (among arbitrary states) from their bipartite marginals. We also prove that only (N-1) of the bipartite marginals are sufficient and that this is also the optimal number. Thus, contrary to the Greenberger-Horne-Zeilinger (GHZ) class, W-type states preserve their reducibility under SLOCC. We also study the optimal reducibility of some larger classes of states. The generic Dicke states |GD{sub N}{sup l}> are shown to be optimally determined by their (l+1)-partite marginals. The class of ''G'' states (superposition of W and W) are shown to be optimally determined by just two (N-2)-partite marginals.

  3. An Optimization Model and Modified Harmony Search Algorithm for Microgrid Planning with ESS

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2017-01-01

    Full Text Available To solve problems such as the high cost of microgrids (MGs, balance between supply and demand, stability of system operation, and optimizing the MG planning model, the energy storage system (ESS and harmony search algorithm (HSA are proposed. First, the conventional MG planning optimization model is constructed and the constraint conditions are defined: the supply and demand balance and reserve requirements. Second, an ESS is integrated into the optimal model of MG planning. The model with an ESS can solve and identify parameters such as the optimal power, optimal capacity, and optimal installation year. Third, the convergence speed and robustness of the ESS are optimized and improved. A case study comprising three different cases concludes the paper. The results show that the modified HSA (MHSA can effectively improve the stability and economy of MG operation with an ESS.

  4. Risk-Based Two-Stage Stochastic Optimization Problem of Micro-Grid Operation with Renewables and Incentive-Based Demand Response Programs

    Directory of Open Access Journals (Sweden)

    Pouria Sheikhahmadi

    2018-03-01

    Full Text Available The operation problem of a micro-grid (MG in grid-connected mode is an optimization one in which the main objective of the MG operator (MGO is to minimize the operation cost with optimal scheduling of resources and optimal trading energy with the main grid. The MGO can use incentive-based demand response programs (DRPs to pay an incentive to the consumers to change their demands in the peak hours. Moreover, the MGO forecasts the output power of renewable energy resources (RERs and models their uncertainties in its problem. In this paper, the operation problem of an MGO is modeled as a risk-based two-stage stochastic optimization problem. To model the uncertainties of RERs, two-stage stochastic programming is considered and conditional value at risk (CVaR index is used to manage the MGO’s risk-level. Moreover, the non-linear economic models of incentive-based DRPs are used by the MGO to change the peak load. The numerical studies are done to investigate the effect of incentive-based DRPs on the operation problem of the MGO. Moreover, to show the effect of the risk-averse parameter on MGO decisions, a sensitivity analysis is carried out.

  5. Optimal Operation and Value Evaluation of Pumped Storage Power Plants Considering Spot Market Trading and Uncertainty of Bilateral Demand

    Science.gov (United States)

    Takahashi, Kenta; Hara, Ryoichi; Kita, Hiroyuki; Hasegawa, Jun

    In recent years, as the deregulation in electric power industry has advanced in many countries, a spot market trading of electricity has been done. Generation companies are allowed to purchase the electricity through the electric power market and supply electric power for their bilateral customers. Under this circumstance, it is important for the generation companies to procure the required electricity with cheaper cost to increase their profit. The market price is volatile since it is determined by bidding between buyer and seller. The pumped storage power plant, one of the storage facilities is promising against such volatile market price since it can produce a profit by purchasing electricity with lower-price and selling it with higher-price. This paper discusses the optimal operation of the pumped storage power plants considering bidding strategy to an uncertain spot market. The volatilities in market price and demand are represented by the Vasicek model in our estimation. This paper also discusses the allocation of operational reserve to the pumped storage power plant.

  6. Optimization of TW accelerating structures for SLED type modes of operation

    International Nuclear Information System (INIS)

    Le Duff, J.

    1984-02-01

    The SLED method was invented at SLAC in order to produce more electron (and positron) energy from the existing klystrons. The LEP injector LINAC, also now is supposed to operate in the SLED-2 mode. At DESY similar developments have been undertaken too, to improve the linac performances. However in all cases the accelerating sections were not initially optimized for such a mode of operation, and in most cases the designers ended with long accelerating sections making a more efficient use of the klystron power, with rectangular pulses, sometimes at the expense of a longer linac. The present study deals with new approaches for designing linacs, and in particular compact linacs, considering from the beginning a pulse compression scheme, where the main feature consists of having an exponential pulse shape instead of rectangular. Moreover a detailed comparison is made between constant impedance and constant gradient travelling wave (TW) accelerating structures. As a matter of fact the constant impedance structure when optimized looks sligthy better than the second one. In addition short structures appear to be more efficient for a given number of RF sources. Consequently linear accelerators can be made more simple and less expensive, and if one allows for higher tolerable accelerating gradients they can be made even compact

  7. Quantifying the robustness of optimal reservoir operation for the Xinanjiang-Fuchunjiang Reservoir Cascade

    NARCIS (Netherlands)

    Vonk, E.; Xu, YuePing; Booij, Martijn J.; Augustijn, Dionysius C.M.

    2016-01-01

    In this research we investigate the robustness of the common implicit stochastic optimization (ISO) method for dam reoperation. As a case study, we focus on the Xinanjiang-Fuchunjiang reservoir cascade in eastern China, for which adapted operating rules were proposed as a means to reduce the impact

  8. Combining On-Line Characterization Tools with Modern Software Environments for Optimal Operation of Polymerization Processes

    Directory of Open Access Journals (Sweden)

    Navid Ghadipasha

    2016-02-01

    Full Text Available This paper discusses the initial steps towards the formulation and implementation of a generic and flexible model centric framework for integrated simulation, estimation, optimization and feedback control of polymerization processes. For the first time it combines the powerful capabilities of the automatic continuous on-line monitoring of polymerization system (ACOMP, with a modern simulation, estimation and optimization software environment towards an integrated scheme for the optimal operation of polymeric processes. An initial validation of the framework was performed for modelling and optimization using literature data, illustrating the flexibility of the method to apply under different systems and conditions. Subsequently, off-line capabilities of the system were fully tested experimentally for model validations, parameter estimation and process optimization using ACOMP data. Experimental results are provided for free radical solution polymerization of methyl methacrylate.

  9. Smart house-based optimal operation of thermal unit commitment for a smart grid considering transmission constraints

    Science.gov (United States)

    Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu

    2018-05-01

    This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.

  10. Energy operation optimization of Rio Paranapanema power plants; Otimizacao da operacao energetica das usinas do Rio Paranapanema

    Energy Technology Data Exchange (ETDEWEB)

    Soares Filho, Secundino; Cicogna, Marcelo Augusto [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Eletrica e Computacao; Carneiro, Adriano Alber de Franca Mendes; Silva Filho, Donato da [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia; Lopes, Joao Eduardo Goncalves [Sao Paulo Univ., SP (Brazil). Escola Politecnica; Born, Paulo Henrique S.; Chaves, Jose Roberto de A.; Laudanna, Paulo Ricardo [Duke Energy International Geracao Paranapanema, PR (Brazil)

    2000-07-01

    This work presents the developed nonlinear optimization model and verify the results for the hydroelectric power plants cascade on the Paranapanema river. The power plants optimized operation is checked out under the average hydrological conditions and the represented by the known flow history ones.

  11. Does Operation Scheduling Make a Difference: Tapping the Potential of Optimized Design for Skipping-Stop Strategy in Reducing Bus Emissions

    Directory of Open Access Journals (Sweden)

    Xumei Chen

    2017-09-01

    Full Text Available The idea of corporate social responsibility has promoted bus operation agencies to rethink how to provide not only efficient but also environmentally friendly services for residents. A study on the potential of using an optimized design of skip-stop services, one of the essential operational strategies in practice, to reduce emissions is conducted in this paper. The underlying scheduling problem is formulated as a nonlinear programming problem with the primary objective of optimizing the total costs for both passengers and operating agencies, as well as with the secondary objective of minimizing bus emissions. A solution method is developed to solve the problem. A real-world case of Route 16 in Beijing is studied, in which the optimal scheduling strategy that maximizes the cost savings and environmental benefits is determined. The costs and emissions of the proposed scheduling strategy are compared with the optimal scheduling with skip-stop services without considering bus emissions. The results show that the proposed scheduling strategy outperforms the other operating strategy with respect to operational costs and bus emissions. A sensitivity study is then conducted to investigate the impact of the fleet size in operations and passenger demand on the effectiveness of the proposed stop-skipping strategy considering bus emissions.

  12. Scenario-based stochastic optimal operation of wind, photovoltaic, pump-storage hybrid system in frequency- based pricing

    International Nuclear Information System (INIS)

    Zare Oskouei, Morteza; Sadeghi Yazdankhah, Ahmad

    2015-01-01

    Highlights: • Two-stage objective function is proposed for optimization problem. • Hourly-based optimal contractual agreement is calculated. • Scenario-based stochastic optimization problem is solved. • Improvement of system frequency by utilizing PSH unit. - Abstract: This paper proposes the operating strategy of a micro grid connected wind farm, photovoltaic and pump-storage hybrid system. The strategy consists of two stages. In the first stage, the optimal hourly contractual agreement is determined. The second stage corresponds to maximizing its profit by adapting energy management strategy of wind and photovoltaic in coordination with optimum operating schedule of storage device under frequency based pricing for a day ahead electricity market. The pump-storage hydro plant is utilized to minimize unscheduled interchange flow and maximize the system benefit by participating in frequency control based on energy price. Because of uncertainties in power generation of renewable sources and market prices, generation scheduling is modeled by a stochastic optimization problem. Uncertainties of parameters are modeled by scenario generation and scenario reduction method. A powerful optimization algorithm is proposed using by General Algebraic Modeling System (GAMS)/CPLEX. In order to verify the efficiency of the method, the algorithm is applied to various scenarios with different wind and photovoltaic power productions in a day ahead electricity market. The numerical results demonstrate the effectiveness of the proposed approach.

  13. Optimal operational strategies for a day-ahead electricity market in the presence of market power using multi-objective evolutionary algorithms

    Science.gov (United States)

    Rodrigo, Deepal

    2007-12-01

    This dissertation introduces a novel approach for optimally operating a day-ahead electricity market not only by economically dispatching the generation resources but also by minimizing the influences of market manipulation attempts by the individual generator-owning companies while ensuring that the power system constraints are not violated. Since economic operation of the market conflicts with the individual profit maximization tactics such as market manipulation by generator-owning companies, a methodology that is capable of simultaneously optimizing these two competing objectives has to be selected. Although numerous previous studies have been undertaken on the economic operation of day-ahead markets and other independent studies have been conducted on the mitigation of market power, the operation of a day-ahead electricity market considering these two conflicting objectives simultaneously has not been undertaken previously. These facts provided the incentive and the novelty for this study. A literature survey revealed that many of the traditional solution algorithms convert multi-objective functions into either a single-objective function using weighting schemas or undertake optimization of one function at a time. Hence, these approaches do not truly optimize the multi-objectives concurrently. Due to these inherent deficiencies of the traditional algorithms, the use of alternative non-traditional solution algorithms for such problems has become popular and widely used. Of these, multi-objective evolutionary algorithms (MOEA) have received wide acceptance due to their solution quality and robustness. In the present research, three distinct algorithms were considered: a non-dominated sorting genetic algorithm II (NSGA II), a multi-objective tabu search algorithm (MOTS) and a hybrid of multi-objective tabu search and genetic algorithm (MOTS/GA). The accuracy and quality of the results from these algorithms for applications similar to the problem investigated here

  14. Wind offering in energy and reserve markets

    Science.gov (United States)

    Soares, T.; Pinson, P.; Morais, H.

    2016-09-01

    The increasing penetration of wind generation in power systems to fulfil the ambitious European targets will make wind power producers to play an even more important role in the future power system. Wind power producers are being incentivized to participate in reserve markets to increase their revenue, since currently wind turbine/farm technologies allow them to provide ancillary services. Thus, wind power producers are to develop offering strategies for participation in both energy and reserve markets, accounting for market rules, while ensuring optimal revenue. We consider a proportional offering strategy to optimally decide upon participation in both markets by maximizing expected revenue from day-ahead decisions while accounting for estimated regulation costs for failing to provide the services. An evaluation of considering the same proportional splitting of energy and reserve in both day- ahead and balancing market is performed. A set of numerical examples illustrate the behavior of such strategy. An important conclusion is that the optimal split of the available wind power between energy and reserve strongly depends upon prices and penalties on both market trading floors.

  15. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    Science.gov (United States)

    Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.

    2015-11-01

    Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.

  16. Optimization of design and operating parameters in a pilot scale Jameson cell for slime coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hacifazlioglu, Hasan; Toroglu, Ihsan [Department of Mining Engineering, University of Karaelmas, 67100 (Turkey)

    2007-07-15

    The Jameson flotation cell has been commonly used to treat a variety of ores (lead, zinc, copper etc.), coal and industrial minerals at commercial scale since 1989. It is especially known to be highly efficient at fine and ultrafine coal recovery. However, although the Jameson cell has quite a simple structure, it may be largely inefficient if the design and operating parameters chosen are not appropriate. In this study, the design and operating parameters of a pilot scale Jameson cell were optimized to obtain a desired metallurgical performance in the slime coal flotation. The optimized design parameters are the nozzle type, the height of the nozzle above the pulp level, the downcomer diameter and the immersion depth of the downcomer. Among the operating parameters optimized are the collector dosage, the frother dosage, the percentage of solids and the froth height. In the optimum conditions, a clean coal with an ash content of 14.90% was obtained from the sample slime having 45.30% ash with a combustible recovery of 74.20%. In addition, a new type nozzle was developed for the Jameson cell, which led to an increase of about 9% in the combustible recovery value.

  17. Joint energy and spinning reserve dispatching and pricing

    International Nuclear Information System (INIS)

    Rashidinejad, M.; Song, Y.-H.; Javidi Dasht-Bayaz, M.H.

    2000-01-01

    Unpredictable load demand variations, and also sudden generation interruption, may cause imbalance in power systems. To prevent any blackout and to reduce such total power imbalance, spinning reserve can provide electric power system ability to respond. Adequate amount of spinning reserve should be based on economy and risk as an optimal decision making. This paper uses Quadratic Programming (QP) method to solve Joint Energy and Spinning Reserve Dispatch (JESRD) problem and derives the optimal price of spinning reserve. In JESRD, Unserved Energy Cost (UEC) is considered as an Opportunity Cost of Spinning Reserve (OCSR). To distribute the System Reserve Requirements (SRR) among generation units, two different models, Fixed Reserve Percentage (FRP) or fixed allocation model and Non-Fixed Reserve Percentage (NFRP) or flexible allocation model has been investigated. Numerical results on a 5-bus test system and the 30-bus IEEE standard system, considering FRP and NFRP models are included. (author)

  18. Waste incineration models for operation optimization. Phase 1: Advanced measurement equipment for improved operation of waste fired plants; Affaldsforbraendingsmodeller til driftsoptimering. Fase 1: Avanceret maeleudstyr til forbedret drift af affaldsfyrede anlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    This report describes results from the PSO projects ELTRA-5294 and ELTRA-5348: Waste incineration models for operation optimization. Phase 1, and Advanced measurement equipment for improved operation of waste fired plants. Phase 1. The two projects form the first step in a project course build on a long-term vision of a fully automatic system using a wide range of advanced measurement data, advanced dynamic models for prediction of operation and advanced regulation methods for optimization of the operation of waste incinerator plants. (BA)

  19. Multi-center evaluation of post-operative morbidity and mortality after optimal cytoreductive surgery for advanced ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Arash Rafii

    Full Text Available PURPOSE: While optimal cytoreduction is the standard of care for advanced ovarian cancer, the related post-operative morbidity has not been clearly documented outside pioneering centers. Indeed most of the studies are monocentric with inclusions over several years inducing heterogeneity in techniques and goals of surgery. We assessed the morbidity of optimal cytoreduction surgery for advanced ovarian cancer within a short inclusion period in 6 referral centers dedicated to achieve complete cytoreduction. PATIENTS AND METHODS: The 30 last optimal debulking surgeries of 6 cancer centers were included. Inclusion criteria included: stage IIIc- IV ovarian cancer and optimal surgery performed at the site of inclusion. All post-operative complications within 30 days of surgery were recorded and graded using the Memorial secondary events grading system. Student-t, Chi2 and non-parametric statistical tests were performed. RESULTS: 180 patients were included. There was no demographic differences between the centers. 63 patients underwent surgery including intestinal resections (58 recto-sigmoid resection, 24 diaphragmatic resections, 17 splenectomies. 61 patients presented complications; One patient died post-operatively. Major (grade 3-5 complications requiring subsequent surgeries occurred in 21 patients (11.5%. 76% of patients with a major complication had undergone an ultraradical surgery (P = 0.004. CONCLUSION: While ultraradical surgery may result in complete resection of peritoneal disease in advanced ovarian cancer, the associated complication rate is not negligible. Patients should be carefully evaluated and the timing of their surgery optimized in order to avoid major complications.

  20. A novel membrane-based process to isolate peroxidase from horseradish roots: optimization of operating parameters.

    Science.gov (United States)

    Liu, Jianguo; Yang, Bo; Chen, Changzhen

    2013-02-01

    The optimization of operating parameters for the isolation of peroxidase from horseradish (Armoracia rusticana) roots with ultrafiltration (UF) technology was systemically studied. The effects of UF operating conditions on the transmission of proteins were quantified using the parameter scanning UF. These conditions included solution pH, ionic strength, stirring speed and permeate flux. Under optimized conditions, the purity of horseradish peroxidase (HRP) obtained was greater than 84 % after a two-stage UF process and the recovery of HRP from the feedstock was close to 90 %. The resulting peroxidase product was then analysed by isoelectric focusing, SDS-PAGE and circular dichroism, to confirm its isoelectric point, molecular weight and molecular secondary structure. The effects of calcium ion on HRP specific activities were also experimentally determined.

  1. Optimal Constant DC Link Voltage Operation of aWave Energy Converter

    Directory of Open Access Journals (Sweden)

    Mats Leijon

    2013-04-01

    Full Text Available This article proposes a simple and reliable damping strategy for wave powerfarm operation of small-scale point-absorber converters. The strategy is based on passiverectification onto a constant DC-link, making it very suitable for grid integration of the farm.A complete model of the system has been developed in Matlab Simulink, and uses real sitedata as input. The optimal constant DC-voltage is evaluated as a function of the significantwave height and energy period of the waves. The total energy output of the WEC is derivedfor one year of experimental site data. The energy output is compared for two cases, onewhere the optimal DC-voltage is determined and held constant at half-hour basis throughoutthe year, and one where a selected value of the DC-voltage is kept constant throughout theyear regardless of sea state.

  2. Reserve design to maximize species persistence

    Science.gov (United States)

    Robert G. Haight; Laurel E. Travis

    2008-01-01

    We develop a reserve design strategy to maximize the probability of species persistence predicted by a stochastic, individual-based, metapopulation model. Because the population model does not fit exact optimization procedures, our strategy involves deriving promising solutions from theory, obtaining promising solutions from a simulation optimization heuristic, and...

  3. Design principles and operating principles: the yin and yang of optimal functioning.

    Science.gov (United States)

    Voit, Eberhard O

    2003-03-01

    Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.

