Optimal neural networks for protein-structure prediction
International Nuclear Information System (INIS)
Head-Gordon, T.; Stillinger, F.H.
1993-01-01
The successful application of neural-network algorithms for prediction of protein structure is stymied by three problem areas: the sparsity of the database of known protein structures, poorly devised network architectures which make the input-output mapping opaque, and a global optimization problem in the multiple-minima space of the network variables. We present a simplified polypeptide model residing in two dimensions with only two amino-acid types, A and B, which allows the determination of the global energy structure for all possible sequences of pentamer, hexamer, and heptamer lengths. This model simplicity allows us to compile a complete structural database and to devise neural networks that reproduce the tertiary structure of all sequences with absolute accuracy and with the smallest number of network variables. These optimal networks reveal that the three problem areas are convoluted, but that thoughtful network designs can actually deconvolute these detrimental traits to provide network algorithms that genuinely impact on the ability of the network to generalize or learn the desired mappings. Furthermore, the two-dimensional polypeptide model shows sufficient chemical complexity so that transfer of neural-network technology to more realistic three-dimensional proteins is evident
Optimal network structure to induce the maximal small-world effect
International Nuclear Information System (INIS)
Zhang Zheng-Zhen; Xu Wen-Jun; Lin Jia-Ru; Zeng Shang-You
2014-01-01
In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (> 500), the small rewiring probability (≍ 0.02) and the small average connection probability (< 0.1). Many previous research results support our results. (interdisciplinary physics and related areas of science and technology)
Discrete particle swarm optimization for identifying community structures in signed social networks.
Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng
2014-10-01
Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.
Optimal pinnate leaf-like network/matrix structure for enhanced conductive cooling
International Nuclear Information System (INIS)
Hu, Liguo; Zhou, Han; Zhu, Hanxing; Fan, Tongxiang; Zhang, Di
2015-01-01
Highlights: • We present a pinnate leaf-like network/matrix structure for conductive cooling. • We study the effect of matrix thickness on network conductive cooling performance. • Matrix thickness determines optimal distance between collection channels in network. • We determine the optimal network architecture from a global perspective. • Optimal network greatly reduces the maximum temperature difference in the network. - Abstract: Heat generated in electronic devices has to be effectively removed because excessive temperature strongly impairs their performance and reliability. Embedding a high thermal conductivity network into an electronic device is an effective method to conduct the generated heat to the outside. In this study, inspired by the pinnate leaf, we present a pinnate leaf-like network embedded in the matrix (i.e., electronic device) to cool the matrix by conduction and develop a method to construct the optimal network. In this method, we first investigate the effect of the matrix thickness on the conductive cooling performance of the network, and then optimize the network architecture from a global perspective so that to minimize the maximum temperature difference between the heat sink and the matrix. The results indicate that the matrix thickness determines the optimal distance of the neighboring collection channels in the network, which minimizes the maximum temperature difference between the matrix and the network, and that the optimal network greatly reduces the maximum temperature difference in the network. The results can serve as a design guide for efficient conductive cooling of electronic devices
Prediction of Optimal Design and Deflection of Space Structures Using Neural Networks
Directory of Open Access Journals (Sweden)
Reza Kamyab Moghadas
2012-01-01
Full Text Available The main aim of the present work is to determine the optimal design and maximum deflection of double layer grids spending low computational cost using neural networks. The design variables of the optimization problem are cross-sectional area of the elements as well as the length of the span and height of the structures. In this paper, a number of double layer grids with various random values of length and height are selected and optimized by simultaneous perturbation stochastic approximation algorithm. Then, radial basis function (RBF and generalized regression (GR neural networks are trained to predict the optimal design and maximum deflection of the structures. The numerical results demonstrate the efficiency of the proposed methodology.
Optimal topologies for maximizing network transmission capacity
Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.
2018-04-01
It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.
Optimization-based topology identification of complex networks
International Nuclear Information System (INIS)
Tang Sheng-Xue; Chen Li; He Yi-Gang
2011-01-01
In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)
Evolutionary-Optimized Photonic Network Structure in White Beetle Wing Scales.
Wilts, Bodo D; Sheng, Xiaoyuan; Holler, Mirko; Diaz, Ana; Guizar-Sicairos, Manuel; Raabe, Jörg; Hoppe, Robert; Liu, Shu-Hao; Langford, Richard; Onelli, Olimpia D; Chen, Duyu; Torquato, Salvatore; Steiner, Ullrich; Schroer, Christian G; Vignolini, Silvia; Sepe, Alessandro
2018-05-01
Most studies of structural color in nature concern periodic arrays, which through the interference of light create color. The "color" white however relies on the multiple scattering of light within a randomly structured medium, which randomizes the direction and phase of incident light. Opaque white materials therefore must be much thicker than periodic structures. It is known that flying insects create "white" in extremely thin layers. This raises the question, whether evolution has optimized the wing scale morphology for white reflection at a minimum material use. This hypothesis is difficult to prove, since this requires the detailed knowledge of the scattering morphology combined with a suitable theoretical model. Here, a cryoptychographic X-ray tomography method is employed to obtain a full 3D structural dataset of the network morphology within a white beetle wing scale. By digitally manipulating this 3D representation, this study demonstrates that this morphology indeed provides the highest white retroreflection at the minimum use of material, and hence weight for the organism. Changing any of the network parameters (within the parameter space accessible by biological materials) either increases the weight, increases the thickness, or reduces reflectivity, providing clear evidence for the evolutionary optimization of this morphology. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Toward Optimal Transport Networks
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
Towards Optimal Transport Networks
Directory of Open Access Journals (Sweden)
Erik P. Vargo
2010-08-01
Full Text Available Our ultimate goal is to design transportation net- works whose dynamic performance metrics (e.g. pas- senger throughput, passenger delay, and insensitivity to weather disturbances are optimized. Here the fo- cus is on optimizing static features of the network that are known to directly aﬀect the network dynamics. First, we present simulation results which support a connection between maximizing the ﬁrst non-trivial eigenvalue of a network's Laplacian and superior air- port network performance. Then, we explore the ef- fectiveness of a tabu search heuristic for optimizing this metric by comparing experimental results to the- oretical upper bounds. We also consider generating upper bounds on a network's algebraic connectivity via the solution of semideﬁnite programming (SDP relaxations. A modiﬁcation of an existing subgraph extraction algorithm is implemented to explore the underlying regional structures in the U.S. airport net- work, with the hope that the resulting localized struc- tures can be optimized independently and reconnected via a "backbone" network to achieve superior network performance.
Optimal Brain Surgeon on Artificial Neural Networks in
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine
2012-01-01
It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick...
Influence maximization in complex networks through optimal percolation
Morone, Flaviano; Makse, Hernan; CUNY Collaboration; CUNY Collaboration
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. Reference: F. Morone, H. A. Makse, Nature 524,65-68 (2015)
Optimization of Actuating Origami Networks
Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard
2015-03-01
Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.
Elements of an algorithm for optimizing a parameter-structural neural network
Mrówczyńska, Maria
2016-06-01
The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
Network synchronization: optimal and pessimal scale-free topologies
International Nuclear Information System (INIS)
Donetti, Luca; Hurtado, Pablo I; Munoz, Miguel A
2008-01-01
By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability
Optimization of controllability and robustness of complex networks by edge directionality
Liang, Man; Jin, Suoqin; Wang, Dingjie; Zou, Xiufen
2016-09-01
Recently, controllability of complex networks has attracted enormous attention in various fields of science and engineering. How to optimize structural controllability has also become a significant issue. Previous studies have shown that an appropriate directional assignment can improve structural controllability; however, the evolution of the structural controllability of complex networks under attacks and cascading has always been ignored. To address this problem, this study proposes a new edge orientation method (NEOM) based on residual degree that changes the link direction while conserving topology and directionality. By comparing the results with those of previous methods in two random graph models and several realistic networks, our proposed approach is demonstrated to be an effective and competitive method for improving the structural controllability of complex networks. Moreover, numerical simulations show that our method is near-optimal in optimizing structural controllability. Strikingly, compared to the original network, our method maintains the structural controllability of the network under attacks and cascading, indicating that the NEOM can also enhance the robustness of controllability of networks. These results alter the view of the nature of controllability in complex networks, change the understanding of structural controllability and affect the design of network models to control such networks.
Influence maximization in complex networks through optimal percolation
Morone, Flaviano; Makse, Hernán A.
2015-08-01
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.
Network synchronization: optimal and pessimal scale-free topologies
Energy Technology Data Exchange (ETDEWEB)
Donetti, Luca [Departamento de Electronica y Tecnologia de Computadores and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hurtado, Pablo I; Munoz, Miguel A [Departamento de Electromagnetismo y Fisica de la Materia and Instituto Carlos I de Fisica Teorica y Computacional Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)], E-mail: mamunoz@onsager.ugr.es
2008-06-06
By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.
Optimized Neural Network for Fault Diagnosis and Classification
International Nuclear Information System (INIS)
Elaraby, S.M.
2005-01-01
This paper presents a developed and implemented toolbox for optimizing neural network structure of fault diagnosis and classification. Evolutionary algorithm based on hierarchical genetic algorithm structure is used for optimization. The simplest feed-forward neural network architecture is selected. Developed toolbox has friendly user interface. Multiple solutions are generated. The performance and applicability of the proposed toolbox is verified with benchmark data patterns and accident diagnosis of Egyptian Second research reactor (ETRR-2)
Directory of Open Access Journals (Sweden)
Marco Scutari
2017-03-01
Full Text Available It is well known in the literature that the problem of learning the structure of Bayesian networks is very hard to tackle: Its computational complexity is super-exponential in the number of nodes in the worst case and polynomial in most real-world scenarios. Efficient implementations of score-based structure learning benefit from past and current research in optimization theory, which can be adapted to the task by using the network score as the objective function to maximize. This is not true for approaches based on conditional independence tests, called constraint-based learning algorithms. The only optimization in widespread use, backtracking, leverages the symmetries implied by the definitions of neighborhood and Markov blanket. In this paper we illustrate how backtracking is implemented in recent versions of the bnlearn R package, and how it degrades the stability of Bayesian network structure learning for little gain in terms of speed. As an alternative, we describe a software architecture and framework that can be used to parallelize constraint-based structure learning algorithms (also implemented in bnlearn and we demonstrate its performance using four reference networks and two real-world data sets from genetics and systems biology. We show that on modern multi-core or multiprocessor hardware parallel implementations are preferable over backtracking, which was developed when single-processor machines were the norm.
Combinatorial optimization networks and matroids
Lawler, Eugene
2011-01-01
Perceptively written text examines optimization problems that can be formulated in terms of networks and algebraic structures called matroids. Chapters cover shortest paths, network flows, bipartite matching, nonbipartite matching, matroids and the greedy algorithm, matroid intersections, and the matroid parity problems. A suitable text or reference for courses in combinatorial computing and concrete computational complexity in departments of computer science and mathematics.
Liu, Penghui; Liu, Jing
2017-06-28
Understanding the emergence of cooperation has long been a challenge across disciplines. Even if network reciprocity reflected the importance of population structure in promoting cooperation, it remains an open question how population structures can be optimized, thereby enhancing cooperation. In this paper, we attempt to apply the evolutionary algorithm (EA) to solve this highly complex problem. However, as it is hard to evaluate the fitness (cooperation level) of population structures, simply employing the canonical evolutionary algorithm (EA) may fail in optimization. Thus, we propose a new EA variant named mlEA-C PD -SFN to promote the cooperation level of scale-free networks (SFNs) in the Prisoner's Dilemma Game (PDG). Meanwhile, to verify the preceding conclusions may not be applied to this problem, we also provide the optimization results of the comparative experiment (EA cluster ), which optimizes the clustering coefficient of structures. Even if preceding research concluded that highly clustered scale-free networks enhance cooperation, we find EA cluster does not perform desirably, while mlEA-C PD -SFN performs efficiently in different optimization environments. We hope that mlEA-C PD -SFN may help promote the structure of species in nature and that more general properties that enhance cooperation can be learned from the output structures.
Urban Traffic Signal System Control Structural Optimization Based on Network Analysis
Directory of Open Access Journals (Sweden)
Li Wang
2013-01-01
Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.
An Optimal Path Computation Architecture for the Cloud-Network on Software-Defined Networking
Directory of Open Access Journals (Sweden)
Hyunhun Cho
2015-05-01
Full Text Available Legacy networks do not open the precise information of the network domain because of scalability, management and commercial reasons, and it is very hard to compute an optimal path to the destination. According to today’s ICT environment change, in order to meet the new network requirements, the concept of software-defined networking (SDN has been developed as a technological alternative to overcome the limitations of the legacy network structure and to introduce innovative concepts. The purpose of this paper is to propose the application that calculates the optimal paths for general data transmission and real-time audio/video transmission, which consist of the major services of the National Research & Education Network (NREN in the SDN environment. The proposed SDN routing computation (SRC application is designed and applied in a multi-domain network for the efficient use of resources, selection of the optimal path between the multi-domains and optimal establishment of end-to-end connections.
Practical synchronization on complex dynamical networks via optimal pinning control
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
NLP model and stochastic multi-start optimization approach for heat exchanger networks
International Nuclear Information System (INIS)
Núñez-Serna, Rosa I.; Zamora, Juan M.
2016-01-01
Highlights: • An NLP model for the optimal design of heat exchanger networks is proposed. • The NLP model is developed from a stage-wise grid diagram representation. • A two-phase stochastic multi-start optimization methodology is utilized. • Improved network designs are obtained with different heat load distributions. • Structural changes and reductions in the number of heat exchangers are produced. - Abstract: Heat exchanger network synthesis methodologies frequently identify good network structures, which nevertheless, might be accompanied by suboptimal values of design variables. The objective of this work is to develop a nonlinear programming (NLP) model and an optimization approach that aim at identifying the best values for intermediate temperatures, sub-stream flow rate fractions, heat loads and areas for a given heat exchanger network topology. The NLP model that minimizes the total annual cost of the network is constructed based on a stage-wise grid diagram representation. To improve the possibilities of obtaining global optimal designs, a two-phase stochastic multi-start optimization algorithm is utilized for the solution of the developed model. The effectiveness of the proposed optimization approach is illustrated with the optimization of two network designs proposed in the literature for two well-known benchmark problems. Results show that from the addressed base network topologies it is possible to achieve improved network designs, with redistributions in exchanger heat loads that lead to reductions in total annual costs. The results also show that the optimization of a given network design sometimes leads to structural simplifications and reductions in the total number of heat exchangers of the network, thereby exposing alternative viable network topologies initially not anticipated.
Uncovering the community structure associated with the diffusion dynamics on networks
International Nuclear Information System (INIS)
Cheng, Xue-Qi; Shen, Hua-Wei
2010-01-01
As two main focuses of the study of complex networks, the community structure and the dynamics on networks have both attracted much attention in various scientific fields. However, it is still an open question how the community structure is associated with the dynamics on complex networks. In this paper, through investigating the diffusion process taking place on networks, we demonstrate that the intrinsic community structure of networks can be revealed by the stable local equilibrium states of the diffusion process. Furthermore, we show that such community structure can be directly identified through the optimization of the conductance of the network, which measures how easily the diffusion among different communities occurs. Tests on benchmark networks indicate that the conductance optimization method significantly outperforms the modularity optimization methods in identifying the community structure of networks. Applications to real world networks also demonstrate the effectiveness of the conductance optimization method. This work provides insights into the multiple topological scales of complex networks, and the community structure obtained can naturally reflect the diffusion capability of the underlying network
A Hierarchical Dispatch Structure for Distribution Network Pricing
Yuan, Zhao; Hesamzadeh, Mohammad Reza
2015-01-01
This paper presents a hierarchical dispatch structure for efficient distribution network pricing. The dispatch coordination problem in the context of hierarchical network operators are addressed. We formulate decentralized generation dispatch into a bilevel optimization problem in which main network operator and the connected distribution network operator optimize their costs in two levels. By using Karush-Kuhn-Tucker conditions and Fortuny-Amat McCarl linearization, the bilevel optimization ...
Directory of Open Access Journals (Sweden)
J. Trdlicka
2010-12-01
Full Text Available This work proposes a distributed algorithm for energy optimal routing in a wireless sensor network. The routing problem is described as a mathematical problem by the minimum-cost multi-commodity network flow problem. Due to the separability of the problem, we use the duality theorem to derive the distributed algorithm. The algorithm computes the energy optimal routing in the network without any central node or knowledge of the whole network structure. Each node only needs to know the flow which is supposed to send or receive and the costs and capacities of the neighboring links. An evaluation of the presented algorithm on benchmarks for the energy optimal data flow routing in sensor networks with up to 100 nodes is presented.
On Adding Structure to Unstructured Overlay Networks
Leitão, João; Carvalho, Nuno A.; Pereira, José; Oliveira, Rui; Rodrigues, Luís
Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining, in each process, a random partial view of peers in the system. The resulting random unstructured topology is suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks. This chapter discusses different techniques that aim at combining the advantages of unstructured and structured networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based on optimizing the gossip mechanism itself.
Optimal Network-Topology Design
Li, Victor O. K.; Yuen, Joseph H.; Hou, Ting-Chao; Lam, Yuen Fung
1987-01-01
Candidate network designs tested for acceptability and cost. Optimal Network Topology Design computer program developed as part of study on topology design and analysis of performance of Space Station Information System (SSIS) network. Uses efficient algorithm to generate candidate network designs consisting of subsets of set of all network components, in increasing order of total costs and checks each design to see whether it forms acceptable network. Technique gives true cost-optimal network and particularly useful when network has many constraints and not too many components. Program written in PASCAL.
Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye
2016-03-01
Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.
Collective network for computer structures
Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY
2011-08-16
A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.
Location based Network Optimizations for Mobile Wireless Networks
DEFF Research Database (Denmark)
Nielsen, Jimmy Jessen
selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...
Optimal transportation networks models and theory
Bernot, Marc; Morel, Jean-Michel
2009-01-01
The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.
Topologically determined optimal stochastic resonance responses of spatially embedded networks
International Nuclear Information System (INIS)
Gosak, Marko; Marhl, Marko; Korosak, Dean
2011-01-01
We have analyzed the stochastic resonance phenomenon on spatial networks of bistable and excitable oscillators, which are connected according to their location and the amplitude of external forcing. By smoothly altering the network topology from a scale-free (SF) network with dominating long-range connections to a network where principally only adjacent oscillators are connected, we reveal that besides an optimal noise intensity, there is also a most favorable interaction topology at which the best correlation between the response of the network and the imposed weak external forcing is achieved. For various distributions of the amplitudes of external forcing, the optimal topology is always found in the intermediate regime between the highly heterogeneous SF network and the strong geometric regime. Our findings thus indicate that a suitable number of hubs and with that an optimal ratio between short- and long-range connections is necessary in order to obtain the best global response of a spatial network. Furthermore, we link the existence of the optimal interaction topology to a critical point indicating the transition from a long-range interactions-dominated network to a more lattice-like network structure.
Evolving production network structures
DEFF Research Database (Denmark)
Grunow, Martin; Gunther, H.O.; Burdenik, H.
2007-01-01
When deciding about future production network configurations, the current structures have to be taken into account. Further, core issues such as the maturity of the products and the capacity requirements for test runs and ramp-ups must be incorporated. Our approach is based on optimization...... modelling and assigns products and capacity expansions to production sites under the above constraints. It also considers the production complexity at the individual sites and the flexibility of the network. Our implementation results for a large manufacturing network reveal substantial possible cost...
Optimization design of LED heat dissipation structure based on strip fins
Xue, Lingyun; Wan, Wenbin; Chen, Qingguang; Rao, Huanle; Xu, Ping
2018-03-01
To solve the heat dissipation problem of LED, a radiator structure based on strip fins is designed and the method to optimize the structure parameters of strip fins is proposed in this paper. The combination of RBF neural networks and particle swarm optimization (PSO) algorithm is used for modeling and optimization respectively. During the experiment, the 150 datasets of LED junction temperature when structure parameters of number of strip fins, length, width and height of the fins have different values are obtained by ANSYS software. Then RBF neural network is applied to build the non-linear regression model and the parameters optimization of structure based on particle swarm optimization algorithm is performed with this model. The experimental results show that the lowest LED junction temperature reaches 43.88 degrees when the number of hidden layer nodes in RBF neural network is 10, the two learning factors in particle swarm optimization algorithm are 0.5, 0.5 respectively, the inertia factor is 1 and the maximum number of iterations is 100, and now the number of fins is 64, the distribution structure is 8*8, and the length, width and height of fins are 4.3mm, 4.48mm and 55.3mm respectively. To compare the modeling and optimization results, LED junction temperature at the optimized structure parameters was simulated and the result is 43.592°C which approximately equals to the optimal result. Compared with the ordinary plate-fin-type radiator structure whose temperature is 56.38°C, the structure greatly enhances heat dissipation performance of the structure.
A probabilistic approach for optimal sensor allocation in structural health monitoring
International Nuclear Information System (INIS)
Azarbayejani, M; Reda Taha, M M; El-Osery, A I; Choi, K K
2008-01-01
Recent advances in sensor technology promote using large sensor networks to efficiently and economically monitor, identify and quantify damage in structures. In structural health monitoring (SHM) systems, the effectiveness and reliability of the sensor network are crucial to determine the optimal number and locations of sensors in SHM systems. Here, we suggest a probabilistic approach for identifying the optimal number and locations of sensors for SHM. We demonstrate a methodology to establish the probability distribution function that identifies the optimal sensor locations such that damage detection is enhanced. The approach is based on using the weights of a neural network trained from simulations using a priori knowledge about damage locations and damage severities to generate a normalized probability distribution function for optimal sensor allocation. We also demonstrate that the optimal sensor network can be related to the highest probability of detection (POD). The redundancy of the proposed sensor network is examined using a 'leave one sensor out' analysis. A prestressed concrete bridge is selected as a case study to demonstrate the effectiveness of the proposed method. The results show that the proposed approach can provide a robust design for sensor networks that are more efficient than a uniform distribution of sensors on a structure
Neural network for nonsmooth pseudoconvex optimization with general convex constraints.
Bian, Wei; Ma, Litao; Qin, Sitian; Xue, Xiaoping
2018-05-01
In this paper, a one-layer recurrent neural network is proposed for solving a class of nonsmooth, pseudoconvex optimization problems with general convex constraints. Based on the smoothing method, we construct a new regularization function, which does not depend on any information of the feasible region. Thanks to the special structure of the regularization function, we prove the global existence, uniqueness and "slow solution" character of the state of the proposed neural network. Moreover, the state solution of the proposed network is proved to be convergent to the feasible region in finite time and to the optimal solution set of the related optimization problem subsequently. In particular, the convergence of the state to an exact optimal solution is also considered in this paper. Numerical examples with simulation results are given to show the efficiency and good characteristics of the proposed network. In addition, some preliminary theoretical analysis and application of the proposed network for a wider class of dynamic portfolio optimization are included. Copyright © 2018 Elsevier Ltd. All rights reserved.
Phase transitions in Pareto optimal complex networks.
Seoane, Luís F; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
Mathematical model of highways network optimization
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
Directory of Open Access Journals (Sweden)
Cécile Bordier
2017-08-01
Full Text Available Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.
Learning Latent Structure in Complex Networks
DEFF Research Database (Denmark)
Mørup, Morten; Hansen, Lars Kai
such as the Modularity, it has recently been shown that latent structure in complex networks is learnable by Bayesian generative link distribution models (Airoldi et al., 2008, Hofman and Wiggins, 2008). In this paper we propose a new generative model that allows representation of latent community structure......Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives...... as in the previous Bayesian approaches and in addition allows learning of node specific link properties similar to that in the modularity objective. We employ a new relaxation method for efficient inference in these generative models that allows us to learn the behavior of very large networks. We compare the link...
Optimal urban networks via mass transportation
Buttazzo, Giuseppe; Stepanov, Eugene; Solimini, Sergio
2009-01-01
Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori.
Directory of Open Access Journals (Sweden)
Abednico Montshiwa
2016-02-01
Full Text Available This paper presents an optimized diamond structured automobile supply chain network towards a robust Business Continuity Management model. The model is necessitated by the nature of the automobile supply chain. Companies in tier two are centralized and numerically limited and have to supply multiple tier one companies with goods and services. The challenge with this supply chain structure is the inherent risks in the supply chain. Once supply chain disruption takes place at tier 2 level, the whole supply chain network suffers huge loses. To address this challenge, the paper replaces Risk Analysis with Risk Ranking and it introduces Supply Chain Cooperation (SCC to the traditional Business Continuity Plan (BCP concept. The paper employed three statistical analysis techniques (correlation analysis, regression analysis and Smart PLS 3.0 calculations. In this study, correlation and regression analysis results on risk rankings, SCC and Business Impact Analysis were significant, ascertaining the value of the model. The multivariate data analysis calculations demonstrated that SCC has a positive total significant effect on risk rankings and BCM while BIA has strongest positive effects on all BCP factors. Finally, sensitivity analysis demonstrated that company size plays a role in BCM.
Energy optimization in mobile sensor networks
Yu, Shengwei
Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while
Self-organization towards optimally interdependent networks by means of coevolution
International Nuclear Information System (INIS)
Wang, Zhen; Szolnoki, Attila; Perc, Matjaž
2014-01-01
Coevolution between strategy and network structure is established as a means to arrive at the optimal conditions needed to resolve social dilemmas. Yet recent research has highlighted that the interdependence between networks may be just as important as the structure of an individual network. We therefore introduce the coevolution of strategy and network interdependence to see whether this can give rise to elevated levels of cooperation in the prisoner's dilemma game. We show that the interdependence between networks self-organizes so as to yield optimal conditions for the evolution of cooperation. Even under extremely adverse conditions, cooperators can prevail where on isolated networks they would perish. This is due to the spontaneous emergence of a two-class society, with only the upper class being allowed to control and take advantage of the interdependence. Spatial patterns reveal that cooperators, once arriving at the upper class, are much more competent than defectors in sustaining compact clusters of followers. Indeed, the asymmetric exploitation of interdependence confers to them a strong evolutionary advantage that may resolve even the toughest of social dilemmas. (paper)
Xie, Rui; Wan, Xianrong; Hong, Sheng; Yi, Jianxin
2017-06-14
The performance of a passive radar network can be greatly improved by an optimal radar network structure. Generally, radar network structure optimization consists of two aspects, namely the placement of receivers in suitable places and selection of appropriate illuminators. The present study investigates issues concerning the joint optimization of receiver placement and illuminator selection for a passive radar network. Firstly, the required radar cross section (RCS) for target detection is chosen as the performance metric, and the joint optimization model boils down to the partition p -center problem (PPCP). The PPCP is then solved by a proposed bisection algorithm. The key of the bisection algorithm lies in solving the partition set covering problem (PSCP), which can be solved by a hybrid algorithm developed by coupling the convex optimization with the greedy dropping algorithm. In the end, the performance of the proposed algorithm is validated via numerical simulations.
A probabilistic computational framework for bridge network optimal maintenance scheduling
International Nuclear Information System (INIS)
Bocchini, Paolo; Frangopol, Dan M.
2011-01-01
This paper presents a probabilistic computational framework for the Pareto optimization of the preventive maintenance applications to bridges of a highway transportation network. The bridge characteristics are represented by their uncertain reliability index profiles. The in/out of service states of the bridges are simulated taking into account their correlation structure. Multi-objective Genetic Algorithms have been chosen as numerical tool for the solution of the optimization problem. The design variables of the optimization are the preventive maintenance schedules of all the bridges of the network. The two conflicting objectives are the minimization of the total present maintenance cost and the maximization of the network performance indicator. The final result is the Pareto front of optimal solutions among which the managers should chose, depending on engineering and economical factors. A numerical example illustrates the application of the proposed approach.
Directory of Open Access Journals (Sweden)
О.С. Якушенко
2010-01-01
Full Text Available The article is devoted to the problem of gas turbine engine (GTE technical state class automatic recognition with operation parameters by neuron networks. The one of main problems for creation the neuron networks is determination of their optimal structures size (amount of layers in network and count of neurons in each layer.The method of neuron network size optimization intended for classification of GTE technical state is considered in the article. Optimization is cared out with taking into account of overlearning effect possibility when a learning network loses property of generalization and begins strictly describing educational data set. To determinate a moment when overlearning effect is appeared in learning neuron network the method of three data sets is used. The method is based on the comparison of recognition quality parameters changes which were calculated during recognition of educational and control data sets. As the moment when network overlearning effect is appeared the moment when control data set recognition quality begins deteriorating but educational data set recognition quality continues still improving is used. To determinate this moment learning process periodically is terminated and simulation of network with education and control data sets is fulfilled. The optimization of two-, three- and four-layer networks is conducted and some results of optimization are shown. Also the extended educational set is created and shown. The set describes 16 GTE technical state classes and each class is represented with 200 points (200 possible technical state class realizations instead of 20 points using in the former articles. It was done to increase representativeness of data set.In the article the algorithm of optimization is considered and some results which were obtained with it are shown. The results of experiments were analyzed to determinate most optimal neuron network structure. This structure provides most high-quality GTE
Optimization model for the design of distributed wastewater treatment networks
Directory of Open Access Journals (Sweden)
Ibrić Nidret
2012-01-01
Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.
Quantized hopfield networks for reliability optimization
International Nuclear Information System (INIS)
Nourelfath, Mustapha; Nahas, Nabil
2003-01-01
The use of neural networks in the reliability optimization field is rare. This paper presents an application of a recent kind of neural networks in a reliability optimization problem for a series system with multiple-choice constraints incorporated at each subsystem, to maximize the system reliability subject to the system budget. The problem is formulated as a nonlinear binary integer programming problem and characterized as an NP-hard problem. Our design of neural network to solve efficiently this problem is based on a quantized Hopfield network. This network allows us to obtain optimal design solutions very frequently and much more quickly than others Hopfield networks
Optimal map of the modular structure of complex networks
International Nuclear Information System (INIS)
Arenas, A; Borge-Holthoefer, J; Gomez, S; Zamora-Lopez, G
2010-01-01
The modular structure is pervasive in many complex networks of interactions observed in natural, social and technological sciences. Its study sheds light on the relation between the structure and the function of complex systems. Generally speaking, modules are islands of highly connected nodes separated by a relatively small number of links. Every module can have the contributions of links from any node in the network. The challenge is to disentangle these contributions to understand how the modular structure is built. The main problem is that the analysis of a certain partition into modules involves, in principle, as much data as the number of modules times the number of nodes. To confront this challenge, here we first define the contribution matrix, the mathematical object containing all the information about the partition of interest, and then we use truncated singular value decomposition to extract the best representation of this matrix in a plane. The analysis of this projection allows us to scrutinize the skeleton of the modular structure, revealing the structure of individual modules and their interrelations.
A bridge network maintenance framework for Pareto optimization of stakeholders/users costs
International Nuclear Information System (INIS)
Orcesi, Andre D.; Cremona, Christian F.
2010-01-01
For managing highway bridges, stakeholders require efficient and practical decision making techniques. In a context of limited bridge management budget, it is crucial to determine the most effective breakdown of financial resources over the different structures of a bridge network. Bridge management systems (BMSs) have been developed for such a purpose. However, they generally rely on an individual approach. The influence of the position of bridges in the transportation network, the consequences of inadequate service for the network users, due to maintenance actions or bridge failure, are not taken into consideration. Therefore, maintenance strategies obtained with current BMSs do not necessarily lead to an optimal level of service (LOS) of the bridge network for the users of the transportation network. Besides, the assessment of the structural performance of highway bridges usually requires the access to the geometrical and mechanical properties of its components. Such information might not be available for all structures in a bridge network for which managers try to schedule and prioritize maintenance strategies. On the contrary, visual inspections are performed regularly and information is generally available for all structures of the bridge network. The objective of this paper is threefold (i) propose an advanced network-level bridge management system considering the position of each bridge in the transportation network, (ii) use information obtained at visual inspections to assess the performance of bridges, and (iii) compare optimal maintenance strategies, obtained with a genetic algorithm, when considering interests of users and bridge owner either separately as conflicting criteria, or simultaneously as a common interest for the whole community. In each case, safety and serviceability aspects are taken into account in the model when determining optimal strategies. The theoretical and numerical developments are applied on a French bridge network.
A new approach to self-organizing fuzzy polynomial neural networks guided by genetic optimization
International Nuclear Information System (INIS)
Oh, Sung-Kwun; Pedrycz, Witold
2005-01-01
In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks (FPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology. The underlying methodology involves mechanisms of genetic optimization, especially genetic algorithms (GAs). Let us recall that the design of the 'conventional' FPNNs uses an extended Group Method of Data Handling (GMDH) and exploits a fixed fuzzy inference type located at each FPN of the FPNN as well as considers a fixed number of input nodes at FPNs (or nodes) located in each layer. The proposed FPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. The structural optimization is realized via GAs whereas in the case of the parametric optimization we proceed with a standard least square method based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. The performance of the proposed gFPNN is quantified through experimentation that exploits standard data already being used in fuzzy modeling. The results reveal superiority of the proposed networks over the existing fuzzy and neural models
Spatial prisoner's dilemma optimally played in small-world networks
International Nuclear Information System (INIS)
Masuda, Naoki; Aihara, Kazuyuki
2003-01-01
Cooperation is commonly found in ecological and social systems even when it apparently seems that individuals can benefit from selfish behavior. We investigate how cooperation emerges with the spatial prisoner's dilemma played in a class of networks ranging from regular lattices to random networks. We find that, among these networks, small-world topology is the optimal structure when we take into account the speed at which cooperative behavior propagates. Our results may explain why the small-world properties are self-organized in real networks
Optimization of temporal networks under uncertainty
Wiesemann, Wolfram
2012-01-01
Many decision problems in Operations Research are defined on temporal networks, that is, workflows of time-consuming tasks whose processing order is constrained by precedence relations. For example, temporal networks are used to model projects, computer applications, digital circuits and production processes. Optimization problems arise in temporal networks when a decision maker wishes to determine a temporal arrangement of the tasks and/or a resource assignment that optimizes some network characteristic (e.g. the time required to complete all tasks). The parameters of these optimization probl
Localization of multilayer networks by optimized single-layer rewiring.
Jalan, Sarika; Pradhan, Priodyuti
2018-04-01
We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.
Optimization of robustness of interdependent network controllability by redundant design.
Directory of Open Access Journals (Sweden)
Zenghu Zhang
Full Text Available Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy or DBS (degree based strategy for node backup and HDF(high degree first for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability.
WiMAX network performance monitoring & optimization
DEFF Research Database (Denmark)
Zhang, Qi; Dam, H
2008-01-01
frequency reuse, capacity planning, proper network dimensioning, multi-class data services and so on. Furthermore, as a small operator we also want to reduce the demand for sophisticated technicians and man labour hours. To meet these critical demands, we design a generic integrated network performance......In this paper we present our WiMAX (worldwide interoperability for microwave access) network performance monitoring and optimization solution. As a new and small WiMAX network operator, there are many demanding issues that we have to deal with, such as limited available frequency resource, tight...... this integrated network performance monitoring and optimization system in our WiMAX networks. This integrated monitoring and optimization system has such good flexibility and scalability that individual function component can be used by other operators with special needs and more advanced function components can...
Analysis of the structure of complex networks at different resolution levels
Energy Technology Data Exchange (ETDEWEB)
Arenas, A.; Fernandez, A.; Gomez, S.
2008-02-28
Modular structure is ubiquitous in real-world complex networks, and its detection is important because it gives insights in the structure-functionality relationship. The standard approach is based on the optimization of a quality function, modularity, which is a relative quality measure for a partition of a network into modules. Recently some authors have pointed out that the optimization of modularity has a fundamental drawback: the existence of a resolution limit beyond which no modular structure can be detected even though these modules might have own entity. The reason is that several topological descriptions of the network coexist at different scales, which is, in general, a fingerprint of complex systems. Here we propose a method that allows for multiple resolution screening of the modular structure. The method has been validated using synthetic networks, discovering the predefined structures at all scales. Its application to two real social networks allows to find the exact splits reported in the literature, as well as the substructure beyond the actual split.
SOCIAL NETWORK OPTIMIZATION A NEW METHAHEURISTIC FOR GENERAL OPTIMIZATION PROBLEMS
Directory of Open Access Journals (Sweden)
Hassan Sherafat
2017-12-01
Full Text Available In the recent years metaheuristics were studied and developed as powerful technics for hard optimization problems. Some of well-known technics in this field are: Genetic Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization, and Swarm Intelligence, which are applied successfully to many complex optimization problems. In this paper, we introduce a new metaheuristic for solving such problems based on social networks concept, named as Social Network Optimization – SNO. We show that a wide range of np-hard optimization problems may be solved by SNO.
Optimization of neural networks for time-domain simulation of mooring lines
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye; Voie, Per Erlend Torbergsen; Winther, Ole
2016-01-01
, they also can be used to rank the importance of the various network inputs. The dynamic response of slender marine structures often depends on several external load components, and by applying the optimization procedures to a trained artificial neural network, it is possible to classify the external force...