  4. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  5. Optimization of basic parameters of cyclic operation of underground gas storages

    Directory of Open Access Journals (Sweden)

    Віктор Олександрович Заєць

    2015-04-01

    Full Text Available The problem of optimization of process parameters of cyclic operation of underground gas storages in gas mode is determined in the article. The target function is defined, expressing necessary capacity of compressor station for gas injection in the storage. Its minimization will find the necessary technological parameters, such as flow and reservoir pressure change over time. Limitations and target function are reduced to a linear form. Solution of problems is made by the simplex method

  6. Natural Image Enhancement Using a Biogeography Based Optimization Enhanced with Blended Migration Operator

    Directory of Open Access Journals (Sweden)

    J. Jasper

    2014-01-01

    Full Text Available This paper addresses a novel and efficient algorithm for solving optimization problem in image processing applications. Image enhancement (IE is one of the complex optimization problems in image processing. The main goal of this paper is to enhance color images such that the eminence of the image is more suitable than the original image from the perceptual viewpoint of human. Traditional methods require prior knowledge of the image to be enhanced, whereas the aim of the proposed biogeography based optimization (BBO enhanced with blended migration operator (BMO algorithm is to maximize the objective function in order to enhance the image contrast by maximizing the parameters like edge intensity, edge information, and entropy. Experimental results are compared with the current state-of-the-art approaches and indicate the superiority of the proposed technique in terms of subjective and objective evaluation.

  7. Derivation of Optimal Operating Rules for Large-scale Reservoir Systems Considering Multiple Trade-off

    Science.gov (United States)

    Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.

    2017-12-01

    Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.

  8. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    Science.gov (United States)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell

  9. Optimal Operation of Hydropower Reservoirs under Climate Change: The Case of Tekeze Reservoir, Eastern Nile

    Directory of Open Access Journals (Sweden)

    Fikru Fentaw Abera

    2018-03-01

    Full Text Available Optimal operation of reservoirs is very essential for water resource planning and management, but it is very challenging and complicated when dealing with climate change impacts. The objective of this paper was to assess existing and future hydropower operation at the Tekeze reservoir in the face of climate change. In this study, a calibrated and validated Soil and Water Assessment Tool (SWAT was used to model runoff inflow into the Tekeze hydropower reservoir under present and future climate scenarios. Inflow to the reservoir was simulated using hydro-climatic data from an ensemble of downscaled climate data based on the Coordinated Regional climate Downscaling Experiment over African domain (CORDEX-Africa with Coupled Intercomparison Project Phase 5 (CMIP5 simulations under Representative Concentration Pathway (RCP4.5 and RCP8.5 climate scenarios. Observed and projected inflows to Tekeze hydropower reservoir were used as input to the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir Model (HEC-ResPRM, a reservoir operation model, to optimize hydropower reservoir release, storage and pool level. Results indicated that climate change has a clear impact on reservoir inflow and showed increase in annual and monthly inflow into the reservoir except in dry months from May to June under RCP4.5 and RCP8.5 climate scenarios. HEC-ResPRM optimal operation results showed an increase in Tekeze reservoir power storage potential up to 25% and 30% under RCP4.5 and RCP8.5 climate scenarios, respectively. This implies that Tekeze hydropower production will be affected by climate change. This analysis can be used by water resources planners and mangers to develop reservoir operation techniques considering climate change impact to increase power production.

  10. Optimal Operation of Interdependent Power Systems and Electrified Transportation Networks

    Directory of Open Access Journals (Sweden)

    M. Hadi Amini

    2018-01-01

    Full Text Available Electrified transportation and power systems are mutually coupled networks. In this paper, a novel framework is developed for interdependent power and transportation networks. Our approach constitutes solving an iterative least cost vehicle routing process, which utilizes the communication of electrified vehicles (EVs with competing charging stations, to exchange data such as electricity price, energy demand, and time of arrival. The EV routing problem is solved to minimize the total cost of travel using the Dijkstra algorithm with the input from EVs battery management system, electricity price from charging stations, powertrain component efficiencies and transportation network traffic conditions. Through the bidirectional communication of EVs with competing charging stations, EVs’ charging demand estimation is done much more accurately. Then the optimal power flow problem is solved for the power system, to find the locational marginal price at load buses where charging stations are connected. Finally, the electricity prices were communicated from the charging stations to the EVs, and the loop is closed. Locational electricity price acts as the shared parameter between the two optimization problems, i.e., optimal power flow and optimal routing problem. Electricity price depends on the power demand, which is affected by the charging of EVs. On the other hand, location of EV charging stations and their different pricing strategies might affect the routing decisions of the EVs. Our novel approach that combines the electrified transportation with power system operation, holds tremendous potential for solving electrified transportation issues and reducing energy costs. The effectiveness of the proposed approach is demonstrated using Shanghai transportation network and IEEE 9-bus test system. The results verify the cost-savings for both power system and transportation networks.

  11. Excited meson radiative transitions from lattice QCD using variationally optimized operators

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, Christian J. [Old Dominion Univ., Norfolk, VA (United States); Dudek, Jozef J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-06-02

    We explore the use of 'optimized' operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and non-zero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form-factors and transitions of pseudoscalar and vector meson excitations. In conclusion, the dependence on photon virtuality for a number of form-factors and transitions is extracted and some discussion of excited-state phenomenology is presented.

  12. MILITARY PERSONNEL: Reserve Components Need Guidance to Accurately and Consistently Account for Volunteers on Active Duty for Operational Support

    National Research Council Canada - National Science Library

    Stewart, Derek B

    2006-01-01

    The reserve components have not consistently or accurately identified the number of reservists serving in an operational support capacity since this monthly reporting requirement was adopted in fiscal year 2005...

  13. Optimization of the Waterbus Operation Plan Considering Carbon Emissions: The Case of Zhoushan City

    Directory of Open Access Journals (Sweden)

    Juying Wang

    2015-08-01

    Full Text Available Recently, as more people are concerned with the issues around environment protection, research about how to reduce carbon emissions has drawn increasing attention. Encouraging public transportation is an effective measure to reduce carbon emissions. However, overland public transportation does less to lower carbon because of the gradually increasing pressure of the urban road traffic. Therefore, the waterbus along the coast becomes a new direction of the urban public transport development. In order to optimize the operation plan of the waterbus, a bi-level model considering carbon emissions is proposed in this paper. In the upper-level model, a multiple objective model is established, which considers both the interests of the passengers and the operator while considering the carbon emissions. The lower-level model is a traffic model split by using a Nested Logit model. A NSGA-II (Non-dominated Sorting Genetic Algorithm-II algorithm is proposed to solve the model. Finally, the city of Zhoushan is chosen as an example to prove the feasibility of the model and the algorithm. The result shows that the proposed model for waterbus operation optimization can efficiently reduce transportation carbon emissions and satisfy passenger demand at the same time.

  14. Optimal generation and reserve dispatch in a multi-area competitive market using a hybrid direct search method

    International Nuclear Information System (INIS)

    Chun Lung Chen

    2005-01-01

    With restructuring of the power industry, competitive bidding for energy and ancillary services are increasingly recognized as an important part of electricity markets. It is desirable to optimize not only the generator's bid prices for energy and for providing minimized ancillary services but also the transmission congestion costs. In this paper, a hybrid approach of combining sequential dispatch with a direct search method is developed to deal with the multi-product and multi-area electricity market dispatch problem. The hybrid direct search method (HDSM) incorporates sequential dispatch into the direct search method to facilitate economic sharing of generation and reserve across areas and to minimize the total market cost in a multi-area competitive electricity market. The effects of tie line congestion and area spinning reserve requirement are also consistently reflected in the marginal price in each area. Numerical experiments are included to understand the various constraints in the market cost analysis and to provide valuable information for market participants in a pool oriented electricity market. (author)

  15. Optimal generation and reserve dispatch in a multi-area competitive market using a hybrid direct search method

    International Nuclear Information System (INIS)

    Chen, C.-L.

    2005-01-01

    With restructuring of the power industry, competitive bidding for energy and ancillary services are increasingly recognized as an important part of electricity markets. It is desirable to optimize not only the generator's bid prices for energy and for providing minimized ancillary services but also the transmission congestion costs. In this paper, a hybrid approach of combining sequential dispatch with a direct search method is developed to deal with the multi-product and multi-area electricity market dispatch problem. The hybrid direct search method (HDSM) incorporates sequential dispatch into the direct search method to facilitate economic sharing of generation and reserve across areas and to minimize the total market cost in a multi-area competitive electricity market. The effects of tie line congestion and area spinning reserve requirement are also consistently reflected in the marginal price in each area. Numerical experiments are included to understand the various constraints in the market cost analysis and to provide valuable information for market participants in a pool oriented electricity market

  16. 12 CFR 615.5134 - Liquidity reserve requirement.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Liquidity reserve requirement. 615.5134 Section..., LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Investment Management § 615.5134 Liquidity reserve requirement. (a) Each Farm Credit bank must maintain a liquidity reserve, discounted in accordance with...

  17. Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage.

    Science.gov (United States)

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2017-09-15

    The present study discusses the potentiality of using anaerobic Packed Bed Bioreactor (PBR) for the treatment of acid mine drainage (AMD). The multiple process parameters such as pH, hydraulic retention time (HRT), concentration of marine waste extract (MWE), total organic carbon (TOC) and sulfate were optimized together using Taguchi design. The order of influence of the parameters towards biological sulfate reduction was found to be pH > MWE > sulfate > HRT > TOC. At optimized conditions (pH - 7, 20% (v/v) MWE, 1500 mg/L sulfate, 48 h HRT and 2300 mg/L TOC), 98.3% and 95% sulfate at a rate of 769.7 mg/L/d. and 732.1 mg/L/d. was removed from the AMD collected from coal and metal mine, respectively. Efficiency of metal removal (Fe, Cu, Zn, Mg and Ni) was in the range of 94-98%. The levels of contaminants in the treated effluent were below the minimum permissible limits of industrial discharge as proposed by Bureau of Indian Standards (IS 2490:1981). The present study establishes the optimized conditions for PBR operation to completely remove sulfate and metal removal from AMD at high rate. The study also creates the future scope to develop an efficient treatment process for sulfate and metal-rich mine wastewater in a large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Dynamic Optimization Strategy for the Operation of Large Scale Seawater Reverses Osmosis System

    Directory of Open Access Journals (Sweden)

    Aipeng Jiang

    2014-01-01

    Full Text Available In this work, an efficient strategy was proposed for efficient solution of the dynamic model of SWRO system. Since the dynamic model is formulated by a set of differential-algebraic equations, simultaneous strategies based on collocations on finite element were used to transform the DAOP into large scale nonlinear programming problem named Opt2. Then, simulation of RO process and storage tanks was carried element by element and step by step with fixed control variables. All the obtained values of these variables then were used as the initial value for the optimal solution of SWRO system. Finally, in order to accelerate the computing efficiency and at the same time to keep enough accuracy for the solution of Opt2, a simple but efficient finite element refinement rule was used to reduce the scale of Opt2. The proposed strategy was applied to a large scale SWRO system with 8 RO plants and 4 storage tanks as case study. Computing result shows that the proposed strategy is quite effective for optimal operation of the large scale SWRO system; the optimal problem can be successfully solved within decades of iterations and several minutes when load and other operating parameters fluctuate.

  19. Extending market activities for a distribution company in hourly-ahead energy and reserve markets - Part I: Problem formulation

    International Nuclear Information System (INIS)

    Mashhour, M.; Golkar, M.A.; Moghaddas-Tafreshi, S.M.

    2011-01-01

    This work presents a novel hourly-ahead profit model for an active distribution company (DISCO), a DISCO with high capacity level of connected DGs that can make selling proposals for the markets, in a pool-based system. The presented model engages DSICO in both energy producing and reserve providing activities. DISCO's earnings from reserve market include the remuneration both for real-time generation and ready-for-service capacity. To achieve the optimal decisions for an active DISCO in the energy and reserve markets, a two-stage optimization model and associated mathematical formulations have been developed. The first subproblem extracts a single operating profile (a lumped financial model) of the whole distribution system, including DGs and ILs, at the connecting point to the upstream network. The second one determines the optimal values of decision variables (power and reserve commodities) to maximize the DISCO's profit, in case such variables are accepted in the markets. In other words, it aims to optimally allocate the DISCO's generating capability for proposing into the energy and reserve markets, from the DISCO's perspective. It also proposes a profit-based network reconfiguration methodology for a multi-substation multi-feeder DISCO to increase DISCO's ability to gain more benefits from the market activities. It conducts DISCO's generating capabilities towards the proper substations to reap more probable benefits. It also introduces fast, simple, and straightforward algorithms for recognition and removal of configurations having loop and/or islanding parts in. Simulation results are given at the second part of the present work.

  20. Economic Optimal Operation of Community Energy Storage Systems in Competitive Energy Markets

    OpenAIRE

    Arghandeh, Reza; Woyak, Jeremy; Onen, Ahmet; Jung, Jaesung; Broadwater, Robert P.

    2014-01-01

    Distributed, controllable energy storage devices offer several benefits to electric power system operation. Three such benefits include reducing peak load, providing standby power, and enhancing power quality. These benefits, however, are only realized during peak load or during an outage, events that are infrequent. This paper presents a means of realizing additional benefits by taking advantage of the fluctuating costs of energy in competitive energy markets. An algorithm for optimal charge...

  1. Reserve valuation in electric power systems

    Science.gov (United States)

    Ruiz, Pablo Ariel

    Operational reliability is provided in part by scheduling capacity in excess of the load forecast. This reserve capacity balances the uncertain power demand with the supply in real time and provides for equipment outages. Traditionally, reserve scheduling has been ensured by enforcing reserve requirements in the operations planning. An alternate approach is to employ a stochastic formulation, which allows the explicit modeling of the sources of uncertainty. This thesis compares stochastic and reserve methods and evaluates the benefits of a combined approach for the efficient management of uncertainty in the unit commitment problem. Numerical studies show that the unit commitment solutions obtained for the combined approach are robust and superior with respect to the traditional approach. These robust solutions are especially valuable in areas with a high proportion of wind power, as their built-in flexibility allows the dispatch of practically all the available wind power while minimizing the costs of operation. The scheduled reserve has an economic value since it reduces the outage costs. In several electricity markets, reserve demand functions have been implemented to take into account the value of reserve in the market clearing process. These often take the form of a step-down function at the reserve requirement level, and as such they may not appropriately represent the reserve value. The value of reserve is impacted by the reliability, dynamic and stochastic characteristics of system components, the system operation policies, and the economic aspects such as the risk preferences of the demand. In this thesis, these aspects are taken into account to approximate the reserve value and construct reserve demand functions. Illustrative examples show that the demand functions constructed have similarities with those implemented in some markets.

  2. Optimization of operating conditions of distillation columns: an energy saving option in refinery industry

    Directory of Open Access Journals (Sweden)

    Alireza Fazlali

    2010-01-01

    Full Text Available While energy prices continue to climb, it conservation remains the prime concern for process industries. The daily growth of energy consumption throughout the world and the real necessity of providing it, shows that optimization of energy generation and consumption units is an economical and sometimes vital case. Hence, the optimization of a petroleum refinery is aimed towards great production and an increase in quality. In this research, the atmospheric distillation unit of the Iran-Arak-Shazand petroleum refinery was subject to optimization efforts. It was performed by the means of using a simulator with the aim to earn more overhead products. In the next step the optimization results from the simulators were carried out in the real world, at the above mentioned unit. Results demonstrate that the changes in the real operating conditions increase the overhead products with desirable quality. Finally, a net economical balance between the increments of the overhead products and the energy consumption shows an energy saving in this refinery.

  3. Optimization of PHEV Power Split Gear Ratio to Minimize Fuel Consumption and Operation Cost

    Science.gov (United States)

    Li, Yanhe

    A Plug-in Hybrid Electric Vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery pack. The battery pack can be charged by plugging the vehicle to the electric grid and from using excess engine power. The research activity performed in this thesis focused on the development of an innovative optimization approach of PHEV Power Split Device (PSD) gear ratio with the aim to minimize the vehicle operation costs. Three research activity lines have been followed: • Activity 1: The PHEV control strategy optimization by using the Dynamic Programming (DP) and the development of PHEV rule-based control strategy based on the DP results. • Activity 2: The PHEV rule-based control strategy parameter optimization by using the Non-dominated Sorting Genetic Algorithm (NSGA-II). • Activity 3: The comprehensive analysis of the single mode PHEV architecture to offer the innovative approach to optimize the PHEV PSD gear ratio.

  4. Live Operation Data Collection Optimization and Communication for the Domestic Nuclear Detection Office's Rail Test Center

    International Nuclear Information System (INIS)

    Gelston, Gariann M.

    2010-01-01

    For the Domestic Nuclear Detection Office's Rail Test Center (i.e., DNDO's RTC), port operation knowledge with flexible collection tools and technique are essential in both technology testing design and implementation intended for live operational settings. Increased contextual data, flexibility in procedures, and rapid availability of information are keys to addressing the challenges of optimization, validation, and analysis within live operational setting data collection. These concepts need to be integrated into technology testing designs, data collection, validation, and analysis processes. A modified data collection technique with a two phased live operation test method is proposed.

  5. Ant colony search algorithm for optimal reactive power optimization

    Directory of Open Access Journals (Sweden)

    Lenin K.

    2006-01-01

    Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.

  6. Completion of potential conflicts of interest through optimization of Rukoh reservoir operation in Pidie District, Aceh Province, Indonesia

    Science.gov (United States)

    Azmeri, Hadihardaja, Iwan K.; Shaskia, Nina; Admaja, Kamal Surya

    2017-11-01

    Rukoh Reservoir's construction was planned to be built in Krueng Rukoh Watershed with supplet ion from Krueng Tiro River. Rukoh Reservoir operating system as a multipurpose reservoir raised potential conflict of interest between raw water and irrigation water. In this study, the operating system of Rukoh Reservoirs was designed to supply raw water in Titeu Sub-District and replenish water shortage in Baro Irrigation Area which is not able to be served by the Keumala Weir. Reservoir operating system should be planned optimally so that utilization of water in accordance with service area demands. Reservoir operation method was analyzed by using optimization technique with nonlinear programming. Optimization of reservoir operation is intended to minimize potential conflicts of interest in the operation. Suppletion discharge from Krueng Tiro River amounted to 46.62%, which was calculated based on ratio of Baro and Tiro irrigation area. However, during dry seasons, water demands could not be fully met, so there was a shortage of water. By considering the rules to minimize potential conflicts of interest between raw water and irrigation water, it would require suppletion from Krueng Tiro amounted to 52.30%. The increment of suppletion volume could minimize conflicts of interest. It produced l00% reservoir reliability for raw water and irrigation demands. Rukoh reservoir could serve raw water demands of Titeu Sub-District and irrigation demands of Baro irrigation area which is covering an area of 6,047 hectars. Reservoir operation guidelines can specify reservoir water release to balance the demands and the target storage.

  7. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    Science.gov (United States)

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  8. Improving operability of spouted beds using a simple optimizing control structure

    Directory of Open Access Journals (Sweden)

    N. A. CORRÊA

    1999-12-01

    Full Text Available In operations using spouted beds, it is of major importance, from an energy consumption point of view, to operate the process as close as possible to the minimum spout flow. At this point, the speed of the gas (for example, warm air in drying operations is greater than the amount of heat and mass transfer involved, although it only transfers the minimum amount of momentum to maintain the spout. Therefore, by staying close to this minimum flow condition, it is possible to perform a stable operation and to obtain energy savings not only in the heating of the gas but also in its displacement by blowers. In order to improve the operation of such processes, a study is carried out by implementing a simple optimizing control structure on a spouted bed experimental set-up. The air flow is regulated by a frequency inverter, at the speed of blower rotation. A PI controller was used and the set-point for the air flow rate is calculated on-line by a simple and well-known minimization method called Golden Section Search. This set-point is constantly updated with values very close to the actual minimum spout flow rate. To accomplish the calculations and data acquisitions, a microcomputer with an interface and an analog signal conditioner is used .

  9. Generalized filtering of laser fields in optimal control theory: application to symmetry filtering of quantum gate operations

    International Nuclear Information System (INIS)

    Schroeder, Markus; Brown, Alex

    2009-01-01

    We present a modified version of a previously published algorithm (Gollub et al 2008 Phys. Rev. Lett.101 073002) for obtaining an optimized laser field with more general restrictions on the search space of the optimal field. The modification leads to enforcement of the constraints on the optimal field while maintaining good convergence behaviour in most cases. We demonstrate the general applicability of the algorithm by imposing constraints on the temporal symmetry of the optimal fields. The temporal symmetry is used to reduce the number of transitions that have to be optimized for quantum gate operations that involve inversion (NOT gate) or partial inversion (Hadamard gate) of the qubits in a three-dimensional model of ammonia.

  10. Optimal Wind Power Uncertainty Intervals for Electricity Market Operation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Zhou, Zhi; Botterud, Audun; Zhang, Kaifeng

    2018-01-01

    It is important to select an appropriate uncertainty level of the wind power forecast for power system scheduling and electricity market operation. Traditional methods hedge against a predefined level of wind power uncertainty, such as a specific confidence interval or uncertainty set, which leaves the questions of how to best select the appropriate uncertainty levels. To bridge this gap, this paper proposes a model to optimize the forecast uncertainty intervals of wind power for power system scheduling problems, with the aim of achieving the best trade-off between economics and reliability. Then we reformulate and linearize the models into a mixed integer linear programming (MILP) without strong assumptions on the shape of the probability distribution. In order to invest the impacts on cost, reliability, and prices in a electricity market, we apply the proposed model on a twosettlement electricity market based on a six-bus test system and on a power system representing the U.S. state of Illinois. The results show that the proposed method can not only help to balance the economics and reliability of the power system scheduling, but also help to stabilize the energy prices in electricity market operation.

  11. Saturne II synchroton injector parameters operation and control: computerization and optimization

    International Nuclear Information System (INIS)

    Lagniel, J.M.

    1983-01-01

    The injector control system has been studied, aiming at the beam quality improvement, the increasing of the versatility, and a better machine availability. It has been choosen to realize the three following functions: - acquisition of the principal parameters of the process, so as to control them quickly and to be warned if one of them is wrong (monitoring); - the control of those parameters, one by one or by families (starting, operating point); - the research of an optimal control (on a model or on the process itself) [fr

  12. Modeling and optimization of laser cutting operations

    Directory of Open Access Journals (Sweden)

    Gadallah Mohamed Hassan

    2015-01-01

    Full Text Available Laser beam cutting is one important nontraditional machining process. This paper optimizes the parameters of laser beam cutting parameters of stainless steel (316L considering the effect of input parameters such as power, oxygen pressure, frequency and cutting speed. Statistical design of experiments is carried in three different levels and process responses such as average kerf taper (Ta, surface roughness (Ra and heat affected zones are measured accordingly. A response surface model is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27OA are employed to search for an optimal combination to achieve desired process yield. Response Surface Models (RSMs are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective optimization problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA and optimized using Matlab developed environment. Optimum solutions are compared with Taguchi Methodology results. As such, practicing engineers have means to model, analyze and optimize nontraditional machining processes. Validation experiments are carried to verify the developed models with success.

  13. Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis.

    Science.gov (United States)

    Ibarra-Taquez, Harold N; GilPavas, Edison; Blatchley, Ernest R; Gómez-García, Miguel-Ángel; Dobrosz-Gómez, Izabela

    2017-09-15

    Soluble coffee production generates wastewater containing complex mixtures of organic macromolecules. In this work, a sequential Electrocoagulation-Electrooxidation (EC-EO) process, using aluminum and graphite electrodes, was proposed as an alternative way for the treatment of soluble coffee effluent. Process operational parameters were optimized, achieving total decolorization, as well as 74% and 63.5% of COD and TOC removal, respectively. The integrated EC-EO process yielded a highly oxidized (AOS = 1.629) and biocompatible (BOD 5 /COD ≈ 0.6) effluent. The Molecular Weight Distribution (MWD) analysis showed that during the EC-EO process, EC effectively decomposed contaminants with molecular weight in the range of 10-30 kDa. In contrast, EO was quite efficient in mineralization of contaminants with molecular weight higher than 30 kDa. A kinetic analysis allowed determination of the time required to meet Colombian permissible discharge limits. Finally, a comprehensive operational cost analysis was performed. The integrated EC-EO process was demonstrated as an efficient alternative for the treatment of industrial effluents resulting from soluble coffee production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Unit commitment with probabilistic reserve: An IPSO approach

    International Nuclear Information System (INIS)

    Lee, Tsung-Ying; Chen, Chun-Lung

    2007-01-01

    This paper presents a new algorithm for solution of the nonlinear optimal scheduling problem. This algorithm is named the iteration particle swarm optimization (IPSO). A new index, called iteration best, is incorporated into particle swarm optimization (PSO) to improve the solution quality and computation efficiency. IPSO is applied to solve the unit commitment with probabilistic reserve problem of a power system. The outage cost as well as fuel cost of thermal units was considered in the unit commitment program to evaluate the level of spinning reserve. The optimal scheduling of on line generation units was reached while minimizing the sum of fuel cost and outage cost. A 48 unit power system was used as a numerical example to test the new algorithm. The optimal scheduling of on line generation units could be reached in the testing results while satisfying the requirement of the objective function

  15. A Century in Reserve and Beyond

    National Research Council Canada - National Science Library

    Monagle, James P

    2008-01-01

    ... Reserve, this Strategy Research Project (SRP) describes the role of the Army Reserve from its beginning as a reserve corps of medical doctors to that of a strategic reserve force, and then to its current operational role...

  16. Optimization of Pulsed Operation of the Superconducting Radio-Frequency (SRF) Cavities at the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Campisi, Isidoro E.

    2007-01-01

    In order to address the optimization in a pulsed operation, a systematic computational analysis has been made in comparison with operational experiences in superconducting radio-frequency (SRF) cavities at the Spallation Neutron Source (SNS). From the analysis it appears that the SNS SRF cavities can be operated at temperatures higher than 2.1 K, a fact resulting from both the pulsed nature of the superconducting cavities, the specific configuration of the existing cryogenic plant and the operating frequency

  17. Optimization principle of operating parameters of heat exchanger by using CFD simulation

    Directory of Open Access Journals (Sweden)

    Mičieta Jozef

    2016-01-01

    Full Text Available Design of effective heat transfer devices and minimizing costs are desired sections in industry and they are important for both engineers and users due to the wide-scale use of heat exchangers. Traditional approach to design is based on iterative process in which is gradually changed design parameters, until a satisfactory solution is achieved. The design process of the heat exchanger is very dependent on the experience of the engineer, thereby the use of computational software is a major advantage in view of time. Determination of operating parameters of the heat exchanger and the subsequent estimation of operating costs have a major impact on the expected profitability of the device. There are on the one hand the material and production costs, which are immediately reflected in the cost of device. But on the other hand, there are somewhat hidden costs in view of economic operation of the heat exchanger. The economic balance of operation significantly affects the technical solution and accompanies the design of the heat exchanger since its inception. Therefore, there is important not underestimate the choice of operating parameters. The article describes an optimization procedure for choice of cost-effective operational parameters for a simple double pipe heat exchanger by using CFD software and the subsequent proposal to modify its design for more economical operation.

  18. Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates

    International Nuclear Information System (INIS)

    Howard, B.; Modi, V.

    2017-01-01

    Highlights: • CHP attributable reductions, not viable by electric generation alone, are defined. • Simplified operating strategy heuristics are optimal under specific circumstances. • Phosphoric acid fuel cells yield the largest reductions except in the extremes. • Changes in baseline emissions affect the optimal system capacity and operating hours. - Abstract: This work aims to elucidate notions concerning the ideal operation and greenhouse gas (GHG) emissions benefits of combined heat and power (CHP) systems by investigating how various metrics change as a function of the GHG emissions from the underlying electricity source, building use type and climate. Additionally, a new term entitled “CHP Attributable” reductions is introduced to quantify the benefits from the simultaneous use of thermal and electric energy, removing benefits achieved solely from fuel switching and generating electricity more efficiently. The GHG emission benefits from implementing internal combustion engine, microturbines, and phosphoric acid (PA) fuel cell based CHP systems were evaluated through an optimization approach considering energy demands of prototypical hospital, office, and residential buildings in varied climates. To explore the effect of electric GHG emissions rates, the ideal operation of the CHP systems was evaluated under three scenarios: “High” GHG emissions rates, “Low” GHG emissions rates, and “Current” GHG emissions rate for a specific location. The analysis finds that PA fuel cells achieve the highest GHG emission reductions in most cases considered, though there are exceptions. Common heuristics, such as electric load following and thermal load following, are the optimal operating strategy under specific conditions. The optimal CHP capacity and operating hours both vary as a function of building type, climate and GHG emissions rates from grid electricity. GHG emissions reductions can be as high as 49% considering a PA fuel cell for a

  19. Application of Spatial Neural Network Model for Optimal Operation of Urban Drainage System

    Science.gov (United States)

    KIM, B. J.; Lee, J. Y.; KIM, H. I.; Son, A. L.; Han, K. Y.

    2017-12-01

    The significance of real-time operation of drainage pump and warning system for inundation becomes recently increased in order to coping with runoff by high intensity precipitation such as localized heavy rain that frequently and suddenly happen. However existing operation of drainage pump station has been made a decision according to opinion of manager based on stage because of not expecting exact time that peak discharge occur in pump station. Therefore the scale of pump station has been excessively estimated. Although it is necessary to perform quick and accurate inundation in analysis downtown area due to huge property damage from flood and typhoon, previous studies contained risk deducting incorrect result that differs from actual result owing to the diffusion aspect of flow by effect on building and road. The purpose of this study is to develop the data driven model for the real-time operation of drainage pump station and two-dimensional inundation analysis that are improved the problems of the existing hydrology and hydrological model. Neuro-Fuzzy system for real time prediction about stage was developed by estimating the type and number of membership function. Based on forecasting stage, it was decided when pump machine begin to work and how much water scoop up by using penalizing genetic algorithm. It is practicable to forecast stage, optimize pump operation and simulate inundation analysis in real time through the methodologies suggested in this study. This study can greatly contribute to the establishment of disaster information map that prevent and mitigate inundation in urban drainage area. The applicability of the development model for the five drainage pump stations in the Mapo drainage area was verified. It is considered to be able to effectively manage urban drainage facilities in the development of these operating rules. Keywords : Urban flooding; Geo-ANFIS method; Optimal operation; Drainage system; AcknowlegementThis research was supported by a

  20. The Australian money market and the operations of the Reserve Bank of Australia: a comparative analysis

    OpenAIRE

    Michael Dotsey

    1987-01-01

    This article provides a comparative analysis of central bank operating procedures in Australia and the United States. It also examines the effect that the structure of overnight money markets, reserve requirements, and central bank lending procedures have on monetary control in both countries. Evidently the Australian financial structure is such that an interest rate instrument provides superior control of money, a result that may not hold in the United States.

  1. Topology-oblivious optimization of MPI broadcast algorithms on extreme-scale platforms

    KAUST Repository

    Hasanov, Khalid

    2015-11-01

    © 2015 Elsevier B.V. All rights reserved. Significant research has been conducted in collective communication operations, in particular in MPI broadcast, on distributed memory platforms. Most of the research efforts aim to optimize the collective operations for particular architectures by taking into account either their topology or platform parameters. In this work we propose a simple but general approach to optimization of the legacy MPI broadcast algorithms, which are widely used in MPICH and Open MPI. The proposed optimization technique is designed to address the challenge of extreme scale of future HPC platforms. It is based on hierarchical transformation of the traditionally flat logical arrangement of communicating processors. Theoretical analysis and experimental results on IBM BlueGene/P and a cluster of the Grid\\'5000 platform are presented.

  2. A dynamic lattice searching method with rotation operation for optimization of large clusters

    International Nuclear Information System (INIS)

    Wu Xia; Cai Wensheng; Shao Xueguang

    2009-01-01

    Global optimization of large clusters has been a difficult task, though much effort has been paid and many efficient methods have been proposed. During our works, a rotation operation (RO) is designed to realize the structural transformation from decahedra to icosahedra for the optimization of large clusters, by rotating the atoms below the center atom with a definite degree around the fivefold axis. Based on the RO, a development of the previous dynamic lattice searching with constructed core (DLSc), named as DLSc-RO, is presented. With an investigation of the method for the optimization of Lennard-Jones (LJ) clusters, i.e., LJ 500 , LJ 561 , LJ 600 , LJ 665-667 , LJ 670 , LJ 685 , and LJ 923 , Morse clusters, silver clusters by Gupta potential, and aluminum clusters by NP-B potential, it was found that both the global minima with icosahedral and decahedral motifs can be obtained, and the method is proved to be efficient and universal.

  3. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    Science.gov (United States)

    Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  4. Short-Term Optimal Operation of a Wind-PV-Hydro Complementary Installation: Yalong River, Sichuan Province, China

    Directory of Open Access Journals (Sweden)

    Xinshuo Zhang

    2018-04-01

    Full Text Available How to effectively use clean renewable energy to improve the capacity of the power grid to absorb new energy and optimize the power grid structure has become one of China’s current issues. The Yalong River Wind-PV-Hydro complementary clean energy base was chosen as the research object from which to analyze the output complementarity principle and characteristics of wind farms, photovoltaic power plants, and hydropower stations. Then, an optimization scheduling model was established with the objective of minimizing the amount of abandoned wind and photovoltaic power and maximizing the stored energy in cascade hydropower stations. A Progress Optimality Algorithm (POA was used for the short-term optimal operation of Wind-PV-Hydro combinations. The results show that use of cascaded hydropower storage capacity can compensate for large-scale wind power and photovoltaic power, provide a relatively sustained and stable power supply for the grid. Wind-PV-Hydro complementary operation not only promotes wind power and photovoltaic power consumption but also improves the efficiency of using the original transmission channel of hydropower. This is of great significance to many developing countries in formatting a new green approach, realizing low-carbon power dispatch and trade and promoting regional economic development.

  5. 47 CFR 80.146 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... MARITIME SERVICES Operating Requirements and Procedures Shipboard General Purpose Watches § 80.146 [Reserved] ... 47 Telecommunication 5 2010-10-01 2010-10-01 false [Reserved] 80.146 Section 80.146...

  6. China's optimal stockpiling policies in the context of new oil price trend

    International Nuclear Information System (INIS)

    Xie, Nan; Yan, Zhijun; Zhou, Yi; Huang, Wenjun

    2017-01-01

    Optimizing the size of oil stockpiling plays a fundamental role in the process of making national strategic petroleum reserve (SPR) policies. There have been extensive studies on the operating strategies of SPR. However, previous literatures have paid more attention to a booming or stable international oil market, while few studies analyzed the impact of a long-term low oil price on SPR policy. As a supplement, this paper extends a static model to study China's optimal stockpiling policy under different oil price trends, and in response to different current oil prices. A new variable “FC”, which demonstrates the appreciation and depreciation of the reserved oil economic value, has been taken into account to assess the optimal size of SPR. In this paper, a more multi-perspective of view is provided to consider the policies of China's SPR, especially under the different trend of international oil price fluctuations. - Highlights: • We extended a static model to study optimal stockpiling size of China's SPR. • A new variable “FC” was applied to illustrate the shifting financial value of SPR. • We analyzed how current oil price and varied prediction influence optimal size. • Operational measures could be adjusted at the end of each decision-making period. • A more multifaceted of view might be provided for China's SPR policy-making.

  7. Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Garkusha, I.E.; Ladygina, M.S.; Marchenko, A.K.; Petrov, Yu.V.; Solyakov, D.G.; Chebotarev, V.V.; Chuvilo, A.A.

    2011-01-01

    The main objective of these studies is characterization of dense xenon plasma streams generated by magnetoplasma compressor (MPC) in different operational regimes. Optimization of plasma compression in MPC allows increase of the plasma stream pressure up to 22...25 bar, average temperature of electrons of 10...20 eV and plasma stream velocity varied in the range of (2...9)x10 6 cm/s depending on operation regime. Spectroscopy measurements demonstrate that in these conditions most of Xe spectral lines are reabsorbed. In the case of known optical thickness, the real value of electron density can be calculated with accounting self-absorption. Estimations of optical thickness were performed and resulting electron density in focus region was evaluated as 10 18 cm -3 .

  8. Multiobjective Optimization of a Counterrotating Type Pump-Turbine Unit Operated at Turbine Mode

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Kim

    2014-05-01

    Full Text Available A multiobjective optimization for improving the turbine output and efficiency of a counterrotating type pump-turbine unit operated at turbine mode was carried out in this work. The blade geometry of both the runners was optimized using a hybrid multiobjective evolutionary algorithm coupled with a surrogate model. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model were discretized by finite volume approximations and solved on hexahedral grids to analyze the flow in the pump-turbine unit. As major hydrodynamic performance parameters, the turbine output and efficiency were selected as objective functions with two design variables related to the hub profiles of both the runner blades. These objectives were numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. Response surface approximation models for the objectives were constructed based on the objective function values at the design points. A fast nondominated sorting genetic algorithm for the local search coupled with the response surface approximation models was applied to determine the global Pareto-optimal solutions. The trade-off between the two objectives was determined and described with respect to the Pareto-optimal solutions. The results of this work showed that the turbine outputs and efficiencies of optimized pump-turbine units were simultaneously improved in comparison to the reference unit.

  9. Dispatch of distributed energy resources to provide energy and reserve in smart grids using a particle swarm optimization approach

    DEFF Research Database (Denmark)

    Faria, Pedro; Soares, Tiago; Pinto, Tiago

    2013-01-01

    are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart......The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets...... grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve...