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
Wireless Sensor Network Optimization: Multi-Objective Paradigm
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-01-01
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271
Network ownership and optimal tariffs for natural gas transport
International Nuclear Information System (INIS)
Hagen, Kaare P.; Kind, Hans Jarle; Sannarnes, Jan Gaute
2004-11-01
This paper addresses the issue of national optimal tariffs for transportation of natural gas in a setting where national gas production in its entirety is exported to end-user markets abroad. In a situation where the transportation network is owned altogether by a vertically integrated national gas producer, it is shown that the optimal tariff depends on the ownership structure in the integrated transportation company as well as in the non-facility based gas company. There are two reasons why it is possibly optimal with a mark-up on marginal transportation costs. First, there is a premium on public revenue if domestic taxation is distorting. Second, with incomplete national taxation of rents from the gas sector, the transportation tariffs can serve as a second best way of appropriating rents accruing to foreigners. In a situation where the network is run as a separate entity subject to a rate of return regulation, it will be optimal to discriminate the tariffs between shippers for the usual Ramseyean reasons. (Author)
2016 Network Games, Control, and Optimization Conference
Jimenez, Tania; Solan, Eilon
2017-01-01
This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other relate...
Airborne Network Optimization with Dynamic Network Update
2015-03-26
source si and a target ti . For each commodity (si, ki) the commodity specifies a non- negative demand di [5]. The objective of the multi-commodity...queue predictions, and network con- gestion [15]. The implementation of the DRQC uses the Kalman filter to predict the state of the network and optimize
Exploring biological network structure with clustered random networks
Directory of Open Access Journals (Sweden)
Bansal Shweta
2009-12-01
Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in
Directory of Open Access Journals (Sweden)
Rutger Goekoop
Full Text Available INTRODUCTION: Human personality is described preferentially in terms of factors (dimensions found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. AIM: To directly compare the ability of network community detection (NCD and principal component factor analysis (PCA to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R. METHODS: 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. RESULTS: At facet level, NCS showed a best match (96.2% with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80% with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. CONCLUSION: We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.
Analysis of the structure of complex networks at different resolution levels
International Nuclear Information System (INIS)
Arenas, A; Fernandez, A; Gomez, S
2008-01-01
Modular structure is ubiquitous in real-world complex networks, and its detection is important because it gives insights into the structure-functionality relationship. The standard approach is based on the optimization of a quality function, modularity, which is a relative quality measure for the partition of a network into modules. Recently, some authors (Fortunato and Barthelemy 2007 Proc. Natl Acad. Sci. USA 104 36 and Kumpula et al 2007 Eur. Phys. J. B 56 41) have pointed out that the optimization of modularity has a fundamental drawback: the existence of a resolution limit beyond which no modular structure can be detected even though these modules might have their own entity. The reason is that several topological descriptions of the network coexist at different scales, which is, in general, a fingerprint of complex systems. Here, we propose a method that allows for multiple resolution screening of the modular structure. The method has been validated using synthetic networks, discovering the predefined structures at all scales. Its application to two real social networks allows us to find the exact splits reported in the literature, as well as the substructure beyond the actual split
Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing
2017-07-19
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.
ENERGY OPTIMIZATION IN CLUSTER BASED WIRELESS SENSOR NETWORKS
Directory of Open Access Journals (Sweden)
T. SHANKAR
2014-04-01
Full Text Available Wireless sensor networks (WSN are made up of sensor nodes which are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the networks lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. Optimizing energy consumption is the main concern for designing and planning the operation of the WSN. Clustering technique is one of the methods utilized to extend lifetime of the network by applying data aggregation and balancing energy consumption among sensor nodes of the network. This paper proposed new version of Low Energy Adaptive Clustering Hierarchy (LEACH, protocols called Advanced Optimized Low Energy Adaptive Clustering Hierarchy (AOLEACH, Optimal Deterministic Low Energy Adaptive Clustering Hierarchy (ODLEACH, and Varying Probability Distance Low Energy Adaptive Clustering Hierarchy (VPDL combination with Shuffled Frog Leap Algorithm (SFLA that enables selecting best optimal adaptive cluster heads using improved threshold energy distribution compared to LEACH protocol and rotating cluster head position for uniform energy dissipation based on energy levels. The proposed algorithm optimizing the life time of the network by increasing the first node death (FND time and number of alive nodes, thereby increasing the life time of the network.
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Directory of Open Access Journals (Sweden)
Julio Michael Stern
2014-03-01
Full Text Available This article presents a simple derivation of optimization models for reaction networks leading to a generalized form of the mass-action law, and compares the formal structure of Minimum Information Divergence, Quadratic Programming and Kirchhoff type network models. These optimization models are used in related articles to develop and illustrate the operation of ontology alignment algorithms and to discuss closely connected issues concerning the epistemological and statistical significance of sharp or precise hypotheses in empirical science.
Optimization-Based Approaches to Control of Probabilistic Boolean Networks
Directory of Open Access Journals (Sweden)
Koichi Kobayashi
2017-02-01
Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.
Directory of Open Access Journals (Sweden)
Andrzej Wędzik
2015-09-01
Full Text Available An internal network of a wind farm is similar to a wide network structure. Wind turbines are deployed over a vast area, and cable lines used to interconnect them may have lengths reaching tens of kilometres. The cost of constructing such a network is a major component of the entire investment. Therefore, it is advisable to develop a configuration of such a farm’s internal connections which will minimise the cost, while complying with technical requirements even at the design stage. So far this has usually been done within two independent processes. At first the network structure ensuring the shortest possible connections between the turbines is determined. Then appropriate cables compliant with technical regulations are selected for the specified structure. But does this design approach ensure the optimal (lowest investment cost? This paper gives an answer to this question. A method for accomplishing the task given in the title is presented. Examples of calculations are presented and results are compared for the two methods of optimal wind farm internal connection structure design and cable cross-section dimensioning: two-stage and integrated. The usefulness of employing the Mixed Integer Nonlinear Programming (MNLP method in the process of determining the optimal structure of a wind farm’s cable network is demonstrated.
Self-Optimization of LTE Networks Utilizing Celnet Xplorer
Buvaneswari, A; Polakos, Paul; Buvaneswari, Arumugam
2010-01-01
In order to meet demanding performance objectives in Long Term Evolution (LTE) networks, it is mandatory to implement highly efficient, autonomic self-optimization and configuration processes. Self-optimization processes have already been studied in second generation (2G) and third generation (3G) networks, typically with the objective of improving radio coverage and channel capacity. The 3rd Generation Partnership Project (3GPP) standard for LTE self-organization of networks (SON) provides guidelines on self-configuration of physical cell ID and neighbor relation function and self-optimization for mobility robustness, load balancing, and inter-cell interference reduction. While these are very important from an optimization perspective of local phenomenon (i.e., the eNodeB's interaction with its neighbors), it is also essential to architect control algorithms to optimize the network as a whole. In this paper, we propose a Celnet Xplorer-based SON architecture that allows detailed analysis of network performan...
Optimal networks of future gravitational-wave telescopes
Raffai, Péter; Gondán, László; Heng, Ik Siong; Kelecsényi, Nándor; Logue, Josh; Márka, Zsuzsa; Márka, Szabolcs
2013-08-01
We aim to find the optimal site locations for a hypothetical network of 1-3 triangular gravitational-wave telescopes. We define the following N-telescope figures of merit (FoMs) and construct three corresponding metrics: (a) capability of reconstructing the signal polarization; (b) accuracy in source localization; and (c) accuracy in reconstructing the parameters of a standard binary source. We also define a combined metric that takes into account the three FoMs with practically equal weight. After constructing a geomap of possible telescope sites, we give the optimal 2-telescope networks for the four FoMs separately in example cases where the location of the first telescope has been predetermined. We found that based on the combined metric, placing the first telescope to Australia provides the most options for optimal site selection when extending the network with a second instrument. We suggest geographical regions where a potential second and third telescope could be placed to get optimal network performance in terms of our FoMs. Additionally, we use a similar approach to find the optimal location and orientation for the proposed LIGO-India detector within a five-detector network with Advanced LIGO (Hanford), Advanced LIGO (Livingston), Advanced Virgo, and KAGRA. We found that the FoMs do not change greatly in sites within India, though the network can suffer a significant loss in reconstructing signal polarizations if the orientation angle of an L-shaped LIGO-India is not set to the optimal value of ˜58.2°( + k × 90°) (measured counterclockwise from East to the bisector of the arms).
Optimal transport on supply-demand networks.
Chen, Yu-Han; Wang, Bing-Hong; Zhao, Li-Chao; Zhou, Changsong; Zhou, Tao
2010-06-01
In the literature, transport networks are usually treated as homogeneous networks, that is, every node has the same function, simultaneously providing and requiring resources. However, some real networks, such as power grids and supply chain networks, show a far different scenario in which nodes are classified into two categories: supply nodes provide some kinds of services, while demand nodes require them. In this paper, we propose a general transport model for these supply-demand networks, associated with a criterion to quantify their transport capacities. In a supply-demand network with heterogeneous degree distribution, its transport capacity strongly depends on the locations of supply nodes. We therefore design a simulated annealing algorithm to find the near optimal configuration of supply nodes, which remarkably enhances the transport capacity compared with a random configuration and outperforms the degree target algorithm, the betweenness target algorithm, and the greedy method. This work provides a start point for systematically analyzing and optimizing transport dynamics on supply-demand networks.
The optimal structure-conductivity relation in epoxy-phthalocyanine nanocomposites.
Huijbregts, L J; Brom, H B; Brokken-Zijp, J C M; Kemerink, M; Chen, Z; Goeje, M P de; Yuan, M; Michels, M A J
2006-11-23
Phthalcon-11 (aquocyanophthalocyaninatocobalt (III)) forms semiconducting nanocrystals that can be dispersed in epoxy coatings to obtain a semiconducting material with a low percolation threshold. We investigated the structure-conductivity relation in this composite and the deviation from its optimal realization by combining two techniques. The real parts of the electrical conductivity of a Phthalcon-11/epoxy coating and of Phthalcon-11 powder were measured by dielectric spectroscopy as a function of frequency and temperature. Conducting atomic force microscopy (C-AFM) was applied to quantify the conductivity through the coating locally along the surface. This combination gives an excellent tool to visualize the particle network. We found that a large fraction of the crystals is organized in conducting channels of fractal building blocks. In this picture, a low percolation threshold automatically leads to a conductivity that is much lower than that of the filler. Since the structure-conductivity relation for the found network is almost optimal, a drastic increase in the conductivity of the coating cannot be achieved by changing the particle network, but only by using a filler with a higher conductivity level.
Context-Aware Local Optimization of Sensor Network Deployment
Directory of Open Access Journals (Sweden)
Meysam Argany
2015-07-01
Full Text Available Wireless sensor networks are increasingly used for tracking and monitoring dynamic phenomena in urban and natural areas. Spatial coverage is an important issue in sensor networks in order to fulfill the needs of sensing applications. Optimization methods are widely used to efficiently distribute sensor nodes in the network to achieve a desired level of coverage. Most of the existing algorithms do not consider the characteristics of the real environment in the optimization process. In this paper, we propose the integration of contextual information in optimization algorithms to improve sensor network coverage. First, we investigate the implication of contextual information in sensor networks. Then, a conceptual framework for local context-aware sensor network deployment optimization method is introduced and related algorithms are presented in detail. Finally, several experiments are carried out to evaluate the validity of the proposed method. The results obtained from these experiments show the effectiveness of our approach in different contextual situations.
Optimizing the next generation optical access networks
DEFF Research Database (Denmark)
Amaya Fernández, Ferney Orlando; Soto, Ana Cardenas; Tafur Monroy, Idelfonso
2009-01-01
Several issues in the design and optimization of the next generation optical access network (NG-OAN) are presented. The noise, the distortion and the fiber optic nonlinearities are considered to optimize the video distribution link in a passive optical network (PON). A discussion of the effect...
International Nuclear Information System (INIS)
Hwangbo, Soonho; Lee, In-Beum; Han, Jeehoon
2014-01-01
Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network. In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network
Optimization of stochastic discrete systems and control on complex networks computational networks
Lozovanu, Dmitrii
2014-01-01
This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...
Optimal networks of future gravitational-wave telescopes
International Nuclear Information System (INIS)
Raffai, Péter; Márka, Zsuzsa; Márka, Szabolcs; Gondán, László; Kelecsényi, Nándor; Heng, Ik Siong; Logue, Josh
2013-01-01
We aim to find the optimal site locations for a hypothetical network of 1–3 triangular gravitational-wave telescopes. We define the following N-telescope figures of merit (FoMs) and construct three corresponding metrics: (a) capability of reconstructing the signal polarization; (b) accuracy in source localization; and (c) accuracy in reconstructing the parameters of a standard binary source. We also define a combined metric that takes into account the three FoMs with practically equal weight. After constructing a geomap of possible telescope sites, we give the optimal 2-telescope networks for the four FoMs separately in example cases where the location of the first telescope has been predetermined. We found that based on the combined metric, placing the first telescope to Australia provides the most options for optimal site selection when extending the network with a second instrument. We suggest geographical regions where a potential second and third telescope could be placed to get optimal network performance in terms of our FoMs. Additionally, we use a similar approach to find the optimal location and orientation for the proposed LIGO-India detector within a five-detector network with Advanced LIGO (Hanford), Advanced LIGO (Livingston), Advanced Virgo, and KAGRA. We found that the FoMs do not change greatly in sites within India, though the network can suffer a significant loss in reconstructing signal polarizations if the orientation angle of an L-shaped LIGO-India is not set to the optimal value of ∼58.2°( + k × 90°) (measured counterclockwise from East to the bisector of the arms). (paper)
Directory of Open Access Journals (Sweden)
Nur Faziera Napis
2018-05-01
Full Text Available The presence of optimized distributed generation (DG with suitable distribution network reconfiguration (DNR in the electrical distribution network has an advantage for voltage support, power losses reduction, deferment of new transmission line and distribution structure and system stability improvement. However, installation of a DG unit at non-optimal size with non-optimal DNR may lead to higher power losses, power quality problem, voltage instability and incremental of operational cost. Thus, an appropriate DG and DNR planning are essential and are considered as an objective of this research. An effective heuristic optimization technique named as improved evolutionary particle swarm optimization (IEPSO is proposed in this research. The objective function is formulated to minimize the total power losses (TPL and to improve the voltage stability index (VSI. The voltage stability index is determined for three load demand levels namely light load, nominal load, and heavy load with proper optimal DNR and DG sizing. The performance of the proposed technique is compared with other optimization techniques, namely particle swarm optimization (PSO and iteration particle swarm optimization (IPSO. Four case studies on IEEE 33-bus and IEEE 69-bus distribution systems have been conducted to validate the effectiveness of the proposed IEPSO. The optimization results show that, the best achievement is done by IEPSO technique with power losses reduction up to 79.26%, and 58.41% improvement in the voltage stability index. Moreover, IEPSO has the fastest computational time for all load conditions as compared to other algorithms.
Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao
2018-01-09
River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.
OPTIMAL NETWORK TOPOLOGY DESIGN
Yuen, J. H.
1994-01-01
This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.
Designing optimal greenhouse gas monitoring networks for Australia
Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.
2016-01-01
Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.
Directory of Open Access Journals (Sweden)
Jay Krishna Thakur
2015-08-01
Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.
Network optimization including gas lift and network parameters under subsurface uncertainty
Energy Technology Data Exchange (ETDEWEB)
Schulze-Riegert, R.; Baffoe, J.; Pajonk, O. [SPT Group GmbH, Hamburg (Germany); Badalov, H.; Huseynov, S. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Trick, M. [SPT Group, Calgary, AB (Canada)
2013-08-01
Optimization of oil and gas field production systems poses a great challenge to field development due to complex and multiple interactions between various operational design parameters and subsurface uncertainties. Conventional analytical methods are capable of finding local optima based on single deterministic models. They are less applicable for efficiently generating alternative design scenarios in a multi-objective context. Practical implementations of robust optimization workflows integrate the evaluation of alternative design scenarios and multiple realizations of subsurface uncertainty descriptions. Production or economic performance indicators such as NPV (Net Present Value) are linked to a risk-weighted objective function definition to guide the optimization processes. This work focuses on an integrated workflow using a reservoir-network simulator coupled to an optimization framework. The work will investigate the impact of design parameters while considering the physics of the reservoir, wells, and surface facilities. Subsurface uncertainties are described by well parameters such as inflow performance. Experimental design methods are used to investigate parameter sensitivities and interactions. Optimization methods are used to find optimal design parameter combinations which improve key performance indicators of the production network system. The proposed workflow will be applied to a representative oil reservoir coupled to a network which is modelled by an integrated reservoir-network simulator. Gas-lift will be included as an explicit measure to improve production. An objective function will be formulated for the net present value of the integrated system including production revenue and facility costs. Facility and gas lift design parameters are tuned to maximize NPV. Well inflow performance uncertainties are introduced with an impact on gas lift performance. Resulting variances on NPV are identified as a risk measure for the optimized system design. A
Optimal defense resource allocation in scale-free networks
Zhang, Xuejun; Xu, Guoqiang; Xia, Yongxiang
2018-02-01
The robustness research of networked systems has drawn widespread attention in the past decade, and one of the central topics is to protect the network from external attacks through allocating appropriate defense resource to different nodes. In this paper, we apply a specific particle swarm optimization (PSO) algorithm to optimize the defense resource allocation in scale-free networks. Results reveal that PSO based resource allocation shows a higher robustness than other resource allocation strategies such as uniform, degree-proportional, and betweenness-proportional allocation strategies. Furthermore, we find that assigning less resource to middle-degree nodes under small-scale attack while more resource to low-degree nodes under large-scale attack is conductive to improving the network robustness. Our work provides an insight into the optimal defense resource allocation pattern in scale-free networks and is helpful for designing a more robust network.
Action selection in growing state spaces: control of network structure growth
International Nuclear Information System (INIS)
Thalmeier, Dominik; Kappen, Hilbert J; Gómez, Vicenç
2017-01-01
The dynamical processes taking place on a network depend on its topology. Influencing the growth process of a network therefore has important implications on such dynamical processes. We formulate the problem of influencing the growth of a network as a stochastic optimal control problem in which a structural cost function penalizes undesired topologies. We approximate this control problem with a restricted class of control problems that can be solved using probabilistic inference methods. To deal with the increasing problem dimensionality, we introduce an adaptive importance sampling method for approximating the optimal control. We illustrate this methodology in the context of formation of information cascades, considering the task of influencing the structure of a growing conversation thread, as in Internet forums. Using a realistic model of growing trees, we show that our approach can yield conversation threads with better structural properties than the ones observed without control. (paper)
Modeling and optimization of potable water network
Energy Technology Data Exchange (ETDEWEB)
Djebedjian, B.; Rayan, M.A. [Mansoura Univ., El-Mansoura (Egypt); Herrick, A. [Suez Canal Authority, Ismailia (Egypt)
2000-07-01
Software was developed in order to optimize the design of water distribution systems and pipe networks. While satisfying all the constraints imposed such as pipe diameter and nodal pressure, it was based on a mathematical model treating looped networks. The optimum network configuration and cost are determined considering parameters like pipe diameter, flow rate, corresponding pressure and hydraulic losses. It must be understood that minimum cost is relative to the different objective functions selected. The determination of the proper objective function often depends on the operating policies of a particular company. The solution for the optimization technique was obtained by using a non-linear technique. To solve the optimal design of network, the model was derived using the sequential unconstrained minimization technique (SUMT) of Fiacco and McCormick, which decreased the number of iterations required. The pipe diameters initially assumed were successively adjusted to correspond to the existing commercial pipe diameters. The technique was then applied to a two-loop network without pumps or valves. Fed by gravity, it comprised eight pipes, 1000 m long each. The first evaluation of the method proved satisfactory. As with other methods, it failed to find the global optimum. In the future, research efforts will be directed to the optimization of networks with pumps and reservoirs. 24 refs., 3 tabs., 1 fig.
Optimal hub location in pipeline networks
Energy Technology Data Exchange (ETDEWEB)
Dott, D.R.; Wirasinghe, S.C.; Chakma, A. [Univ. of Calgary, Alberta (Canada)
1996-12-31
This paper discusses optimization strategies and techniques for the location of natural gas marketing hubs in the North American gas pipeline network. A hub is a facility at which inbound and outbound network links meet and freight is redirected towards their destinations. Common examples of hubs used in the gas pipeline industry include gas plants, interconnects and market centers. Characteristics of the gas pipeline industry which are relevant to the optimization of transportation costs using hubs are presented. Allocation techniques for solving location-allocation problems are discussed. An outline of the research in process by the authors in the field of optimal gas hub location concludes the paper.
Fair Optimization and Networks: A Survey
Directory of Open Access Journals (Sweden)
Wlodzimierz Ogryczak
2014-01-01
Full Text Available Optimization models related to designing and operating complex systems are mainly focused on some efficiency metrics such as response time, queue length, throughput, and cost. However, in systems which serve many entities there is also a need for respecting fairness: each system entity ought to be provided with an adequate share of the system’s services. Still, due to system operations-dependant constraints, fair treatment of the entities does not directly imply that each of them is assigned equal amount of the services. That leads to concepts of fair optimization expressed by the equitable models that represent inequality averse optimization rather than strict inequality minimization; a particular widely applied example of that concept is the so-called lexicographic maximin optimization (max-min fairness. The fair optimization methodology delivers a variety of techniques to generate fair and efficient solutions. This paper reviews fair optimization models and methods applied to systems that are based on some kind of network of connections and dependencies, especially, fair optimization methods for the location problems and for the resource allocation problems in communication networks.
LinkMind: Link Optimization in Swarming Mobile Sensor Networks
DEFF Research Database (Denmark)
Ngo, Trung Dung
2012-01-01
of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link...... optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm...
UMTS network planning, optimization, and inter-operation with GSM
Rahnema, Moe
2008-01-01
UMTS Network Planning, Optimization, and Inter-Operation with GSM is an accessible, one-stop reference to help engineers effectively reduce the time and costs involved in UMTS deployment and optimization. Rahnema includes detailed coverage from both a theoretical and practical perspective on the planning and optimization aspects of UMTS, and a number of other new techniques to help operators get the most out of their networks. Provides an end-to-end perspective, from network design to optimizationIncorporates the hands-on experiences of numerous researchersSingle
Directory of Open Access Journals (Sweden)
Shan Pang
2016-01-01
Full Text Available A new aero gas turbine engine gas path component fault diagnosis method based on multi-hidden-layer extreme learning machine with optimized structure (OM-ELM was proposed. OM-ELM employs quantum-behaved particle swarm optimization to automatically obtain the optimal network structure according to both the root mean square error on training data set and the norm of output weights. The proposed method is applied to handwritten recognition data set and a gas turbine engine diagnostic application and is compared with basic ELM, multi-hidden-layer ELM, and two state-of-the-art deep learning algorithms: deep belief network and the stacked denoising autoencoder. Results show that, with optimized network structure, OM-ELM obtains better test accuracy in both applications and is more robust to sensor noise. Meanwhile it controls the model complexity and needs far less hidden nodes than multi-hidden-layer ELM, thus saving computer memory and making it more efficient to implement. All these advantages make our method an effective and reliable tool for engine component fault diagnosis tool.
Directory of Open Access Journals (Sweden)
Chien-Lin Huang
2015-01-01
Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Huang, Can
2018-01-01
–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....
Optimal Design of Gravitational Sewer Networks with General Cellular Automata
Directory of Open Access Journals (Sweden)
Mohammad Hadi Afshar
2014-05-01
Full Text Available In this paper, a Cellular Automata method is applied for the optimal design of sewer networks. The solution of sewer network optimization problems requires the determination of pipe diameters and average pipe cover depths, minimizing the total cost of the sewer network subject to operational constraints. In this paper, the network nodes and upstream and downstream pipe cover depths are considered as CA cells and cell states, respectively, and the links around each cell are taken into account as neighborhood. The proposed method is a general and flexible method for the optimization of sewer networks as it can be used to optimally design both gravity and pumped network due to the use of pipe nodal cover depths as the decision variables. The proposed method is tested against two gravitational sewer networks and the comparison of results with other methods such as Genetic algorithm, Cellular Automata, Ant Colony Optimization Algorithm and Particle Swarm Optimization show the efficiency and effectiveness of the proposed method.
Game theory and extremal optimization for community detection in complex dynamic networks.
Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca
2014-01-01
The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.
Optimal Information Processing in Biochemical Networks
Wiggins, Chris
2012-02-01
A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.
Optimal community structure for social contagions
Su, Zhen; Wang, Wei; Li, Lixiang; Stanley, H. Eugene; Braunstein, Lidia A.
2018-05-01
Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of community networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.
GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE
Directory of Open Access Journals (Sweden)
Ashish Jain
2012-07-01
Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.
Directory of Open Access Journals (Sweden)
Qian Wang
2016-01-01
Full Text Available Spectroscopy is an efficient and widely used quantitative analysis method. In this paper, a spectral quantitative analysis model with combining wavelength selection and topology structure optimization is proposed. For the proposed method, backpropagation neural network is adopted for building the component prediction model, and the simultaneousness optimization of the wavelength selection and the topology structure of neural network is realized by nonlinear adaptive evolutionary programming (NAEP. The hybrid chromosome in binary scheme of NAEP has three parts. The first part represents the topology structure of neural network, the second part represents the selection of wavelengths in the spectral data, and the third part represents the parameters of mutation of NAEP. Two real flue gas datasets are used in the experiments. In order to present the effectiveness of the methods, the partial least squares with full spectrum, the partial least squares combined with genetic algorithm, the uninformative variable elimination method, the backpropagation neural network with full spectrum, the backpropagation neural network combined with genetic algorithm, and the proposed method are performed for building the component prediction model. Experimental results verify that the proposed method has the ability to predict more accurately and robustly as a practical spectral analysis tool.
A study on optimal task decomposition of networked parallel computing using PVM
International Nuclear Information System (INIS)
Seong, Kwan Jae; Kim, Han Gyoo
1998-01-01
A numerical study is performed to investigate the effect of task decomposition on networked parallel processes using Parallel Virtual Machine (PVM). In our study, a PVM program distributed over a network of workstations is used in solving a finite difference version of a one dimensional heat equation, where natural choice of PVM programming structure would be the master-slave paradigm, with the aim of finding an optimal configuration resulting in least computing time including communication overhead among machines. Given a set of PVM tasks comprised of one master and five slave programs, it is found that there exists a pseudo-optimal number of machines, which does not necessarily coincide with the number of tasks, that yields the best performance when the network is under a light usage. Increasing the number of machines beyond this optimal one does not improve computing performance since increase in communication overhead among the excess number of machines offsets the decrease in CPU time obtained by distributing the PVM tasks among these machines. However, when the network traffic is heavy, the results exhibit a more random characteristic that is explained by the random nature of data transfer time
Detecting the overlapping and hierarchical community structure in complex networks
International Nuclear Information System (INIS)
Lancichinetti, Andrea; Fortunato, Santo; Kertesz, Janos
2009-01-01
Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here, we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling different hierarchical levels of organization to be investigated. Tests on real and artificial networks give excellent results.
Liu, Qingshan; Guo, Zhishan; Wang, Jun
2012-02-01
In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.
Nair, Govind; Jungreuthmayer, Christian; Zanghellini, Jürgen
2017-02-01
Knockout strategies, particularly the concept of constrained minimal cut sets (cMCSs), are an important part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives. To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by comparing its performance against other comparable methods on a medium sized E. coli core metabolic network. PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster. Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of E. coli and compare it with OptKnock and RobustKnock. PSOMCS finds competitive knockout strategies and designs compared to other current methods and is in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially relevant organisms become available.
Modeling and optimization of cloud-ready and content-oriented networks
Walkowiak, Krzysztof
2016-01-01
This book focuses on modeling and optimization of cloud-ready and content-oriented networks in the context of different layers and accounts for specific constraints following from protocols and technologies used in a particular layer. It addresses a wide range of additional constraints important in contemporary networks, including various types of network flows, survivability issues, multi-layer networking, and resource location. The book presents recent existing and new results in a comprehensive and cohesive way. The contents of the book are organized in five chapters, which are mostly self-contained. Chapter 1 briefly presents information on cloud computing and content-oriented services, and introduces basic notions and concepts of network modeling and optimization. Chapter 2 covers various optimization problems that arise in the context of connection-oriented networks. Chapter 3 focuses on modeling and optimization of Elastic Optical Networks. Chapter 4 is devoted to overlay networks. The book concludes w...
A method of network topology optimization design considering application process characteristic
Wang, Chunlin; Huang, Ning; Bai, Yanan; Zhang, Shuo
2018-03-01
Communication networks are designed to meet the usage requirements of users for various network applications. The current studies of network topology optimization design mainly considered network traffic, which is the result of network application operation, but not a design element of communication networks. A network application is a procedure of the usage of services by users with some demanded performance requirements, and has obvious process characteristic. In this paper, we first propose a method to optimize the design of communication network topology considering the application process characteristic. Taking the minimum network delay as objective, and the cost of network design and network connective reliability as constraints, an optimization model of network topology design is formulated, and the optimal solution of network topology design is searched by Genetic Algorithm (GA). Furthermore, we investigate the influence of network topology parameter on network delay under the background of multiple process-oriented applications, which can guide the generation of initial population and then improve the efficiency of GA. Numerical simulations show the effectiveness and validity of our proposed method. Network topology optimization design considering applications can improve the reliability of applications, and provide guidance for network builders in the early stage of network design, which is of great significance in engineering practices.
Neural Network for Optimization of Existing Control Systems
DEFF Research Database (Denmark)
Madsen, Per Printz
1995-01-01
The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....
Cascade-robustness optimization of coupling preference in interconnected networks
International Nuclear Information System (INIS)
Zhang, Xue-Jun; Xu, Guo-Qiang; Zhu, Yan-Bo; Xia, Yong-Xiang
2016-01-01
Highlights: • A specific memetic algorithm was proposed to optimize coupling links. • A small toy model was investigated to examine the underlying mechanism. • The MA optimized strategy exhibits a moderate assortative pattern. • A novel coupling coefficient index was proposed to quantify coupling preference. - Abstract: Recently, the robustness of interconnected networks has attracted extensive attentions, one of which is to investigate the influence of coupling preference. In this paper, the memetic algorithm (MA) is employed to optimize the coupling links of interconnected networks. Afterwards, a comparison is made between MA optimized coupling strategy and traditional assortative, disassortative and random coupling preferences. It is found that the MA optimized coupling strategy with a moderate assortative value shows an outstanding performance against cascading failures on both synthetic scale-free interconnected networks and real-world networks. We then provide an explanation for this phenomenon from a micro-scope point of view and propose a coupling coefficient index to quantify the coupling preference. Our work is helpful for the design of robust interconnected networks.
Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.
Nitta, Tohru
2017-10-01
We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).
District Heating Network Design and Configuration Optimization with Genetic Algorithm
DEFF Research Database (Denmark)
Li, Hongwei; Svendsen, Svend
2013-01-01
In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...
LinkMind: link optimization in swarming mobile sensor networks.
Ngo, Trung Dung
2011-01-01
A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.
LinkMind: Link Optimization in Swarming Mobile Sensor Networks
Directory of Open Access Journals (Sweden)
Trung Dung Ngo
2011-08-01
Full Text Available A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.
Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas
2012-01-01
Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.
Regulatory Holidays and Optimal Network Expansion
Willems, Bert; Zwart, Gijsbert
2016-01-01
We model the optimal regulation of continuous, irreversible, capacity expansion, in a model in which the regulated network firm has private information about its capacity costs, investments need to be financed out of the firm’s cash flows from selling network access and demand is stochastic. If
A one-layer recurrent neural network for constrained nonsmooth optimization.
Liu, Qingshan; Wang, Jun
2011-10-01
This paper presents a novel one-layer recurrent neural network modeled by means of a differential inclusion for solving nonsmooth optimization problems, in which the number of neurons in the proposed neural network is the same as the number of decision variables of optimization problems. Compared with existing neural networks for nonsmooth optimization problems, the global convexity condition on the objective functions and constraints is relaxed, which allows the objective functions and constraints to be nonconvex. It is proven that the state variables of the proposed neural network are convergent to optimal solutions if a single design parameter in the model is larger than a derived lower bound. Numerical examples with simulation results substantiate the effectiveness and illustrate the characteristics of the proposed neural network.
Resilience-based optimal design of water distribution network
Suribabu, C. R.
2017-11-01
Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.
Bio-Mimic Optimization Strategies in Wireless Sensor Networks: A Survey
Adnan, Md. Akhtaruzzaman; Razzaque, Mohammd Abdur; Ahmed, Ishtiaque; Isnin, Ismail Fauzi
2014-01-01
For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted. PMID:24368702
Bio-mimic optimization strategies in wireless sensor networks: a survey.
Adnan, Md Akhtaruzzaman; Abdur Razzaque, Mohammd; Ahmed, Ishtiaque; Isnin, Ismail Fauzi
2013-12-24
For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.
Finding the optimal Bayesian network given a constraint graph
Directory of Open Access Journals (Sweden)
Jacob M. Schreiber
2017-07-01
Full Text Available Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even make structure learning tractable. Several methods have previously been described for representing this type of structural prior knowledge, including global orderings, super-structures, and constraint rules. While super-structures and constraint rules are flexible in terms of what prior knowledge they can encode, they achieve savings in memory and computational time simply by avoiding considering invalid graphs. We introduce the concept of a “constraint graph” as an intuitive method for incorporating rich prior knowledge into the structure learning task. We describe how this graph can be used to reduce the memory cost and computational time required to find the optimal graph subject to the encoded constraints, beyond merely eliminating invalid graphs. In particular, we show that a constraint graph can break the structure learning task into independent subproblems even in the presence of cyclic prior knowledge. These subproblems are well suited to being solved in parallel on a single machine or distributed across many machines without excessive communication cost.
An Optimal Analysis in Wireless Powered Full-duplex Relaying Network
Directory of Open Access Journals (Sweden)
K.-T. Nguyen
2017-04-01
Full Text Available Wireless-powered cellular networks (WPCNs are currently being investigated to exploit the reliability and improve battery lifetime of mobile users. This paper investigates the energy harvesting structure of the full-duplex relaying networks. By using the time switching based relaying (TSR protocol and Amplify-and-Forward (AF model in delay-limited transmission scheme, we propose the closed-form expression of the outage probability and then calculate the optimal throughput. An important result can be taken obviously that the time fraction in TSR, the position of relay, the noise as well as the energy conversation impacting on the outage probability as well as the optimal throughput. By Monte Carlo simulation, the numerical results indicate an effective relaying strategy in full-duplex cooperative systems. Finally, we provide fundamental design guidelines for selecting time fraction in TSR that satisfies the requirements of a practical relaying system.
Small cell networks deployment, management, and optimization
Claussen, Holger; Ho, Lester; Razavi, Rouzbeh; Kucera, Stepan
2018-01-01
Small Cell Networks: Deployment, Management, and Optimization addresses key problems of the cellular network evolution towards HetNets. It focuses on the latest developments in heterogeneous and small cell networks, as well as their deployment, operation, and maintenance. It also covers the full spectrum of the topic, from academic, research, and business to the practice of HetNets in a coherent manner. Additionally, it provides complete and practical guidelines to vendors and operators interested in deploying small cells. The first comprehensive book written by well-known researchers and engineers from Nokia Bell Labs, Small Cell Networks begins with an introduction to the subject--offering chapters on capacity scaling and key requirements of future networks. It then moves on to sections on coverage and capacity optimization, and interference management. From there, the book covers mobility management, energy efficiency, and small cell deployment, ending with a section devoted to future trends and applicat...
Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy.
Jiang, Tao; Zhang, Li Min; Chen, Xiangyu; Han, Chang Bao; Tang, Wei; Zhang, Chi; Xu, Liang; Wang, Zhong Lin
2015-12-22
Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy.
Giga-Voxel Structural Optimization
DEFF Research Database (Denmark)
Aage, Niels; Andreassen, Erik; Lazarov, Boyan Stefanov
2017-01-01
The optimal topology of large structural systems has until now been concerned with the design of individual parts and not that of complete assemblies. However, due to recent advances in numerical algorithms tailored for large scale structural optimization this limitation can now be circumvented....... In this work we present several examplesdisplaying how high resolution topology optimization can be used to obtain new, as well as already known, insight within the field of structural optimization. To demonstrate the capabilities of the developed framework we apply it to the design of the supporting structure...... topology optimization provides new insight and possible weight savings forfuture aircraft designs....
Optimizing the spatial pattern of networks for monitoring radioactive releases
Melles, S.J.; Heuvelink, G.B.M.; Twenhofel, C.J.W.; Dijk, van A.; Hiemstra, P.H.; Baume, O.P.; Stohlker, U.
2011-01-01
This study presents a method to optimize the sampling design of environmental monitoring networks in a multi-objective setting. We optimize the permanent network of radiation monitoring stations in the Netherlands and parts of Germany as an example. The optimization method proposed combines
DEFF Research Database (Denmark)
Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun
1991-01-01
algorithm using successive linear programming is presented. The performance of the algorithm is illustrated by optimizing a network with 201 pipes and 172 nodes. It is concluded that the new algorithm seems to be very efficient and stable, and that it always finds a solution with a cost near the best...