  10. The hybrid MPC-MINLP algorithm for optimal operation of coal-fired power plants with solvent based post-combustion CO2 capture

    Directory of Open Access Journals (Sweden)

    Norhuda Abdul Manaf

    2017-03-01

    Full Text Available This paper presents an algorithm that combines model predictive control (MPC with MINLP optimization and demonstrates its application for coal-fired power plants retrofitted with solvent based post-combustion CO2 capture (PCC plant. The objective function of the optimization algorithm works at a primary level to maximize plant economic revenue while considering an optimal carbon capture profile. At a secondary level, the MPC algorithm is used to control the performance of the PCC plant. Two techno-economic scenarios based on fixed (capture rate is constant and flexible (capture rate is variable operation modes are developed using actual electricity prices (2011 with fixed carbon prices ($AUD 5, 25, 50/tonne-CO2 for 24 h periods. Results show that fixed operation mode can bring about a ratio of net operating revenue deficit at an average of 6% against the superior flexible operation mode.

  11. What SCADA systems can offer to optimize field operations

    International Nuclear Information System (INIS)

    McLean, D.J.

    1997-01-01

    A new technology developed by Kenomic Controls Ltd. of Calgary was designed to solve some of the problems associated with producing gas wells with high gas to liquids ratios. The rationale and the system architecture of the SCADA (Supervisory Control and Data Acquisition) system were described. The most common application of SCADA is the Electronic Flow Measurement (EFM) installation using a solar or thermo-electric generator as a power source for the local electronics. Benefits that the SCADA system can provide to producing fields such as increased revenue, decreased operating costs, decreased fixed capital and working capital requirements, the planning and implementation strategies for SCADA were outlined. A case history of a gas well production optimization system in the Pierceland area of northwest Saskatchewan was provided as an illustrative example. 9 figs

  12. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B L; Kivaisi, A K; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  13. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B.L.; Kivaisi, A.K.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  14. Ready, Reliable, and Relevant: The Army Reserve Component as an Operational Reserve

    Science.gov (United States)

    2015-05-21

    Arrival Date METL Mission Essential Task List MFO Multinational Force and Observers MOS Military Occupational Specialty NATO North Atlantic ...containing the total number of USAR Soldiers activated in Somalia is unavailable. Although US Military operations as part of the North Atlantic ...DC), the territories of Guam and the US Virgin Islands, and the Commonwealth of Puerto Rico, mobilized to the Gulf Coast states of

  15. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    Science.gov (United States)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  16. 47 CFR 80.145 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... MARITIME SERVICES Operating Requirements and Procedures Special Procedures-Ship Stations § 80.145 [Reserved] Shipboard General Purpose Watches ... 47 Telecommunication 5 2010-10-01 2010-10-01 false [Reserved] 80.145 Section 80.145...

  17. Wind offering in energy and reserve markets

    DEFF Research Database (Denmark)

    Soares, Tiago; Pinson, Pierre; Morais, Hugo

    2016-01-01

    The increasing penetration of wind generation in power systems to fulfil the ambitious European targets will make wind power producers to play an even more important role in the future power system. Wind power producers are being incentivized to participate in reserve markets to increase...... their revenue, since currently wind turbine/farm technologies allow them to provide ancillary services. Thus, wind power producers are to develop offering strategies for participation in both energy and reserve markets, accounting for market rules, while ensuring optimal revenue. We consider a proportional...... offering strategy to optimally decide upon participation in both markets by maximizing expected revenue from day-ahead decisions while accounting for estimated regulation costs for failing to provide the services. An evaluation of considering the same proportional splitting of energy and reserve in both...

  18. Optimizing Multireservoir System Operating Policies Using Exogenous Hydrologic Variables

    Science.gov (United States)

    Pina, Jasson; Tilmant, Amaury; Côté, Pascal

    2017-11-01

    Stochastic dual dynamic programming (SDDP) is one of the few available algorithms to optimize the operating policies of large-scale hydropower systems. This paper presents a variant, called SDDPX, in which exogenous hydrologic variables, such as snow water equivalent and/or sea surface temperature, are included in the state space vector together with the traditional (endogenous) variables, i.e., past inflows. A reoptimization procedure is also proposed in which SDDPX-derived benefit-to-go functions are employed within a simulation carried out over the historical record of both the endogenous and exogenous hydrologic variables. In SDDPX, release policies are now a function of storages, past inflows, and relevant exogenous variables that potentially capture more complex hydrological processes than those found in traditional SDDP formulations. To illustrate the potential gain associated with the use of exogenous variables when operating a multireservoir system, the 3,137 MW hydropower system of Rio Tinto (RT) located in the Saguenay-Lac-St-Jean River Basin in Quebec (Canada) is used as a case study. The performance of the system is assessed for various combinations of hydrologic state variables, ranging from the simple lag-one autoregressive model to more complex formulations involving past inflows, snow water equivalent, and winter precipitation.

  19. On thermoeconomics of energy systems at variable load conditions: Integrated optimization of plant design and operation

    International Nuclear Information System (INIS)

    Piacentino, A.; Cardona, F.

    2007-01-01

    Thermoeconomics has been assuming a growing role among the disciplines oriented to the analysis of energy systems, its different methodologies allowing solution of problems in the fields of cost accounting, plant design optimisation and diagnostic of malfunctions. However, the thermoeconomic methodologies as such are particularly appropriate to analyse large industrial systems at steady or quasi-steady operation, but they can be hardly applied to small to medium scale units operating in unsteady conditions to cover a variable energy demand. In this paper, the fundamentals of thermoeconomics for systems operated at variable load are discussed, examining the cost formation process and, separately, the cost fractions related to capital depreciation (which require additional distinctions with respect to plants in steady operation) and to exergy consumption. The relevant effects of the efficiency penalty due to off design operation on the exergetic cost of internal flows are also examined. An original algorithm is proposed for the integrated optimization of plant design and operation based on an analytical solution by the Lagrange multipliers method and on a multi-objective decision function, expressed either in terms of net cash flow or primary energy saving. The method is suitable for application in complex energy systems, such as 'facilities of components of a same product' connected to external networks for power or heat distribution. For demonstrative purposes, the proposed thermoeconomically aided optimization is performed for a grid connected trigeneration system to be installed in a large hotel

  20. Optimal hysteretic control for a BMAP/SM/1/N queue with two operation modes

    Directory of Open Access Journals (Sweden)

    Alexander N. Dudin

    2000-01-01

    Full Text Available We consider BMAP/SM/1 type queueing system with finite buffer of size N. The system has two operation modes, which are characterized by the matrix generating function of BMAP-input, the kernel of the semi-Markovian service process, and utilization cost. An algorithm for determining the optimal hysteresis strategy is presented.

  1. 46 CFR 308.301 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false [Reserved] 308.301 Section 308.301 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE Second Seamen's War Risk Insurance § 308.301 [Reserved] ...

  2. 46 CFR 308.305 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false [Reserved] 308.305 Section 308.305 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE Second Seamen's War Risk Insurance § 308.305 [Reserved] ...

  3. Optimizing the data acquisition rate for a remotely controllable structural monitoring system with parallel operation and self-adaptive sampling

    International Nuclear Information System (INIS)

    Sheng, Wenjuan; Guo, Aihuang; Liu, Yang; Azmi, Asrul Izam; Peng, Gang-Ding

    2011-01-01

    We present a novel technique that optimizes the real-time remote monitoring and control of dispersed civil infrastructures. The monitoring system is based on fiber Bragg gating (FBG) sensors, and transfers data via Ethernet. This technique combines parallel operation and self-adaptive sampling to increase the data acquisition rate in remote controllable structural monitoring systems. The compact parallel operation mode is highly efficient at achieving the highest possible data acquisition rate for the FBG sensor based local data acquisition system. Self-adaptive sampling is introduced to continuously coordinate local acquisition and remote control for data acquisition rate optimization. Key issues which impact the operation of the whole system, such as the real-time data acquisition rate, data processing capability, and buffer usage, are investigated. The results show that, by introducing parallel operation and self-adaptive sampling, the data acquisition rate can be increased by several times without affecting the system operating performance on both local data acquisition and remote process control

  4. METHODS OF EVALUATION AND INDICATORS OF OPTIMAL TEMPERATURE OF INTERNAL COMBUSTION ENGINES AND VEHICLES IN OPERATION

    Directory of Open Access Journals (Sweden)

    V. Volkov

    2015-12-01

    Full Text Available The results of forming methods of determination and system, as a part of the computer-integrated technology of transport operation, estimation of indecies of the optimal temperature state of the ICE and the vehicle under operation conditions, which is provided with the help of analysis of possible schemes and processes of the complex system of combined heating, using the technology of heat accumulation are described.

  5. A Bilevel Programming Model to Optimize Train Operation Based on Satisfaction for an Intercity Rail Line

    Directory of Open Access Journals (Sweden)

    Zhipeng Huang

    2014-01-01

    Full Text Available The passenger travel demands for intercity rail lines fluctuate obviously during different time periods, which makes the rail departments unable to establish an even train operation scheme. This paper considers an optimization problem for train operations which respond to passenger travel demands of different periods in intercity rail lines. A satisfactory function of passenger travelling is proposed by means of analyzing the passengers’ travel choice behavior and correlative influencing factors. On this basis, the paper formulates a bilevel programming model which maximizes interests of railway enterprises and travelling satisfaction of each passenger. The trains operation in different periods can be optimized through upper layer planning of the model, while considering the passenger flow distribution problem based on the Wardrop user equilibrium principle in the lower layer planning. Then, a genetic algorithm is designed according to model features for solving the upper laying. The Frank-Wolfe algorithm is used for solving the lower layer planning. Finally, a numerical example is provided to demonstrate the application of the method proposed in this paper.

  6. Development and optimization of operational parameters of a gas-fired baking oven

    OpenAIRE

    Afolabi Tunde MORAKINYO; Babatunde OMIDIJI; Hakeem OWOLABI

    2017-01-01

    This study presented the development and optimization of operational parameters of an indigenous gas-fired bread-baking oven for small-scale entrepreneur. It is an insulated rectangular box-like chamber, made of galvanized-steel sheets and having a total dimension of 920mm×650mm×600mm. This oven consists of two baking compartments and three combustion chambers. The oven characteristics were evaluated in terms of the baking capacity, baking efficiency and weight loss of the baked bread. The ph...

  7. Multi-objective Operation Chart Optimization for Aquatic Species Habitat Conservation of Cascaded Hydropower System on Yuan River, Southwestern China

    Science.gov (United States)

    Wen, X.; Lei, X.; Fang, G.; Huang, X.

    2017-12-01

    Extensive cascading hydropower exploitation in southwestern China has been the subject of debate and conflict in recent years. Introducing limited ecological curves, a novel approach for derivation of hydropower-ecological joint operation chart of cascaded hydropower system was proposed, aiming to optimize the general hydropower and ecological benefits, and to alleviate the ecological deterioration in specific flood/dry conditions. The physical habitat simulation model is proposed initially to simulate the relationship between streamflow and physical habitat of target fish species and to determine the optimal ecological flow range of representative reach. The ecological—hydropower joint optimization model is established to produce the multi-objective operation chart of cascaded hydropower system. Finally, the limited ecological guiding curves were generated and added into the operation chart. The JS-MDS cascaded hydropower system on the Yuan River in southwestern China is employed as the research area. As the result, the proposed guiding curves could increase the hydropower production amount by 1.72% and 5.99% and optimize ecological conservation degree by 0.27% and 1.13% for JS and MDS Reservoir, respectively. Meanwhile, the ecological deterioration rate also sees a decrease from 6.11% to 1.11% for JS Reservoir and 26.67% to 3.89% for MDS Reservoir.

  8. Optimizing operational water management with soil moisture data from Sentinel-1 satellites

    Science.gov (United States)

    Pezij, Michiel; Augustijn, Denie; Hendriks, Dimmie; Hulscher, Suzanne

    2016-04-01

    In the Netherlands, regional water authorities are responsible for management and maintenance of regional water bodies. Due to socio-economic developments (e.g. agricultural intensification and on-going urbanisation) and an increase in climate variability, the pressure on these water bodies is growing. Optimization of water availability by taking into account the needs of different users, both in wet and dry periods, is crucial for sustainable developments. To support timely and well-directed operational water management, accurate information on the current state of the system as well as reliable models to evaluate water management optimization measures are essential. Previous studies showed that the use of remote sensing data (for example soil moisture data) in water management offers many opportunities (e.g. Wanders et al. (2014)). However, these data are not yet used in operational applications at a large scale. The Sentinel-1 satellites programme offers high spatiotemporal resolution soil moisture data (1 image per 6 days with a spatial resolution of 10 by 10 m) that are freely available. In this study, these data will be used to improve the Netherlands Hydrological Instrument (NHI). The NHI consists of coupled models for the unsaturated zone (MetaSWAP), groundwater (iMODFLOW) and surface water (Mozart and DM). The NHI is used for scenario analyses and operational water management in the Netherlands (De Lange et al., 2014). Due to the lack of soil moisture data, the unsaturated zone model is not yet thoroughly validated and its output is not used by regional water authorities for decision-making. Therefore, the newly acquired remotely sensed soil moisture data will be used to improve the skill of the MetaSWAP-model and the NHI as whole. The research will focus among other things on the calibration of soil parameters by comparing model output (MetaSWAP) with the remotely sensed soil moisture data. Eventually, we want to apply data-assimilation to improve

  9. Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells

    International Nuclear Information System (INIS)

    Kim, Jintae; Kim, Minjin; Kang, Taegon; Sohn, Young-Jun; Song, Taewon; Choi, Kyoung Hwan

    2014-01-01

    High-temperature PEMFCs (proton exchange membrane fuel cells) using PA (phosphoric acid)-doped PBI (polybenzimidazole) membranes have received attention as a potential solution to several of the issues with traditional low-temperature PEMFCs. However, the durability of high-temperature PEMFCs deteriorates rapidly with increasing temperature, although its performance improves. This characteristic makes it difficult to select the proper operating temperature to achieve its target lifetime. In this paper, to resolve this problem, models were developed to predict the performance and durability of the high-temperature PEMFC as a function of operating temperature. The optimal operating temperature was then determined for a variety of lifetimes. Theoretical model to estimate cell performance and empirical model to predict the degradation rate of cell performance were constructed, respectively. The prediction results of the developed models agreed well with the experimental data. From the simulation, we could obtain higher average cell performances by optimizing the operating temperature for the given target lifetime compared to the cell performance at some temperatures determined using an existing rule of thumb. It is expected that the proposed methodologies will lead to the more rapid commercialization of this technology in such applications as stationary and automotive fuel cell systems. - Highlights: • High-temperature PEMFCs (proton exchange membrane fuel cells). • Operational optimization for improving the lifetime. • Development of the degradation modeling for high-temperature PEMFCs

  10. Control strategy for power management, efficiency-optimization and operating-safety of a 5-kW solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Zhang, Lin; Jiang, Jianhua; Cheng, Huan; Deng, Zhonghua; Li, Xi

    2015-01-01

    Highlights: • Efficiency optimization associated with simultaneous power and thermal management. • Fast load tracing, fuel starvation, high efficiency and operating safety are considered. • Open loop pre-conditioning current strategy is proposed for load step-up transients. • Feedback control scheme is proposed for load step-up transients. - Abstract: The slow power tracking, operating safety, especially the fuel exhaustion, and high efficiency considerations are the key issues for integrated solid oxide fuel cell (SOFC) systems during power step up transients, resulting in the relatively poor dynamic capabilities and make the transient load following very challenging and must be enhanced. To this end, this paper first focus on addressing the efficiency optimization associated with simultaneous power and thermal management of a 5-kW SOFC system. Particularly, a traverse optimization process including cubic convolution interpolation algorithm are proposed to obtain optimal operating points (OOPs) with the maximum efficiency. Then this paper investigate the current implications on system step-up transient performance, then a two stage pre-conditioning current strategy and a feedback power reference control scheme is proposed for load step-up transients to balance fast load following and fuel starvation, after that safe thermal transient is validated. Simulation results show the efficacy of the control design by demonstrating the fast load following ability while maintaining the safe operation, thus safe; efficient and fast load transition can be achieved

  11. Optimization of steam generators of NPP with WWER in operation with variable load

    Science.gov (United States)

    Parchevskii, V. M.; Shchederkina, T. E.; Gur'yanova, V. V.

    2017-11-01

    The report addresses the issue of the optimal water level in the horizontal steam generators of NPP with WWER. On the one hand, the level needs to be kept at the lower limit of the allowable range, as gravity separation, steam will have the least humidity and the turbine will operate with higher efficiency. On the other hand, the higher the level, the greater the supply of water in the steam generator, and therefore the higher the security level of the unit, because when accidents involving loss of cooling of the reactor core, the water in the steam generators, can be used for cooling. To quantitatively compare the damage from higher level to the benefit of improving the safety was assessed of the cost of one cubic meter of water in the steam generators, the formulated objective function of optimal levels control. This was used two-dimensional separation characteristics of steam generators. It is demonstrated that the security significantly shifts the optimal values of the levels toward the higher values, and this bias is greater the lower the load unit.

  12. Minimizing the health and climate impacts of emissions from heavy-duty public transportation bus fleets through operational optimization.

    Science.gov (United States)

    Gouge, Brian; Dowlatabadi, Hadi; Ries, Francis J

    2013-04-16

    In contrast to capital control strategies (i.e., investments in new technology), the potential of operational control strategies (e.g., vehicle scheduling optimization) to reduce the health and climate impacts of the emissions from public transportation bus fleets has not been widely considered. This case study demonstrates that heterogeneity in the emission levels of different bus technologies and the exposure potential of bus routes can be exploited though optimization (e.g., how vehicles are assigned to routes) to minimize these impacts as well as operating costs. The magnitude of the benefits of the optimization depend on the specific transit system and region. Health impacts were found to be particularly sensitive to different vehicle assignments and ranged from worst to best case assignment by more than a factor of 2, suggesting there is significant potential to reduce health impacts. Trade-offs between climate, health, and cost objectives were also found. Transit agencies that do not consider these objectives in an integrated framework and, for example, optimize for costs and/or climate impacts alone, risk inadvertently increasing health impacts by as much as 49%. Cost-benefit analysis was used to evaluate trade-offs between objectives, but large uncertainties make identifying an optimal solution challenging.

  13. Risk based economic optimization of investment decisions of regulated power distribution system operators; Risikobasierte wirtschaftliche Optimierung von Investitionsentscheidungen regulierter Stromnetzbetreiber

    Energy Technology Data Exchange (ETDEWEB)

    John, Oliver

    2012-07-01

    The author of the contribution under consideration reports on risk-based economic optimization of investment decisions of regulated power distribution system operators. The focus is the economically rational decision behavior of operators under certain regulatory requirements. Investments in power distribution systems form the items subject to decisions. Starting from a description of theoretical and practical regulatory approaches, their financial implications are quantified at first. On this basis, optimization strategies are derived with respect to the investment behavior. For this purpose, an optimization algorithm is developed and applied to exemplary companies. Finally, effects of uncertainties in regulatory systems are investigated. In this context, Monte Carlo simulations are used in conjunction with real options analysis.

  14. OPTIMIZATION OF OPERATION PARAMETERS OF 80-KEV ELECTRON GUN

    Directory of Open Access Journals (Sweden)

    JEONG DONG KIM

    2014-06-01

    As a first step, the electron generator of an 80-keV electron gun was manufactured. In order to produce the high beam power from electron linear accelerator, a proper beam current is required form the electron generator. In this study, the beam current was measured by evaluating the performance of the electron generator. The beam current was determined by five parameters: high voltage at the electron gun, cathode voltage, pulse width, pulse amplitude, and bias voltage at the grid. From the experimental results under optimal conditions, the high voltage was determined to be 80 kV, the pulse width was 500 ns, and the cathode voltage was from 4.2 V to 4.6 V. The beam current was measured as 1.9 A at maximum. These results satisfy the beam current required for the operation of an electron linear accelerator.

  15. Optimizing wellfield operation in a variable power price regime

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Schneider, Raphael; Davidsen, Claus

    Wellfield management is a multi-objective optimization problem. One important management objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m3). However, power systems in most countries are moving in the direction of deregulated power...... use itself. We estimated energy footprint as a function of wellfield pumping rate (EFP-Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP-Q relationship was subsequently used in a stochastic dynamic programming framework to minimize total cost of operating...... the combined wellfield-storage-demand system over the course of a 2-year planning period based on a time series of observed price on the Danish power market and a deterministic, time-varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include storage...

  16. Optimizing Wellfield Operation in a Variable Power Price Regime

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Schneider, Raphael; Davidsen, Claus

    2016-01-01

    Wellfield management is a multiobjective optimization problem. One important objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m3). However, power systems in most countries are moving in the direction of deregulated markets and price...... itself. We estimated EFP of pumped water as a function of wellfield pumping rate (EFP-Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP-Q relationship was subsequently used in a Stochastic Dynamic Programming (SDP) framework to minimize total cost...... of operating the combined wellfield-storage-demand system over the course of a 2-year planning period based on a time series of observed price on the Danish power market and a deterministic, time-varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include...

  17. Decolorization of Acid Orange 7 by an electric field-assisted modified orifice plate hydrodynamic cavitation system: Optimization of operational parameters.

    Science.gov (United States)

    Jung, Kyung-Won; Park, Dae-Seon; Hwang, Min-Jin; Ahn, Kyu-Hong

    2015-09-01

    In this study, the decolorization of Acid Orange 7 (AO-7) with intensified performance was obtained using hydrodynamic cavitation (HC) combined with an electric field (graphite electrodes). As a preliminary step, various HC systems were compared in terms of decolorization, and, among them, the electric field-assisted modified orifice plate HC (EFM-HC) system exhibited perfect decolorization performance within 40 min of reaction time. Interestingly, when H2O2 was injected into the EFM-HC system as an additional oxidant, the reactor performance gradually decreased as the dosing ratio increased; thus, the remaining experiments were performed without H2O2. Subsequently, an optimization process was conducted using response surface methodology with a Box-Behnken design. The inlet pressure, initial pH, applied voltage, and reaction time were chosen as operational key factors, while decolorization was selected as the response variable. The overall performance revealed that the selected parameters were either slightly interdependent, or had significant interactive effects on the decolorization. In the verification test, complete decolorization was observed under statistically optimized conditions. This study suggests that EFM-HC is a useful method for pretreatment of dye wastewater with positive economic and commercial benefits. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Multi-Objective Sustainable Operation of the Three Gorges Cascaded Hydropower System Using Multi-Swarm Comprehensive Learning Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    2016-06-01

    Full Text Available Optimal operation of hydropower reservoir systems often needs to optimize multiple conflicting objectives simultaneously. The conflicting objectives result in a Pareto front, which is a set of non-dominated solutions. Non-dominated solutions cannot outperform each other on all the objectives. An optimization framework based on the multi-swarm comprehensive learning particle swarm optimization algorithm is proposed to solve the multi-objective operation of hydropower reservoir systems. Through adopting search techniques such as decomposition, mutation and differential evolution, the algorithm tries to derive multiple non-dominated solutions reasonably distributed over the true Pareto front in one single run, thereby facilitating determining the final tradeoff. The long-term sustainable planning of the Three Gorges cascaded hydropower system consisting of the Three Gorges Dam and Gezhouba Dam located on the Yangtze River in China is studied. Two conflicting objectives, i.e., maximizing hydropower generation and minimizing deviation from the outflow lower target to realize the system’s economic, environmental and social benefits during the drought season, are optimized simultaneously. Experimental results demonstrate that the optimization framework helps to robustly derive multiple feasible non-dominated solutions with satisfactory convergence, diversity and extremity in one single run for the case studied.

  19. Managing and operating the reserve market as one insurance system

    International Nuclear Information System (INIS)

    Liu, Youfei; Cai, Bin; Wu, F.F.; Ni, Y.X.

    2007-01-01

    In this paper, it is suggested that the preference of an individual consumer for its power supply reliability should be considered when scheduling the system reserve. The mechanism of 'provider insurance' is introduced and the reserve market is to be managed as an insurance system. In our modeling, the generator who provides the insurance of reliable power supply via its reserve, should always collect the payment (the premium), and be rewarded with the spot market price for its called reserve. The consumer who buys the insurance, pays premium and thus obtains a reliable power supply (the claim). It is argued that such a market mechanism will result in the maximum social welfare. Moreover, it is shown that there is a kind of 'moral hazard in reverse' fact that will further improve the market efficiency. Later on, discussions on implementing the proposed method are given, and an illustrative example is provided to show basic features of the proposed method. (author)

  20. Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept

    International Nuclear Information System (INIS)

    Sivasakthivel, T.; Murugesan, K.; Thomas, H.R.

    2014-01-01

    Highlights: • Ground Source Heat Pump (GSHP) technology is suitable for both heating and cooling. • Important parameters that affect the GSHP performance has been listed. • Parameters of GSHP system has been optimized for heating and cooling mode. • Taguchi technique and utility concept are developed for GSHP optimization. - Abstract: Use of ground source energy for space heating applications through Ground Source Heat pump (GSHP) has been established as an efficient thermodynamic process. The electricity input to the GSHP can be reduced by increasing the COP of the system. However, the COP of a GSHP system will be different for heating and cooling mode operations. Hence in order to reduce the electricity input to the GSHP, an optimum value of COP has to be determined when GSHP is operated in both heating and cooling modes. In the present research, a methodology is proposed to optimize the operating parameters of a GSHP system which will operate on both heating and cooling modes. Condenser inlet temperature, condenser outlet temperature, dryness fraction at evaporator inlet and evaporator outlet temperature are considered as the influencing parameters of the heat pump. Optimization of these parameters for only heating or only cooling mode operation is achieved by employing Taguchi method for three level variations of the above parameters using an L 9 (3 4 ) orthogonal array. Higher the better concept has been used to get a higher COP. A computer program in FORTAN has been developed to carry out the computations and the results have been analyzed for the optimum conditions using Signal-to-Noise (SN) ratio and Analysis Of Variance (ANOVA) method. Based on this analysis, the maximum COP for only heating and only cooling operation are obtained as 4.25 and 3.32 respectively. By making use of the utility concept both the higher values of COP obtained for heating and cooling modes are optimized to get a single optimum COP for heating and cooling modes. A single

  1. Evidence-Based Recommendations for Optimizing Light in Day-to-Day Spaceflight Operations

    Science.gov (United States)

    Whitmire, Alexandra; Leveton, Lauren; Barger, Laura; Clark, Toni; Bollweg, Laura; Ohnesorge, Kristine; Brainard, George

    2015-01-01

    NASA Behavioral Health and Performance Element (BHP) personnel have previously reported on efforts to transition evidence-based recommendations for a flexible lighting system on the International Space Station (ISS). Based on these recommendations, beginning in 2016 the ISS will replace the current fluorescent-based lights with an LED-based system to optimize visual performance, facilitate circadian alignment, promote sleep, and hasten schedule shifting. Additional efforts related to lighting countermeasures in spaceflight operations have also been underway. As an example, a recent BHP research study led by investigators at Harvard Medical School and Brigham and Women's Hospital, evaluated the acceptability, feasibility, and effectiveness of blue-enriched light exposure during exercise breaks for flight controllers working the overnight shift in the Mission Control Center (MCC) at NASA Johnson Space Center. This effort, along with published laboratory studies that have demonstrated the effectiveness of appropriately timed light for promoting alertness, served as an impetus for new light options, and educational protocols for flight controllers. In addition, a separate set of guidelines related to the light emitted from electronic devices, were provided to the Astronaut Office this past year. These guidelines were based on an assessment led by NASA's Lighting Environment Test Facility that included measuring the spectral power distribution, irradiance, and radiance of light emitted from ISS-grade laptops and I-Pads, as well as Android devices. Evaluations were conducted with and without the use of off-the-shelf screen filters as well as a software application that touts minimizing the short-wave length of the visible light spectrum. This presentation will focus on the transition for operations process related to lighting countermeasures in the MCC, as well as the evidence to support recommendations for optimal use of laptops, I-Pads, and Android devices during all

  2. Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch

    International Nuclear Information System (INIS)

    Gu, Wei; Lu, Shuai; Wu, Zhi; Zhang, Xuesong; Zhou, Jinhui; Zhao, Bo; Wang, Jun

    2017-01-01

    Highlights: •A bilateral transaction mode for the residential CCHP microgrid is proposed. •An energy pricing strategy for the residential CCHP system is proposed. •A novel integrated demand response for the residential loads is proposed. •Two-stage operation optimization model for the CCHP microgrid is proposed. •Operations of typical days and annual scale of the CCHP microgrid are studied. -- Abstract: As the global energy crisis, environmental pollution, and global warming grow in intensity, increasing attention is being paid to combined cooling, heating, and power (CCHP) systems that realize high-efficiency cascade utilization of energy. This paper proposes a bilateral transaction mechanism between a residential CCHP system and a load aggregator (LA). The variable energy cost of the CCHP system is analyzed, based on which an energy pricing strategy for the CCHP system is proposed. Under this pricing strategy, the electricity price is constant, while the heat/cool price is ladder-shaped and dependent on the relationship between the electrical, heat, and cool loads. For the LA, an integrated demand response program is proposed that combines electricity-load shifting and a flexible heating/cooling supply, in which a thermodynamic model of buildings is used to determine the appropriate range of heating/cooling supply. Subsequently, a two-stage optimal dispatch model is proposed for the energy system that comprises the CCHP system and the LA. Case studies consisting of three scenarios (winter, summer, and excessive seasons) are delivered to demonstrate the effectiveness of the proposed approach, and the performance of the proposed pricing strategy is also evaluated by annual operation simulations.

  3. Optimal Design and Operation Management of Battery-Based Energy Storage Systems (BESS) in Microgrids

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dulout, Jeremy; Alonso, Corinne

    2017-01-01

    of energy storage units requires certain performance measures and constraints, which has to be well considered in design phase and embedded in control and management strategies. This chapter mainly focuses on these aspects and provides a general framework for optimal design and operation management......-scale integration of renewables into the grid environment. Energy storage options can also be used for economic operation of energy systems to cut down system’s operating cost. By utilizing ESSs, it is very possible to store energy in off-peak hours with lower cost and energize the grid during peak load intervals...... at supply/demand side which is helpful for load levelling or peak shaving purposes. Last but not least, ESSs can provide frequency regulation services in offgrid locations where there is a strong need to meet the power balance in different operating conditions. Each of the abovementioned applications...

  4. Display analysis with the optimal control model of the human operator. [pilot-vehicle display interface and information processing

    Science.gov (United States)

    Baron, S.; Levison, W. H.

    1977-01-01

    Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.

  5. Optimal synthesis and operation of advanced energy supply systems for standard and domotic home

    International Nuclear Information System (INIS)

    Buoro, Dario; Casisi, Melchiorre; Pinamonti, Piero; Reini, Mauro

    2012-01-01

    Highlights: ► Definition of an optimization model for a home energy supply system. ► Optimization of the energy supply system for standard and domotic home. ► Strong improvement can be achieved adopting the optimal system in standard and domotic home. ► The improvements are consistent if supply side and demand side strategies are applied together. ► Solutions with internal combustion engines are less sensible to market price of electricity and gas. - Abstract: The paper deals with the optimization of an advanced energy supply systems for two dwellings: a standard home and an advanced domotic home, where some demand side energy saving strategies have been implemented. In both cases the optimal synthesis, design and operation of the whole energy supply system have been obtained and a sensitivity analysis has been performed, by introducing different economic constraints. The optimization model is based on a Mixed Integer Linear Program (MILP) and includes different kinds of small-scale cogenerators, geothermal heat pumps, boilers, heat storages, solar thermal and photovoltaic panels. In addition, absorption machines, supplied with cogenerated heat, can be used instead of conventional electrical chiller to face the cooling demand. The aim of the analysis is to address the question if advanced demand strategies and supply strategies have to be regarded as alternatives, or if they have to be simultaneously applied, in order to obtain the maximum energy and economic benefit.

  6. Distributed Optimization of Sustainable Power Dispatch and Flexible Consumer Loads for Resilient Power Grid Operations

    Science.gov (United States)

    Srikantha, Pirathayini

    Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these

  7. Using genetic algorithms to determine near-optimal pricing, investment and operating strategies in the electric power industry

    Science.gov (United States)

    Wu, Dongjun

    Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.

  8. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Directory of Open Access Journals (Sweden)

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  9. IEP (Individualized Educational Program) Co-operation between Optimal Support of Students with Special Needs

    Science.gov (United States)

    Ogoshi, Yasuhiro; Nakai, Akio; Ogoshi, Sakiko; Mitsuhashi, Yoshinori; Araki, Chikahiro

    A key aspect of the optimal support of students with special needs is co-ordination and co-operation between school, home and specialized agencies. Communication between these entities is of prime importance and can be facilitated through the use of a support system implementing ICF guidelines as outlined. This communication system can be considered to be a preventative rather than allopathic support.

  10.  Optimizing relational algebra operations using discrimination-based joins and lazy products

    DEFF Research Database (Denmark)

    Henglein, Fritz

    We show how to implement in-memory execution of the core re- lational algebra operations of projection, selection and cross-product eciently, using discrimination-based joins and lazy products. We introduce the notion of (partitioning) discriminator, which par- titions a list of values according...... to a specied equivalence relation on keys the values are associated with. We show how discriminators can be dened generically, purely functionally, and eciently (worst-case linear time) on top of the array-based basic multiset discrimination algorithm of Cai and Paige (1995). Discriminators provide the basis...... the selection operation to recognize on the y whenever it is applied to a cross-product, in which case it can choose an ecient discrimination-based equijoin implementation. The techniques subsume most of the optimization techniques based on relational algebra equalities, without need for a query preprocessing...

  11. Optimized operation of dielectric laser accelerators: Single bunch

    Directory of Open Access Journals (Sweden)

    Adi Hanuka

    2018-05-01

    Full Text Available We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ∼10  GV/m, one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.

  12. System performance optimization

    International Nuclear Information System (INIS)

    Bednarz, R.J.

    1978-01-01

    The System Performance Optimization has become an important and difficult field for large scientific computer centres. Important because the centres must satisfy increasing user demands at the lowest possible cost. Difficult because the System Performance Optimization requires a deep understanding of hardware, software and workload. The optimization is a dynamic process depending on the changes in hardware configuration, current level of the operating system and user generated workload. With the increasing complication of the computer system and software, the field for the optimization manoeuvres broadens. The hardware of two manufacturers IBM and CDC is discussed. Four IBM and two CDC operating systems are described. The description concentrates on the organization of the operating systems, the job scheduling and I/O handling. The performance definitions, workload specification and tools for the system stimulation are given. The measurement tools for the System Performance Optimization are described. The results of the measurement and various methods used for the operating system tuning are discussed. (Auth.)

  13. Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization.

    Science.gov (United States)

    Abdel Wahab, Walaa A; Karam, Eman A; Hassan, Mohamed E; Kansoh, Amany L; Esawy, Mona A; Awad, Ghada E A

    2018-07-01

    Pectinase produced by a honey derived from the fungus Aspergillus awamori KX943614 was covalently immobilized onto gel beads made of alginate and agar. Polyethyleneimine, glutaraldehyde, loading time and enzyme's units were optimized by 2 4 full factorial central composite design (CCD). The immobilization process increased the optimal working pH for the free pectinase from 5 to a broader range of pH4.5-5.5 and the optimum operational temperature from 55°C to a higher temperature, of 60°C, which is favored to reduce the enzyme's microbial contamination. The thermodynamics studies showed a thermal stability enhancement against high temperature for the immobilized formula. Moreover, an increase in half-lives and D-values was achieved. The thermodynamic studies proved that immobilization of pectinase made a remarkable increase in enthalpy and free energy because of enzyme stability enhancement. The reusability test revealed that 60% of pectinase's original activity was retained after 8 successive cycles. This gel formula may be convenient for immobilization of other industrial enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Electricity pricing: optimal operation and investment by industrial consumers

    Energy Technology Data Exchange (ETDEWEB)

    Outhred, H.R.; Kaye, R.J.; Sutanto, D.; Manimaran, R.; Bannister, C.H.; Lee, Y.B.

    1988-08-01

    Ongoing research in the areas of economically efficient electricity pricing and industrial consumer response is described. A new electricity pricing theory is described that incorporates future uncertainty and intertemporal linkages between decisions. It indicates that electricity prices should contain two terms - short-run marginal cost plus a term that reflects how each particular decision is likely to affect future global welfare. A practical implementation using spot prices and forward contracts plus financial instruments for risk sharing and decision coordination is explored, and a procedure for developing long-term pricing policy is considered. The operation of industrial plant has been investigated and models developed to optimize plant behaviour in response to spot prices and forward contracts for electricity. These models are described and results of simulation studies discussed. The economic efficiency and risk sharing advantages of this advanced tariff structure compared with a conventional time-of-use tariff are illustrated.

  15. 14 CFR 99.12 - [Reserved

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false [Reserved] 99.12 Section 99.12 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SECURITY CONTROL OF AIR TRAFFIC General § 99.12 [Reserved] ...

  16. 12 CFR 614.4710 - [Reserved

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false [Reserved] 614.4710 Section 614.4710 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Banks for Cooperatives and Agricultural Credit Banks Financing International Trade § 614.4710 [Reserved] ...

  17. Dynamic optimization of distribution networks. Closed loop operation results; Dynamische Optimierung der Verteilnetze. Closed loop Betriebsergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Ilo, Albana [Siemens AG, Wien (Austria); Schaffer, Walter; Rieder, Thomas [Salzburg Netz GmbH, Salzburg (Austria); Dzafic, Izudin [Siemens AG, Nuernberg (Germany)

    2012-07-01

    A holistic approach of power system control that includes all voltage levels from highest to low voltage is provided. The power grid is conceived as a supply chain. The medium voltage grid represents the central link. The implemented automatic voltage control and the dynamic operation optimization are based on Distribution System State Estimator (DSSE) and Volt/Var Control (VVC) applications. The last one realizes the dynamic optimization of distribution network combining the reactive power of the decentralized generation, capacitors and voltage set points of on-line tap changers. Application of this method has shown, that by using the dynamic voltage control the grid can be stable operated near the low voltage limit. The conservation voltage reduction can be applied in real time. Furthermore the integration of the decentralized generation is facilitated with minimal costs. Until now in this regard required network expansion can be prevented or delayed. (orig.)