Robust emergence of small-world structure in networks of spiking neurons.
Kwok, Hoi Fei; Jurica, Peter; Raffone, Antonino; van Leeuwen, Cees
2007-03-01
Spontaneous activity in biological neural networks shows patterns of dynamic synchronization. We propose that these patterns support the formation of a small-world structure-network connectivity optimal for distributed information processing. We present numerical simulations with connected Hindmarsh-Rose neurons in which, starting from random connection distributions, small-world networks evolve as a result of applying an adaptive rewiring rule. The rule connects pairs of neurons that tend fire in synchrony, and disconnects ones that fail to synchronize. Repeated application of the rule leads to small-world structures. This mechanism is robustly observed for bursting and irregular firing regimes.
The principle of the Internet evolving and a conjecture on the optimal structure of the Internet
International Nuclear Information System (INIS)
Ying, Li; Hong-Duo, Cao; Xiu-Ming, Shan; Yong, Ren; Jian, Yuan
2009-01-01
In this paper we will give the statistical characteristics and general principles of an optimal structure of the Internet, which is a scale-free network. Since the purpose of the Internet is to allow fast and easy communication, the average path length is used to measure the performance of the network, and the number of edges of the network is used as a metric of its cost. Based on this, the goal of this Internet optimization problem is to obtain the highest performance with the lowest cost. A multi goal optimization problem is proposed to model this problem. By using two empirical formulas of and , we are able to find the statistical characteristics of the optimal structure. There is a critical power law exponent α c for the Internet with power law degree distribution, at which the Internet can obtain a relatively good performance with a low cost. We find that this α c is approximately 2.1
Zhang, Xiaomeng; Shao, Bin; Wu, Yangle; Qi, Ouyang
2013-01-01
One of the major objectives in systems biology is to understand the relation between the topological structures and the dynamics of biological regulatory networks. In this context, various mathematical tools have been developed to deduct structures of regulatory networks from microarray expression data. In general, from a single data set, one cannot deduct the whole network structure; additional expression data are usually needed. Thus how to design a microarray expression experiment in order to get the most information is a practical problem in systems biology. Here we propose three methods, namely, maximum distance method, trajectory entropy method, and sampling method, to derive the optimal initial conditions for experiments. The performance of these methods is tested and evaluated in three well-known regulatory networks (budding yeast cell cycle, fission yeast cell cycle, and E. coli. SOS network). Based on the evaluation, we propose an efficient strategy for the design of microarray expression experiments.
Optimal network structure in an open market environment
International Nuclear Information System (INIS)
2002-01-01
The focus of this report is on network planning in the new environment of a liberalized electricity market. The development of the network is viewed from different stakeholders objectives. The stakeholders in the transmission network are groups or individuals who have a stake in, or an expectation of the development and performance of the network. An open network exists when all market players meet equal admission rights and obligations. This required that the grid be administered through a transparent set of rules such as a grid code. (author)
Osaka, Kengo; Toriumi, Fujio; Sugawara, Toshihauru
2017-01-01
Social networking services (SNSs) are widely used as communicative tools for a variety of purposes. SNSs rely on the users' individual activities associated with some cost and effort, and thus it is not known why users voluntarily continue to participate in SNSs. Because the structures of SNSs are similar to that of the public goods (PG) game, some studies have focused on why voluntary activities emerge as an optimal strategy by modifying the PG game. However, their models do not include direct reciprocity between users, even though reciprocity is a key mechanism that evolves and sustains cooperation in human society. We developed an abstract SNS model called the reciprocity rewards and meta-rewards games that include direct reciprocity by extending the existing models. Then, we investigated how direct reciprocity in an SNS facilitates cooperation that corresponds to participation in SNS by posting articles and comments and how the structure of the networks of users exerts an influence on the strategies of users using the reciprocity rewards game. We run reciprocity rewards games on various complex networks and an instance network of Facebook and found that two types of stable cooperation emerged. First, reciprocity slightly improves the rate of cooperation in complete graphs but the improvement is insignificant because of the instability of cooperation. However, this instability can be avoided by making two assumptions: high degree of fun, i.e. articles are read with high probability, and different attitudes to reciprocal and non-reciprocal agents. We then propose the concept of half free riders to explain what strategy sustains cooperation-dominant situations. Second, we indicate that a certain WS network structure affects users' optimal strategy and facilitates stable cooperation without any extra assumptions. We give a detailed analysis of the different characteristics of the two types of cooperation-dominant situations and the effect of the memory of
Enhanced Multi-Objective Optimization of Groundwater Monitoring Networks
DEFF Research Database (Denmark)
Bode, Felix; Binning, Philip John; Nowak, Wolfgang
Drinking-water well catchments include many sources for potential contaminations like gas stations or agriculture. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability...... and optimality of any suggested monitoring location or monitoring network. The goal of this project is to develop and establish a concept to assess, design, and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: (1) a high...... be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, wrapped up within the framework of formal multi-objective optimization. In order to gain insight into the flow and transport physics...
Simultaneous optimization of water and heat exchange networks
Energy Technology Data Exchange (ETDEWEB)
Chen, Zhiyou; Hou, Yanlong; Li, Xiaoduan; Wang, Jingtao [Tianjin University, Tianjin (China)
2014-04-15
This paper focuses on the simultaneous optimization of the heat-integrated water allocation networks. A mathematic model is established to illustrate the modified state-space representation of this problem. An easy logical method is employed to help identify the streams of hot or cold ones. In this model, the water exchange networks (WEN), heat exchange networks (HEN), and the interactions between the WEN and HEN combine together as one unity. Thus, the whole network can be solved at one time, which enhances the possibility to get a global optimal result. Examples from the literature and a PVC plant are analyzed to illustrate the accuracy and applicability of this method.
Design and optimizing factors of PACS network architecture
International Nuclear Information System (INIS)
Tao Yonghao; Miao Jingtao
2001-01-01
Objective: Exploring the design and optimizing factors of picture archiving and communication system (PACS) network architecture. Methods: Based on the PACS of shanghai first hospital to performed the measurements and tests on the requirements of network bandwidth and transmitting rate for different PACS functions and procedures respectively in static and dynamic network traffic situation, utilizing the network monitoring tools which built-in workstations and provided by Windows NT. Results: No obvious difference between switch equipment and HUB when measurements and tests implemented in static situation except route which slow down the rate markedly. In dynamic environment Switch is able to provide higher bandwidth utilizing than HUB and local system scope communication achieved faster transmitting rate than global system. Conclusion: The primary optimizing factors of PACS network architecture design include concise network topology and disassemble tremendous global traffic to multiple distributed local scope network communication to reduce the traffic of network backbone. The most important issue is guarantee essential bandwidth for diagnosis procedure of medical imaging
Networks that optimize a trade-off between efficiency and dynamical resilience
International Nuclear Information System (INIS)
Brede, Markus; Vries, Bert J.M. de
2009-01-01
In this Letter we study networks that have been optimized to realize a trade-off between communication efficiency and dynamical resilience. While the first is related to the average shortest pathlength, we argue that the second can be measured by the largest eigenvalue of the adjacency matrix of the network. Best efficiency is realized in star-like configurations, while enhanced resilience is related to the avoidance of short loops and degree homogeneity. Thus crucially, very efficient networks are not resilient while very resilient networks lack in efficiency. Networks that realize a trade-off between both limiting cases exhibit core-periphery structures, where the average degree of core nodes decreases but core size increases as the weight is gradually shifted from a strong requirement for efficiency and limited resilience towards a smaller requirement for efficiency and a strong demand for resilience. We argue that both, efficiency and resilience are important requirements for network design and highlight how networks can be constructed that allow for both.
Optimization of recurrent neural networks for time series modeling
DEFF Research Database (Denmark)
Pedersen, Morten With
1997-01-01
The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...
Network structure exploration in networks with node attributes
Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin
2016-05-01
Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.
Compensatory Analysis and Optimization for MADM for Heterogeneous Wireless Network Selection
Directory of Open Access Journals (Sweden)
Jian Zhou
2016-01-01
Full Text Available In the next-generation heterogeneous wireless networks, a mobile terminal with a multi-interface may have network access from different service providers using various technologies. In spite of this heterogeneity, seamless intersystem mobility is a mandatory requirement. One of the major challenges for seamless mobility is the creation of a network selection scheme, which is for users that select an optimal network with best comprehensive performance between different types of networks. However, the optimal network may be not the most reasonable one due to compensation of MADM (Multiple Attribute Decision Making, and the network is called pseudo-optimal network. This paper conducts a performance evaluation of a number of widely used MADM-based methods for network selection that aim to keep the mobile users always best connected anywhere and anytime, where subjective weight and objective weight are all considered. The performance analysis shows that the selection scheme based on MEW (weighted multiplicative method and combination weight can better avoid accessing pseudo-optimal network for balancing network load and reducing ping-pong effect in comparison with three other MADM solutions.
Network inference via adaptive optimal design
Directory of Open Access Journals (Sweden)
Stigter Johannes D
2012-09-01
Full Text Available Abstract Background Current research in network reverse engineering for genetic or metabolic networks very often does not include a proper experimental and/or input design. In this paper we address this issue in more detail and suggest a method that includes an iterative design of experiments based, on the most recent data that become available. The presented approach allows a reliable reconstruction of the network and addresses an important issue, i.e., the analysis and the propagation of uncertainties as they exist in both the data and in our own knowledge. These two types of uncertainties have their immediate ramifications for the uncertainties in the parameter estimates and, hence, are taken into account from the very beginning of our experimental design. Findings The method is demonstrated for two small networks that include a genetic network for mRNA synthesis and degradation and an oscillatory network describing a molecular network underlying adenosine 3’-5’ cyclic monophosphate (cAMP as observed in populations of Dyctyostelium cells. In both cases a substantial reduction in parameter uncertainty was observed. Extension to larger scale networks is possible but needs a more rigorous parameter estimation algorithm that includes sparsity as a constraint in the optimization procedure. Conclusion We conclude that a careful experiment design very often (but not always pays off in terms of reliability in the inferred network topology. For large scale networks a better parameter estimation algorithm is required that includes sparsity as an additional constraint. These algorithms are available in the literature and can also be used in an adaptive optimal design setting as demonstrated in this paper.
Optimizing the De-Noise Neural Network Model for GPS Time-Series Monitoring of Structures
Directory of Open Access Journals (Sweden)
Mosbeh R. Kaloop
2015-09-01
Full Text Available The Global Positioning System (GPS is recently used widely in structures and other applications. Notwithstanding, the GPS accuracy still suffers from the errors afflicting the measurements, particularly the short-period displacement of structural components. Previously, the multi filter method is utilized to remove the displacement errors. This paper aims at using a novel application for the neural network prediction models to improve the GPS monitoring time series data. Four prediction models for the learning algorithms are applied and used with neural network solutions: back-propagation, Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to estimate which model can be recommended. The noise simulation and bridge’s short-period GPS of the monitoring displacement component of one Hz sampling frequency are used to validate the four models and the previous method. The results show that the Adaptive neural networks filter is suggested for de-noising the observations, specifically for the GPS displacement components of structures. Also, this model is expected to have significant influence on the design of structures in the low frequency responses and measurements’ contents.
The Spiral Discovery Network as an Automated General-Purpose Optimization Tool
Directory of Open Access Journals (Sweden)
Adam B. Csapo
2018-01-01
Full Text Available The Spiral Discovery Method (SDM was originally proposed as a cognitive artifact for dealing with black-box models that are dependent on multiple inputs with nonlinear and/or multiplicative interaction effects. Besides directly helping to identify functional patterns in such systems, SDM also simplifies their control through its characteristic spiral structure. In this paper, a neural network-based formulation of SDM is proposed together with a set of automatic update rules that makes it suitable for both semiautomated and automated forms of optimization. The behavior of the generalized SDM model, referred to as the Spiral Discovery Network (SDN, and its applicability to nondifferentiable nonconvex optimization problems are elucidated through simulation. Based on the simulation, the case is made that its applicability would be worth investigating in all areas where the default approach of gradient-based backpropagation is used today.
Optimization in a Networked Economy
Directory of Open Access Journals (Sweden)
Ahmet Sekreter
2017-10-01
Full Text Available An age of network has been living for the last decades. The information technologies have been used by hundreds of millions of users. These technologies are enabling to connect businesses and economic activities. One of the characteristics of the networked economy is the amount of data that produced due to the interlinking of firms, individuals, processes by businesses, and economic activities. Another issue with the networked economy is the complexity of the data. Extraction of the knowledge from the networked economy has challenges by the traditional approach since data is large scale, second decentralized, and third they connect many heterogeneous agents. The challenges can be overcome by the new optimization methods including human element or the social interactions with technological infrastructure.
Structure-Function Network Mapping and Its Assessment via Persistent Homology
2017-01-01
Understanding the relationship between brain structure and function is a fundamental problem in network neuroscience. This work deals with the general method of structure-function mapping at the whole-brain level. We formulate the problem as a topological mapping of structure-function connectivity via matrix function, and find a stable solution by exploiting a regularization procedure to cope with large matrices. We introduce a novel measure of network similarity based on persistent homology for assessing the quality of the network mapping, which enables a detailed comparison of network topological changes across all possible thresholds, rather than just at a single, arbitrary threshold that may not be optimal. We demonstrate that our approach can uncover the direct and indirect structural paths for predicting functional connectivity, and our network similarity measure outperforms other currently available methods. We systematically validate our approach with (1) a comparison of regularized vs. non-regularized procedures, (2) a null model of the degree-preserving random rewired structural matrix, (3) different network types (binary vs. weighted matrices), and (4) different brain parcellation schemes (low vs. high resolutions). Finally, we evaluate the scalability of our method with relatively large matrices (2514x2514) of structural and functional connectivity obtained from 12 healthy human subjects measured non-invasively while at rest. Our results reveal a nonlinear structure-function relationship, suggesting that the resting-state functional connectivity depends on direct structural connections, as well as relatively parsimonious indirect connections via polysynaptic pathways. PMID:28046127
Structural Optimization with Reliability Constraints
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
1986-01-01
During the last 25 years considerable progress has been made in the fields of structural optimization and structural reliability theory. In classical deterministic structural optimization all variables are assumed to be deterministic. Due to the unpredictability of loads and strengths of actual......]. In this paper we consider only structures which can be modelled as systems of elasto-plastic elements, e.g. frame and truss structures. In section 2 a method to evaluate the reliability of such structural systems is presented. Based on a probabilistic point of view a modern structural optimization problem...... is formulated in section 3. The formulation is a natural extension of the commonly used formulations in determinstic structural optimization. The mathematical form of the optimization problem is briefly discussed. In section 4 two new optimization procedures especially designed for the reliability...
Optimal satisfaction degree in energy harvesting cognitive radio networks
International Nuclear Information System (INIS)
Li Zan; Liu Bo-Yang; Si Jiang-Bo; Zhou Fu-Hui
2015-01-01
A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. (paper)
Synchronization-optimized networks for coupled nearly identical ...
Indian Academy of Sciences (India)
From the stability criteria of the MSF, we construct optimal networks ... of intense research in physical, biological, chemical, technological and social sci- ..... In figure 3a, a sample of initial network of 32 coupled nearly identical Rössler oscilla-.
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
Development of relative humidity models by using optimized neural network structures
Energy Technology Data Exchange (ETDEWEB)
Martinez-romero, A.; Ortega, J. F.; Juan, J. A.; Tarjuelo, J. M.; Moreno, M. A.
2010-07-01
Climate has always had a very important role in life on earth, as well as human activity and health. The influence of relative humidity (RH) in controlled environments (e.g. industrial processes in agro-food processing, cold storage of foods such as fruits, vegetables and meat, or controls in greenhouses) is very important. Relative humidity is a main factor in agricultural production and crop yield (due to the influence on crop water demand or the development and distribution of pests and diseases, for example). The main objective of this paper is to estimate RH [maximum (RHmax), average (RHave), and minimum (RHmin)] data in a specific area, being applied to the Region of Castilla-La Mancha (C-LM) in this case, from available data at thermo-pluviometric weather stations. In this paper Artificial neural networks (ANN) are used to generate RH considering maximum and minimum temperatures and extraterrestrial solar radiation data. Model validation and generation is based on data from the years 2000 to 2008 from 44 complete agroclimatic weather stations. Relative errors are estimated as 1) spatial errors of 11.30%, 6.80% and 10.27% and 2) temporal errors of 10.34%, 6.59% and 9.77% for RHmin, RHmax and RHave, respectively. The use of ANNs is interesting in generating climate parameters from available climate data. For determining optimal ANN structure in estimating RH values, model calibration and validation is necessary, considering spatial and temporal variability. (Author) 44 refs.
Ye, Fei
2017-01-01
In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks.
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.
Spencer, Matt; Eickholt, Jesse; Jianlin Cheng
2015-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.
Bi and tri-objective optimization in the deterministic network interdiction problem
International Nuclear Information System (INIS)
Rocco S, Claudio M.; Emmanuel Ramirez-Marquez, Jose; Salazar A, Daniel E.
2010-01-01
Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies' maximum source-sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.
Optimal Quantum Spatial Search on Random Temporal Networks
Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser
2017-12-01
To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.
Optimal Quantum Spatial Search on Random Temporal Networks.
Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser
2017-12-01
To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G(n,p), where p is the probability that any two given nodes are connected: After every time interval τ, a new graph G(n,p) replaces the previous one. We prove analytically that, for any given p, there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O(sqrt[n]), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.
Optimized Charging Scheduling with Single Mobile Charger for Wireless Rechargeable Sensor Networks
Directory of Open Access Journals (Sweden)
Qihua Wang
2017-11-01
Full Text Available Due to the rapid development of wireless charging technology, the recharging issue in wireless rechargeable sensor network (WRSN has been a popular research problem in the past few years. The weakness of previous work is that charging route planning is not reasonable. In this work, a dynamic optimal scheduling scheme aiming to maximize the vacation time ratio of a single mobile changer for WRSN is proposed. In the proposed scheme, the wireless sensor network is divided into several sub-networks according to the initial topology of deployed sensor networks. After comprehensive analysis of energy states, working state and constraints for different sensor nodes in WRSN, we transform the optimized charging path problem of the whole network into the local optimization problem of the sub networks. The optimized charging path with respect to dynamic network topology in each sub-network is obtained by solving an optimization problem, and the lifetime of the deployed wireless sensor network can be prolonged. Simulation results show that the proposed scheme has good and reliable performance for a small wireless rechargeable sensor network.
Directory of Open Access Journals (Sweden)
S. Wang
2017-08-01
Full Text Available Electromagnetic acoustic transducers (EMATs are noncontact transducers generating ultrasonic waves directly in the conductive sample. Despite the advantages, their transduction efficiencies are relatively low, so it is imperative to build accurate multiphysics models of EMATs and optimize the structural parameters accordingly, using a suitable optimization algorithm. The optimizing process often involves a large number of runs of the computationally expensive numerical models, so metamodels as substitutes for the real numerical models are helpful for the optimizations. In this work the focus is on the artificial neural networks as the metamodels of an omnidirectional EMAT, including the multilayer feedforward networks trained with the basic and improved back propagation algorithms and the radial basis function networks with exact and nonexact interpolations. The developed neural-network programs are tested on an example problem. Then the model of an omnidirectional EMAT generating Lamb waves in a linearized steel plate is introduced, and various approaches to calculate the amplitudes of the displacement component waveforms are discussed. The neural-network metamodels are then built for the EMAT model and compared to the displacement component amplitude (or ratio of amplitudes surface data on a discrete grid of the design variables as the reference, applying a multifrequency model with FFT (fast Fourier transform/IFFT (inverse FFT processing. Finally the two-objective optimization problem is formulated with one objective function minimizing the ratio of the amplitude of the S0-mode Lamb wave to that of the A0 mode, and the other objective function minimizing as the negative amplitude of the A0 mode. Pareto fronts in the criterion space are solved with the neural-network models and the total time consumption is greatly decreased. From the study it could be observed that the radial basis function network with exact interpolation has the best
Optimal Retrofit Scheme for Highway Network under Seismic Hazards
Directory of Open Access Journals (Sweden)
Yongxi Huang
2014-06-01
Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.
2012-01-01
Background Synchronized bursting activity (SBA) is a remarkable dynamical behavior in both ex vivo and in vivo neural networks. Investigations of the underlying structural characteristics associated with SBA are crucial to understanding the system-level regulatory mechanism of neural network behaviors. Results In this study, artificial pulsed neural networks were established using spike response models to capture fundamental dynamics of large scale ex vivo cortical networks. Network simulations with synaptic parameter perturbations showed the following two findings. (i) In a network with an excitatory ratio (ER) of 80-90%, its connective ratio (CR) was within a range of 10-30% when the occurrence of SBA reached the highest expectation. This result was consistent with the experimental observation in ex vivo neuronal networks, which were reported to possess a matured inhibitory synaptic ratio of 10-20% and a CR of 10-30%. (ii) No SBA occurred when a network does not contain any all-positive-interaction feedback loop (APFL) motif. In a neural network containing APFLs, the number of APFLs presented an optimal range corresponding to the maximal occurrence of SBA, which was very similar to the optimal CR. Conclusions In a neural network, the evolutionarily selected CR (10-30%) optimizes the occurrence of SBA, and APFL serves a pivotal network motif required to maximize the occurrence of SBA. PMID:22462685
MacBain, Keith M
2009-01-01
Intends to supplement the engineer's box of analysis and design tools making optimization as commonplace as the finite element method in the engineering workplace. This title introduces structural optimization and the methods of nonlinear programming such as Lagrange multipliers, Kuhn-Tucker conditions, and calculus of variations.
Kolosionis, Konstantinos; Papadopoulou, Maria P.
2017-04-01
Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.
Power consumption optimization strategy for wireless networks
DEFF Research Database (Denmark)
Cornean, Horia; Kumar, Sanjay; Marchetti, Nicola
2011-01-01
in order to reduce the total power consumption in a multi cellular network. We present an algorithm for power optimization under no interference and in presence of interference conditions, targeting to maximize the network capacity. The convergence of the algorithm is guaranteed if the interference...
Cheng, Long; Hou, Zeng-Guang; Lin, Yingzi; Tan, Min; Zhang, Wenjun Chris; Wu, Fang-Xiang
2011-05-01
A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of the proposed neural network. It is proved that the equilibrium point set of the proposed neural network is equivalent to the optimal solution of the original optimization problem by using the Lagrangian saddle-point theorem. Under weak conditions, the proposed neural network is proved to be stable, and the state of the neural network is convergent to one of its equilibrium points. Compared with the existing neural network models for non-smooth optimization problems, the proposed neural network can deal with a larger class of constraints and is not based on the penalty method. Finally, the proposed neural network is used to solve the identification problem of genetic regulatory networks, which can be transformed into a non-smooth convex optimization problem. The simulation results show the satisfactory identification accuracy, which demonstrates the effectiveness and efficiency of the proposed approach.
WiMax network planning and optimization
Zhang, Yan
2009-01-01
This book offers a comprehensive explanation on how to dimension, plan, and optimize WiMAX networks. The first part of the text introduces WiMAX networks architecture, physical layer, standard, protocols, security mechanisms, and highly related radio access technologies. It covers system framework, topology, capacity, mobility management, handoff management, congestion control, medium access control (MAC), scheduling, Quality of Service (QoS), and WiMAX mesh networks and security. Enabling easy understanding of key concepts and technologies, the second part presents practical examples and illu
PARTICLE SWARM OPTIMIZATION (PSO FOR TRAINING OPTIMIZATION ON CONVOLUTIONAL NEURAL NETWORK (CNN
Directory of Open Access Journals (Sweden)
Arie Rachmad Syulistyo
2016-02-01
Full Text Available Neural network attracts plenty of researchers lately. Substantial number of renowned universities have developed neural network for various both academically and industrially applications. Neural network shows considerable performance on various purposes. Nevertheless, for complex applications, neural network’s accuracy significantly deteriorates. To tackle the aforementioned drawback, lot of researches had been undertaken on the improvement of the standard neural network. One of the most promising modifications on standard neural network for complex applications is deep learning method. In this paper, we proposed the utilization of Particle Swarm Optimization (PSO in Convolutional Neural Networks (CNNs, which is one of the basic methods in deep learning. The use of PSO on the training process aims to optimize the results of the solution vectors on CNN in order to improve the recognition accuracy. The data used in this research is handwritten digit from MNIST. The experiments exhibited that the accuracy can be attained in 4 epoch is 95.08%. This result was better than the conventional CNN and DBN. The execution time was also almost similar to the conventional CNN. Therefore, the proposed method was a promising method.
Optimization of rainfall networks using information entropy and temporal variability analysis
Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin
2018-04-01
Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.
A One-Layer Recurrent Neural Network for Constrained Complex-Variable Convex Optimization.
Qin, Sitian; Feng, Jiqiang; Song, Jiahui; Wen, Xingnan; Xu, Chen
2018-03-01
In this paper, based on calculus and penalty method, a one-layer recurrent neural network is proposed for solving constrained complex-variable convex optimization. It is proved that for any initial point from a given domain, the state of the proposed neural network reaches the feasible region in finite time and converges to an optimal solution of the constrained complex-variable convex optimization finally. In contrast to existing neural networks for complex-variable convex optimization, the proposed neural network has a lower model complexity and better convergence. Some numerical examples and application are presented to substantiate the effectiveness of the proposed neural network.
Algorithms for finding optimal paths in network games with p players
Directory of Open Access Journals (Sweden)
R. Boliac
1997-08-01
Full Text Available We study the problem of finding optimal paths in network games with p players. Some polynomial-time algorithms for finding optimal paths and optimal by Nash strategies of the players in network games with p players are proposed.
TreeNetViz: revealing patterns of networks over tree structures.
Gou, Liang; Zhang, Xiaolong Luke
2011-12-01
Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE
Design and optimization of all-optical networks
Xiao, Gaoxi
1999-10-01
In this thesis, we present our research results on the design and optimization of all-optical networks. We divide our results into the following four parts: 1.In the first part, we consider broadcast-and-select networks. In our research, we propose an alternative and cheaper network configuration to hide the tuning time. In addition, we derive lower bounds on the optimal schedule lengths and prove that they are tighter than the best existing bounds. 2.In the second part, we consider all-optical wide area networks. We propose a set of algorithms for allocating a given number of WCs to the nodes. We adopt a simulation-based optimization approach, in which we collect utilization statistics of WCs from computer simulation and then perform optimization to allocate the WCs. Therefore, our algorithms are widely applicable and they are not restricted to any particular model and assumption. We have conducted extensive computer simulation on regular and irregular networks under both uniform and non-uniform traffic. We see that our method can get nearly the same performance as that of full wavelength conversion by using a much smaller number of WCs. Compared with the best existing method, the results show that our algorithms can significantly reduce (1)the overall blocking probability (i.e., better mean quality of service) and (2)the maximum of the blocking probabilities experienced at all the source nodes (i.e., better fairness). Equivalently, for a given performance requirement on blocking probability, our algorithms can significantly reduce the number of WCs required. 3.In the third part, we design and optimize the physical topology of all-optical wide area networks. We show that the design problem is NP-complete and we propose a heuristic algorithm called two-stage cut saturation algorithm for this problem. Simulation results show that (1)the proposed algorithm can efficiently design networks with low cost and high utilization, and (2)if wavelength converters are
Directory of Open Access Journals (Sweden)
Shi Chen-guang
2014-08-01
Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.
Robust Optimization of Fourth Party Logistics Network Design under Disruptions
Directory of Open Access Journals (Sweden)
Jia Li
2015-01-01
Full Text Available The Fourth Party Logistics (4PL network faces disruptions of various sorts under the dynamic and complex environment. In order to explore the robustness of the network, the 4PL network design with consideration of random disruptions is studied. The purpose of the research is to construct a 4PL network that can provide satisfactory service to customers at a lower cost when disruptions strike. Based on the definition of β-robustness, a robust optimization model of 4PL network design under disruptions is established. Based on the NP-hard characteristic of the problem, the artificial fish swarm algorithm (AFSA and the genetic algorithm (GA are developed. The effectiveness of the algorithms is tested and compared by simulation examples. By comparing the optimal solutions of the 4PL network for different robustness level, it is indicated that the robust optimization model can evade the market risks effectively and save the cost in the maximum limit when it is applied to 4PL network design.
vhv supply networks, problems of network structure
Energy Technology Data Exchange (ETDEWEB)
Raimbault, J
1966-04-01
The present and future power requirements of the Paris area and the structure of the existing networks are discussed. The various limitations that will have to be allowed for to lay down the structure of a regional transmission network leading in the power of the large national transmission network to within the Paris built up area are described. The theoretical solution that has been adopted, and the features of its final achievement, which is planned for about the year 2000, and the intermediate stages are given. The problem of the structure of the National Power Transmission network which is to supply the regional network was studied. To solve this problem, a 730 kV voltage network will have to be introduced.
[Network structures in biological systems].
Oleskin, A V
2013-01-01
Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.
Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design
Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush
2017-12-01
Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.
An auxiliary optimization method for complex public transit route network based on link prediction
Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian
2018-02-01
Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.
Brocade: Optimal flow placement in SDN networks
CERN. Geneva
2015-01-01
Today' network poses several challanges to network providers. These challanges fall in to a variety of areas ranging from determining efficient utilization of network bandwidth to finding out which user applications consume majority of network resources. Also, how to protect a given network from volumetric and botnet attacks. Optimal placement of flows deal with identifying network issues and addressing them in a real-time. The overall solution helps in building new services where a network is more secure and more efficient. Benefits derived as a result are increased network efficiency due to better capacity and resource planning, better security with real-time threat mitigation, and improved user experience as a result of increased service velocity.
Optimal Control of Interdependent Epidemics in Complex Networks
Chen, Juntao; Zhang, Rui; Zhu, Quanyan
2017-01-01
Optimal control of interdependent epidemics spreading over complex networks is a critical issue. We first establish a framework to capture the coupling between two epidemics, and then analyze the system's equilibrium states by categorizing them into three classes, and deriving their stability conditions. The designed control strategy globally optimizes the trade-off between the control cost and the severity of epidemics in the network. A gradient descent algorithm based on a fixed point itera...
A one-layer recurrent neural network for constrained nonconvex optimization.
Li, Guocheng; Yan, Zheng; Wang, Jun
2015-01-01
In this paper, a one-layer recurrent neural network is proposed for solving nonconvex optimization problems subject to general inequality constraints, designed based on an exact penalty function method. It is proved herein that any neuron state of the proposed neural network is convergent to the feasible region in finite time and stays there thereafter, provided that the penalty parameter is sufficiently large. The lower bounds of the penalty parameter and convergence time are also estimated. In addition, any neural state of the proposed neural network is convergent to its equilibrium point set which satisfies the Karush-Kuhn-Tucker conditions of the optimization problem. Moreover, the equilibrium point set is equivalent to the optimal solution to the nonconvex optimization problem if the objective function and constraints satisfy given conditions. Four numerical examples are provided to illustrate the performances of the proposed neural network.
DRO: domain-based route optimization scheme for nested mobile networks
Directory of Open Access Journals (Sweden)
Chuang Ming-Chin
2011-01-01
Full Text Available Abstract The network mobility (NEMO basic support protocol is designed to support NEMO management, and to ensure communication continuity between nodes in mobile networks. However, in nested mobile networks, NEMO suffers from the pinball routing problem, which results in long packet transmission delays. To solve the problem, we propose a domain-based route optimization (DRO scheme that incorporates a domain-based network architecture and ad hoc routing protocols for route optimization. DRO also improves the intra-domain handoff performance, reduces the convergence time during route optimization, and avoids the out-of-sequence packet problem. A detailed performance analysis and simulations were conducted to evaluate the scheme. The results demonstrate that DRO outperforms existing mechanisms in terms of packet transmission delay (i.e., better route-optimization, intra-domain handoff latency, convergence time, and packet tunneling overhead.
Optimal resource allocation solutions for heterogeneous cognitive radio networks
Directory of Open Access Journals (Sweden)
Babatunde Awoyemi
2017-05-01
Full Text Available Cognitive radio networks (CRN are currently gaining immense recognition as the most-likely next-generation wireless communication paradigm, because of their enticing promise of mitigating the spectrum scarcity and/or underutilisation challenge. Indisputably, for this promise to ever materialise, CRN must of necessity devise appropriate mechanisms to judiciously allocate their rather scarce or limited resources (spectrum and others among their numerous users. ‘Resource allocation (RA in CRN', which essentially describes mechanisms that can effectively and optimally carry out such allocation, so as to achieve the utmost for the network, has therefore recently become an important research focus. However, in most research works on RA in CRN, a highly significant factor that describes a more realistic and practical consideration of CRN has been ignored (or only partially explored, i.e., the aspect of the heterogeneity of CRN. To address this important aspect, in this paper, RA models that incorporate the most essential concepts of heterogeneity, as applicable to CRN, are developed and the imports of such inclusion in the overall networking are investigated. Furthermore, to fully explore the relevance and implications of the various heterogeneous classifications to the RA formulations, weights are attached to the different classes and their effects on the network performance are studied. In solving the developed complex RA problems for heterogeneous CRN, a solution approach that examines and exploits the structure of the problem in achieving a less-complex reformulation, is extensively employed. This approach, as the results presented show, makes it possible to obtain optimal solutions to the rather difficult RA problems of heterogeneous CRN.
Becus, Georges A.; Chan, Alistair K.
1993-01-01
Three neural network processing approaches in a direct numerical optimization model reduction scheme are proposed and investigated. Large structural systems, such as large space structures, offer new challenges to both structural dynamicists and control engineers. One such challenge is that of dimensionality. Indeed these distributed parameter systems can be modeled either by infinite dimensional mathematical models (typically partial differential equations) or by high dimensional discrete models (typically finite element models) often exhibiting thousands of vibrational modes usually closely spaced and with little, if any, damping. Clearly, some form of model reduction is in order, especially for the control engineer who can actively control but a few of the modes using system identification based on a limited number of sensors. Inasmuch as the amount of 'control spillover' (in which the control inputs excite the neglected dynamics) and/or 'observation spillover' (where neglected dynamics affect system identification) is to a large extent determined by the choice of particular reduced model (RM), the way in which this model reduction is carried out is often critical.
2017-01-01
In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718
International Nuclear Information System (INIS)
Li, Y.F.; Sansavini, G.; Zio, E.
2013-01-01
A number of research works have been devoted to the optimization of protection strategies (e.g. transmission line switch off) of critical infrastructures (e.g. power grids, telecommunication networks, computer networks, etc) to avoid cascading failures. This work aims at improving a previous optimization approach proposed by some of the authors [1], based on the modified binary differential evolution (MBDE) algorithm. The improvements are three-fold: (1) in the optimization problem formulation, we introduce a third objective function to minimize the impacts of the switching off operations onto the existing network topology; (2) in the optimization problem formulation, we use the final results of cascades, rather than only a short horizon of one step cascading, to evaluate the effects of the switching off strategies; (3) in the optimization algorithm, the fast non-dominated sorting mechanisms are incorporated into the MBDE algorithm: a new algorithm, namely non-dominated sorting binary differential evolution algorithm (NSBDE) is then proposed. The numerical application to the topological structure of the 380 kV Italian power transmission network proves the benefits of the improvements.
Modeling and optimization of an electric power distribution network ...
African Journals Online (AJOL)
Modeling and optimization of an electric power distribution network planning system using ... of the network was modelled with non-linear mathematical expressions. ... given feasible locations, re-conductoring of existing feeders in the network, ...
Optimal control of epidemic information dissemination over networks.
Chen, Pin-Yu; Cheng, Shin-Ming; Chen, Kwang-Cheng
2014-12-01
Information dissemination control is of crucial importance to facilitate reliable and efficient data delivery, especially in networks consisting of time-varying links or heterogeneous links. Since the abstraction of information dissemination much resembles the spread of epidemics, epidemic models are utilized to characterize the collective dynamics of information dissemination over networks. From a systematic point of view, we aim to explore the optimal control policy for information dissemination given that the control capability is a function of its distribution time, which is a more realistic model in many applications. The main contributions of this paper are to provide an analytically tractable model for information dissemination over networks, to solve the optimal control signal distribution time for minimizing the accumulated network cost via dynamic programming, and to establish a parametric plug-in model for information dissemination control. In particular, we evaluate its performance in mobile and generalized social networks as typical examples.
Big Data Reduction and Optimization in Sensor Monitoring Network
Directory of Open Access Journals (Sweden)
Bin He
2014-01-01
Full Text Available Wireless sensor networks (WSNs are increasingly being utilized to monitor the structural health of the underground subway tunnels, showing many promising advantages over traditional monitoring schemes. Meanwhile, with the increase of the network size, the system is incapable of dealing with big data to ensure efficient data communication, transmission, and storage. Being considered as a feasible solution to these issues, data compression can reduce the volume of data travelling between sensor nodes. In this paper, an optimization algorithm based on the spatial and temporal data compression is proposed to cope with these issues appearing in WSNs in the underground tunnel environment. The spatial and temporal correlation functions are introduced for the data compression and data recovery. It is verified that the proposed algorithm is applicable to WSNs in the underground tunnel.