  18. Decision Optimization for Power Grid Operating Conditions with High- and Low-Voltage Parallel Loops

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2017-05-01

    Full Text Available With the development of higher-voltage power grids, the high- and low-voltage parallel loops are emerging, which lead to energy losses and even threaten the security and stability of power systems. The multi-infeed high-voltage direct current (HVDC configurations widely appearing in AC/DC interconnected power systems make this situation even worse. Aimed at energy saving and system security, a decision optimization method for power grid operating conditions with high- and low-voltage parallel loops is proposed in this paper. Firstly, considering hub substation distribution and power grid structure, parallel loop opening schemes are generated with GN (Girvan-Newman algorithms. Then, candidate opening schemes are preliminarily selected from all these generated schemes based on a filtering index. Finally, with the influence on power system security, stability and operation economy in consideration, an evaluation model for candidate opening schemes is founded based on analytic hierarchy process (AHP. And a fuzzy evaluation algorithm is used to find the optimal scheme. Simulation results of a New England 39-bus system and an actual power system validate the effectiveness and superiority of this proposed method.

  19. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  20. The optimal operation of cooling tower systems with variable-frequency control

    Science.gov (United States)

    Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing

    2018-02-01

    This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.

  1. Optimizing refiner operation with statistical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, G [Noranda Research Centre, Pointe Claire, PQ (Canada)

    1997-02-01

    The impact of refining conditions on the energy efficiency of the process and on the handsheet quality of a chemi-mechanical pulp was studied as part of a series of pilot scale refining trials. Statistical models of refiner performance were constructed from these results and non-linear optimization of process conditions were conducted. Optimization results indicated that increasing the ratio of specific energy applied in the first stage led to a reduction of some 15 per cent in the total energy requirement. The strategy can also be used to obtain significant increases in pulp quality for a given energy input. 20 refs., 6 tabs.

  2. Future xenon system operational parameter optimization

    International Nuclear Information System (INIS)

    Lowrey, J.D.; Eslinger, P.W.; Miley, H.S.

    2016-01-01

    Any atmospheric monitoring network will have practical limitations in the density of its sampling stations. The classical approach to network optimization has been to have 12 or 24-h integration of air samples at the highest station density possible to improve minimum detectable concentrations. The authors present here considerations on optimizing sampler integration time to make the best use of any network and maximize the likelihood of collecting quality samples at any given location. In particular, this work makes the case that shorter duration sample integration (i.e. <12 h) enhances critical isotopic information and improves the source location capability of a radionuclide network, or even just one station. (author)

  3. Application of dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations- A case study

    Science.gov (United States)

    Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT

    2018-02-01

    Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).

  4. Optimal planning and operation of aggregated distributed energy resources with market participation

    International Nuclear Information System (INIS)

    Calvillo, C.F.; Sánchez-Miralles, A.; Villar, J.; Martín, F.

    2016-01-01

    Highlights: • Price-maker optimization model for planning and operation of aggregated DER. • 3 Case studies are proposed, considering different electricity pricing scenarios. • Analysis of benefits and effect on electricity prices produced by DER aggregation. • Results showed considerable benefits even for relatively small aggregations. • Results suggest that the impact on prices should not be overlooked. - Abstract: This paper analyzes the optimal planning and operation of aggregated distributed energy resources (DER) with participation in the electricity market. Aggregators manage their portfolio of resources in order to obtain the maximum benefit from the grid, while participating in the day-ahead wholesale electricity market. The goal of this paper is to propose a model for aggregated DER systems planning, considering its participation in the electricity market and its impact on the market price. The results are the optimal planning and management of DER systems, and the appropriate energy transactions for the aggregator in the wholesale day-ahead market according to the size of its aggregated resources. A price-maker approach based on representing the market competitors with residual demand curves is followed, and the impact on the price is assessed to help in the decision of using price-maker or price-taker approaches depending on the size of the aggregated resources. A deterministic programming problem with two case studies (the average scenario and the most likely scenario from the stochastic ones), and a stochastic one with a case study to account for the market uncertainty are described. For both models, market scenarios have been built from historical data of the Spanish system. The results suggest that when the aggregated resources have enough size to follow a price-maker approach and the uncertainty of the markets is considered in the planning process, the DER systems can achieve up to 50% extra economic benefits, depending on the market

  5. 31 CFR 281.2 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false [Reserved] 281.2 Section 281.2 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE FOREIGN EXCHANGE OPERATIONS § 281.2 [Reserved] ...

  6. Hydrocolloid dressing in pediatric burns may decrease operative intervention rates.

    LENUS (Irish Health Repository)

    Martin, Fiachra T

    2010-03-01

    Partial-thickness scalds are the most common pediatric burn injury, and primary management consists of wound dressings to optimize the environment for reepithelialization. Operative intervention is reserved for burns that fail to heal using conservative methods. Worldwide, paraffin-based gauze (Jelonet) is the most common burn dressing; but literature suggests that it adheres to wounds and requires more frequent dressing change that may traumatize newly epithelialized surfaces. Hydrocolloid dressings (DuoDERM) provide an occlusive moist environment to optimize healing and are associated with less frequent dressing changes.

  7. The first operation of the superconducting optimized stellarator fusion device Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Ernst-Moritz-Arndt Universitaet, Greifswald (Germany)

    2016-07-01

    The confinement of a high-temperature plasma by a suitable magnetic field is the most promising path to master nuclear fusion of Deuterium and Tritium on the scale of a reasonable power station. The two leading confinement concepts are the tokamak and the stellarator. Different from a tokamak, the stellarator does not require a strong current in the plasma but generates the magnetic field by external coils only. This has significant advantages, e.g. better stability properties and inherent steady-state capability. But stellarators need optimization, since ad hoc chosen magnetic field geometries lead to insufficient confinement properties, unfavourable plasma equilibria, and loss of fast particles. Wendelstein 7-X is a large (plasma volume 30 m{sup 3}) stellarator device with shaped superconducting coils that were determined via pure physics optimization criteria. After 19 years of construction, Wendelstein 7-X has now started operation. This talk introduces into the stellarator concept as a candidate for a future fusion power plant, summarizes the optimization principles, and presents the first experimental results with Helium and Hydrogen high temperature plasmas. An outlook on the physics program and the main goals of the project is given, too.

  8. MagRad: A code to optimize the operation of superconducting magnets in a radiation environment

    International Nuclear Information System (INIS)

    Yeaw, C.T.

    1995-01-01

    A powerful computational tool, called MagRad, has been developed which optimizes magnet design for operation in radiation fields. Specifically, MagRad has been used for the analysis and design modification of the cable-in-conduit conductors of the TF magnet systems in fusion reactor designs. Since the TF magnets must operate in a radiation environment which damages the material components of the conductor and degrades their performance, the optimization of conductor design must account not only for start-up magnet performance, but also shut-down performance. The degradation in performance consists primarily of three effects: reduced stability margin of the conductor; a transition out of the well-cooled operating regime; and an increased maximum quench temperature attained in the conductor. Full analysis of the magnet performance over the lifetime of the reactor includes: radiation damage to the conductor, stability, protection, steady state heat removal, shielding effectiveness, optimal annealing schedules, and finally costing of the magnet and reactor. Free variables include primary and secondary conductor geometric and compositional parameters, as well as fusion reactor parameters. A means of dealing with the radiation damage to the conductor, namely high temperature superconductor anneals, is proposed, examined, and demonstrated to be both technically feasible and cost effective. Additionally, two relevant reactor designs (ITER CDA and ARIES-II/IV) have been analyzed. Upon addition of pure copper strands to the cable, the ITER CDA TF magnet design was found to be marginally acceptable, although much room for both performance improvement and cost reduction exists. A cost reduction of 10-15% of the capital cost of the reactor can be achieved by adopting a suitable superconductor annealing schedule. In both of these reactor analyses, the performance predictive capability of MagRad and its associated costing techniques have been demonstrated

  9. Experimental studies of an optimal operating condition for the Bunsen process in the I-S thermochemical cycle

    International Nuclear Information System (INIS)

    Yoon, Ho Joon; No, Hee Cheon; Kim, Young Soo; Jin, Hyung Gon; Lee, Jeong Ik; Lee, Byung Jin

    2009-01-01

    Conventional I-S cycles have critical limitations in material integrity and thermal efficiency. The HIx and sulfuric acids in high temperature and pressure cause serious material corrosions. They also carry too much water and iodine over the entire processes. To try to find a solution to these problems, KAIST proposed an optimal operating condition of Bunsen section through a parametric study of existing experimental data, and, based on it, devised a new flowsheet. When the contents of water and I 2 in the feed are controlled within the optimal band, HI concentration in HIx phase becomes strongly over-azeotropic. By simple flashing of the over-azeotropic HI solution, highly enriched HI vapor can be obtained, which leads to improved energy efficiency of the cycle. Since the cycle is operable under low pressures, the corrosivity of the operating condition can also be alleviated. In order to validate the previous experimental data and enhance the feasibility of the newly proposed flowsheet, KAIST is performing experiments. Procedure and results of early stage of experiments are introduced in this paper. (author)

  10. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    International Nuclear Information System (INIS)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-01-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western's net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western's purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western's net revenue is computed

  11. Natural Gas Hydrate as a Storage Mechanism for Safe, Sustainable and Economical Production from Offshore Petroleum Reserves

    Directory of Open Access Journals (Sweden)

    Michael T. Kezirian

    2017-06-01

    Full Text Available Century Fathom presents an innovative process to utilize clathrate hydrates for the production, storage and transportation of natural gas from off-shore energy reserves in deep ocean environments. The production scheme was developed by considering the preferred state of natural gas in the deep ocean and addressing the hazards associated with conventional techniques to transport natural gas. It also is designed to mitigate the significant shipping cost inherent with all methods. The resulting proposed scheme restrains transport in the hydrate form to the ocean and does not attempt to supply energy to the residential consumer. Instead; the target recipients are industrial operations. The resulting operational concept is intrinsically safer by design; environmentally sustainable and significantly cost-effective compared with currently proposed schemes for the use of natural gas hydrates and has the potential to be the optimal solution for new production of reserves; depending on the distance to shore and capacity of the petroleum reserve. A potential additional benefit is the byproduct of desalinated water.

  12. Determination of the Optimal Operating Parameters for Jefferson Laboratory's Cryogenic Cold Compressor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jr., Joe D. [Christopher Newport Univ., Newport News, VA (United States)

    2003-01-01

    The technology of Jefferson Laboratory's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) and Free Electron Laser (FEL) requires cooling from one of the world's largest 2K helium refrigerators known as the Central Helium Liquefier (CHL). The key characteristic of CHL is the ability to maintain a constant low vapor pressure over the large liquid helium inventory using a series of five cold compressors. The cold compressor system operates with a constrained discharge pressure over a range of suction pressures and mass flows to meet the operational requirements of CEBAF and FEL. The research topic is the prediction of the most thermodynamically efficient conditions for the system over its operating range of mass flows and vapor pressures with minimum disruption to JLab operations. The research goal is to find the operating points for each cold compressor for optimizing the overall system at any given flow and vapor pressure.

  13. Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees

    International Nuclear Information System (INIS)

    Longhi, Antonio Eduardo Bier; Pessoa, Artur Alves; Garcia, Pauli Adriano de Almada

    2015-01-01

    Since low-demand safety instrumented systems (SISs) do not operate continuously, their failures are often only detected when the system is demanded or tested. The conduction of tests, besides adding costs, can raise risks of failure on demand during their execution and also increase the frequency of spurious activation. Additionally, it is often necessary to interrupt production to carry out tests. In light of this scenario, this paper presents a model to optimize strategies for operation and testing of these systems, applying modeling by fault trees associated with optimization by a genetic algorithm. Its main differences are: (i) ability to represent four modes of operation and test them for each SIS subsystem; (ii) ability to represent a SIS that executes more than one safety instrumented function; (iii) ability to keep track of the down-time generated in the production system; and (iv) alteration of a genetic selection mechanism that permits identification of more efficient solutions with smaller influence on the optimization parameters. These aspects are presented by applying this model in three case studies. The results obtained show the applicability of the proposed approach and its potential to help make more informed decisions. - Highlights: • Models the integrity and cost related to operation and testing of low-demand SISs. • Keeps track of the production down-time generated by SIS tests and repairs. • Allows multiobjective optimization to identify operation and testing strategies. • Enables integrated assessment of an SIS that executes more than one SIF. • Allows altering the selection mechanism to identify the most efficient strategies

  14. Application of Hybrid Meta-Heuristic Techniques for Optimal Load Shedding Planning and Operation in an Islanded Distribution Network Integrated with Distributed Generation

    Directory of Open Access Journals (Sweden)

    Jafar Jallad

    2018-05-01

    Full Text Available In a radial distribution network integrated with distributed generation (DG, frequency and voltage instability could occur due to grid disconnection, which would result in an islanded network. This paper proposes an optimal load shedding scheme to balance the electricity demand and the generated power of DGs. The integration of the Firefly Algorithm and Particle Swarm Optimization (FAPSO is proposed for the application of the planned load shedding and under frequency load shedding (UFLS scheme. In planning mode, the hybrid optimization maximizes the amount of load remaining and improves the voltage profile of load buses within allowable limits. Moreover, the hybrid optimization can be used in UFLS scheme to identify the optimal combination of loads that need to be shed from a network in operation mode. In order to assess the capabilities of the hybrid optimization, the IEEE 33-bus radial distribution system and part of the Malaysian distribution network with different types of DGs were used. The response of the proposed optimization method in planning and operation were compared with other optimization techniques. The simulation results confirmed the effectiveness of the proposed hybrid optimization in planning mode and demonstrated that the proposed UFLS scheme is quick enough to restore the system frequency without overshooting in less execution time.

  15. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    Science.gov (United States)

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Performance of Optimization Heuristics for the Operational Planning of Multi-energy Storage Systems

    Science.gov (United States)

    Haas, J.; Schradi, J.; Nowak, W.

    2016-12-01

    In the transition to low-carbon energy sources, energy storage systems (ESS) will play an increasingly important role. Particularly in the context of solar power challenges (variability, uncertainty), ESS can provide valuable services: energy shifting, ramping, robustness against forecast errors, frequency support, etc. However, these qualities are rarely modelled in the operational planning of power systems because of the involved computational burden, especially when multiple ESS technologies are involved. This work assesses two optimization heuristics for speeding up the optimal operation problem. It compares their accuracy (in terms of costs) and speed against a reference solution. The first heuristic (H1) is based on a merit order. Here, the ESS are sorted from lower to higher operational costs (including cycling costs). For each time step, the cheapest available ESS is used first, followed by the second one and so on, until matching the net load (demand minus available renewable generation). The second heuristic (H2) uses the Fourier transform to detect the main frequencies that compose the net load. A specific ESS is assigned to each frequency range, aiming to smoothen the net load. Finally, the reference solution is obtained with a mixed integer linear program (MILP). H1, H2 and MILP are subject to technical constraints (energy/power balance, ramping rates, on/off states...). Costs due to operation, replacement (cycling) and unserved energy are considered. Four typical days of a system with a high share of solar energy were used in several test cases, varying the resolution from one second to fifteen minutes. H1 and H2 achieve accuracies of about 90% and 95% in average, and speed-up times of two to three and one to two orders of magnitude, respectively. The use of the heuristics looks promising in the context of planning the expansion of power systems, especially when their loss of accuracy is outweighed by solar or wind forecast errors.

  17. How to use Big Data technologies to optimize operations in Upstream Petroleum Industry

    Directory of Open Access Journals (Sweden)

    Abdelkader Baaziz

    2013-12-01

    Full Text Available “Big Data is the oil of the new economy” is the most famous citation during the three last years. It has even been adopted by the World Economic Forum in 2011. In fact, Big Data is like crude! It’s valuable, but if unrefined it cannot be used. It must be broken down, analyzed for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big Data. Understanding and leveraging data in the upstream segment enables firms to remain competitive throughout planning, exploration, delineation, and field development.Oil & Gas Companies conduct advanced geophysics modeling and simulation to support operations where 2D, 3D & 4D Seismic generate significant data during exploration phases. They closely monitor the performance of their operational assets. To do this, they use tens of thousands of data-collecting sensors in subsurface wells and surface facilities to provide continuous and real-time monitoring of assets and environmental conditions. Unfortunately, this information comes in various and increasingly complex forms, making it a challenge to collect, interpret, and leverage the disparate data. As an example, Chevron’s internal IT traffic alone exceeds 1.5 terabytes a day.Big Data technologies integrate common and disparate data sets to deliver the right information at the appropriate time to the correct decision-maker. These capabilities help firms act on large volumes of data, transforming decision-making from reactive to proactive and optimizing all phases of exploration, development and production. Furthermore, Big Data offers multiple opportunities to ensure safer, more responsible operations. Another invaluable effect of that would be shared learning.The aim of this paper is to explain how to use Big Data technologies to optimize operations. How can Big Data help experts to decision-making leading the desired outcomes?Keywords:Big Data; Analytics

  18. Analysis of the Effects of a Flexible Ramping Ancillary Service Product on Power System Operations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Krad, Ibrahim; Ibanez, Eduardo; Ela, Erik

    2015-10-19

    The recent increased interest in utilizing variable generation (VG) resources such as wind and solar in power systems has motivated investigations into new operating procedures. Although these resources provide desirable value to a system (e.g., no fuel costs or emissions), interconnecting them provides unique challenges. Their variable, non-controllable nature in particular requires significant attention, because it directly results in increased power system variability and uncertainty. One way to handle this is via new operating reserve schemes. Operating reserves provide upward and downward generation and ramping capacity to counteract uncertainty and variability prior to their realization. For instance, uncertainty and variability in real-time dispatch can be accounted for in the hour-ahead unit commitment. New operating reserve methodologies that specifically account for the increased variability and uncertainty caused by VG are currently being investigated and developed by academia and industry. This paper examines one method inspired by the new operating reserve product being proposed by the California Independent System Operator. The method is based on examining the potential ramping requirements at any given time and enforcing those requirements via a reserve demand curve in the market-clearing optimization as an additional ancillary service product.

  19. Stability assessment and operating parameter optimization on experimental results in very small plasma focus, using sensitivity analysis

    Science.gov (United States)

    Jafari, Hossein; Habibi, Morteza

    2018-04-01

    Regarding the importance of stability in small-scale plasma focus devices for producing the repeatable and strength pinching, a sensitivity analysis approach has been used for applicability in design parameters optimization of an actually very low energy device (84 nF, 48 nH, 8-9.5 kV, ∼2.7-3.7 J). To optimize the devices functional specification, four different coaxial electrode configurations have been studied, scanning an argon gas pressure range from 0.6 to 1.5 mbar via the charging voltage variation study from 8.3 to 9.3 kV. The strength and efficient pinching was observed for the tapered anode configuration, over an expanded operating pressure range of 0.6 to 1.5 mbar. The analysis results showed that the most sensitive of the pinch voltage was associated with 0.88 ± 0.8mbar argon gas pressure and 8.3-8.5 kV charging voltage, respectively, as the optimum operating parameters. From the viewpoint of stability assessment of the device, it was observed that the least variation in stable operation of the device was for a charging voltage range of 8.3 to 8.7 kV in an operating pressure range from 0.6 to 1.1 mbar.

  20. Bayesian optimization analysis of containment-venting operation in a boiling water reactor severe accident

    International Nuclear Information System (INIS)

    Zheng, Xiaoyu; Ishikawa, Jun; Sugiyama, Tomoyuki; Maryyama, Yu

    2017-01-01

    Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the “black-box” code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents

  1. Bayesian optimization analysis of containment-venting operation in a boiling water reactor severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoyu; Ishikawa, Jun; Sugiyama, Tomoyuki; Maryyama, Yu [Nuclear Safety Research Center, Japan Atomic Energy Agency, Ibaraki (Japan)

    2017-03-15

    Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the “black-box” code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.

  2. Demand Response Spinning Reserve Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  3. Toward Coordinated Robust Allocation of Reserve Policies for a Cell-based Power System

    DEFF Research Database (Denmark)

    Hu, Junjie; Heussen, Kai; Claessens, Bert

    2016-01-01

    Conventional regulation reserves have fixed participation factors and are thus not well suited to utilize differentiated capabilities of ancillary service providers. This study applies linear decision rules-based (LDR) control policies, which effectively adapt the present participation factor...... in dependence of the imbalance signal of previous time steps. The LDR-policies are centrally computed using a robust optimization approach which takes into account both the covariances of historic imbalance signals and the operational flexibility of ancillary service providers. The concept is then extended...... to the cooperation of multiple cells. Two illustrating examples are presented to show the functioning of the proposed LDR method....

  4. Optimal sizing of utility-scale photovoltaic power generation complementarily operating with hydropower: A case study of the world’s largest hydro-photovoltaic plant

    International Nuclear Information System (INIS)

    Fang, Wei; Huang, Qiang; Huang, Shengzhi; Yang, Jie; Meng, Erhao; Li, Yunyun

    2017-01-01

    Highlights: • Feasibility of complementary hydro-photovoltaic operation across the world is revealed. • Three scenarios of the novel operation mode are proposed to satisfy different load demand. • A method for optimally sizing a utility-scale photovoltaic plant is developed by maximizing the net revenue during lifetime. • The influence of complementary hydro-photovoltaic operation upon water resources allocation is investigated. - Abstract: The high variability of solar energy makes utility-scale photovoltaic power generation confront huge challenges to penetrate into power system. In this paper, the complementary hydro-photovoltaic operation is explored, aiming at improving the power quality of photovoltaic and promoting the integration of photovoltaic into the system. First, solar-rich and hydro-rich regions across the world are revealed, which are suitable for implementing the complementary hydro-photovoltaic operation. Then, three practical scenarios of the novel operation mode are proposed for better satisfying different types of load demand. Moreover, a method for optimal sizing of a photovoltaic plant integrated into a hydropower plant is developed by maximizing the net revenue during lifetime. Longyangxia complementary hydro-photovoltaic project, the current world’s largest hydro-photovoltaic power plant, is selected as a case study and its optimal photovoltaic capacities of different scenarios are calculated. Results indicate that hydropower installed capacity and annual solar curtailment rate play crucial roles in the size optimization of a photovoltaic plant and complementary hydro-photovoltaic operation exerts little adverse effect upon the water resources allocation of Longyangxia reservoir. The novel operation mode not only improves the penetration of utility-scale photovoltaic power generation but also can provide a valuable reference for the large-scale utilization of other kinds of renewable energy worldwide.

  5. XY vs X Mixer in Quantum Alternating Operator Ansatz for Optimization Problems with Constraints

    Science.gov (United States)

    Wang, Zhihui; Rubin, Nicholas; Rieffel, Eleanor G.

    2018-01-01

    Quantum Approximate Optimization Algorithm, further generalized as Quantum Alternating Operator Ansatz (QAOA), is a family of algorithms for combinatorial optimization problems. It is a leading candidate to run on emerging universal quantum computers to gain insight into quantum heuristics. In constrained optimization, penalties are often introduced so that the ground state of the cost Hamiltonian encodes the solution (a standard practice in quantum annealing). An alternative is to choose a mixing Hamiltonian such that the constraint corresponds to a constant of motion and the quantum evolution stays in the feasible subspace. Better performance of the algorithm is speculated due to a much smaller search space. We consider problems with a constant Hamming weight as the constraint. We also compare different methods of generating the generalized W-state, which serves as a natural initial state for the Hamming-weight constraint. Using graph-coloring as an example, we compare the performance of using XY model as a mixer that preserves the Hamming weight with the performance of adding a penalty term in the cost Hamiltonian.

  6. Optimal stochastic reactive power scheduling in a microgrid considering voltage droop scheme of DGs and uncertainty of wind farms

    International Nuclear Information System (INIS)

    Khorramdel, Benyamin; Raoofat, Mahdi

    2012-01-01

    Distributed Generators (DGs) in a microgrid may operate in three different reactive power control strategies, including PV, PQ and voltage droop schemes. This paper proposes a new stochastic programming approach for reactive power scheduling of a microgrid, considering the uncertainty of wind farms. The proposed algorithm firstly finds the expected optimal operating point of each DG in V-Q plane while the wind speed is a probabilistic variable. A multi-objective function with goals of loss minimization, reactive power reserve maximization and voltage security margin maximization is optimized using a four-stage multi-objective nonlinear programming. Then, using Monte Carlo simulation enhanced by scenario reduction technique, the proposed algorithm simulates actual condition and finds optimal operating strategy of DGs. Also, if any DGs are scheduled to operate in voltage droop scheme, the optimum droop is determined. Also, in the second part of the research, to enhance the optimality of the results, PSO algorithm is used for the multi-objective optimization problem. Numerical examples on IEEE 34-bus test system including two wind turbines are studied. The results show the benefits of voltage droop scheme for mitigating the impacts of the uncertainty of wind. Also, the results show preference of PSO method in the proposed approach. -- Highlights: ► Reactive power scheduling in a microgrid considering loss and voltage security. ► Stochastic nature of wind farms affects reactive power scheduling and is considered. ► Advantages of using the voltage droop characteristics of DGs in voltage security are shown. ► Power loss, voltage security and VAR reserve are three goals of a multi-objective optimization. ► Monte Carlo method with scenario reduction is used to determine optimal control strategy of DGs.

  7. Optimization of AGS Polarized Proton Operation with the Warm Helical Snake

    CERN Document Server

    Takano, Junpei; Bai, Mei; Brown, Kevin A; Gardner, Chris J; Glenn, Joseph; Hattori, Toshiyuki; Huang, Haixin; Luccio, Alfredo U; MacKay, William W; Okamura, Masahiro; Roser, Thomas; Tepikian, Steven; Tsoupas, Nicholaos

    2005-01-01

    A normal conducting helical dipole partial Siberian snake (Warm Snake) has been installed in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) for overcoming all of imperfection depolarizing resonances and reducing the transverse coupling resonances caused by the solenoidal Siberian snake which had been operated in AGS before the last polarized run. The polarized proton beam has been accelerated successfully with the warm snake and the polarization at extraction of the AGS was increased to 50% as opposed to 40% with the solenoidal snake. The magnetic field and beam trajectory in the warm snake was calculated by using the OPERA-3D/TOSCA software. We present optimization of the warm snake with beam during RUN5.

  8. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto

    2018-01-12

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.

  9. Using SoC Online Correction Method Based on Parameter Identification to Optimize the Operation Range of NI-MH Battery for Electric Boat

    Directory of Open Access Journals (Sweden)

    Bumin Meng

    2018-03-01

    Full Text Available This paper discusses a design of a Battery Management System (BMS solution for extending the life of Nickel-Metal Hydride (NI-MH battery. Combined with application of electric boat, a State of Charge (SoC optimal operation range control method based on high precision energy metering and online SoC correction is proposed. Firstly, a power metering scheme is introduced to reduce the original energy measurement error. Secondly, by establishing a model based parameter identification method and combining with Extended Kalman Filter (EKF method, the estimation accuracy of SoC is guaranteed. Finally, SoC optimal operation range control method is presented to make battery running in the optimal range. After two years of operation, the battery managed by proposed method has much better status, compared to batteries that use AH integral method and fixed SoC operating range. Considering the SoC estimation of NI-MH battery is more difficult becausing special electrical characteristics, proposed method also would have a very good reference value for other types of battery management.

  10. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.

    Science.gov (United States)

    Zhang, Yongyong; Xia, Jun; Chen, Junfeng; Zhang, Minghua

    2011-02-01

    Water quantity and quality joint operation is a new mode in the present dams' operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.

  11. Optimal Design and Operation of In-Situ Chemical Oxidation Using Stochastic Cost Optimization Toolkit

    Science.gov (United States)

    Kim, U.; Parker, J.; Borden, R. C.

    2014-12-01

    In-situ chemical oxidation (ISCO) has been applied at many dense non-aqueous phase liquid (DNAPL) contaminated sites. A stirred reactor-type model was developed that considers DNAPL dissolution using a field-scale mass transfer function, instantaneous reaction of oxidant with aqueous and adsorbed contaminant and with readily oxidizable natural oxygen demand ("fast NOD"), and second-order kinetic reactions with "slow NOD." DNAPL dissolution enhancement as a function of oxidant concentration and inhibition due to manganese dioxide precipitation during permanganate injection are included in the model. The DNAPL source area is divided into multiple treatment zones with different areas, depths, and contaminant masses based on site characterization data. The performance model is coupled with a cost module that involves a set of unit costs representing specific fixed and operating costs. Monitoring of groundwater and/or soil concentrations in each treatment zone is employed to assess ISCO performance and make real-time decisions on oxidant reinjection or ISCO termination. Key ISCO design variables include the oxidant concentration to be injected, time to begin performance monitoring, groundwater and/or soil contaminant concentrations to trigger reinjection or terminate ISCO, number of monitoring wells or geoprobe locations per treatment zone, number of samples per sampling event and location, and monitoring frequency. Design variables for each treatment zone may be optimized to minimize expected cost over a set of Monte Carlo simulations that consider uncertainty in site parameters. The model is incorporated in the Stochastic Cost Optimization Toolkit (SCOToolkit) program, which couples the ISCO model with a dissolved plume transport model and with modules for other remediation strategies. An example problem is presented that illustrates design tradeoffs required to deal with characterization and monitoring uncertainty. Monitoring soil concentration changes during ISCO

  12. Optimization of Design Parameters and Operating Conditions of Electrochemical Capacitors for High Energy and Power Performance

    Science.gov (United States)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-03-01

    Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte

  13. First Operational Experience and Performance Optimization of the ATLAS Magnet Cryogenic System

    CERN Document Server

    Delruelle, N; Dudarev, A; Passardi, G; Ten Kate, H H J

    2012-01-01

    The ATLAS magnet system, comprising a superconducting central solenoid and three superconducting toroids, has been successfully ramped up for the first time to the nominal operational current of 20.4 kA on 4th August 2008. Since then, new cryogenic operational challenges have been raised, like the smoothing of steady-state parameters, the enhancing of transient procedures to minimize thermal shocks on the magnet cold masses, the optimization of the complex cryogenic system in order to reduce the compressors electric consumption and finally how to avoid regular clogging of the shield refrigerator by water contamination. This paper presents the heat load identification of the various cryogenic sub-systems done at 4.5 K and how one of these loads was reduced, what was gained - in term of electrical consumption - by tuning the turbines settings of the main refrigerator and finally the first consolidation of the cryogenic system implemented in order to minimize the detector downtime during LHC beam runs.

  14. Parameter Optimization and Operating Strategy of a TEG System for Railway Vehicles

    Science.gov (United States)

    Heghmanns, A.; Wilbrecht, S.; Beitelschmidt, M.; Geradts, K.

    2016-03-01

    A thermoelectric generator (TEG) system demonstrator for diesel electric locomotives with the objective of reducing the mechanical load on the thermoelectric modules (TEM) is developed and constructed to validate a one-dimensional thermo-fluid flow simulation model. The model is in good agreement with the measurements and basis for the optimization of the TEG's geometry by a genetic multi objective algorithm. The best solution has a maximum power output of approx. 2.7 kW and does not exceed the maximum back pressure of the diesel engine nor the maximum TEM hot side temperature. To maximize the reduction of the fuel consumption, an operating strategy regarding the system power output for the TEG system is developed. Finally, the potential consumption reduction in passenger and freight traffic operating modes is estimated under realistic driving conditions by means of a power train and lateral dynamics model. The fuel savings are between 0.5% and 0.7%, depending on the driving style.

  15. Distributed Energy Systems Integration and Demand Optimization for Autonomous Operations and Electric Grid Transactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenlots, San Francisco, CA (United States); Mashayekh, Salman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stadler, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Center for Energy and Innovation Technologies (Austria); Yin, Rongxin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Zhenhua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-11-29

    Distributed power systems in the U.S. and globally are evolving to provide reliable and clean energy to consumers. In California, existing regulations require significant increases in renewable generation, as well as identification of customer-side distributed energy resources (DER) controls, communication technologies, and standards for interconnection with the electric grid systems. As DER deployment expands, customer-side DER control and optimization will be critical for system flexibility and demand response (DR) participation, which improves the economic viability of DER systems. Current DER systems integration and communication challenges include leveraging the existing DER and DR technology and systems infrastructure, and enabling optimized cost, energy and carbon choices for customers to deploy interoperable grid transactions and renewable energy systems at scale. Our paper presents a cost-effective solution to these challenges by exploring communication technologies and information models for DER system integration and interoperability. This system uses open standards and optimization models for resource planning based on dynamic-pricing notifications and autonomous operations within various domains of the smart grid energy system. It identifies architectures and customer engagement strategies in dynamic DR pricing transactions to generate feedback information models for load flexibility, load profiles, and participation schedules. The models are tested at a real site in California—Fort Hunter Liggett (FHL). Furthermore, our results for FHL show that the model fits within the existing and new DR business models and networked systems for transactive energy concepts. Integrated energy systems, communication networks, and modeling tools that coordinate supply-side networks and DER will enable electric grid system operators to use DER for grid transactions in an integrated system.

  16. Operation costs and pollutant emissions reduction by definition of new collection scheduling and optimization of MSW collection routes using GIS. The case study of Barreiro, Portugal.

    Science.gov (United States)

    Zsigraiova, Zdena; Semiao, Viriato; Beijoco, Filipa

    2013-04-01

    This work proposes an innovative methodology for the reduction of the operation costs and pollutant emissions involved in the waste collection and transportation. Its innovative feature lies in combining vehicle route optimization with that of waste collection scheduling. The latter uses historical data of the filling rate of each container individually to establish the daily circuits of collection points to be visited, which is more realistic than the usual assumption of a single average fill-up rate common to all the system containers. Moreover, this allows for the ahead planning of the collection scheduling, which permits a better system management. The optimization process of the routes to be travelled makes recourse to Geographical Information Systems (GISs) and uses interchangeably two optimization criteria: total spent time and travelled distance. Furthermore, rather than using average values, the relevant parameters influencing fuel consumption and pollutant emissions, such as vehicle speed in different roads and loading weight, are taken into consideration. The established methodology is applied to the glass-waste collection and transportation system of Amarsul S.A., in Barreiro. Moreover, to isolate the influence of the dynamic load on fuel consumption and pollutant emissions a sensitivity analysis of the vehicle loading process is performed. For that, two hypothetical scenarios are tested: one with the collected volume increasing exponentially along the collection path; the other assuming that the collected volume decreases exponentially along the same path. The results evidence unquestionable beneficial impacts of the optimization on both the operation costs (labor and vehicles maintenance and fuel consumption) and pollutant emissions, regardless the optimization criterion used. Nonetheless, such impact is particularly relevant when optimizing for time yielding substantial improvements to the existing system: potential reductions of 62% for the total

  17. Determination of the Cascade Reservoir Operation for Optimal Firm-Energy Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Azmeri

    2013-08-01

    Full Text Available Indonesia today face a new paradigm in water management where aim to apply integrated water resources management has become unavoidable task in purpose of achieving greater level of effectiveness and efficiency. On of most interesting case study is the case of Citarum river, one of the most potential river for water supply in West Java, Indonesia. Alongside the river, Saguling, Cirata and Djuanda Reservoirs had been constructed in series/cascade. Saguling and Cirata reservoirs are particularly operated for hydroelectric power and Djuanda is multipurpose reservoir mainly operated for irrigation and contribute domestic water supply for Jakarta (capital city of Indonesia. Basically all reservoirs are relying on same resources, therefore this condition has considered addressing management and operational problem. Therefore, an approach toward new management and operation system are urgently required in order to achieve the effective and efficient output and to avoid conflicts of water used. This study aims to obtain energy production from Citarum Cascade Reservoir System using Genetic Algorithms optimization with the objective function to maximize firm-energy. Firm-energy is the minimum energy requirements must be available in a certain time period. Then, the result obtained by using the energy produced by GA is compared to the conventional searching technique of Non-Linier Programming (NLP. The GA derived operating curves reveal the higher energy and firm-energy than NLP model

  18. Wildlife reserves, populations, and hunting outcome with smart wildlife

    DEFF Research Database (Denmark)

    Jensen, Frank; Jacobsen, Jette Bredahl; Strange, Niels

    2014-01-01

    We consider a hunting area and a wildlife reserve and answer the question: How does clever migration decision affect the social optimal and the private optimal hunting levels and population stocks? We analyze this in a model allowing for two-way migration between hunting and reserve areas, where...... the populations’ migration decisions depend on both hunting pressure and relative population densities. In the social optimum a pure stress effect on the behavior of smart wildlife exists. This implies that the population level in the wildlife reserve tends to increase and the population level in the hunting area...... and hunting levels tend to decrease. On the other hand, the effect on stock tends to reduce the population in the wildlife reserve and increase the population in the hunting area and thereby also increase hunting. In the case of the private optimum, open-access is assumed and we find that the same qualitative...

  19. Optimization theory with applications

    CERN Document Server

    Pierre, Donald A

    1987-01-01

    Optimization principles are of undisputed importance in modern design and system operation. They can be used for many purposes: optimal design of systems, optimal operation of systems, determination of performance limitations of systems, or simply the solution of sets of equations. While most books on optimization are limited to essentially one approach, this volume offers a broad spectrum of approaches, with emphasis on basic techniques from both classical and modern work.After an introductory chapter introducing those system concepts that prevail throughout optimization problems of all typ

  20. Operation planning device

    International Nuclear Information System (INIS)

    Watanabe, Takashi; Odakawa, Naoto; Erikuchi, Makoto; Okada, Masayuki; Koizumi, Atsuhiko.

    1996-01-01

    The device of the present invention provides a device suitable for monitoring a reactor core state and operation replanning in terms of reactor operation. Namely, (1) an operation result difference judging means judges that replanning is necessary when the operation results deviates from the operation planning, (2) an operation replanning rule data base storing means stores a deviation key which shows various kinds of states where the results deviate from the planning and a rule for replanning for returning to the operation planning on every deviating key, (3) an operation replanning means forms a new operation planning in accordance with the rule which is retrieved based on the deviation key, (4) an operation planning optimizing rule data base storing means evaluates the reformed planning and stores it on every evaluation item, (5) an operation planning optimization means correct the operation planning data so as to be optimized when the evaluation of the means (4) is less than a reference value, and (6) an operation planning display means edits adaptable operation planning data and the result of the evaluation and displays them. (I.S.)

  1. Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2009-01-01

    Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.