Facilitators on networks reveal optimal interplay between information exchange and reciprocity.
Szolnoki, Attila; Perc, Matjaž; Mobilia, Mauro
2014-04-01
Reciprocity is firmly established as an important mechanism that promotes cooperation. An efficient information exchange is likewise important, especially on structured populations, where interactions between players are limited. Motivated by these two facts, we explore the role of facilitators in social dilemmas on networks. Facilitators are here mirrors to their neighbors-they cooperate with cooperators and defect with defectors-but they do not participate in the exchange of strategies. As such, in addition to introducing direct reciprocity, they also obstruct information exchange. In well-mixed populations, facilitators favor the replacement and invasion of defection by cooperation as long as their number exceeds a critical value. In structured populations, on the other hand, there exists a delicate balance between the benefits of reciprocity and the deterioration of information exchange. Extensive Monte Carlo simulations of social dilemmas on various interaction networks reveal that there exists an optimal interplay between reciprocity and information exchange, which sets in only when a small number of facilitators occupy the main hubs of the scale-free network. The drawbacks of missing cooperative hubs are more than compensated for by reciprocity and, at the same time, the compromised information exchange is routed via the auxiliary hubs with only marginal losses in effectivity. These results indicate that it is not always optimal for the main hubs to become leaders of the masses, but rather to exploit their highly connected state to promote tit-for-tat-like behavior.
Chaotic Hopfield Neural Network Swarm Optimization and Its Application
Directory of Open Access Journals (Sweden)
Yanxia Sun
2013-01-01
Full Text Available A new neural network based optimization algorithm is proposed. The presented model is a discrete-time, continuous-state Hopfield neural network and the states of the model are updated synchronously. The proposed algorithm combines the advantages of traditional PSO, chaos and Hopfield neural networks: particles learn from their own experience and the experiences of surrounding particles, their search behavior is ergodic, and convergence of the swarm is guaranteed. The effectiveness of the proposed approach is demonstrated using simulations and typical optimization problems.
Monitoring of composite structures using a network of integrated PVDF film transducers
International Nuclear Information System (INIS)
Guzmán, Enrique; Cugnoni, Joël; Gmür, Thomas
2015-01-01
Aiming to reduce costs, polyvinylidene difluoride (PVDF) film patches are an emerging alternative to more classic piezoelectric technologies, like ceramic patches, as transducers to measure local deformation in many structural applications. This choice is supported by advantages such as the low weight and mechanical flexibility of PVDF, making this polymer suitable for embedding inside full scale polymer based composite structures. Piezoelectric transducer patches can be used as actuators to dynamically excite full-scale composite structures, and as sensors to measure the strain. The main objective of this paper is to verify that the PVDF transducers can provide exploitable signals in the context of structural health monitoring. In order to do so, two aspects of the design of transducer network are investigated: the optimization of the sensor network, for which the effective independence method is proposed, and the use of operational modal analysis (OMA), since it is a simple method to extract the natural frequencies of a structure from a time series. The results of the analysis are compared to a reference set issued from experimental modal analysis (EMA), a simple, well-known, classic method, which is carried out using accelerometers and an impact hammer. By statistical means, it is shown that there is no significant difference between the two methods, and an optimized PVDF transducer network combined with OMA can perform the dynamic analysis of a structure as well as a classic EMA setup would do. This leads the way to the use of low-cost PVDF embedded transducer networks for robust composite material characterization. (paper)
Optimal placement of distributed generation in distribution networks ...
African Journals Online (AJOL)
This paper proposes the application of Particle Swarm Optimization (PSO) technique to find the optimal size and optimum location for the placement of DG in the radial distribution networks for active power compensation by reduction in real power losses and enhancement in voltage profile. In the first segment, the optimal ...
Stochastic network optimization with application to communication and queueing systems
Neely, Michael
2010-01-01
This text presents a modern theory of analysis, control, and optimization for dynamic networks. Mathematical techniques of Lyapunov drift and Lyapunov optimization are developed and shown to enable constrained optimization of time averages in general stochastic systems. The focus is on communication and queueing systems, including wireless networks with time-varying channels, mobility, and randomly arriving traffic. A simple drift-plus-penalty framework is used to optimize time averages such as throughput, throughput-utility, power, and distortion. Explicit performance-delay tradeoffs are prov
Deterministic network interdiction optimization via an evolutionary approach
International Nuclear Information System (INIS)
Rocco S, Claudio M.; Ramirez-Marquez, Jose Emmanuel
2009-01-01
This paper introduces an evolutionary optimization approach that can be readily applied to solve deterministic network interdiction problems. The network interdiction problem solved considers the minimization of the maximum flow that can be transmitted between a source node and a sink node for a fixed network design when there is a limited amount of resources available to interdict network links. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link. For this problem, the solution approach developed is based on three steps that use: (1) Monte Carlo simulation, to generate potential network interdiction strategies, (2) Ford-Fulkerson algorithm for maximum s-t flow, to analyze strategies' maximum source-sink flow and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate the approach. In terms of computational effort, the results illustrate that solutions are obtained from a significantly restricted solution search space. Finally, the authors discuss the need for a reliability perspective to network interdiction, so that solutions developed address more realistic scenarios of such problem
Coupling Network Computing Applications in Air-cooled Turbine Blades Optimization
Shi, Liang; Yan, Peigang; Xie, Ming; Han, Wanjin
2018-05-01
Through establishing control parameters from blade outside to inside, the parametric design of air-cooled turbine blade based on airfoil has been implemented. On the basis of fast updating structure features and generating solid model, a complex cooling system has been created. Different flow units are modeled into a complex network topology with parallel and serial connection. Applying one-dimensional flow theory, programs have been composed to get pipeline network physical quantities along flow path, including flow rate, pressure, temperature and other parameters. These inner units parameters set as inner boundary conditions for external flow field calculation program HIT-3D by interpolation, thus to achieve full field thermal coupling simulation. Referring the studies in literatures to verify the effectiveness of pipeline network program and coupling algorithm. After that, on the basis of a modified design, and with the help of iSIGHT-FD, an optimization platform had been established. Through MIGA mechanism, the target of enhancing cooling efficiency has been reached, and the thermal stress has been effectively reduced. Research work in this paper has significance for rapid deploying the cooling structure design.
An Optimal Balance between Efficiency and Safety of Urban Drainage Networks
Seo, Y.
2014-12-01
Urban drainage networks have been developed to promote the efficiency of a system in terms of drainage time so far. Typically, a drainage system is designed to drain water from developed areas promptly as much as possible during floods. In this regard, an artificial drainage system have been considered to be more efficient compared to river networks in nature. This study examined artificial drainage networks and the results indicate they can be less efficient in terms of network configuration compared with river networks, which is counter-intuitive. The case study of 20 catchments in Seoul, South Korea shows that they have wide range of efficiency in terms of network configuration and consequently, drainage time. This study also demonstrates that efficient drainage networks are more sensitive to spatial and temporal rainfall variation such as rainstorm movement. Peak flows increase more than two times greater in effective drainage networks compared with inefficient and highly sinuous drainage networks. Combining these results, this study implies that the layout of a drainage network is an important factor in terms of efficient drainage and also safety in urban catchments. Design of an optimal layout of the drainage network can be an alternative non-structural measures that mitigate potential risks and it is crucial for the sustainability of urban environments.
Synchrony-optimized networks of non-identical Kuramoto oscillators
International Nuclear Information System (INIS)
Brede, Markus
2008-01-01
In this Letter we discuss a method for generating synchrony-optimized coupling architectures of Kuramoto oscillators with a heterogeneous distribution of native frequencies. The method allows us to relate the properties of the coupling network to its synchronizability. These relations were previously only established from a linear stability analysis of the identical oscillator case. We further demonstrate that the heterogeneity in the oscillator population produces heterogeneity in the optimal coupling network as well. Two rules for enhancing the synchronizability of a given network by a suitable placement of oscillators are given: (i) native frequencies of adjacent oscillators must be anti-correlated and (ii) frequency magnitudes should positively correlate with the degree of the node they are placed at
Optimization and Control of Communication Networks
Chiang, Mung; Low, Steven
2005-01-01
Recently, there has been a surge in research activities that utilize the power of recent developments in nonlinear optimization to tackle a wide scope of work in the analysis and design of communication systems, touching every layer of the layered network architecture, and resulting in both intellectual and practical impacts significantly beyond the earlier frameworks. These research activities are driven by both new demands in the areas of communications and networking, and n...
Optimal traffic control in highway transportation networks using linear programming
Li, Yanning
2014-06-01
This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.
Optimal satisfaction degree in energy harvesting cognitive radio networks
Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui
2015-12-01
A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).
PSO-Optimized Hopfield Neural Network-Based Multipath Routing for Mobile Ad-hoc Networks
Directory of Open Access Journals (Sweden)
Mansour Sheikhan
2012-06-01
Full Text Available Mobile ad-hoc network (MANET is a dynamic collection of mobile computers without the need for any existing infrastructure. Nodes in a MANET act as hosts and routers. Designing of robust routing algorithms for MANETs is a challenging task. Disjoint multipath routing protocols address this problem and increase the reliability, security and lifetime of network. However, selecting an optimal multipath is an NP-complete problem. In this paper, Hopfield neural network (HNN which its parameters are optimized by particle swarm optimization (PSO algorithm is proposed as multipath routing algorithm. Link expiration time (LET between each two nodes is used as the link reliability estimation metric. This approach can find either node-disjoint or link-disjoint paths in singlephase route discovery. Simulation results confirm that PSO-HNN routing algorithm has better performance as compared to backup path set selection algorithm (BPSA in terms of the path set reliability and number of paths in the set.
Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.
Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric
2018-03-01
Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.
Directory of Open Access Journals (Sweden)
S. F Mousavi
2016-09-01
Full Text Available Introduction The diagnosis of agricultural machinery faults must be performed at an opportune time, in order to fulfill the agricultural operations in a timely manner and to optimize the accuracy and the integrity of a system, proper monitoring and fault diagnosis of the rotating parts is required. With development of fault diagnosis methods of rotating equipment, especially bearing failure, the security, performance and availability of machines has been increasing. In general, fault detection is conducted through a specific procedure which starts with data acquisition and continues with features extraction, and subsequently failure of the machine would be detected. Several practical methods have been introduced for fault detection in rotating parts of machineries. The review of the literature shows that both Artificial Neural Networks (ANN and Support Vector Machines (SVM have been used for this purpose. However, the results show that SVM is more effective than Artificial Neural Networks in fault detection of such machineries. In some smart detection systems, incorporating an optimized method such as Genetic Algorithm in the Neural Network model, could improve the fault detection procedure. Consequently, the fault detection performance of neural networks may also be improved by combining with the Genetic Algorithm and hence will be comparable with the performance of the Support Vector Machine. In this study, the so called Genetic Algorithm (GA method was used to optimize the structure of the Artificial Neural Networks (ANN for fault detection of the clutch retainer mechanism of Massey Ferguson 285 tractor. Materials and Methods The test rig consists of some electro mechanical parts including the clutch retainer mechanism of Massey Ferguson 285 tractor, a supporting shaft, a single-phase electric motor, a loading mechanism to model the load of the tractor clutch and the corresponding power train gears. The data acquisition section consists of a
Method of optimization onboard communication network
Platoshin, G. A.; Selvesuk, N. I.; Semenov, M. E.; Novikov, V. M.
2018-02-01
In this article the optimization levels of onboard communication network (OCN) are proposed. We defined the basic parameters, which are necessary for the evaluation and comparison of modern OCN, we identified also a set of initial data for possible modeling of the OCN. We also proposed a mathematical technique for implementing the OCN optimization procedure. This technique is based on the principles and ideas of binary programming. It is shown that the binary programming technique allows to obtain an inherently optimal solution for the avionics tasks. An example of the proposed approach implementation to the problem of devices assignment in OCN is considered.
Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks.
Directory of Open Access Journals (Sweden)
Saket Navlakha
2015-07-01
Full Text Available Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.
Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.
Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang
2016-11-01
Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.
PlayNCool: Opportunistic Network Coding for Local Optimization of Routing in Wireless Mesh Networks
DEFF Research Database (Denmark)
Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk
2013-01-01
This paper introduces PlayNCool, an opportunistic protocol with local optimization based on network coding to increase the throughput of a wireless mesh network (WMN). PlayNCool aims to enhance current routing protocols by (i) allowing random linear network coding transmissions end-to-end, (ii) r...
International Nuclear Information System (INIS)
Ramirez-Marquez, Jose Emmanuel; Rocco S, Claudio M.
2009-01-01
This paper introduces an evolutionary optimization approach that can be readily applied to solve stochastic network interdiction problems (SNIP). The network interdiction problem solved considers the minimization of the cost associated with an interdiction strategy such that the maximum flow that can be transmitted between a source node and a sink node for a fixed network design is greater than or equal to a given reliability requirement. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link and that such interdiction has a probability of being successful. This version of the SNIP is for the first time modeled as a capacitated network reliability problem allowing for the implementation of computation and solution techniques previously unavailable. The solution process is based on an evolutionary algorithm that implements: (1) Monte-Carlo simulation, to generate potential network interdiction strategies, (2) capacitated network reliability techniques to analyze strategies' source-sink flow reliability and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks are used throughout the paper to illustrate the approach
Global Optimization for Transport Network Expansion and Signal Setting
Liu, Haoxiang; Wang, David Z. W.; Yue, Hao
2015-01-01
This paper proposes a model to address an urban transport planning problem involving combined network design and signal setting in a saturated network. Conventional transport planning models usually deal with the network design problem and signal setting problem separately. However, the fact that network capacity design and capacity allocation determined by network signal setting combine to govern the transport network performance requires the optimal transport planning to consider the two pr...
Xia, Li; Shihada, Basem
2014-01-01
This paper studies the joint optimization problem of energy and delay in a multi-hop wireless network. The optimization variables are the transmission rates, which are adjustable according to the packet queueing length in the buffer. The optimization goal is to minimize the energy consumption of energy-critical nodes and the packet transmission delay throughout the network. In this paper, we aim at understanding the well-known decentralized algorithms which are threshold based from a different research angle. By using a simplified network model, we show that we can adopt the semi-open Jackson network model and study this optimization problem in closed form. This simplified network model further allows us to establish some significant optimality properties. We prove that the system performance is monotonic with respect to (w.r.t.) the transmission rate. We also prove that the threshold-type policy is optimal, i.e., when the number of packets in the buffer is larger than a threshold, transmit with the maximal rate (power); otherwise, no transmission. With these optimality properties, we develop a heuristic algorithm to iteratively find the optimal threshold. Finally, we conduct some simulation experiments to demonstrate the main idea of this paper.
Xia, Li
2014-11-20
This paper studies the joint optimization problem of energy and delay in a multi-hop wireless network. The optimization variables are the transmission rates, which are adjustable according to the packet queueing length in the buffer. The optimization goal is to minimize the energy consumption of energy-critical nodes and the packet transmission delay throughout the network. In this paper, we aim at understanding the well-known decentralized algorithms which are threshold based from a different research angle. By using a simplified network model, we show that we can adopt the semi-open Jackson network model and study this optimization problem in closed form. This simplified network model further allows us to establish some significant optimality properties. We prove that the system performance is monotonic with respect to (w.r.t.) the transmission rate. We also prove that the threshold-type policy is optimal, i.e., when the number of packets in the buffer is larger than a threshold, transmit with the maximal rate (power); otherwise, no transmission. With these optimality properties, we develop a heuristic algorithm to iteratively find the optimal threshold. Finally, we conduct some simulation experiments to demonstrate the main idea of this paper.
WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun
2017-06-01
Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.
On Optimal Policies for Network-Coded Cooperation
DEFF Research Database (Denmark)
Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Pahlevani, Peyman
2015-01-01
Network-coded cooperative communication (NC-CC) has been proposed and evaluated as a powerful technology that can provide a better quality of service in the next-generation wireless systems, e.g., D2D communications. Previous contributions have focused on performance evaluation of NC-CC scenarios...... rather than searching for optimal policies that can minimize the total cost of reliable packet transmission. We break from this trend by initially analyzing the optimal design of NC-CC for a wireless network with one source, two receivers, and half-duplex erasure channels. The problem is modeled...... as a special case of Markov decision process (MDP), which is called stochastic shortest path (SSP), and is solved for any field size, arbitrary number of packets, and arbitrary erasure probabilities of the channels. The proposed MDP solution results in an optimal transmission policy per time slot, and we use...
Multi-Objective Design Of Optimal Greenhouse Gas Observation Networks
Lucas, D. D.; Bergmann, D. J.; Cameron-Smith, P. J.; Gard, E.; Guilderson, T. P.; Rotman, D.; Stolaroff, J. K.
2010-12-01
One of the primary scientific functions of a Greenhouse Gas Information System (GHGIS) is to infer GHG source emission rates and their uncertainties by combining measurements from an observational network with atmospheric transport modeling. Certain features of the observational networks that serve as inputs to a GHGIS --for example, sampling location and frequency-- can greatly impact the accuracy of the retrieved GHG emissions. Observation System Simulation Experiments (OSSEs) provide a framework to characterize emission uncertainties associated with a given network configuration. By minimizing these uncertainties, OSSEs can be used to determine optimal sampling strategies. Designing a real-world GHGIS observing network, however, will involve multiple, conflicting objectives; there will be trade-offs between sampling density, coverage and measurement costs. To address these issues, we have added multi-objective optimization capabilities to OSSEs. We demonstrate these capabilities by quantifying the trade-offs between retrieval error and measurement costs for a prototype GHGIS, and deriving GHG observing networks that are Pareto optimal. [LLNL-ABS-452333: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Managing Network Partitions in Structured P2P Networks
Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif
Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.
Structural and Topology Optimization of Complex Civil Engineering Structures
DEFF Research Database (Denmark)
Hald, Frederik; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard
2013-01-01
This paper shows the use of topology optimization for finding an optimized form for civil engineering structures. Today topology optimization and shape optimization have been integrated in several commercial finite element codes. Here, the topology of two complex civil engineering structures...
Cogoni, Marco; Busonera, Giovanni; Anedda, Paolo; Zanetti, Gianluigi
2015-01-01
We generalize previous studies on critical phenomena in communication networks [1,2] by adding computational capabilities to the nodes. In our model, a set of tasks with random origin, destination and computational structure is distributed on a computational network, modeled as a graph. By varying the temperature of a Metropolis Montecarlo, we explore the global latency for an optimal to suboptimal resource assignment at a given time instant. By computing the two-point correlation function for the local overload, we study the behavior of the correlation distance (both for links and nodes) while approaching the congested phase: a transition from peaked to spread g(r) is seen above a critical (Montecarlo) temperature Tc. The average latency trend of the system is predicted by averaging over several network traffic realizations while maintaining a spatially detailed information for each node: a sharp decrease of performance is found over Tc independently of the workload. The globally optimized computational resource allocation and network routing defines a baseline for a future comparison of the transition behavior with respect to existing routing strategies [3,4] for different network topologies.
Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables
Liu, Ruiwei; Guo, Hongwei; Liu, Rongqiang; Wang, Hongxiang; Tang, Dewei; Song, Xiaoke
2017-11-01
Shape accuracy is of substantial importance in deployable structures as the demand for large-scale deployable structures in various fields, especially in aerospace engineering, increases. The main purpose of this paper is to present a shape accuracy optimization method to find the optimal pretensions for the desired shape of cable-rib tension deployable antenna structure with tensioned cables. First, an analysis model of the deployable structure is established by using finite element method. In this model, geometrical nonlinearity is considered for the cable element and beam element. Flexible deformations of the deployable structure under the action of cable network and tensioned cables are subsequently analyzed separately. Moreover, the influence of pretension of tensioned cables on natural frequencies is studied. Based on the results, a genetic algorithm is used to find a set of reasonable pretension and thus minimize structural deformation under the first natural frequency constraint. Finally, numerical simulations are presented to analyze the deployable structure under two kinds of constraints. Results show that the shape accuracy and natural frequencies of deployable structure can be effectively improved by pretension optimization.
Directory of Open Access Journals (Sweden)
Haibo Zhang
2016-08-01
Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.
An Improved Routing Optimization Algorithm Based on Travelling Salesman Problem for Social Networks
Directory of Open Access Journals (Sweden)
Naixue Xiong
2017-06-01
Full Text Available A social network is a social structure, which is organized by the relationships or interactions between individuals or groups. Humans link the physical network with social network, and the services in the social world are based on data and analysis, which directly influence decision making in the physical network. In this paper, we focus on a routing optimization algorithm, which solves a well-known and popular problem. Ant colony algorithm is proposed to solve this problem effectively, but random selection strategy of the traditional algorithm causes evolution speed to be slow. Meanwhile, positive feedback and distributed computing model make the algorithm quickly converge. Therefore, how to improve convergence speed and search ability of algorithm is the focus of the current research. The paper proposes the improved scheme. Considering the difficulty about searching for next better city, new parameters are introduced to improve probability of selection, and delay convergence speed of algorithm. To avoid the shortest path being submerged, and improve sensitive speed of finding the shortest path, it updates pheromone regulation formula. The results show that the improved algorithm can effectively improve convergence speed and search ability for achieving higher accuracy and optimal results.
Optimal scope of supply chain network & operations design
Ma, N.
2014-01-01
The increasingly complex supply chain networks and operations call for the development of decision support systems and optimization techniques that take a holistic view of supply chain issues and provide support for integrated decision-making. The economic impacts of optimized supply chain are
Performance-based shape optimization of continuum structures
International Nuclear Information System (INIS)
Liang Qingquan
2010-01-01
This paper presents a performance-based optimization (PBO) method for optimal shape design of continuum structures with stiffness constraints. Performance-based design concepts are incorporated in the shape optimization theory to achieve optimal designs. In the PBO method, the traditional shape optimization problem of minimizing the weight of a continuum structure with displacement or mean compliance constraints is transformed to the problem of maximizing the performance of the structure. The optimal shape of a continuum structure is obtained by gradually eliminating inefficient finite elements from the structure until its performance is maximized. Performance indices are employed to monitor the performance of optimized shapes in an optimization process. Performance-based optimality criteria are incorporated in the PBO method to identify the optimum from the optimization process. The PBO method is used to produce optimal shapes of plane stress continuum structures and plates in bending. Benchmark numerical results are provided to demonstrate the effectiveness of the PBO method for generating the maximum stiffness shape design of continuum structures. It is shown that the PBO method developed overcomes the limitations of traditional shape optimization methods in optimal design of continuum structures. Performance-based optimality criteria presented can be incorporated in any shape and topology optimization methods to obtain optimal designs of continuum structures.
Network Analysis of Resting State EEG in the Developing Young Brain: Structure Comes With Maturation
Boersma, M.; Smit, D.J.A.; de Bie, H.M.A.; van Baal, G.C.M.; Boomsma, D.I.; de Geus, E.J.C.; Delemarre-van de Waal, H.A.; Stam, C.J.
2011-01-01
During childhood, brain structure and function changes substantially. Recently, graph theory has been introduced to model connectivity in the brain. Small-world networks, such as the brain, combine optimal properties of both ordered and random networks, i.e., high clustering and short path lengths.
Multi-objective optimization in computer networks using metaheuristics
Donoso, Yezid
2007-01-01
Metaheuristics are widely used to solve important practical combinatorial optimization problems. Many new multicast applications emerging from the Internet-such as TV over the Internet, radio over the Internet, and multipoint video streaming-require reduced bandwidth consumption, end-to-end delay, and packet loss ratio. It is necessary to design and to provide for these kinds of applications as well as for those resources necessary for functionality. Multi-Objective Optimization in Computer Networks Using Metaheuristics provides a solution to the multi-objective problem in routing computer networks. It analyzes layer 3 (IP), layer 2 (MPLS), and layer 1 (GMPLS and wireless functions). In particular, it assesses basic optimization concepts, as well as several techniques and algorithms for the search of minimals; examines the basic multi-objective optimization concepts and the way to solve them through traditional techniques and through several metaheuristics; and demonstrates how to analytically model the compu...
Optimal multicasting in a multi-line-rate ethernet-over-WDM network
Harve, Shruthi; Batayneh, Marwan; Mukherjee, Biswanath
2009-11-01
Ethernet is the dominant transport technology for Local Area Networks. Efforts are now under way to use carrier-grade Ethernet in backbone networks of different service providers. With the advent of applications such as IPTV and Videoon- Demand, there is need for techniques to route multicast traffic over the Ethernet backbone networks. Here, we address the problem of Routing and Wavelength Assignment (RWA) of a set of multicast requests in a Multi-Line-Rate Ethernet backbone network with the objective of minimizing the cost of setting up the network, in terms of the Service Provider's Capital Expenditure (CAPEX). We present an Auxiliary Graph based heuristic algorithm that routes each multicast request on a light-tree structure, and assigns minimum cost wavelengths along the route. We compare the properties of the algorithm to the optimal solution given by a mathematical model formulated as an Integer Linear Program (ILP), and show that they compare very well. We also find that the algorithm is most cost-effective when the incoming requests are processed in descending order of their bandwidth requirements.
A two-layer recurrent neural network for nonsmooth convex optimization problems.
Qin, Sitian; Xue, Xiaoping
2015-06-01
In this paper, a two-layer recurrent neural network is proposed to solve the nonsmooth convex optimization problem subject to convex inequality and linear equality constraints. Compared with existing neural network models, the proposed neural network has a low model complexity and avoids penalty parameters. It is proved that from any initial point, the state of the proposed neural network reaches the equality feasible region in finite time and stays there thereafter. Moreover, the state is unique if the initial point lies in the equality feasible region. The equilibrium point set of the proposed neural network is proved to be equivalent to the Karush-Kuhn-Tucker optimality set of the original optimization problem. It is further proved that the equilibrium point of the proposed neural network is stable in the sense of Lyapunov. Moreover, from any initial point, the state is proved to be convergent to an equilibrium point of the proposed neural network. Finally, as applications, the proposed neural network is used to solve nonlinear convex programming with linear constraints and L1 -norm minimization problems.
Age structure and cooperation in coevolutionary games on dynamic network
Qin, Zilong; Hu, Zhenhua; Zhou, Xiaoping; Yi, Jingzhang
2015-04-01
Our proposed model imitates the growth of a population and describes the age structure and the level of cooperation in games on dynamic network with continuous changes of structure and topology. The removal of nodes and links caused by age-dependent attack, together with the nodes addition standing for the newborns of population, badly ruins Matthew effect in this coevolutionary process. Though the network is generated by growth and preferential attachment, it degenerates into random network and it is no longer heterogeneous. When the removal of nodes and links is equal to the addition of nodes and links, the size of dynamic network is maintained in steady-state, so is the low level of cooperation. Severe structure variation, homogeneous topology and continuous invasion of new defection jointly make dynamic network unsuitable for the survival of cooperator even when the probability with which the newborn players initially adopt the strategy cooperation is high, while things change slightly when the connections of newborn players are restricted. Fortunately, moderate interactions in a generation trigger an optimal recovering process to encourage cooperation. The model developed in this paper outlines an explanation of the cohesion changes in the development process of an organization. Some suggestions for cooperative behavior improvement are given in the end.
A Generic Methodology for Superstructure Optimization of Different Processing Networks
DEFF Research Database (Denmark)
Bertran, Maria-Ona; Frauzem, Rebecca; Zhang, Lei
2016-01-01
In this paper, we propose a generic computer-aided methodology for synthesis of different processing networks using superstructure optimization. The methodology can handle different network optimization problems of various application fields. It integrates databases with a common data architecture......, a generic model to represent the processing steps, and appropriate optimization tools. A special software interface has been created to automate the steps in the methodology workflow, allow the transfer of data between tools and obtain the mathematical representation of the problem as required...
Directory of Open Access Journals (Sweden)
محسن نفیسی
2014-10-01
Full Text Available Lack of an efficient sewer network in urban areas threatens public health and may give rise to contagious diseases. Various optimization methods have been developed for use in designing sewers networks in response to a number of requirements such as the high costs of constructing sewer networks, financial limitations, the presence of both discrete and continuous decision variables, and the nonlinear time complexity of such design problems. In this study, the particle swarm optimization algorithm (PSO with the capability of “fly-back” mechanism equipped with the harmony search (HPSO is used for the optimization of sewers network designs. The objective function consists of minimizing the excavation and embedding costs of commercial pipes. The fly-back mechanism and the harmony memory method are used to prevent leaving out variables from the feasible space of the problem in an attempt to enhance model efficiency. Model constraints are satisfied at two levels, which leads to the desirable convergence of the PSO algorithm as compared to the conventional penalty methods in alternative evolutionary algorithms. In order to determine the admissible decision variables, the Manning equation is used as a hydraulic model. The performance of the proposed algorithm is shown by presenting two examples of sewer networks. Compared to the PSO algorithm used in sewer network optimization models, the proposed model exhibits a tangible improvement in cost reduction and a higher computational stability.
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
Optimization of municipal pressure pumping station layout and sewage pipe network design
Tian, Jiandong; Cheng, Jilin; Gong, Yi
2018-03-01
Accelerated urbanization places extraordinary demands on sewer networks; thus optimization research to improve the design of these systems has practical significance. In this article, a subsystem nonlinear programming model is developed to optimize pumping station layout and sewage pipe network design. The subsystem model is expanded into a large-scale complex nonlinear programming system model to find the minimum total annual cost of the pumping station and network of all pipe segments. A comparative analysis is conducted using the sewage network in Taizhou City, China, as an example. The proposed method demonstrated that significant cost savings could have been realized if the studied system had been optimized using the techniques described in this article. Therefore, the method has practical value for optimizing urban sewage projects and provides a reference for theoretical research on optimization of urban drainage pumping station layouts.
DEFF Research Database (Denmark)
Ding, Tao; Yang, Qingrun; Yang, Yongheng
2018-01-01
To address the uncertain output of distributed generators (DGs) for reactive power optimization in active distribution networks, the stochastic programming model is widely used. The model is employed to find an optimal control strategy with minimum expected network loss while satisfying all......, in this paper, a data-driven modeling approach is introduced to assume that the probability distribution from the historical data is uncertain within a confidence set. Furthermore, a data-driven stochastic programming model is formulated as a two-stage problem, where the first-stage variables find the optimal...... control for discrete reactive power compensation equipment under the worst probability distribution of the second stage recourse. The second-stage variables are adjusted to uncertain probability distribution. In particular, this two-stage problem has a special structure so that the second-stage problem...
Study on network traffic forecast model of SVR optimized by GAFSA
International Nuclear Information System (INIS)
Liu, Yuan; Wang, RuiXue
2016-01-01
There are some problems, such as low precision, on existing network traffic forecast model. In accordance with these problems, this paper proposed the network traffic forecast model of support vector regression (SVR) algorithm optimized by global artificial fish swarm algorithm (GAFSA). GAFSA constitutes an improvement of artificial fish swarm algorithm, which is a swarm intelligence optimization algorithm with a significant effect of optimization. The optimum training parameters used for SVR could be calculated by optimizing chosen parameters, which would make the forecast more accurate. With the optimum training parameters searched by GAFSA algorithm, a model of network traffic forecast, which greatly solved problems of great errors in SVR improved by others intelligent algorithms, could be built with the forecast result approaching stability and the increased forecast precision. The simulation shows that, compared with other models (e.g. GA-SVR, CPSO-SVR), the forecast results of GAFSA-SVR network traffic forecast model is more stable with the precision improved to more than 89%, which plays an important role on instructing network control behavior and analyzing security situation.
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Reliability and optimization of structural systems
International Nuclear Information System (INIS)
Thoft-Christensen, P.
1987-01-01
The proceedings contain 28 papers presented at the 1st working conference. The working conference was organized by the IFIP Working Group 7.5. The proceedings also include 4 papers which were submitted, but for various reasons not presented at the working conference. The working conference was attended by 50 participants from 18 countries. The conference was the first scientific meeting of the new IFIP Working Group 7.5 on 'Reliability and Optimization of Structural Systems'. The purpose of the Working Group 7.5 is to promote modern structural system optimization and reliability theory, to advance international cooperation in the field of structural system optimization and reliability theory, to stimulate research, development and application of structural system optimization and reliability theory, to further the dissemination and exchange of information on reliability and optimization of structural system optimization and reliability theory, and to encourage education in structural system optimization and reliability theory. (orig./HP)
Complex fluid network optimization and control integrative design based on nonlinear dynamic model
International Nuclear Information System (INIS)
Sui, Jinxue; Yang, Li; Hu, Yunan
2016-01-01
In view of distribution according to complex fluid network’s needs, this paper proposed one optimization computation method of the nonlinear programming mathematical model based on genetic algorithm. The simulation result shows that the overall energy consumption of the optimized fluid network has a decrease obviously. The control model of the fluid network is established based on nonlinear dynamics. We design the control law based on feedback linearization, take the optimal value by genetic algorithm as the simulation data, can also solve the branch resistance under the optimal value. These resistances can provide technical support and reference for fluid network design and construction, so can realize complex fluid network optimization and control integration design.
Optimization of Laminated Composite Structures
DEFF Research Database (Denmark)
Henrichsen, Søren Randrup
of the contributions of the PhD project are included in the second part of the thesis. Paper A presents a framework for free material optimization where commercially available finite element analysis software is used as analysis tool. Robust buckling optimization of laminated composite structures by including...... allows for a higher degree of tailoring of the resulting material. To enable better utilization of the composite materials, optimum design procedures can be used to assist the engineer. This PhD thesis is focused on developing numerical methods for optimization of laminated composite structures...... nonlinear analysis of structures, buckling and post-buckling analysis of structures, and formulations for optimization of structures considering stiffness, buckling, and post-buckling criteria. Lastly, descriptions, main findings, and conclusions of the papers are presented. The papers forming the basis...
Directory of Open Access Journals (Sweden)
Krishan Kumar
2017-01-01
Full Text Available When a mobile network changes its point of attachments in Cognitive Radio (CR vehicular networks, the Mobile Router (MR requires spectrum handoff. Network Mobility (NEMO in CR vehicular networks is concerned with the management of this movement. In future NEMO based CR vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. The CR vehicular node may have the capability to make call for two or more types of nonsafety services such as voice, video, and best effort simultaneously. Hence, it becomes difficult for MR to select optimal network for the spectrum handoff. This can be done by performing spectrum handoff using Multiple Attributes Decision Making (MADM methods which is the objective of the paper. The MADM methods such as grey relational analysis and cost based methods are used. The application of MADM methods provides wider and optimum choice among the available networks with quality of service. Numerical results reveal that the proposed scheme is effective for spectrum handoff decision for optimal network selection with reduced complexity in NEMO based CR vehicular networks.
Energy Technology Data Exchange (ETDEWEB)
L. DOWELL
1999-08-01
The optimization of the configuration of communications and control networks is important for assuring the reliability and performance of the networks. This paper presents techniques for determining the optimal configuration for such a network in the presence of communication and connectivity constraints. reconfiguration to restore connectivity to a data-fusion network following the failure of a network component.
A one-layer recurrent neural network for constrained nonsmooth invex optimization.
Li, Guocheng; Yan, Zheng; Wang, Jun
2014-02-01
Invexity is an important notion in nonconvex optimization. In this paper, a one-layer recurrent neural network is proposed for solving constrained nonsmooth invex optimization problems, designed based on an exact penalty function method. It is proved herein that any state of the proposed neural network is globally convergent to the optimal solution set of constrained invex optimization problems, with a sufficiently large penalty parameter. In addition, any neural state is globally convergent to the unique optimal solution, provided that the objective function and constraint functions are pseudoconvex. Moreover, any neural state is globally convergent to the feasible region in finite time and stays there thereafter. The lower bounds of the penalty parameter and convergence time are also estimated. Two numerical examples are provided to illustrate the performances of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Risk-based optimization of pipe inspections in large underground networks with imprecise information
International Nuclear Information System (INIS)
Mancuso, A.; Compare, M.; Salo, A.; Zio, E.; Laakso, T.
2016-01-01
In this paper, we present a novel risk-based methodology for optimizing the inspections of large underground infrastructure networks in the presence of incomplete information about the network features and parameters. The methodology employs Multi Attribute Value Theory to assess the risk of each pipe in the network, whereafter the optimal inspection campaign is built with Portfolio Decision Analysis (PDA). Specifically, Robust Portfolio Modeling (RPM) is employed to identify Pareto-optimal portfolios of pipe inspections. The proposed methodology is illustrated by reporting a real case study on the large-scale maintenance optimization of the sewerage network in Espoo, Finland. - Highlights: • Risk-based approach to optimize pipe inspections on large underground networks. • Reasonable computational effort to select efficient inspection portfolios. • Possibility to accommodate imprecise expert information. • Feasibility of the approach shown by Espoo water system case study.
Optimization of deformation monitoring networks using finite element strain analysis
Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.
2018-04-01
An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.
Shakeri, Heman; Sahneh, Faryad Darabi; Scoglio, Caterina; Poggi-Corradini, Pietro; Preciado, Victor M
2015-06-01
Launching a prevention campaign to contain the spread of infection requires substantial financial investments; therefore, a trade-off exists between suppressing the epidemic and containing costs. Information exchange among individuals can occur as physical contacts (e.g., word of mouth, gatherings), which provide inherent possibilities of disease transmission, and non-physical contacts (e.g., email, social networks), through which information can be transmitted but the infection cannot be transmitted. Contact network (CN) incorporates physical contacts, and the information dissemination network (IDN) represents non-physical contacts, thereby generating a multilayer network structure. Inherent differences between these two layers cause alerting through CN to be more effective but more expensive than IDN. The constraint for an epidemic to die out derived from a nonlinear Perron-Frobenius problem that was transformed into a semi-definite matrix inequality and served as a constraint for a convex optimization problem. This method guarantees a dying-out epidemic by choosing the best nodes for adopting preventive behaviors with minimum monetary resources. Various numerical simulations with network models and a real-world social network validate our method.
Directory of Open Access Journals (Sweden)
Jiajia Chen
2013-01-01
Full Text Available A hybrid approach of genetic algorithm (GA and improved particle swarm optimization (IPSO is proposed to construct the radial basis function neural network (RNN for real-time optimizing of the carbon fiber manufacture process. For the three-layer RNN, we adopt the nearest neighbor-clustering algorithm to determine the neurons number of the hidden layer. When the appropriate network structure is fixed, we present the GA-IPSO algorithm to tune the parameters of the network, which means the center and the width of the node in the hidden layer and the weight of output layer. We introduce a penalty factor to adjust the velocity and position of the particles to expedite convergence of the PSO. The GA is used to mutate the particles to escape local optimum. Then we employ this network to develop the bidirectional optimization model: in one direction, we take production parameters as input and properties indices as output; in this case, the model is a carbon fiber product performance prediction system; in the other direction, we take properties indices as input and production parameters as output, and at this situation, the model is a production scheme design tool for novel style carbon fiber. Based on the experimental data, the proposed model is compared to the conventional RBF network and basic PSO method; the research results show its validity and the advantages in dealing with optimization problems.
Optimal structural inference of signaling pathways from unordered and overlapping gene sets.
Acharya, Lipi R; Judeh, Thair; Wang, Guangdi; Zhu, Dongxiao
2012-02-15
A plethora of bioinformatics analysis has led to the discovery of numerous gene sets, which can be interpreted as discrete measurements emitted from latent signaling pathways. Their potential to infer signaling pathway structures, however, has not been sufficiently exploited. Existing methods accommodating discrete data do not explicitly consider signal cascading mechanisms that characterize a signaling pathway. Novel computational methods are thus needed to fully utilize gene sets and broaden the scope from focusing only on pairwise interactions to the more general cascading events in the inference of signaling pathway structures. We propose a gene set based simulated annealing (SA) algorithm for the reconstruction of signaling pathway structures. A signaling pathway structure is a directed graph containing up to a few hundred nodes and many overlapping signal cascades, where each cascade represents a chain of molecular interactions from the cell surface to the nucleus. Gene sets in our context refer to discrete sets of genes participating in signal cascades, the basic building blocks of a signaling pathway, with no prior information about gene orderings in the cascades. From a compendium of gene sets related to a pathway, SA aims to search for signal cascades that characterize the optimal signaling pathway structure. In the search process, the extent of overlap among signal cascades is used to measure the optimality of a structure. Throughout, we treat gene sets as random samples from a first-order Markov chain model. We evaluated the performance of SA in three case studies. In the first study conducted on 83 KEGG pathways, SA demonstrated a significantly better performance than Bayesian network methods. Since both SA and Bayesian network methods accommodate discrete data, use a 'search and score' network learning strategy and output a directed network, they can be compared in terms of performance and computational time. In the second study, we compared SA and
RECOVERY ACT - Robust Optimization for Connectivity and Flows in Dynamic Complex Networks
Energy Technology Data Exchange (ETDEWEB)
Balasundaram, Balabhaskar [Oklahoma State Univ., Stillwater, OK (United States); Butenko, Sergiy [Texas A & M Univ., College Station, TX (United States); Boginski, Vladimir [Univ. of Florida, Gainesville, FL (United States); Uryasev, Stan [Univ. of Florida, Gainesville, FL (United States)
2013-12-25
The goal of this project was to study robust connectivity and flow patterns of complex multi-scale systems modeled as networks. Networks provide effective ways to study global, system level properties, as well as local, multi-scale interactions at a component level. Numerous applications from power systems, telecommunication, transportation, biology, social science, and other areas have benefited from novel network-based models and their analysis. Modeling and optimization techniques that employ appropriate measures of risk for identifying robust clusters and resilient network designs in networks subject to uncertain failures were investigated in this collaborative multi-university project. In many practical situations one has to deal with uncertainties associated with possible failures of network components, thereby affecting the overall efficiency and performance of the system (e.g., every node/connection has a probability of partial or complete failure). Some extreme examples include power grid component failures, airline hub failures due to weather, or freeway closures due to emergencies. These are also situations in which people, materials, or other resources need to be managed efficiently. Important practical examples include rerouting flow through power grids, adjusting flight plans, and identifying routes for emergency services and supplies, in the event network elements fail unexpectedly. Solutions that are robust under uncertainty, in addition to being economically efficient, are needed. This project has led to the development of novel models and methodologies that can tackle the optimization problems arising in such situations. A number of new concepts, which have not been previously applied in this setting, were investigated in the framework of the project. The results can potentially help decision-makers to better control and identify robust or risk-averse decisions in such situations. Formulations and optimal solutions of the considered problems need
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182
From network structure to network reorganization: implications for adult neurogenesis
International Nuclear Information System (INIS)
Schneider-Mizell, Casey M; Zochowski, Michal R; Sander, Leonard M; Parent, Jack M; Ben-Jacob, Eshel
2010-01-01
Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells
Design optimization applied in structural dynamics
Akcay-Perdahcioglu, Didem; de Boer, Andries; van der Hoogt, Peter; Tiskarna, T
2007-01-01
This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process
Software defined network inference with evolutionary optimal observation matrices
Malboubi, M; Gong, Y; Yang, Z; Wang, X; Chuah, CN; Sharma, P
2017-01-01
© 2017 Elsevier B.V. A key requirement for network management is the accurate and reliable monitoring of relevant network characteristics. In today's large-scale networks, this is a challenging task due to the scarcity of network measurement resources and the hard constraints that this imposes. This paper proposes a new framework, called SNIPER, which leverages the flexibility provided by Software-Defined Networking (SDN) to design the optimal observation or measurement matrix that can lead t...
Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives
International Nuclear Information System (INIS)
Warmflash, Aryeh; Siggia, Eric D; Francois, Paul
2012-01-01
The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input–output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria. (paper)
Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.
Warmflash, Aryeh; Francois, Paul; Siggia, Eric D
2012-10-01
The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.
Multiobjective Optimization of Water Distribution Networks Using Fuzzy Theory and Harmony Search
Directory of Open Access Journals (Sweden)
Zong Woo Geem
2015-07-01
Full Text Available Thus far, various phenomenon-mimicking algorithms, such as genetic algorithm, simulated annealing, tabu search, shuffled frog-leaping, ant colony optimization, harmony search, cross entropy, scatter search, and honey-bee mating, have been proposed to optimally design the water distribution networks with respect to design cost. However, flow velocity constraint, which is critical for structural robustness against water hammer or flow circulation against substance sedimentation, was seldom considered in the optimization formulation because of computational complexity. Thus, this study proposes a novel fuzzy-based velocity reliability index, which is to be maximized while the design cost is simultaneously minimized. The velocity reliability index is included in the existing cost optimization formulation and this extended multiobjective formulation is applied to two bench-mark problems. Results show that the model successfully found a Pareto set of multiobjective design solutions in terms of cost minimization and reliability maximization.
Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks
Directory of Open Access Journals (Sweden)
Eduardo Camponogara
2010-12-01
Full Text Available Self-organization in Wireless Mesh Networks (WMN is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR and the ad hoc on demand distance vector (AODV routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed.
Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks
Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo
2011-01-01
Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed. PMID:22346584
Song, Chen; Zhong-Cheng, Wu; Hong, Lv
2018-03-01
Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.
Computation of optimal transport and related hedging problems via penalization and neural networks
Eckstein, Stephan; Kupper, Michael
2018-01-01
This paper presents a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, martingale optimal transport, portfolio optimization under uncertainty and generative adversa...
Optimization of investments in gas networks
International Nuclear Information System (INIS)
Andre, J.
2010-09-01
The natural gas networks require very important investments to cope with a still growing demand and to satisfy the new regulatory constraints. The gas market deregulation imposed to the gas network operators, first, transparency rules of a natural monopoly to justify their costs and ultimately their tariffs, and, second, market fluidity objectives in order to facilitate access for competition to the end-users. These major investments are the main reasons for the use of optimization techniques aiming at reducing the costs. Due to the discrete choices (investment location, limited choice of additional capacities, timing) crossed with physical non linear constraints (flow/pressures relations in the pipe or operating ranges of compressors), the programs to solve are Large Mixed Non Linear Programs (MINLP). As these types of programs are known to be hard to solve exactly in polynomial times (NP-hard), advanced optimization methods have to be implemented to obtain realistic results. The objectives of this thesis are threefold. First, one states several investment problems modeling of natural gas networks from industrial world motivations. Second, one identifies the most suitable methods and algorithms to the formulated problems. Third, one exposes the main advantages and drawbacks of these methods with the help of numerical applications on real cases. (author)
AS Migration and Optimization of the Power Integrated Data Network
Zhou, Junjie; Ke, Yue
2018-03-01
In the transformation process of data integration network, the impact on the business has always been the most important reference factor to measure the quality of network transformation. With the importance of the data network carrying business, we must put forward specific design proposals during the transformation, and conduct a large number of demonstration and practice to ensure that the transformation program meets the requirements of the enterprise data network. This paper mainly demonstrates the scheme of over-migrating point-to-point access equipment in the reconstruction project of power data comprehensive network to migrate the BGP autonomous domain to the specified domain defined in the industrial standard, and to smooth the intranet OSPF protocol Migration into ISIS agreement. Through the optimization design, eventually making electric power data network performance was improved on traffic forwarding, traffic forwarding path optimized, extensibility, get larger, lower risk of potential loop, the network stability was improved, and operational cost savings, etc.
Directory of Open Access Journals (Sweden)
Chun Fu
2015-05-01
Full Text Available Purpose: By studying the case of a Changsha engineering machinery manufacturing firm, this paper aims to find out the optimization tactics to reduce enterprise’s logistics operational cost. Design/methodology/approach: This paper builds the structure model of manufacturing enterprise’s logistics operational costs from the perspective of inter-firm network and simulates the model based on system dynamics. Findings: It concludes that applying system dynamics in the research of manufacturing enterprise’s logistics cost control can better reflect the relationship of factors in the system. And the case firm can optimize the logistics costs by implement joint distribution. Research limitations/implications: This study still lacks comprehensive consideration about the variables quantities and quantitative of the control factors. In the future, we should strengthen the collection of data and information about the engineering manufacturing firms and improve the logistics operational cost model. Practical implications: This study puts forward some optimization tactics to reduce enterprise’s logistics operational cost. And it is of great significance for enterprise’s supply chain management optimization and logistics cost control. Originality/value: Differing from the existing literatures, this paper builds the structure model of manufacturing enterprise’s logistics operational costs from the perspective of inter-firm network and simulates the model based on system dynamics.
Sensitivity analysis of human brain structural network construction
Directory of Open Access Journals (Sweden)
Kuang Wei
2017-12-01
Full Text Available Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP, we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes. Diffusion tractography has been proven to be a promising noninvasive technique to study the network properties of the human brain. However, how various tractography and network construction parameters affect network properties has not been studied using a large cohort of high-quality data. We utilize data provided by the Human Connectome Project to characterize the changes to network properties induced by varying the brain parcellation atlas scales, the number of reconstructed tractography tracks, and the degree of grey
Nuclear reactors project optimization based on neural network and genetic algorithm
International Nuclear Information System (INIS)
Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.
1997-01-01
This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs
Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen
2013-02-01
This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.
Optimization with PDE constraints ESF networking program 'OPTPDE'
2014-01-01
This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).
Improved Artificial Fish Algorithm for Parameters Optimization of PID Neural Network
Jing Wang; Yourui Huang
2013-01-01
In order to solve problems such as initial weights are difficult to be determined, training results are easy to trap in local minima in optimization process of PID neural network parameters by traditional BP algorithm, this paper proposed a new method based on improved artificial fish algorithm for parameters optimization of PID neural network. This improved artificial fish algorithm uses a composite adaptive artificial fish algorithm based on optimal artificial fish and nearest artificial fi...
Reliability-Based Optimization of Structural Elements
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
In this paper structural elements from an optimization point of view are considered, i.e. only the geometry of a structural element is optimized. Reliability modelling of the structural element is discussed both from an element point of view and from a system point of view. The optimization...
Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.
2017-07-01
Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by
Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery
International Nuclear Information System (INIS)
Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel
2009-01-01
The reliability of ad-hoc networks is gaining popularity in two areas: as a topic of academic interest and as a key performance parameter for defense systems employing this type of network. The ad-hoc network is dynamic and scalable and these descriptions are what attract its users. However, these descriptions are also synonymous for undefined and unpredictable when considering the impacts to the reliability of the system. The configuration of an ad-hoc network changes continuously and this fact implies that no single mathematical expression or graphical depiction can describe the system reliability-wise. Previous research has used mobility and stochastic models to address this challenge successfully. In this paper, the authors leverage the stochastic approach and build upon it a probabilistic solution discovery (PSD) algorithm to optimize the topology for a cluster-based mobile ad-hoc wireless network (MAWN). Specifically, the membership of nodes within the back-bone network or networks will be assigned in such as way as to maximize reliability subject to a constraint on cost. The constraint may also be considered as a non-monetary cost, such as weight, volume, power, or the like. When a cost is assigned to each component, a maximum cost threshold is assigned to the network, and the method is run; the result is an optimized allocation of the radios enabling back-bone network(s) to provide the most reliable network possible without exceeding the allowable cost. The method is intended for use directly as part of the architectural design process of a cluster-based MAWN to efficiently determine an optimal or near-optimal design solution. It is capable of optimizing the topology based upon all-terminal reliability (ATR), all-operating terminal reliability (AoTR), or two-terminal reliability (2TR)
Energy Technology Data Exchange (ETDEWEB)
L. DOWELL
1999-07-01
The optimization of the configuration of communications and control networks is important for assuring the reliability and performance of the networks. This paper presents techniques for determining the optimal configuration for such a network in the presence of communication and connectivity constraints.
Directory of Open Access Journals (Sweden)
Li Ran
2017-01-01
Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.
A Global Network Alignment Method Using Discrete Particle Swarm Optimization.
Huang, Jiaxiang; Gong, Maoguo; Ma, Lijia
2016-10-19
Molecular interactions data increase exponentially with the advance of biotechnology. This makes it possible and necessary to comparatively analyse the different data at a network level. Global network alignment is an important network comparison approach to identify conserved subnetworks and get insight into evolutionary relationship across species. Network alignment which is analogous to subgraph isomorphism is known to be an NP-hard problem. In this paper, we introduce a novel heuristic Particle-Swarm-Optimization based Network Aligner (PSONA), which optimizes a weighted global alignment model considering both protein sequence similarity and interaction conservations. The particle statuses and status updating rules are redefined in a discrete form by using permutation. A seed-and-extend strategy is employed to guide the searching for the superior alignment. The proposed initialization method "seeds" matches with high sequence similarity into the alignment, which guarantees the functional coherence of the mapping nodes. A greedy local search method is designed as the "extension" procedure to iteratively optimize the edge conservations. PSONA is compared with several state-of-art methods on ten network pairs combined by five species. The experimental results demonstrate that the proposed aligner can map the proteins with high functional coherence and can be used as a booster to effectively refine the well-studied aligners.
Optimization and anti-optimization of structures under uncertainty
National Research Council Canada - National Science Library
Elishakoff, Isaac; Ohsaki, Makoto
2010-01-01
The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years...
An examination of a reciprocal relationship between network governance and network structure
DEFF Research Database (Denmark)
Bergenholtz, Carsten; Goduscheit, René Chester
The present article examines the network structure and governance of inter-organisational innovation networks. Network governance refers to the issue of how to manage and coordinate the relational activities and processes in the network while research on network structure deals with the overall...... structural relations between the actors in the network. These streams of research do contain references to each other but mostly rely on a static conception of the relationship between network structure and the applied network governance. The paper is based on a primarily qualitative case study of a loosely...... coupled Danish inter-organisational innovation network. The proposition is that a reciprocal relation between network governance and network structure can be identified....
Near-Optimal Resource Allocation in Cooperative Cellular Networks Using Genetic Algorithms
Luo, Zihan; Armour, Simon; McGeehan, Joe
2015-01-01
This paper shows how a genetic algorithm can be used as a method of obtaining the near-optimal solution of the resource block scheduling problem in a cooperative cellular network. An exhaustive search is initially implementedto guarantee that the optimal result, in terms of maximizing the bandwidth efficiency of the overall network, is found, and then the genetic algorithm with the properly selected termination conditions is used in the same network. The simulation results show that the genet...
Data-Driven Handover Optimization in Next Generation Mobile Communication Networks
Directory of Open Access Journals (Sweden)
Po-Chiang Lin
2016-01-01
Full Text Available Network densification is regarded as one of the important ingredients to increase capacity for next generation mobile communication networks. However, it also leads to mobility problems since users are more likely to hand over to another cell in dense or even ultradense mobile communication networks. Therefore, supporting seamless and robust connectivity through such networks becomes a very important issue. In this paper, we investigate handover (HO optimization in next generation mobile communication networks. We propose a data-driven handover optimization (DHO approach, which aims to mitigate mobility problems including too-late HO, too-early HO, HO to wrong cell, ping-pong HO, and unnecessary HO. The key performance indicator (KPI is defined as the weighted average of the ratios of these mobility problems. The DHO approach collects data from the mobile communication measurement results and provides a model to estimate the relationship between the KPI and features from the collected dataset. Based on the model, the handover parameters, including the handover margin and time-to-trigger, are optimized to minimize the KPI. Simulation results show that the proposed DHO approach could effectively mitigate mobility problems.
Optimal scheduling for distribution network with redox flow battery storage
International Nuclear Information System (INIS)
Hosseina, Majid; Bathaee, Seyed Mohammad Taghi
2016-01-01
Highlights: • A novel method for optimal scheduling of storages in radial network is presented. • Peak shaving and load leveling are the main objectives. • Vanadium redox flow battery is considered as the energy storage unit. • Real data is used for simulation. - Abstract: There are many advantages to utilize storages in electric power system. Peak shaving, load leveling, load frequency control, integration of renewable, energy trading and spinning reserve are the most important of them. Batteries, especially redox flow batteries, are one of the appropriate storages for utilization in distribution network. This paper presents a novel, heuristic and practical method for optimal scheduling in distribution network with flow battery storage. This heuristic method is more suitable for scheduling and operation of distribution networks which require installation of storages. Peak shaving and load leveling is considered as the main objective in this paper. Several indices are presented in this paper for determine the place of storages and also scheduling for optimal use of energy in them. Simulations of this paper are based on real information of distribution network substation that located in Semnan, Iran.
Reliability-based optimization of engineering structures
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
2008-01-01
The theoretical basis for reliability-based structural optimization within the framework of Bayesian statistical decision theory is briefly described. Reliability-based cost benefit problems are formulated and exemplitied with structural optimization. The basic reliability-based optimization...... problems are generalized to the following extensions: interactive optimization, inspection and repair costs, systematic reconstruction, re-assessment of existing structures. Illustrative examples are presented including a simple introductory example, a decision problem related to bridge re...
On the (non-)optimality of Michell structures
DEFF Research Database (Denmark)
Sigmund, Ole; Aage, Niels; Andreassen, Erik
2016-01-01
Optimal analytical Michell frame structures have been extensively used as benchmark examples in topology optimization, including truss, frame, homogenization, density and level-set based approaches. However, as we will point out, partly the interpretation of Michell’s structural continua...... as discrete frame structures is not accurate and partly, it turns out that limiting structural topology to frame-like structures is a rather severe design restriction and results in structures that are quite far from being stiffness optimal. The paper discusses the interpretation of Michell’s theory...... in the context of numerical topology optimization and compares various topology optimization results obtained with the frame restriction to cases with no design restrictions. For all examples considered, the true stiffness optimal structures are composed of sheets (2D) or closed-walled shell structures (3D...
Qin, Sitian; Yang, Xiudong; Xue, Xiaoping; Song, Jiahui
2017-10-01
Pseudoconvex optimization problem, as an important nonconvex optimization problem, plays an important role in scientific and engineering applications. In this paper, a recurrent one-layer neural network is proposed for solving the pseudoconvex optimization problem with equality and inequality constraints. It is proved that from any initial state, the state of the proposed neural network reaches the feasible region in finite time and stays there thereafter. It is also proved that the state of the proposed neural network is convergent to an optimal solution of the related problem. Compared with the related existing recurrent neural networks for the pseudoconvex optimization problems, the proposed neural network in this paper does not need the penalty parameters and has a better convergence. Meanwhile, the proposed neural network is used to solve three nonsmooth optimization problems, and we make some detailed comparisons with the known related conclusions. In the end, some numerical examples are provided to illustrate the effectiveness of the performance of the proposed neural network.
Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N
2006-12-01
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
A mathematical model for optimization of an integrated network logistic design
Directory of Open Access Journals (Sweden)
Lida Tafaghodi
2011-10-01
Full Text Available In this study, the integrated forward/reverse logistics network is investigated, and a capacitated multi-stage, multi-product logistics network design is proposed by formulating a generalized logistics network problem into a mixed-integer nonlinear programming model (MINLP for minimizing the total cost of the closed-loop supply chain network. Moreover, the proposed model is solved by using optimization solver, which provides the decisions related to the facility location problem, optimum quantity of shipped product, and facility capacity. Numerical results show the power of the proposed MINLP model to avoid th sub-optimality caused by separate design of forward and reverse logistics networks and to handle various transportation modes and periodic demand.
Network structure exploration via Bayesian nonparametric models
International Nuclear Information System (INIS)
Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z
2015-01-01
Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)
Distributed Optimization based Dynamic Tariff for Congestion Management in Distribution Networks
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei; Zhao, Haoran
2017-01-01
This paper proposes a distributed optimization based dynamic tariff (DDT) method for congestion management in distribution networks with high penetration of electric vehicles (EVs) and heat pumps (HPs). The DDT method employs a decomposition based optimization method to have aggregators explicitly...... is able to minimize the overall energy consumption cost and line loss cost, which is different from previous decomposition-based methods such as multiagent system methods. In addition, a reconditioning method and an integral controller are introduced to improve convergence of the distributed optimization...... where challenges arise due to multiple congestion points, multiple types of flexible demands and network constraints. The case studies demonstrate the efficacy of the DDT method for congestion management in distribution networks....
Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks
Directory of Open Access Journals (Sweden)
Najla S Dar-Odeh
2010-05-01
Full Text Available Najla S Dar-Odeh1, Othman M Alsmadi2, Faris Bakri3, Zaer Abu-Hammour2, Asem A Shehabi3, Mahmoud K Al-Omiri1, Shatha M K Abu-Hammad4, Hamzeh Al-Mashni4, Mohammad B Saeed4, Wael Muqbil4, Osama A Abu-Hammad1 1Faculty of Dentistry, 2Faculty of Engineering and Technology, 3Faculty of Medicine, University of Jordan, Amman, Jordan; 4Dental Department, University of Jordan Hospital, Amman, JordanObjective: To construct and optimize a neural network that is capable of predicting the occurrence of recurrent aphthous ulceration (RAU based on a set of appropriate input data.Participants and methods: Artificial neural networks (ANN software employing genetic algorithms to optimize the architecture neural networks was used. Input and output data of 86 participants (predisposing factors and status of the participants with regards to recurrent aphthous ulceration were used to construct and train the neural networks. The optimized neural networks were then tested using untrained data of a further 10 participants.Results: The optimized neural network, which produced the most accurate predictions for the presence or absence of recurrent aphthous ulceration was found to employ: gender, hematological (with or without ferritin and mycological data of the participants, frequency of tooth brushing, and consumption of vegetables and fruits.Conclusions: Factors appearing to be related to recurrent aphthous ulceration and appropriate for use as input data to construct ANNs that predict recurrent aphthous ulceration were found to include the following: gender, hemoglobin, serum vitamin B12, serum ferritin, red cell folate, salivary candidal colony count, frequency of tooth brushing, and the number of fruits or vegetables consumed daily.Keywords: artifical neural networks, recurrent, aphthous ulceration, ulcer
Optimization of multicast optical networks with genetic algorithm
Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng
2007-11-01
In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.
Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.
Sohn, Insoo; Liu, Huaping; Ansari, Nirwan
2015-01-01
An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.
On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier
2013-01-01
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582
On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies
Directory of Open Access Journals (Sweden)
Francisco Javier González-Castano
2013-08-01
Full Text Available The extension of the network lifetime of Wireless Sensor Networks (WSN is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.
Directory of Open Access Journals (Sweden)
Xiaojin Li
2013-01-01
Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.
Directory of Open Access Journals (Sweden)
A. Chebbi
2013-10-01
Full Text Available Based on rainfall intensity-duration-frequency (IDF curves, fitted in several locations of a given area, a robust optimization approach is proposed to identify the best locations to install new rain gauges. The advantage of robust optimization is that the resulting design solutions yield networks which behave acceptably under hydrological variability. Robust optimization can overcome the problem of selecting representative rainfall events when building the optimization process. This paper reports an original approach based on Montana IDF model parameters. The latter are assumed to be geostatistical variables, and their spatial interdependence is taken into account through the adoption of cross-variograms in the kriging process. The problem of optimally locating a fixed number of new monitoring stations based on an existing rain gauge network is addressed. The objective function is based on the mean spatial kriging variance and rainfall variogram structure using a variance-reduction method. Hydrological variability was taken into account by considering and implementing several return periods to define the robust objective function. Variance minimization is performed using a simulated annealing algorithm. In addition, knowledge of the time horizon is needed for the computation of the robust objective function. A short- and a long-term horizon were studied, and optimal networks are identified for each. The method developed is applied to north Tunisia (area = 21 000 km2. Data inputs for the variogram analysis were IDF curves provided by the hydrological bureau and available for 14 tipping bucket type rain gauges. The recording period was from 1962 to 2001, depending on the station. The study concerns an imaginary network augmentation based on the network configuration in 1973, which is a very significant year in Tunisia because there was an exceptional regional flood event in March 1973. This network consisted of 13 stations and did not meet World
Directory of Open Access Journals (Sweden)
Yang Sun
2018-01-01
Full Text Available Using Pareto optimization in Multi-Objective Reinforcement Learning (MORL leads to better learning results for network defense games. This is particularly useful for network security agents, who must often balance several goals when choosing what action to take in defense of a network. If the defender knows his preferred reward distribution, the advantages of Pareto optimization can be retained by using a scalarization algorithm prior to the implementation of the MORL. In this paper, we simulate a network defense scenario by creating a multi-objective zero-sum game and using Pareto optimization and MORL to determine optimal solutions and compare those solutions to different scalarization approaches. We build a Pareto Defense Strategy Selection Simulator (PDSSS system for assisting network administrators on decision-making, specifically, on defense strategy selection, and the experiment results show that the Satisficing Trade-Off Method (STOM scalarization approach performs better than linear scalarization or GUESS method. The results of this paper can aid network security agents attempting to find an optimal defense policy for network security games.
Optimal sensor placement for leakage detection and isolation in water distribution networks
Rosich Oliva, Albert; Sarrate Estruch, Ramon; Nejjari Akhi-Elarab, Fatiha
2012-01-01
In this paper, the problem of leakage detection and isolation in water distribution networks is addressed applying an optimal sensor placement methodology. The chosen technique is based on structural models and thus it is suitable to handle non-linear and large scale systems. A drawback of this technique arises when costs are assigned uniformly. A main contribution of this paper is the proposal of an iterative methodology that focuses on identifying essential sensors which ultimately leads to...
Joint optimization scheduling for water conservancy projects in complex river networks
Directory of Open Access Journals (Sweden)
Qin Liu
2017-01-01
Full Text Available In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.
Mohanty, Itishree; Chintha, Appa Rao; Kundu, Saurabh
2018-06-01
The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.
Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi
2017-09-01
Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.
Using Agent Base Models to Optimize Large Scale Network for Large System Inventories
Shameldin, Ramez Ahmed; Bowling, Shannon R.
2010-01-01
The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.
Networks: structure and action : steering in and steering by policy networks
Dassen, A.
2010-01-01
This thesis explores the opportunities to build a structural policy network model that is rooted in social network theories. By making a distinction between a process of steering in networks, and a process of steering by networks, it addresses the effects of network structures on network dynamics as
Kulkarni, Shruti R; Rajendran, Bipin
2018-07-01
We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optimization-based Method for Automated Road Network Extraction
International Nuclear Information System (INIS)
Xiong, D
2001-01-01
Automated road information extraction has significant applicability in transportation. It provides a means for creating, maintaining, and updating transportation network databases that are needed for purposes ranging from traffic management to automated vehicle navigation and guidance. This paper is to review literature on the subject of road extraction and to describe a study of an optimization-based method for automated road network extraction
Optimal Priority Structure, Capital Structure, and Investment
Dirk Hackbarth; David C. Mauer
2012-01-01
We study the interaction between financing and investment decisions in a dynamic model, where the firm has multiple debt issues and equityholders choose the timing of investment. Jointly optimal capital and priority structures can virtually eliminate investment distortions because debt priority serves as a dynamically optimal contract. Examining the relative efficiency of priority rules observed in practice, we develop several predictions about how firms adjust their priority structure in res...
Minimum energy control and optimal-satisfactory control of Boolean control network
International Nuclear Information System (INIS)
Li, Fangfei; Lu, Xiwen
2013-01-01
In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.
6th International Conference on Network Analysis
Nikolaev, Alexey; Pardalos, Panos; Prokopyev, Oleg
2017-01-01
This valuable source for graduate students and researchers provides a comprehensive introduction to current theories and applications in optimization methods and network models. Contributions to this book are focused on new efficient algorithms and rigorous mathematical theories, which can be used to optimize and analyze mathematical graph structures with massive size and high density induced by natural or artificial complex networks. Applications to social networks, power transmission grids, telecommunication networks, stock market networks, and human brain networks are presented. Chapters in this book cover the following topics: Linear max min fairness Heuristic approaches for high-quality solutions Efficient approaches for complex multi-criteria optimization problems Comparison of heuristic algorithms New heuristic iterative local search Power in network structures Clustering nodes in random graphs Power transmission grid structure Network decomposition problems Homogeneity hypothesis testing Network analy...
Optimal residential smart appliances scheduling considering distribution network constraints
Directory of Open Access Journals (Sweden)
Yu-Ree Kim
2016-01-01
Full Text Available As smart appliances (SAs are more widely adopted within distribution networks, residential consumers can contribute to electricity market operations with demand response resources and reduce their electricity bill. However, if the schedules of demand response resources are determined only by the economic electricity rate signal, the schedule can be unfeasible due to the distribution network constraints. Furthermore, it is impossible for consumers to understand the complex physical characteristics and reflect them in their everyday behaviors. This paper introduces the concept of load coordinating retailer (LCR that deals with demand responsive appliances to reduce electrical consumption for the given distribution network constraints. The LCR can play the role of both conventional retailer and aggregated demand response provider for residential customers. It determines the optimal schedules for the aggregated neighboring SAs according to their types within each distribution feeder. The optimization algorithms are developed using Mixed Integer Linear Programming, and the distribution network is solved by the Newton–Raphson AC power flow.
5G heterogeneous networks self-organizing and optimization
Rong, Bo; Kadoch, Michel; Sun, Songlin; Li, Wenjing
2016-01-01
This SpringerBrief provides state-of-the-art technical reviews on self-organizing and optimization in 5G systems. It covers the latest research results from physical-layer channel modeling to software defined network (SDN) architecture. This book focuses on the cutting-edge wireless technologies such as heterogeneous networks (HetNets), self-organizing network (SON), smart low power node (LPN), 3D-MIMO, and more. It will help researchers from both the academic and industrial worlds to better understand the technical momentum of 5G key technologies.
District Heating Network Design and Configuration Optimization with Genetic Algorithm
DEFF Research Database (Denmark)
Li, Hongwei; Svendsen, Svend
2011-01-01
In this paper, the configuration of a district heating (DH) network which connects from the heating plant to the end users was optimized with emphasizing the network thermal performance. Each end user in the network represents a building block. The locations of the building blocks are fixed while...... the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...... by multi factors as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding pressure and temperature limitation, as well as the corresponding network heat loss....
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm
Directory of Open Access Journals (Sweden)
O. G. Monahov
2014-01-01
Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously
Optimization of the Critical Diameter and Average Path Length of Social Networks
Directory of Open Access Journals (Sweden)
Haifeng Du
2017-01-01
Full Text Available Optimizing average path length (APL by adding shortcut edges has been widely discussed in connection with social networks, but the relationship between network diameter and APL is generally ignored in the dynamic optimization of APL. In this paper, we analyze this relationship and transform the problem of optimizing APL into the problem of decreasing diameter to 2. We propose a mathematic model based on a memetic algorithm. Experimental results show that our algorithm can efficiently solve this problem as well as optimize APL.
Structural networks involved in attention and executive functions in multiple sclerosis
Directory of Open Access Journals (Sweden)
Sara Llufriu
2017-01-01
Full Text Available Attention and executive deficits are disabling symptoms in multiple sclerosis (MS that have been related to disconnection mechanisms. We aimed to investigate changes in structural connectivity in MS and their association with attention and executive performance applying an improved framework that combines high order probabilistic tractography and anatomical exclusion criteria postprocessing. We compared graph theory metrics of structural networks and fractional anisotropy (FA of white matter (WM connections or edges between 72 MS subjects and 38 healthy volunteers (HV and assessed their correlation with cognition. Patients displayed decreased network transitivity, global efficiency and increased path length compared with HV (p < 0.05, corrected. Also, nodal strength was decreased in 26 of 84 gray matter regions. The distribution of nodes with stronger connections or hubs of the network was similar among groups except for the right pallidum and left insula, which became hubs in patients. MS subjects presented reduced edge FA widespread in the network, while FA was increased in 24 connections (p < 0.05, corrected. Decreased integrity of frontoparietal networks, deep gray nuclei and insula correlated with worse attention and executive performance (r between 0.38 and 0.55, p < 0.05, corrected. Contrarily, higher strength in the right transverse temporal cortex and increased FA of several connections (mainly from cingulate, frontal and occipital cortices were associated with worse functioning (r between −0.40 and −0.47, p < 0.05 corrected. In conclusion, structural brain connectivity is disturbed in MS due to widespread impairment of WM connections and gray matter structures. The increased edge connectivity suggests the presence of reorganization mechanisms at the structural level. Importantly, attention and executive performance relates to frontoparietal networks, deep gray nuclei and insula. These results support the relevance of
Detecting Hierarchical Structure in Networks
DEFF Research Database (Denmark)
Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard
2012-01-01
Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....
European networks in structural integrity
International Nuclear Information System (INIS)
Crutzen, S.; Davies, M.; Hemsworth, B.; Hurst, R.; Kussmaul, K.
1994-01-01
Several institutions and electrical utilities in Europe, including the Joint Research Centre (JRC) have the capability to deal problems posed by the operation and ageing of structural components and with their structural integrity assessment. These institutions and the JRC have developed cooperative programmes now organised in networks. They include utilities, engineering companies, R and D laboratories and Regulatory Bodies. Networks are organised and managed like the successful PISC programme: The Institute for Advanced Materials of JRC plays the role of Operating Agent and Manager of these networks: ENIQ, AMES, NESC, each of them dealing with a specific aspect of fitness for purpose of materials in structural components. There exist strong links between the networks and EC Working Groups on Structural Integrity Codes and Standards. (orig.)
Structural optimization of free-form reciprocal structures
DEFF Research Database (Denmark)
Parigi, Dario
2014-01-01
This paper presents an optimization algorithm for the design of structurally efficient free-form reciprocal structures. Because of the geometric complexity of reciprocal structures, only a few structural studies have been carried out so far, and we have a limited knowledge of the relation between...
Cross-linked structure of network evolution
International Nuclear Information System (INIS)
Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.
2014-01-01
We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks
Cross-linked structure of network evolution
Energy Technology Data Exchange (ETDEWEB)
Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)
2014-03-15
We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.
Video-on-demand network design and maintenance using fuzzy optimization.
Abadpour, Arash; Alfa, Attahiru Sule; Diamond, Jeff
2008-04-01
Video-on-demand (VoD) is the entertainment source that, in the future, will likely overtake regular television in many aspects. Although many companies have deployed working VoD services, some aspects of the VoD should still undergo further improvement in order for it to reach to the foreseen potentials. An important aspect of a VoD system is the underlying network in which it operates. According to the huge number of customers in this network, it should be carefully designed to fulfill certain performance criteria. This process should be capable of finding optimal locations for the nodes of the network as well as determining the content that should be cached in each one. While this problem is categorized in the general group of network optimization problems, its specific characteristics demand a new solution to be sought for it. In this paper, which is inspired by the successful use of fuzzy optimization in similar problems in other fields, a fuzzy objective function that is heuristically shown to minimize the communication cost in a VoD network is derived while also controlling the storage cost. Then, an iterative algorithm is proposed to find a locally optimal solution to the proposed objective function. Capitalizing on the unrepeatable tendency of the proposed algorithm, a heuristic method for picking a good solution from a bundle of solutions produced by the proposed algorithm is also suggested. This paper includes a formal statement of the problem and its mathematical analysis. In addition, different scenarios in which the proposed algorithm can be utilized are discussed.
Optimal Investment in Structured Bonds
DEFF Research Database (Denmark)
Jessen, Pernille; Jørgensen, Peter Løchte
The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...
Embedded Efficiency: A Social Networks Approach to Popular Support and Dark Network Structure
2016-03-01
Sean F. Everton, and Dan Cunningham. “Dark Network Resilience in a Hostile Environment: Optimizing Centralization and Density.” Criminology , Criminal...33 Sean F. Everton and Dan Cunningham, “Dark Network Resilience in a Hostile Environment: Optimizing Centralization and Density,” Criminology ...Centralization and Density” Criminology , Criminal Justice Law, & Society 16, no. 1 (2015): 1- 20. Gill, Paul, Jeongyoon Lee, Karl R. Rethemeyer, John
Profile-driven regression for modeling and runtime optimization of mobile networks
DEFF Research Database (Denmark)
McClary, Dan; Syrotiuk, Violet; Kulahci, Murat
2010-01-01
Computer networks often display nonlinear behavior when examined over a wide range of operating conditions. There are few strategies available for modeling such behavior and optimizing such systems as they run. Profile-driven regression is developed and applied to modeling and runtime optimization...... of throughput in a mobile ad hoc network, a self-organizing collection of mobile wireless nodes without any fixed infrastructure. The intermediate models generated in profile-driven regression are used to fit an overall model of throughput, and are also used to optimize controllable factors at runtime. Unlike...
Chande, Ruchi D; Wayne, Jennifer S
2017-09-01
Computational models of diarthrodial joints serve to inform the biomechanical function of these structures, and as such, must be supplied appropriate inputs for performance that is representative of actual joint function. Inputs for these models are sourced from both imaging modalities as well as literature. The latter is often the source of mechanical properties for soft tissues, like ligament stiffnesses; however, such data are not always available for all the soft tissues nor is it known for patient-specific work. In the current research, a method to improve the ligament stiffness definition for a computational foot/ankle model was sought with the greater goal of improving the predictive ability of the computational model. Specifically, the stiffness values were optimized using artificial neural networks (ANNs); both feedforward and radial basis function networks (RBFNs) were considered. Optimal networks of each type were determined and subsequently used to predict stiffnesses for the foot/ankle model. Ultimately, the predicted stiffnesses were considered reasonable and resulted in enhanced performance of the computational model, suggesting that artificial neural networks can be used to optimize stiffness inputs.
Optimal Caching in Multicast 5G Networks with Opportunistic Spectrum Access
Emara, Mostafa
2018-01-15
Cache-enabled small base station (SBS) densification is foreseen as a key component of 5G cellular networks. This architecture enables storing popular files at the network edge (i.e., SBS caches), which empowers local communication and alleviates traffic congestions at the core/backhaul network. This paper develops a mathematical framework, based on stochastic geometry, to characterize the hit probability of a cache-enabled multicast 5G network with SBS multi-channel capabilities and opportunistic spectrum access. To this end, we first derive the hit probability by characterizing opportunistic spectrum access success probabilities, service distance distributions, and coverage probabilities. The optimal caching distribution to maximize the hit probability is then computed. The performance and trade-offs of the derived optimal caching distributions are then assessed and compared with two widely employed caching distribution schemes, namely uniform and Zipf caching, through numerical results and extensive simulations. It is shown that the Zipf caching almost optimal only in scenarios with large number of available channels and large cache sizes.
Optimized Energy Procurement for Cellular Networks with Uncertain Renewable Energy Generation
Rached, Nadhir B.
2017-02-07
Renewable energy (RE) is an emerging solution for reducing carbon dioxide (CO2) emissions from cellular networks. One of the challenges of using RE sources is to handle its inherent uncertainty. In this paper, a RE powered cellular network is investigated. For a one-day operation cycle, the cellular network aims to reduce energy procurement costs from the smart grid by optimizing the amounts of energy procured from their locally deployed RE sources as well as from the smart grid. In addition to that, it aims to determine the extra amount of energy to be sold to the electrical grid at each time period. Chance constrained optimization is first proposed to deal with the randomness in the RE generation. Then, to make the optimization problem tractable, two well- know convex approximation methods, namely; Chernoff and Chebyshev based-approaches, are analyzed in details. Numerical results investigate the optimized energy procurement for various daily scenarios and compare between the performances of the employed convex approximation approaches.
Reliability Based Optimization of Structural Systems
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
1987-01-01
The optimization problem to design structural systems such that the reliability is satisfactory during the whole lifetime of the structure is considered in this paper. Some of the quantities modelling the loads and the strength of the structure are modelled as random variables. The reliability...... is estimated using first. order reliability methods ( FORM ). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements satisfies given requirements or such that the systems reliability satisfies a given requirement....... For these optimization problems it is described how a sensitivity analysis can be performed. Next, new optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability based optimization problem sequentially using quasi-analytical derivatives. Finally...
International Nuclear Information System (INIS)
Markovic, R; Gosak, M; Marhl, M
2013-01-01
The problem of making a network of dynamical systems synchronize onto a common evolution is the subject of much ongoing research in several scientific disciplines. It is nowadays a well-known fact that the synchronization processes are gradually influenced by the interaction topology between the dynamically interacting units. A complex coupling configuration can significantly affect the synchronization abilities of a networked system. However, the question arises what is the optimal network topology that provides enhancement of the synchronization features under given circumstances. In order to address this issue we make use of a network model in which we can smoothly tune the topology from a highly heterogeneous and efficient scale-free network to a homogeneous and less efficient network. The network is then populated with Poincaré oscillators, a paradigmatic model for limit-cycle oscillations. This oscillator model exhibits a parameter that enables changes of the limit cycle attraction and is thus immediately related to flexibility/rigidity properties of the oscillator. Our results reveal that for weak attractions of the limit cycle, intermediate homogeneous topology ensures maximal synchronization, whereas highly heterogeneous scale-free topology ensures maximal synchronization for strong attractions of the limit cycle. We argue that the flexibility/rigidity of individual nodes of the networks defines the topology, where maximal global coherence is achieved.
Application of particle swarm optimization to identify gamma spectrum with neural network
International Nuclear Information System (INIS)
Shi Dongsheng; Di Yuming; Zhou Chunlin
2007-01-01
In applying neural network to identification of gamma spectra back propagation (BP) algorithm is usually trapped to a local optimum and has a low speed of convergence, whereas particle swarm optimization (PSO) is advantageous in terms of globe optimal searching. In this paper, we propose a new algorithm for neural network training, i.e. combined BP and PSO optimization, or PSO-BP algorithm. Practical example shows that the new algorithm can overcome shortcomings of BP algorithm and the neural network trained by it has a high ability of generalization with identification result of 100% correctness. It can be used effectively and reliably to identify gamma spectra. (authors)
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition
Directory of Open Access Journals (Sweden)
Daniela Sánchez
2017-01-01
Full Text Available A grey wolf optimizer for modular neural network (MNN with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.
Directory of Open Access Journals (Sweden)
Nadjla Hariri
2013-03-01
Full Text Available This study aimed to determine the status of Persian professional web social networks' features and provide a suitable solution for optimization of these networks in Iran. The research methods were library research and evaluative method, and study population consisted of 10 Persian professional web social networks. In this study, for data collection, a check list of social networks important tools and features was used. According to the results, “Cloob”, “IR Experts” and “Doreh” were the most compatible networks with the criteria of social networks. Finally, some solutions were presented for optimization of capabilities of Persian professional web social networks.
Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market
Oleinikova, I.; Krishans, Z.; Mutule, A.
2008-01-01
The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.
OPTIMIZATION OF DISJOINTS FOR MINIMIZATION OF FAILURE IN WDM OPTICAL NETWORK
Directory of Open Access Journals (Sweden)
A. Renugadevi
2015-06-01
Full Text Available In an optical network, the fiber optic cable is used for communication between the nodes in a network by passing lights. The main problem in optical network is finding the link disjoints as well as optimal solution for the disjoints. To tolerate a single link failure in the network, the enhanced active path first algorithm is used which computes the re-routed back-up path. The multiple link failure in a network called fibre span disjoint path problem is solved using integer linear programming algorithm. The loop back recovery is used to provide pre-planned recovery of link or node failures in a network which allows dynamic choice of routes over pre-planned directions. Considering reliability in a mesh networks, the reliability algorithm helps to achieve the maximum reliability in two-path protection. It addresses the multiple disjoint failures that arise in a network and discusses the best solution between paths shared nodes or links. The unified algorithm is used to generate the optimal results with minimum cost for multiple link failures. The heuristic algorithm namely maximum arbitrary double-link protection algorithm helps to pre-compute the back-up path for double-link failures. In all the above approaches the shortest optimized path must be improved. To find the best shortest path, link-disjoint lightpath algorithm is designed to compute the disjoint occurred in a network and it also satisfies the wavelength continuity constraint in wavelength division multiplexing. A polynomial time algorithm Wavelength Division Multiplexing – Passive Optical Networking is used to compute the disjoint happen in the network. The overall time efficiency is analyzed and performance is evaluated through simulations.
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher; Meymand, Hamed Zeinoddini; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2010-08-15
Fuel cell power plants (FCPPs) have been taken into a great deal of consideration in recent years. The continuing growth of the power demand together with environmental constraints is increasing interest to use FCPPs in power system. Since FCPPs are usually connected to distribution network, the effect of FCPPs on distribution network is more than other sections of power system. One of the most important issues in distribution networks is optimal operation management (OOM) which can be affected by FCPPs. This paper proposes a new approach for optimal operation management of distribution networks including FCCPs. In the article, we consider the total electrical energy losses, the total electrical energy cost and the total emission as the objective functions which should be minimized. Whereas the optimal operation in distribution networks has a nonlinear mixed integer optimization problem, the optimal solution could be obtained through an evolutionary method. We use a new evolutionary algorithm based on Fuzzy Adaptive Particle Swarm Optimization (FAPSO) to solve the optimal operation problem and compare this method with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO) and Tabu Search (TS) over two distribution test feeders. (author)
Pinning Control Strategy of Multicommunity Structure Networks
Directory of Open Access Journals (Sweden)
Chao Ding
2017-01-01
Full Text Available In order to investigate the effects of community structure on synchronization, a pinning control strategy is researched in a class of complex networks with community structure in this paper. A feedback control law is designed based on the network community structure information. The stability condition is given and proved by using Lyapunov stability theory. Our research shows that as to community structure networks, there being a threshold hT≈5, when coupling strength bellows this threshold, the stronger coupling strength corresponds to higher synchronizability; vice versa, the stronger coupling strength brings lower synchronizability. In addition the synchronizability of overlapping and nonoverlapping community structure networks was simulated and analyzed; while the nodes were controlled randomly and intensively, the results show that intensive control strategy is better than the random one. The network will reach synchronization easily when the node with largest betweenness was controlled. Furthermore, four difference networks’ synchronizability, such as Barabási-Albert network, Watts-Strogatz network, Erdös-Rényi network, and community structure network, are simulated; the research shows that the community structure network is more easily synchronized under the same control strength.
True Nature of Supply Network Communication Structure
Directory of Open Access Journals (Sweden)
Lokhman Hakim bin Osman
2016-04-01
Full Text Available Globalization of world economy has altered the definition of organizational structure. Global supply chain can no longer be viewed as an arm-length structure. It has become more complex. The complexity demands deeper research and understanding. This research analyzed a structure of supply network in an attempt to elucidate the true structure of the supply network. Using the quantitative Social Network Analysis methodology, findings of this study indicated that, the structure of the supply network differs depending on the types of network relations. An important implication of these findings would be a more focus resource management upon network relationship development that is based on firms’ positions in the different network structure. This research also contributes to the various strategies of effective and efficient supply chain management.
DEFF Research Database (Denmark)
Jacobsen, Jens Christian Brings; Gustafsson, Finn; Holstein-Rathlou, N.-H.
2003-01-01
Adequate function of the microcirculation is vital to any tissue. To maintain an optimal function, microvascular networks must be able to adapt structurally to changes in the physical environment. Here we present a mathematical network model based on vessel wall mechanics. We assume based...... diameter, until equilibrium is restored. The model explains several of the key features observed experimentally in the microcirculation in normotension and hypertension. Most importantly, it suggests a scenario where overall network structure and network hemodynamics depend on adaptation to local...... hemodynamic stimuli in the individual vessel. Simulated results show emanating microvascular networks with properties similar to those observed in vivo. The model points to an altered endothelial function as a key factor in the development of vascular changes characteristic of hypertension....
Airline network structure in competitive market
Directory of Open Access Journals (Sweden)
Babić Danica D.
2014-01-01
Full Text Available Airline's network is the key element of its business strategy and selected network structure will not have influence only on the airline's costs but could gain some advantage in revenues, too. Network designing implies that an airline has to make decisions about markets that it will serve and how to serve those markets. Network choice raises the following questions for an airline: a what markets to serve, b how to serve selected markets, c what level of service to offer, d what are the benefits/cost of the that decisions and e what is the influence of the competition. We analyzed the existing airline business models and corresponding network structure. The paper highlights the relationship between the network structures and the airline business strategies. Using a simple model we examine the relationship between the network structure and service quality in deregulated market.
Towards structural controllability of local-world networks
International Nuclear Information System (INIS)
Sun, Shiwen; Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi
2016-01-01
Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems. - Highlights: • Structural controllability of a class of local-world networks is investigated. • For sparse local-world networks, compared to network size, local-world size can bring stronger influence on controllability. • For dense networks, controllability is greatly affected by network size and the effect of local-world size can be neglected. • Structural controllability against targeted node attacks is discussed.
Towards structural controllability of local-world networks
Energy Technology Data Exchange (ETDEWEB)
Sun, Shiwen, E-mail: sunsw80@126.com [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China); Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China)
2016-05-20
Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems. - Highlights: • Structural controllability of a class of local-world networks is investigated. • For sparse local-world networks, compared to network size, local-world size can bring stronger influence on controllability. • For dense networks, controllability is greatly affected by network size and the effect of local-world size can be neglected. • Structural controllability against targeted node attacks is discussed.
SEWER NETWORK DISCHARGE OPTIMIZATION USING THE DYNAMIC PROGRAMMING
Directory of Open Access Journals (Sweden)
Viorel MINZU
2015-12-01
Full Text Available It is necessary to adopt an optimal control that allows an efficient usage of the existing sewer networks, in order to avoid the building of new retention facilities. The main objective of the control action is to minimize the overflow volume of a sewer network. This paper proposes a method to apply a solution obtained by discrete dynamic programming through a realistic closed loop system.
The optimal vertical structure in the electricity industry when the incumbent has a cost advantage
International Nuclear Information System (INIS)
Kurakawa, Yukihide
2013-01-01
This paper studies how the vertical structure of the electricity industry affects the social welfare when the incumbent has a cost advantage in generation relative to the entrants. The model consists of a generation sector and a transmission sector. In the generation sector the incumbent and entrants compete in a Cournot fashion taking as given the access charge to the transmission network set in advance by the regulator to maximize the social welfare. Two vertical structures, integration and separation, are considered. Under vertical separation the transmission network is established as an organization independent of every generator, whereas under vertical integration it is a part of the incumbent's organization. The optimal vertical structure is shown to depend on the number of entrants. If the number of entrants is smaller than a certain threshold, vertical separation is superior in welfare to vertical integration, and vice versa. This is because the choice of vertical structure produces a trade-off in the effects on competition promotion and production efficiency. If a break-even constraint is imposed in the transmission sector, however, vertical integration is shown to be always superior in welfare. - Highlights: • We examine the optimal vertical structure in the electricity industry. • We model a generation sector in which the incumbent has a cost advantage. • A trade-off between production efficiency and competition promotion occurs. • The optimal vertical structure depends on the number of entrants. • Vertical integration is always superior if a break-even constraint is imposed
A neural network-based optimal spatial filter design method for motor imagery classification.
Directory of Open Access Journals (Sweden)
Ayhan Yuksel
Full Text Available In this study, a novel spatial filter design method is introduced. Spatial filtering is an important processing step for feature extraction in motor imagery-based brain-computer interfaces. This paper introduces a new motor imagery signal classification method combined with spatial filter optimization. We simultaneously train the spatial filter and the classifier using a neural network approach. The proposed spatial filter network (SFN is composed of two layers: a spatial filtering layer and a classifier layer. These two layers are linked to each other with non-linear mapping functions. The proposed method addresses two shortcomings of the common spatial patterns (CSP algorithm. First, CSP aims to maximize the between-classes variance while ignoring the minimization of within-classes variances. Consequently, the features obtained using the CSP method may have large within-classes variances. Second, the maximizing optimization function of CSP increases the classification accuracy indirectly because an independent classifier is used after the CSP method. With SFN, we aimed to maximize the between-classes variance while minimizing within-classes variances and simultaneously optimizing the spatial filter and the classifier. To classify motor imagery EEG signals, we modified the well-known feed-forward structure and derived forward and backward equations that correspond to the proposed structure. We tested our algorithm on simple toy data. Then, we compared the SFN with conventional CSP and its multi-class version, called one-versus-rest CSP, on two data sets from BCI competition III. The evaluation results demonstrate that SFN is a good alternative for classifying motor imagery EEG signals with increased classification accuracy.
2010-03-01
EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO OPTIMIZE DECISION MAKING FOR AN ABSTRACT...AFIT/GCS/ENG/10-06 EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO OPTIMIZE DECISION MAKING FOR AN ABSTRACT GAME THESIS Presented...35 14: Diagram of pLoGANN’s Artificial Neural Network and
Directory of Open Access Journals (Sweden)
Hanning Chen
2014-01-01
Full Text Available The development of radio frequency identification (RFID technology generates the most challenging RFID network planning (RNP problem, which needs to be solved in order to operate the large-scale RFID network in an optimal fashion. RNP involves many objectives and constraints and has been proven to be a NP-hard multi-objective problem. The application of evolutionary algorithm (EA and swarm intelligence (SI for solving multiobjective RNP (MORNP has gained significant attention in the literature, but these algorithms always transform multiple objectives into a single objective by weighted coefficient approach. In this paper, we use multiobjective EA and SI algorithms to find all the Pareto optimal solutions and to achieve the optimal planning solutions by simultaneously optimizing four conflicting objectives in MORNP, instead of transforming multiobjective functions into a single objective function. The experiment presents an exhaustive comparison of three successful multiobjective EA and SI, namely, the recently developed multiobjective artificial bee colony algorithm (MOABC, the nondominated sorting genetic algorithm II (NSGA-II, and the multiobjective particle swarm optimization (MOPSO, on MORNP instances of different nature, namely, the two-objective and three-objective MORNP. Simulation results show that MOABC proves to be more superior for planning RFID networks than NSGA-II and MOPSO in terms of optimization accuracy and computation robustness.
FE, JORGE DEOLINDO; Aliaga Varea, Ramón José; Gadea Gironés, Rafael
2015-01-01
In the optimization of artificial neural networks (ANNs) via evolutionary algorithms and the implementation of the necessary training for the objective function, there is often a trade-off between efficiency and flexibility. Pure software solutions on general-purpose processors tend to be slow because they do not take advantage of the inherent parallelism, whereas hardware realizations usually rely on optimizations that reduce the range of applicable network topologies, or they...
Directory of Open Access Journals (Sweden)
KHANBABAZADEH Javad
2016-10-01
Full Text Available Distribution network designers and operators are trying to deliver electrical energy with high reliability and quality to their subscribers. Due to high losses in the distribution systems, using distributed generation can improves reliability, reduces losses and improves voltage profile of distribution network. Therefore, the choice of the location of these resources and also determining the amount of their generated power to maximize the benefits of this type of resource is an important issue which is discussed from different points of view today. In this paper, a new multi-objective optimal location and sizing of distributed generation resources is performed to maximize its benefits on the 33 bus distribution test network considering reliability and using a new Antlion Optimizer (ALO. The benefits for DG are considered as system losses reduction, system reliability improvement and benefits from the sale electricity and voltage profile improvement. For each of the mentioned benefits, the ALO algorithm is used to optimize the location and sizing of distributed generation resources. In order to verify the proposed approach, the obtained results have been analyzed and compared with the results of particle swarm optimization (PSO algorithm. The results show that the ALO has shown better performance in optimization problem solution versus PSO.
International Nuclear Information System (INIS)
Liu, Xiaolan; Zhou, Mi
2016-01-01
In this paper, a one-layer recurrent network is proposed for solving a non-smooth convex optimization subject to linear inequality constraints. Compared with the existing neural networks for optimization, the proposed neural network is capable of solving more general convex optimization with linear inequality constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds.
The ordered network structure and its prediction for the big floods of the Changjiang River Basins
Energy Technology Data Exchange (ETDEWEB)
Men, Ke-Pei; Zhao, Kai; Zhu, Shu-Dan [Nanjing Univ. of Information Science and Technology, Nanjing (China). College of Mathematics and Statistics
2013-12-15
According to the latest statistical data of hydrology, a total of 21 floods took place over the Changjiang (Yangtze) River Basins from 1827 to 2012 and showed an obvious commensurable orderliness. In the guidance of the information forecasting theory of Wen-Bo Weng, based on previous research results, combining ordered analysis with complex network technology, we focus on the summary of the ordered network structure of the Changjiang floods, supplement new information, further optimize networks, construct the 2D- and 3D-ordered network structure and make prediction research. Predictions show that the future big deluges will probably occur over the Changjiang River Basin around 2013-2014, 2020-2021, 2030, 2036, 2051, and 2058. (orig.)
The ordered network structure and its prediction for the big floods of the Changjiang River Basins
International Nuclear Information System (INIS)
Men, Ke-Pei; Zhao, Kai; Zhu, Shu-Dan
2013-01-01
According to the latest statistical data of hydrology, a total of 21 floods took place over the Changjiang (Yangtze) River Basins from 1827 to 2012 and showed an obvious commensurable orderliness. In the guidance of the information forecasting theory of Wen-Bo Weng, based on previous research results, combining ordered analysis with complex network technology, we focus on the summary of the ordered network structure of the Changjiang floods, supplement new information, further optimize networks, construct the 2D- and 3D-ordered network structure and make prediction research. Predictions show that the future big deluges will probably occur over the Changjiang River Basin around 2013-2014, 2020-2021, 2030, 2036, 2051, and 2058. (orig.)
Optimizations in Heterogeneous Mobile Networks
DEFF Research Database (Denmark)
Popovska Avramova, Andrijana
nodes. The independent control of the user’s transmit power at each node may cause degradation of the overall performance. In this line, a dedicated study of power distribution among the carriers is performed. An optimization of the power allocation is proposed and evaluated. The results show...... significant performance improvement to the achieved user throughput in low as well as in high loads in the cell. The flow control of the data between the nodes is another challenge for effective aggregation of the resources in case of dual connectivity. As such, this thesis discusses the challenges...... with the densification of the base stations, bring into a very complex network management and operation control for the mobile operators. Furthermore, the need to provide always best connection and service with high quality demands for a joint overall network resource management. This thesis addresses this challenge...
Optimal Operation of Interdependent Power Systems and Electrified Transportation Networks
Directory of Open Access Journals (Sweden)
M. Hadi Amini
2018-01-01
Full Text Available Electrified transportation and power systems are mutually coupled networks. In this paper, a novel framework is developed for interdependent power and transportation networks. Our approach constitutes solving an iterative least cost vehicle routing process, which utilizes the communication of electrified vehicles (EVs with competing charging stations, to exchange data such as electricity price, energy demand, and time of arrival. The EV routing problem is solved to minimize the total cost of travel using the Dijkstra algorithm with the input from EVs battery management system, electricity price from charging stations, powertrain component efficiencies and transportation network traffic conditions. Through the bidirectional communication of EVs with competing charging stations, EVs’ charging demand estimation is done much more accurately. Then the optimal power flow problem is solved for the power system, to find the locational marginal price at load buses where charging stations are connected. Finally, the electricity prices were communicated from the charging stations to the EVs, and the loop is closed. Locational electricity price acts as the shared parameter between the two optimization problems, i.e., optimal power flow and optimal routing problem. Electricity price depends on the power demand, which is affected by the charging of EVs. On the other hand, location of EV charging stations and their different pricing strategies might affect the routing decisions of the EVs. Our novel approach that combines the electrified transportation with power system operation, holds tremendous potential for solving electrified transportation issues and reducing energy costs. The effectiveness of the proposed approach is demonstrated using Shanghai transportation network and IEEE 9-bus test system. The results verify the cost-savings for both power system and transportation networks.
Optimization methods in structural design
Rothwell, Alan
2017-01-01
This book offers an introduction to numerical optimization methods in structural design. Employing a readily accessible and compact format, the book presents an overview of optimization methods, and equips readers to properly set up optimization problems and interpret the results. A ‘how-to-do-it’ approach is followed throughout, with less emphasis at this stage on mathematical derivations. The book features spreadsheet programs provided in Microsoft Excel, which allow readers to experience optimization ‘hands-on.’ Examples covered include truss structures, columns, beams, reinforced shell structures, stiffened panels and composite laminates. For the last three, a review of relevant analysis methods is included. Exercises, with solutions where appropriate, are also included with each chapter. The book offers a valuable resource for engineering students at the upper undergraduate and postgraduate level, as well as others in the industry and elsewhere who are new to these highly practical techniques.Whi...
Optimal Intermittent Operation of Water Distribution Networks under Water Shortage
Directory of Open Access Journals (Sweden)
mohamad Solgi
2017-07-01
Full Text Available Under water shortage conditions, it is necessary to exercise water consumption management practices in water distribution networks (WDN. Intermittent supply of water is one such practice that makes it possible to supply consumption nodal demands with the required pressure via water cutoff to some consumers during certain hours of the day. One of the most important issues that must be observed in this management practice is the equitable and uniform water distribution among the consumers. In the present study, uniformity in water distribution and minimum supply of water to all consumers are defined as justice and equity, respectively. Also, an optimization model has been developed to find an optimal intermittent supply schedule that ensures maximum number of demand nodes are supplied with water while the constraints on the operation of water distribution networks are also observed. To show the efficiency of the proposed model, it has been used in the Two-Loop distribution network under several different scenarios of water shortage. The optimization model has been solved using the honey bee mating optimization algorithm (HBMO linked to the hydraulic simulator EPANET. The results obtained confirm the efficiency of the proposed model in achieving an optimal intermittent supply schedule. Moreover, the model is found capable of distributing the available water in an equitable and just manner among all the consumers even under severe water shoratges.
Optimal Operations and Resilient Investments in Steam Networks
Energy Technology Data Exchange (ETDEWEB)
Bungener, Stéphane L., E-mail: stephane.bungener@a3.epfl.ch [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Van Eetvelde, Greet [Environmental and Spatial Management, Faculty of Engineering and Architecture, Ghent University, Ghent (Belgium); Maréchal, François [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)
2016-01-20
Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.
Optimal Operations and Resilient Investments in Steam Networks
International Nuclear Information System (INIS)
Bungener, Stéphane L.; Van Eetvelde, Greet; Maréchal, François
2016-01-01
Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-03-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.
Directory of Open Access Journals (Sweden)
Huanqing Cui
2017-03-01
Full Text Available Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.
Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher
2013-10-01
This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example.
How does network design constrain optimal operation of intermittent water supply?
Lieb, Anna; Wilkening, Jon; Rycroft, Chris
2015-11-01
Urban water distribution systems do not always supply water continuously or reliably. As pipes fill and empty, pressure transients may contribute to degraded infrastructure and poor water quality. To help understand and manage this undesirable side effect of intermittent water supply--a phenomenon affecting hundreds of millions of people in cities around the world--we study the relative contributions of fixed versus dynamic properties of the network. Using a dynamical model of unsteady transition pipe flow, we study how different elements of network design, such as network geometry, pipe material, and pipe slope, contribute to undesirable pressure transients. Using an optimization framework, we then investigate to what extent network operation decisions such as supply timing and inflow rate may mitigate these effects. We characterize some aspects of network design that make them more or less amenable to operational optimization.
Optimal synthesis of a heat-exchanger network
Energy Technology Data Exchange (ETDEWEB)
Hamed, O A; Aly, S [University of United Arab Emirates, Al-Ain (United Arab Emirates). Faculty of Engineering
1991-01-01
Thermodynamic, heat transfer and economic concepts influencing the synthesis of a heat-exchanger network (HEN) coupled to a crude fractionation unit are examined. The impact of the variation of the minimum temperature approach on energy and capital targets is studied using recent developments in pinch technology. The optimal pinch approach temperature has been determined using the 'supertargeting' concept where proper trade-off between energy and capital targets is observed prior to design. A heuristic evolutionary approach has then been used for the generation of the optimal HEN. (author).
Finding influential nodes for integration in brain networks using optimal percolation theory.
Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A
2018-06-11
Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.
Optimal Operation of Network-Connected Combined Heat and Powers for Customer Profit Maximization
Directory of Open Access Journals (Sweden)
Da Xie
2016-06-01
Full Text Available Network-connected combined heat and powers (CHPs, owned by a community, can export surplus heat and electricity to corresponding heat and electric networks after community loads are satisfied. This paper proposes a new optimization model for network-connected CHP operation. Both CHPs’ overall efficiency and heat to electricity ratio (HTER are assumed to vary with loading levels. Based on different energy flow scenarios where heat and electricity are exported to the network from the community or imported, four profit models are established accordingly. They reflect the different relationships between CHP energy supply and community load demand across time. A discrete optimization model is then developed to maximize the profit for the community. The models are derived from the intervals determined by the daily operation modes of CHP and real-time buying and selling prices of heat, electricity and natural gas. By demonstrating the proposed models on a 1 MW network-connected CHP, results show that the community profits are maximized in energy markets. Thus, the proposed optimization approach can help customers to devise optimal CHP operating strategies for maximizing benefits.
Cross Layer Optimization and Simulation of Smart Grid Home Area Network
Directory of Open Access Journals (Sweden)
Lipi K. Chhaya
2018-01-01
Full Text Available An electrical “Grid” is a network that carries electricity from power plants to customer premises. Smart Grid is an assimilation of electrical and communication infrastructure. Smart Grid is characterized by bidirectional flow of electricity and information. Smart Grid is a complex network with hierarchical architecture. Realization of complete Smart Grid architecture necessitates diverse set of communication standards and protocols. Communication network protocols are engineered and established on the basis of layered approach. Each layer is designed to produce an explicit functionality in association with other layers. Layered approach can be modified with cross layer approach for performance enhancement. Complex and heterogeneous architecture of Smart Grid demands a deviation from primitive approach and reworking of an innovative approach. This paper describes a joint or cross layer optimization of Smart Grid home/building area network based on IEEE 802.11 standard using RIVERBED OPNET network design and simulation tool. The network performance can be improved by selecting various parameters pertaining to different layers. Simulation results are obtained for various parameters such as WLAN throughput, delay, media access delay, and retransmission attempts. The graphical results show that various parameters have divergent effects on network performance. For example, frame aggregation decreases overall delay but the network throughput is also reduced. To prevail over this effect, frame aggregation is used in combination with RTS and fragmentation mechanisms. The results show that this combination notably improves network performance. Higher value of buffer size considerably increases throughput but the delay is also greater and thus the choice of optimum value of buffer size is inevitable for network performance optimization. Parameter optimization significantly enhances the performance of a designed network. This paper is expected to serve
Reliability analysis of large scaled structures by optimization technique
International Nuclear Information System (INIS)
Ishikawa, N.; Mihara, T.; Iizuka, M.
1987-01-01
This paper presents a reliability analysis based on the optimization technique using PNET (Probabilistic Network Evaluation Technique) method for the highly redundant structures having a large number of collapse modes. This approach makes the best use of the merit of the optimization technique in which the idea of PNET method is used. The analytical process involves the minimization of safety index of the representative mode, subjected to satisfaction of the mechanism condition and of the positive external work. The procedure entails the sequential performance of a series of the NLP (Nonlinear Programming) problems, where the correlation condition as the idea of PNET method pertaining to the representative mode is taken as an additional constraint to the next analysis. Upon succeeding iterations, the final analysis is achieved when a collapse probability at the subsequent mode is extremely less than the value at the 1st mode. The approximate collapse probability of the structure is defined as the sum of the collapse probabilities of the representative modes classified by the extent of correlation. Then, in order to confirm the validity of the proposed method, the conventional Monte Carlo simulation is also revised by using the collapse load analysis. Finally, two fairly large structures were analyzed to illustrate the scope and application of the approach. (orig./HP)
Bolodurina, I. P.; Parfenov, D. I.
2018-01-01
We have elaborated a neural network model of virtual network flow identification based on the statistical properties of flows circulating in the network of the data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We have established an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. Our approach uses a hybrid method of visualization using virtual machines and containers, which enables to reduce the infrastructure load and the response time in the network of the virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.
Cross-layer optimization of wireless multi-hop networks
Soldati, Pablo
2007-01-01
The interest in wireless communications has grown constantly for the past decades, leading to an enormous number of applications and services embraced by billions of users. In order to meet the increasing demand for mobile Internet access, several high data-rate radio networking technologies have been proposed to offer wide area high-speed wireless communications, eventually replacing fixed (wired) networks for many applications. This thesis considers cross-layer optimization of multi-hop rad...
Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.
Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe
2017-10-01
Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.
Parallel Evolutionary Optimization for Neuromorphic Network Training
Energy Technology Data Exchange (ETDEWEB)
Schuman, Catherine D [ORNL; Disney, Adam [University of Tennessee (UT); Singh, Susheela [North Carolina State University (NCSU), Raleigh; Bruer, Grant [University of Tennessee (UT); Mitchell, John Parker [University of Tennessee (UT); Klibisz, Aleksander [University of Tennessee (UT); Plank, James [University of Tennessee (UT)
2016-01-01
One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.
An examination of a reciprocal relationship between network governance and network structure
DEFF Research Database (Denmark)
Bergenholtz, Carsten; Goduscheit, René Chester
2011-01-01
In the present article, we examine the network structure and governance of inter-organisational innovation networks over time. Network governance refers to the issue of how to manage and coordinate the relational activities and processes in the network while research on network structure deals...
Outage Analysis and Optimization of SWIPT in Network-Coded Two-Way Relay Networks
Directory of Open Access Journals (Sweden)
Ruihong Jiang
2017-01-01
Full Text Available This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT in network-coded two-way relay systems, where a relay first harvests energy from the signals transmitted by two sources and then uses the harvested energy to forward the received information to the two sources. We consider two transmission protocols, power splitting two-way relay (PS-TWR and time switching two-way relay (TS-TWR protocols. We present two explicit expressions for the system outage probability of the two protocols and further derive approximate expressions for them in high and low SNR cases. To explore the system performance limits, two optimization problems are formulated to minimize the system outage probability. Since the problems are nonconvex and have no known solution methods, a genetic algorithm- (GA- based algorithm is designed. Numerical and simulation results validate our theoretical analysis. It is shown that, by jointly optimizing the time assignment and SWIPT receiver parameters, a great performance gain can be achieved for both PS-TWR and TS-TWR. Moreover, the optimized PS-TWR always outperforms the optimized TS-TWR in terms of outage performance. Additionally, the effects of parameters including relay location and transmit powers are also discussed, which provide some insights for the SWIPT-enabled two-way relay networks.
Optimal traffic control in highway transportation networks using linear programming
Li, Yanning; Canepa, Edward S.; Claudel, Christian G.
2014-01-01
of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can
Energy-Aware Routing Optimization in Dynamic GMPLS Controlled Optical Networks
DEFF Research Database (Denmark)
Wang, Jiayuan; Ricciardi, Sergio; Fagertun, Anna Manolova
2012-01-01
In this paper, routing optimizations based on energy sources are proposed in dynamic GMPLS controlled optical networks. The influences of re-routing and load balancing factors on the algorithm are evaluated, with a focus on different re-routing thresholds. Results from dynamic network simulations...
Designing Industrial Networks Using Ecological Food Web Metrics.
Layton, Astrid; Bras, Bert; Weissburg, Marc
2016-10-18
Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective; correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations. The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.
Optimization of hot water transport and distribution networks by analytical method: OPTAL program
International Nuclear Information System (INIS)
Barreau, Alain; Caizergues, Robert; Moret-Bailly, Jean
1977-06-01
This report presents optimization studies of hot water transport and distribution network by minimizing operating cost. Analytical optimization is used: Lagrange's method of undetermined multipliers. Optimum diameter of each pipe is calculated for minimum network operating cost. The characteristics of the computer program used for calculations, OPTAL, are given in this report. An example of network is calculated and described: 52 branches and 27 customers. Results are discussed [fr
Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks
Rai, Man Mohan
2006-01-01
Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more
Huang, Daizheng; Wu, Zhihui
2017-01-01
Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.
Reliability-Based Optimization in Structural Engineering
DEFF Research Database (Denmark)
Enevoldsen, I.; Sørensen, John Dalsgaard
1994-01-01
In this paper reliability-based optimization problems in structural engineering are formulated on the basis of the classical decision theory. Several formulations are presented: Reliability-based optimal design of structural systems with component or systems reliability constraints, reliability...
Hierarchical Winner-Take-All Particle Swarm Optimization Social Network for Neural Model Fitting
Coventry, Brandon S.; Parthasarathy, Aravindakshan; Sommer, Alexandra L.; Bartlett, Edward L.
2016-01-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models. PMID:27726048
Hierarchical winner-take-all particle swarm optimization social network for neural model fitting.
Coventry, Brandon S; Parthasarathy, Aravindakshan; Sommer, Alexandra L; Bartlett, Edward L
2017-02-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.
Directory of Open Access Journals (Sweden)
K. Rahmani
2018-05-01
Full Text Available In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF, Region Proposal Network (RPN based on a Convolutional Neural Network (CNN as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.
A non-penalty recurrent neural network for solving a class of constrained optimization problems.
Hosseini, Alireza
2016-01-01
In this paper, we explain a methodology to analyze convergence of some differential inclusion-based neural networks for solving nonsmooth optimization problems. For a general differential inclusion, we show that if its right hand-side set valued map satisfies some conditions, then solution trajectory of the differential inclusion converges to optimal solution set of its corresponding in optimization problem. Based on the obtained methodology, we introduce a new recurrent neural network for solving nonsmooth optimization problems. Objective function does not need to be convex on R(n) nor does the new neural network model require any penalty parameter. We compare our new method with some penalty-based and non-penalty based models. Moreover for differentiable cases, we implement circuit diagram of the new neural network. Copyright © 2015 Elsevier Ltd. All rights reserved.
Practical mine ventilation optimization based on genetic algorithms for free splitting networks
Energy Technology Data Exchange (ETDEWEB)
Acuna, E.; Maynard, R.; Hall, S. [Laurentian Univ., Sudbury, ON (Canada). Mirarco Mining Innovation; Hardcastle, S.G.; Li, G. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories; Lowndes, I.S. [Nottingham Univ., Nottingham (United Kingdom). Process and Environmental Research Division; Tonnos, A. [Bestech, Sudbury, ON (Canada)
2010-07-01
The method used to optimize the design and operation of mine ventilation has generally been based on case studies and expert knowledge. It has yet to benefit from optimization techniques used and proven in other fields of engineering. Currently, optimization of mine ventilation systems is a manual based decision process performed by an experienced mine ventilation specialist assisted by commercial ventilation distribution solvers. These analysis tools are widely used in the mining industry to evaluate the practical and economic viability of alternative ventilation system configurations. The scenario which is usually selected is the one that reports the lowest energy consumption while delivering the required airflow distribution. Since most commercial solvers do not have an integrated optimization algorithm network, the process of generating a series of potential ventilation solutions using the conventional iterative design strategy can be time consuming. For that reason, a genetic algorithm (GA) optimization routine was developed in combination with a ventilation solver to determine the potential optimal solutions of a primary mine ventilation system based on a free splitting network. The optimization method was used in a small size mine ventilation network. The technique was shown to have the capacity to generate good feasible solutions and improve upon the manual results obtained by mine ventilation specialists. 9 refs., 7 tabs., 3 figs.
Optimizing mission critical data dissemination in massive IoT networks
Farooq, Muhammad Junaid
2017-06-29
Mission critical data dissemination in massive Internet of things (IoT) networks imposes constraints on the message transfer delay between devices. Due to low power and communication range of IoT devices, data is foreseen to be relayed over multiple device-to-device (D2D) links before reaching the destination. The coexistence of a massive number of IoT devices poses a challenge in maximizing the successful transmission capacity of the overall network alongside reducing the multi-hop transmission delay in order to support mission critical applications. There is a delicate interplay between the carrier sensing threshold of the contention based medium access protocol and the choice of packet forwarding strategy selected at each hop by the devices. The fundamental problem in optimizing the performance of such networks is to balance the tradeoff between conflicting performance objectives such as the spatial frequency reuse, transmission quality, and packet progress towards the destination. In this paper, we use a stochastic geometry approach to quantify the performance of multi-hop massive IoT networks in terms of the spatial frequency reuse and the transmission quality under different packet forwarding schemes. We also develop a comprehensive performance metric that can be used to optimize the system to achieve the best performance. The results can be used to select the best forwarding scheme and tune the carrier sensing threshold to optimize the performance of the network according to the delay constraints and transmission quality requirements.
Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young
2016-04-18
Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.
Intelligent structural optimization: Concept, Model and Methods
International Nuclear Information System (INIS)
Lu, Dagang; Wang, Guangyuan; Peng, Zhang
2002-01-01
Structural optimization has many characteristics of Soft Design, and so, it is necessary to apply the experience of human experts to solving the uncertain and multidisciplinary optimization problems in large-scale and complex engineering systems. With the development of artificial intelligence (AI) and computational intelligence (CI), the theory of structural optimization is now developing into the direction of intelligent optimization. In this paper, a concept of Intelligent Structural Optimization (ISO) is proposed. And then, a design process model of ISO is put forward in which each design sub-process model are discussed. Finally, the design methods of ISO are presented
International Nuclear Information System (INIS)
Guo, Chunxiang; Liu, Xiaoli; Jin, Maozhu; Lv, Zhihan
2016-01-01
Considering the uncertainty of the macroeconomic environment, the robust optimization method is studied for constructing and designing the automotive supply chain network, and based on the definition of robust solution a robust optimization model is built for integrated supply chain network design that consists of supplier selection problem and facility location–distribution problem. The tabu search algorithm is proposed for supply chain node configuration, analyzing the influence of the level of uncertainty on robust results, and by comparing the performance of supply chain network design through the stochastic programming model and robustness optimize model, on this basis, determining the rational layout of supply chain network under macroeconomic fluctuations. At last the contrastive test result validates that the performance of tabu search algorithm is outstanding on convergence and computational time. Meanwhile it is indicated that the robust optimization model can reduce investment risks effectively when it is applied to supply chain network design.
Robinson, Y Harold; Rajaram, M
2015-01-01
Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique.
Model checking optimal finite-horizon control for probabilistic gene regulatory networks.
Wei, Ou; Guo, Zonghao; Niu, Yun; Liao, Wenyuan
2017-12-14
Probabilistic Boolean networks (PBNs) have been proposed for analyzing external control in gene regulatory networks with incorporation of uncertainty. A context-sensitive PBN with perturbation (CS-PBNp), extending a PBN with context-sensitivity to reflect the inherent biological stability and random perturbations to express the impact of external stimuli, is considered to be more suitable for modeling small biological systems intervened by conditions from the outside. In this paper, we apply probabilistic model checking, a formal verification technique, to optimal control for a CS-PBNp that minimizes the expected cost over a finite control horizon. We first describe a procedure of modeling a CS-PBNp using the language provided by a widely used probabilistic model checker PRISM. We then analyze the reward-based temporal properties and the computation in probabilistic model checking; based on the analysis, we provide a method to formulate the optimal control problem as minimum reachability reward properties. Furthermore, we incorporate control and state cost information into the PRISM code of a CS-PBNp such that automated model checking a minimum reachability reward property on the code gives the solution to the optimal control problem. We conduct experiments on two examples, an apoptosis network and a WNT5A network. Preliminary experiment results show the feasibility and effectiveness of our approach. The approach based on probabilistic model checking for optimal control avoids explicit computation of large-size state transition relations associated with PBNs. It enables a natural depiction of the dynamics of gene regulatory networks, and provides a canonical form to formulate optimal control problems using temporal properties that can be automated solved by leveraging the analysis power of underlying model checking engines. This work will be helpful for further utilization of the advances in formal verification techniques in system biology.
Optimization of mechanical structures using particle swarm optimization
International Nuclear Information System (INIS)
Leite, Victor C.; Schirru, Roberto
2015-01-01
Several optimization problems are dealed with the particle swarm optimization (PSO) algorithm, there is a wide kind of optimization problems, it may be applications related to logistics or the reload of nuclear reactors. This paper discusses the use of the PSO in the treatment of problems related to mechanical structure optimization. The geometry and material characteristics of mechanical components are important for the proper functioning and performance of the systems were they are applied, particularly to the nuclear field. Calculations related to mechanical aspects are all made using ANSYS, while the PSO is programed in MATLAB. (author)
Optimization of mechanical structures using particle swarm optimization
Energy Technology Data Exchange (ETDEWEB)
Leite, Victor C.; Schirru, Roberto, E-mail: victor.coppo.leite@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (LMP/PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Monitoracao de Processos
2015-07-01
Several optimization problems are dealed with the particle swarm optimization (PSO) algorithm, there is a wide kind of optimization problems, it may be applications related to logistics or the reload of nuclear reactors. This paper discusses the use of the PSO in the treatment of problems related to mechanical structure optimization. The geometry and material characteristics of mechanical components are important for the proper functioning and performance of the systems were they are applied, particularly to the nuclear field. Calculations related to mechanical aspects are all made using ANSYS, while the PSO is programed in MATLAB. (author)
Optimization of Broadband Seismic Network in the Kingdom of Saudi Arabia
Alshuhail, Abdulrahman
2011-05-01
Saudi Arabia covers a large portion of the Arabian plate, a region characterized by seismic activity, along complex divergent and convergent plate boundaries. In order to understand these plate boundaries it is essential to optimize the design of the broadband seismic station network to accurately locate earthquakes. In my study, I apply an optimization method to design the broadband station distribution in Saudi Arabia. This method is based on so called D-optimal planning criterion that optimizes the station distribution for locating the hypocenters of earthquakes. Two additional adjustments were implemented: to preferentially acquire direct and refracted wave, and to account for geometric spreading of seismic waves (and thus increases the signal to noise ratio). The method developed in this study for optimizing the geographical location of broadband stations uses the probability of earthquake occurrence and a 1-D velocity model of the region, and minimizes the ellipsoid volume of the earthquake location errors. The algorithm was applied to the current seismic network, operated by the Saudi Geologic Survey (SGS). Based on the results, I am able to make recommendations on, how to expand the existing network. Furthermore, I quantify the efficiency of our method by computing the standard error of epicenter and depth before and after adding the proposed stations.
Robustness and structure of complex networks
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks
Loop optimization for tensor network renormalization
Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang
We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.
A complex systems approach to planning, optimization and decision making for energy networks
International Nuclear Information System (INIS)
Beck, Jessica; Kempener, Ruud; Cohen, Brett; Petrie, Jim
2008-01-01
This paper explores a new approach to planning and optimization of energy networks, using a mix of global optimization and agent-based modeling tools. This approach takes account of techno-economic, environmental and social criteria, and engages explicitly with inherent network complexity in terms of the autonomous decision-making capability of individual agents within the network, who may choose not to act as economic rationalists. This is an important consideration from the standpoint of meeting sustainable development goals. The approach attempts to set targets for energy planning, by determining preferred network development pathways through multi-objective optimization. The viability of such plans is then explored through agent-based models. The combined approach is demonstrated for a case study of regional electricity generation in South Africa, with biomass as feedstock
OPTIMAL CAMERA NETWORK DESIGN FOR 3D MODELING OF CULTURAL HERITAGE
Directory of Open Access Journals (Sweden)
B. S. Alsadik
2012-07-01
Full Text Available Digital cultural heritage documentation in 3D is subject to research and practical applications nowadays. Image-based modeling is a technique to create 3D models, which starts with the basic task of designing the camera network. This task is – however – quite crucial in practical applications because it needs a thorough planning and a certain level of expertise and experience. Bearing in mind todays computational (mobile power we think that the optimal camera network should be designed in the field, and, therefore, making the preprocessing and planning dispensable. The optimal camera network is designed when certain accuracy demands are fulfilled with a reasonable effort, namely keeping the number of camera shots at a minimum. In this study, we report on the development of an automatic method to design the optimum camera network for a given object of interest, focusing currently on buildings and statues. Starting from a rough point cloud derived from a video stream of object images, the initial configuration of the camera network assuming a high-resolution state-of-the-art non-metric camera is designed. To improve the image coverage and accuracy, we use a mathematical penalty method of optimization with constraints. From the experimental test, we found that, after optimization, the maximum coverage is attained beside a significant improvement of positional accuracy. Currently, we are working on a guiding system, to ensure, that the operator actually takes the desired images. Further next steps will include a reliable and detailed modeling of the object applying sophisticated dense matching techniques.
Directory of Open Access Journals (Sweden)
Chao-Chih Lin
2017-10-01
Full Text Available A new transient-based hybrid heuristic approach is developed to optimize a transient generation process and to detect leaks in pipe networks. The approach couples the ordinal optimization approach (OOA and the symbiotic organism search (SOS to solve the optimization problem by means of iterations. A pipe network analysis model (PNSOS is first used to determine steady-state head distribution and pipe flow rates. The best transient generation point and its relevant valve operation parameters are optimized by maximizing the objective function of transient energy. The transient event is created at the chosen point, and the method of characteristics (MOC is used to analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial organisms with leak information. The SOS is employed to determine the leaks by minimizing the sum of differences between simulated and computed head at the observation points. Two synthetic leaking scenarios, a simple pipe network and a water distribution network (WDN, are chosen to test the performance of leak detection ordinal symbiotic organism search (LDOSOS. Leak information can be accurately identified by the proposed approach for both of the scenarios. The presented technique makes a remarkable contribution to the success of leak detection in the pipe networks.
An Optimal Online Resource Allocation Algorithm for Energy Harvesting Body Area Networks
Directory of Open Access Journals (Sweden)
Guangyuan Wu
2018-01-01
Full Text Available In Body Area Networks (BANs, how to achieve energy management to extend the lifetime of the body area networks system is one of the most critical problems. In this paper, we design a body area network system powered by renewable energy, in which the sensors carried by patient with energy harvesting module can transmit data to a personal device. We do not require any a priori knowledge of the stochastic nature of energy harvesting and energy consumption. We formulate a user utility optimization problem. We use Lyapunov Optimization techniques to decompose the problem into three sub-problems, i.e., battery management, collecting rate control and transmission power allocation. We propose an online resource allocation algorithm to achieve two major goals: (1 balancing sensors’ energy harvesting and energy consumption while stabilizing the BANs system; and (2 maximizing the user utility. Performance analysis addresses required battery capacity, bounded data queue length and optimality of the proposed algorithm. Simulation results verify the optimization of algorithm.
International Nuclear Information System (INIS)
Pombo, A. Vieira; Murta-Pina, João; Pires, V. Fernão
2015-01-01
A multi-objective planning approach for the reliability of electric distribution networks using a memetic optimization is presented. In this reliability optimization, the type of the equipment (switches or reclosers) and their location are optimized. The multiple objectives considered to find the optimal values for these planning variables are the minimization of the total equipment cost and at the same time the minimization of two distribution network reliability indexes. The reliability indexes are the system average interruption frequency index (SAIFI) and system average interruption duration index (SAIDI). To solve this problem a memetic evolutionary algorithm is proposed, which combines the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) with a local search algorithm. The obtained Pareto-optimal front contains solutions of different trade-offs with respect to the three objectives. A real distribution network is used to test the proposed algorithm. The obtained results show that this approach allows the utility to obtain the optimal type and location of the equipments to achieve the best reliability with the lower cost. - Highlights: • Reliability indexes SAIFI and SAIDI and Equipment Cost are optimized. • Optimization of equipment type, number and location on a MV network. • Memetic evolutionary algorithm with a local search algorithm is proposed. • Pareto optimal front solutions with respect to the three objective functions
Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network.
Wang, Yunpeng; Cheng, Long; Hou, Zeng-Guang; Yu, Junzhi; Tan, Min
2016-02-01
The optimal formation problem of multirobot systems is solved by a recurrent neural network in this paper. The desired formation is described by the shape theory. This theory can generate a set of feasible formations that share the same relative relation among robots. An optimal formation means that finding one formation from the feasible formation set, which has the minimum distance to the initial formation of the multirobot system. Then, the formation problem is transformed into an optimization problem. In addition, the orientation, scale, and admissible range of the formation can also be considered as the constraints in the optimization problem. Furthermore, if all robots are identical, their positions in the system are exchangeable. Then, each robot does not necessarily move to one specific position in the formation. In this case, the optimal formation problem becomes a combinational optimization problem, whose optimal solution is very hard to obtain. Inspired by the penalty method, this combinational optimization problem can be approximately transformed into a convex optimization problem. Due to the involvement of the Euclidean norm in the distance, the objective function of these optimization problems are nonsmooth. To solve these nonsmooth optimization problems efficiently, a recurrent neural network approach is employed, owing to its parallel computation ability. Finally, some simulations and experiments are given to validate the effectiveness and efficiency of the proposed optimal formation approach.
Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert
2018-05-01
Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.
STRUCTURE AND COOPTATION IN ORGANIZATION NETWORK
Directory of Open Access Journals (Sweden)
Valéria Riscarolli
2007-10-01
Full Text Available Business executive are rethinking business concept, based on horizontalization principles. As so, most organizational functions are outsourced, leading the enterprise to build business through a network of organizations. Here we study the case of Cia Hering’s network of organizations, a leader in knit apparel segment in Latin America (IEMI, 2004, looking at the network’s structure and levels of cooptation. A theoretical model was used using Quinn et al. (2001 “sun ray” network structure as basis to analyze the case study. Main results indicate higher degree of structural conformity, but incipient degree of coopetation in the network.
Directory of Open Access Journals (Sweden)
Yu Sun
2017-11-01
Full Text Available Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging, we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging.
Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco
2017-11-07
Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.
Directory of Open Access Journals (Sweden)
Luca Gallucci
2017-11-01
Full Text Available Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.
2013-11-04
... (NOA) for Strategic Network Optimization (SNO) Environmental Assessment Finding of No Significant... Network Optimization (SNO) Environmental Assessment (EA) Finding of No Significant Impact (FONSI). SUMMARY... interpreted comprehensively to include the natural and physical environment and the relationship of people...
Hooda, Nikhil; Damani, Om
2017-06-01
The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.
Competitive game theoretic optimal routing in optical networks
Yassine, Abdulsalam; Kabranov, Ognian; Makrakis, Dimitrios
2002-09-01
Optical transport service providers need control and optimization strategies for wavelength management, network provisioning, restoration and protection, allowing them to define and deploy new services and maintain competitiveness. In this paper, we investigate a game theory based model for wavelength and flow assignment in multi wavelength optical networks, consisting of several backbone long-haul optical network transport service providers (TSPs) who are offering their services -in terms of bandwidth- to Internet service providers (ISPs). The ISPs act as brokers or agents between the TSP and end user. The agent (ISP) buys services (bandwidth) from the TSP. The TSPs compete among themselves to sell their services and maintain profitability. We present a case study, demonstrating the impact of different bandwidth broker demands on the supplier's profit and the price paid by the network broker.
Distributed Robust Optimization in Networked System.
Wang, Shengnan; Li, Chunguang
2016-10-11
In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided.
Optimized smart grid energy procurement for LTE networks using evolutionary algorithms
Ghazzai, Hakim
2014-11-01
Energy efficiency aspects in cellular networks can contribute significantly to reducing worldwide greenhouse gas emissions. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Moreover, introducing renewable energy as an alternative power source has become a real challenge among network operators. In this paper, we formulate an optimization problem that aims to maximize the profit of Long-Term Evolution (LTE) cellular operators and to simultaneously minimize the CO2 emissions in green wireless cellular networks without affecting the desired quality of service (QoS). The BS sleeping strategy lends itself to an interesting implementation using several heuristic approaches, such as the genetic (GA) and particle swarm optimization (PSO) algorithms. In this paper, we propose GA-based and PSO-based methods that reduce the energy consumption of BSs by not only shutting down underutilized BSs but by optimizing the amounts of energy procured from different retailers (renewable energy and electricity retailers), as well. A comparison with another previously proposed algorithm is also carried out to evaluate the performance and the computational complexity of the employed methods.
A multiobjective optimization framework for multicontaminant industrial water network design.
Boix, Marianne; Montastruc, Ludovic; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge
2011-07-01
The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view. Copyright © 2011 Elsevier Ltd. All rights reserved.
An evolving network model with community structure
International Nuclear Information System (INIS)
Li Chunguang; Maini, Philip K
2005-01-01
Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties
Lifetime Optimization of a Multiple Sink Wireless Sensor Network through Energy Balancing
Directory of Open Access Journals (Sweden)
Tapan Kumar Jain
2015-01-01
Full Text Available The wireless sensor network consists of small limited energy sensors which are connected to one or more sinks. The maximum energy consumption takes place in communicating the data from the nodes to the sink. Multiple sink WSN has an edge over the single sink WSN where very less energy is utilized in sending the data to the sink, as the number of hops is reduced. If the energy consumed by a node is balanced between the other nodes, the lifetime of the network is considerably increased. The network lifetime optimization is achieved by restructuring the network by modifying the neighbor nodes of a sink. Only those nodes are connected to a sink which makes the total energy of the sink less than the threshold. This energy balancing through network restructuring optimizes the network lifetime. This paper depicts this fact through simulations done in MATLAB.
On Optimal Geographical Caching in Heterogeneous Cellular Networks
Serbetci, Berksan; Goseling, Jasper
2017-01-01
In this work we investigate optimal geographical caching in heterogeneous cellular networks where different types of base stations (BSs) have different cache capacities. Users request files from a content library according to a known probability distribution. The performance metric is the total hit
Immunization of networks with community structure
International Nuclear Information System (INIS)
Masuda, Naoki
2009-01-01
In this study, an efficient method to immunize modular networks (i.e. networks with community structure) is proposed. The immunization of networks aims at fragmenting networks into small parts with a small number of removed nodes. Its applications include prevention of epidemic spreading, protection against intentional attacks on networks, and conservation of ecosystems. Although preferential immunization of hubs is efficient, good immunization strategies for modular networks have not been established. On the basis of an immunization strategy based on eigenvector centrality, we develop an analytical framework for immunizing modular networks. To this end, we quantify the contribution of each node to the connectivity in a coarse-grained network among modules. We verify the effectiveness of the proposed method by applying it to model and real networks with modular structure.
Directory of Open Access Journals (Sweden)
Ning Li
2016-11-01
Full Text Available Because wireless sensor networks (WSNs have been widely used in recent years, how to reduce their energy consumption and interference has become a major issue. Topology control is a common and effective approach to improve network performance, such as reducing the energy consumption and network interference, improving the network connectivity, etc. Many topology control algorithms reduce network interference by dynamically adjusting the node transmission range. However, reducing the network interference by adjusting the transmission range is probabilistic. Therefore, in this paper, we analyze the probability of interference-optimality for the WSNs and prove that the probability of interference-optimality increases with the increasing of the original transmission range. Under a specific transmission range, the probability reaches the maximum value when the transmission range is 0.85r in homogeneous networks and 0.84r in heterogeneous networks. In addition, we also prove that when the network is energy-efficient, the network is also interference-optimal with probability 1 both in the homogeneous and heterogeneous networks.
Information spread in networks: Games, optimal control, and stabilization
Khanafer, Ali
This thesis focuses on designing efficient mechanisms for controlling information spread in networks. We consider two models for information spread. The first one is the well-known distributed averaging dynamics. The second model is a nonlinear one that describes virus spread in computer and biological networks. We seek to design optimal, robust, and stabilizing controllers under practical constraints. For distributed averaging networks, we study the interaction between a network designer and an adversary. We consider two types of attacks on the network. In Attack-I, the adversary strategically disconnects a set of links to prevent the nodes from reaching consensus. Meanwhile, the network designer assists the nodes in reaching consensus by changing the weights of a limited number of links in the network. We formulate two problems to describe this competition where the order in which the players act is reversed in the two problems. Although the canonical equations provided by the Pontryagin's Maximum Principle (MP) seem to be intractable, we provide an alternative characterization for the optimal strategies that makes connection to potential theory. Further, we provide a sufficient condition for the existence of a saddle-point equilibrium (SPE) for the underlying zero-sum game. In Attack-II, the designer and the adversary are both capable of altering the measurements of all nodes in the network by injecting global signals. We impose two constraints on both players: a power constraint and an energy constraint. We assume that the available energy to each player is not sufficient to operate at maximum power throughout the horizon of the game. We show the existence of an SPE and derive the optimal strategies in closed form for this attack scenario. As an alternative to the "network designer vs. adversary" framework, we investigate the possibility of stabilizing unknown network diffusion processes using a distributed mechanism, where the uncertainty is due to an attack
A Stochastic Multiobjective Optimization Framework for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Shibo He
2010-01-01
Full Text Available In wireless sensor networks (WSNs, there generally exist many different objective functions to be optimized. In this paper, we propose a stochastic multiobjective optimization approach to solve such kind of problem. We first formulate a general multiobjective optimization problem. We then decompose the optimization formulation through Lagrange dual decomposition and adopt the stochastic quasigradient algorithm to solve the primal-dual problem in a distributed way. We show theoretically that our algorithm converges to the optimal solution of the primal problem by using the knowledge of stochastic programming. Furthermore, the formulation provides a general stochastic multiobjective optimization framework for WSNs. We illustrate how the general framework works by considering an example of the optimal rate allocation problem in multipath WSNs with time-varying channel. Extensive simulation results are given to demonstrate the effectiveness of our algorithm.
Integrated Reliability-Based Optimal Design of Structures
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
1987-01-01
In conventional optimal design of structural systems the weight or the initial cost of the structure is usually used as objective function. Further, the constraints require that the stresses and/or strains at some critical points have to be less than some given values. Finally, all variables......-based optimal design is discussed. Next, an optimal inspection and repair strategy for existing structural systems is presented. An optimization problem is formulated , where the objective is to minimize the expected total future cost of inspection and repair subject to the constraint that the reliability...... value. The reliability can be measured from an element and/or a systems point of view. A number of methods to solve reliability-based optimization problems has been suggested, see e.g. Frangopol [I]. Murotsu et al. (2], Thoft-Christensen & Sørensen (3] and Sørensen (4). For structures where...
Optimal Multiuser Zero Forcing with Per-Antenna Power Constraints for Network MIMO Coordination
Directory of Open Access Journals (Sweden)
Kaviani Saeed
2011-01-01
Full Text Available We consider a multicell multiple-input multiple-output (MIMO coordinated downlink transmission, also known as network MIMO, under per-antenna power constraints. We investigate a simple multiuser zero-forcing (ZF linear precoding technique known as block diagonalization (BD for network MIMO. The optimal form of BD with per-antenna power constraints is proposed. It involves a novel approach of optimizing the precoding matrices over the entire null space of other users' transmissions. An iterative gradient descent method is derived by solving the dual of the throughput maximization problem, which finds the optimal precoding matrices globally and efficiently. The comprehensive simulations illustrate several network MIMO coordination advantages when the optimal BD scheme is used. Its achievable throughput is compared with the capacity region obtained through the recently established duality concept under per-antenna power constraints.
Patchworking Network Structures
DEFF Research Database (Denmark)
Norus, Jesper
2004-01-01
analyzes fourdifferent managerial strategies of how to create network structures to deal with theinterfaces between industry, university and public institutions. The research-orientedstrategy, the incubator strategy, the industrial-partnering strategy, and the policyorientedstrategy. The research...... groups has been treated as a contingent factor.However, little attention has been given to the managerial efforts that entrepreneurshave make to establish the fit between small firms, university research, and publicpolicies such as regulatory policies and R&D policies through network-type structures.......New biotechnology organizations are perfect objects to study these relationshipsbecause new biotechnologies and techniques predominantly come from the universitysector (Kenney, 1986; Yoxen; 1984; Zucker & Darby, 1997; Robbins-Roth, 2001).From the perspective of the small biotechnology firms (SBFs,) this paper...
Integrated topology and shape optimization in structural design
Bremicker, M.; Chirehdast, M.; Kikuchi, N.; Papalambros, P. Y.
1990-01-01
Structural optimization procedures usually start from a given design topology and vary its proportions or boundary shapes to achieve optimality under various constraints. Two different categories of structural optimization are distinguished in the literature, namely sizing and shape optimization. A major restriction in both cases is that the design topology is considered fixed and given. Questions concerning the general layout of a design (such as whether a truss or a solid structure should be used) as well as more detailed topology features (e.g., the number and connectivities of bars in a truss or the number of holes in a solid) have to be resolved by design experience before formulating the structural optimization model. Design quality of an optimized structure still depends strongly on engineering intuition. This article presents a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated in addition to selecting shape and size dimensions. A three-phase design process is discussed: an optimal initial topology is created by a homogenization method as a gray level image, which is then transformed to a realizable design using computer vision techniques; this design is then parameterized and treated in detail by sizing and shape optimization. A fully automated process is described for trusses. Optimization of two dimensional solid structures is also discussed. Several application-oriented examples illustrate the usefulness of the proposed methodology.
An optimization planning technique for Suez Canal Network in Egypt
Energy Technology Data Exchange (ETDEWEB)
Abou El-Ela, A.A.; El-Zeftawy, A.A.; Allam, S.M.; Atta, Gasir M. [Electrical Engineering Dept., Faculty of Eng., Shebin El-Kom (Egypt)
2010-02-15
This paper introduces a proposed optimization technique POT for predicting the peak load demand and planning of transmission line systems. Many of traditional methods have been presented for long-term load forecasting of electrical power systems. But, the results of these methods are approximated. Therefore, the artificial neural network (ANN) technique for long-term peak load forecasting is modified and discussed as a modern technique in long-term load forecasting. The modified technique is applied on the Egyptian electrical network dependent on its historical data to predict the electrical peak load demand forecasting up to year 2017. This technique is compared with extrapolation of trend curves as a traditional method. The POT is applied also to obtain the optimal planning of transmission lines for the 220 kV of Suez Canal Network (SCN) using the ANN technique. The minimization of the transmission network costs are considered as an objective function, while the transmission lines (TL) planning constraints are satisfied. Zafarana site on the Red Sea coast is considered as an optimal site for installing big wind farm (WF) units in Egypt. So, the POT is applied to plan both the peak load and the electrical transmission of SCN with and without considering WF to develop the impact of WF units on the electrical transmission system of Egypt, considering the reliability constraints which were taken as a separate model in the previous techniques. The application on SCN shows the capability and the efficiently of the proposed techniques to obtain the predicting peak load demand and the optimal planning of transmission lines of SCN up to year 2017. (author)
TRADING-OFF CONSTRAINTS IN THE PUMP SCHEDULING OPTIMIZATION OF WATER DISTRIBUTION NETWORKS
Directory of Open Access Journals (Sweden)
Gencer Genço\\u011Flu
2016-01-01
Full Text Available Pumps are one of the essential components of water supply systems. Depending of the topography, a water supply system may completely rely on pumping. They may consume non-negligible amount of water authorities' budgets during operation. Besides their energy costs, maintaining the healthiness of pumping systems is another concern for authorities. This study represents a multi-objective optimization method for pump scheduling problem. The optimization objective contains hydraulic and operational constraints. Switching of pumps and usage of electricity tariff are assumed to be key factors for operational reliability and energy consumption and costs of pumping systems. The local optimals for systems operational reliability, energy consumptions and energy costs are investigated resulting from trading-off pump switch and electricity tariff constraints within given set of boundary conditions. In the study, a custom made program is employed that combines genetic algorithm based optimization module with hydraulic network simulation software -EPANET. Developed method is applied on the case study network; N8-3 pressure zone of the Northern Supply of Ankara (Turkey Water Distribution Network. This work offers an efficient method for water authorities aiming to optimize pumping schedules considering expenditures and operational reliability mutually.
Network structure and travel time perception.
Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig
2013-01-01
The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.
Optimal allocation of multi-state retransmitters in acyclic transmission networks
International Nuclear Information System (INIS)
Levitin, Gregory
2002-01-01
In this paper, an algorithm for optimal allocation of multi-state elements (MEs) in acyclic transmission networks (ATNs) is suggested. The ATNs consist of a number of positions (nodes) in which MEs capable of receiving and sending a signal are allocated. Each network has a root position where the signal source is located, a number of leaf positions that can only receive a signal, and a number of intermediate positions containing MEs capable of transmitting the received signal to some other nodes. Each ME that is located in a nonleaf node can have different states determined by a set of nodes receiving the signal directly from this ME. The probability of each state is assumed to be known for each ME. The ATN reliability is defined as the probability that a signal from the root node is transmitted to each leaf node. The optimal distribution of MEs with different characteristics among ATN positions provides the greatest possible ATN reliability. The suggested algorithm is based on using a universal generating function technique for network reliability evaluation. A genetic algorithm is used as the optimization tool. Illustrative examples are presented
Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations
Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.
2011-12-01
HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of
Gunes, Ersin Fatih
Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.
Identifying the optimal supply temperature in district heating networks - A modelling approach
DEFF Research Database (Denmark)
Mohammadi, Soma; Bojesen, Carsten
2014-01-01
of this study is to develop a model for thermo-hydraulic calculation of low temperature DH system. The modelling is performed with emphasis on transient heat transfer in pipe networks. The pseudo-dynamic approach is adopted to model the District Heating Network [DHN] behaviour which estimates the temperature...... dynamically while the flow and pressure are calculated on the basis of steady state conditions. The implicit finite element method is applied to simulate the transient temperature behaviour in the network. Pipe network heat losses, pressure drop in the network and return temperature to the plant...... are calculated in the developed model. The model will serve eventually as a basis to find out the optimal supply temperature in an existing DHN in later work. The modelling results are used as decision support for existing DHN; proposing possible modifications to operate at optimal supply temperature....
DEFF Research Database (Denmark)
Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik
2015-01-01
Robust buckling optimal design of laminated composite structures is conducted in this work. Optimal designs are obtained by considering geometric imperfections in the optimization procedure. Discrete Material Optimization is applied to obtain optimal laminate designs. The optimal geometric...... imperfection is represented by the “worst” shape imperfection. The two optimization problems are combined through the recurrence optimization. Hereby the imperfection sensitivity of the considered structures can be studied. The recurrence optimization is demonstrated through a U-profile and a cylindrical panel...... example. The imperfection sensitivity of the optimized structure decreases during the recurrence optimization for both examples, hence robust buckling optimal structures are designed....
Information transfer in community structured multiplex networks
Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex
2015-08-01
The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.
Information transfer in community structured multiplex networks
Directory of Open Access Journals (Sweden)
Albert eSolé Ribalta
2015-08-01
Full Text Available The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.. The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.
Wireless sensor networks for active vibration control in automobile structures
International Nuclear Information System (INIS)
Mieyeville, Fabien; Navarro, David; Du, Wan; Ichchou, Mohamed; Scorletti, Gérard
2012-01-01
Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control. (paper)
Fundamentals of complex networks models, structures and dynamics
Chen, Guanrong; Li, Xiang
2014-01-01
Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F
Advanced Polymer Network Structures
2016-02-01
attractive interaction (n = 2.0) and a neutral interaction (n = 1.0); n is equal to unity for self-interactions among the monomers of first network and...... Network Structures by Robert Lambeth, Joseph Lenhart, and Tim Sirk Weapons and Materials Research Directorate, ARL Yelena Sliozberg TKC Global
2014-12-01
The report documents policy considerations for the Intelligent Network Flow Optimization (INFLO) connected vehicle applications : bundle. INFLO aims to optimize network flow on freeways and arterials by informing motorists of existing and impen...
Intelligent Network Flow Optimization (INFLO) prototype acceptance test summary.
2015-05-01
This report summarizes the results of System Acceptance Testing for the implementation of the Intelligent Network : Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected : Vehicle Program. ...
Epidemic spreading on complex networks with community structures
Stegehuis, C.; van der Hofstad, R.W.; van Leeuwaarden, J.S.H.
2016-01-01
Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities
Nonlinear Non-convex Optimization of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat; Kallesøe, Carsten; Leth, John-Josef
2013-01-01
Pressure management in water supply systems is an effective way to reduce the leakage in a system. In this paper, the pressure management and the reduction of power consumption of a water supply system is formulated as an optimization problem. The problem is to minimize the power consumption in p....... They can be used for a general hydraulic networks to optimize the leakage and energy consumption and to satisfy the demands at the end-users. The results in this paper show that the power consumption of the pumps is reduced.......Pressure management in water supply systems is an effective way to reduce the leakage in a system. In this paper, the pressure management and the reduction of power consumption of a water supply system is formulated as an optimization problem. The problem is to minimize the power consumption...
Network synthesis and parameter optimization for vehicle suspension with inerter
Directory of Open Access Journals (Sweden)
Long Chen
2016-12-01
Full Text Available In order to design a comfortable-oriented vehicle suspension structure, the network synthesis method was utilized to transfer the problem into solving a timing robust control problem and determine the structure of “inerter–spring–damper” suspension. Bilinear Matrix Inequality was utilized to obtain the timing transfer function. Then, the transfer function of suspension system can be physically implemented by passive elements such as spring, damper, and inerter. By analyzing the sensitivity and quantum genetic algorithm, the optimized parameters of inerter–spring–damper suspension were determined. A quarter-car model was established. The performance of the inerter–spring–damper suspension was verified under random input. The simulation results manifested that the dynamic performance of the proposed suspension was enhanced in contrast with traditional suspension. The root mean square of vehicle body acceleration decreases by 18.9%. The inerter–spring–damper suspension can inhibit the vertical vibration within the frequency of 1–3 Hz effectively and enhance the performance of ride comfort significantly.
Topological Optimization of Continuum Structure based on ANSYS
Directory of Open Access Journals (Sweden)
Li Xue-ping
2017-01-01
Full Text Available Topology optimization is at the phase of structural concept design and the result of it is foundation for succeeding design, therefore, structural topology optimization is more important to engineering design. in this thesis, in order to seek the optimal structure shape of the winch’s mounting bracket of ROV simulator, topology optimization design of it by finite element analysis software ANSYS was carried out. the results show that the topology optimization method is an effective optimization method and indicate that the method is correct and effective, it has a certain engineering application prospect.
Directory of Open Access Journals (Sweden)
R. Latha
Full Text Available Nowadays, Wireless Body Area Network (WBAN is emerging very fast and so many new methods and algorithms are coming up for finding the optimal path for disseminating emergency messages. Ant Colony Optimization (ACO is one of the cultural algorithms for solving many hard problems such as Travelling Salesman Problem (TSP. ACO is a natural behaviour of ants, which work stochastically with the help of pheromone trails deposited in the shortest route to find their food. This optimization procedure involves adapting, positive feedback and inherent parallelism. Each ant will deposit certain amount of pheromone in the tour construction it makes searching for food. This type of communication is known as stigmetric communication. In addition, if a dense WBAN environment prevails, such as hospital, i.e. in the environment of overlapping WBAN, game formulation was introduced for analyzing the mixed strategy behaviour of WBAN. In this paper, the ant colony optimization approach to the travelling salesman problem was applied to the WBAN to determine the shortest route for sending emergency message to the doctor via sensor nodes; and also a static Bayesian game formulation with mixed strategy was analysed to enhance the network lifetime. Whenever the patient needs any critical care or any other medical issue arises, emergency messages will be created by the WBAN and sent to the doctor's destination. All the modes of communication were realized in a simulation environment using OMNet++. The authors investigated a balanced model of emergency message dissemination and network lifetime in WBAN using ACO and Bayesian game formulation. Keywords: Wireless body area network, Ant colony optimization, Bayesian game model, Sensor network, Message latency, Network lifetime
Optimization of hydrometric monitoring network in urban drainage systems using information theory.
Yazdi, J
2017-10-01
Regular and continuous monitoring of urban runoff in both quality and quantity aspects is of great importance for controlling and managing surface runoff. Due to the considerable costs of establishing new gauges, optimization of the monitoring network is essential. This research proposes an approach for site selection of new discharge stations in urban areas, based on entropy theory in conjunction with multi-objective optimization tools and numerical models. The modeling framework provides an optimal trade-off between the maximum possible information content and the minimum shared information among stations. This approach was applied to the main surface-water collection system in Tehran to determine new optimal monitoring points under the cost considerations. Experimental results on this drainage network show that the obtained cost-effective designs noticeably outperform the consulting engineers' proposal in terms of both information contents and shared information. The research also determined the highly frequent sites at the Pareto front which might be important for decision makers to give a priority for gauge installation on those locations of the network.
Global Electricity Trade Network: Structures and Implications
Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming
2016-01-01
Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825
Developing a robust wireless sensor network structure for environmental sensing
Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.
2013-12-01
The American River Hydrologic Observatory is being strategically deployed as a real-time ground-based measurement network that delivers accurate and timely information on snow conditions and other hydrologic attributes with a previously unheard of granularity of time and space. The basin-scale network involves 18 sub-networks set out at physiographically representative locations spanning the seasonally snow-covered half of the 5000 km2 American river basin. Each sub-network, covering about a 1-km2 area, consists of 10 wirelessly networked sensing nodes that continuously measure and telemeter temperature, and snow depth; plus selected locations are equipped with sensors for relative humidity, solar radiation, and soil moisture at several depths. The sensor locations were chosen to maximize the variance sampled for snow depth within the basin. Network design and deployment involves an iterative but efficient process. After sensor-station locations are determined, a robust network of interlinking sensor stations and signal repeaters must be constructed to route sensor data to a central base station with a two-way communicable data uplink. Data can then be uploaded from site to remote servers in real time through satellite and cell modems. Signal repeaters are placed for robustness of a self-healing network with redundant signal paths to the base station. Manual, trial-and-error heuristic approaches for node placement are inefficient and labor intensive. In that approach field personnel must restructure the network in real time and wait for new network statistics to be calculated at the base station before finalizing a placement, acting without knowledge of the global topography or overall network structure. We show how digital elevation plus high-definition aerial photographs to give foliage coverage can optimize planning of signal repeater placements and guarantee a robust network structure prior to the physical deployment. We can also 'stress test' the final network
Cross layer optimization for cloud-based radio over optical fiber networks
Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming
2016-07-01
To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.
International Nuclear Information System (INIS)
Li, Ming; Kang, Zhan; Huang, Xiaobo
2015-01-01
Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials
Robust optimal control of material flows in demand-driven supply networks
Laumanns, M.; Lefeber, A.A.J.
2006-01-01
We develop a model based on stochastic discrete-time controlleddynamical systems in order to derive optimal policies for controllingthe material flow in supply networks. Each node in the network isdescribed as a transducer such that the dynamics of the material andinformation flows within the entire
Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen
2018-05-01
To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.
Joint Resource Optimization for Cognitive Sensor Networks with SWIPT-Enabled Relay.
Lu, Weidang; Lin, Yuanrong; Peng, Hong; Nan, Tian; Liu, Xin
2017-09-13
Energy-constrained wireless networks, such as wireless sensor networks (WSNs), are usually powered by fixed energy supplies (e.g., batteries), which limits the operation time of networks. Simultaneous wireless information and power transfer (SWIPT) is a promising technique to prolong the lifetime of energy-constrained wireless networks. This paper investigates the performance of an underlay cognitive sensor network (CSN) with SWIPT-enabled relay node. In the CSN, the amplify-and-forward (AF) relay sensor node harvests energy from the ambient radio-frequency (RF) signals using power splitting-based relaying (PSR) protocol. Then, it helps forward the signal of source sensor node (SSN) to the destination sensor node (DSN) by using the harvested energy. We study the joint resource optimization including the transmit power and power splitting ratio to maximize CSN's achievable rate with the constraint that the interference caused by the CSN to the primary users (PUs) is within the permissible threshold. Simulation results show that the performance of our proposed joint resource optimization can be significantly improved.
Optimization of operation cycles in BWRs using neural networks
International Nuclear Information System (INIS)
Ortiz S, J. J.; Castillo, A.; Alejandro P, D.
2011-11-01
The first results of a system for the optimization of operation cycles in boiling water reactors by means of a multi state recurrent neural network are present in this work. The neural network finds the best combination of fuel cells; fuel reloads and control bars patterns previously designed, according to an energy function that qualifies the performance of the three partial solutions for the solution of the whole problem. The partial solutions are designed by means of optimization systems non couple among them and that can use any optimization technique. The phase of the fuel axial design is not made and the size of the axial areas is fixed during the optimization process. The methodology was applied to design a balance cycle of 18 months for the reactors of the nuclear power station of Laguna Verde. The results show that is possible to find combinations of partial solutions that in set represent good solutions to the complete design problem of an operation cycle of a nuclear reactor. The results are compared with others obtained previously by other techniques. This system was developed in platform Li nux and programmed in Fortran 95 taking advantage of the 8 nuclei of a work station Dell Precision T7400. (Author)
Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation.
Taylor, Dane; Shai, Saray; Stanley, Natalie; Mucha, Peter J
2016-06-03
Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that encode different, but potentially related, types of interactions, and it is important to understand limitations on the detectability of community structure in these networks. Using random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods, including summation of the layers' adjacency matrices for which we show the detectability limit vanishes as O(L^{-1/2}) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the common-but not well understood-practice of thresholding pairwise-interaction data to obtain sparse network representations.
Optimal allocation and adaptive VAR control of PV-DG in distribution networks
International Nuclear Information System (INIS)
Fu, Xueqian; Chen, Haoyong; Cai, Runqing; Yang, Ping
2015-01-01
Highlights: • A methodology for optimal PV-DG allocation based on a combination of algorithms. • Dealing with the randomicity of solar power energy using CCSP. • Presenting a VAR control strategy to balance the technical demands. • Finding the Pareto solutions using MOPSO and SVM. • Evaluating the Pareto solutions using WRSR. - Abstract: The development of distributed generation (DG) has brought new challenges to power networks. One of them that catches extensive attention is the voltage regulation problem of distribution networks caused by DG. Optimal allocation of DG in distribution networks is another well-known problem being widely investigated. This paper proposes a new method for the optimal allocation of photovoltaic distributed generation (PV-DG) considering the non-dispatchable characteristics of PV units. An adaptive reactive power control model is introduced in PV-DG allocation as to balance the trade-off between the improvement of voltage quality and the minimization of power loss in a distribution network integrated with PV-DG units. The optimal allocation problem is formulated as a chance-constrained stochastic programming (CCSP) model for dealing with the randomness of solar power energy. A novel algorithm combining the multi-objective particle swarm optimization (MOPSO) with support vector machines (SVM) is proposed to find the Pareto front consisting of a set of possible solutions. The Pareto solutions are further evaluated using the weighted rank sum ratio (WRSR) method to help the decision-maker obtain the desired solution. Simulation results on a 33-bus radial distribution system show that the optimal allocation method can fully take into account the time-variant characteristics and probability distribution of PV-DG, and obtain the best allocation scheme
Jia, F.; Lichti, D.
2017-09-01
The optimal network design problem has been well addressed in geodesy and photogrammetry but has not received the same attention for terrestrial laser scanner (TLS) networks. The goal of this research is to develop a complete design system that can automatically provide an optimal plan for high-accuracy, large-volume scanning networks. The aim in this paper is to use three heuristic optimization methods, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO), to solve the first-order design (FOD) problem for a small-volume indoor network and make a comparison of their performances. The room is simplified as discretized wall segments and possible viewpoints. Each possible viewpoint is evaluated with a score table representing the wall segments visible from each viewpoint based on scanning geometry constraints. The goal is to find a minimum number of viewpoints that can obtain complete coverage of all wall segments with a minimal sum of incidence angles. The different methods have been implemented and compared in terms of the quality of the solutions, runtime and repeatability. The experiment environment was simulated from a room located on University of Calgary campus where multiple scans are required due to occlusions from interior walls. The results obtained in this research show that PSO and GA provide similar solutions while SA doesn't guarantee an optimal solution within limited iterations. Overall, GA is considered as the best choice for this problem based on its capability of providing an optimal solution and fewer parameters to tune.
Optimal interdependence between networks for the evolution of cooperation.
Wang, Zhen; Szolnoki, Attila; Perc, Matjaž
2013-01-01
Recent research has identified interactions between networks as crucial for the outcome of evolutionary games taking place on them. While the consensus is that interdependence does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interdependence there should be. Intuitively, one might assume the more the better. However, we show that in fact only an intermediate density of sufficiently strong interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interdependent networks, and the governing social dilemma, thus suggesting a high degree of universality.
Directory of Open Access Journals (Sweden)
Haichao Wang
2017-07-01
Full Text Available A district heating (DH system is one of the most important components of infrastructures in cold areas. Proper DH network design should balance the initial investment and the heat distribution cost of the DH network. Currently, this design is often based on a recommended value for specific pressure loss (R = ∆P/L in the main lines. This will result in a feasible network design, but probably not be optimal in most cases. The paper develops a novel optimization model to facilitate the design by considering the initial investment in the pipes and the heat distribution costs. The model will generate all possible network scenarios consisting of different series of diameters for each pipe in the flow direction of the network. Then, the annuity on the initial investment, the heat distribution cost, and the total annual cost will be calculated for each network scenario, taking into account the uncertainties of the material prices and the yearly operating time levels. The model is applied to a sample DH network and the results indicate that the model works quite well, clearly identifying the optimal network design and demonstrating that the heat distribution cost is more important than the initial investment in DH network design.
Optimal resource allocation in downlink CDMA wireless networks
Endrayanto, A.I.
2013-01-01
This thesis presents a full analytical characterization of the optimal joint downlink rate and power assignment for maximal total system throughput in a multi cell CDMA network. In Chapter 2, we analyze the feasibility of downlink power assignment in a linear model of two CDMA cell, under the
Budilova, E. V.; Terekhin, A. T.; Chepurnov, S. A.
1994-09-01
A hypothetical neural scheme is proposed that ensures efficient decision making by an animal searching for food in a maze. Only the general structure of the network is fixed; its quantitative characteristics are found by numerical optimization that simulates the process of natural selection. Selection is aimed at maximization of the expected number of descendants, which is directly related to the energy stored during the reproductive cycle. The main parameters to be optimized are the increments of the interneuronal links and the working-memory constants.
Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks
DEFF Research Database (Denmark)
Heide, J; Zhang, Qi; Fitzek, F H P
2013-01-01
This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...... reduction in the number of transmitted packets can be achieved. However, NC introduces additional computations and potentially a non-negligible transmission overhead, both of which depend on the chosen coding parameters. Therefore it is necessary to consider the trade-off that these coding parameters...... present in order to obtain the lowest energy consumption per transmitted bit. This problem is analyzed and suitable coding parameters are determined for the popular Tmote Sky platform. Compared to the use of traditional RLNC, these parameters enable a reduction in the energy spent per bit which grows...
Schubert, Martin
2012-01-01
This book develops a mathematical framework for modeling and optimizing interference-coupled multiuser systems. At the core of this framework is the concept of general interference functions, which provides a simple means of characterizing interdependencies between users. The entire analysis builds on the two core axioms scale-invariance and monotonicity. The proposed network calculus has its roots in power control theory and wireless communications. It adds theoretical tools for analyzing the typical behavior of interference-coupled networks. In this way it complements existing game-theoretic approaches. The framework should also be viewed in conjunction with optimization theory. There is a fruitful interplay between the theory of interference functions and convex optimization theory. By jointly exploiting the properties of interference functions, it is possible to design algorithms that outperform general-purpose techniques that only exploit convexity. The title “network calculus” refers to the fact tha...
Wen, Hongwei; Liu, Yue; Wang, Shengpei; Li, Zuoyong; Zhang, Jishui; Peng, Yun; He, Huiguang
2017-03-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. To date, TS is still misdiagnosed due to its varied presentation and lacking of obvious clinical symptoms. Therefore, studies of objective imaging biomarkers are of great importance for early TS diagnosis. As tic generation has been linked to disturbed structural networks, and many efforts have been made recently to investigate brain functional or structural networks using machine learning methods, for the purpose of disease diagnosis. However, few studies were related to TS and some drawbacks still existed in them. Therefore, we propose a novel classification framework integrating a multi-threshold strategy and a network fusion scheme to address the preexisting drawbacks. Here we used diffusion MRI probabilistic tractography to construct the structural networks of 44 TS children and 48 healthy children. We ameliorated the similarity network fusion algorithm specially to fuse the multi-threshold structural networks. Graph theoretical analysis was then implemented, and nodal degree, nodal efficiency and nodal betweenness centrality were selected as features. Finally, support vector machine recursive feature extraction (SVM-RFE) algorithm was used for feature selection, and then optimal features are fed into SVM to automatically discriminate TS children from controls. We achieved a high accuracy of 89.13% evaluated by a nested cross validation, demonstrated the superior performance of our framework over other comparison methods. The involved discriminative regions for classification primarily located in the basal ganglia and frontal cortico-cortical networks, all highly related to the pathology of TS. Together, our study may provide potential neuroimaging biomarkers for early-stage TS diagnosis.
Max-Min Optimality of Service Rate Control in Closed Queueing Networks
Xia, Li
2013-04-01
In this technical note, we discuss the optimality properties of service rate control in closed Jackson networks. We prove that when the cost function is linear to a particular service rate, the system performance is monotonic w.r.t. (with respect to) that service rate and the optimal value of that service rate can be either maximum or minimum (we call it Max-Min optimality); When the second-order derivative of the cost function w.r.t. a particular service rate is always positive (negative), which makes the cost function strictly convex (concave), the optimal value of such service rate for the performance maximization (minimization) problem can be either maximum or minimum. To the best of our knowledge, this is the most general result for the optimality of service rates in closed Jackson networks and all the previous works only involve the first conclusion. Moreover, our result is also valid for both the state-dependent and load-dependent service rates, under both the time-average and customer-average performance criteria.
Optimal Power Flow for resistive DC Network : A Port-Hamiltonian approach
Benedito, Ernest; del Puerto-Flores, D.; Doria-Cerezo, A.; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri
This paper studies the optimal power flow problem for resistive DC networks. The gradient method algorithm is written in a port-Hamiltonian form and the stability of the resulting dynamics is studied. Stability conditions are provided for general cyclic networks and a solution, when these conditions
Directory of Open Access Journals (Sweden)
Chenguang Shi
2014-01-01
Full Text Available Widely distributed radar network architectures can provide significant performance improvement for target detection and localization. For a fixed radar network, the achievable target detection performance may go beyond a predetermined threshold with full transmitted power allocation, which is extremely vulnerable in modern electronic warfare. In this paper, we study the problem of low probability of intercept (LPI design for radar network and propose two novel LPI optimization schemes based on information-theoretic criteria. For a predefined threshold of target detection, Schleher intercept factor is minimized by optimizing transmission power allocation among netted radars in the network. Due to the lack of analytical closed-form expression for receiver operation characteristics (ROC, we employ two information-theoretic criteria, namely, Bhattacharyya distance and J-divergence as the metrics for target detection performance. The resulting nonconvex and nonlinear LPI optimization problems associated with different information-theoretic criteria are cast under a unified framework, and the nonlinear programming based genetic algorithm (NPGA is used to tackle the optimization problems in the framework. Numerical simulations demonstrate that our proposed LPI strategies are effective in enhancing the LPI performance for radar network.
Design and Optimization of Capacitated Supply Chain Networks Including Quality Measures
Directory of Open Access Journals (Sweden)
Krystel K. Castillo-Villar
2014-01-01
Full Text Available This paper presents (1 a novel capacitated model for supply chain network design which considers manufacturing, distribution, and quality costs (named SCND-COQ model and (2 five combinatorial optimization methods, based on nonlinear optimization, heuristic, and metaheuristic approaches, which are used to solve realistic instances of practical size. The SCND-COQ model is a mixed-integer nonlinear problem which can be used at a strategic planning level to design a supply chain network that maximizes the total profit subject to meeting an overall quality level of the final product at minimum costs. The SCND-COQ model computes the quality-related costs for the whole supply chain network considering the interdependencies among business entities. The effectiveness of the proposed solution approaches is shown using numerical experiments. These methods allow solving more realistic (capacitated supply chain network design problems including quality-related costs (inspections, rework, opportunity costs, and others within a reasonable computational time.
Variable ordering structures in vector optimization
Eichfelder, Gabriele
2014-01-01
This book provides an introduction to vector optimization with variable ordering structures, i.e., to optimization problems with a vector-valued objective function where the elements in the objective space are compared based on a variable ordering structure: instead of a partial ordering defined by a convex cone, we see a whole family of convex cones, one attached to each element of the objective space. The book starts by presenting several applications that have recently sparked new interest in these optimization problems, and goes on to discuss fundamentals and important results on a wide ra
Designing optimal bioethanol networks with purification for integrated biorefineries
International Nuclear Information System (INIS)
Shenoy, Akshay U.; Shenoy, Uday V.
2014-01-01
Highlights: • An analytical method is devised for bioethanol network integration with purification. • Minimum fresh bioethanol flow and pinch are found by the Unified Targeting Algorithm. • Optimal bioethanol networks are then synthesized by the Nearest Neighbors Algorithm. • Continuous targets and networks are developed over the purifier inlet flowrate range. • Case study of a biorefinery producing bioethanol from wheat shows large savings. - Abstract: Bioethanol networks with purification for processing pathways in integrated biorefineries are targeted and designed in this work by an analytical approach not requiring graphical constructions. The approach is based on six fundamental equations involving eight variables: two balance equations for the stream flowrate and the bioethanol load over the total network system; one equation for the above-pinch bioethanol load being picked up by the minimum fresh resource and the purified stream; and three equations for the purification unit. A solution strategy is devised by specifying the two variables associated with the purifier inlet stream. Importantly, continuous targeting is then possible over the entire purifier inlet flowrate range on deriving elegant formulae for the remaining six variables. The Unified Targeting Algorithm (UTA) is utilized to establish the minimum fresh bioethanol resource flowrate and identify the pinch purity. The fresh bioethanol resource flowrate target is shown to decrease linearly with purifier inlet flowrate provided the pinch is held by the same point. The Nearest Neighbors Algorithm (NNA) is used to methodically synthesize optimal networks matching bioethanol demands and sources. A case study of a biorefinery producing bioethanol from wheat with arabinoxylan (AX) coproduction is presented. It illustrates the versatility of the approach in generating superior practical designs with up to nearly 94% savings for integrated bioethanol networks, both with and without process
Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm
Directory of Open Access Journals (Sweden)
D.B. Prakash
2017-12-01
Full Text Available In present days, continuous effort is being made in bringing down the line losses of the electrical distribution networks. Therefore proper allocation of capacitors is of utmost importance because, it will help in reducing the line losses and maintaining the bus voltage. This in turn results in improving the stability and reliability of the system. In this paper Whale Optimization Algorithm (WOA is used to find optimal sizing and placement of capacitors for a typical radial distribution system. Multi objectives such as operating cost reduction and power loss minimization with inequality constraints on voltage limits are considered and the proposed algorithm is validated by applying it on standard radial systems: IEEE-34 bus and IEEE-85 bus radial distribution test systems. The results obtained are compared with those of existing algorithms. The results show that the proposed algorithm is more effective in bringing down the operating costs and in maintaining better voltage profile. Keywords: Whale Optimization Algorithm (WOA, Optimal allocation and sizing of capacitors, Power loss reduction and voltage stability improvement, Radial distribution system, Operating cost minimization
Urban Thermodynamic Island in a Coastal City Analysed from an Optimized Surface Network
Pigeon, Grégoire; Lemonsu, Aude; Long, Nathalie; Barrié, Joël; Masson, Valéry; Durand, Pierre
2006-08-01
Within the framework of ESCOMPTE, a French experiment performed in June and July 2001 in the south-east of France to study the photo-oxidant pollution at the regional scale, the urban boundary layer (UBL) program focused on the study of the urban atmosphere over the coastal city of Marseille. A methodology developed to optimize a network of 20 stations measuring air temperature and moisture over the city is presented. It is based on the analysis of a numerical simulation, performed with the non-hydrostatic, mesoscale Meso-NH model, run with four nested-grids down to a horizontal resolution of 250 m over the city and including a specific parametrization for the urban surface energy balance. A three-day period was modelled and evaluated against data collected during the preparatory phase for the project in summer 2000. The simulated thermodynamic surface fields were analysed using an empirical orthogonal function (EOF) decomposition in order to determine the optimal network configuration designed to capture the dominant characteristics of the fields. It is the first attempt of application of this kind of methodology to the field of urban meteorology. The network, of 20 temperature and moisture sensors, was implemented during the UBL-ESCOMPTE experiment and continuously recorded data from 12 June to 14 July 2001. The measurements were analysed in order to assess the urban thermodynamic island spatio-temporal structure, also using EOF decomposition. During nighttime, the influence of urbanization on temperature is clear the field is characterized by concentric thermo-pleths around the old core of the city, which is the warmest area of the domain. The moisture field is more influenced by proximity to the sea and airflow patterns. During the day, the sea breeze often moves from west or south-west and consequently the spatial pattern for both parameters is characterized by a gradient perpendicular to the shoreline. Finally, in order to assess the methodology adopted, the
Network Ecology and Adolescent Social Structure.
McFarland, Daniel A; Moody, James; Diehl, David; Smith, Jeffrey A; Thomas, Reuben J
2014-12-01
Adolescent societies-whether arising from weak, short-term classroom friendships or from close, long-term friendships-exhibit various levels of network clustering, segregation, and hierarchy. Some are rank-ordered caste systems and others are flat, cliquish worlds. Explaining the source of such structural variation remains a challenge, however, because global network features are generally treated as the agglomeration of micro-level tie-formation mechanisms, namely balance, homophily, and dominance. How do the same micro-mechanisms generate significant variation in global network structures? To answer this question we propose and test a network ecological theory that specifies the ways features of organizational environments moderate the expression of tie-formation processes, thereby generating variability in global network structures across settings. We develop this argument using longitudinal friendship data on schools (Add Health study) and classrooms (Classroom Engagement study), and by extending exponential random graph models to the study of multiple societies over time.
Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.
Directory of Open Access Journals (Sweden)
Xiaojing Wan
Full Text Available Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI, a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets. As an example, in the present study, 28 target crosstalk networks (TCNs of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.
Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.
Wan, Xiaojing; Meng, Jia; Dai, Yingnan; Zhang, Yina; Yan, Shuang
2014-01-01
Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI), a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets). As an example, in the present study, 28 target crosstalk networks (TCNs) of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen) were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.
Incremental Optimization of Hub and Spoke Network for the Spokes’ Numbers and Flow
Directory of Open Access Journals (Sweden)
Yanfeng Wang
2015-01-01
Full Text Available Hub and spoke network problem is solved as part of a strategic decision making process which may have a profound effect on the future of enterprises. In view of the existing network structure, as time goes on, the number of spokes and the flow change because of different sources of uncertainty. Hence, the incremental optimization of hub and spoke network problem is considered in this paper, and the policy makers should adopt a series of strategies to cope with the change, such as setting up new hubs, adjusting the capacity level of original hubs, or closing some original hubs. The objective is to minimize the total cost, which includes the setup costs for the new hubs, the closure costs, and the adjustment costs for the original hubs as well as the flow routing costs. Two mixed-integer linear programming formulations are proposed and analyzed for this problem. China Deppon Logistics as an example is performed to present computational analysis, and we analyze the changes in the solutions driven by the number of spokes and the flow. The tests also allow an analysis to consider the effect of variation in parameters on network.
Using neural networks to speed up optimization algorithms
Bazan, M
2000-01-01
The paper presents the application of radial-basis-function (RBF) neural networks to speed up deterministic search algorithms used for the design and optimization of superconducting LHC magnets. The optimization of the iron yoke of the main dipoles requires a number of numerical field computations per trial solution as the field quality depends on the excitation of the magnets. This results in computation times of about 30 minutes for each objective function evaluation (on a DEC-Alpha 600/333) and only the most robust (deterministic) optimization algorithms can be applied. Using a RBF function approximator, the achieved speed-up of the search algorithm is in the order of 25% for problems with two parameters and about 18% for problems with three and five design variables. (13 refs).
Social Optimization and Pricing Policy in Cognitive Radio Networks with an Energy Saving Strategy
Directory of Open Access Journals (Sweden)
Shunfu Jin
2016-01-01
Full Text Available The rapid growth of wireless application results in an increase in demand for spectrum resource and communication energy. In this paper, we firstly introduce a novel energy saving strategy in cognitive radio networks (CRNs and then propose an appropriate pricing policy for secondary user (SU packets. We analyze the behavior of data packets in a discrete-time single-server priority queue under multiple-vacation discipline. With the help of a Quasi-Birth-Death (QBD process model, we obtain the joint distribution for the number of SU packets and the state of base station (BS via the Matrix-Geometric Solution method. We assess the average latency of SU packets and the energy saving ratio of system. According to a natural reward-cost structure, we study the individually optimal behavior and the socially optimal behavior of the energy saving strategy and use an optimization algorithm based on standard particle swarm optimization (SPSO method to search the socially optimal arrival rate of SU packets. By comparing the individually optimal behavior and the socially optimal behavior, we impose an appropriate admission fee to SU packets. Finally, we present numerical results to show the impacts of system parameters on the system performance and the pricing policy.
Optimal design of lossy bandgap structures
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2004-01-01
The method of topology optimization is used to design structures for wave propagation with one lossy material component. Optimized designs for scalar elastic waves are presented for mininimum wave transmission as well as for maximum wave energy dissipation. The structures that are obtained...... are of the 1D or 2D bandgap type depending on the objective and the material parameters....
Communication on the structure of biological networks
Indian Academy of Sciences (India)
Networks are widely used to represent interaction pattern among the components in complex systems. Structures of real networks from different domains may vary quite significantly. As there is an interplay between network architecture and dynamics, structure plays an important role in communication and spreading of ...
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Barrios, P.; Castro, M.; Pérez, O.; Vilaró, D.; Gutiérrez, L.
2017-07-01
Modeling genotype by environment interaction (GEI) is one of the most challenging aspects of plant breeding programs. The use of efficient trial networks is an effective way to evaluate GEI to define selection strategies. Furthermore, the experimental design and the number of locations, replications, and years are crucial aspects of multi-environment trial (MET) network optimization. The objective of this study was to evaluate the efficiency and performance of a MET network of sunflower (Helianthus annuus L.). Specifically, we evaluated GEI in the network by delineating mega-environments, estimating genotypic stability and identifying relevant environmental covariates. Additionally, we optimized the network by comparing experimental design efficiencies. We used the National Evaluation Network of Sunflower Cultivars of Uruguay (NENSU) in a period of 20 years. MET plot yield and flowering time information was used to evaluate GEI. Additionally, meteorological information was studied for each sunflower physiological stage. An optimal network under these conditions should have three replications, two years of evaluation and at least three locations. The use of incomplete randomized block experimental design showed reasonable performance. Three mega-environments were defined, explained mainly by different management of sowing dates. Late sowings dates had the worst performance in grain yield and oil production, associated with higher temperatures before anthesis and fewer days allocated to grain filling. The optimization of MET networks through the analysis of the experimental design efficiency, the presence of GEI, and appropriate management strategies have a positive impact on the expression of yield potential and selection of superior cultivars.
The application of particle swarm optimization to identify gamma spectrum with neural network
International Nuclear Information System (INIS)
Shi Dongsheng; Di Yuming; Zhou Chunlin
2006-01-01
Aiming at the shortcomings that BP algorithm is usually trapped to a local optimum and it has a low speed of convergence in the application of neural network to identify gamma spectrum, according to the advantage of the globe optimal searching of particle swarm optimization, this paper put forward a new algorithm for neural network training by combining BP algorithm and Particle Swarm Optimization-mixed PSO-BP algorithm. In the application to identify gamma spectrum, the new algorithm overcomes the shortcoming that BP algorithm is usually trapped to a local optimum and the neural network trained by it has a high ability of generalization with identification result of one hundred percent correct. Practical example shows that the mixed PSO-BP algorithm can effectively and reliably be used to identify gamma spectrum. (authors)
The overlapping community structure of structural brain network in young healthy individuals.
Directory of Open Access Journals (Sweden)
Kai Wu
2011-05-01
Full Text Available Community structure is a universal and significant feature of many complex networks in biology, society, and economics. Community structure has also been revealed in human brain structural and functional networks in previous studies. However, communities overlap and share many edges and nodes. Uncovering the overlapping community structure of complex networks remains largely unknown in human brain networks. Here, using regional gray matter volume, we investigated the structural brain network among 90 brain regions (according to a predefined anatomical atlas in 462 young, healthy individuals. Overlapped nodes between communities were defined by assuming that nodes (brain regions can belong to more than one community. We demonstrated that 90 brain regions were organized into 5 overlapping communities associated with several well-known brain systems, such as the auditory/language, visuospatial, emotion, decision-making, social, control of action, memory/learning, and visual systems. The overlapped nodes were mostly involved in an inferior-posterior pattern and were primarily related to auditory and visual perception. The overlapped nodes were mainly attributed to brain regions with higher node degrees and nodal efficiency and played a pivotal role in the flow of information through the structural brain network. Our results revealed fuzzy boundaries between communities by identifying overlapped nodes and provided new insights into the understanding of the relationship between the structure and function of the human brain. This study provides the first report of the overlapping community structure of the structural network of the human brain.
Topological Effects and Performance Optimization in Transportation Continuous Network Design
Directory of Open Access Journals (Sweden)
Jianjun Wu
2014-01-01
Full Text Available Because of the limitation of budget, in the planning of road works, increased efforts should be made on links that are more critical to the whole traffic system. Therefore, it would be helpful to model and evaluate the vulnerability and reliability of the transportation network when the network design is processing. This paper proposes a bilevel transportation network design model, in which the upper level is to minimize the performance of the network under the given budgets, while the lower level is a typical user equilibrium assignment problem. A new solution approach based on particle swarm optimization (PSO method is presented. The topological effects on the performance of transportation networks are studied with the consideration of three typical networks, regular lattice, random graph, and small-world network. Numerical examples and simulations are presented to demonstrate the proposed model.
An Optimal Routing Algorithm in Service Customized 5G Networks
Directory of Open Access Journals (Sweden)
Haipeng Yao
2016-01-01
Full Text Available With the widespread use of Internet, the scale of mobile data traffic grows explosively, which makes 5G networks in cellular networks become a growing concern. Recently, the ideas related to future network, for example, Software Defined Networking (SDN, Content-Centric Networking (CCN, and Big Data, have drawn more and more attention. In this paper, we propose a service-customized 5G network architecture by introducing the ideas of separation between control plane and data plane, in-network caching, and Big Data processing and analysis to resolve the problems traditional cellular radio networks face. Moreover, we design an optimal routing algorithm for this architecture, which can minimize average response hops in the network. Simulation results reveal that, by introducing the cache, the network performance can be obviously improved in different network conditions compared to the scenario without a cache. In addition, we explore the change of cache hit rate and average response hops under different cache replacement policies, cache sizes, content popularity, and network topologies, respectively.
Optimal Signal Design for Mixed Equilibrium Networks with Autonomous and Regular Vehicles
Directory of Open Access Journals (Sweden)
Nan Jiang
2017-01-01
Full Text Available A signal design problem is studied for efficiently managing autonomous vehicles (AVs and regular vehicles (RVs simultaneously in transportation networks. AVs and RVs move on separate lanes and two types of vehicles share the green times at the same intersections. The signal design problem is formulated as a bilevel program. The lower-level model describes a mixed equilibrium where autonomous vehicles follow the Cournot-Nash (CN principle and RVs follow the user equilibrium (UE principle. In the upper-level model, signal timings are optimized at signalized intersections to allocate appropriate green times to both autonomous and RVs to minimize system travel cost. The sensitivity analysis based method is used to solve the bilevel optimization model. Various signal control strategies are evaluated through numerical examples and some insightful findings are obtained. It was found that the number of phases at intersections should be reduced for the optimal control of the AVs and RVs in the mixed networks. More importantly, incorporating AVs into the transportation network would improve the system performance due to the value of AV technologies in reducing random delays at intersections. Meanwhile, travelers prefer to choose AVs when the networks turn to be congested.
Resistance and Security Index of Networks: Structural Information Perspective of Network Security.
Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng
2016-06-03
Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.
Resistance and Security Index of Networks: Structural Information Perspective of Network Security
Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng
2016-01-01
Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks. PMID:27255783
Resistance and Security Index of Networks: Structural Information Perspective of Network Security
Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng
2016-06-01
Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.
Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming
2017-05-01
To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.
Ant colony optimization and neural networks applied to nuclear power plant monitoring
International Nuclear Information System (INIS)
Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez
2015-01-01
A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)
Ant colony optimization and neural networks applied to nuclear power plant monitoring
Energy Technology Data Exchange (ETDEWEB)
Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez, E-mail: gean@usp.br, E-mail: delvonei@ipen.br, E-mail: martinez@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)
Optimizing Knowledge Sharing in Learning Networks through Peer Tutoring
Hsiao, Amy; Brouns, Francis; Kester, Liesbeth; Sloep, Peter
2009-01-01
Hsiao, Y. P., Brouns, F., Kester, L., & Sloep, P. (2009). Optimizing Knowledge Sharing in Learning Networks through Peer Tutoring. Presentation at the IADIS international conference on Cognition and Exploratory in Digital Age (CELDA 2009). November, 20-22, 2009, Rome, Italy.
Methodology of shell structure reinforcement layout optimization
Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof
2018-01-01
This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.
Directory of Open Access Journals (Sweden)
P.-Y. Chen
2009-01-01
Full Text Available This study proposes a neural network-family competition genetic algorithm (NN-FCGA for solving the electromagnetic (EM optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are comparable to those of the FCGA, but reducing a large amount of computation time and a well-trained NN model that can serve as a nonlinear approximator was developed during the optimization process of the NN-FCGA.
Optimization of neural network algorithm of the land market description
Directory of Open Access Journals (Sweden)
M. A. Karpovich
2016-01-01
Full Text Available The advantages of neural network technology is shown in comparison of traditional descriptions of dynamically changing systems, which include a modern land market. The basic difficulty arising in the practical implementation of neural network models of the land market and construction products is revealed It is the formation of a representative set of training and test examples. The requirements which are necessary for the correct description of the current economic situation has been determined, it consists in the fact that Train-paid-set in the feature space should not has the ranges with a low density of observations. The methods of optimization of empirical array, which allow to avoid the long-range extrapolation of da