  2. Reserve-Constrained Multiarea Environmental/Economic Dispatch Using Enhanced Particle Swarm Optimization

    OpenAIRE

    Wang, Lingfeng; Singh, Chanan

    2007-01-01

    Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria

  3. A hybrid multi-level optimization approach for the dynamic synthesis/design and operation/control under uncertainty of a fuel cell system

    International Nuclear Information System (INIS)

    Kim, Kihyung; Spakovsky, Michael R. von; Wang, M.; Nelson, Douglas J.

    2011-01-01

    During system development, large-scale, complex energy systems require multi-disciplinary efforts to achieve system quality, cost, and performance goals. As systems become larger and more complex, the number of possible system configurations and technologies, which meet the designer's objectives optimally, increases greatly. In addition, both transient and environmental effects may need to be taken into account. Thus, the difficulty of developing the system via the formulation of a single optimization problem in which the optimal synthesis/design and operation/control of the system are achieved simultaneously is great and rather problematic. This difficulty is further heightened with the introduction of uncertainty analysis, which transforms the problem from a purely deterministic one into a probabilistic one. Uncertainties, system complexity and nonlinearity, and large numbers of decision variables quickly render the single optimization problem unsolvable by conventional, single-level, optimization strategies. To address these difficulties, the strategy adopted here combines a dynamic physical decomposition technique for large-scale optimization with a response sensitivity analysis method for quantifying system response uncertainties to given uncertainty sources. The feasibility of such a hybrid approach is established by applying it to the synthesis/design and operation/control of a 5 kW proton exchange membrane (PEM) fuel cell system.

  4. Hardened Flip-Flop Optimized for Subthreshold Operation Heavy Ion Characterization of a Radiation

    Directory of Open Access Journals (Sweden)

    Eric Bozeman

    2012-05-01

    Full Text Available A novel Single Event Upset (SEU tolerant flip-flop design is proposed, which is well suited for very-low power electronics that operate in subthreshold ( < Vt ≈ 500 mV. The proposed flip-flop along with a traditional (unprotected flip-flop, a Sense-Amplifier-based Rad-hard Flip-Flop (RSAFF and a Dual Interlocked storage Cell (DICE flip-flop were all fabricated in MIT Lincoln Lab’s XLP 0.15 μm fully-depleted SOI CMOS technology—a process optimized for subthreshold operation. At the Cyclotron Institute at Texas A&M University, all four cells were subjected to heavy ion characterization in which the circuits were dynamically updated with alternating data and then checked for SEUs at both subthreshold (450 mV and superthreshold (1.5 V levels. The proposed flip-flop never failed, while the traditional and DICE designs did demonstrate faulty behavior. Simulations were conducted with the XLP process and the proposed flip-flop provided an improved energy delay product relative to the other non-faulty rad-hard flip-flop at subthreshold voltage operation. According to the XLP models operating in subthreshold at 250 mV, performance was improved by 31% and energy consumption was reduced by 27%.

  5. Energetic optimization of the chilled water systems operation at hotels

    Directory of Open Access Journals (Sweden)

    Reineris Montero Laurencio

    2015-12-01

    Full Text Available The hotel exploitation, while continuing to satisfy the customers, needs to decrease the requests of electric power as the principal energy carrier. Solving issues regarding the occupation of a hotel integrally, taking the air conditioning as center of attention, which demands the bigger consumptions of electricity, results in a complex task. To solve this issue, a procedure was implemented to optimize the operation of the water-chilled systems. The procedure integrates an energy model with a strategy of low occupation following energetic criteria based on combinatorial-evolutionary criteria. To classify the information, the formulation of the tasks and the synthesis of the solutions, a methodology of analysis and synthesis of engineering is used. The energetic model considers the variability of the local climatology and the occupation of the selected rooms, and includes: the thermal model of the building obtained by means of artificial neural networks, the hydraulic model and the model of the compression work. These elements allow to find the variable of decision occupation, performing intermediate calculations to obtain the velocity of rotation in the centrifugal pump and the output temperature of the cooler water, minimizing the requirements of electric power in the water-chilled systems. To evaluate the states of the system, a combinatorial optimization is used through the following methods: simple exhaustive, stepped exhaustive or genetic algorithm depending on the quantity of variants of occupation. All calculation tasks and algorithms of the procedure were automated through a computer application.

  6. Installation and first operation of the negative ion optimization experiment

    International Nuclear Information System (INIS)

    De Muri, Michela; Cavenago, Marco; Serianni, Gianluigi; Veltri, Pierluigi; Bigi, Marco; Pasqualotto, Roberto; Barbisan, Marco; Recchia, Mauro; Zaniol, Barbara; Kulevoy, Timour; Petrenko, Sergey; Baseggio, Lucio; Cervaro, Vannino; Agostini, Fabio Degli; Franchin, Luca; Laterza, Bruno; Minarello, Alessandro; Rossetto, Federico; Sattin, Manuele; Zucchetti, Simone

    2015-01-01

    Highlights: • Negative ion sources are key components of the neutral beam injectors. • The NIO1 experiment is a RF ion source, 60 kV–135 mA hydrogen negative ion beam. • NIO1 can contribute to beam extraction and optics thanks to quick replacement and upgrading of parts. • This work presents installation, status and first experiments results of NIO1. - Abstract: Negative ion sources are key components of the neutral beam injectors for thermonuclear fusion experiments. The NIO1 experiment is a radio frequency ion source generating a 60 kV–135 mA hydrogen negative ion beam. The beam is composed of nine beamlets over an area of about 40 × 40 mm"2. This experiment is jointly developed by Consorzio RFX and INFN-LNL, with the purpose of providing and optimizing a test ion source, capable of working in continuous mode and in conditions similar to those foreseen for the larger ion sources of the ITER neutral beam injectors. At present research and development activities on these ion sources still address several important issues related to beam extraction and optics optimization, to which the NIO1 test facility can contribute thanks to its modular design, which allows for quick replacement and upgrading of components. This contribution presents the installation phases, the status of the test facility and the results of the first experiments, which have demonstrated that the source can operate in continuous mode.

  7. Naval Petroleum and Oil Shale Reserves

    International Nuclear Information System (INIS)

    1992-01-01

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming

  8. Optimization of Cognitive Radio Secondary Information Gathering Station Positioning and Operating Channel Selection for IoT Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jinyi Wen

    2018-01-01

    Full Text Available The Internet of Things (IoT is the interconnection of different objects through the internet using different communication technologies. The objects are equipped with sensors and communications modules. The cognitive radio network is a key technique for the IoT and can effectively address spectrum-related issues for IoT applications. In our paper, a novel method for IoT sensor networks is proposed to obtain the optimal positions of secondary information gathering stations (SIGSs and to select the optimal operating channel. Our objective is to maximize secondary system capacity while protecting the primary system. In addition, we propose an appearance probability matrix for secondary IoT devices (SIDs to maximize the supportable number of SIDs that can be installed in a car, in wearable devices, or for other monitoring devices, based on optimal deployment and probability. We derive fitness functions based on the above objectives and also consider signal to interference-plus-noise ratio (SINR and position constraints. The particle swarm optimization (PSO technique is used to find the best position and operating channel for the SIGSs. In a simulation study, the performance of the proposed method is evaluated and compared with a random resources allocation algorithm (parts of this paper were presented at the ICTC2017 conference (Wen et al., 2017.

  9. Session 7: Reserve

    International Nuclear Information System (INIS)

    Bailey, R.; Crockford, G.

    2001-01-01

    The reserve session was devoted to some issues that came up through the workshop, which were grouped into three main areas: The Global Accelerator Network, Problems of stress and how to get organized to minimize them, What should an operations group be responsible for? This paper summarizes the discussions that took place. (author)

  10. Optimal Control and Optimization of Stochastic Supply Chain Systems

    CERN Document Server

    Song, Dong-Ping

    2013-01-01

    Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject in the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies.                 In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of ...

  11. US uranium reserves

    International Nuclear Information System (INIS)

    Hansen, M.V.

    1981-01-01

    The current low level of demand, compounded by rapidly rising costs and low prices, has caused a significant reduction in drilling for uranium in the United States, and the trend is likely to continue for a few more years. The effect on uranium reserves will be fewer additions to reserves because less exploration is being done. Further reductions will occur, especially in low-cost reserves, because of increasing costs, continuing depletion through production, and erosion through the high grading of deposits to fulfill previous contractual commitments. During the past several years, it has been necessary to increase the upper reserve cost level twice to compensate for rising costs. Rising costs are reducing the $15 reserves, the cost category corresponding most closely to the present market price, to an insignificant level. An encouraging factor related to US uranium reserves is that the US position internationally, as far as quantity is concerned, is not bad for the longer term. Also, there is a general opinion that US consumers would rather contract for domestic uranium than for foreign because of greater assurance of supply. Still another factor, nearly impossible to assess, is what effect rising costs in other countries will have on their uranium reserves. The annual conferences between the Grand Junction Area Office staff and major uranium companies provide a broad overview of the industry's perception of the future. It is not optimistic for the short term. Many companies are reducing their exploration and mining programs; some are switching to other more marketable mineral commodities, and a few are investing more heavily in foreign ventures. However, there is general optimism for the long term, and many predict a growth in demand in the mid-1980s. If the industry can survive the few lean years ahead, rising prices may restore its viability to former levels

  12. New approach for strategic bidding of Gencos in energy and spinning reserve markets

    International Nuclear Information System (INIS)

    Soleymani, S.; Ranjbar, A.M.; Shirani, A.R.

    2007-01-01

    In restructured and de-regulated power systems, generating companies (Gencos) are responsible for supplying electricity for both energy and reserve markets, which usually operate simultaneously. In this condition, the question is how much and for what price must each Genco generate for each market to maximize its profit, so this paper intends to answer to this question. In this paper, first, the combined energy and reserve markets are considered, and the Nash equilibrium points are determined. Then, the bidding strategies for each Genco at these points will be presented. The bids for the energy and 10 min spinning reserve (TMSR) markets are separated in the second stage, and again, the bidding strategies for each Genco for the two separated markets will be demonstrated. Comparison of the results shows that the separated bidding strategies, while being simplified with the algebraic optimization model and reducing the time consumed, give the same results as the combined ones. The Western System Coordinating Council (WSCC) nine bus test system is employed to illustrate and verify the results of the proposed method

  13. Optimal operating conditions of a transcritical endoreversible cycle using a low enthalpy heat source

    International Nuclear Information System (INIS)

    Rachedi, Malika; Feidt, Michel; Amirat, Madjid; Merzouk, Mustapha

    2016-01-01

    Highlights: • Thermodynamics analysis of a finite size heat engine driven by a finite heat source. • Mathematical modelling of a transcritical endoreversible organic Rankine cycle. • Parametric study of the optimum operating conditions of transcritical cycle. • Choice of appropriate parameters could lead to very promising efficiencies. - Abstract: In the context of thermodynamic analysis of finite dimensions systems, we studied the optimum operating conditions of an endoreversible thermal machine. In this study, we considered a transcritical cycle, considering external irreversibilities. The hot reservoir is a low enthalpy geothermal heat source; therefore, it is assumed to be finite, whereas the cold reservoir is assumed to be infinite. The power optimisation is investigated by searching the optimum effectiveness of the heat-exchanger at the hot side of the engine. The sum of the total effectiveness and the second law of thermodynamics are used as constraints for optimisation. The optimal temperatures of the working fluid and optimum performances are evaluated based on the most significant parameters of the system: (1) the ratio of heat capacity rate of the working fluid to the heat capacity rate of the coolant and (2) the ratio of the sink temperature to the temperature of the hot source. The parametric study of the cycle and its approximation by a trilateral cycle enabled us to determine the optimum value of the effectiveness of the heat exchangers and the optimal operating temperatures of the cycle considered. The efficiencies obtained are in the range of 15–25% and was found to exceed the efficiency expected by the Curzon and Ahlborn prevision; meanwhile, the Carnot efficiency remains at a high limit.

  14. Optimization of operation cycles in BWRs using neural networks; Optimizacion de ciclos de operacion en BWRs usando redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J. J.; Castillo, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Alejandro P, D., E-mail: juanjose.ortiz@inin.gob.mx [Universidad de Granada, ETS de Ingenierias, Informatica y de Telecomunicacion, C/Daniel Saucedo Aranda s/n, 18071 Granada (Spain)

    2011-11-15

    The first results of a system for the optimization of operation cycles in boiling water reactors by means of a multi state recurrent neural network are present in this work. The neural network finds the best combination of fuel cells; fuel reloads and control bars patterns previously designed, according to an energy function that qualifies the performance of the three partial solutions for the solution of the whole problem. The partial solutions are designed by means of optimization systems non couple among them and that can use any optimization technique. The phase of the fuel axial design is not made and the size of the axial areas is fixed during the optimization process. The methodology was applied to design a balance cycle of 18 months for the reactors of the nuclear power station of Laguna Verde. The results show that is possible to find combinations of partial solutions that in set represent good solutions to the complete design problem of an operation cycle of a nuclear reactor. The results are compared with others obtained previously by other techniques. This system was developed in platform Li nux and programmed in Fortran 95 taking advantage of the 8 nuclei of a work station Dell Precision T7400. (Author)

  15. Optimal management of nutrient reserves in microorganisms under time-varying environmental conditions.

    Science.gov (United States)

    Nev, Olga A; Nev, Oleg A; van den Berg, Hugo A

    2017-09-21

    Intracellular reserves are a conspicuous feature of many bacteria; such internal stores are often present in the form of inclusions in which polymeric storage compounds are accumulated. Such reserves tend to increase in times of plenty and be used up in times of scarcity. Mathematical models that describe the dynamical nature of reserve build-up and use are known as "cell quota," "dynamic energy/nutrient budget," or "variable-internal-stores" models. Here we present a stoichiometrically consistent macro-chemical model that accounts for variable stores as well as adaptive allocation of building blocks to various types of catalytic machinery. The model posits feedback loops linking expression of assimilatory machinery to reserve density. The precise form of the "regulatory law" at the heart of such a loop expresses how the cell manages internal stores. We demonstrate how this "regulatory law" can be recovered from experimental data using several empirical data sets. We find that stores should be expected to be negligibly small in stable growth-sustaining environments, but prominent in environments characterised by marked fluctuations on time scales commensurate with the inherent dynamic time scale of the organismal system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Development of performance model and optimization strategy for standalone operation of CPV-hydrogen system utilizing multi-junction solar cell

    KAUST Repository

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Ng, Kim Choon

    2017-01-01

    Despite highest energy potential, solar energy is only available during diurnal period with varying intensity. Therefore, owing to solar intermittency, solar energy systems need to operate in standalone configuration for steady power supply which requires reliable and sustainable energy storage. Hydrogen production has proved to be the most reliable and sustainable energy storage option for medium and long term operation. However, at the first priority, solar energy must be captured with high efficiency, in order to reduce the overall size of the system and energy storage. Multi-junction solar cells (MJCs) provide highest energy efficiency among all of the photovoltaic technologies and the concentrated photovoltaic (CPV) system concept makes their use cost effective. However, literature is lacking the performance model and optimization strategy for standalone operation of the CPV-hydrogen system. In addition, there is no commercial tool available that can analyze CPV performance, utilizing multi-junction solar cell. This paper proposes the performance model for the CPV-hydrogen systems and the multi-objective optimization strategy for its standalone operation and techno-economic analysis, using micro genetic algorithm (micro-GA). The electrolytic hydrogen production with compression storage and fuel cell, is used as energy storage system. The CPV model is verified for the experimental data of InGaP/InGaAs/Ge triple junction solar cell. An optimal CPV system design is provided for uninterrupted power supply, even under seasonal weather variations. Such approach can be easily integrated with commercial tools and the presented performance data can be used for the design of individual components of the system.

  17. Development of performance model and optimization strategy for standalone operation of CPV-hydrogen system utilizing multi-junction solar cell

    KAUST Repository

    Burhan, Muhammad

    2017-09-16

    Despite highest energy potential, solar energy is only available during diurnal period with varying intensity. Therefore, owing to solar intermittency, solar energy systems need to operate in standalone configuration for steady power supply which requires reliable and sustainable energy storage. Hydrogen production has proved to be the most reliable and sustainable energy storage option for medium and long term operation. However, at the first priority, solar energy must be captured with high efficiency, in order to reduce the overall size of the system and energy storage. Multi-junction solar cells (MJCs) provide highest energy efficiency among all of the photovoltaic technologies and the concentrated photovoltaic (CPV) system concept makes their use cost effective. However, literature is lacking the performance model and optimization strategy for standalone operation of the CPV-hydrogen system. In addition, there is no commercial tool available that can analyze CPV performance, utilizing multi-junction solar cell. This paper proposes the performance model for the CPV-hydrogen systems and the multi-objective optimization strategy for its standalone operation and techno-economic analysis, using micro genetic algorithm (micro-GA). The electrolytic hydrogen production with compression storage and fuel cell, is used as energy storage system. The CPV model is verified for the experimental data of InGaP/InGaAs/Ge triple junction solar cell. An optimal CPV system design is provided for uninterrupted power supply, even under seasonal weather variations. Such approach can be easily integrated with commercial tools and the presented performance data can be used for the design of individual components of the system.

  18. Multicriteria optimization approach to design and operation of district heating supply system over its life cycle

    Science.gov (United States)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał

    2017-11-01

    District Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). In the paper a method for optimized selection of design and operating parameters of long distance Heat Transportation System (HTS) is proposed. The method allows for evaluation of feasibility and effectivity of heat transportation from the considered heat sources. The optimized selection is formulated as multicriteria decision-making problem. The constraints for this problem include a static HTS model, allowing considerations of system life cycle, time variability and spatial topology. Thereby, variation of heat demand and ground temperature within the DH area, insulation and pipe aging and/or terrain elevation profile are taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. Inner pipe diameter, insulation thickness, temperatures and pumping stations locations are optimized during the decision-making process. Moreover, the variants of pipe-laying e.g. one pipeline with the larger diameter or two with the smaller might be considered during the optimization. The analyzed optimization problem is multicriteria, hybrid and nonlinear. Because of such problem properties, the genetic solver was applied.

  19. Optimal design and operation of a photovoltaic-electrolyser system using particle swarm optimisation

    Science.gov (United States)

    Sayedin, Farid; Maroufmashat, Azadeh; Roshandel, Ramin; Khavas, Sourena Sattari

    2016-07-01

    In this study, hydrogen generation is maximised by optimising the size and the operating conditions of an electrolyser (EL) directly connected to a photovoltaic (PV) module at different irradiance. Due to the variations of maximum power points of the PV module during a year and the complexity of the system, a nonlinear approach is considered. A mathematical model has been developed to determine the performance of the PV/EL system. The optimisation methodology presented here is based on the particle swarm optimisation algorithm. By this method, for the given number of PV modules, the optimal sizeand operating condition of a PV/EL system areachieved. The approach can be applied for different sizes of PV systems, various ambient temperatures and different locations with various climaticconditions. The results show that for the given location and the PV system, the energy transfer efficiency of PV/EL system can reach up to 97.83%.

  20. Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Peeler, D.K.; Gilliam, T.M.; Bleier, A.; Spence, R.D.

    1996-01-01

    Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC's Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ''proof-of-principle'' demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings