WorldWideScience

Sample records for optimal loading principle

  1. Load flow optimization and optimal power flow

    Das, J C

    2017-01-01

    This book discusses the major aspects of load flow, optimization, optimal load flow, and culminates in modern heuristic optimization techniques and evolutionary programming. In the deregulated environment, the economic provision of electrical power to consumers requires knowledge of maintaining a certain power quality and load flow. Many case studies and practical examples are included to emphasize real-world applications. The problems at the end of each chapter can be solved by hand calculations without having to use computer software. The appendices are devoted to calculations of line and cable constants, and solutions to the problems are included throughout the book.

  2. Optimal decisions principles of programming

    Lange, Oskar

    1971-01-01

    Optimal Decisions: Principles of Programming deals with all important problems related to programming.This book provides a general interpretation of the theory of programming based on the application of the Lagrange multipliers, followed by a presentation of the marginal and linear programming as special cases of this general theory. The praxeological interpretation of the method of Lagrange multipliers is also discussed.This text covers the Koopmans' model of transportation, geometric interpretation of the programming problem, and nature of activity analysis. The solution of t

  3. Optimized core loading sequence for Ukraine WWER-1000 reactors

    Dye, M.; Shah, H.

    2015-01-01

    Fuel Assemblies (WFAs) experienced mechanical damage of the grids during loading at both South Ukraine 2 (SU2) and South Ukraine 3 (SU3). The grids were damaged due to high lateral loads exceeding their strength limit. The high lateral loads were caused by a combination of distortion and stiffness of the mixed core fuel assemblies and significant fuel assembly-to-fuel assembly interaction combined with the core loading sequence being used. To prevent damage of the WFA grids during core loading, Westinghouse has developed a loading sequence technique and loading aides (smooth sided dummies and top nozzle loading guides) designed to minimize fuel assembly-to-fuel assembly interaction while maximizing the potential for successful loading (i.e., no fuel assembly damage and minimized loading time). The loading sequence technique accounts for cycle-specific core loading patterns and is based on previous Westinghouse WWER core loading experience and fundamental principles. The loading aids are developed to “open-up” the target core location or to provide guidance into a target core location. The Westinghouse optimized core loading sequence and smooth sided dummies were utilized during the successful loading of SU3 Cycle 25 mixed core in March 2015, with no instances of fuel assembly damage and yet still provided considerable time savings relative to the 2012 and 2013 SU3 reload campaigns. (authors)

  4. Optimization principles and the figure of merit for triboelectric generators.

    Peng, Jun; Kang, Stephen Dongmin; Snyder, G Jeffrey

    2017-12-01

    Energy harvesting with triboelectric nanogenerators is a burgeoning field, with a growing portfolio of creative application schemes attracting much interest. Although power generation capabilities and its optimization are one of the most important subjects, a satisfactory elemental model that illustrates the basic principles and sets the optimization guideline remains elusive. We use a simple model to clarify how the energy generation mechanism is electrostatic induction but with a time-varying character that makes the optimal matching for power generation more restrictive. By combining multiple parameters into dimensionless variables, we pinpoint the optimum condition with only two independent parameters, leading to predictions of the maximum limit of power density, which allows us to derive the triboelectric material and device figure of merit. We reveal the importance of optimizing device capacitance, not only load resistance, and minimizing the impact of parasitic capacitance. Optimized capacitances can lead to an overall increase in power density of more than 10 times.

  5. Optimizing Preseason Training Loads in Australian Football.

    Carey, David L; Crow, Justin; Ong, Kok-Leong; Blanch, Peter; Morris, Meg E; Dascombe, Ben J; Crossley, Kay M

    2018-02-01

    To investigate whether preseason training plans for Australian football can be computer generated using current training-load guidelines to optimize injury-risk reduction and performance improvement. A constrained optimization problem was defined for daily total and sprint distance, using the preseason schedule of an elite Australian football team as a template. Maximizing total training volume and maximizing Banister-model-projected performance were both considered optimization objectives. Cumulative workload and acute:chronic workload-ratio constraints were placed on training programs to reflect current guidelines on relative and absolute training loads for injury-risk reduction. Optimization software was then used to generate preseason training plans. The optimization framework was able to generate training plans that satisfied relative and absolute workload constraints. Increasing the off-season chronic training loads enabled the optimization algorithm to prescribe higher amounts of "safe" training and attain higher projected performance levels. Simulations showed that using a Banister-model objective led to plans that included a taper in training load prior to competition to minimize fatigue and maximize projected performance. In contrast, when the objective was to maximize total training volume, more frequent training was prescribed to accumulate as much load as possible. Feasible training plans that maximize projected performance and satisfy injury-risk constraints can be automatically generated by an optimization problem for Australian football. The optimization methods allow for individualized training-plan design and the ability to adapt to changing training objectives and different training-load metrics.

  6. Stochastic optimization of loading pattern for PWR

    Smuc, T.; Pevec, D.

    1994-01-01

    The application of stochastic optimization methods in solving in-core fuel management problems is restrained by the need for a large number of proposed solutions loading patterns, if a high quality final solution is wanted. Proposed loading patterns have to be evaluated by core neutronics simulator, which can impose unrealistic computer time requirements. A new loading pattern optimization code Monte Carlo Loading Pattern Search has been developed by coupling the simulated annealing optimization algorithm with a fast one-and-a-half dimensional core depletion simulator. The structure of the optimization method provides more efficient performance and allows the user to empty precious experience in the search process, thus reducing the search space size. Hereinafter, we discuss the characteristics of the method and illustrate them on the results obtained by solving the PWR reload problem. (authors). 7 refs., 1 tab., 1 fig

  7. Principles of optimizing animal production from rangeland

    Stubbendieck, J.; Waller, S.S.

    1983-01-01

    Increasing world population is one of the dominant factors escalating demands for the world's natural resources. Range and forage resources, which are used primarily for food and fibre, could be more efficiently used if management techniques were improved. The principles of managing forage resources are directly associated with both the growth and development of plants and the actions and needs of the grazing animal. An understanding of the effects of environmental factors and herbage removal (frequency, intensity and season of defoliation) on growth and regrowth of plants is the first step towards optimizing animal productivity from rangelands. Most potential changes will fit into three categories: (1) increase the quantity of forage, (2) improve the quality of forage, and (3) improve use of forage. The principles of grazing management can be separated into four intricately related categories: (1) proper degree of grazing, (2) proper season of grazing, (3) proper kind of livestock, and (4) proper distribution of grazing. Grazing management is affected by the manner in which both improvements and manipulation of vegetation affect forage yield and quality. The adaptation and application of existing knowledge to individual locations will be one step towards optimizing animal production from rangeland. Some of the problems may be solved through better dissemination of present knowledge through existing educational programmes, while others will require expanded programmes of information dissemination. A third group of problems may also be solved with present technology, but the solutions are not currently economical. Some of the problems will be solved only through expanded research. These research efforts need to be directed towards grazing or browsing animals, plant resources and the interaction between plants and animals. Application of nuclear techniques will be an integral part of this research. (author)

  8. Genetic algorithms in loading pattern optimization

    Yilmazbayhan, A.; Tombakoglu, M.; Bekar, K. B.; Erdemli, A. Oe

    2001-01-01

    Genetic Algorithm (GA) based systems are used for the loading pattern optimization. The use of Genetic Algorithm operators such as regional crossover, crossover and mutation, and selection of initial population size for PWRs are discussed. Antithetic variates are used to generate the initial population. The performance of GA with antithetic variates is compared to traditional GA. The results of multi-cycle optimization are discussed for objective function taking into account cycle burn-up and discharge burn-up

  9. Solution quality improvement in chiller loading optimization

    Geem, Zong Woo

    2011-01-01

    In order to reduce greenhouse gas emission, we can energy-efficiently operate a multiple chiller system using optimization techniques. So far, various optimization techniques have been proposed to the optimal chiller loading problem. Most of those techniques are meta-heuristic algorithms such as genetic algorithm, simulated annealing, and particle swarm optimization. However, this study applied a gradient-based method, named generalized reduced gradient, and then obtains better results when compared with other approaches. When two additional approaches (hybridization between meta-heuristic algorithm and gradient-based algorithm; and reformulation of optimization structure by adding a binary variable which denotes chiller's operating status) were introduced, generalized reduced gradient found even better solutions. - Highlights: → Chiller loading problem is optimized by generalized reduced gradient (GRG) method. → Results are compared with meta-heuristic algorithms such as genetic algorithm. → Results are even enhanced by hybridizing meta-heuristic and gradient techniques. → Results are even enhanced by modifying the optimization formulation.

  10. Loading pattern optimization using ant colony algorithm

    Hoareau, Fabrice

    2008-01-01

    Electricite de France (EDF) operates 58 nuclear power plants (NPP), of the Pressurized Water Reactor type. The loading pattern optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R and D has developed automatic optimization tools that assist the experts. LOOP is an industrial tool, developed by EDF R and D and based on a simulated annealing algorithm. In order to improve the results of such automatic tools, new optimization methods have to be tested. Ant Colony Optimization (ACO) algorithms are recent methods that have given very good results on combinatorial optimization problems. In order to evaluate the performance of such methods on loading pattern optimization, direct comparisons between LOOP and a mock-up based on the Max-Min Ant System algorithm (a particular variant of ACO algorithms) were made on realistic test-cases. It is shown that the results obtained by the ACO mock-up are very similar to those of LOOP. Future research will consist in improving these encouraging results by using parallelization and by hybridizing the ACO algorithm with local search procedures. (author)

  11. Optimal refueling principle of research and test reactors and its application

    Peng Feng; Sun Shouhua; Bu Yongxi

    1993-01-01

    Based on basic formula for core refueling, the optimal refueling principle for cores with fuel assemblies of different burnup are suggested. Some conclusions derived from this principle are given. Calculation formula for different refueling scheme and computation programme are derived and used for the HFETR typical core loading with different refueling scheme. With the suggested core fuel consuming index, core fuel managements of 24 cycles in 10 years operation of HFETR were analyzed. Results show that the application of optimal refueling principle can greatly save the fuel consuming. Direction of HFETR core fuel management research was also di cussed

  12. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training...

  13. Optimization of Nanowire-Resistance Load Logic Inverter.

    Hashim, Yasir; Sidek, Othman

    2015-09-01

    This study is the first to demonstrate characteristics optimization of nanowire resistance load inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on resistance value. Increasing of load resistor tends to increasing in noise margins until saturation point, increasing load resistor after this point will not improve noise margins significantly.

  14. Conversion Rate Optimization : Visual Neuro Programming Principles

    Berezhnaya, Anastasia

    2016-01-01

    The influence of the world wide web has already spread in every business. Consequently, it has become crucial to develop strong online presence and offer qualified user experience for website visitors. Website optimization undeniably has proved its importance in the recent decade. This research was conducted in order to study the practical application and structure of the stages of the CRO (Conversion Rate Optimization) framework that focuses on the most representative website metric – c...

  15. Exuberant optimism vs the precautionary principle

    John Cairns Jr

    2001-11-01

    Full Text Available ABSTRACT: Management of Earth's resources will not attain sustainability unless tough questions are asked and the merits and disadvantages of conflicting paradigms are rigorously examined. Two major conflicting paradigms are: (1 economic growth will solve all problems, including environmental ones --- the free market has negated the dire environmental forecasts and relegated them to the status of myths; and (2 human society is dependent upon the planet's life support --- system it assumes that the present rate of biotic impoverishment (e.g., species extinction, loss of habitat will so alter the biosphere that it will be less habitable for humans. Dominant, global practices are based on the first assumption, which, if invalid, will have dire consequences for human society. For example, anthropogenic greenhouse gases causing a modest rise of global temperatures could produce 20 million environmental refugees from Bangladesh alone as a consequence of a sea level rise that would inundate 17% of the country's habitable land. Implementing the second paradigm would require major, mostly unpalatable, changes in human behavior. Since, at present, humans occupy only 1 planet, the precautionary principle suggests acting more cautiously with regard to economic growth until its effects upon the planet's ecological life support system are better understood.

  16. Optimal control and optimal trajectories of regional macroeconomic dynamics based on the Pontryagin maximum principle

    Bulgakov, V. K.; Strigunov, V. V.

    2009-05-01

    The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.

  17. Optimal load allocation of complex ship power plants

    Baldi, Francesco; Ahlgren, Fredrik; Melino, Francesco; Gabrielii, Cecilia; Andersson, Karin

    2016-01-01

    Highlights: • The optimal operation of the prime movers of hybrid ship power plants is addressed. • Both mechanical, electric and thermal power demand are considered. • The problem is modelled as a mixed integer-nonlinear programming problem. • Up to 3% savings can be achieved with hybrid power plants. • Including the thermal power demand improves the solution by up to 4%. - Abstract: In a world with increased pressure on reducing fuel consumption and carbon dioxide emissions, the cruise industry is growing in size and impact. In this context, further effort is required for improving the energy efficiency of cruise ship energy systems. In this paper, we propose a generic method for modelling the power plant of an isolated system with mechanical, electric and thermal power demands and for the optimal load allocation of the different components that are able to fulfil the demand. The optimisation problem is presented in the form of a mixed integer linear programming (MINLP) problem, where the number of engines and/or boilers running is represented by the integer variables, while their respective load is represented by the non-integer variables. The individual components are modelled using a combination of first-principle models and polynomial regressions, thus making the system nonlinear. The proposed method is applied to the load-allocation problem of a cruise ship sailing in the Baltic Sea, and used to compare the existing power plant with a hybrid propulsion plant. The results show the benefits brought by using the proposing method, which allow estimating the performance of the hybrid system (for which the load allocation is a non-trivial problem) while also including the contribution of the heat demand. This allows showing that, based on a reference round voyage, up to 3% savings could be achieved by installing the proposed system, compared to the existing one, and that a NPV of 11 kUSD could be achieved already 5 years after the installation of the

  18. Numerical optimization of composite hip endoprostheses under different loading conditions

    Blake, T. A.; Davy, D. T.; Saravanos, D. A.; Hopkins, D. A.

    1992-01-01

    The optimization of composite hip implants was investigated. Emphasis was placed on the effect of shape and material tailoring of the implant to improve the implant-bone interaction. A variety of loading conditions were investigated to better understand the relationship between loading and optimization outcome. Comparisons of the initial and optimal models with more complex 3D finite element models were performed. The results indicate that design improvements made using this method result in similar improvements in the 3D models. Although the optimization outcomes were significantly affected by the choice of loading conditions, certain trends were observed that were independent of the applied loading.

  19. Optimized Loading for Particle-in-cell Gyrokinetic Simulations

    Lewandowski, J.L.V.

    2004-01-01

    The problem of particle loading in particle-in-cell gyrokinetic simulations is addressed using a quadratic optimization algorithm. Optimized loading in configuration space dramatically reduces the short wavelength modes in the electrostatic potential that are partly responsible for the non-conservation of total energy; further, the long wavelength modes are resolved with good accuracy. As a result, the conservation of energy for the optimized loading is much better that the conservation of energy for the random loading. The method is valid for any geometry and can be coupled to optimization algorithms in velocity space

  20. Optimal load scheduling in commercial and residential microgrids

    Ganji Tanha, Mohammad Mahdi

    Residential and commercial electricity customers use more than two third of the total energy consumed in the United States, representing a significant resource of demand response. Price-based demand response, which is in response to changes in electricity prices, represents the adjustments in load through optimal load scheduling (OLS). In this study, an efficient model for OLS is developed for residential and commercial microgrids which include aggregated loads in single-units and communal loads. Single unit loads which include fixed, adjustable and shiftable loads are controllable by the unit occupants. Communal loads which include pool pumps, elevators and central heating/cooling systems are shared among the units. In order to optimally schedule residential and commercial loads, a community-based optimal load scheduling (CBOLS) is proposed in this thesis. The CBOLS schedule considers hourly market prices, occupants' comfort level, and microgrid operation constraints. The CBOLS' objective in residential and commercial microgrids is the constrained minimization of the total cost of supplying the aggregator load, defined as the microgrid load minus the microgrid generation. This problem is represented by a large-scale mixed-integer optimization for supplying single-unit and communal loads. The Lagrangian relaxation methodology is used to relax the linking communal load constraint and decompose the independent single-unit functions into subproblems which can be solved in parallel. The optimal solution is acceptable if the aggregator load limit and the duality gap are within the bounds. If any of the proposed criteria is not satisfied, the Lagrangian multiplier will be updated and a new optimal load schedule will be regenerated until both constraints are satisfied. The proposed method is applied to several case studies and the results are presented for the Galvin Center load on the 16th floor of the IIT Tower in Chicago.

  1. Optimal Load Control via Frequency Measurement and Neighborhood Area Communication

    Zhao, CH; Topcu, U; Low, SH

    2013-11-01

    We propose a decentralized optimal load control scheme that provides contingency reserve in the presence of sudden generation drop. The scheme takes advantage of flexibility of frequency responsive loads and neighborhood area communication to solve an optimal load control problem that balances load and generation while minimizing end-use disutility of participating in load control. Local frequency measurements enable individual loads to estimate the total mismatch between load and generation. Neighborhood area communication helps mitigate effects of inconsistencies in the local estimates due to frequency measurement noise. Case studies show that the proposed scheme can balance load with generation and restore the frequency within seconds of time after a generation drop, even when the loads use a highly simplified power system model in their algorithms. We also investigate tradeoffs between the amount of communication and the performance of the proposed scheme through simulation-based experiments.

  2. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  3. Optimal Dispatching of Active Distribution Networks Based on Load Equilibrium

    Xiao Han

    2017-12-01

    Full Text Available This paper focuses on the optimal intraday scheduling of a distribution system that includes renewable energy (RE generation, energy storage systems (ESSs, and thermostatically controlled loads (TCLs. This system also provides time-of-use pricing to customers. Unlike previous studies, this study attempts to examine how to optimize the allocation of electric energy and to improve the equilibrium of the load curve. Accordingly, we propose a concept of load equilibrium entropy to quantify the overall equilibrium of the load curve and reflect the allocation optimization of electric energy. Based on this entropy, we built a novel multi-objective optimal dispatching model to minimize the operational cost and maximize the load curve equilibrium. To aggregate TCLs into the optimization objective, we introduced the concept of a virtual power plant (VPP and proposed a calculation method for VPP operating characteristics based on the equivalent thermal parameter model and the state-queue control method. The Particle Swarm Optimization algorithm was employed to solve the optimization problems. The simulation results illustrated that the proposed dispatching model can achieve cost reductions of system operations, peak load curtailment, and efficiency improvements, and also verified that the load equilibrium entropy can be used as a novel index of load characteristics.

  4. Quasi-static structural optimization under the seismic loads

    Choi, W. S.; Lee, K. M.; Kim, T. W.

    2001-01-01

    For preliminaries to optimization of SMART under the seismic loads, a quasi-static structural optimization for elastic structures under dynamic loads is presented. An equivalent static load (ESL) set is defined as a static load set, which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at all the time intervals are employed to represent the various states of the structure under the dynamic load. They can cover all the critical states that might happen at arbitrary times. The continuous characteristics of a dynamic load are considered by multiple static load sets. The calculated sets of ESLs are utilized as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. The analysis domain gives the loading condition needed in the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. The design cycles are iterated until the design converges. Structural optimization with dynamic loads is tangible by the proposed method. Standard example problems are solved to verify the validity of the method

  5. Optimal Control of Polymer Flooding Based on Maximum Principle

    Yang Lei

    2012-01-01

    Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and the inequality constraint as the polymer concentration limitation. To cope with the optimal control problem (OCP of this DPS, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s weak maximum principle. A gradient method is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.

  6. Research on loading pattern optimization for VVER reactor

    Tran Viet Phu; Nguyen Thi Mai Huong; Nguyen Huu Tiep; Ta Duy Long; Tran Vinh Thanh; Tran Hoai Nam

    2017-01-01

    A study on fuel loading pattern optimization of a VVER reactor was performed. In this study, a core physics simulator was developed based on a multi-group diffusion theory for the use in the problem of fuel loading optimization of VVER reactors. The core simulator could handle the triangular meshes of the core and the computational speed is fast. Verification of the core simulator was confirmed against a benchmark problem of a VVER-1000 reactor. Several optimization methods such as DS, SA, TS and a combination of them were investigated and implemented in coupling with the core simulator. Calculations was performed for optimizing the fuel loading pattern of the core using these methods based on a benchmark core model in comparison with the reference core. Comparison among these methods have shown that a combination of SA+TS is the most effective for the problem of fuel loading pattern optimization. Advanced methods are being researched continuously. (author)

  7. The PWR loading pattern optimization in X-IMAGE

    Stevens, J.G.; Smith, K.S.; Rempe, K.R.; Downar, T.J.

    1993-01-01

    The design of reactor core loading patterns is difficult due to the staggering number of patterns. The integer nature and nonlinear neutronic response of core design preclude simple prescriptions for generation of the feasible patterns, much less optimization among feasible candidates. Fortunately, recent developments in optimization, graphical user interfaces (GUIs), and the speed and low cost of engineering workstations combine to make loading pattern automation possible. The optimization module SIMAN has been added to X-IMAGE to automatically generate high-quality core loadings

  8. Optimization of radiation protection by optimizing technology of CASTOR-Cask loading

    Lorenz, Bernd; Dreesen, Konrad; Hoffmann, Dietrich

    2008-01-01

    Full text: Germany Optimization of Protection is one of the basic principles of the ICRP System of Radiation Protection. Often this principle is misunderstood and people try to achieve minimal doses irrespective of the amount of manpower or money they have to afford to reach this aim. The better way of optimization is to optimize the technology or the practise which is the cause of radiation exposure and at the same time reduce the dose uptake. Three measures have been used for this purpose in the management of spent fuel in Germany in preparation for the dry storage in CASTOR-Casks. The casks have to be loaded with the spent fuel in the pond of the power plant. After the loading the cask has to be dewatered and dried. The remaining humidity has to be checked with respect to a given maximum residual humidity to avoid corrosion during the long-term storage. Initially a measuring device using the dew point mirror method was used. The mirror was often polluted and needed recalibration. This led to a large variety of measuring times, the time period needed for the above mentioned three steps ranged from 55 to 120 hours. Thus the work could not be reliably planned. To solve this problem we now use a pressure-rise method to measure the humidity within the cask. The time needed is now nearly equal and reliable for all cask loadings and considerably lower than using the dew point method. Thereby the dose uptake of the cask handling staff could be reduced to 2.5 man mSv on average in comparison to the former collective dose of 4 to 5 man mSv. A second step for reducing the dose of the staff is the introduction of remotely controlled valves for the drying process, the humidity measurement and the subsequent filling with Helium. The valves are located at the lid of the cask where a remarkable dose rate could be. The equipment for the remote valve handling has been successfully tested. In the same line is a third measure: to record the process data by computer. The supervising

  9. Loaded Gelled Bipropellants for Optimized Performance, Phase II

    National Aeronautics and Space Administration — The focus of this program is the development and validation of formulations, and development methodologies, for optimizing high-performance particulate-loaded...

  10. Wind load modeling for topology optimization of continuum structures

    Zakhama, R.; Abdalla, M.M.; Gürdal, Z.; Smaoui, H.

    2010-01-01

    Topology optimization of two and three dimensional structures subject to dead and wind loading is considered. The wind loading is introduced into the formulation by using standard expressions for the drag force, and a strategy is devised so that wind pressure is ignored where there is no surface

  11. An overview of optimization of structures subjected to transient loads

    Kang, Byung Soo; Park, Gyung Jin

    2005-01-01

    Various aspects of structural optimization techniques under transient loads are extensively reviewed. The main themes of the paper are treatment of time dependent constraints, calculation of design sensitivity, and approximation. Each subject is reviewed with the corresponding papers that have been published since 1970s. The treatment of time dependent constraints in both the direct method and the transformation method is discussed. Two ways of calculating design sensitivity of a structure under transient loads are discussed-direct differentiation method and adjoint variable method. The approximation concept mainly focuses on response surface method in crashworthiness and local approximation with the intermediate variable. Especially, as an approximated optimization technique, equivalent static load method which takes advantage of the well-established static response optimization technique is introduced. And as an application area of dynamic response optimization technique, the structural optimization in flexible multibody dynamic system is reviewed in the viewpoint of the above three themes

  12. Rigorous force field optimization principles based on statistical distance minimization

    Vlcek, Lukas, E-mail: vlcekl1@ornl.gov [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States); Joint Institute for Computational Sciences, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Chialvo, Ariel A. [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States)

    2015-10-14

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. We exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of the approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.

  13. First principles molecular dynamics without self-consistent field optimization

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-01

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations

  14. Optimal load allocation of multiple fuel boilers.

    Dunn, Alex C; Du, Yan Yi

    2009-04-01

    This paper presents a new methodology for optimally allocating a set of multiple industrial boilers that each simultaneously consumes multiple fuel types. Unlike recent similar approaches in the utility industry that use soft computing techniques, this approach is based on a second-order gradient search method that is easy to implement without any specialized optimization software. The algorithm converges rapidly and the application yields significant savings benefits, up to 3% of the overall operating cost of industrial boiler systems in the examples given and potentially higher in other cases, depending on the plant circumstances. Given today's energy prices, this can yield significant savings benefits to manufacturers that raise steam for plant operations.

  15. Assessment of Optimal Flexibility in Ensemble of Frequency Responsive Loads

    Kundu, Soumya; Hansen, Jacob; Lian, Jianming; Kalsi, Karanjit

    2018-04-19

    Potential of electrical loads in providing grid ancillary services is often limited due to the uncertainties associated with the load behavior. A knowledge of the expected uncertainties with a load control program would invariably yield to better informed control policies, opening up the possibility of extracting the maximal load control potential without affecting grid operations. In the context of frequency responsive load control, a probabilistic uncertainty analysis framework is presented to quantify the expected error between the target and actual load response, under uncertainties in the load dynamics. A closed-form expression of an optimal demand flexibility, minimizing the expected error in actual and committed flexibility, is provided. Analytical results are validated through Monte Carlo simulations of ensembles of electric water heaters.

  16. Loading pattern optimization in hexagonal geometry using PANTHER

    Parks, G.T.; Knight, M.P.

    1996-01-01

    The extension of the loading pattern optimization capability of Nuclear Electric's reactor physics code PANTHER to hexagonal geometry cores is described. The variety of search methods available and the code's performance are illustrated by an example in which three search different methods are used in turn in order to find an optimal reload design for a sample hexagonal geometry problem. (author)

  17. Applying Cognitive Load Theory Principles to Library Instructional Guidance

    Pickens, Kathleen E.

    2017-01-01

    If the goal of library instructional guidance is to provide students with the knowledge needed to acquire new skills in order to accomplish their learning objectives, then it is prudent to consider factors that impact learning. Cognitive load theory addresses several of these factors and is applicable to a wide-range of instructional devices used…

  18. Fuel loading and control rod patterns optimization in a BWR using tabu search

    Castillo, Alejandro; Ortiz, Juan Jose; Montes, Jose Luis; Perusquia, Raul

    2007-01-01

    This paper presents the QuinalliBT system, a new approach to solve fuel loading and control rod patterns optimization problem in a coupled way. This system involves three different optimization stages; in the first one, a seed fuel loading using the Haling principle is designed. In the second stage, the corresponding control rod pattern for the previous fuel loading is obtained. Finally, in the last stage, a new fuel loading is created, starting from the previous fuel loading and using the corresponding set of optimized control rod patterns. For each stage, a different objective function is considered. In order to obtain the decision parameters used in those functions, the CM-PRESTO 3D steady-state reactor core simulator was used. Second and third stages are repeated until an appropriate fuel loading and its control rod pattern are obtained, or a stop criterion is achieved. In all stages, the tabu search optimization technique was used. The QuinalliBT system was tested and applied to a real BWR operation cycle. It was found that the value for k eff obtained by QuinalliBT was 0.0024 Δk/k greater than that of the reference cycle

  19. Design principles and operating principles: the yin and yang of optimal functioning.

    Voit, Eberhard O

    2003-03-01

    Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.

  20. Optimization of cryoprotectant loading into murine and human oocytes.

    Karlsson, Jens O M; Szurek, Edyta A; Higgins, Adam Z; Lee, Sang R; Eroglu, Ali

    2014-02-01

    Loading of cryoprotectants into oocytes is an important step of the cryopreservation process, in which the cells are exposed to potentially damaging osmotic stresses and chemical toxicity. Thus, we investigated the use of physics-based mathematical optimization to guide design of cryoprotectant loading methods for mouse and human oocytes. We first examined loading of 1.5 M dimethyl sulfoxide (Me(2)SO) into mouse oocytes at 23°C. Conventional one-step loading resulted in rates of fertilization (34%) and embryonic development (60%) that were significantly lower than those of untreated controls (95% and 94%, respectively). In contrast, the mathematically optimized two-step method yielded much higher rates of fertilization (85%) and development (87%). To examine the causes for oocyte damage, we performed experiments to separate the effects of cell shrinkage and Me(2)SO exposure time, revealing that neither shrinkage nor Me(2)SO exposure single-handedly impairs the fertilization and development rates. Thus, damage during one-step Me(2)SO addition appears to result from interactions between the effects of Me(2)SO toxicity and osmotic stress. We also investigated Me(2)SO loading into mouse oocytes at 30°C. At this temperature, fertilization rates were again lower after one-step loading (8%) in comparison to mathematically optimized two-step loading (86%) and untreated controls (96%). Furthermore, our computer algorithm generated an effective strategy for reducing Me(2)SO exposure time, using hypotonic diluents for cryoprotectant solutions. With this technique, 1.5 M Me(2)SO was successfully loaded in only 2.5 min, with 92% fertilizability. Based on these promising results, we propose new methods to load cryoprotectants into human oocytes, designed using our mathematical optimization approach. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Microeconomic principles explain an optimal genome size in bacteria.

    Ranea, Juan A G; Grant, Alastair; Thornton, Janet M; Orengo, Christine A

    2005-01-01

    Bacteria can clearly enhance their survival by expanding their genetic repertoire. However, the tight packing of the bacterial genome and the fact that the most evolved species do not necessarily have the biggest genomes suggest there are other evolutionary factors limiting their genome expansion. To clarify these restrictions on size, we studied those protein families contributing most significantly to bacterial-genome complexity. We found that all bacteria apply the same basic and ancestral 'molecular technology' to optimize their reproductive efficiency. The same microeconomics principles that define the optimum size in a factory can also explain the existence of a statistical optimum in bacterial genome size. This optimum is reached when the bacterial genome obtains the maximum metabolic complexity (revenue) for minimal regulatory genes (logistic cost).

  2. Evolutionary multimodal optimization using the principle of locality

    Wong, Kachun; Wu, Chunho; Mok, Ricky; Peng, Chengbin; Zhang, Zhaolei

    2012-01-01

    The principle of locality is one of the most widely used concepts in designing computing systems. To explore the principle in evolutionary computation, crowding differential evolution is incorporated with locality for multimodal optimization. Instead of generating trial vectors randomly, the first method proposed takes advantage of spatial locality to generate trial vectors. Temporal locality is also adopted to help generate offspring in the second method proposed. Temporal and spatial locality are then applied together in the third method proposed. Numerical experiments are conducted to compare the proposed methods with the state-of-the-art methods on benchmark functions. Experimental analysis is undertaken to observe the effect of locality and the synergy between temporal locality and spatial locality. Further experiments are also conducted on two application problems. One is the varied-line-spacing holographic grating design problem, while the other is the protein structure prediction problem. The numerical results demonstrate the effectiveness of the methods proposed. © 2012 Elsevier Inc. All rights reserved.

  3. Evolutionary multimodal optimization using the principle of locality

    Wong, Kachun

    2012-07-01

    The principle of locality is one of the most widely used concepts in designing computing systems. To explore the principle in evolutionary computation, crowding differential evolution is incorporated with locality for multimodal optimization. Instead of generating trial vectors randomly, the first method proposed takes advantage of spatial locality to generate trial vectors. Temporal locality is also adopted to help generate offspring in the second method proposed. Temporal and spatial locality are then applied together in the third method proposed. Numerical experiments are conducted to compare the proposed methods with the state-of-the-art methods on benchmark functions. Experimental analysis is undertaken to observe the effect of locality and the synergy between temporal locality and spatial locality. Further experiments are also conducted on two application problems. One is the varied-line-spacing holographic grating design problem, while the other is the protein structure prediction problem. The numerical results demonstrate the effectiveness of the methods proposed. © 2012 Elsevier Inc. All rights reserved.

  4. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    Balša Terzić

    2014-10-01

    Full Text Available In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab’s Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  5. Reduced design load basis for ultimate blade loads estimation in multidisciplinary design optimization frameworks

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.

    2016-01-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost...... function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed...... for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar...

  6. A loading pattern optimization method for nuclear fuel management

    Argaud, J.P.

    1997-01-01

    Nuclear fuel reload of PWR core leads to the search of an optimal nuclear fuel assemblies distribution, namely of loading pattern. This large discrete optimization problem is here expressed as a cost function minimization. To deal with this problem, an approach based on gradient information is used to direct the search in the patterns discrete space. A method using an adjoint state formulation is then developed, and final results of complete patterns search tests by this method are presented. (author)

  7. First-principle optimal local pseudopotentials construction via optimized effective potential method

    Mi, Wenhui; Zhang, Shoutao; Wang, Yanchao; Ma, Yanming; Miao, Maosheng

    2016-01-01

    The local pseudopotential (LPP) is an important component of orbital-free density functional theory, a promising large-scale simulation method that can maintain information on a material’s electron state. The LPP is usually extracted from solid-state density functional theory calculations, thereby it is difficult to assess its transferability to cases involving very different chemical environments. Here, we reveal a fundamental relation between the first-principles norm-conserving pseudopotential (NCPP) and the LPP. On the basis of this relationship, we demonstrate that the LPP can be constructed optimally from the NCPP for a large number of elements using the optimized effective potential method. Specially, our method provides a unified scheme for constructing and assessing the LPP within the framework of first-principles pseudopotentials. Our practice reveals that the existence of a valid LPP with high transferability may strongly depend on the element.

  8. Topology optimization considering design-dependent Stokes flow loads

    Picelli, R.; Vicente, W.M.; Pavanello, R.; van Keulen, A.; Li, Qing; Steven, Grant P.; Zhang, Zhongpu

    2015-01-01

    This article presents an evolutionary topology optimization method for mean compliance minimization of structures under design-dependent viscous fluid flow loads. The structural domain is governed by the elasticity equation and the fluid by the incompressible Stokes flow equations. When the

  9. Real - time Optimization of Distributed Energy Storage System Operation Strategy Based on Peak Load Shifting

    Wang, Qian; Lu, Guangqi; Li, Xiaoyu; Zhang, Yichi; Yun, Zejian; Bian, Di

    2018-01-01

    To take advantage of the energy storage system (ESS) sufficiently, the factors that the service life of the distributed energy storage system (DESS) and the load should be considered when establishing optimization model. To reduce the complexity of the load shifting of DESS in the solution procedure, the loss coefficient and the equal capacity ratio distribution principle were adopted in this paper. Firstly, the model was established considering the constraint conditions of the cycles, depth, power of the charge-discharge of the ESS, the typical daily load curves, as well. Then, dynamic programming method was used to real-time solve the model in which the difference of power Δs, the real-time revised energy storage capacity Sk and the permission error of depth of charge-discharge were introduced to optimize the solution process. The simulation results show that the optimized results was achieved when the load shifting in the load variance was not considered which means the charge-discharge of the energy storage system was not executed. In the meantime, the service life of the ESS would increase.

  10. Optimization of doxorubicin loading for superabsorbent polymer microspheres: in vitro analysis.

    Liu, David M; Kos, Sebastian; Buczkowski, Andrzej; Kee, Stephen; Munk, Peter L; Klass, Darren; Wasan, Ellen

    2012-04-01

    This study was designed to establish the ability of super-absorbent polymer microspheres (SAP) to actively uptake doxorubicin and to establish the proof of principle of SAP's ability to phase transfer doxorubicin onto the polymer matrix and to elute into buffer with a loading method that optimizes physical handling and elution characteristics. Phase I: 50-100 μm SAP subject to various prehydration methods (normal saline 10 cc, hypertonic saline 4 cc, iodinated contrast 10 cc) or left in their dry state, and combined with 50 mg of clinical grade lyophilized doxorubicin reconstituted with various methods (normal saline 10 cc and 25 cc, sterile water 4 cc, iodinated contrast 5 cc) were placed in buffer and assessed based on loading, handling, and elution utilizing high-performance liquid chromatography (HPLC). Phase II: top two performing methods were subject to loading of doxorubicin (50, 75, 100 mg) in a single bolus (group A) or as a serial loading method (group B) followed by measurement of loading vs. time and elution vs. time. Phase I revealed the most effective loading mechanisms and easiest handling to be dry (group A) vs. normal saline prehydrated (group B) SAP with normal saline reconstituted doxorubicin (10 mg/mL) with loading efficiencies of 83.1% and 88.4%. Phase II results revealed unstable behavior of SAP with 100 mg of doxorubicin and similar loading/elution profiles of dry and prehydrated SAP, with superior handling characteristics of group B SAP at 50 and 75 mg. SAP demonstrates the ability to load and bulk phase transfer doxorubicin at 50 and 75 mg with ease of handling and optimal efficiency through dry loading of SAP.

  11. Optimization of Doxorubicin Loading for Superabsorbent Polymer Microspheres: in vitro Analysis

    Liu, David M.; Kos, Sebastian; Buczkowski, Andrzej; Kee, Stephen; Munk, Peter L.; Klass, Darren; Wasan, Ellen

    2012-01-01

    Purpose: This study was designed to establish the ability of super-absorbent polymer microspheres (SAP) to actively uptake doxorubicin and to establish the proof of principle of SAP’s ability to phase transfer doxorubicin onto the polymer matrix and to elute into buffer with a loading method that optimizes physical handling and elution characteristics. Methods: Phase I: 50–100 μm SAP subject to various prehydration methods (normal saline 10 cc, hypertonic saline 4 cc, iodinated contrast 10 cc) or left in their dry state, and combined with 50 mg of clinical grade lyophilized doxorubicin reconstituted with various methods (normal saline 10 cc and 25 cc, sterile water 4 cc, iodinated contrast 5 cc) were placed in buffer and assessed based on loading, handling, and elution utilizing high-performance liquid chromatography (HPLC). Phase II: top two performing methods were subject to loading of doxorubicin (50, 75, 100 mg) in a single bolus (group A) or as a serial loading method (group B) followed by measurement of loading vs. time and elution vs. time. Results: Phase I revealed the most effective loading mechanisms and easiest handling to be dry (group A) vs. normal saline prehydrated (group B) SAP with normal saline reconstituted doxorubicin (10 mg/mL) with loading efficiencies of 83.1% and 88.4%. Phase II results revealed unstable behavior of SAP with 100 mg of doxorubicin and similar loading/elution profiles of dry and prehydrated SAP, with superior handling characteristics of group B SAP at 50 and 75 mg. Conclusions: SAP demonstrates the ability to load and bulk phase transfer doxorubicin at 50 and 75 mg with ease of handling and optimal efficiency through dry loading of SAP.

  12. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars

    2016-01-01

    training of mastoidectomy. Methods Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem......Background Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation....... Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices....

  13. Deterministic methods for multi-control fuel loading optimization

    Rahman, Fariz B. Abdul

    We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.

  14. An Optimal Control Approach for an Overall Cryogenic Plant Under Pulsed Heat Loads

    Gómez Palacin, Luis; Blanco Viñuela, Enrique; Maekawa, Ryuji; Chalifour, Michel

    2015-01-01

    This work deals with the optimal management of a cryogenic plant composed by parallel refrigeration plants, which provide supercritical helium to pulsed heat loads. First, a data reconciliation approach is proposed to estimate precisely the refrigerator variables necessary to deduce the efficiency of each refrigerator. Second, taking into account these efficiencies, an optimal operation of the system is proposed and studied. Finally, while minimizing the power consumption of the refrigerators, the control system maintains stable operation of the cryoplant under pulsed heat loads. The management of the refrigerators is carried out by an upper control layer, which balances the relative production of cooling power in each refrigerator. In addition, this upper control layer deals with the mitigation of malfunctions and faults in the system. The proposed approach has been validated using a dynamic model of the cryoplant developed with EcosimPro software, based on first principles (mass and energy balances) and the...

  15. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes.

    Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C

    2015-01-01

    The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.

  16. Optimal Residential Load Scheduling Under Utility and Rooftop Photovoltaic Units

    Ghulam Hafeez

    2018-03-01

    Full Text Available With the rapid advancement in technology, electrical energy consumption is increasing rapidly. Especially, in the residential sector, more than 80% of electrical energy is being consumed because of consumer negligence. This brings the challenging task of maintaining the balance between the demand and supply of electric power. In this paper, we focus on the problem of load balancing via load scheduling under utility and rooftop photovoltaic (PV units to reduce electricity cost and peak to average ratio (PAR in demand-side management. For this purpose, we adopted genetic algorithm (GA, binary particle swarm optimization (BPSO, wind-driven optimization (WDO, and our proposed genetic WDO (GWDO algorithm, which is a hybrid of GA and WDO, to schedule the household load. For energy cost estimation, combined real-time pricing (RTP and inclined block rate (IBR were used. The proposed algorithm shifts load from peak consumption hours to off-peak hours based on combined pricing scheme and generation from rooftop PV units. Simulation results validate our proposed GWDO algorithm in terms of electricity cost and PAR reduction while considering all three scenarios which we have considered in this work: (1 load scheduling without renewable energy sources (RESs and energy storage system (ESS, (2 load scheduling with RESs, and (3 load scheduling with RESs and ESS. Furthermore, our proposed scheme reduced electricity cost and PAR by 22.5% and 29.1% in scenario 1, 47.7% and 30% in scenario 2, and 49.2% and 35.4% in scenario 3, respectively, as compared to unscheduled electricity consumption.

  17. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression, Experiment Development

    Miller, Christopher J.; Goodrick, Dan

    2017-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads. The subject of this paper is the design of the optimal control architecture, and provides the reader with some techniques for tailoring the architecture, along with detailed simulation results.

  18. Fuzzy Simulation-Optimization Model for Waste Load Allocation

    Motahhare Saadatpour

    2006-01-01

    Full Text Available This paper present simulation-optimization models for waste load allocation from multiple point sources which include uncertainty due to vagueness of the parameters and goals. This model employs fuzzy sets with appropriate membership functions to deal with uncertainties due to vagueness. The fuzzy waste load allocation model (FWLAM incorporate QUAL2E as a water quality simulation model and Genetic Algorithm (GA as an optimization tool to find the optimal combination of the fraction removal level to the dischargers and pollution control agency (PCA. Penalty functions are employed to control the violations in the system.  The results demonstrate that the goal of PCA to achieve the best water quality and the goal of the dischargers to use the full assimilative capacity of the river have not been satisfied completely and a compromise solution between these goals is provided. This fuzzy optimization model with genetic algorithm has been used for a hypothetical problem. Results demonstrate a very suitable convergence of proposed optimization algorithm to the global optima.

  19. Application of chaotic ant swarm optimization in electric load forecasting

    Hong, W.-C.

    2010-01-01

    Support vector regression (SVR) had revealed strong potential in accurate electric load forecasting, particularly by employing effective evolutionary algorithms to determine suitable values of its three parameters. Based on previous research results, however, these employed evolutionary algorithms themselves have several drawbacks, such as converging prematurely, reaching slowly the global optimal solution, and trapping into a local optimum. This investigation presents an SVR-based electric load forecasting model that applied a novel algorithm, namely chaotic ant swarm optimization (CAS), to improve the forecasting performance by searching its suitable parameters combination. The proposed CAS combines with the chaotic behavior of single ant and self-organization behavior of ant colony in the foraging process to overcome premature local optimum. The empirical results indicate that the SVR model with CAS (SVRCAS) results in better forecasting performance than the other alternative methods, namely SVRCPSO (SVR with chaotic PSO), SVRCGA (SVR with chaotic GA), regression model, and ANN model.

  20. Optimal fuel loading pattern design using artificial intelligence techniques

    Kim, Han Gon; Chang, Soon Heung; Lee, Byung Ho

    1993-01-01

    The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (Author)

  1. Robust Optimization for Household Load Scheduling with Uncertain Parameters

    Jidong Wang

    2018-04-01

    Full Text Available Home energy management systems (HEMS face many challenges of uncertainty, which have a great impact on the scheduling of home appliances. To handle the uncertain parameters in the household load scheduling problem, this paper uses a robust optimization method to rebuild the household load scheduling model for home energy management. The model proposed in this paper can provide the complete robust schedules for customers while considering the disturbance of uncertain parameters. The complete robust schedules can not only guarantee the customers’ comfort constraints but also cooperatively schedule the electric devices for cost minimization and load shifting. Moreover, it is available for customers to obtain multiple schedules through setting different robust levels while considering the trade-off between the comfort and economy.

  2. Study on ant colony optimization for fuel loading pattern problem

    Kishi, Hironori; Kitada, Takanori

    2013-01-01

    Modified ant colony optimization (ACO) was applied to the in-core fuel loading pattern (LP) optimization problem to minimize the power peaking factor (PPF) in the modeled 1/4 symmetry PWR core. Loading order was found to be important in ACO. Three different loading orders with and without the adjacent effect between fuel assemblies (FAs) were compared, and it was found that the loading order from the central core is preferable because many selections of FAs to be inserted are available in the core center region. LPs were determined from pheromone trail and heuristic information, which is a priori knowledge based on the feature of the problem. Three types of heuristic information were compared to obtain the desirable performance of searching LPs with low PPF. Moreover, mutation operation, such as the genetic algorithm (GA), was introduced into the ACO algorithm to avoid searching similar LPs because heuristic information used in ACO tends to localize the searching space in the LP problem. The performance of ACO with some improvement was compared with those of simulated annealing and GA. In conclusion, good performance can be achieved by setting proper heuristic information and mutation operation parameter in ACO. (author)

  3. A novel approach for optimal chiller loading using particle swarm optimization

    Ardakani, A. Jahanbani; Ardakani, F. Fattahi; Hosseinian, S.H. [Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran 15875-4413 (Iran, Islamic Republic of)

    2008-07-01

    This study employs two new methods to solve optimal chiller loading (OCL) problem. These methods are continuous genetic algorithm (GA) and particle swarm optimization (PSO). Because of continuous nature of variables in OCL problem, continuous GA and PSO easily overcome deficiencies in other conventional optimization methods. Partial load ratio (PLR) of the chiller is chosen as the variable to be optimized and consumption power of the chiller is considered as fitness function. Both of these methods find the optimal solution while the equality constraint is exactly satisfied. Some of the major advantages of proposed approaches over other conventional methods can be mentioned as fast convergence, escaping from getting into local optima, simple implementation as well as independency of the solution from the problem. Abilities of proposed methods are examined with reference to an example system. To demonstrate these abilities, results are compared with binary genetic algorithm method. The proposed approaches can be perfectly applied to air-conditioning systems. (author)

  4. Optimization at different loads by minimization of irreversibilities

    Wong, K.F.V.; Niu, Z.

    1991-01-01

    This paper reports that the irreversibility of the power cycle was chosen as the objective function as this function can successfully measure both the quality and quantity of energy flow in the cycle. Minimization of the irreversibility ensures that the power cycle will operate more efficiently. One feature of the present work is that the boiler, turbine, condenser and heaters are treated as one system for the purpose of optimization. In the optimization model, nine regression formulae are used, which are obtained from the measured test data. From the results of the present work, it can be seen that the optimization model developed can represent the effect of operational parameters on the power plant first and second law efficiency. Some of the results can be used to provide guidance for the optimal operation of the power plant. When the power cycle works at full load, the main steam temperature and pressure should be at the upper limit for minimal irreversibility of the system. If the load is less than 65% of its design capacity, the steam temperature and pressure should be decreased for a lower irreversibility of the system

  5. PWR loading pattern optimization using Harmony Search algorithm

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Numerical results reveal that the HS method is reliable. ► The great advantage of HS is significant gain in computational cost. ► On the average, the final band width of search fitness values is narrow. ► Our experiments show that the search approaches the optimal value fast. - Abstract: In this paper a core reloading technique using Harmony Search, HS, is presented in the context of finding an optimal configuration of fuel assemblies, FA, in pressurized water reactors. To implement and evaluate the proposed technique a Harmony Search along Nodal Expansion Code for 2-D geometry, HSNEC2D, is developed to obtain nearly optimal arrangement of fuel assemblies in PWR cores. This code consists of two sections including Harmony Search algorithm and Nodal Expansion modules using fourth degree flux expansion which solves two dimensional-multi group diffusion equations with one node per fuel assembly. Two optimization test problems are investigated to demonstrate the HS algorithm capability in converging to near optimal loading pattern in the fuel management field and other subjects. Results, convergence rate and reliability of the method are quite promising and show the HS algorithm performs very well and is comparable to other competitive algorithms such as Genetic Algorithm and Particle Swarm Intelligence. Furthermore, implementation of nodal expansion technique along HS causes considerable reduction of computational time to process and analysis optimization in the core fuel management problems

  6. Fuzzy Adaptive Particle Swarm Optimization for Power Loss Minimisation in Distribution Systems Using Optimal Load Response

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2014-01-01

    Consumers may decide to modify the profile of their demand from high price periods to low price periods in order to reduce their electricity costs. This optimal load response to electricity prices for demand side management generates different load profiles and provides an opportunity to achieve...... power loss minimization in distribution systems. In this paper, a new method to achieve power loss minimization in distribution systems by using a price signal to guide the demand side management is proposed. A fuzzy adaptive particle swarm optimization (FAPSO) is used as a tool for the power loss...

  7. Optimization of large scale food production using Lean Manufacturing principles

    Engelund, Eva Høy; Friis, Alan; Breum, Gitte

    2009-01-01

    This paper discusses how the production principles of Lean Manufacturing (Lean) can be applied in a large-scale meal production. Lean principles are briefly presented, followed by a field study of how a kitchen at a Danish hospital has implemented Lean in the daily production. In the kitchen...... not be negatively affected by the rationalisation of production procedures. The field study shows that Lean principles can be applied in meal production and can result in increased production efficiency and systematic improvement of product quality without negative effects on the working environment. The results...... show that Lean can be applied and used to manage the production of meals in the kitchen....

  8. Finding Multiple Optimal Solutions to Optimal Load Distribution Problem in Hydropower Plant

    Xinhao Jiang

    2012-05-01

    Full Text Available Optimal load distribution (OLD among generator units of a hydropower plant is a vital task for hydropower generation scheduling and management. Traditional optimization methods for solving this problem focus on finding a single optimal solution. However, many practical constraints on hydropower plant operation are very difficult, if not impossible, to be modeled, and the optimal solution found by those models might be of limited practical uses. This motivates us to find multiple optimal solutions to the OLD problem, which can provide more flexible choices for decision-making. Based on a special dynamic programming model, we use a modified shortest path algorithm to produce multiple solutions to the problem. It is shown that multiple optimal solutions exist for the case study of China’s Geheyan hydropower plant, and they are valuable for assessing the stability of generator units, showing the potential of reducing occurrence times of units across vibration areas.

  9. Differential harmony search algorithm to optimize PWRs loading pattern

    Poursalehi, N., E-mail: npsalehi@yahoo.com [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A. [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of)

    2013-04-15

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms.

  10. Differential harmony search algorithm to optimize PWRs loading pattern

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms

  11. Evolution strategy based optimal chiller loading for saving energy

    Chang, Y.-C.; Lee, C.-Y.; Chen, C.-R.; Chou, C.-J.; Chen, W.-H.; Chen, W.-H.

    2009-01-01

    This study employs evolution strategy (ES) to solve optimal chiller loading (OCL) problem. ES overcomes the flaw that Lagrangian method is not adaptable for solving OCL as the power consumption models or the kW-PLR (partial load ratio) curves include convex functions and concave functions simultaneously. The complicated process of evolution by the genetic algorithm (GA) method for solving OCL can also be simplified by the ES method. This study uses the PLR of chiller as the variable to be solved for the decoupled air conditioning system. After analysis and comparison of the case study, it has been concluded that this method not only solves the problems of Lagrangian method and GA method, but also produces results with high accuracy within a rapid timeframe. It can be perfectly applied to the operation of air conditioning systems

  12. Engineering to Control Noise, Loading, and Optimal Operating Points

    Mitchell R. Swartz

    2000-01-01

    Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems

  13. Improving the Quality of Online Discussion: The Effects of Strategies Designed Based on Cognitive Load Theory Principles

    Darabi, Aubteen; Jin, Li

    2013-01-01

    This article focuses on heavy cognitive load as the reason for the lack of quality associated with conventional online discussion. Using the principles of cognitive load theory, four online discussion strategies were designed specifically aiming at reducing the discussants' cognitive load and thus enhancing the quality of their online discussion.…

  14. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework

    Best management practices (BMPs) are perceived as being effective in reducing nutrient loads transported from non-point sources (NPS) to receiving water bodies. The objective of this study was to develop a modeling-optimization framework that can be used by watershed management p...

  15. The Optimization dispatching of Micro Grid Considering Load Control

    Zhang, Pengfei; Xie, Jiqiang; Yang, Xiu; He, Hongli

    2018-01-01

    This paper proposes an optimization control of micro-grid system economy operation model. It coordinates the new energy and storage operation with diesel generator output, so as to achieve the economic operation purpose of micro-grid. In this paper, the micro-grid network economic operation model is transformed into mixed integer programming problem, which is solved by the mature commercial software, and the new model is proved to be economical, and the load control strategy can reduce the charge and discharge times of energy storage devices, and extend the service life of the energy storage device to a certain extent.

  16. Research reactor loading pattern optimization using estimation of distribution algorithms

    Jiang, S. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Ziver, K. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); AMCG Group, RM Consultants, Abingdon (United Kingdom); Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Franklin, S. J.; Phillips, H. J. [Imperial College, Reactor Centre, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7TE (United Kingdom)

    2006-07-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)

  17. Research reactor loading pattern optimization using estimation of distribution algorithms

    Jiang, S.; Ziver, K.; Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H.; Franklin, S. J.; Phillips, H. J.

    2006-01-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K eff ) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K eff with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)

  18. Optimization of composite sandwich cover panels subjected to compressive loadings

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  19. An Optimization Waste Load Allocation Model in River Systems

    Amirpoor Daylami, A.; jarihani, A. A.; Aminisola, K.

    2012-04-01

    In many river systems, increasing of the waste discharge leads to increasing pollution of these water bodies. While the capacity of the river flow for pollution acceptance is limited and the ability of river to clean itself is restricted, the dischargers have to release their waste into the river after a primary pollution treatment process. Waste Load Allocation as a well-known water quality control strategy is used to determine the optimal pollutant removal at a number of point sources along the river. This paper aim at developing a new approach for treatment and management of wastewater inputs into the river systems, such that water quality standards in these receiving waters are met. In this study, inspired by the fact that cooperation among some single point source waste dischargers can lead to a more waste acceptance capacity and/or more optimum quality control in a river, an efficient approach was implemented to determine both primary waste water treatment levels and/or the best releasing points of the waste into the river. In this methodology, a genetic algorithm is used as an optimization tool to calculate optimal fraction removal levels of each one of single or shared discharger. Besides, a sub-model embedded to optimization model was used to simulate water quality of the river in each one of discharging scenarios based on the modified Streeter and Phelps quality equations. The practical application of the model is illustrated with a case study of the Gharesoo river system in west of Iran.

  20. Optimal Load Response to Time-of-Use Power Price for Demand Side Management in Denmark

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    -of-use power price for demand side management in order to save the energy costs as much as possible. 3 typical different kinds of loads (industrial load, residential load and commercial load) in Denmark are chosen as study cases. The energy costs decrease up to 9.6% with optimal load response to time......-of-use power price for different loads. Simulation results show that the optimal load response to time-of-use power price for demand side management generates different load profiles and reduces the load peaks. This kind of load patterns may also have significant effects on the power system normal operation.......Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift their loads from high price periods to the low price periods in order to save their energy costs. This paper presents a load optimization method to time...

  1. Optimality principles in the regulation of metabolic networks

    Berkhout, J.; Bruggeman, F.J.; Teusink, B.

    2012-01-01

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks

  2. On quasistability radius of a vector trajectorial problem with a principle of optimality generalizing Pareto and lexicographic principles

    Sergey E. Bukhtoyarov

    2005-05-01

    Full Text Available A multicriterion linear combinatorial problem with a parametric principle of optimality is considered. This principle is defined by a partitioning of partial criteria onto Pareto preference relation groups within each group and the lexicographic preference relation between them. Quasistability of the problem is investigated. This type of stability is a discrete analog of Hausdorff lower semi-continuity of the multiple-valued mapping that defines the choice function. A formula of quasistability radius is derived for the case of the metric l∞. Some known results are stated as corollaries. Mathematics Subject Classification 2000: 90C05, 90C10, 90C29, 90C31.

  3. Optimal planning in a developing industrial microgrid with sensitive loads

    M. Naderi

    2017-11-01

    Full Text Available Computer numerical control (CNC machines are known as sensitive loads in industrial estates. These machines require reliable and qualified electricity in their often long work periods. Supplying these loads with distributed energy resources (DERs in a microgrid (MG can be done as an appropriate solution. The aim of this paper is to analyze the implementation potential of a real and developing MG in Shad-Abad industrial estate, Tehran, Iran. Three MG planning objectives are considered including assurance of sustainable and secure operation of CNC machines as sensitive loads, minimizing the costs of MG construction and operation, and using available capacities to penetrate the highest possible renewable energy sources (RESs which subsequently results in decreasing the air pollutants specially carbon dioxide (CO2. The HOMER (hybrid optimization model for electric renewable software is used to specify the technical feasibility of MG planning and to select the best plan economically and environmentally. Different scenarios are considered in this regard to determine suitable capacity of production participants, and to assess the MG indices such as the reliability.

  4. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors

    Kuopanportti, Jaakko [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2013-09-15

    An automatic loading pattern optimization tool called ALPOT has been developed for Loviisa VVER-440 reactors. The ALPOT code utilizes combination of three different optimization methods. The first method is the imitation of the equilibrium pattern that is the optimized pattern in case the cycle length and the operation conditions are constant and the same shuffling pattern is repeated from cycle to cycle. In practice, the algorithm imitates assemblies' operation year distribution of the equilibrium pattern stochastically. The function of the imitation algorithm is to provide initial patterns quickly for the next optimization phase, which is performed either with the stochastic guided binary search algorithm or the deterministic burnup kernel method depending on the choice of the user. The former is a modified version of the standard binary search. The standard version goes through all possible swaps of the assemblies and chooses the best swap at each iteration round. The guided version chooses one assembly, tries to swap it with every other possible assembly and performs the best swap at each iteration round. The search is guided so that the algorithm chooses the assemblies at or near the most restrictive fuel assembly first. The kernel method creates burnup kernel functions to estimate burnup variations that are required to achieve desired changes in the power distribution of the reactor. The idea of the kernel method is first determine the optimal burnup distribution that minimizes the maximum relative assembly power using the created kernel functions and a common solver routine. Then, the burnups of the available fuel assemblies are matched with the obtained burnup distribution. (orig.)

  5. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors

    Kuopanportti, Jaakko

    2013-01-01

    An automatic loading pattern optimization tool called ALPOT has been developed for Loviisa VVER-440 reactors. The ALPOT code utilizes combination of three different optimization methods. The first method is the imitation of the equilibrium pattern that is the optimized pattern in case the cycle length and the operation conditions are constant and the same shuffling pattern is repeated from cycle to cycle. In practice, the algorithm imitates assemblies' operation year distribution of the equilibrium pattern stochastically. The function of the imitation algorithm is to provide initial patterns quickly for the next optimization phase, which is performed either with the stochastic guided binary search algorithm or the deterministic burnup kernel method depending on the choice of the user. The former is a modified version of the standard binary search. The standard version goes through all possible swaps of the assemblies and chooses the best swap at each iteration round. The guided version chooses one assembly, tries to swap it with every other possible assembly and performs the best swap at each iteration round. The search is guided so that the algorithm chooses the assemblies at or near the most restrictive fuel assembly first. The kernel method creates burnup kernel functions to estimate burnup variations that are required to achieve desired changes in the power distribution of the reactor. The idea of the kernel method is first determine the optimal burnup distribution that minimizes the maximum relative assembly power using the created kernel functions and a common solver routine. Then, the burnups of the available fuel assemblies are matched with the obtained burnup distribution. (orig.)

  6. Capital taxation : principles , properties and optimal taxation issues

    Antonin, Céline; Touze, Vincent

    2017-01-01

    This article addresses the issue of capital taxation relying on three levels of analysis. The first level deals with the multiple ways to tax capital (income or value, proportional or progressive taxation, and the temporality of the taxation) and presents some of France's particular features within a heterogeneous European context. The second area of investigation focuses on the main dynamic properties generated by capital taxation: the principle of equivalence with a tax on consu...

  7. Optimality principles in the regulation of metabolic networks.

    Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas

    2012-08-29

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  8. Optimality Principles in the Regulation of Metabolic Networks

    Jan Berkhout

    2012-08-01

    Full Text Available One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  9. Multi-objective/loading optimization for rotating composite flexbeams

    Hamilton, Brian K.; Peters, James R.

    1989-01-01

    With the evolution of advanced composites, the feasibility of designing bearingless rotor systems for high speed, demanding maneuver envelopes, and high aircraft gross weights has become a reality. These systems eliminate the need for hinges and heavily loaded bearings by incorporating a composite flexbeam structure which accommodates flapping, lead-lag, and feathering motions by bending and twisting while reacting full blade centrifugal force. The flight characteristics of a bearingless rotor system are largely dependent on hub design, and the principal element in this type of system is the composite flexbeam. As in any hub design, trade off studies must be performed in order to optimize performance, dynamics (stability), handling qualities, and stresses. However, since the flexbeam structure is the primary component which will determine the balance of these characteristics, its design and fabrication are not straightforward. It was concluded that: pitchcase and snubber damper representations are required in the flexbeam model for proper sizing resulting from dynamic requirements; optimization is necessary for flexbeam design, since it reduces the design iteration time and results in an improved design; and inclusion of multiple flight conditions and their corresponding fatigue allowables is necessary for the optimization procedure.

  10. Optimal quantum state estimation with use of the no-signaling principle

    Han, Yeong-Deok; Bae, Joonwoo; Wang Xiangbin; Hwang, Won-Young

    2010-01-01

    A simple derivation of the optimal state estimation of a quantum bit was obtained by using the no-signaling principle. In particular, the no-signaling principle determines a unique form of the guessing probability independent of figures of merit, such as the fidelity or information gain. This proves that the optimal estimation for a quantum bit can be achieved by the same measurement for almost all figures of merit.

  11. Driving external chemistry optimization via operations management principles.

    Bi, F Christopher; Frost, Heather N; Ling, Xiaolan; Perry, David A; Sakata, Sylvie K; Bailey, Simon; Fobian, Yvette M; Sloan, Leslie; Wood, Anthony

    2014-03-01

    Confronted with the need to significantly raise the productivity of remotely located chemistry CROs Pfizer embraced a commitment to continuous improvement which leveraged the tools from both Lean Six Sigma and queue management theory to deliver positive measurable outcomes. During 2012 cycle times were reduced by 48% by optimization of the work in progress and conducting a detailed workflow analysis to identify and address pinch points. Compound flow was increased by 29% by optimizing the request process and de-risking the chemistry. Underpinning both achievements was the development of close working relationships and productive communications between Pfizer and CRO chemists. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Estimating cellular parameters through optimization procedures: elementary principles and applications

    Akatsuki eKimura

    2015-03-01

    Full Text Available Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE in a prediction or to maximize likelihood. A (local maximum of likelihood or (local minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.

  13. Research on the parallel load sharing principle of a novel self-decoupled piezoelectric six-dimensional force sensor.

    Li, Ying-Jun; Yang, Cong; Wang, Gui-Cong; Zhang, Hui; Cui, Huan-Yong; Zhang, Yong-Liang

    2017-09-01

    This paper presents a novel integrated piezoelectric six-dimensional force sensor which can realize dynamic measurement of multi-dimensional space load. Firstly, the composition of the sensor, the spatial layout of force-sensitive components, and measurement principle are analyzed and designed. There is no interference of piezoelectric six-dimensional force sensor in theoretical analysis. Based on the principle of actual work and deformation compatibility coherence, this paper deduces the parallel load sharing principle of the piezoelectric six-dimensional force sensor. The main effect factors which affect the load sharing ratio are obtained. The finite element model of the piezoelectric six-dimensional force sensor is established. In order to verify the load sharing principle of the sensor, a load sharing test device of piezoelectric force sensor is designed and fabricated. The load sharing experimental platform is set up. The experimental results are in accordance with the theoretical analysis and simulation results. The experiments show that the multi-dimensional and heavy force measurement can be realized by the parallel arrangement of the load sharing ring and the force sensitive element in the novel integrated piezoelectric six-dimensional force sensor. The ideal load sharing effect of the sensor can be achieved by appropriate size parameters. This paper has an important guide for the design of the force measuring device according to the load sharing mode. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression, Flight-Test Performance

    Miller, Christopher J.; Goodrick, Dan

    2017-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads to specified values. This technique has been implemented and flown on the National Aeronautics and Space Administration Full-scale Advanced Systems Testbed aircraft. The flight tests illustrate that the approach achieves the desired performance and show promising potential benefits. The flights also uncovered some important issues that will need to be addressed for production application.

  15. MTR core loading pattern optimization using burnup dependent group constants

    Iqbal Masood

    2008-01-01

    Full Text Available A diffusion theory based MTR fuel management methodology has been developed for finding superior core loading patterns at any stage for MTR systems, keeping track of burnup of individual fuel assemblies throughout their history. It is based on using burnup dependent group constants obtained by the WIMS-D/4 computer code for standard fuel elements and control fuel elements. This methodology has been implemented in a computer program named BFMTR, which carries out detailed five group diffusion theory calculations using the CITATION code as a subroutine. The core-wide spatial flux and power profiles thus obtained are used for calculating the peak-to-average power and flux-ratios along with the available excess reactivity of the system. The fuel manager can use the BFMTR code for loading pattern optimization for maximizing the excess reactivity, keeping the peak-to-average power as well as flux-ratio within constraints. The results obtained by the BFMTR code have been found to be in good agreement with the corresponding experimental values for the equilibrium core of the Pakistan Research Reactor-1.

  16. Optimalisatie Draagsysteem (Optimization of the Load Carriage System)

    Koerhuis, C. L; Rensink, P; Schijndel, J. van

    2008-01-01

    Besides positive effects of an earlier developed load carriage system in which the load was carried predominantly on the hips, mobility was increased and protection and load carriage was integrated into one system (ILCS...

  17. Relationship between Maximum Principle and Dynamic Programming for Stochastic Recursive Optimal Control Problems and Applications

    Jingtao Shi

    2013-01-01

    Full Text Available This paper is concerned with the relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems. Under certain differentiability conditions, relations among the adjoint processes, the generalized Hamiltonian function, and the value function are given. A linear quadratic recursive utility portfolio optimization problem in the financial engineering is discussed as an explicitly illustrated example of the main result.

  18. Study of load change control in PWRs using the methods of linear optimal control

    Yang, T.

    1983-01-01

    This thesis investigates the application of modern control theory to the problem of controlling load changes in PWR power plants. A linear optimal state feedback scheme resulting from linear optimal control theory with a quadratic cost function is reduced to a partially decentralized control system using mode preservation techniques. Minimum information transfer among major components of the plant is investigated to provide an adequate coordination, simple implementation, and a reliable control system. Two control approaches are proposed: servo and model following. Each design considers several information structures for performance comparison. Integrated output error has been included in the control systems to accommodate external and plant parameter disturbances. In addition, the cross limit feature, specific to certain modern reactor control systems, is considered in the study to prevent low pressure reactor trip conditions. An 11th order nonlinear model for the reactor and boiler is derived based on theoretical principles, and simulation tests are performed for 10% load change as an illustration of system performance

  19. [Optimization on trehalose loading technique as protective conditioning for lyophilization of human platelets].

    Liu, Jing-Han; Zhou, Jun; Ouyang, Xi-Lin; Li, Xi-Jin; Lu, Fa-Qiang

    2005-08-01

    This study was aimed to further optimize trehalose loading technique including loading temperature, loading time, loading solution and loading concentration of trehalose, based on the established parameters. Loading efficiency in plasma was compared with that in buffer at 37 degrees C; the curves of intracellular trehalose concentration versus loading time at 37 degrees C and 16 degrees C were measured; curves of mean platelet volume (MPV) versus loading time and loading concentration were investigated and compared. According to results obtained, the loaing time, loading temperature, loading solution and trehalose concentration were ascertained for high loading efficiency of trehalose into human platelet. The results showed that the loading efficiency in plasma was markedly higher than that in buffer at 37 degrees C, the loading efficiency in plasma at 37 degrees C was significantly higher than that at 16 degrees C and reached 19.51% after loading for 4 hours, but 6.16% at 16 degrees C. MPV at 16 degrees C was increased by 43.2% than that at 37 degrees C, but had no distinct changes with loading time and loading concentration. In loading at 37 degrees C, MPV increased with loading time and loading concentration positively. Loading time and loading concentration displayed synergetic effect on MPV. MPV increased with loading time and concentration while trehalose loading concentration was above 50 mmol/L. It is concluded that the optimization parameters of trehalose loading technique are 37 degrees C (temperature), 4 hours (leading time), plasma (loading solution), 50 mmol/L (feasible trehalose concentration). The trehalose concentration can be adjusted to meet the requirement of lyophilization.

  20. Optimal behaviour can violate the principle of regularity.

    Trimmer, Pete C

    2013-07-22

    Understanding decisions is a fundamental aim of behavioural ecology, psychology and economics. The regularity axiom of utility theory holds that a preference between options should be maintained when other options are made available. Empirical studies have shown that animals violate regularity but this has not been understood from a theoretical perspective, such decisions have therefore been labelled as irrational. Here, I use models of state-dependent behaviour to demonstrate that choices can violate regularity even when behavioural strategies are optimal. I also show that the range of conditions over which regularity should be violated can be larger when options do not always persist into the future. Consequently, utility theory--based on axioms, including transitivity, regularity and the independence of irrelevant alternatives--is undermined, because even alternatives that are never chosen by an animal (in its current state) can be relevant to a decision.

  1. Flash memories economic principles of performance, cost and reliability optimization

    Richter, Detlev

    2014-01-01

    The subject of this book is to introduce a model-based quantitative performance indicator methodology applicable for performance, cost and reliability optimization of non-volatile memories. The complex example of flash memories is used to introduce and apply the methodology. It has been developed by the author based on an industrial 2-bit to 4-bit per cell flash development project. For the first time, design and cost aspects of 3D integration of flash memory are treated in this book. Cell, array, performance and reliability effects of flash memories are introduced and analyzed. Key performance parameters are derived to handle the flash complexity. A performance and array memory model is developed and a set of performance indicators characterizing architecture, cost and durability is defined.   Flash memories are selected to apply the Performance Indicator Methodology to quantify design and technology innovation. A graphical representation based on trend lines is introduced to support a requirement based pr...

  2. Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling

    Tan, Kang Miao; Ramachandaramurthy, Vigna K.; Yong, Jia Ying

    2017-01-01

    -to-grid optimization algorithm is implemented and tested in MATLAB software (R2013a, MathWorks, Natick, MA, USA). The performance of the optimization algorithm depends heavily on the setting of the target load, power grid load and capability of the grid-connected electric vehicles. Hence, the performance...... of the proposed algorithm under various target load and electric vehicles’ state of charge selections were analysed. The effectiveness of the vehicle-to-grid scheduling to implement the appropriate peak load shaving and load levelling services for the grid load variance minimization is verified under various...

  3. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial.

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p  = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p  virtual reality surgical simulation training of novices.

  4. Optimization of smart Heusler alloys from first principles

    Entel, Peter, E-mail: entel@thp.uni-duisburg.de [Faculty of Physics and Center for Nanointegration, CeNIDE, University of Duisburg-Essen, 47048 Duisburg (Germany); Siewert, Mario; Gruner, Markus E. [Faculty of Physics and Center for Nanointegration, CeNIDE, University of Duisburg-Essen, 47048 Duisburg (Germany); Chakrabarti, Aparna [Faculty of Physics and Center for Nanointegration, CeNIDE, University of Duisburg-Essen, 47048 Duisburg (Germany); Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India); Barman, Sudipta R. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452001, Madhya Pradesh (India); Sokolovskiy, Vladimir V.; Buchelnikov, Vasiliy D. [Condensed Matter Physics Department, Chelyabinsk State University, 454001, Chelyabinsk (Russian Federation)

    2013-11-15

    Highlights: ► We investigate the tensile deformation of single crystalline Ni–Mn–Ga stripes by DIC. ► Mechanical constraints (fixation, bending) determine the type of twin boundary formed during training in a magnetic field. ► Orientation of strain bands (45° or 84° inclination) depends on the type of twin boundary. ► The twinning stress is lower for twin boundaries inclined by 84° compared to the case of 45°. -- Abstract: The strong magnetoelastic interaction in ternary X{sub 2}YZ Heusler alloys is reponsible for the appearance of magnetostructural phase transitions and related functional properties such as the magnetocaloric and magnetic shape-memory effects. Here, X and Y are transition metal elements and Z is usually an element from the III–V group. In order to discuss possibilities to optimize the multifunctional effects, we use density functional theory calculations from which the martensitic driving forces of the magnetic materials can be derived. We find that the electronic contribution arising from the band Jahn–Teller effect is one of the major driving forces. The ab initio calculations also give a hint of how to design new intermetallics with higher martensitic transformation temperatures compared to the prototype alloy system Ni–Mn–Ga. As an example, we discuss quarternary Pt{sub x}Ni{sub 2−x}MnGa alloys which have properties very similar to Ni–Mn–Ga but exhibit a higher maximal eigenstrain of 14%.

  5. Principles of TRIP Steel Optimization for Passive Damping Applications

    Fraley, George Jay

    Globally many historic structures of cultural significance which do not have systems to mitigate seismic damage are located in areas with heavy seismic activity. Efforts have been undertaken to develop strategies to retrofit such structures, however any intervention must be limited in size for aesthetic reasons. To contribute to this effort, ArcelorMittal aims to create steel-based solutions for passive energy dissipation through plastic deformation during cyclic loading. High-strength TRansformation-Induced Plasticity (TRIP) steels are proposed as an excellent candidate material for this application, due to the extreme combination of high strength and large ductility they are well-known to exhibit. To evaluate high-strength TRIP steels for passive damping applications, isothermal, fully-reversed, displacement-controlled Ultra-Low Cycle Fatigue (ULCF) experiments (Nf stainless steel 316, despite having a yield strength approximately four times larger. For a similar number of cycles to failure the high stability condition dissipated 2.4 times more energy than stainless steel 316 upon initial cycling. The stress-strain hysteresis curves and fatigue life data generated can be input into computational models of passive damping devices for initial concurrent material/device design iterations. Evidence of shear lips, large primary inclusions serving as fracture-initiation sites, and highly dimpled fracture surfaces confirmed for all failed specimens that ductile fracture mechanisms contribute to failure under ULCF conditions. For specimens failing in 10-11 cycles large protrusions aligned along the transverse direction were found, indicating that intergranular fracture may also be playing a role in ULCF failures for this alloy. To explore lower cost alternatives to fully-austenitic TRIP steels for passive-damping devices, austenite precipitation and its effect on uniaxial-tension mechanical properties in martensitic steels was investigated. Isothermal dilatometry

  6. An implementation of particle swarm optimization to evaluate optimal under-voltage load shedding in competitive electricity markets

    Hosseini-Bioki, M. M.; Rashidinejad, M.; Abdollahi, A.

    2013-11-01

    Load shedding is a crucial issue in power systems especially under restructured electricity environment. Market-driven load shedding in reregulated power systems associated with security as well as reliability is investigated in this paper. A technoeconomic multi-objective function is introduced to reveal an optimal load shedding scheme considering maximum social welfare. The proposed optimization problem includes maximum GENCOs and loads' profits as well as maximum loadability limit under normal and contingency conditions. Particle swarm optimization (PSO) as a heuristic optimization technique, is utilized to find an optimal load shedding scheme. In a market-driven structure, generators offer their bidding blocks while the dispatchable loads will bid their price-responsive demands. An independent system operator (ISO) derives a market clearing price (MCP) while rescheduling the amount of generating power in both pre-contingency and post-contingency conditions. The proposed methodology is developed on a 3-bus system and then is applied to a modified IEEE 30-bus test system. The obtained results show the effectiveness of the proposed methodology in implementing the optimal load shedding satisfying social welfare by maintaining voltage stability margin (VSM) through technoeconomic analyses.

  7. An application of Pontrjagin's principle to the study of the optimal growth of population

    Spinadel, V. de

    1976-01-01

    This paper examines the consequences of an optimal control of population growth and allows to derive criteria referring to the economic basis of expenditure on population control and to obtain optimal paths for a model in which such a control is possible. By means of very simple assumptions one can reduce the problem to a two-state variable control problem and, in consequence, apply Pontrjagin's maximum principle to solve it. (author)

  8. An optimal control model for load shifting - With application in the energy management of a colliery

    Middelberg, Arno; Zhang Jiangfeng; Xia Xiaohua

    2009-01-01

    This paper presents an optimal control model for the load shifting problem in energy management and its application in a South African colliery. It is illustrated in the colliery scenario that how the optimal control model can be applied to optimize load shifting and improve energy efficiency through the control of conveyor belts. The time-of-use electricity tariff is used as an input to the objective function in order to obtain a solution that minimizes electricity costs and thus maximizes load shifting. The case study yields promising results that show the potential of applying this optimal control model to other industrial Demand Side Management initiatives

  9. Geometry and Topology Optimization of Statically Determinate Beams under Fixed and Most Unfavorably Distributed Load

    Agata Kozikowska

    Full Text Available Abstract The paper concerns topology and geometry optimization of statically determinate beams with an arbitrary number of pin supports. The beams are simultaneously exposed to uniform dead load and arbitrarily distributed live load and optimized for the absolute maximum bending moment. First, all the beams with fixed topology are subjected to geometrical optimization by genetic algorithm. Strict mathematical formulas for calculation of optimal geometrical parameters are found for all topologies and any ratio of dead to live load. Then beams with the same minimal values of the objective function and different topologies are classified into groups called topological classes. The detailed characteristics of these classes are described.

  10. Improving the principles of short-term electric load forecasting of the Irkutsk region

    Kornilov Vladimir

    2017-01-01

    Full Text Available Forecasting of electric load (EL is an important task for both electric power entities and large consumers of electricity [1]. Large consumers are faced with the need to compose applications for the planned volume of EL, and the deviation of subsequent real consumption from previously announced leads to the appearance of penalties from the wholesale market. In turn, electricity producers are interested in forecasting the demand for electricity for prompt response to its fluctuations and for the purpose of optimal infrastructure development. The most difficult and urgent task is the hourly forecasting of EL, which is extremely important for the successful solution of problems of optimization of generating capacities, minimization of power losses, dispatching control, security assessment of power supply, etc. Ultimately, such forecasts allow optimizing the cash costs for electricity and fuel or water consumption during generation. This paper analyzes the experience of the branch of JSC "SO UPS" Irkutsk Regional Dispatch Office of the procedure for short-term forecasting of the EL of the Irkutsk region.

  11. Optimal control problems with delay, the maximum principle and necessary conditions

    Frankena, J.F.

    1975-01-01

    In this paper we consider a rather general optimal control problem involving ordinary differential equations with delayed arguments and a set of equality and inequality restrictions on state- and control variables. For this problem a maximum principle is given in pointwise form, using variational

  12. Optimality principle for the coupled chemical reactions of ATP synthesis and its molecular interpretation

    Nath, Sunil

    2018-05-01

    Metabolic energy obtained from the coupled chemical reactions of oxidative phosphorylation (OX PHOS) is harnessed in the form of ATP by cells. We experimentally measured thermodynamic forces and fluxes during ATP synthesis, and calculated the thermodynamic efficiency, η and the rate of free energy dissipation, Φ. We show that the OX PHOS system is tuned such that the coupled nonequilibrium processes operate at optimal η. This state does not coincide with the state of minimum Φ but is compatible with maximum Φ under the imposed constraints. Conditions that must hold for species concentration in order to satisfy the principle of optimal efficiency are derived analytically and a molecular explanation based on Nath's torsional mechanism of energy transduction and ATP synthesis is suggested. Differences of the proposed principle with Prigogine's principle are discussed.

  13. Characteristic statistic algorithm (CSA) for in-core loading pattern optimization

    Liu Zhihong; Hu Yongming; Shi Gong

    2007-01-01

    To solve the problem of PWR in-core loading pattern optimization, a more suitable global optimization algorithm, i.e., Characteristic statistic algorithm (CSA), is used. The searching process of this algorithm and how to apply it to this problem are presented. Loading pattern optimization code SCYCLE is developed. Two different problems on real PWR models are calculated and the results are compared with other algorithms. It is shown that SCYCLE has high efficiency and good global performance on this problem. (authors)

  14. Space and time optimization of nuclear reactors by means of the Pontryagin principle

    Anton, V.

    1979-01-01

    A numerical method is being presented for solving space dependent optimization problems concerning a functional for one dimensional geometries in the few group diffusion approximation. General dimensional analysis was applied to derive relations for the maximum of a functional and the limiting values of the constraints. Two procedures were given for calculating the anisotropic diffusion coefficients in order to improve the results of the diffusion approximation. In this work two procedures were presented for collapsing the microscopic multigroup cross sections, one general and another specific to the space dependent optimization problems solved by means of the Pontryagin maximum principle. Neutron spectrum optimization is performed to ensure the burnup of Pu 239 isotope produced in a thermal nuclear reactor. A procedure is also given for the minimization of finite functional set by means of the Pontryagin maximum principle. A method for determining the characteristics of fission Pseudo products is formulated in one group and multigroup cases. This method is applied in the optimization of the burnup in nuclear reactors with fuel electric cells. A procedure to mjnimze the number of the fuel burnup equations is described. The optimization problems presented and solved in this work point to the efficiency of the maximum principle. Each problem on method presented in the various chapters is accompanied by considerations concerning dual problems and possibilities of further research development. (author)

  15. Real-Time Vehicle Energy Management System Based on Optimized Distribution of Electrical Load Power

    Yuefei Wang

    2016-10-01

    Full Text Available As a result of severe environmental pressure and stringent government regulations, refined energy management for vehicles has become inevitable. To improve vehicle fuel economy, this paper presents a bus-based energy management system for the electrical system of internal combustion engine vehicles. Both the model of an intelligent alternator and the model of a lead-acid battery are discussed. According to these models, the energy management for a vehicular electrical system is formulated as a global optimal control problem which aims to minimize fuel consumption. Pontryagin’s minimum principle is applied to solve the optimal control problem to realize a real-time control strategy for electrical energy management in vehicles. The control strategy can change the output of the intelligent alternator and the battery with the changes of electrical load and driving conditions in real-time. Experimental results demonstrate that, compared to the traditional open-loop control strategy, the proposed control strategy for vehicle energy management can effectively reduce fuel consumption and the fuel consumption per 100 km is decreased by approximately 1.7%.

  16. Simultaneous loading patterns optimization for two successive cycles of pressurized water reactors

    Yamamoto, Akio; Sugimura, Erina; Kitamura, Yasunori; Yamane, Yoshihiro

    2004-01-01

    In this paper, simultaneous optimization is carried out for successive two cycles of pressurized water reactors. At first, a simplified problem of the simultaneous optimization was studied by assuming the batch-wise power sharing as independent variable, i.e., batch-wise power sharing was optimized without considering corresponding loading patterns. The optimization of the batch-wise power sharing was carried out for the conventional single cycle, the equilibrium cycle and the two successive (tandem) cycles. The analysis indicated that the tandem cycle optimization well reproduce that of the equilibrium cycle optimization, which is considered as a typical case of the true multicycle optimization. Next, simultaneous optimization of loading patterns for tandem cycles is carried out using the simulated annealing method. Since the design space of the tandem cycles optimization is much larger than that of the conventional single cycle optimization, the optimization condition (i.e., number of calculated patterns) are established through sensitivity study. The optimization results are compared with those obtained by the successive single cycle optimizations and it is clarified that the successive single cycle optimization well reproduces the optimization results obtained by the simultaneous optimization if objective functions are appropriately chosen. The above result will be encouraging for the current in-core optimization method since single cycle optimization is utilized due to limitation of computation time. (author)

  17. Multi-objective optimization of an arch dam shape under static loads using an evolutionary game method

    Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang

    2018-06-01

    This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.

  18. Role of optimization criterion in static asymmetric analysis of lumbar spine load.

    Daniel, Matej

    2011-10-01

    A common method for load estimation in biomechanics is the inverse dynamics optimization, where the muscle activation pattern is found by minimizing or maximizing the optimization criterion. It has been shown that various optimization criteria predict remarkably similar muscle activation pattern and intra-articular contact forces during leg motion. The aim of this paper is to study the effect of the choice of optimization criterion on L4/L5 loading during static asymmetric loading. Upright standing with weight in one stretched arm was taken as a representative position. Musculoskeletal model of lumbar spine model was created from CT images of Visible Human Project. Several criteria were tested based on the minimization of muscle forces, muscle stresses, and spinal load. All criteria provide the same level of lumbar spine loading (difference is below 25%), except the criterion of minimum lumbar shear force which predicts unrealistically high spinal load and should not be considered further. Estimated spinal load and predicted muscle force activation pattern are in accordance with the intradiscal pressure measurements and EMG measurements. The L4/L5 spine loads 1312 N, 1674 N, and 1993 N were predicted for mass of weight in hand 2, 5, and 8 kg, respectively using criterion of mininum muscle stress cubed. As the optimization criteria do not considerably affect the spinal load, their choice is not critical in further clinical or ergonomic studies and computationally simpler criterion can be used.

  19. Dynamic Optimization of a Polymer Flooding Process Based on Implicit Discrete Maximum Principle

    Yang Lei

    2012-01-01

    Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and some inequality constraints as polymer concentration and injection amount limitation. The optimal control model is discretized by full implicit finite-difference method. To cope with the discrete optimal control problem (OCP, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s discrete maximum principle. A modified gradient method with new adjoint construction is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.

  20. The Effects of Social Cue Principles on Cognitive Load, Situational Interest, Motivation, and Achievement in Pedagogical Agent Multimedia Learning

    Park, Sanghoon

    2015-01-01

    Animated pedagogical agents have become popular in multimedia learning with combined delivery of verbal and non-verbal forms of information. In order to reduce unnecessary cognitive load caused by such multiple forms of information and also to foster generative cognitive processing, multimedia design principles with social cues are suggested…

  1. Optimal Waste Load Allocation Using Multi-Objective Optimization and Multi-Criteria Decision Analysis

    L. Saberi

    2016-10-01

    Full Text Available Introduction: Increasing demand for water, depletion of resources of acceptable quality, and excessive water pollution due to agricultural and industrial developments has caused intensive social and environmental problems all over the world. Given the environmental importance of rivers, complexity and extent of pollution factors and physical, chemical and biological processes in these systems, optimal waste-load allocation in river systems has been given considerable attention in the literature in the past decades. The overall objective of planning and quality management of river systems is to develop and implement a coordinated set of strategies and policies to reduce or allocate of pollution entering the rivers so that the water quality matches by proposing environmental standards with an acceptable reliability. In such matters, often there are several different decision makers with different utilities which lead to conflicts. Methods/Materials: In this research, a conflict resolution framework for optimal waste load allocation in river systems is proposed, considering the total treatment cost and the Biological Oxygen Demand (BOD violation characteristics. There are two decision-makers inclusive waste load discharges coalition and environmentalists who have conflicting objectives. This framework consists of an embedded river water quality simulator, which simulates the transport process including reaction kinetics. The trade-off curve between objectives is obtained using the Multi-objective Particle Swarm Optimization Algorithm which these objectives are minimization of the total cost of treatment and penalties that must be paid by discharges and a violation of water quality standards considering BOD parameter which is controlled by environmentalists. Thus, the basic policy of river’s water quality management is formulated in such a way that the decision-makers are ensured their benefits will be provided as far as possible. By using MOPSO

  2. Optimization of fuel core loading pattern design in a VVER nuclear power reactors using Particle Swarm Optimization (PSO)

    Babazadeh, Davood; Boroushaki, Mehrdad; Lucas, Caro

    2009-01-01

    The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor (K eff ) in order to extract the maximum energy, and keeping the local power peaking factor (P q ) lower than a predetermined value to maintain fuel integrity. In this research, a new strategy based on Particle Swarm Optimization (PSO) algorithm has been developed to optimize the fuel core loading pattern in a typical VVER. The PSO algorithm presents a simple social model by inspiration from bird collective behavior in finding food. A modified version of PSO algorithm for discrete variables has been developed and implemented successfully for the multi-objective optimization of fuel loading pattern design with constraints of keeping P q lower than a predetermined value and maximizing K eff . This strategy has been accomplished using WIMSD and CITATION calculation codes. Simulation results show that this algorithm can help in the acquisition of a new pattern without contravention of the constraints.

  3. An Optimization Framework for Load and Power Distribution in Wind Farms

    Soleimanzadeh, Maryam; Wisniewski, Rafal; Kanev, Stoyan

    2012-01-01

    The aim of this paper is to develop a controller for wind farms to optimize the load and power distribution. In this regard, the farm controller calculates the power reference signals for individual wind turbine controllers such that the sum of the power references tracks the power demanded...... by a system operator. Moreover, the reference signals are determined to reduce the load acting on wind turbines at low frequencies. Therefore, a trade-off is made for load and power control, which is formulated as an optimization problem. Afterwards, the optimization problem for the wind farm modeled...

  4. Polyurethane foam loaded with SDS for the adsorption of cationic dyes from aqueous medium: Multivariate optimization of the loading process.

    Robaina, Nicolle F; Soriano, Silvio; Cassella, Ricardo J

    2009-08-15

    This paper reports the development of a new procedure for the adsorption of four cationic dyes (Rhodamine B, Methylene Blue, Crystal Violet and Malachite Green) from aqueous medium employing polyurethane foam (PUF) loaded with sodium dodecylsulfate (SDS) as solid phase. PUF loading process was based on the stirring of 200mg PUF cylinders with acidic solutions containing SDS. The conditions for loading were optimized by response surface methodology (RSM) using a Doehlert design with three variables that were SDS and HCl concentrations and stirring time. Results obtained in the optimization process showed that the stirring time is not a relevant parameter in the PUF loading, evidencing that the transport of SDS from solution to PUF surface is fast. On the other hand, both SDS and HCl concentrations were important parameters causing significant variation in the efficiency of the resulting solid phase for the removal of dyes from solution. At optimized conditions, SDS and HCl concentrations were 4.0 x 10(-4) and 0.90 mol L(-1), respectively. The influence of stirring time was evaluated by univariate methodology. A 20 min stirring time was established in order to make the PUF loading process fast and robust without losing efficiency. The procedure was tested for the removal of the four cationic dyes from aqueous solutions and removal efficiencies always better than 90% were achieved for the two concentrations tested (2.0 x 10(-5) and 1.0 x 10(-4)mol L(-1)).

  5. Comparison of optimization of loading patterns on the basis of SA and PMA algorithms

    Beliczai, Botond

    2007-01-01

    Optimization of loading patterns is a very important task from economical point of view in a nuclear power plant. The optimization algorithms used for this purpose can be categorized basically into two categories: deterministic ones and stochastic ones. In the Paks nuclear power plant a deterministic optimization procedure is used to optimize the loading pattern at BOC, so that the core would have maximal reactivity reserve. To the group of stochastic optimization procedures belong mainly simulated annealing (SA) procedures and genetic algorithms (GA). There are new procedures as well, which try to combine the advantages of SAs and GAs. One of them is called population mutation annealing algorithm (PMA). In the Paks NPP we would like to introduce fuel assemblies including burnable poison (Gd) in the near future. In order to be able to find the optimal loading pattern (or near-optimal loading patterns) in that case, we have to optimize our core not only for objective functions defined at BOC, but at EOC as well. For this purpose I used stochastic algorithms (SA and PMA) to investigate loading pattern optimization results for different objective functions at BOC. (author)

  6. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression

    Miller, Christopher

    2017-01-01

    These slide sets describe the OCLA formulation and associated algorithms as a set of new technologies in the first practical application of load limiting flight control utilizing load feedback as a primary control measurement. Slide set one describes Experiment Development and slide set two describes Flight-Test Performance.

  7. The Cytotoxicity, Characteristics, and Optimization of Insulin-loaded Nanoparticles

    Yasemin Budama-Kilinc

    2017-04-01

    Full Text Available Controlled release systems for insulin are frequent subjects of research, because it is rapidly degraded by proteolytic enzymes in the gastrointestinal tract and minimally absorbed after oral administration. Controlled release systems also provide significant contribution to its stability.  Different techniques are used for the preparation of drug-loaded nanoparticles, and many novel techniques are being developed. The size and morphology of insulin-loaded nanoparticles may vary according to performed techniques, even if the same polymer is used. The aim of this study was to demonstrate the cytotoxicity of insulin loaded nanoparticles and the effect of various synthesis parameters on the particle size, polydispersity index (PdI, loading efficiency, and particle morphology. In the experiments, poly(lactic-co-glycolic acid (PLGA and insulin-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w method. The characterization of the nanoparticles were performed with a UV spectrometer, the Zeta-sizer system, FTIR spectroscopy, and a scanning probe microscope. Cell toxicity of different concentrations was assayed with MTT methods on L929 fibroblast cells. The optimum size of the insulin-loaded PLGA nanoparticle was obtained with a 96.5% encapsulation efficiency, a 224.5 nm average particle size, and a 0.063 polydispersity index. This study obtained and characterized spherical morphology, determined that the nanoparticles have very low toxicity, and showed the effect of different parameters on particle size and polydispersity. DOI: http://dx.doi.org/10.17807/orbital.v9i1.934 

  8. The principle of the Internet evolving and a conjecture on the optimal structure of the Internet

    Ying, Li; Hong-Duo, Cao; Xiu-Ming, Shan; Yong, Ren; Jian, Yuan

    2009-01-01

    In this paper we will give the statistical characteristics and general principles of an optimal structure of the Internet, which is a scale-free network. Since the purpose of the Internet is to allow fast and easy communication, the average path length is used to measure the performance of the network, and the number of edges of the network is used as a metric of its cost. Based on this, the goal of this Internet optimization problem is to obtain the highest performance with the lowest cost. A multi goal optimization problem is proposed to model this problem. By using two empirical formulas of and , we are able to find the statistical characteristics of the optimal structure. There is a critical power law exponent α c for the Internet with power law degree distribution, at which the Internet can obtain a relatively good performance with a low cost. We find that this α c is approximately 2.1

  9. Determining the optimal load for jump squats: a review of methods and calculations.

    Dugan, Eric L; Doyle, Tim L A; Humphries, Brendan; Hasson, Christopher J; Newton, Robert U

    2004-08-01

    There has been an increasing volume of research focused on the load that elicits maximum power output during jump squats. Because of a lack of standardization for data collection and analysis protocols, results of much of this research are contradictory. The purpose of this paper is to examine why differing methods of data collection and analysis can lead to conflicting results for maximum power and associated optimal load. Six topics relevant to measurement and reporting of maximum power and optimal load are addressed: (a) data collection equipment, (b) inclusion or exclusion of body weight force in calculations of power, (c) free weight versus Smith machine jump squats, (d) reporting of average versus peak power, (e) reporting of load intensity, and (f) instructions given to athletes/ participants. Based on this information, a standardized protocol for data collection and reporting of jump squat power and optimal load is presented.

  10. Small Signal Stability Improvement of Power Systems Using Optimal Load Responses in Competitive Electricity Markets

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift some of their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to an electricity price...... price is proposed. A 17-bus power system with high wind power penetrations, which resembles the Eastern Danish power system, is chosen as the study case. Simulation results show that the optimal load response to electricity prices is an effective measure to improve the small signal stability of power...... for demand side management generates different load profiles and may provide an opportunity to improve the small signal stability of power systems with high wind power penetrations. In this paper, the idea of power system small signal stability improvement by using optimal load response to the electricity...

  11. Optimal control of load-following operations in a pressurized water reactor

    Zhao Fuyu; Zhou Dawei

    2000-01-01

    According to the optimal control theory, the problem of load-following operation in a pressurized water reactor is formulated as a nonlinear-quadratic optimal control problem. One-dimensional core model is adopted. A successful optimization algorithm DDPSR is proposed to solving the obtained problem. The research results show that the DDPSR can converge with a long time interval and needs very small iteration number and computing time, and the practical reactor can be fairly operated in an optimal load-following manner and axial offset satisfies the required value from beginning to end. Control characters of boron concentration are discussed specially

  12. On the equivalent static loads approach for dynamic response structural optimization

    Stolpe, Mathias

    2014-01-01

    The equivalent static loads algorithm is an increasingly popular approach to solve dynamic response structural optimization problems. The algorithm is based on solving a sequence of related static response structural optimization problems with the same objective and constraint functions...... as the original problem. The optimization theoretical foundation of the algorithm is mainly developed in Park and Kang (J Optim Theory Appl 118(1):191–200, 2003). In that article it is shown, for a certain class of problems, that if the equivalent static loads algorithm terminates then the KKT conditions...

  13. Optimal control of a double integrator a primer on maximum principle

    Locatelli, Arturo

    2017-01-01

    This book provides an introductory yet rigorous treatment of Pontryagin’s Maximum Principle and its application to optimal control problems when simple and complex constraints act on state and control variables, the two classes of variable in such problems. The achievements resulting from first-order variational methods are illustrated with reference to a large number of problems that, almost universally, relate to a particular second-order, linear and time-invariant dynamical system, referred to as the double integrator. The book is ideal for students who have some knowledge of the basics of system and control theory and possess the calculus background typically taught in undergraduate curricula in engineering. Optimal control theory, of which the Maximum Principle must be considered a cornerstone, has been very popular ever since the late 1950s. However, the possibly excessive initial enthusiasm engendered by its perceived capability to solve any kind of problem gave way to its equally unjustified rejecti...

  14. On a variational principle for shape optimization and elliptic free boundary problems

    Raúl B. González De Paz

    2009-02-01

    Full Text Available A variational principle for several free boundary value problems using a relaxation approach is presented. The relaxed Energy functional is concave and it is defined on a convex set, so that the minimizing points are characteristic functions of sets. As a consequence of the first order optimality conditions, it is shown that the corresponding sets are domains bounded by free boundaries, so that the equivalence of the solution of the relaxed problem with the solution of several free boundary value problem is proved. Keywords: Calculus of variations, optimization, free boundary problems.

  15. Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles

    Morelli, Eugene A.; Klein, Vladislav

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  16. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  17. Towards automating the discovery of certain innovative design principles through a clustering-based optimization technique

    Bandaru, Sunith; Deb, Kalyanmoy

    2011-09-01

    In this article, a methodology is proposed for automatically extracting innovative design principles which make a system or process (subject to conflicting objectives) optimal using its Pareto-optimal dataset. Such 'higher knowledge' would not only help designers to execute the system better, but also enable them to predict how changes in one variable would affect other variables if the system has to retain its optimal behaviour. This in turn would help solve other similar systems with different parameter settings easily without the need to perform a fresh optimization task. The proposed methodology uses a clustering-based optimization technique and is capable of discovering hidden functional relationships between the variables, objective and constraint functions and any other function that the designer wishes to include as a 'basis function'. A number of engineering design problems are considered for which the mathematical structure of these explicit relationships exists and has been revealed by a previous study. A comparison with the multivariate adaptive regression splines (MARS) approach reveals the practicality of the proposed approach due to its ability to find meaningful design principles. The success of this procedure for automated innovization is highly encouraging and indicates its suitability for further development in tackling more complex design scenarios.

  18. An automatic procedure for optimizing fuel loading in consideration of the effect of burnup nonuniformity in assembly

    Wang Guoli.

    1988-01-01

    The effect of burnup nonuniformity across the assembly on optimizing fuel loading in core is investigated. Some new rules which can be used for optimizing fuel loading in the core are proposed. New automatic procedure for optimizing fuel loading in the core is described

  19. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  20. An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle

    Milinkovitch Michel C

    2007-11-01

    Full Text Available Abstract Background Distance matrix methods constitute a major family of phylogenetic estimation methods, and the minimum evolution (ME principle (aiming at recovering the phylogeny with shortest length is one of the most commonly used optimality criteria for estimating phylogenetic trees. The major difficulty for its application is that the number of possible phylogenies grows exponentially with the number of taxa analyzed and the minimum evolution principle is known to belong to the NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8xdX7Kaeeiuaafaaa@3888@-hard class of problems. Results In this paper, we introduce an Ant Colony Optimization (ACO algorithm to estimate phylogenies under the minimum evolution principle. ACO is an optimization technique inspired from the foraging behavior of real ant colonies. This behavior is exploited in artificial ant colonies for the search of approximate solutions to discrete optimization problems. Conclusion We show that the ACO algorithm is potentially competitive in comparison with state-of-the-art algorithms for the minimum evolution principle. This is the first application of an ACO algorithm to the phylogenetic estimation problem.

  1. Optimized Control Strategy For Over Loaded Offshore Wind Turbines

    Odgaard, Peter Fogh; Knudsen, Torben; Wisniewski, Rafal

    2015-01-01

    controller tuning for a given wind turbine. It also enables a very safe and robust comparison between a new control strategy and the present one. Main body of abstract Is it true that power de-rating indeed the best way to reduce loads? The power de-rating approach has the drawback of only indirectly...

  2. Formulation and Optimization of Celecoxib-Loaded Microspheres ...

    factors in the preparation of celecoxib-loaded microspheres. Methods: ... made with biodegradable polymers, are ... filtration on Whatman filter paper no.1 and washed 4 - 5 times with n-hexane [11]. The product was then air-dried at room.

  3. VVER-440 loading patterns optimization using ATHENA code

    Katovsky, K.; Sustek, J.; Bajgl, J.; Cada, R.

    2009-01-01

    In this paper the Czech optimization state-of-the-art, new code system development goals and OPAL optimization system are briefly mentioned. The algorithms, maths, present status and future developments of the ATHENA code are described. A calculation exercise of the Dukovany NPP cycles, on increased power using ATHENA, starting with on-coming 24th cycle (303 FPD) continuing with 25th (322 FPD), and 26th (336 FPD); for all cycles K R ≤1.54 is presented

  4. Optimization of refueling loading pattern of uranium zirconium hydride research reactor

    Chen Wei; Xie Zhongsheng; Chen Da

    1999-01-01

    The orthogonal design method is used in the optimization of in-core fuel management. A code package of in-core fuel management in hexagonal geometry HEX-ORTH is developed. The loading pattern after the end of 3 cycle of Xi'an Pulsed Reactor is optimized using the HEX-ORTH. The optimistic loading pattern of the core are obtained as the objective function is Max(k eff BOC )

  5. Performance evaluation of Genetic Algorithms on loading pattern optimization of PWRs

    Tombakoglu, M.; Bekar, K.B.; Erdemli, A.O.

    2001-01-01

    Genetic Algorithm (GA) based systems are used for search and optimization problems. There are several applications of GAs in literature successfully applied for loading pattern optimization problems. In this study, we have selected loading pattern optimization problem of Pressurised Water Reactor (PWR). The main objective of this work is to evaluate the performance of Genetic Algorithm operators such as regional crossover, crossover and mutation, and selection and construction of initial population and its size for PWR loading pattern optimization problems. The performance of GA with antithetic variates is compared to traditional GA. Antithetic variates are used to generate the initial population and its use with GA operators are also discussed. Finally, the results of multi-cycle optimization problems are discussed for objective function taking into account cycle burn-up and discharge burn-up.(author)

  6. Optimization of capillary zone electrophoresis for charge heterogeneity testing of biopharmaceuticals using enhanced method development principles.

    Moritz, Bernd; Locatelli, Valentina; Niess, Michele; Bathke, Andrea; Kiessig, Steffen; Entler, Barbara; Finkler, Christof; Wegele, Harald; Stracke, Jan

    2017-12-01

    CZE is a well-established technique for charge heterogeneity testing of biopharmaceuticals. It is based on the differences between the ratios of net charge and hydrodynamic radius. In an extensive intercompany study, it was recently shown that CZE is very robust and can be easily implemented in labs that did not perform it before. However, individual characteristics of some examined proteins resulted in suboptimal resolution. Therefore, enhanced method development principles were applied here to investigate possibilities for further method optimization. For this purpose, a high number of different method parameters was evaluated with the aim to improve CZE separation. For the relevant parameters, design of experiments (DoE) models were generated and optimized in several ways for different sets of responses like resolution, peak width and number of peaks. In spite of product specific DoE optimization it was found that the resulting combination of optimized parameters did result in significant improvement of separation for 13 out of 16 different antibodies and other molecule formats. These results clearly demonstrate generic applicability of the optimized CZE method. Adaptation to individual molecular properties may sometimes still be required in order to achieve optimal separation but the set screws discussed in this study [mainly pH, identity of the polymer additive (HPC versus HPMC) and the concentrations of additives like acetonitrile, butanolamine and TETA] are expected to significantly reduce the effort for specific optimization. 2017 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Loading pattern optimization of PWR reactors using Artificial Bee Colony

    Safarzadeh, O.; Zolfaghari, A.; Norouzi, A.; Minuchehr, H.

    2011-01-01

    Highlights: → ABC algorithm is comparable to the canonical GA algorithm and PSO. → The performance of ABC shows that the algorithm is quiet promising. → The final band width of search fitness values by ABC is narrow. → The ABC algorithm is relatively easy to implement. - Abstract: In this paper a core reloading technique using Artificial Bee Colony algorithm, ABC, is presented in the context of finding an optimal configuration of fuel assemblies. The proposed method can be used for in-core fuel management optimization problems in pressurized water reactors. To evaluate the proposed technique, the power flattening of a VVER-1000 core is considered as an objective function although other variables such as K eff , power peaking factor, burn up and cycle length can also be taken into account. The proposed optimization method is applied to a core design optimization problem previously solved with Genetic and Particle Swarm Intelligence Algorithm. The results, convergence rate and reliability of the new method are quite promising and show that the ABC algorithm performs very well and is comparable to the canonical Genetic Algorithm and Particle Swarm Intelligence, hence demonstrating its potential for other optimization applications in nuclear engineering field as, for instance, the cascade problems.

  8. Optimal fatigue analysis of structures during complex loadings

    Karaouni Habib

    2016-01-01

    Full Text Available A new framework for high cycle fatigue analysis of metallic structures under complex multi-parameter loadings was here developed. This allows to reduce the analysis on a 2-D window with a characterized one-parameter cyclic loading thanks to an equivalence rule relative to damage between any two loadings. The simplified inelastic analysis introduced by J. Zarka [J. Zarka et al. 1990. A new approach in inelastic analysis of structures. CADLM] was used to find the limit state of the structure. A new design rules for fatigue analysis by utilizing automatic learning systems was successfully performed. A database was built by coupling numerical simulations and experimental results on several welded specimens which are considered as a general structure in the proposed approach. This could be possible by the introduction of an intelligent description of a general fatigue case based on the actual theories and models. A software, FATPRO [M.I. Systems, FatPro, available at http://www.mzintsys.com/our_products_fatpro.html], based on this work has been developed at MZ Intelligent Systems.

  9. Application of the distributed genetic algorithm for loading pattern optimization problems

    Hashimoto, Hiroshi; Yamamoto, Akio

    2000-01-01

    The distributed genetic algorithm (DGA) is applied for loading pattern optimization problems of the pressurized water reactors (PWR). Due to stiff nature of the loading pattern optimizations (e.g. multi-modality and non-linearity), stochastic methods like the simulated annealing or the genetic algorithm (GA) are widely applied for these problems. A basic concept of DGA is based on that of GA. However, DGA equally distributes candidates of solutions (i.e. loading patterns) to several independent 'islands' and evolves them in each island. Migrations of some candidates are performed among islands with a certain period. Since candidates of solutions independently evolve in each island with accepting different genes of migrants from other islands, premature convergence in the traditional GA can be prevented. Because many candidate loading patterns should be evaluated in one generation of GA or DGA, the parallelization in these calculations works efficiently. Parallel efficiency was measured using our optimization code and good load balance was attained even in a heterogeneous cluster environment due to dynamic distribution of the calculation load. The optimization code is based on the client/server architecture with the TCP/IP native socket and a client (optimization module) and calculation server modules communicate the objects of loading patterns each other. Throughout the sensitivity study on optimization parameters of DGA, a suitable set of the parameters for a test problem was identified. Finally, optimization capability of DGA and the traditional GA was compared in the test problem and DGA provided better optimization results than the traditional GA. (author)

  10. An Optimized Control for LLC Resonant Converter with Wide Load Range

    Xi, Xia; Qian, Qinsong

    2017-05-01

    This paper presents an optimized control which makes LLC resonant converters operate with a wider load range and provides good closed-loop performance. The proposed control employs two paralleled digital compensations to guarantee the good closed-loop performance in a wide load range during the steady state, an optimized trajectory control will take over to change the gate-driving signals immediately at the load transients. Finally, the proposed control has been implemented and tested on a 150W 200kHz 400V/24V LLC resonant converter and the result validates the proposed method.

  11. Analytic model for ultrasound energy receivers and their optimal electric loads II: Experimental validation

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-10-01

    In this paper, we verify the two optimal electric load concepts based on the zero reflection condition and on the power maximization approach for ultrasound energy receivers. We test a high loss 1-3 composite transducer, and find that the measurements agree very well with the predictions of the analytic model for plate transducers that we have developed previously. Additionally, we also confirm that the power maximization and zero reflection loads are very different when the losses in the receiver are high. Finally, we compare the optimal load predictions by the KLM and the analytic models with frequency dependent attenuation to evaluate the influence of the viscosity.

  12. An Optimal Control Scheme to Minimize Loads in Wind Farms

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    2012-01-01

    This work presents a control algorithm for wind farms that optimizes the power production of the farm and helps to increase the lifetime of wind turbines components. The control algorithm is a centralized approach, and it determines the power reference signals for individual wind turbines...

  13. Shape optimization and sensitivity of compliant beams for prescribed load-displacement response

    Radaelli, G.; Herder, J.L.

    2016-01-01

    This paper presents the shape optimization of a compliant beam for prescribed load-displacements response. The analysis of the design is based on the isogeometric analysis framework for an enhanced fidelity between designed and analysed shape. The sensitivities used for an improved optimization

  14. Load Sharing Multiobjective Optimization Design of a Split Torque Helicopter Transmission

    Chenxi Fu

    2015-01-01

    Full Text Available Split torque designs can offer significant advantages over the traditional planetary designs for helicopter transmissions. However, it has two unique properties, gap and phase differences, which result in the risk of unequal load sharing. Various methods have been proposed to eliminate the effect of gap and promote load sharing to a certain extent. In this paper, system design parameters will be optimized to change the phase difference, thereby further improving load sharing. A nonlinear dynamic model is established to measure the load sharing with dynamic mesh forces quantitatively. Afterwards, a multiobjective optimization of a reference split torque design is conducted with the promoting of load sharing property, lightweight, and safety considered as the objectives. The load sharing property, which is measured by load sharing coefficient, is evaluated under multiple operating conditions with dynamic analysis method. To solve the multiobjective model with NSGA-II, an improvement is done to overcome the problem of time consuming. Finally, a satisfied optimal solution is picked up as the final design from the Pareto optimal front, which achieves improvements in all the three objectives compared with the reference design.

  15. Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling

    Kang Miao Tan

    2017-11-01

    Full Text Available The introduction of electric vehicles into the transportation sector helps reduce global warming and carbon emissions. The interaction between electric vehicles and the power grid has spurred the emergence of a smart grid technology, denoted as vehicle-to grid-technology. Vehicle-to-grid technology manages the energy exchange between a large fleet of electric vehicles and the power grid to accomplish shared advantages for the vehicle owners and the power utility. This paper presents an optimal scheduling of vehicle-to-grid using the genetic algorithm to minimize the power grid load variance. This is achieved by allowing electric vehicles charging (grid-to-vehicle whenever the actual power grid loading is lower than the target loading, while conducting electric vehicle discharging (vehicle-to-grid whenever the actual power grid loading is higher than the target loading. The vehicle-to-grid optimization algorithm is implemented and tested in MATLAB software (R2013a, MathWorks, Natick, MA, USA. The performance of the optimization algorithm depends heavily on the setting of the target load, power grid load and capability of the grid-connected electric vehicles. Hence, the performance of the proposed algorithm under various target load and electric vehicles’ state of charge selections were analysed. The effectiveness of the vehicle-to-grid scheduling to implement the appropriate peak load shaving and load levelling services for the grid load variance minimization is verified under various simulation investigations. This research proposal also recommends an appropriate setting for the power utility in terms of the selection of the target load based on the electric vehicle historical data.

  16. Loading pattern optimization by multi-objective simulated annealing with screening technique

    Tong, K. P.; Hyun, C. L.; Hyung, K. J.; Chang, H. K.

    2006-01-01

    This paper presents a new multi-objective function which is made up of the main objective term as well as penalty terms related to the constraints. All the terms are represented in the same functional form and the coefficient of each term is normalized so that each term has equal weighting in the subsequent simulated annealing optimization calculations. The screening technique introduced in the previous work is also adopted in order to save computer time in 3-D neutronics evaluation of trial loading patterns. For numerical test of the new multi-objective function in the loading pattern optimization, the optimum loading patterns for the initial and the cycle 7 reload PWR core of Yonggwang Unit 4 are calculated by the simulated annealing algorithm with screening technique. A total of 10 optimum loading patterns are obtained for the initial core through 10 independent simulated annealing optimization runs. For the cycle 7 reload core one optimum loading pattern has been obtained from a single simulated annealing optimization run. More SA optimization runs will be conducted to optimum loading patterns for the cycle 7 reload core and results will be presented in the further work. (authors)

  17. A Wind Farm Controller for Load and Power Optimization in a Farm

    Soleimanzadeh, Maryam; Brand, Arno; Wisniewski, Rafal

    2011-01-01

    This paper describes the design procedure of an optimal wind farm controller. The controller optimizes the structural load and power production simultaneously, on the basis of an analytical wind farm model. The farm model delivers maps of wind, loads and energy in the wind farm. Moreover, the model...... computes the wind speed at the turbines, turbine bending moments and aerodynamic power and torque. The optimal control problem is formulated based on the model for two different wind directions. The controller determines the reference signals for each individual wind turbine controller in two scenarios...... based on low and high wind speed. In low wind speed, the reference signals for rotor speed are adjusted, taking the trade-off between power maximization and load minimization into account. In high wind speed, the power and pitch angle reference signals are determined while structural loads are minimized....

  18. Optimization of structures subjected to dynamic load: deterministic and probabilistic methods

    Élcio Cassimiro Alves

    Full Text Available Abstract This paper deals with the deterministic and probabilistic optimization of structures against bending when submitted to dynamic loads. The deterministic optimization problem considers the plate submitted to a time varying load while the probabilistic one takes into account a random loading defined by a power spectral density function. The correlation between the two problems is made by one Fourier Transformed. The finite element method is used to model the structures. The sensitivity analysis is performed through the analytical method and the optimization problem is dealt with by the method of interior points. A comparison between the deterministic optimisation and the probabilistic one with a power spectral density function compatible with the time varying load shows very good results.

  19. Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems: Preprint

    Yang, Rui; Zhang, Yingchen

    2016-08-01

    Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder and results illustrate the superior control performance of the proposed approach.

  20. Efficient Load Forecasting Optimized by Fuzzy Programming and OFDM Transmission

    Sandeep Sachdeva

    2011-01-01

    reduce the error of load forecasting, fuzzy method has been used with Artificial Neural Network (ANN and OFDM transmission is used to get data from outer world and send outputs to outer world accurately and quickly. The error has been reduced to a considerable level in the range of 2-3%. For further reducing the error, Orthogonal Frequency Division Multiplexing (OFDM can be used with Reed-Solomon (RS encoding. Further studies are going on with Fuzzy Regression methods to reduce the error more.

  1. Robust Topology Optimization Based on Stochastic Collocation Methods under Loading Uncertainties

    Qinghai Zhao

    2015-01-01

    Full Text Available A robust topology optimization (RTO approach with consideration of loading uncertainties is developed in this paper. The stochastic collocation method combined with full tensor product grid and Smolyak sparse grid transforms the robust formulation into a weighted multiple loading deterministic problem at the collocation points. The proposed approach is amenable to implementation in existing commercial topology optimization software package and thus feasible to practical engineering problems. Numerical examples of two- and three-dimensional topology optimization problems are provided to demonstrate the proposed RTO approach and its applications. The optimal topologies obtained from deterministic and robust topology optimization designs under tensor product grid and sparse grid with different levels are compared with one another to investigate the pros and cons of optimization algorithm on final topologies, and an extensive Monte Carlo simulation is also performed to verify the proposed approach.

  2. Structure Optimal Design of Electromagnetic Levitation Load Reduction Device for Hydroturbine Generator Set

    Qingyan Wang

    2015-01-01

    Full Text Available Thrust bearing is one part with the highest failure rate in hydroturbine generator set, which is primarily due to heavy axial load. Such heavy load often makes oil film destruction, bearing friction, and even burning. It is necessary to study the load and the reduction method. The dynamic thrust is an important factor to influence the axial load and reduction design of electromagnetic device. Therefore, in the paper, combined with the structure features of vertical turbine, the hydraulic thrust is analyzed accurately. Then, take the turbine model HL-220-LT-550, for instance; the electromagnetic levitation load reduction device is designed, and its mathematical model is built, whose purpose is to minimize excitation loss and total quality under the constraints of installation space, connection layout, and heat dissipation. Particle swarm optimization (PSO is employed to search for the optimum solution; finally, the result is verified by finite element method (FEM, which demonstrates that the optimized structure is more effective.

  3. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads

    Stanford, Bret K.; Dunning, Peter D.

    2014-01-01

    Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.

  4. An Interval Bound Algorithm of optimizing reactor core loading pattern by using reactivity interval schema

    Gong Zhaohu; Wang Kan; Yao Dong

    2011-01-01

    Highlights: → We present a new Loading Pattern Optimization method - Interval Bound Algorithm (IBA). → IBA directly uses the reactivity of fuel assemblies and burnable poison. → IBA can optimize fuel assembly orientation in a coupled way. → Numerical experiment shows that IBA outperforms genetic algorithm and engineers. → We devise DDWF technique to deal with multiple objectives and constraints. - Abstract: In order to optimize the core loading pattern in Nuclear Power Plants, the paper presents a new optimization method - Interval Bound Algorithm (IBA). Similar to the typical population based algorithms, e.g. genetic algorithm, IBA maintains a population of solutions and evolves them during the optimization process. IBA acquires the solution by statistical learning and sampling the control variable intervals of the population in each iteration. The control variables are the transforms of the reactivity of fuel assemblies or the worth of burnable poisons, which are the crucial heuristic information for loading pattern optimization problems. IBA can deal with the relationship between the dependent variables by defining the control variables. Based on the IBA algorithm, a parallel Loading Pattern Optimization code, named IBALPO, has been developed. To deal with multiple objectives and constraints, the Dynamic Discontinuous Weight Factors (DDWF) for the fitness function have been used in IBALPO. Finally, the code system has been used to solve a realistic reloading problem and a better pattern has been obtained compared with the ones searched by engineers and genetic algorithm, thus the performance of the code is proved.

  5. Optimized load sharing control by means of thermal reliability management

    Nesgaard, Carsten; Andersen, Michael Andreas E.

    2004-01-01

    time and system cost. However, due to non-ideal parts each converter unit deviates from the ideal case, which makes a power system comprised of parallel-connected converters a rather poor performing system. To account for the non-ideal parts some form of load sharing is needed, whereby it is ensured......With new applications for high-current low-output voltage power systems emerging nearly every day the need for new and cost-efficient power system designs is a matter of course. As output voltage levels continue to decrease an approach that seems more and more attractive is the implementation...... that each converter in the configuration delivers its share of the total output power. In other words parallel-operation of multiple converters is employed when specifications require a highly reliable system, designable within a very short time frame and at low costs. However, to make full use...

  6. An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics

    Turkington, Bruce

    2013-08-01

    A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.

  7. Optimal loading and protection of multi-state systems considering performance sharing mechanism

    Xiao, Hui; Shi, Daimin; Ding, Yi; Peng, Rui

    2016-01-01

    Engineering systems are designed to carry the load. The performance of the system largely depends on how much load it carries. On the other hand, the failure rate of the system is strongly affected by its load. Besides internal failures, such as fatigue and aging process, systems may also fail due to external impacts such as nature disasters and terrorism. In this paper, we integrate the effect of loading and protection of external impacts on multi-state systems with performance sharing mechanism. The objective of this research is to determine how to balance the load and protection on system elements. An availability evaluation algorithm of the proposed system is suggested and the corresponding optimization problem is solved utilizing genetic algorithms. - Highlights: • Performance sharing of multi-state systems is considered. • The effect of load on system elements is analyzed. • Joint optimization model of element loading and protection is formulated. • Genetic Algorithms are adapted to solve the reliability optimization problem.

  8. Collapsing of multigroup cross sections in optimization problems solved by means of the maximum principle of Pontryagin

    Anton, V.

    1979-05-01

    A new formulation of multigroup cross section collapsing based on the conservation of point or zone value of hamiltonian is presented. This attempt is proper to optimization problems solved by means of maximum principle of Pontryagin. (author)

  9. Optimization and modeling of the remote loading of luciferin into liposomes.

    Hansen, Anders Højgaard; Lomholt, Michael A; Hansen, Per Lyngs; Mouritsen, Ole G; Arouri, Ahmad

    2016-07-11

    We carried out a mechanistic study to characterize and optimize the remote loading of luciferin into preformed liposomes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPC/DPPG) 7:3 mixtures. The influence of the loading agent (acetate, propionate, butyrate), the metal counterion (Na(+), K(+), Ca(+2), Mg(+2)), and the initial extra-liposomal amount of luciferin (nL(add)) on the luciferin Loading Efficiency (LE%) and luciferin-to-lipid weight ratio, i.e., Loading Capacity (LC), in the final formulation was determined. In addition, the effect of the loading process on the colloidal stability and phase behavior of the liposomes was monitored. Based on our experimental results, a theoretical model was developed to describe the course of luciferin remote loading. It was found that the highest luciferin loading was obtained with magnesium acetate. The use of longer aliphatic carboxylates or inorganic proton donors pronouncedly reduced luciferin loading, whereas the effect of the counterion was modest. The remote-loading process barely affected the colloidal stability and drug retention of the liposomes, albeit with moderate luciferin-induced membrane perturbations. The correlation between luciferin loading, expressed as LE% and LC, and nL(add) was established, and under our conditions the maximum LC was attained using an nL(add) of around 2.6μmol. Higher amounts of luciferin tend to pronouncedly perturb the liposome stability and luciferin retention. Our theoretical model furnishes a fair quantitative description of the correlation between nL(add) and luciferin loading, and a membrane permeability coefficient for uncharged luciferin of 1×10(-8)cm/s could be determined. We believe that our study will prove very useful to optimize the remote-loading strategies of moderately polar carboxylic acid drugs in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Optimization principles for preparation methods and properties of fine ferrite materials

    Borisova, N. M.; Golubenko, Z. V.; Kuz'micheva, T. G.; Ol'khovik, L. P.; Shabatin, V. P.

    1992-08-01

    The paper is devoted to the problems of development of fine materials based on Ba-ferrite for vertical magnetic recording in particular. Taking an analogue — BaFe 12-2 xCo xTe xO 19 — we have optimized the melt co-precipitation method and shown a new opportunity to provide chemical homogeneity of microcrystallites by means of cryotechnology. Magnetic characteristics of the magnetic tape experimental sample for digital video recording are presented. A series of principles of consistent control of ferrite powder properties are formulated and illustrated with specific developments.

  11. Optimal control of algae growth by controlling CO 2 and nutrition flow using Pontryagin Maximum Principle

    Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi

    2017-09-01

    There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.

  12. Optimized scalar promotion with load and splat SIMD instructions

    Eichenberger, Alexander E; Gschwind, Michael K; Gunnels, John A

    2013-10-29

    Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.

  13. [Distribution of neural memory, loading factor, its regulation and optimization].

    Radchenko, A N

    1999-01-01

    Recording and retrieving functions of the neural memory are simulated as a control of local conformational processes in neural synaptic fields. The localization of conformational changes is related to the afferent temporal-spatial pulse pattern flow, the microstructure of connections and a plurality of temporal delays in synaptic fields and afferent pathways. The loci of conformations are described by sets of afferent addresses named address domains. Being superimposed on each other, address domains form a multilayer covering of the address space of the neuron or the ensemble. The superposition factor determines the dissemination of the conformational process, and the fuzzing of memory, and its accuracy and reliability. The engram is formed as detects in the packing of the address space and hence can be retrieved in inverse form. The accuracy of the retrieved information depends on the threshold level of conformational transitions, the distribution of conformational changes in synaptic fields of the neuronal population, and the memory loading factor. The latter is represented in the model by a slow potential. It reflects total conformational changes and displaces the membrane potential to monostable conformational regimes, by governing the exit from the recording regime, the potentiation of the neurone, and the readiness to reproduction. A relative amplitude of the slow potential and the coefficient of postconformational modification of ionic conductivity, which provides maximum reliability, accuracy, and capacity of memory, are calculated.

  14. Design And Modeling An Automated Digsilent Power System For Optimal New Load Locations

    Mohamed Saad

    2015-08-01

    Full Text Available Abstract The electric power utilities seek to take advantage of novel approaches to meet growing energy demand. Utilities are under pressure to evolve their classical topologies to increase the usage of distributed generation. Currently the electrical power engineers in many regions of the world are implementing manual methods to measure power consumption for farther assessment of voltage violation. Such process proved to be time consuming costly and inaccurate. Also demand response is a grid management technique where retail or wholesale customers are requested either electronically or manually to reduce their load. Therefore this paper aims to design and model an automated power system for optimal new load locations using DPL DIgSILENT Programming Language. This study is a diagnostic approach that assists system operator about any voltage violation cases that would happen during adding new load to the grid. The process of identifying the optimal bus bar location involves a complicated calculation of the power consumptions at each load bus As a result the DPL program would consider all the IEEE 30 bus internal networks data then a load flow simulation will be executed. To add the new load to the first bus in the network. Therefore the developed model will simulate the new load at each available bus bar in the network and generate three analytical reports for each case that captures the overunder voltage and the loading elements among the grid.

  15. Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market

    Oleinikova, I.; Krishans, Z.; Mutule, A.

    2008-01-01

    The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.

  16. Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.

    2009-01-01

    Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of

  17. Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures

    Lindgaard, Esben; Lund, Erik

    2011-01-01

    This paper focuses on criterion functions for gradient based optimization of the buckling load of laminated composite structures considering different types of buckling behaviour. A local criterion is developed, and is, together with a range of local and global criterion functions from literature......, benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...... solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization. © 2010 Springer-Verlag....

  18. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle; Pedersen, Tom Søndergaard

    1998-01-01

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has therefore been developed. The system is implemented as a complement, producing control signals to be added to those of the existing boiler control system, a concept which has various practical advanta...

  19. Optimization and public radiation exposure. Some problems in principle and practice

    Mitchell, N.T.

    1979-01-01

    In its 1977 recommendations the International Commission on Radiological Protection has laid particular emphasis on application of the principle of optimization in setting controls on the disposal of radioactive wastes that will result in radiation exposure to the public. This principle has been followed in the UK for a long time though it is only recently that it has been possible to apply an even semiquantitative technique in its application. The paper examines the principles of differential cost-benefit analysis and discusses problems in applying this technique. Consideration is given to the assessment of parameter values to be used in the differential cost-benefit equation, these being protection costs, collective dose commitment (and, from it, health detriment) and the more difficult process of attaching a cost to social detriment. Finally, the application of the technique in practice is discussed by illustration of experience gained in the control of liquid effluents from nuclear power stations and a fuel reprocessing plant. It is found that despite the complexity of the technique and the technical difficulties in estimation of many of the parameter values, especially detriment, differential cost-benefit analysis fills a useful if limited role. However, a great many value judgements, some of them implicit in developing data to put into the overall equation, are still required. (author)

  20. Polyurethane foam loaded with sodium dodecylsulfate for the extraction of 'quat' pesticides from aqueous medium: Optimization of loading conditions.

    Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J

    2016-09-01

    The cationic herbicides paraquat, diquat and difenzoquat are largely used in different cultures worldwide. With this, there is an intrinsic risk of environmental contamination when these herbicides achieve natural waters. The goal of this work was to propose a novel and low-cost sorbent for the removal of the cited herbicides from aqueous medium. The proposed sorbent was prepared by loading polyurethane foam with sodium dodecylsulfate. The influence of several parameters (SDS concentration, HCl concentration and shaking time) on the loading process was investigated. The results obtained in this work demonstrated that all studied variables influenced the loading process, having significant effect on the extraction efficiency of the resulted PUF-SDS. At optimized conditions, the PUF was loaded by shaking 200mg of crushed foam with 200mL of a solution containing 5.0×10(-3)molL(-1) SDS and 0.25molL(-1) HCl, for 30min. The obtained PUF-SDS was efficient for removing the three herbicides from aqueous medium, achieving extraction percentages higher than 90%. The sorption process followed a pseudo second-order kinetics, which presented excellent predictive capacity of the amount of herbicide retained with time. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Culture of safety. Indicators of culture of safety. Stage of culture of safety. Optimization of radiating protection. Principle of precaution. Principle ALARA. Procedure ALARA

    Mursa, E.

    2006-01-01

    Object of research: is the theory and practice of optimization of radiating protection according to recommendations of the international organizations, realization of principle ALARA and maintenance of culture of safety (SC) on the nuclear power plant. The purpose of work - to consider the general aspects of realization of principle ALARA, conceptual bases of culture of safety, as principle of management, and practice of their introduction on the nuclear power plant. The work has the experts' report character in which the following questions are presented: The recommendations materials of the IAEA and other international organizations have been assembled, systematized and analyzed. The definitions, characteristics and universal SC features, and also indicators as a problem of parameters and quantitative SC measurements are described in details advanced. The ALARA principles - principle of precaution; not acceptance of zero risk; choice of a principle ALARA; model of acceptable radiation risk are described. The methodology of an estimation of culture of safety level and practical realization of the ALARA principle in separate organization is shown on a practical example. The SC general estimation at a national level in Republic of Moldova have been done. Taking into consideration that now Safety Culture politics are introduced only in relation to APS, in this paper the attempt of application of Safety Culture methodology to Radiological Objects have been made (Oncological Institute of the Republic of Moldova and Special Objects No.5101 and 5102 for a long time Storage of the Radioactive Waste). (authors)

  2. SN-38 loading capacity of hydrophobic polymer blend nanoparticles: formulation, optimization and efficacy evaluation.

    Dimchevska, Simona; Geskovski, Nikola; Petruševski, Gjorgji; Chacorovska, Marina; Popeski-Dimovski, Riste; Ugarkovic, Sonja; Goracinova, Katerina

    2017-03-01

    One of the most important problems in nanoencapsulation of extremely hydrophobic drugs is poor drug loading due to rapid drug crystallization outside the polymer core. The effort to use nanoprecipitation, as a simple one-step procedure with good reproducibility and FDA approved polymers like Poly(lactic-co-glycolic acid) (PLGA) and Polycaprolactone (PCL), will only potentiate this issue. Considering that drug loading is one of the key defining characteristics, in this study we attempted to examine whether the nanoparticle (NP) core composed of two hydrophobic polymers will provide increased drug loading for 7-Ethyl-10-hydroxy-camptothecin (SN-38), relative to NPs prepared using individual polymers. D-optimal design was applied to optimize PLGA/PCL ratio in the polymer blend and the mode of addition of the amphiphilic copolymer Lutrol ® F127 in order to maximize SN-38 loading and obtain NPs with acceptable size for passive tumor targeting. Drug/polymer and polymer/polymer interaction analysis pointed to high degree of compatibility and miscibility among both hydrophobic polymers, providing core configuration with higher drug loading capacity. Toxicity studies outlined the biocompatibility of the blank NPs. Increased in vitro efficacy of drug-loaded NPs compared to the free drug was confirmed by growth inhibition studies using SW-480 cell line. Additionally, the optimized NP formulation showed very promising blood circulation profile with elimination half-time of 7.4 h.

  3. Optimization between heating load and entropy-production rate for endoreversible absorption heat-transformers

    Sun Fengrui; Qin Xiaoyong; Chen Lingen; Wu Chih

    2005-01-01

    For an endoreversible four-heat-reservoir absorption heat-transformer cycle, for which a linear (Newtonian) heat-transfer law applies, an ecological optimization criterion is proposed for the best mode of operation of the cycle. This involves maximizing a function representing the compromise between the heating load and the entropy-production rate. The optimal relation between the ecological criterion and the COP (coefficient of performance), the maximum ecological criterion and the corresponding COP, heating load and entropy production rate, as well as the ecological criterion and entropy-production rate at the maximum heating load are derived using finite-time thermodynamics. Moreover, compared with the heating-load criterion, the effects of the cycle parameters on the ecological performance are studied by numerical examples. These show that achieving the maximum ecological criterion makes the entropy-production rate decrease by 77.0% and the COP increase by 55.4% with only 27.3% heating-load losses compared with the maximum heating-load objective. The results reflect that the ecological criterion has long-term significance for optimal design of absorption heat-transformers

  4. A fast and optimized dynamic economic load dispatch for large scale power systems

    Musse Mohamud Ahmed; Mohd Ruddin Ab Ghani; Ismail Hassan

    2000-01-01

    This paper presents Lagrangian Multipliers (LM) and Linear Programming (LP) based dynamic economic load dispatch (DELD) solution for large-scale power system operations. It is to minimize the operation cost of power generation. units subject to the considered constraints. After individual generator units are economically loaded and periodically dispatched, fast and optimized DELD has been achieved. DELD with period intervals has been taken into consideration The results found from the algorithm based on LM and LP techniques appear to be modest in both optimizing the operation cost and achieving fast computation. (author)

  5. Optimal load suitability based RAT selection for HSDPA and IEEE 802.11e

    Prasad, Ramjee; Cabral, O.; Felez, F.J.

    2009-01-01

    are a premium. This paper investigates cooperation between networks based Radio Access Technology (RAT) selection algorithm that uses suitability to optimize the choice between WiFi and High Speed Downlink Packet Access (HSDPA). It has been shown that this approach has the potential to provide gain...... by allocating a user terminal to the most preferred network based on traffic type and network load. Optimal load threshold values that maximise the total QoS throughput for the given interworking scenario are 0.6 and 0.53 for HSDPA and WiFi, respectively. This corresponds to a CRRM gain on throughput of 80...

  6. Analytic model for ultrasound energy receivers and their optimal electric loads

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-08-01

    In this paper, we present an analytic model for thickness resonating plate ultrasound energy receivers, which we have derived from the piezoelectric and the wave equations and, in which we have included dielectric, viscosity and acoustic attenuation losses. Afterwards, we explore the optimal electric load predictions by the zero reflection and power maximization approaches present in the literature with different acoustic boundary conditions, and discuss their limitations. To validate our model, we compared our expressions with the KLM model solved numerically with very good agreement. Finally, we discuss the differences between the zero reflection and power maximization optimal electric loads, which start to differ as losses in the receiver increase.

  7. Fatigue Load Sensitivity Based Optimal Active Power Dispatch For Wind Farms

    Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun

    2017-01-01

    This paper proposes an optimal active power dispatch algorithm for wind farms based on Wind Turbine (WT) load sensitivity. The control objectives include tracking power references from the system operator and minimizing fatigue loads experienced by WTs. The sensitivity of WT fatigue loads to power...... sensitivity are derived, which significantly improves the computation efficiency of the local WT controller. The proposed algorithm can be implemented in different active power control schemes. Case studies were conducted with a wind farm under balance control for both low and high wind conditions...

  8. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has...... tests on a 265 MW coal-fired power-plant unit reveals that the maximum allowable load gradient that can be imposed on the plant, can be increased from 4 MW/min. to 8 MW/min....

  9. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle

    1998-01-01

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has...... tests on a 265 MW coal-fired power-plant unit reveals that the maximum allowable load gradient that can be imposed on the plant, can be increased from 4 MW/min. to 8 MW/min....

  10. Identifying the optimal resistive load for complex training in male rugby players.

    Comyns, Thomas M; Harrison, Andrew J; Hennessy, Liam; Jensen, Randall L

    2007-01-01

    Alternating a resistance exercise with a plyometric exercise is referred to as "complex training". In this study, we examined the effect of various resistive loads on the biomechanics of performance of a fast stretch-shortening cycle activity to determine if an optimal resistive load exists for complex training. Twelve elite rugby players performed three drop jumps before and after three back squat resistive loads of 65%, 80%, and 93% of a single repetition maximum (1-RM) load. All drop jumps were performed on a specially constructed sledge and force platform apparatus. Flight time, ground contact time, peak ground reaction force, reactive strength index, and leg stiffness were the dependent variables. Repeated-measures analysis of variance found that all resistive loads reduced (P benefit performance. However, it is unknown if these acute changes will produce any long-term adaptations to muscle function.

  11. Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms

    Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.

    2003-01-01

    A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed

  12. Stress-strain state analysis and optimization of rod system under periodic pulse load

    Grebenyuk Grigory

    2018-01-01

    Full Text Available The paper considers the problem of analysis and optimization of rod systems subjected to combined static and periodic pulse load. As a result of the study the analysis method was developed based on traditional approach to solving homogeneous matrix equations of state and a special algorithm for developing a particular solution. The influence of pulse parameters variations on stress-strain state of a rod system was analyzed. Algorithms for rod systems optimization were developed basing on strength recalculation and statement and solution of optimization problem as a problem of nonlinear mathematical programming. Recommendations are developed for efficient organization of process for optimization of rod systems under static and periodic pulse load.

  13. Generalized perturbation theory error control within PWR core-loading pattern optimization

    Imbriani, J.S.; Turinsky, P.J.; Kropaczek, D.J.

    1995-01-01

    The fuel management optimization code FORMOSA-P has been developed to determine the family of near-optimum loading patterns for PWR reactors. The code couples the optimization technique of simulated annealing (SA) with a generalized perturbation theory (GPT) model for evaluating core physics characteristics. To ensure the accuracy of the GPT predictions, as well as to maximize the efficient of the SA search, a GPT error control method has been developed

  14. Development of a VVER-1000 core loading pattern optimization program based on perturbation theory

    Hosseini, Mohammad; Vosoughi, Naser

    2012-01-01

    Highlights: ► We use perturbation theory to find an optimum fuel loading pattern in a VVER-1000. ► We provide a software for in-core fuel management optimization. ► We consider two objectives for our method (perturbation theory). ► We show that perturbation theory method is very fast and accurate for optimization. - Abstract: In-core nuclear fuel management is one of the most important concerns in the design of nuclear reactors. Two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor in order to extract the maximum energy, and keeping the local power peaking factor lower than a predetermined value to maintain the fuel integrity. Because of the numerous possible patterns of fuel assemblies in the reactor core, finding the best configuration is so important and challenging. Different techniques for optimization of fuel loading pattern in the reactor core have been introduced by now. In this study, a software is programmed in C language to find an order of the fuel loading pattern of a VVER-1000 reactor core using the perturbation theory. Our optimization method is based on minimizing the radial power peaking factor. The optimization process launches by considering an initial loading pattern and the specifications of the fuel assemblies which are given as the input of the software. The results on a typical VVER-1000 reactor reveal that the method could reach to a pattern with an allowed radial power peaking factor and increases the cycle length 1.1 days, as well.

  15. The MIND method: A decision support for optimization of industrial energy systems - Principles and case studies

    Karlsson, Magnus

    2011-01-01

    Changes in complex industrial energy systems require adequate tools to be evaluated satisfactorily. The MIND method (Method for analysis of INDustrial energy systems) is a flexible method constructed as decision support for different types of analyses of industrial energy systems. It is based on Mixed Integer Linear Programming (MILP) and developed at Linkoeping University in Sweden. Several industries, ranging from the food industry to the pulp and paper industry, have hitherto been modelled and analyzed using the MIND method. In this paper the principles regarding the use of the method and the creation of constraints of the modelled system are presented. Two case studies are also included, a dairy and a pulp and paper mill, that focus some measures that can be evaluated using the MIND method, e.g. load shaping, fuel conversion and introduction of energy efficiency measures. The case studies illustrate the use of the method and its strengths and weaknesses. The results from the case studies are related to the main issues stated by the European Commission, such as reduction of greenhouse gas emissions, improvements regarding security of supply and increased use of renewable energy, and show great potential as regards both cost reductions and possible load shifting.

  16. Optimizing electrical load pattern in Kuwait using grid connected photovoltaic systems

    Al-Hasan, A.Y.; Ghoneim, A.A.; Abdullah, A.H.

    2004-01-01

    Grid connected photovoltaic systems is one of the most promising applications of photovoltaic systems. These systems are employed in applications where utility service is already available. In this case, there is no need for battery storage because grid power may be used to supplement photovoltaic systems (PV) when the load exceeds available PV generation. The load receives electricity from both the photovoltaic array and the utility grid. In this system, the load is the total electrical energy consumption. The main objective of the present work is to optimize the electrical load pattern in Kuwait using grid connected PV systems. In this situation, the electric load demand can be satisfied from both the photovoltaic array and the utility grid. The performance of grid connected photovoltaic systems in the Kuwait climate has been evaluated. It was found that the peak load matches the maximum incident solar radiation in Kuwait, which would emphasize the role of using the PV station to minimize the electrical load demand. In addition, a significant reduction in peak load can be achieved with grid connected PV systems

  17. Towards Cost and Comfort Based Hybrid Optimization for Residential Load Scheduling in a Smart Grid

    Nadeem Javaid

    2017-10-01

    Full Text Available In a smart grid, several optimization techniques have been developed to schedule load in the residential area. Most of these techniques aim at minimizing the energy consumption cost and the comfort of electricity consumer. Conversely, maintaining a balance between two conflicting objectives: energy consumption cost and user comfort is still a challenging task. Therefore, in this paper, we aim to minimize the electricity cost and user discomfort while taking into account the peak energy consumption. In this regard, we implement and analyse the performance of a traditional dynamic programming (DP technique and two heuristic optimization techniques: genetic algorithm (GA and binary particle swarm optimization (BPSO for residential load management. Based on these techniques, we propose a hybrid scheme named GAPSO for residential load scheduling, so as to optimize the desired objective function. In order to alleviate the complexity of the problem, the multi dimensional knapsack is used to ensure that the load of electricity consumer will not escalate during peak hours. The proposed model is evaluated based on two pricing schemes: day-ahead and critical peak pricing for single and multiple days. Furthermore, feasible regions are calculated and analysed to develop a relationship between power consumption, electricity cost, and user discomfort. The simulation results are compared with GA, BPSO and DP, and validate that the proposed hybrid scheme reflects substantial savings in electricity bills with minimum user discomfort. Moreover, results also show a phenomenal reduction in peak power consumption.

  18. Optimizing Cognitive Load for Learning from Computer-Based Science Simulations

    Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.

    2006-01-01

    How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…

  19. Optimal allocation of industrial PV-storage micro-grid considering important load

    He, Shaohua; Ju, Rong; Yang, Yang; Xu, Shuai; Liang, Lei

    2018-03-01

    At present, the industrial PV-storage micro-grid has been widely used. This paper presents an optimal allocation model of PV-storage micro-grid capacity considering the important load of industrial users. A multi-objective optimization model is established to promote the local extinction of PV power generation and the maximum investment income of the enterprise as the objective function. Particle swarm optimization (PSO) is used to solve the case of a city in Jiangsu Province, the results are analyzed economically.

  20. The Analysis of process optimization during the loading distribution test for steam turbine

    Li Jiangwei; Cao Yuhua; Li Dawei

    2014-01-01

    The loading distribution of steam turbine needs six times to complete in total, the first time is completed when the turbine cylinder buckles, the rest must be completed orderly in the process of installing GVP pipe. To complete 5 tests of loading distribution and installation of GVP pipe, it usually takes around 90 days for most nuclear plants while the unit l of Fuqing Nuclear Power Station compress it into about 45 days by optimizing the installation process. this article describes the successful experience of how the Unit l of Fuqing Nuclear Power Station finished 5 tests of loading distribution and installation of GVP pipe in 45 days by optimizing the process, Meanwhile they analysis the advantages and disadvantages through comparing it with the process provide by suppliers, which brings up some rationalization proposals for installation work to the follow-up units of our plant. (authors)

  1. Optimization programs for reactor core fuel loading exhibiting reduced neutron leakage

    Darilek, P.

    1991-01-01

    The program MAXIM was developed for the optimization of the fuel loading of WWER-440 reactors. It enables the reactor core reactivity to be maximized by modifying the arrangement of the fuel assemblies. The procedure is divided into three steps. The first step includes the passage from the three-dimensional model of the reactor core to the two-dimensional model. In the second step, the solution to the problem is sought assuming that the multiplying properties, or the reactivity in the zones of the core, vary continuously. In the third step, parameters of actual fuel assemblies are inserted in the ''continuous'' solution obtained. Combined with the program PROPAL for a detailed refinement of the loading, the program MAXIM forms a basis for the development of programs for the optimization of fuel loading with burnable poisons. (Z.M.). 16 refs

  2. Performance of Estimation of distribution algorithm for initial core loading optimization of AHWR-LEU

    Thakur, Amit; Singh, Baltej; Gupta, Anurag; Duggal, Vibhuti; Bhatt, Kislay; Krishnani, P.D.

    2016-01-01

    Highlights: • EDA has been applied to optimize initial core of AHWR-LEU. • Suitable value of weighing factor ‘α’ and population size in EDA was estimated. • The effect of varying initial distribution function on optimized solution was studied. • For comparison, Genetic algorithm was also applied. - Abstract: Population based evolutionary algorithms now form an integral part of fuel management in nuclear reactors and are frequently being used for fuel loading pattern optimization (LPO) problems. In this paper we have applied Estimation of distribution algorithm (EDA) to optimize initial core loading pattern (LP) of AHWR-LEU. In EDA, new solutions are generated by sampling the probability distribution model estimated from the selected best candidate solutions. The weighing factor ‘α’ decides the fraction of current best solution for updating the probability distribution function after each generation. A wider use of EDA warrants a comprehensive study on parameters like population size, weighing factor ‘α’ and initial probability distribution function. In the present study, we have done an extensive analysis on these parameters (population size, weighing factor ‘α’ and initial probability distribution function) in EDA. It is observed that choosing a very small value of ‘α’ may limit the search of optimized solutions in the near vicinity of initial probability distribution function and better loading patterns which are away from initial distribution function may not be considered with due weightage. It is also observed that increasing the population size improves the optimized loading pattern, however the algorithm still fails if the initial distribution function is not close to the expected optimized solution. We have tried to find out the suitable values for ‘α’ and population size to be considered for AHWR-LEU initial core loading pattern optimization problem. For sake of comparison and completeness, we have also addressed the

  3. Optimization strategies for cask design and container loading in long term spent fuel storage

    2006-12-01

    As delays are incurred in implementing reprocessing and in planning for geologic repositories, storage of increasing quantities of spent fuel for extended durations is becoming a growing reality. Accordingly, effective management of spent fuel continues to be a priority topic. In response, the IAEA has organized a series of meetings to identify cask loading optimisation issues in preparation for a technical publication on Optimization Strategies for Cask/Container Loading in Long Term Spent Fuel Storage. This publication outlines the optimisation process for cask design, licensing and utilization, describing three principal groups of optimization activities in terms of relevant technical considerations such as criticality, shielding, structural design, operations, maintenance and retrievability. The optimization process for cask design, licensing, and utilization is outlined. The general objectives for the design of storage casks, including storage casks that are intended to be transportable, are summarized. The nature of optimization within the design process is described. The typical regulatory and licensing process is outlined, focusing on the roles of safety regulations, the regulator, and the designer/applicant in the optimization process. Based on the foregoing, a description of the three principal groups of optimization activities is provided. The subsequent chapters of this document then describe the specific optimization activities within these three activity groups, in each of the several design disciplines

  4. [Optimization of trehalose loading in red blood cells before freeze-drying].

    Zhuang, Yuan; Liu, Jing-Han; Ouyang, Xi-Lin; Chen, Lin-Feng; Che, Ji

    2007-04-01

    The key points for better protection of trehalose in freeze-drying red blood cells (RBCs) are to resolve non-osmosis of trehalose to red blood cells and to make cytoplasmic trehalose to reach effective concentration. This study was aimed to investigate the regularity of loading RBCs with trehalose, screen out optimal loading condition and evaluate the effect of trehalose on physico-chemical parameters of RBCs during the period of loading. The cytoplasmic trehalose concentration in red blood cells, free hemoglobin and ATP level were determined at different incubation temperatures (4, 22 and 37 degrees C), different trehaolse concentrations (0, 200, 400, 600, 800 and 1000 mmol/L) and different incubation times (2, 4, 6, 8 and 10 hours), the cytoplasmic trehalose, free hemoglobin (FHb), hemoglobin (Hb) and mean corpuscular volume (MCV) in fresh RBCs and RBCs stored for 72 hours at 4 degrees C were compared, when loading condition was ensured. The results showed that with increase of incubation temperature, time and extracellular trehalose concentration, the loading of trehalose in RBCs also increased. Under the optimal loading condition, cytoplasmic trehalose concentration and free hemoglobin level of fresh RBCs and RBCs stored for 72 hours at 4 degrees C were 65.505 +/- 6.314 mmol/L, 66.2 +/- 5.002 mmol/L and 6.567 +/- 2.568 g/L, 16.168 +/- 3.922 g/L respectively. It is concluded that the most optimal condition of loading trehalose is that fresh RBCs incubate in 800 mmol/L trehalose solution for 8 hours at 37 degrees C. This condition can result in a efficient cytoplasmic trehalose concentration. The study provides an important basis for long-term preservation of RBCs.

  5. Optimal task partition and state-dependent loading in heterogeneous two-element work sharing system

    Levitin, Gregory; Xing, Liudong; Ben-Haim, Hanoch; Dai, Yuanshun

    2016-01-01

    Many real-world systems such as multi-channel data communication, multi-path flow transmission and multi-processor computing systems have work sharing attributes where system elements perform different portions of the same task simultaneously. Motivated by these applications, this paper models a heterogeneous work-sharing system with two non-repairable elements. When one element fails, the other element takes over the uncompleted task of the failed element upon finishing its own part; the load level of the remaining operating element can change at the time of the failure, which further affects its performance, failure behavior and operation cost. Considering these dynamics, mission success probability (MSP), expected mission completion time (EMCT) and expected cost of successful mission (ECSM) are first derived. Further, optimization problems are formulated and solved, which find optimal task partition and element load levels maximizing MSP, minimizing EMCT or minimizing ECSM. Effects of element reliability, performance, operation cost on the optimal solutions are also investigated through examples. Results of this work can facilitate a tradeoff analysis of different mission performance indices for heterogeneous work-sharing systems. - Highlights: • A heterogeneous work-sharing system with two non-repairable elements is considered. • The optimal work distribution and element loading problem is formulated and solved. • Effects of element reliability, performance, operation cost on the optimal solutions are investigated.

  6. Optimization of Boiler Control for Improvement of Load Following Capabilities of Existing Power Plants

    Mortensen, J. H.; Mølbak, T.; Pedersen, Tom Søndergaard

    1997-01-01

    An An optimizing control system for improving the load following capabilities of power plant units has been developed. The system is implemented as a complement producing additive control signals to the existing boiler control system, a concept which has various practical advantages in terms...... of implementation and commissioning. The optimizing control system takes into account the multivariable and nonlinear characteristics of the boiler process as a gain-scheduled LQG-controller is utilized. Simulation results indicate that a reduction of steam temperature deviations of about 75% can be obtained.......optimizing control system for improving the load following capabilities of power plant units has been developed. The system is implemented as a complement producing additive control signals to the existing boiler control system, a concept which has various practical advantages in terms of implementation...

  7. Active load sharing technique for on-line efficiency optimization in DC microgrids

    Sanseverino, E. Riva; Zizzo, G.; Boscaino, V.

    2017-01-01

    Recently, DC power distribution is gaining more and more importance over its AC counterpart achieving increased efficiency, greater flexibility, reduced volumes and capital cost. In this paper, a 24-120-325V two-level DC distribution system for home appliances, each including three parallel DC......-DC converters, is modeled. An active load sharing technique is proposed for the on-line optimization of the global efficiency of the DC distribution network. The algorithm aims at the instantaneous efficiency optimization of the whole DC network, based on the on-line load current sampling. A Look Up Table......, is created to store the real efficiencies of the converters taking into account components tolerances. A MATLAB/Simulink model of the DC distribution network has been set up and a Genetic Algorithm has been employed for the global efficiency optimization. Simulation results are shown to validate the proposed...

  8. Optimal design of high-speed loading spindle based on ABAQUS

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  9. Optimizing load transfer in multiwall nanotubes through interwall coupling: Theory and simulation

    Byrne, E.M.; Letertre, A.; McCarthy, M.A.; Curtin, W.A.; Xia, Z.

    2010-01-01

    An analytical model is developed to determine the length scales over which load is transferred from outer to inner walls of multiwall carbon nanotubes (MWCNTs) as a function of the amount of bonding between walls. The model predicts that the characteristic length for load transfer scales as l∼t√(E/μ-bar), where t is the CNT wall spacing, E is the effective wall Young's modulus, and μ-bar is the average interwall shear modulus due to interwall coupling. Molecular dynamics simulations for MWCNTs with up to six walls, and with interwall coupling achieved by interwall sp 3 bonding at various densities, provide data against which the model is tested. For interwall bonding having a uniform axial distribution, the analytic and simulation models agree well, showing that continuum mechanics concepts apply down to the atomic scale in this problem. The simulation models show, however, that load transfer is sensitive to natural statistical fluctuations in the spatial distribution of the interwall bonding between pairs of walls, and such fluctuations generally increase the net load transfer length needed to fully load an MWCNT. Optimal load transfer is achieved when bonding is uniformly distributed axially, and all interwall regions have the same shear stiffness, implying a linear decrease in the number of interwall bonds with distance from the outer wall. Optimal load transfer into an n-wall MWCNT is shown to occur over a length of ∼1.5nl. The model can be used to design MWCNTs for structural materials, and to interpret load transfer characteristics deduced from experiments on individual MWCNTs.

  10. Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis.

    Kong, Liang; Gu, Zexu; Li, Tao; Wu, Junjie; Hu, Kaijin; Liu, Yanpu; Zhou, Hongzhi; Liu, Baolin

    2009-01-01

    A nonlinear finite element method was applied to examine the effects of implant diameter and length on the maximum von Mises stresses in the jaw, and to evaluate the maximum displacement of the implant-abutment complex in immediate-loading models. The implant diameter (D) ranged from 3.0 to 5.0 mm and implant length (L) ranged from 6.0 to 16.0 mm. The results showed that the maximum von Mises stress in cortical bone was decreased by 65.8% under a buccolingual load with an increase in D. In cancellous bone, it was decreased by 71.5% under an axial load with an increase in L. The maximum displacement in the implant-abutment complex decreased by 64.8% under a buccolingual load with an increase in D. The implant was found to be more sensitive to L than to D under axial loads, while D played a more important role in enhancing its stability under buccolingual loads. When D exceeded 4.0 mm and L exceeded 11.0 mm, both minimum stress and displacement were obtained. Therefore, these dimensions were the optimal biomechanical selections for immediate-loading implants in type B/2 bone.

  11. A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle

    Wang Zhifeng; Ye Xiongying

    2013-01-01

    Carbon nanotubes (CNTs) filled polymeric composites can be used as a kind of flexible piezoresistive material in potentially many fields. Due to the diversity of CNTs and polymers, the mechanism and features of their piezoresistive behaviour is still not fully understood. This paper reports our investigations into the mechanism and optimization of piezoresistive CNT/polymer composites. Numerical simulation results showed that the junction resistances between CNTs are a major component of the network conductance of the composite as well as the piezoresistive behaviour. Average junction gap variation (AJGV) was introduced as a quantitative description of the conductance variation of a CNT network caused by strain and the conductance variation of the CNT network was found to be dominated by AJGV. Numerical simulation and analytical results indicated that the key parameters affecting AJGV include the orientation and diameter of CNTs, Poisson’s ratio of the polymer, and the concentration of CNTs in the polymer matrix. An optimizing principle was then given for piezoresistive CNT/polymer composites. (paper)

  12. Ergonomic principles for the design of combined drilling and loading machines

    Mason, S.; Simpson, G.C.

    1990-08-08

    Underground investigations of development machines have revealed a number of limitations in ergonomics aspects of their design which could influence both the safety and efficiency of the operation. This handbook is intended to provide designers of Combined Drilling and Loading machines with the ergonomic information which can be used to eliminate or reduce such problems. The following criteria were examined: workspace position; operator clearances; operator protection; operator visual communications; operator visual machine monitoring; operator visual safety information; operator seating; operature posture; operator access to workspace; control types; control operating forces; control-response stereotypes; safety controls; control dynamics; control layout; control clearances; control protection; visual displays.

  13. Principles of Emergency Department facility design for optimal management of mass-casualty incidents.

    Halpern, Pinchas; Goldberg, Scott A; Keng, Jimmy G; Koenig, Kristi L

    2012-04-01

    The Emergency Department (ED) is the triage, stabilization and disposition unit of the hospital during a mass-casualty incident (MCI). With most EDs already functioning at or over capacity, efficient management of an MCI requires optimization of all ED components. While the operational aspects of MCI management have been well described, the architectural/structural principles have not. Further, there are limited reports of the testing of ED design components in actual MCI events. The objective of this study is to outline the important infrastructural design components for optimization of ED response to an MCI, as developed, implemented, and repeatedly tested in one urban medical center. In the authors' experience, the most important aspects of ED design for MCI have included external infrastructure and promoting rapid lockdown of the facility for security purposes; an ambulance bay permitting efficient vehicle flow and casualty discharge; strategic placement of the triage location; patient tracking techniques; planning adequate surge capacity for both patients and staff; sufficient command, control, communications, computers, and information; well-positioned and functional decontamination facilities; adequate, well-located and easily distributed medical supplies; and appropriately built and functioning essential services. Designing the ED to cope well with a large casualty surge during a disaster is not easy, and it may not be feasible for all EDs to implement all the necessary components. However, many of the components of an appropriate infrastructural design add minimal cost to the normal expenditures of building an ED. This study highlights the role of design and infrastructure in MCI preparedness in order to assist planners in improving their ED capabilities. Structural optimization calls for a paradigm shift in the concept of structural and operational ED design, but may be necessary in order to maximize surge capacity, department resilience, and patient and

  14. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  15. On the optimization of thorium bundle distribution in the initial core loading for a PHWR

    Mishra, S.; Ray, S.; Kumar, A.N.; Modak, R.S.; Ganesan, S.

    2009-01-01

    If the initial core of Indian 220 MWe PHWR is loaded with all fresh Natural Uranium fuel, only about 70% Full Power can be drawn in the initial operation due to large power peaking. It is possible to load few tens of Th bundles at selected locations to get nearly full power without violating any safety limits. Finding the best possible locations is, however, a fairly complex and massive combinatorial optimization problem. Here, optimum solutions are obtained by a latest evolutionary algorithm called EDA implemented on the EKA built at Computational Research Laboratories (CRL) in Pune. The effect of varying the number of Th bundles on results is discussed. (author)

  16. Genetic algorithm for the optimization of the loading pattern for reactor core fuel management

    Zhou Sheng; Hu Yongming; zheng Wenxiang

    2000-01-01

    The paper discusses the application of a genetic algorithm to the optimization of the loading pattern for in-core fuel management with the NP characteristics. The algorithm develops a matrix model for the fuel assembly loading pattern. The burnable poisons matrix was assigned randomly considering the distributed nature of the poisons. A method based on the traveling salesman problem was used to solve the problem. A integrated code for in-core fuel management was formed by combining this code with a reactor physics code

  17. Loading pattern calculated by inverse optimization vs traditional dosimetry systems of intracavitary brachytherapy of cervical cancer: a dosimetric study

    Jamema, S.V.; Deshpande, D.D.; Kirisits, C.; Trnkova, P.; Poetter, R.; Mahantshetty, U.; Shrivastava, S.K.; Dinshaw, K.A.

    2008-01-01

    In the recent past, inverse planning algorithms were introduced for intracavitary brachytherapy planning (ICBT) for cervical cancer. The loading pattern of these algorithms in comparison with traditional systems may not be similar. The purpose of this study was to objectively compare the loading patterns of traditional systems with the inverse optimization. Based on the outcome of the comparison, an attempt was made to obtain a loading pattern that takes into account the experience made with the inverse optimization

  18. Optimality study of a gust alleviation system for light wing-loading STOL aircraft

    Komoda, M.

    1976-01-01

    An analytical study was made of an optimal gust alleviation system that employs a vertical gust sensor mounted forward of an aircraft's center of gravity. Frequency domain optimization techniques were employed to synthesize the optimal filters that process the corrective signals to the flaps and elevator actuators. Special attention was given to evaluating the effectiveness of lead time, that is, the time by which relative wind sensor information should lead the actual encounter of the gust. The resulting filter is expressed as an implicit function of the prescribed control cost. A numerical example for a light wing loading STOL aircraft is included in which the optimal trade-off between performance and control cost is systematically studied.

  19. [Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology].

    Zhang, An-yang; Fan, Tian-yuan

    2010-04-18

    To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.

  20. Cost optimization of load carrying thin-walled precast high performance concrete sandwich panels

    Hodicky, Kamil; Hansen, Sanne; Hulin, Thomas

    2015-01-01

    and HPCSP’s geometrical parameters as well as on material cost function in the HPCSP design. Cost functions are presented for High Performance Concrete (HPC), insulation layer, reinforcement and include labour-related costs. The present study reports the economic data corresponding to specific manufacturing......The paper describes a procedure to find the structurally and thermally efficient design of load-carrying thin-walled precast High Performance Concrete Sandwich Panels (HPCSP) with an optimal economical solution. A systematic optimization approach is based on the selection of material’s performances....... The solution of the optimization problem is performed in the computer package software Matlab® with SQPlab package and integrates the processes of HPCSP design, quantity take-off and cost estimation. The proposed optimization process outcomes in complex HPCSP design proposals to achieve minimum cost of HPCSP....

  1. Optimization of scintillator loading with the tellurium-130 isotope for long-term stability

    Duhamel, Lauren; Song, Xiaoya; Goutnik, Michael; Kaptanoglu, Tanner; Klein, Joshua; SNO+ Collaboration

    2017-09-01

    Tellurium-130 was selected as the isotope for the SNO + neutrinoless double beta decay search, as 130Te decays to 130Xe via double beta decay. Linear alkyl benzene(LAB) is the liquid scintillator for the SNO + experiment. To load tellurium into scintillator, it is combined with 1,2-butanediol to form an organometallic complex, commonly called tellurium butanediol (TeBD). This study focuses on maximizing the percentage of tellurium loaded into scintillator and evaluates the complex's long-term stability. Studies on the effect of nucleation due to imperfections in the detector's surface and external particulates were employed by filtration and induced nucleation. The impact of water on the stability of TeBD complex was evaluated by liquid-nitrogen sparging, variability in pH and induced humidity. Alternative loading methods were evaluated, including the addition of stability-inducing organic compounds. Samples of tellurium-loaded scintillator were synthesized, treated, and consistently monitored in a controlled environment. It was found that the hydronium ions cause precipitation in the loaded scintillator, demonstrating that water has a detrimental effect on long-term stability. Optimization of loaded scintillator stability can contribute to the SNO + double beta decay search.

  2. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  3. Optimization of ciprofloxacin complex loaded PLGA nanoparticles for pulmonary treatment of cystic fibrosis infections: Design of experiments approach.

    Günday Türeli, Nazende; Türeli, Akif Emre; Schneider, Marc

    2016-12-30

    Design of Experiments (DoE) is a powerful tool for systematic evaluation of process parameters' effect on nanoparticle (NP) quality with minimum number of experiments. DoE was employed for optimization of ciprofloxacin loaded PLGA NPs for pulmonary delivery against Pseudomonas aeruginosa infections in cystic fibrosis (CF) lungs. Since the biofilm produced by bacteria was shown to be a complicated 3D barrier with heterogeneous meshes ranging from 100nm to 500nm, nanoformulations small enough to travel through those channels were assigned as target quality. Nanoprecipitation was realized utilizing MicroJet Reactor (MJR) technology based on impinging jets principle. Effect of MJR parameters flow rate, temperature and gas pressure on particle size and PDI was investigated using Box-Behnken design. The relationship between process parameters and particle quality was demonstrated by constructed fit functions (R 2 =0.9934 p65%. Response surface plots provided experimental data-based understanding of MJR parameters' effect, thus NP quality. Presented work enables ciprofloxacin loaded PLGA nanoparticle preparations with pre-defined quality to fulfill the requirements of local drug delivery under CF disease conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads

    Donoso, Alberto; Sigmund, Ole

    2009-01-01

    The paper considers optimal design problems in the context of active damping. More specifically, we are interested in controlling the tip-deflection of a cantilever beam subjected to static and time-harmonic loading on its free extreme. First, the thickness profile of a piezoelectric bimorph...... actuator is optimized and second, the width profile. In the thickness study, formulation and results depend on whether the electric field or the applied voltage is kept constant. For the latter case we propose a differentiable model that connects electric field and piezo-actuator thickness to include...

  5. Optimal Control of Hypersonic Planning Maneuvers Based on Pontryagin’s Maximum Principle

    A. Yu. Melnikov

    2015-01-01

    Full Text Available The work objective is the synthesis of simple analytical formula of the optimal roll angle of hypersonic gliding vehicles for conditions of quasi-horizontal motion, allowing its practical implementation in onboard control algorithms.The introduction justifies relevance, formulates basic control tasks, and describes a history of scientific research and achievements in the field concerned. The author reveals a common disadvantage of the other authors’ methods, i.e. the problem of practical implementation in onboard control algorithms.The similar tasks of hypersonic maneuvers are systemized according to the type of maneuver, control parameters and limitations.In the statement of the problem the glider launched horizontally with a suborbital speed glides passive in the static Atmosphere on a spherical surface of constant radius in the Central field of gravitation.The work specifies a system of equations of motion in the inertial spherical coordinate system, sets the limits on the roll angle and optimization criteria at the end of the flight: high speed or azimuth and the minimum distances to the specified geocentric points.The solution.1 A system of equations of motion is transformed by replacing the time argument with another independent argument – the normal equilibrium overload. The Hamiltonian and the equations of mated parameters are obtained using the Pontryagin’s maximum principle. The number of equations of motion and mated vector is reduced.2 The mated parameters were expressed by formulas using current movement parameters. The formulas are proved through differentiation and substitution in the equations of motion.3 The Formula of optimal roll-position control by condition of maximum is obtained. After substitution of mated parameters, the insertion of constants, and trigonometric transformations the Formula of the optimal roll angle is obtained as functions of the current parameters of motion.The roll angle is expressed as the ratio

  6. Continuum topology optimization considering uncertainties in load locations based on the cloud model

    Liu, Jie; Wen, Guilin

    2018-06-01

    Few researchers have paid attention to designing structures in consideration of uncertainties in the loading locations, which may significantly influence the structural performance. In this work, cloud models are employed to depict the uncertainties in the loading locations. A robust algorithm is developed in the context of minimizing the expectation of the structural compliance, while conforming to a material volume constraint. To guarantee optimal solutions, sufficient cloud drops are used, which in turn leads to low efficiency. An innovative strategy is then implemented to enormously improve the computational efficiency. A modified soft-kill bi-directional evolutionary structural optimization method using derived sensitivity numbers is used to output the robust novel configurations. Several numerical examples are presented to demonstrate the effectiveness and efficiency of the proposed algorithm.

  7. A New Method for Optimal Regularization Parameter Determination in the Inverse Problem of Load Identification

    Wei Gao

    2016-01-01

    Full Text Available According to the regularization method in the inverse problem of load identification, a new method for determining the optimal regularization parameter is proposed. Firstly, quotient function (QF is defined by utilizing the regularization parameter as a variable based on the least squares solution of the minimization problem. Secondly, the quotient function method (QFM is proposed to select the optimal regularization parameter based on the quadratic programming theory. For employing the QFM, the characteristics of the values of QF with respect to the different regularization parameters are taken into consideration. Finally, numerical and experimental examples are utilized to validate the performance of the QFM. Furthermore, the Generalized Cross-Validation (GCV method and the L-curve method are taken as the comparison methods. The results indicate that the proposed QFM is adaptive to different measuring points, noise levels, and types of dynamic load.

  8. Optimization of Boiler Heat Load in Water-Heating Boiler-House

    B. A. Bayrashevsky

    2009-01-01

    Full Text Available An analytical method for optimization of water-heating boiler loads has been developed on the basis of approximated semi-empirical dependences pertaining to changes of boiler gross efficiency due to its load. A complex (∂tух/∂ξΔξ is determined on the basis of a systematic analysis (monitoring of experimental data and the Y. P. Pecker’s formula for calculation of balance losses q2. This complex makes it possible to set a corresponding correction to a standard value of the boiler gross efficiency due to contamination of heating surfaces.Software means for optimization of water-heating boilers has been developed and it is recommended to be applied under operational conditions.

  9. Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.

    Feng, Jianyuan; Feng, Zhiyong

    2017-09-11

    Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.

  10. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model

    Hong, W.-C.

    2009-01-01

    Accurate forecasting of electric load has always been the most important issues in the electricity industry, particularly for developing countries. Due to the various influences, electric load forecasting reveals highly nonlinear characteristics. Recently, support vector regression (SVR), with nonlinear mapping capabilities of forecasting, has been successfully employed to solve nonlinear regression and time series problems. However, it is still lack of systematic approaches to determine appropriate parameter combination for a SVR model. This investigation elucidates the feasibility of applying chaotic particle swarm optimization (CPSO) algorithm to choose the suitable parameter combination for a SVR model. The empirical results reveal that the proposed model outperforms the other two models applying other algorithms, genetic algorithm (GA) and simulated annealing algorithm (SA). Finally, it also provides the theoretical exploration of the electric load forecasting support system (ELFSS)

  11. Performance of an optimally contact-cooled high-heat-load mirror at the APS

    Cai, Z.; Khounsary, A.; Lai, B.; McNulty, I.; Yun, W.

    1998-01-01

    X-ray undulator beamlines at third-generation synchrotrons facilities use either a monochromator or a mirror as the first optical element. In this paper, the thermal and optical performance of an optimally designed contact-cooled high-heat-load x-ray mirror used as the first optical element on the 2ID undulator beamline at the Advanced Photon Source (APS) is reported. It is shown that this simple and economical mirror design can comfortably handle the high heat load of undulator beamlines and provide good performance with long-term reliability and ease of operation. Availability and advantages of such mirrors can make the mirror-first approach to high-heat-load beamline design an attractive alternative to monochromator-first beamlines in many circumstances

  12. Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique.

    Karthivashan, Govindarajan; Masarudin, Mas Jaffri; Kura, Aminu Umar; Abas, Faridah; Fakurazi, Sharida

    2016-01-01

    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising

  13. Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch

    Cheng Chuntian; Liao Shengli; Tang Zitian; Zhao Mingyan

    2009-01-01

    Dynamic programming (DP) is one of classic and sophisticated optimization methods that have successfully been applied to solve the problem of hydro unit load dispatch (HULD). However, DP will be faced with the curse of dimensionality with the increase of unit number and installed generating capacity of hydropower station. With the appearance of the huge hydropower station similar to the Three George with 26 generators of 700 MW, it is hard to apply the DP to large scale HULD problem. It is crucial to seek for other optimization techniques in order to improve the operation quality and efficiency. Different with the most of literature about power generation scheduling that focused on the comparisons of novel PSO algorithms with other techniques, the paper will pay emphasis on comparison study of PSO with DP based on a case hydropower station. The objective of study is to seek for an effective and feasible method for the large scale of hydropower station of the current and future in China. This paper first compares the performance of PSO and DP using a sample load curve of the Wujiangdu hydropower plant located in the upper stream of the Yangtze River in China and contained five units with the installed capacity of 1250 MW. Next, the effect of different load interval and unit number on the optimal results and efficiency of two methods has also been implemented. The comparison results show that the PSO is feasible for HULD. Furthermore, we simulated the effect of the magnitude of unit number and load capacity on the optimal results and cost time. The simulation comparisons show that PSO has a great advantage over DP in the efficiency and will be one of effective methods for HULD problem of huge hydropower stations.

  14. The rule of nuclear power in the base-load portfolio optimization process

    Desiata, L.; D'Alberti, F.

    2007-01-01

    The pursuit of optimal portfolios, maximizing long-term profitability, is the main strategic challenge faced by electricity producers nowadays. Investment decisions, worth billions of euros, are affected by spot factors (such as current fuel prices volatility) that often lead to unbalanced generation mixes. Our analysis presents a statistical-financial approach that highlights the role of nuclear within the base-load portfolio optimisation process [it

  15. Power efficiency optimization of disk-loaded waveguide traveling wave structure of electron linear accelerator

    Yang Jinghe; Li Jinhai; Li Chunguang

    2014-01-01

    Disk-loaded waveguide traveling wave structure (TWS), which is widely used in scientific research and industry, is a vital accelerating structure in electron linear accelerator. The power efficiency is an important parameter for designing TWS, which greatly effects the expenses for the fabrication and commercial running. The key parameters related with power efficiency were studied for TWS optimization. The result was proved by experiment result, and it shows some help for accelerator engineering. (authors)

  16. Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch

    Cheng Chuntian, E-mail: ctcheng@dlut.edu.c [Department of Civil and Hydraulic Engineering, Dalian University of Technology, 116024 Dalian (China); Liao Shengli; Tang Zitian [Department of Civil and Hydraulic Engineering, Dalian University of Technology, 116024 Dalian (China); Zhao Mingyan [Department of Environmental Science and Engineering, Tsinghua University, 100084 Beijing (China)

    2009-12-15

    Dynamic programming (DP) is one of classic and sophisticated optimization methods that have successfully been applied to solve the problem of hydro unit load dispatch (HULD). However, DP will be faced with the curse of dimensionality with the increase of unit number and installed generating capacity of hydropower station. With the appearance of the huge hydropower station similar to the Three George with 26 generators of 700 MW, it is hard to apply the DP to large scale HULD problem. It is crucial to seek for other optimization techniques in order to improve the operation quality and efficiency. Different with the most of literature about power generation scheduling that focused on the comparisons of novel PSO algorithms with other techniques, the paper will pay emphasis on comparison study of PSO with DP based on a case hydropower station. The objective of study is to seek for an effective and feasible method for the large scale of hydropower station of the current and future in China. This paper first compares the performance of PSO and DP using a sample load curve of the Wujiangdu hydropower plant located in the upper stream of the Yangtze River in China and contained five units with the installed capacity of 1250 MW. Next, the effect of different load interval and unit number on the optimal results and efficiency of two methods has also been implemented. The comparison results show that the PSO is feasible for HULD. Furthermore, we simulated the effect of the magnitude of unit number and load capacity on the optimal results and cost time. The simulation comparisons show that PSO has a great advantage over DP in the efficiency and will be one of effective methods for HULD problem of huge hydropower stations.

  17. Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch

    Chun-tian Cheng; Sheng-li Liao; Zi-Tian Tang [Dept. of Civil and Hydraulic Engineering, Dalian Univ. of Technology, 116024 Dalian (China); Ming-yan Zhao [Dept. of Environmental Science and Engineering, Tsinghua Univ., 100084 Beijing (China)

    2009-12-15

    Dynamic programming (DP) is one of classic and sophisticated optimization methods that have successfully been applied to solve the problem of hydro unit load dispatch (HULD). However, DP will be faced with the curse of dimensionality with the increase of unit number and installed generating capacity of hydropower station. With the appearance of the huge hydropower station similar to the Three George with 26 generators of 700 MW, it is hard to apply the DP to large scale HULD problem. It is crucial to seek for other optimization techniques in order to improve the operation quality and efficiency. Different with the most of literature about power generation scheduling that focused on the comparisons of novel PSO algorithms with other techniques, the paper will pay emphasis on comparison study of PSO with DP based on a case hydropower station. The objective of study is to seek for an effective and feasible method for the large scale of hydropower station of the current and future in China. This paper first compares the performance of PSO and DP using a sample load curve of the Wujiangdu hydropower plant located in the upper stream of the Yangtze River in China and contained five units with the installed capacity of 1250 MW. Next, the effect of different load interval and unit number on the optimal results and efficiency of two methods has also been implemented. The comparison results show that the PSO is feasible for HULD. Furthermore, we simulated the effect of the magnitude of unit number and load capacity on the optimal results and cost time. The simulation comparisons show that PSO has a great advantage over DP in the efficiency and will be one of effective methods for HULD problem of huge hydropower stations. (author)

  18. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro-in vivo correlation.

    Jiang, Yunxia; Wang, Fang; Xu, Hui; Liu, Hui; Meng, Qingguo; Liu, Wanhui

    2014-11-20

    The purpose of this study was to develop a sustained-release drug delivery system based on the injectable PLGA microspheres loaded with andrographolide. The andrographolide loaded PLGA microspheres were prepared by emulsion solvent evaporation method with optimization of formulation using response surface methodology (RSM). Physicochemical characterization, in vitro release behavior and in vivo pharmacokinetics of the optimized formulation were then evaluated. The percent absorbed in vivo was determined by deconvolution using the Loo-Riegelman method, and then the in vitro-in vivo correlation (IVIVC) was established. Results showed that the microspheres were spherical with a smooth surface. Average particle size, entrapment efficiency and drug loading were found to be 53.18±2.11 μm, 75.79±3.02% and 47.06±2.18%, respectively. In vitro release study showed a low initial burst release followed by a prolonged release up to 9 days and the release kinetics followed the Korsmeyer-Peppas model. After a single intramuscular injection, the microspheres maintained relatively high plasma concentration of andrographolide over one week. A good linear relationship was observed between the in vitro and in vivo release behavior (R(2)=0.9951). These results suggest the PLGA microspheres could be developed as a potential delivery system for andrographolide with high drug loading capacity and sustained drug release. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Loading pattern optimization with maximum utilization of discharging fuel employing adaptively constrained discontinuous penalty function

    Park, T. K.; Joo, H. G.; Kim, C. H.

    2010-01-01

    In order to find the most economical loading pattern (LP) considering multi-cycle fuel loading, multi-objective fuel LP optimization problems are examined by employing an adaptively constrained discontinuous penalty function (ACDPF) method. This is an improved method to simplify the complicated acceptance logic of the original DPF method in that the stochastic effects caused by the different random number sequence can be reduced. The effectiveness of the multi-objective simulated annealing (SA) algorithm employing ACDPF is examined for the reload core LP of Cycle 4 of Yonggwang Nuclear Unit 4. Several optimization runs are performed with different numbers of objectives consisting of cycle length and average burnup of fuels to be discharged or reloaded. The candidate LPs obtained from the multi-objective optimization runs turn out to be better than the reference LP in the aspects of cycle length and utilization of given fuels. It is note that the proposed ACDPF based MOSA algorithm can be a practical method to obtain an economical LP considering multi-cycle fuel loading. (authors)

  20. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box-Behnken design.

    Wang, Fengzhen; Chen, Li; Jiang, Sunmin; He, Jun; Zhang, Xiumei; Peng, Jin; Xu, Qunwei; Li, Rui

    2014-09-01

    The purpose of the present study was to optimize methazolamide (MTZ)-loaded solid lipid nanoparticles (SLNs) which were used as topical eye drops by evaluating the relationship between design factors and experimental data. A three factor, three-level Box-Behnken design (BBD) was used for the optimization procedure, choosing the amount of GMS, the amount of phospholipid, the concentration of surfactant as the independent variables. The chosen dependent variables were entrapment efficiency, dosage loading, and particle size. The generated polynomial equations and response surface plots were used to relate the dependent and independent variables. The optimal nanoparticles were formulated with 100 mg GMS, 150 mg phospholipid, and 1% Tween80 and PEG 400 (1:1, w/v). A new formulation was prepared according to these levels. The observed responses were close to the predicted values of the optimized formulation. The particle size was 197.8 ± 4.9 nm. The polydispersity index of particle size was 0.239 ± 0.01 and the zeta potential was 32.7 ± 2.6 mV. The entrapment efficiency and dosage loading were about 68.39% and 2.49%, respectively. Fourier transform infrared spectroscopy (FT-IR) study indicated that the drug was entrapped in nanoparticles. The optimized formulation showed a sustained release followed the Peppas model. MTZ-SLNs showed significant prolonged decreasing intraocular pressure effect comparing with MTZ solution in vivo pharmacodynamics studies. The results of acute eye irritation study indicated that MTZ-SLNs and AZOPT both had no eye irritation. Furthermore, the MTZ-SLNs were suitable to be stored at low temperature (4 °C).

  1. Use and optimization of a dual-flowrate loading strategy to maximize throughput in protein-a affinity chromatography.

    Ghose, Sanchayita; Nagrath, Deepak; Hubbard, Brian; Brooks, Clayton; Cramer, Steven M

    2004-01-01

    The effect of an alternate strategy employing two different flowrates during loading was explored as a means of increasing system productivity in Protein-A chromatography. The effect of such a loading strategy was evaluated using a chromatographic model that was able to accurately predict experimental breakthrough curves for this Protein-A system. A gradient-based optimization routine is carried out to establish the optimal loading conditions (initial and final flowrates and switching time). The two-step loading strategy (using a higher flowrate during the initial stages followed by a lower flowrate) was evaluated for an Fc-fusion protein and was found to result in significant improvements in process throughput. In an extension of this optimization routine, dynamic loading capacity and productivity were simultaneously optimized using a weighted objective function, and this result was compared to that obtained with the single flowrate. Again, the dual-flowrate strategy was found to be superior.

  2. Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads

    Olama, Mohammed M [ORNL; Sharma, Isha [ORNL; Kuruganti, Teja [ORNL; Fugate, David L [ORNL

    2017-01-01

    In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis of building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.

  3. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models.

    Ran, Shi-Ju

    2016-05-01

    In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising

  4. Normalization of doxorubicin release from graphene oxide: New approach for optimization of effective parameters on drug loading.

    Hashemi, Mohadeseh; Yadegari, Amir; Yazdanpanah, Ghasem; Omidi, Meisam; Jabbehdari, Sayena; Haghiralsadat, Fatemeh; Yazdian, Fatemeh; Tayebi, Lobat

    2017-05-01

    Graphene oxide (GO) has been recently introduced as a suitable anticancer drug carrier, which could be loaded with doxorubicin (DOX) as a general chemotherapy agent. Herein, the attempts were made to optimize the effective parameters on both loading and release of DOX on GO. GO and GO-DOX were characterized using transition electron microscopy , zeta potential, Raman spectroscopy, UV-visible spectroscopy, and Fourier transform infrared spectroscopy. In addition, loading and releasing behaviors of DOX on GO were studied in terms of different temperature and pH values. The primary optimized values of pH and temperature for best-loaded amount of DOX were 8.9 and 309 K, respectively. Moreover, we found that the smallest amount of released DOX, in pH of cancer microenvironment (5.4), occurs when DOX had been previously loaded in pH 7.8 and 310 K. Although the highest amount of loaded DOX was in basic pH, the results of efficient release of DOX from the GO-DOX complex and also cellular toxicity assay revealed that the best pH for loading of DOX on GO was 7.8. Therefore, in addition to optimization of parameters for efficient loading of DOX on GO, this study suggested that normalization of a released drug compared with the amount of a loaded drug could be a new approach for optimization of drug loading on nanocarriers. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  5. Energy-aware hybrid fruitfly optimization for load balancing in cloud environments for EHR applications

    M. Lawanyashri

    Full Text Available Cloud computing has gained precise attention from the research community and management of IT, due to its scalable and dynamic capabilities. It is evolving as a vibrant technology to modernize and restructure healthcare organization to provide best services to the consumers. The rising demand for healthcare services and applications in cloud computing leads to the imbalance in resource usage and drastically increases the power consumption resulting in high operating cost. To achieve fast execution time and optimum utilization of the virtual machines, we propose a multi-objective hybrid fruitfly optimization technique based on simulated annealing to improve the convergence rate and optimization accuracy. The proposed approach is used to achieve the optimal resource utilization and reduces the energy consumption and cost in cloud computing environment. The result attained in our proposed technique provides an improved solution. The experimental results show that the proposed algorithm efficiently outperforms compared to the existing load balancing algorithms. Keywords: Cloud computing, Electronic Health Records (EHR, Load balancing, Fruitfly Optimization Algorithm (FOA, Simulated Annealing (SA, Energy consumption

  6. Topology optimization for elastic base under rectangular plate subjected to moving load

    Jilavyan Samvel H.

    2015-09-01

    Full Text Available Distribution optimization of elastic material under elastic isotropic rectangular thin plate subjected to concentrated moving load is investigated in the present paper. The aim of optimization is to damp its vibrations in finite (fixed time. Accepting Kirchhoff hypothesis with respect to the plate and Winkler hypothesis with respect to the base, the mathematical model of the problem is constructed as two-dimensional bilinear equation, i.e. linear in state and control function. The maximal quantity of the base material is taken as optimality criterion to be minimized. The Fourier distributional transform and the Bubnov-Galerkin procedures are used to reduce the problem to integral equality type constraints. The explicit solution in terms of two- dimensional Heaviside‘s function is obtained, describing piecewise-continuous distribution of the material. The determination of the switching points is reduced to a problem of nonlinear programming. Data from numerical analysis are presented.

  7. Optimization of Boiling Water Reactor Loading Pattern Using Two-Stage Genetic Algorithm

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2002-01-01

    A new two-stage optimization method based on genetic algorithms (GAs) using an if-then heuristic rule was developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). In the first stage, the LP is optimized using an improved GA operator. In the second stage, an exposure-dependent control rod pattern (CRP) is sought using GA with an if-then heuristic rule. The procedure of the improved GA is based on deterministic operators that consist of crossover, mutation, and selection. The handling of the encoding technique and constraint conditions by that GA reflects the peculiar characteristics of the BWR. In addition, strategies such as elitism and self-reproduction are effectively used in order to improve the search speed. The LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and constraints dependent on three dimensions have always necessitated the use of three-dimensional core simulators for BWRs, so that optimization of computational efficiency is required. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant in two phases. One phase is only LP optimization applying the Haling technique. The other phase is an LP optimization that considers the CRP during reactor operation. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained

  8. A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects

    Niknam, Taher, E-mail: niknam@sutech.ac.i [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of); Mojarrad, Hasan Doagou, E-mail: hasan_doagou@yahoo.co [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of); Meymand, Hamed Zeinoddini, E-mail: h.zeinaddini@gmail.co [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of)

    2011-04-15

    Economic dispatch (ED) is one of the important problems in the operation and management of the electric power systems which is formulated as an optimization problem. Modern heuristics stochastic optimization techniques appear to be efficient in solving ED problem without any restriction because of their ability to seek the global optimal solution. One of modern heuristic algorithms is particle swarm optimization (PSO). In PSO algorithm, particles change place to get close to the best position and find the global minimum point. Also, differential evolution (DE) is a robust statistical method for solving non-linear and non-convex optimization problem. The fast convergence of DE degrades its performance and reduces its search capability that leads to a higher probability towards obtaining a local optimum. In order to overcome this drawback a hybrid method is presented to solve the ED problem with valve-point loading effect by integrating the variable DE with the fuzzy adaptive PSO called FAPSO-VDE. DE is the main optimizer and the PSO is used to maintain the population diversity and prevent leading to misleading local optima for every improvement in the solution of the DE run. The parameters of proposed hybrid algorithm such as inertia weight, mutation and crossover factors are adaptively adjusted. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated for two case studies and results are compared with those of other methods. It is shown that FAPSO-VDE has high quality solution, superior convergence characteristics and shorter computation time.

  9. MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design

    Torrents, A.; Azgin, K.; Godfrey, S. W.; Topalli, E. S.; Akin, T.; Valdevit, L.

    2010-12-01

    This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ~0.5-10 nN are feasible in vacuum (~1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ~23 nN at a vacuum level of ~50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.

  10. Design principles and optimal performance for molecular motors under realistic constraints

    Tu, Yuhai; Cao, Yuansheng

    2018-02-01

    The performance of a molecular motor, characterized by its power output and energy efficiency, is investigated in the motor design space spanned by the stepping rate function and the motor-track interaction potential. Analytic results and simulations show that a gating mechanism that restricts forward stepping in a narrow window in configuration space is needed for generating high power at physiologically relevant loads. By deriving general thermodynamics laws for nonequilibrium motors, we find that the maximum torque (force) at stall is less than its theoretical limit for any realistic motor-track interactions due to speed fluctuations. Our study reveals a tradeoff for the motor-track interaction: while a strong interaction generates a high power output for forward steps, it also leads to a higher probability of wasteful spontaneous back steps. Our analysis and simulations show that this tradeoff sets a fundamental limit to the maximum motor efficiency in the presence of spontaneous back steps, i.e., loose-coupling. Balancing this tradeoff leads to an optimal design of the motor-track interaction for achieving a maximum efficiency close to 1 for realistic motors that are not perfectly coupled with the energy source. Comparison with existing data and suggestions for future experiments are discussed.

  11. Practical application of the ALARA principle in management of the nuclear legacy: optimization under uncertainty

    Smith, Graham; Sneve, Malgorzata K.

    2008-01-01

    Full text: Radiological protection has a long and distinguished history in taking a balanced approach to optimization. Both utilitarian and individual interests and perspectives are addressed through a process of constrained optimisation, with optimisation intended to lead to the most benefit to the most people, and constraints being operative to limit the degree of inequity among the individuals exposed. At least, expressed simplistically, that is what the recommendations on protection are intended to achieve. This paper examines the difficulties in achieving that objective, based on consideration of the active role of optimisation in regulatory supervision of the historic nuclear legacy. This example is chosen because the application of the ALARA principle has important implications for some very major projects whose objective is remediation of existing legacy facilities. But it is also relevant because timely, effective and cost efficient completion of those projects has implications for confidence in the future development of nuclear power and other uses of radioactive materials. It is also an interesting example because legacy management includes mitigation of some major short and long term hazards, but those mitigating measures themselves involve operations with their own risk, cost and benefit profiles. Like any other complex activity, a legacy management project has to be broken down into logistically feasible parts. However, from a regulatory perspective, simultaneous application of ALARA to worker protection, major accident risk mitigation and long-term environmental and human health protection presents its own challenges. Major uncertainties which exacerbate the problem arise from ill-characterised source terms, estimation of the likelihood of unlikely failures in operational processes, and prospective assessment of radiological impacts over many hundreds of years and longer. The projects themselves are set to run over decades, during which time the

  12. Optimization of economic load dispatch of higher order general cost polynomials and its sensitivity using modified particle swarm optimization

    Saber, Ahmed Yousuf; Chakraborty, Shantanu; Abdur Razzak, S.M.; Senjyu, Tomonobu

    2009-01-01

    This paper presents a modified particle swarm optimization (MPSO) for constrained economic load dispatch (ELD) problem. Real cost functions are more complex than conventional second order cost functions when multi-fuel operations, valve-point effects, accurate curve fitting, etc., are considering in deregulated changing market. The proposed modified particle swarm optimization (PSO) consists of problem dependent variable number of promising values (in velocity vector), unit vector and error-iteration dependent step length. It reliably and accurately tracks a continuously changing solution of the complex cost function and no extra concentration/effort is needed for the complex higher order cost polynomials in ELD. Constraint management is incorporated in the modified PSO. The modified PSO has balance between local and global searching abilities, and an appropriate fitness function helps to converge it quickly. To avoid the method to be frozen, stagnated/idle particles are reset. Sensitivity of the higher order cost polynomials is also analyzed visually to realize the importance of the higher order cost polynomials for the optimization of ELD. Finally, benchmark data sets and methods are used to show the effectiveness of the proposed method. (author)

  13. Tackling optimization challenges in industrial load control and full-duplex radios

    Gholian, Armen

    In price-based demand response programs in smart grid, utilities set the price in accordance with the grid operating conditions and consumers respond to price signals by conducting optimal load control to minimize their energy expenditure while satisfying their energy needs. Industrial sector consumes a large portion of world electricity and addressing optimal load control of energy-intensive industrial complexes, such as steel industry and oil-refinery, is of practical importance. Formulating a general industrial complex and addressing issues in optimal industrial load control in smart grid is the focus of the second part of this dissertation. Several industrial load details are considered in the proposed formulation, including those that do not appear in residential or commercial load control problems. Operation under different smart pricing scenarios, namely, day-ahead pricing, time-of-use pricing, peak pricing, inclining block rates, and critical peak pricing are considered. The use of behind-the-meter renewable generation and energy storage is also considered. The formulated optimization problem is originally nonlinear and nonconvex and thus hard to solve. However, it is then reformulated into a tractable linear mixed-integer program. The performance of the design is assessed through various simulations for an oil refinery and a steel mini-mill. In the third part of this dissertation, a novel all-analog RF interference canceler is proposed. Radio self-interference cancellation (SIC) is the fundamental enabler for full-duplex radios. While SIC methods based on baseband digital signal processing and/or beamforming are inadequate, an all-analog method is useful to drastically reduce the self-interference as the first stage of SIC. It is shown that a uniform architecture with uniformly distributed RF attenuators has a performance highly dependent on the carrier frequency. It is also shown that a new architecture with the attenuators distributed in a clustered

  14. Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization

    Martin-del-Campo, Cecilia; Palomera-Perez, Miguel-Angel; Francois, Juan-Luis

    2009-01-01

    This work proposes advances in the implementation of a flexible genetic algorithm (GA) for fuel loading pattern optimization for Boiling Water Reactors (BWRs). In order to avoid specific implementations of genetic operators and to obtain a more flexible treatment, a binary representation of the solution was implemented; this representation had to take into account that a little change in the genotype must correspond to a little change in the phenotype. An identifier number is assigned to each assembly by means of a Gray Code of 7 bits and the solution (the loading pattern) is represented by a binary chain of 777 bits of length. Another important contribution is the use of a Fitness Function which includes a Heuristic Function and an Objective Function. The Heuristic Function which is defined to give flexibility on the application of a set of positioning rules based on knowledge, and the Objective Function that contains all the parameters which qualify the neutronic and thermal hydraulic performances of each loading pattern. Experimental results illustrating the effectiveness and flexibility of this optimization algorithm are presented and discussed.

  15. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  16. Bioactive Molecule-loaded Drug Delivery Systems to Optimize Bone Tissue Repair.

    Oshiro, Joao Augusto; Sato, Mariana Rillo; Scardueli, Cassio Rocha; Lopes de Oliveira, Guilherme Jose Pimentel; Abucafy, Marina Paiva; Chorilli, Marlus

    2017-01-01

    Bioactive molecules such as peptides and proteins can optimize the repair of bone tissue; however, the results are often unpredictable when administered alone, owing to their short biological half-life and instability. Thus, the development of bioactive molecule-loaded drug delivery systems (DDS) to repair bone tissue has been the subject of intense research. DDS can optimize the repair of bone tissue owing to their physicochemical properties, which improve cellular interactions and enable the incorporation and prolonged release of bioactive molecules. These characteristics are fundamental to favor bone tissue homeostasis, since the biological activity of these factors depends on how accessible they are to the cell. Considering the importance of these DDS, this review aims to present relevant information on DDS when loaded with osteogenic growth peptide and bone morphogenetic protein. These are bioactive molecules that are capable of modulating the differentiation and proliferation of mesenchymal cells in bone tissue cells. Moreover, we will present different approaches using these peptide and protein-loaded DDS, such as synthetic membranes and scaffolds for bone regeneration, synthetic grafts, bone cements, liposomes, and micelles, which aim at improving the therapeutic effectiveness, and we will compare their advantages with commercial systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    Yang, Shu; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606

  18. Formulation and Optimization of Multiparticulate Drug Delivery System Approach for High Drug Loading.

    Shah, Neha; Mehta, Tejal; Gohel, Mukesh

    2017-08-01

    The aim of the present work was to develop and optimize multiparticulate formulation viz. pellets of naproxen by employing QbD and risk assessment approach. Mixture design with extreme vertices was applied to the formulation with high loading of drug (about 90%) and extrusion-spheronization as a process for manufacturing pellets. Independent variables chosen were level of microcrystalline cellulose (MCC)-X 1 , polyvinylpyrrolidone K-90 (PVP K-90)-X 2 , croscarmellose sodium (CCS)-X 3 , and polacrilin potassium (PP)-X 4 . Dependent variables considered were disintegration time (DT)-Y 1 , sphericity-Y 2 , and percent drug release-Y 3 . The formulation was optimized based on the batches generated by MiniTab 17 software. The batch with maximum composite desirability (0.98) proved to be optimum. From the evaluation of design batches, it was observed that, even in low variation, the excipients affect the pelletization property of the blend and also the final drug release. In conclusion, pellets with high drug loading can be effectively manufactured and optimized systematically using QbD approach.

  19. Energy Coordinative Optimization of Wind-Storage-Load Microgrids Based on Short-Term Prediction

    Changbin Hu

    2015-02-01

    Full Text Available According to the topological structure of wind-storage-load complementation microgrids, this paper proposes a method for energy coordinative optimization which focuses on improvement of the economic benefits of microgrids in the prediction framework. First of all, the external characteristic mathematical model of distributed generation (DG units including wind turbines and storage batteries are established according to the requirements of the actual constraints. Meanwhile, using the minimum consumption costs from the external grid as the objective function, a grey prediction model with residual modification is introduced to output the predictive wind turbine power and load at specific periods. Second, based on the basic framework of receding horizon optimization, an intelligent genetic algorithm (GA is applied to figure out the optimum solution in the predictive horizon for the complex non-linear coordination control model of microgrids. The optimum results of the GA are compared with the receding solution of mixed integer linear programming (MILP. The obtained results show that the method is a viable approach for energy coordinative optimization of microgrid systems for energy flow and reasonable schedule. The effectiveness and feasibility of the proposed method is verified by examples.

  20. Dynamic response and optimal design of curved metallic sandwich panels under blast loading.

    Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  1. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    Chang Qi

    2014-01-01

    Full Text Available It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  2. Multiobjective CVaR Optimization Model and Solving Method for Hydrothermal System Considering Uncertain Load Demand

    Zhongfu Tan

    2015-01-01

    Full Text Available In order to solve the influence of load uncertainty on hydrothermal power system operation and achieve the optimal objectives of system power generation consumption, pollutant emissions, and first-stage hydropower station storage capacity, this paper introduced CVaR method and built a multiobjective optimization model and its solving method. In the optimization model, load demand’s actual values and deviation values are regarded as random variables, scheduling objective is redefined to meet confidence level requirement and system operation constraints and loss function constraints are taken into consideration. To solve the proposed model, this paper linearized nonlinear constraints, applied fuzzy satisfaction, fuzzy entropy, and weighted multiobjective function theories to build a fuzzy entropy multiobjective CVaR model. The model is a mixed integer linear programming problem. Then, six thermal power plants and three cascade hydropower stations are taken as the hydrothermal system for numerical simulation. The results verified that multiobjective CVaR method is applicable to solve hydrothermal scheduling problems. It can better reflect risk level of the scheduling result. The fuzzy entropy satisfaction degree solving algorithm can simplify solving difficulty and get the optimum operation scheduling scheme.

  3. Optimal Design and Real Time Implementation of Autonomous Microgrid Including Active Load

    Mohamed A. Hassan

    2018-05-01

    Full Text Available Controller gains and power-sharing parameters are the main parameters affect the dynamic performance of the microgrid. Considering an active load to the autonomous microgrid, the stability problem will be more involved. In this paper, the active load effect on microgrid dynamic stability is explored. An autonomous microgrid including three inverter-based distributed generations (DGs with an active load is modeled and the associated controllers are designed. Controller gains of the inverters and active load as well as Phase Locked Loop (PLL parameters are optimally tuned to guarantee overall system stability. A weighted objective function is proposed to minimize the error in both measured active power and DC voltage based on time-domain simulations. Different AC and DC disturbances are applied to verify and assess the effectiveness of the proposed control strategy. The results demonstrate the potential of the proposed controller to enhance the microgrid stability and to provide efficient damping characteristics. Additionally, the proposed controller is compared with the literature to demonstrate its superiority. Finally, the microgrid considered has been established and implemented on real time digital simulator (RTDS. The experimental results validate the simulation results and approve the effectiveness of the proposed controllers to enrich the stability of the considered microgrid.

  4. A new optimization method based on cellular automata for VVER-1000 nuclear reactor loading pattern

    Fadaei, Amir Hosein; Setayeshi, Saeed

    2009-01-01

    This paper presents a new and innovative optimization technique, which uses cellular automata for solving multi-objective optimization problems. Due to its ability in simulating the local information while taking neighboring effects into account, the cellular automata technique is a powerful tool for optimization. The fuel-loading pattern in nuclear reactor cores is a major optimization problem. Due to the immensity of the search space in fuel management optimization problems, finding the optimum solution requires a huge amount of calculations in the classical method. The cellular automata models, based on local information, can reduce the computations significantly. In this study, reducing the power peaking factor, while increasing the initial excess reactivity inside the reactor core of VVER-1000, which are two apparently contradictory objectives, are considered as the objective functions. The result is an optimum configuration, which is in agreement with the pattern proposed by the designer. In order to gain confidence in the reliability of this method, the aforementioned problem was also solved using neural network and simulated annealing, and the results and procedures were compared.

  5. Impact of optimal load response to real-time electricity price on power system constraints in Denmark

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to a real-time electricity price...... and may represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. A distribution system where wind power capacity is 126% of maximum loads is chosen as the study case. This paper presents a nonlinear load optimization method to real-time power price...... for demand side management in order to save the energy costs as much as possible. Simulation results show that the optimal load response to a real-time electricity price has some good impacts on power system constraints in a distribution system with high wind power penetrations....

  6. Optimal Selection of Clustering Algorithm via Multi-Criteria Decision Analysis (MCDA for Load Profiling Applications

    Ioannis P. Panapakidis

    2018-02-01

    Full Text Available Due to high implementation rates of smart meter systems, considerable amount of research is placed in machine learning tools for data handling and information retrieval. A key tool in load data processing is clustering. In recent years, a number of researches have proposed different clustering algorithms in the load profiling field. The present paper provides a methodology for addressing the aforementioned problem through Multi-Criteria Decision Analysis (MCDA and namely, using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS. A comparison of the algorithms is employed. Next, a single test case on the selection of an algorithm is examined. User specific weights are applied and based on these weight values, the optimal algorithm is drawn.

  7. Towards optimization of nuclear waste glass: Constraints, property models, and waste loading

    Hrma, P.

    1994-04-01

    Vitrification of both low- and high-level wastes from 177 tanks at Hanford poses a great challenge to glass makers, whose task is to formulate a system of glasses that are acceptable to the federal repository for disposal. The enormous quantity of the waste requires a glass product of the lowest possible volume. The incomplete knowledge of waste composition, its variability, and lack of an appropriate vitrification technology further complicates this difficult task. A simple relationship between the waste loading and the waste glass volume is presented and applied to the predominantly refractory (usually high-activity) and predominantly alkaline (usually low-activity) waste types. Three factors that limit waste loading are discussed, namely product acceptability, melter processing, and model validity. Glass formulation and optimization problems are identified and a broader approach to uncertainties is suggested

  8. An exact model for airline flight network optimization based on transport momentum and aircraft load factor

    Daniel Jorge Caetano

    2017-12-01

    Full Text Available The problem of airline flight network optimization can be split into subproblems such as Schedule Generation (SG and Fleet Assignment (FA, solved in consecutive steps or in an integrated way, usually based on monetary costs and revenue forecasts. A linear pro­gramming model to solve SG and FA in an integrated way is presented, but with an al­ternative approach based on transport momentum and aircraft load factor. This alterna­tive approach relies on demand forecast and allows obtaining solutions considering min­imum average load factors. Results of the proposed model applications to instances of a regional Brazilian airline are presented. The comparison of the schedules generated by the proposed approach against those obtained by applying a model based on mone­tary costs and revenue forecasts demonstrates the validity of this alternative approach for airlines network planning.

  9. Optimizing physicians' instruction of PACS through e-learning: cognitive load theory applied.

    Devolder, P; Pynoo, B; Voet, T; Adang, L; Vercruysse, J; Duyck, P

    2009-03-01

    This article outlines the strategy used by our hospital to maximize the knowledge transfer to referring physicians on using a picture archiving and communication system (PACS). We developed an e-learning platform underpinned by the cognitive load theory (CLT) so that in depth knowledge of PACS' abilities becomes attainable regardless of the user's prior experience with computers. The application of the techniques proposed by CLT optimizes the learning of the new actions necessary to obtain and manipulate radiological images. The application of cognitive load reducing techniques is explained with several examples. We discuss the need to safeguard the physicians' main mental processes to keep the patient's interests in focus. A holistic adoption of CLT techniques both in teaching and in configuration of information systems could be adopted to attain this goal. An overview of the advantages of this instruction method is given both on the individual and organizational level.

  10. Curcumin-loaded mixed micelles: preparation, optimization, physicochemical properties and cytotoxicity in vitro.

    Duan, Yuwei; Wang, Juan; Yang, Xiaoye; Du, Hongliang; Xi, Yanwei; Zhai, Guangxi

    2015-01-01

    Although curcumin (CUR) can inhibit proliferation and induce apoptosis of tumors, the poor water solubility restricted its clinical application. The aim of this study was to improve the aqueous solubility of CUR and make more favorable changes to bioactivity by preparing curcumin-loaded phospholipid-sodium deoxycholate-mixed micelles (CUR-PC-SDC-MMs). CUR-PC-SDC-MMs were prepared by the thin-film dispersion method. Based on the results of single factor exploration, the preparation technology was optimized using the central composite design-response surface methodology with drug loading and entrapment efficiency (EE%) as indicators. The images of transmission electron microscopy showed that the optimized CUR-PC-SDC-MMs were spherical and well dispersed. The average size of the mixed micelles was 66.5 nm, the zeta potential was about -26.96 mV and critical micelle concentration was 0.0087 g/l. CUR was encapsulated in PC-SDC-MMs with loading capacity of 13.12%, EE% of 87.58%, and the solubility of CUR in water was 3.14 mg/ml. The release results in vitro showed that the mixed micelles presented sustained release behavior compared to the propylene glycol solution of CUR. The IC50 values of CUR-loaded micelles and free drug in human breast carcinoma cell lines were 4.10 μg/ml and 6.93 µg/ml, respectively. It could be concluded from the above results that the CUR-PC-SDC-MMs system might serve as a promising nanocarrier to improve the solubility and bioactivity of CUR.

  11. Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch

    Gu, Wei; Lu, Shuai; Wu, Zhi; Zhang, Xuesong; Zhou, Jinhui; Zhao, Bo; Wang, Jun

    2017-01-01

    Highlights: •A bilateral transaction mode for the residential CCHP microgrid is proposed. •An energy pricing strategy for the residential CCHP system is proposed. •A novel integrated demand response for the residential loads is proposed. •Two-stage operation optimization model for the CCHP microgrid is proposed. •Operations of typical days and annual scale of the CCHP microgrid are studied. -- Abstract: As the global energy crisis, environmental pollution, and global warming grow in intensity, increasing attention is being paid to combined cooling, heating, and power (CCHP) systems that realize high-efficiency cascade utilization of energy. This paper proposes a bilateral transaction mechanism between a residential CCHP system and a load aggregator (LA). The variable energy cost of the CCHP system is analyzed, based on which an energy pricing strategy for the CCHP system is proposed. Under this pricing strategy, the electricity price is constant, while the heat/cool price is ladder-shaped and dependent on the relationship between the electrical, heat, and cool loads. For the LA, an integrated demand response program is proposed that combines electricity-load shifting and a flexible heating/cooling supply, in which a thermodynamic model of buildings is used to determine the appropriate range of heating/cooling supply. Subsequently, a two-stage optimal dispatch model is proposed for the energy system that comprises the CCHP system and the LA. Case studies consisting of three scenarios (winter, summer, and excessive seasons) are delivered to demonstrate the effectiveness of the proposed approach, and the performance of the proposed pricing strategy is also evaluated by annual operation simulations.

  12. Preliminary Study on Structural Optimization with Control Variables Using Equivalent Static Loads for Spring-damper Control Systems

    Yoo, Nam-sun; Jung, Ui-Jin; Park, Gyung-Jin; Kim, Tai-Kyung

    2014-01-01

    An optimization method is proposed for the simultaneous design of structural and control systems using the equivalent static loads. In the past researches, the control parameters of such feedback gains are obtained to improve some performance in the steady-state. However, the actuators which have position and velocity feedback gains should be designed to exhibit a good performance in the time domain. In other words, the system analysis should be conducted for the transient-state in dynamic manner. In this research, a new equivalent static loads method is presented to treat the control variables as the design variables. The equivalent static loads (ESLs) set is defined as a static load set which generates the same displacement field as that from dynamic loads at a certain time. The calculated sets of ESLs are applied as multiple loading conditions in the optimization process. Several examples are solved to validate the proposed method

  13. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application

    Mahmood S

    2014-09-01

    Full Text Available Syed Mahmood, Muhammad Taher, Uttam Kumar Mandal Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM, Pahang Darul Makmur, Malaysia Abstract: Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon® 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a ­homogeneous distribution and low polydispersity index (0.08. They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 µg/cm2/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser

  14. The effect of optimal wall loads and blanket technologies on the cost of fusion electricity

    Knight, P.J.; Ward, D.J.

    2000-01-01

    This paper presents a discussion of trends in fusion economics based on technology, as well as, physics arguments. Based on relatively simple physics considerations, supported by detailed systems code calculations, it is shown that optimal wall loads are not high. The results of systems code calculations, focussing on the economic impact of different blanket technologies, are described. These suggest that the economically favourable thermodynamic efficiencies of some blankets capable of operating at higher temperatures may be counterbalanced by the economic penalties of shorter lifetimes

  15. Daily Peak Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm

    Shuyu Dai

    2018-01-01

    Full Text Available Daily peak load forecasting is an important part of power load forecasting. The accuracy of its prediction has great influence on the formulation of power generation plan, power grid dispatching, power grid operation and power supply reliability of power system. Therefore, it is of great significance to construct a suitable model to realize the accurate prediction of the daily peak load. A novel daily peak load forecasting model, CEEMDAN-MGWO-SVM (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm, is proposed in this paper. Firstly, the model uses the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN algorithm to decompose the daily peak load sequence into multiple sub sequences. Then, the model of modified grey wolf optimization and support vector machine (MGWO-SVM is adopted to forecast the sub sequences. Finally, the forecasting sequence is reconstructed and the forecasting result is obtained. Using CEEMDAN can realize noise reduction for non-stationary daily peak load sequence, which makes the daily peak load sequence more regular. The model adopts the grey wolf optimization algorithm improved by introducing the population dynamic evolution operator and the nonlinear convergence factor to enhance the global search ability and avoid falling into the local optimum, which can better optimize the parameters of the SVM algorithm for improving the forecasting accuracy of daily peak load. In this paper, three cases are used to test the forecasting accuracy of the CEEMDAN-MGWO-SVM model. We choose the models EEMD-MGWO-SVM (Ensemble Empirical Mode Decomposition and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm, MGWO-SVM (Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm, GWO-SVM (Support Vector Machine Optimized by Grey Wolf Optimization Algorithm, SVM (Support Vector

  16. Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load

    Sichilalu, S

    2016-10-01

    Full Text Available This paper presents an optimal energy management strategy for a grid-tied photovoltaic–wind-fuel cell hybrid power supply system. The hybrid system meets the load demand consisting of an electrical load and a heat pump water heater supplying thermal...

  17. STANDALONE PHOTOVOLTAIC SYSTEMS SIZING OPTIMIZATION USING DESIGN SPACE APPROACH: CASE STUDY FOR RESIDENTIAL LIGHTING LOAD

    D. F. AL RIZA

    2015-07-01

    Full Text Available This paper presents a sizing optimization methodology of panel and battery capacity in a standalone photovoltaic system with lighting load. Performance of the system is identified by performing Loss of Power Supply Probability (LPSP calculation. Input data used for the calculation is the daily weather data and system components parameters. Capital Cost and Life Cycle Cost (LCC is calculated as optimization parameters. Design space for optimum system configuration is identified based on a given LPSP value, Capital Cost and Life Cycle Cost. Excess energy value is used as an over-design indicator in the design space. An economic analysis, including cost of the energy and payback period, for selected configurations are also studied.

  18. Partial storage optimization and load control strategy of cloud data centers.

    Al Nuaimi, Klaithem; Mohamed, Nader; Al Nuaimi, Mariam; Al-Jaroodi, Jameela

    2015-01-01

    We present a novel approach to solve the cloud storage issues and provide a fast load balancing algorithm. Our approach is based on partitioning and concurrent dual direction download of the files from multiple cloud nodes. Partitions of the files are saved on the cloud rather than the full files, which provide a good optimization to the cloud storage usage. Only partial replication is used in this algorithm to ensure the reliability and availability of the data. Our focus is to improve the performance and optimize the storage usage by providing the DaaS on the cloud. This algorithm solves the problem of having to fully replicate large data sets, which uses up a lot of precious space on the cloud nodes. Reducing the space needed will help in reducing the cost of providing such space. Moreover, performance is also increased since multiple cloud servers will collaborate to provide the data to the cloud clients in a faster manner.

  19. Finite Element Analysis and Crashworthiness Optimization of Foam-filled Double Circular under Oblique Loading

    Fauzan Djamaluddin

    Full Text Available Abstract Finite element analysis and optimization design carry out for the quasi static responses of foam-filled double circular tube is presented in this paper. In the investigation of the crashworthiness capability, some aspects were considered for variations in geometry parameters of tubes and the loading condition to investigate the crashworthiness capability. Empty, foam-filled, and full foam-filled doublé tubes of thin walled structures were observed subjected to oblique impact (0˚ - 40˚. The numerical solution was used to determine the crashworthiness parameters. In addition, NSGA II and Radial Basis Function were used to optimize the crashworthiness capability of tubes. In conclution, the crash performaces of foam-filled double tube is better than the other structures in this work. The outcome that expected is the new design information of various kinds of cylindrical tubes for energy absorber application.

  20. Gas load forecasting based on optimized fuzzy c-mean clustering analysis of selecting similar days

    Qiu Jing

    2017-08-01

    Full Text Available Traditional fuzzy c-means (FCM clustering in short term load forecasting method is easy to fall into local optimum and is sensitive to the initial cluster center.In this paper,we propose to use global search feature of particle swarm optimization (PSO algorithm to avoid these shortcomings,and to use FCM optimization to select similar date of forecast as training sample of support vector machines.This will not only strengthen the data rule of training samples,but also ensure the consistency of data characteristics.Experimental results show that the prediction accuracy of this prediction model is better than that of BP neural network and support vector machine (SVM algorithms.

  1. Using a multi-state recurrent neural network to optimize loading patterns in BWRs

    Ortiz, Juan Jose; Requena, Ignacio

    2004-01-01

    A Multi-State Recurrent Neural Network is used to optimize Loading Patterns (LP) in BWRs. We have proposed an energy function that depends on fuel assembly positions and their nuclear cross sections to carry out optimisation. Multi-State Recurrent Neural Networks creates LPs that satisfy the Radial Power Peaking Factor and maximize the effective multiplication factor at the Beginning of the Cycle, and also satisfy the Minimum Critical Power Ratio and Maximum Linear Heat Generation Rate at the End of the Cycle, thereby maximizing the effective multiplication factor. In order to evaluate the LPs, we have used a trained back-propagation neural network to predict the parameter values, instead of using a reactor core simulator, which saved considerable computation time in the search process. We applied this method to find optimal LPs for five cycles of Laguna Verde Nuclear Power Plant (LVNPP) in Mexico

  2. Cooling load and coefficient of performance optimizations for real air-refrigerators

    Tu Youming; Chen Lingen; Sun Fengrui; Wu Chih

    2006-01-01

    Based on a simple irreversible variable-temperature heat reservoir air (Brayton) refrigeration cycle model, a performance analysis and optimization of a real air refrigerator is carried out using finite-time thermodynamics. To maximize the cooling load and the coefficient of performance (COP) of the cycle, the allocation of a fixed total heat-exchanger inventory and thermal-capacity rate matching between the working fluid and heat reservoirs are optimized, respectively. The influences of pressure ratio, the total heat-exchanger inventory, the efficiencies of the compressor and expander, the thermal capacity rate of the working fluid and the ratio of the thermal-capacity rates of the heat reservoirs on the performance of the cycle are shown by numerical examples. The results obtained provide guidances for the design of practical air-refrigeration plants

  3. Partial Storage Optimization and Load Control Strategy of Cloud Data Centers

    2015-01-01

    We present a novel approach to solve the cloud storage issues and provide a fast load balancing algorithm. Our approach is based on partitioning and concurrent dual direction download of the files from multiple cloud nodes. Partitions of the files are saved on the cloud rather than the full files, which provide a good optimization to the cloud storage usage. Only partial replication is used in this algorithm to ensure the reliability and availability of the data. Our focus is to improve the performance and optimize the storage usage by providing the DaaS on the cloud. This algorithm solves the problem of having to fully replicate large data sets, which uses up a lot of precious space on the cloud nodes. Reducing the space needed will help in reducing the cost of providing such space. Moreover, performance is also increased since multiple cloud servers will collaborate to provide the data to the cloud clients in a faster manner. PMID:25973444

  4. Optimal auxiliary Hamiltonians for truncated boson-space calculations by means of a maximal-decoupling variational principle

    Li, C.

    1991-01-01

    A new method based on a maximal-decoupling variational principle is proposed to treat the Pauli-principle constraints for calculations of nuclear collective motion in a truncated boson space. The viability of the method is demonstrated through an application to the multipole form of boson Hamiltonians for the single-j and nondegenerate multi-j pairing interactions. While these boson Hamiltonians are Hermitian and contain only one- and two-boson terms, they are also the worst case for truncated boson-space calculations because they are not amenable to any boson truncations at all. By using auxiliary Hamiltonians optimally determined by the maximal-decoupling variational principle, however, truncations in the boson space become feasible and even yield reasonably accurate results. The method proposed here may thus be useful for doing realistic calculations of nuclear collective motion as well as for obtaining a viable interacting-boson-model type of boson Hamiltonian from the shell model

  5. Aripiprazole loaded poly(caprolactone) nanoparticles: Optimization and in vivo pharmacokinetics

    Sawant, Krutika; Pandey, Abhijeet; Patel, Sneha

    2016-09-01

    In the present investigation, a Quality by Design strategy was applied for formulation and optimization of aripiprazole (APZ) loaded PCL nanoparticles (APNPs) using nanoprecipitation method keeping entrapment efficiency (%EE) and particle size (PS) as critical quality attributes. Establishment of design space was done followed by analysis of its robustness and sensitivity. Characterization of optimized APNPs was done using DSC, FT-IR, PXRD and TEM studies and was evaluated for drug release, hemocompatibility and nasal toxicity. PS, zeta potential and %EE of optimized APNPs were found to be 199.2 ± 5.65 nm, − 21.4 ± 4.6 mV and 69.2 ± 2.34% respectively. In vitro release study showed 90 ± 2.69% drug release after 8 h. Nasal toxicity study indicated safety of developed formulation for intranasal administration. APNPs administered via intranasal route facilitated the brain distribution of APZ incorporated with the AUC{sub 0→8} in rat brain approximately 2 times higher than that of APNPs administered via intravenous route. Increase in C{sub max} was observed which might help in dose reduction along with reduction in dose related side effects. The results of the study indicate that intranasally administered APZ loaded PCL NPs can potentially transport APZ via nose to brain and can serve as a non-invasive alternative for the delivery of APZ to brain. - Highlights: • It explores intra-nasal route for treatment of schizophrenia. • Quality by Design strategy has been used for optimization and assessesment of design space robustness. • PCL nanoparticles enhance penetration of drug into brain leading to increased C{sub max} and decrease in T{sub max}. • It can act as potential platform for treatment of schizophrenia with decreased dose related toxicities.

  6. Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique

    Karthivashan G

    2016-07-01

    Full Text Available Govindarajan Karthivashan,1 Mas Jaffri Masarudin,2 Aminu Umar Kura,1 Faridah Abas,3,4 Sharida Fakurazi1,5 1Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, 2Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, 3Department of Food Science, Faculty of Food Science and Technology, 4Laboratory of Natural Products, Institute of Bioscience, 5Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as “flavonosome”. Three widely established and therapeutically valuable flavonoids, such as quercetin (Q, kaempferol (K, and apigenin (A, were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA–phosphatidylcholine through four different methods of synthesis – bulk (M1 and serialized (M2 co-sonication and bulk (M3 and sequential (M4 co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug–carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG. Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA–phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0

  7. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases

    Jamema, Swamidas V.; Kirisits, Christian; Mahantshetty, Umesh; Trnkova, Petra; Deshpande, Deepak D.; Shrivastava, Shyam K.; Poetter, Richard

    2010-01-01

    Purpose: Comparison of inverse planning with the standard clinical plan and with the manually optimized plan based on dose-volume parameters and loading patterns. Materials and methods: Twenty-eight patients who underwent MRI based HDR brachytherapy for cervix cancer were selected for this study. Three plans were calculated for each patient: (1) standard loading, (2) manual optimized, and (3) inverse optimized. Dosimetric outcomes from these plans were compared based on dose-volume parameters. The ratio of Total Reference Air Kerma of ovoid to tandem (TRAK O/T ) was used to compare the loading patterns. Results: The volume of HR CTV ranged from 9-68 cc with a mean of 41(±16.2)cc. Mean V100 for standard, manual optimized and inverse plans was found to be not significant (p = 0.35, 0.38, 0.4). Dose to bladder (7.8 ± 1.6 Gy) and sigmoid (5.6 ± 1.4 Gy) was high for standard plans; Manual optimization reduced the dose to bladder (7.1 ± 1.7 Gy p = 0.006) and sigmoid (4.5 ± 1.0 Gy p = 0.005) without compromising the HR CTV coverage. The inverse plan resulted in a significant reduction to bladder dose (6.5 ± 1.4 Gy, p = 0.002). TRAK was found to be 0.49(±0.02), 0.44(±0.04) and 0.40(±0.04)cGy m -2 for the standard loading, manual optimized and inverse plans, respectively. It was observed that TRAK O/T was 0.82(±0.05), 1.7(±1.04) and 1.41(±0.93) for standard loading, manual optimized and inverse plans, respectively, while this ratio was 1 for the traditional loading pattern. Conclusions: Inverse planning offers good sparing of critical structures without compromising the target coverage. The average loading pattern of the whole patient cohort deviates from the standard Fletcher loading pattern.

  8. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases.

    Jamema, Swamidas V; Kirisits, Christian; Mahantshetty, Umesh; Trnkova, Petra; Deshpande, Deepak D; Shrivastava, Shyam K; Pötter, Richard

    2010-12-01

    Comparison of inverse planning with the standard clinical plan and with the manually optimized plan based on dose-volume parameters and loading patterns. Twenty-eight patients who underwent MRI based HDR brachytherapy for cervix cancer were selected for this study. Three plans were calculated for each patient: (1) standard loading, (2) manual optimized, and (3) inverse optimized. Dosimetric outcomes from these plans were compared based on dose-volume parameters. The ratio of Total Reference Air Kerma of ovoid to tandem (TRAK(O/T)) was used to compare the loading patterns. The volume of HR CTV ranged from 9-68 cc with a mean of 41(±16.2) cc. Mean V100 for standard, manual optimized and inverse plans was found to be not significant (p=0.35, 0.38, 0.4). Dose to bladder (7.8±1.6 Gy) and sigmoid (5.6±1.4 Gy) was high for standard plans; Manual optimization reduced the dose to bladder (7.1±1.7 Gy p=0.006) and sigmoid (4.5±1.0 Gy p=0.005) without compromising the HR CTV coverage. The inverse plan resulted in a significant reduction to bladder dose (6.5±1.4 Gy, p=0.002). TRAK was found to be 0.49(±0.02), 0.44(±0.04) and 0.40(±0.04) cGy m(-2) for the standard loading, manual optimized and inverse plans, respectively. It was observed that TRAK(O/T) was 0.82(±0.05), 1.7(±1.04) and 1.41(±0.93) for standard loading, manual optimized and inverse plans, respectively, while this ratio was 1 for the traditional loading pattern. Inverse planning offers good sparing of critical structures without compromising the target coverage. The average loading pattern of the whole patient cohort deviates from the standard Fletcher loading pattern. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Optimization of waste loading in high-level glass in the presence of uncertainty

    Hoza, M.; Fann, G.I.; Hopkins, D.F.

    1995-02-01

    Hanford high-level liquid waste will be converted into a glass form for long-term storage. The glass must meet certain constraints on its composition and properties in order to have desired properties for processing (e.g., electrical conductivity, viscosity, and liquidus temperature) and acceptable durability for long-term storage. The Optimal Waste Loading (OWL) models, based on rigorous mathematical optimization techniques, have been developed to minimize the number of glass logs required and determine glass-former compositions that will produce a glass meeting all relevant constraints. There is considerable uncertainty in many of the models and data relevant to the formulation of high-level glass. In this paper, we discuss how we handle uncertainty in the glass property models and in the high-level waste composition to the vitrification process. Glass property constraints used in optimization are inequalities that relate glass property models obtained by regression analysis of experimental data to numerical limits on property values. Therefore, these constraints are subject to uncertainty. The sampling distributions of the regression models are used to describe the uncertainties associated with the constraints. The optimization then accounts for these uncertainties by requiring the constraints to be satisfied within specified confidence limits. The uncertainty in waste composition is handled using stochastic optimization. Given means and standard deviations of component masses in the high-level waste stream, distributions of possible values for each component are generated. A series of optimization runs is performed; the distribution of each waste component is sampled for each run. The resultant distribution of solutions is then statistically summarized. The ability of OWL models to handle these forms of uncertainty make them very useful tools in designing and evaluating high-level waste glasses formulations

  10. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the

  11. $H_2$ optimal controllers with observer based architecture for continuous-time systems : separation principle

    Saberi, A.; Sannuti, P.; Stoorvogel, A.A.

    1994-01-01

    For a general H2 optimal control problem, at first all Hz optimal measurement feedback controllers are characterized and parameterized, and then attention is focused on controllers with observer based architecture. Both full order as well as reduced order observer based H2 optimal controllers are

  12. Optimal distribution of reactivity excess in a system of reactors operating at a variable loading schedule

    Bolsunov, A.A.; Zagrebaev, A.M.; Naumov, V.I.

    1979-01-01

    Considered is the task of reactivity excess distribution optimization in the system of reactors for the purpose of minimazing the summary power production losses at the fixed loading schedule. Mathematical formulation of the task is presented. Given are the curves, characterizing the dependence of possible degree of the reactor power drop on reactivity excees for non-stationary Xe poisoning at different nominal density of neutron flux. Analyzing the results, it is concluded that in case, when the reactors differ only in neutron flux density the reactor with lower neutron flux density should be involved in the variable operation schedule first as the poisoning of this reactor will be less, and therefore, the losses of the system power production will be less. It is advisable to reserve the reactivity excess in the reactor with greater power or in the reactor with higher burnup rate. It is stressed that the obtained results of the optimization task solution point out the possibility of obtaining the certain ecomonic effect and permit to correct the requirements on mobility of separate power units at system approach to NPP operation in a variable loading schedule

  13. Formulation design and optimization for the improvement of nystatin-loaded lipid intravenous emulsion.

    Marín-Quintero, Deiry; Fernández-Campos, Francisco; Calpena-Campmany, Ana C; Montes-López, María J; Clares-Naveros, Beatriz; Del Pozo-Carrascosa, Alfonso

    2013-11-01

    Nystatin (NYS) is a polyene macrolide with broad antifungal spectrum restricted to topical use owing to its toxicity upon systemic administration. The aims of this work were the design, development, and optimization of NYS-loaded lipid emulsion for intravenous administration. A closed circuit system was designed to apply ultrasound during the elaboration of the lipid intravenous emulsions (LIEs). Additionally, a comparison with the commercially available Intralipid(®) 20% was also performed. Manufacturing conditions were optimized by factorial design. Formulations were evaluated in terms of physicochemical parameters, stability, release profile, and antimicrobial activity. The average droplet size, polydispersity index, zeta-potential, pH, and volume distribution values ranged between 192.5 and 143.0 nm, 0.170 and 0.135, -46 and -44 mV, 7.11 and 7.53, 580 and 670 nm, respectively. The selected NYS-loaded LIE (NYS-LIE54) consisted of soybean oil (30%), soybean lecithin (2%), solutol HS(®) 15 (4%), and glycerol (2.25%) was stable for at least 60 days. In vitro drug release studies of this formulation suggested a sustained-release profile. Equally, NYS-LIE54 showed the best antimicrobial activity being higher than the free drug. Thus, it could be a promising drug delivery system to treat systemic fungal infections. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Water-in-Oil Microemulsions for Protein Delivery: Loading Optimization and Stability.

    Perinelli, Diego R; Cespi, Marco; Pucciarelli, Stefania; Vincenzetti, Silvia; Casettari, Luca; Lam, Jenny K W; Logrippo, Serena; Canala, Elisa; Soliman, Mahmoud E; Bonacucina, Giulia; Palmieri, Giovanni F

    2017-01-01

    Microemulsions are attractive delivery systems for therapeutic proteins and peptides due to their ability to enhance bioavailability. Although different proteins and peptides have been successfully delivered through such ternary systems, no information can be found about protein loading and the formulation stability when such microemulsions are prepared with pharmaceuticallyapproved oils and surfactants. The aim of this work was to optimise a ternary system consisting of water/ ethyl oleate/Span® 80-Tween® 80 and to determine its protein loading capacity and stability, using bovine serum albumin (BSA) as a model of biomolecule. The optimization was carried out using a Central Composite Design and all the prepared formulations were characterised through dynamic light scattering, rheology, optical and polarized microscopy. Subsequently, the maximum loading capacity was determined and the stability of the final microemulsion with the highest content of protein was followed over six months. To investigate the structural features of the protein, BSA was recovered from the microemulsion and analysed through fluorescence spectroscopy. After incorporation of the protein in the microemulsion, a decrease of its aqueous solubility was observed. However, the formulation remained stable over six months and the native-like state of the recovered protein was demonstrated by fluorescence spectroscopy Conclusion: This study demonstrated the feasibility of preparing microemulsions with the highest content of protein and their long-term stability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. A Short-Term and High-Resolution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization

    Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-25

    This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of the hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.

  16. Optimization Strategy for Economic Power Dispatch Utilizing Retired EV Batteries as Flexible Loads

    Shubo Hu

    2018-06-01

    Full Text Available With the increasing penetration of new and renewable energy, incorporating variable adjustable power elements on the demand side is of particular interest. The utilization of batteries as flexible loads is a hot research topic. Lithium-ion batteries are key components in electric vehicles (EVs in terms of capital cost, mass and size. They are retired after around 5 years of service, but still retain up to 80% of their nominal capacity. Disposal of waste batteries will become a significant issue for the automotive industry in the years to come. This work proposes the use of the second life of these batteries as flexible loads to participate in the economic power dispatch. The characteristics of second life batteries (SLBs are varied and diverse, requiring a new optimization strategy for power dispatch at the system level. In this work, SLBs are characterized and their operating curves are obtained analytically for developing an economic power dispatch model involving wind farms and second life batteries. In addition, a dispatch strategy is developed to reduce the dispatch complex brought by the disperse spatial and time distribution of EVs and decrease the system operating cost by introducing incentive and penalty costs in regulating the EV performance. In theory, SLBs are utilized to reduce the peak-valley difference of power loads and to stabilize the power system. Test results based on a ten-unit power system have verified the effectiveness of the proposed dispatch model and the economic benefit of utilizing SLBs as flexible loads in power systems. This work may provide a viable solution to the disposal of waste batteries from EVs and to the stable operation of fluctuating power systems incorporating stochastic renewable energy.

  17. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    Ahmed TA

    2016-02-01

    Full Text Available Tarek A Ahmed1,2 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt Abstract: In this study, optimized freeze-dried finasteride nanoparticles (NPs were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM. Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD. Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful

  18. Optimal Load Shedding and Generation Rescheduling for Overload Suppression in Large Power Systems.

    Moon, Young-Hyun

    Ever-increasing size, complexity and operation costs in modern power systems have stimulated the intensive study of an optimal Load Shedding and Generator Rescheduling (LSGR) strategy in the sense of a secure and economic system operation. The conventional approach to LSGR has been based on the application of LP (Linear Programming) with the use of an approximately linearized model, and the LP algorithm is currently considered to be the most powerful tool for solving the LSGR problem. However, all of the LP algorithms presented in the literature essentially lead to the following disadvantages: (i) piecewise linearization involved in the LP algorithms requires the introduction of a number of new inequalities and slack variables, which creates significant burden to the computing facilities, and (ii) objective functions are not formulated in terms of the state variables of the adopted models, resulting in considerable numerical inefficiency in the process of computing the optimal solution. A new approach is presented, based on the development of a new linearized model and on the application of QP (Quadratic Programming). The changes in line flows as a result of changes to bus injection power are taken into account in the proposed model by the introduction of sensitivity coefficients, which avoids the mentioned second disadvantages. A precise method to calculate these sensitivity coefficients is given. A comprehensive review of the theory of optimization is included, in which results of the development of QP algorithms for LSGR as based on Wolfe's method and Kuhn -Tucker theory are evaluated in detail. The validity of the proposed model and QP algorithms has been verified and tested on practical power systems, showing the significant reduction of both computation time and memory requirements as well as the expected lower generation costs of the optimal solution as compared with those obtained from computing the optimal solution with LP. Finally, it is noted that an

  19. Optimization of steam generators of NPP with WWER in operation with variable load

    Parchevskii, V. M.; Shchederkina, T. E.; Gur'yanova, V. V.

    2017-11-01

    The report addresses the issue of the optimal water level in the horizontal steam generators of NPP with WWER. On the one hand, the level needs to be kept at the lower limit of the allowable range, as gravity separation, steam will have the least humidity and the turbine will operate with higher efficiency. On the other hand, the higher the level, the greater the supply of water in the steam generator, and therefore the higher the security level of the unit, because when accidents involving loss of cooling of the reactor core, the water in the steam generators, can be used for cooling. To quantitatively compare the damage from higher level to the benefit of improving the safety was assessed of the cost of one cubic meter of water in the steam generators, the formulated objective function of optimal levels control. This was used two-dimensional separation characteristics of steam generators. It is demonstrated that the security significantly shifts the optimal values of the levels toward the higher values, and this bias is greater the lower the load unit.

  20. Analysis of optimal Reynolds number for developing laminar forced convection in double sine ducts based on entropy generation minimization principle

    Ko, T.H.

    2006-01-01

    In the present paper, the entropy generation and optimal Reynolds number for developing forced convection in a double sine duct with various wall heat fluxes, which frequently occurs in plate heat exchangers, are studied based on the entropy generation minimization principle by analytical thermodynamic analysis as well as numerical investigation. According to the thermodynamic analysis, a very simple expression for the optimal Reynolds number for the double sine duct as a function of mass flow rate, wall heat flux, working fluid and geometric dimensions is proposed. In the numerical simulations, the investigated Reynolds number (Re) covers the range from 86 to 2000 and the wall heat flux (q'') varies as 160, 320 and 640 W/m 2 . From the numerical simulation of the developing laminar forced convection in the double sine duct, the effect of Reynolds number on entropy generation in the duct has been examined, through which the optimal Reynolds number with minimal entropy generation is detected. The optimal Reynolds number obtained from the analytical thermodynamic analysis is compared with the one from the numerical solutions and is verified to have a similar magnitude of entropy generation as the minimal entropy generation predicted by the numerical simulations. The optimal analysis provided in the present paper gives worthy information for heat exchanger design, since the thermal system could have the least irreversibility and best exergy utilization if the optimal Re can be used according to practical design conditions

  1. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines

    Alexandre Presas

    2018-03-01

    Full Text Available Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined

  2. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines.

    Presas, Alexandre; Valentin, David; Egusquiza, Mònica; Valero, Carme; Egusquiza, Eduard

    2018-03-30

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the

  3. Deploying Team Science Principles to Optimize Interdisciplinary Lung Cancer Care Delivery: Avoiding the Long and Winding Road to Optimal Care.

    Osarogiagbon, Raymond U; Rodriguez, Hector P; Hicks, Danielle; Signore, Raymond S; Roark, Kristi; Kedia, Satish K; Ward, Kenneth D; Lathan, Christopher; Santarella, Scott; Gould, Michael K; Krasna, Mark J

    2016-11-01

    The complexity of lung cancer care mandates interaction between clinicians with different skill sets and practice cultures in the routine delivery of care. Using team science principles and a case-based approach, we exemplify the need for the development of real care teams for patients with lung cancer to foster coordination among the multiple specialists and staff engaged in routine care delivery. Achieving coordinated lung cancer care is a high-priority public health challenge because of the volume of patients, lethality of disease, and well-described disparities in quality and outcomes of care. Coordinating mechanisms need to be cultivated among different types of specialist physicians and care teams, with differing technical expertise and practice cultures, who have traditionally functioned more as coactively working groups than as real teams. Coordinating mechanisms, including shared mental models, high-quality communication, mutual trust, and mutual performance monitoring, highlight the challenge of achieving well-coordinated care and illustrate how team science principles can be used to improve quality and outcomes of lung cancer care. To develop the evidence base to support coordinated lung cancer care, research comparing the effectiveness of a diverse range of multidisciplinary care team approaches and interorganizational coordinating mechanisms should be promoted.

  4. Optimal Stopping Problems Driven by Lévy Processes and Pasting Principles

    Surya, B.A.

    2007-01-01

    Solving optimal stopping problems driven by Lévy processes has been a challenging task and has found many applications in modern theory of mathematical finance. For example situations in which optimal stopping typically arise include the problem of finding the arbitrage-free price of the American

  5. Optimization of vitamins A and D3 loading in re-assembled casein micelles and effect of loading on stability of vitamin D3 during storage.

    Loewen, Anisa; Chan, Benny; Li-Chan, Eunice C Y

    2018-02-01

    The objectives of this study were to apply response surface methodology to optimize fat-soluble vitamin loading in re-assembled casein micelles, and to evaluate vitamin D stability of dry formulations during ambient or accelerated storage and in fortified fluid skim milk stored under refrigeration. Optimal loading of vitamin A (1.46-1.48mg/100mgcasein) was found at 9.7mM phosphate, 5.5mM citrate and 30.0mM calcium, while optimal loading of vitamin D (1.38-1.46mg/100mg casein) was found at 4.9mM phosphate, 4.0mM citrate and 26.1mM calcium. In general, more vitamin D was retained in vitamin D-re-assembled casein micelles than control powders during storage, while vitamin D loss was not different for vitamin D-re-assembled casein micelles and control fortified milks after 21days of refrigerated storage with light exposure. In conclusion, re-assembled casein micelles with high loading efficiency show promise for improving vitamin D stability during dry storage. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting

    Wang, Bo; Tai, Neng-ling; Zhai, Hai-qing; Ye, Jian; Zhu, Jia-dong; Qi, Liang-bo

    2008-01-01

    In this paper, a new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting is proposed. Auto-regressive (AR) and moving average (MA) with exogenous variables (ARMAX) has been widely applied in the load forecasting area. Because of the nonlinear characteristics of the power system loads, the forecasting function has many local optimal points. The traditional method based on gradient searching may be trapped in local optimal points and lead to high error. While, the hybrid method based on evolutionary algorithm and particle swarm optimization can solve this problem more efficiently than the traditional ways. It takes advantage of evolutionary strategy to speed up the convergence of particle swarm optimization (PSO), and applies the crossover operation of genetic algorithm to enhance the global search ability. The new ARMAX model for short-term load forecasting has been tested based on the load data of Eastern China location market, and the results indicate that the proposed approach has achieved good accuracy. (author)

  7. Shape optimization of metal forming and forging products using the stress equivalent static loads calculated from a virtual model

    Jang, Hwan Hak; Jeong, Seong Beom; Park, Gyung Jin

    2012-01-01

    A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes

  8. Derivative load voltage and particle swarm optimization to determine optimum sizing and placement of shunt capacitor in improving line losses

    Mohamed Milad Baiek

    2016-12-01

    Full Text Available The purpose of this research is to study optimal size and placement of shunt capacitor in order to minimize line loss. Derivative load bus voltage was calculated to determine the sensitive load buses which further being optimum with the placement of shunt capacitor. Particle swarm optimization (PSO was demonstrated on the IEEE 14 bus power system to find optimum size of shunt capacitor in reducing line loss. The objective function was applied to determine the proper placement of capacitor and get satisfied solutions towards constraints. The simulation was run over Matlab under two scenarios namely base case and increasing 100% load. Derivative load bus voltage was simulated to determine the most sensitive load bus. PSO was carried out to determine the optimum sizing of shunt capacitor at the most sensitive bus. The results have been determined that the most sensitive bus was bus number 14 for the base case and increasing 100% load. The optimum sizing was 8.17 Mvar for the base case and 23.98 Mvar for increasing load about 100%. Line losses were able to reduce approximately 0.98% for the base case and increasing 100% load reduced about 3.16%. The proposed method was also proven as a better result compared with harmony search algorithm (HSA method. HSA method recorded loss reduction ratio about 0.44% for the base case and 2.67% when the load was increased by 100% while PSO calculated loss reduction ratio about 1.12% and 4.02% for the base case and increasing 100% load respectively. The result of this study will support the previous study and it is concluded that PSO was successfully able to solve some engineering problems as well as to find a solution in determining shunt capacitor sizing on the power system simply and accurately compared with other evolutionary optimization methods.

  9. Joint Optimization of Power Allocation and Load Balancing for Hybrid VLC/RF Networks

    Obeed, Mohanad

    2018-04-18

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF access point (AP) and multiple VLC APs. An iterative algorithm is proposed to distribute users on APs and distribute the powers of the APs on their users. In the PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for total achievable data rate maximization. In this subproblem, we propose a new efficient algorithm that finds optimal dual variables after formulating them in terms of each other. This new algorithm provides faster convergence and better performance than the traditional subgradient method. In addition, it does not depend on the step size or the initial values of the variables, which we look for, as the subgradient does. Then, we start with the user of the minimum data rate seeking another AP that offers a higher data rate for that user. Users with lower data rates continue reconnecting from one AP to another to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. Two approaches are proposed to have the joint PA and LB performed: a main approach that considers the exact interference information for all users, and a suboptimal approach that aims to decrease the complexity of the first approach by considering only the approximate interference information of users. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  10. Joint Optimization of Power Allocation and Load Balancing for Hybrid VLC/RF Networks

    Obeed, Mohanad; Salhab, Anas; Zummo, Salam A.; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF access point (AP) and multiple VLC APs. An iterative algorithm is proposed to distribute users on APs and distribute the powers of the APs on their users. In the PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for total achievable data rate maximization. In this subproblem, we propose a new efficient algorithm that finds optimal dual variables after formulating them in terms of each other. This new algorithm provides faster convergence and better performance than the traditional subgradient method. In addition, it does not depend on the step size or the initial values of the variables, which we look for, as the subgradient does. Then, we start with the user of the minimum data rate seeking another AP that offers a higher data rate for that user. Users with lower data rates continue reconnecting from one AP to another to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. Two approaches are proposed to have the joint PA and LB performed: a main approach that considers the exact interference information for all users, and a suboptimal approach that aims to decrease the complexity of the first approach by considering only the approximate interference information of users. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  11. Heuristic rules embedded genetic algorithm to solve VVER loading pattern optimization problem

    Fatih, Alim; Kostandi, Ivanov

    2006-01-01

    Full text: Loading Pattern (LP) optimization is one of the most important aspects of the operation of nuclear reactors. A genetic algorithm (GA) code GARCO (Genetic Algorithm Reactor Optimization Code) has been developed with embedded heuristic techniques to perform optimization calculations for in-core fuel management tasks. GARCO is a practical tool that includes a unique methodology applicable for all types of Pressurized Water Reactor (PWR) cores having different geometries with an unlimited number of FA types in the inventory. GARCO was developed by modifying the classical representation of the genotype. Both the genotype representation and the basic algorithm have been modified to incorporate the in-core fuel management heuristics rules so as to obtain the best results in a shorter time. GARCO has three modes. Mode 1 optimizes the locations of the fuel assemblies (FAs) in the nuclear reactor core, Mode 2 optimizes the placement of the burnable poisons (BPs) in a selected LP, and Mode 3 optimizes simultaneously both the LP and the BP placement in the core. This study describes the basic algorithm for Mode 1. The GARCO code is applied to the VVER-1000 reactor hexagonal geometry core in this study. The M oby-Dick i s used as reactor physics code to deplete FAs in the core. It was developed to analyze the VVER reactors by SKODA Inc. To use these rules for creating the initial population with GA operators, the worth definition application is developed. Each FA has a worth value for each location. This worth is between 0 and 1. If worth of any FA for a location is larger than 0.5, this FA in this location is a good choice. When creating the initial population of LPs, a subroutine provides a percent of individuals, which have genes with higher than the 0.5 worth. The percentage of the population to be created without using worth definition is defined in the GARCO input. And also age concept has been developed to accelerate the GA calculation process in reaching the

  12. Mechanically braked elliptical Wingate test: modification considerations, load optimization, and reliability.

    Ozkaya, Ozgur; Colakoglu, Muzaffer; Kuzucu, Erinc O; Yildiztepe, Engin

    2012-05-01

    The 30-second, all-out Wingate test evaluates anaerobic performance using an upper or lower body cycle ergometer (cycle Wingate test). A recent study showed that using a modified electromagnetically braked elliptical trainer for Wingate testing (EWT) leads to greater power outcomes because of larger muscle group recruitment. The main purpose of this study was to modify an elliptical trainer using an easily understandable mechanical brake system instead of an electromagnetically braked modification. Our secondary aim was to determine a proper test load for the EWT to reveal the most efficient anaerobic test outcomes such as peak power (PP), average power (AP), minimum power (MP), power drop (PD), and fatigue index ratio (FI%) and to evaluate the retest reliability of the selected test load. Delta lactate responses (ΔLa) were also analyzed to confirm all the anaerobic performance of the athletes. Thirty healthy and well-trained male university athletes were selected to participate in the study. By analysis of variance, an 18% body mass workload yielded significantly greater test outcomes (PP = 19.5 ± 2.4 W·kg, AP = 13.7 ± 1.7 W·kg, PD = 27.9 ± 5 W·s, FI% = 58.4 ± 3.3%, and ΔLa = 15.4 ± 1.7 mM) than the other (12-24% body mass) tested loads (p braked modification of an elliptical trainer successfully estimated anaerobic power and capacity. A workload of 18% body mass was optimal for measuring maximal and reliable anaerobic power outcomes. Anaerobic testing using an EWT may be more useful to athletes and coaches than traditional cycle ergometers because a greater proportion of muscle groups are worked during exercise on an elliptical trainer.

  13. Discrete PSO algorithm based optimization of transmission lines loading in TNEP problem

    Shayeghi, H.; Mahdavi, M.; Bagheri, A.

    2010-01-01

    Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, lines adequacy rate has not been considered at the end of planning horizon, i.e. expanded network misses adequacy after some times and needs to be expanded again. In this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using discrete particle swarm optimization (DPSO) algorithm. Expanded network will possess a maximum adequacy to provide load demand and also the transmission lines overloaded later. The proposed idea has been tested on the Garvers network and an actual transmission network of the Azerbaijan regional electric company, Iran, and the results are compared with the decimal codification genetic algorithm (DCGA) technique. The results evaluation shows that the network will possess maximum efficiency economically. Also, it is shown that precision and convergence speed of the proposed DPSO based method for the solution of the STNEP problem is superior to DCGA approach.

  14. Optimization of sodium loading on zeolite support for catalyzed transesterification of triolein with methanol.

    Wang, Yu-Yuan; Chou, Hsin-Yu; Chen, Bing-Hung; Lee, Duu-Jong

    2013-10-01

    Optimization of sodium loading on zeolite HY for catalyzed transesterification of triolein in excess methanol to biodiesel was studied. Zeolite HY catalyst was activated by loading sodium ions to their surface via an ion-exchange method. The effects of ion-exchange process parameters, including the temperature, the process time, the pH value, as well as concentrations and sources of Na(+) cations (NaOH, NaCl and Na2SO4), on the conversion yield of triolein to biodiesel were investigated. Most of these Na(+)-activated zeolite HY catalysts could really facilitate the catalyzed transesterification reaction of triolein to biodiesel at a lower temperature near 65°C. Consequently, a high conversion yield of triglycerides to biodiesel at 97.3% was obtained at 65°C. Moreover, the durability of zeolite catalysts was examined as well. Catalytic performance tests of these zeolite catalysts in transesterification did not show a significant decrease in catalysis at least for three batch cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Automatic boiling water reactor loading pattern design using ant colony optimization algorithm

    Wang, C.-D. [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China); Nuclear Engineering Division, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)], E-mail: jdwang@iner.gov.tw; Lin Chaung [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2009-08-15

    An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.

  16. Optimal RTP Based Power Scheduling for Residential Load in Smart Grid

    Joshi, Hemant I.; Pandya, Vivek J.

    2015-12-01

    To match supply and demand, shifting of load from peak period to off-peak period is one of the effective solutions. Presently flat rate tariff is used in major part of the world. This type of tariff doesn't give incentives to the customers if they use electrical energy during off-peak period. If real time pricing (RTP) tariff is used, consumers can be encouraged to use energy during off-peak period. Due to advancement in information and communication technology, two-way communications is possible between consumers and utility. To implement this technique in smart grid, home energy controller (HEC), smart meters, home area network (HAN) and communication link between consumers and utility are required. HEC interacts automatically by running an algorithm to find optimal energy consumption schedule for each consumer. However, all the consumers are not allowed to shift their load simultaneously during off-peak period to avoid rebound peak condition. Peak to average ratio (PAR) is considered while carrying out minimization problem. Linear programming problem (LPP) method is used for minimization. The simulation results of this work show the effectiveness of the minimization method adopted. The hardware work is in progress and the program based on the method described here will be made to solve real problem.

  17. Optimization of the RF cavity heat load and trip rates for CEBAF at 12 GeV

    Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Freyberger, Arne P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Terzic, Balsa P. [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    The Continuous Electron Beam Accelerator Facility at JLab has 200 RF cavities in the north linac and the south linac respectively after the 12 GeV upgrade. The purpose of this work is to simultaneously optimize the heat load and the trip rate for the cavities and to reconstruct the pareto-optimal front in a timely manner when some of the cavities are turned down. By choosing an efficient optimizer and strategically creating the initial gradients, the pareto-optimal front for no more than 15 cavities down can be re-established within 20 seconds.

  18. The collapsing of multigroup cross sections in optimization problems solved by means of the Pontryagin maximum principle in nuclear reactor dynamics

    Anton, V.

    1979-12-01

    The collapsing formulae for the optimization problems solved by means of the Pontryagin maximum principle in nuclear reactor dynamics are presented. A comparison with the corresponding formulae of the static case is given too. (author)

  19. On thermoeconomics of energy systems at variable load conditions: Integrated optimization of plant design and operation

    Piacentino, A.; Cardona, F.

    2007-01-01

    Thermoeconomics has been assuming a growing role among the disciplines oriented to the analysis of energy systems, its different methodologies allowing solution of problems in the fields of cost accounting, plant design optimisation and diagnostic of malfunctions. However, the thermoeconomic methodologies as such are particularly appropriate to analyse large industrial systems at steady or quasi-steady operation, but they can be hardly applied to small to medium scale units operating in unsteady conditions to cover a variable energy demand. In this paper, the fundamentals of thermoeconomics for systems operated at variable load are discussed, examining the cost formation process and, separately, the cost fractions related to capital depreciation (which require additional distinctions with respect to plants in steady operation) and to exergy consumption. The relevant effects of the efficiency penalty due to off design operation on the exergetic cost of internal flows are also examined. An original algorithm is proposed for the integrated optimization of plant design and operation based on an analytical solution by the Lagrange multipliers method and on a multi-objective decision function, expressed either in terms of net cash flow or primary energy saving. The method is suitable for application in complex energy systems, such as 'facilities of components of a same product' connected to external networks for power or heat distribution. For demonstrative purposes, the proposed thermoeconomically aided optimization is performed for a grid connected trigeneration system to be installed in a large hotel

  20. A Power Load Distribution Algorithm to Optimize Data Center Electrical Flow

    Paulo Maciel

    2013-07-01

    Full Text Available Energy consumption is a matter of common concern in the world today. Research demonstrates that as a consequence of the constantly evolving and expanding field of information technology, data centers are now major consumers of electrical energy. Such high electrical energy consumption emphasizes the issues of sustainability and cost. Against this background, the present paper proposes a power load distribution algorithm (PLDA to optimize energy distribution of data center power infrastructures. The PLDA, which is based on the Ford-Fulkerson algorithm, is supported by an environment called ASTRO, capable of performing the integrated evaluation of dependability, cost and sustainability. More specifically, the PLDA optimizes the flow distribution of the energy flow model (EFM. EFMs are responsible for estimating sustainability and cost issues of data center infrastructures without crossing the restrictions of the power capacity that each device can provide (power system or extract (cooling system. Additionally, a case study is presented that analyzed seven data center power architectures. Significant results were observed, achieving a reduction in power consumption of up to 15.5%.

  1. Why Do We Fall into Sync with Others? Interpersonal Synchronization and the Brain's Optimization Principle

    Koban, Leonie; Ramamoorthy, Anand; Konvalinka, Ivana

    2017-01-01

    Spontaneous interpersonal synchronization of rhythmic behavior such as gait or clapping is a ubiquitous phenomenon in human interactions, and is potentially important for social relationships and action understanding. Although several authors have suggested a role of the mirror neuron system...... in interpersonal coupling, the underlying brain mechanisms are not well understood. Here we argue that more general theories of neural computations, namely predictive coding and the Free Energy Principle, could explain interpersonal coordination dynamics. Each brain minimizes coding costs by reducing the mismatch...

  2. Optimizing the Loads of multi-player online game Servers using Markov Chains

    Saeed, Aamir; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2015-01-01

    that is created due to the load balancing of servers. Load balancing among servers is sensitive to correct status information. The Markov based load prediction was introduced in this paper to predict load of under-loaded servers, based on arrival (μ) and departure (λ) rates of players. The prediction based...... that need to be considered when developing load balancing algorithm, that is the reliability of the information that is shared. Simulation results show that Markov based prediction of load information performed better from the normal load status information sharing....

  3. An improved DPSO with mutation based on similarity algorithm for optimization of transmission lines loading

    Shayeghi, H.; Mahdavi, M.; Bagheri, A.

    2010-01-01

    Static transmission network expansion planning (STNEP) problem acquires a principal role in power system planning and should be evaluated carefully. Up till now, various methods have been presented to solve the STNEP problem. But only in one of them, lines adequacy rate has been considered at the end of planning horizon and the problem has been optimized by discrete particle swarm optimization (DPSO). DPSO is a new population-based intelligence algorithm and exhibits good performance on solution of the large-scale, discrete and non-linear optimization problems like STNEP. However, during the running of the algorithm, the particles become more and more similar, and cluster into the best particle in the swarm, which make the swarm premature convergence around the local solution. In order to overcome these drawbacks and considering lines adequacy rate, in this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using an improved DPSO algorithm. The proposed improved DPSO is a new conception, collectivity, which is based on similarity between the particle and the current global best particle in the swarm that can prevent the premature convergence of DPSO around the local solution. The proposed method has been tested on the Garver's network and a real transmission network in Iran, and compared with the DPSO based method for solution of the TNEP problem. The results show that the proposed improved DPSO based method by preventing the premature convergence is caused that with almost the same expansion costs, the network adequacy is increased considerably. Also, regarding the convergence curves of both methods, it can be seen that precision of the proposed algorithm for the solution of the STNEP problem is more than DPSO approach.

  4. Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization

    Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao

    2015-11-01

    Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.

  5. Basic Knowledge for Market Principle: Approaches to the Price Coordination Mechanism by Using Optimization Theory and Algorithm

    Aiyoshi, Eitaro; Masuda, Kazuaki

    On the basis of market fundamentalism, new types of social systems with the market mechanism such as electricity trading markets and carbon dioxide (CO2) emission trading markets have been developed. However, there are few textbooks in science and technology which present the explanation that Lagrange multipliers can be interpreted as market prices. This tutorial paper explains that (1) the steepest descent method for dual problems in optimization, and (2) Gauss-Seidel method for solving the stationary conditions of Lagrange problems with market principles, can formulate the mechanism of market pricing, which works even in the information-oriented modern society. The authors expect readers to acquire basic knowledge on optimization theory and algorithms related to economics and to utilize them for designing the mechanism of more complicated markets.

  6. Determination of optimal angiographic viewing angles: Basic principles and evaluation study

    Dumay, A.C.M.; Reiber, J.H.C.; Gerbrands, J.J.

    1994-01-01

    Foreshortening of vessel segments in angiographic (biplane) projection images may cause misinterpretation of the extent and degree of coronary artery disease. The views in which the object of interest are visualized with minimum foreshortening are called optimal views. In this paper the authors present a complete approach to obtain such views with computer-assisted techniques. The object of interest is first visualized in two arbitrary views. Two landmarks of the object are manually defined in the two projection images. With complete information of the projection geometry, the vector representation of the object in the three-dimensional space is computed. This vector is perpendicular to a plane in which the views are called optimal. The user has one degree of freedom to define a set of optimal biplane views. The angle between the central beams of the imaging systems can be chosen freely. The computation of the orientation of the object and of corresponding optimal biplane views have been evaluated with a simple hardware phantom. The mean and the standard deviation of the overall errors in the calculation of the optimal angulation angles were 1.8 degree and 1.3 degree, respectively, when the user defined a rotation angle

  7. Short-Term Fuzzy Load Forecasting Model Using Genetic–Fuzzy and Ant Colony–Fuzzy Knowledge Base Optimization

    Murat Luy

    2018-05-01

    Full Text Available The estimation of hourly electricity load consumption is highly important for planning short-term supply–demand equilibrium in sources and facilities. Studies of short-term load forecasting in the literature are categorized into two groups: classical conventional and artificial intelligence-based methods. Artificial intelligence-based models, especially when using fuzzy logic techniques, have more accurate load estimations when datasets include high uncertainty. However, as the knowledge base—which is defined by expert insights and decisions—gets larger, the load forecasting performance decreases. This study handles the problem that is caused by the growing knowledge base, and improves the load forecasting performance of fuzzy models through nature-inspired methods. The proposed models have been optimized by using ant colony optimization and genetic algorithm (GA techniques. The training and testing processes of the proposed systems were performed on historical hourly load consumption and temperature data collected between 2011 and 2014. The results show that the proposed models can sufficiently improve the performance of hourly short-term load forecasting. The mean absolute percentage error (MAPE of the monthly minimum in the forecasting model, in terms of the forecasting accuracy, is 3.9% (February 2014. The results show that the proposed methods make it possible to work with large-scale rule bases in a more flexible estimation environment.

  8. Mechanistic modeling of cyclic voltammetry: A helpful tool for understanding biosensor principles and supporting design optimization

    Semenova, Daria; Zubov, Alexandr; Silina, Yuliya E.

    2018-01-01

    Abstract Design, optimization and integration of biosensors hold a great potential for the development of cost-effective screening and point-of-care technologies. However, significant progress in this field can still be obtained on condition that sufficiently accurate mathematical models......, oxidized/reduced forms of the mediator - Prussian Blue/Prussian White). Furthermore, the developed model was applied under various operating conditions as a crucial tool for biosensor design optimization. The obtained qualitative and quantitative dependencies towards amperometric biosensors design...... optimization were independently supported by results of cyclic voltammetry and multi-analytical studies, such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Remarkably, a linear...

  9. CHESS-changing horizon efficient set search: A simple principle for multiobjective optimization

    Borges, Pedro Manuel F. C.

    2000-01-01

    This paper presents a new concept for generating approximations to the non-dominated set in multiobjective optimization problems. The approximation set A is constructed by solving several single-objective minimization problems in which a particular function D(A, z) is minimized. A new algorithm t...

  10. How to share our risks efficiently? Principles for optimal social insurance and pension provision

    Teulings, C.N.

    2010-01-01

    The efficient organisation of social insurance is an important problem for modern societies. The paper discusses evidence that shocks in labour income have largely persistent effects and analyses the implications of this observation for the optimal design of institutions for wage contracting, social

  11. Hierarchical optimization in isotope separation-gaseous diffusion: plant, cascade, stage, principles, and applications

    Guais, J. C.

    1975-09-01

    The large scale system represented by a gaseous diffusion plant model, and its hierarchical mathematical structure are the reasons for a decomposition method, minimizing the total cost of enrichment. This procedure has been used for years in the optimization problems of the french projects.

  12. Hierarchical optimization in isotope separation. Gaseous diffusion: plant, cascade, stage. Principles and applications

    Guais, J.C.

    1975-01-01

    The large scale system represented by a gaseous diffusion plant model, and its hierarchical mathematical structure are the reasons for a decomposition method, minimizing the total cost of enrichment. This procedure has been used for years in the optimization problems of the french projects [fr

  13. Optimized dispatch in a first-principles concentrating solar power production model

    Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.; Braun, Robert J.

    2017-10-01

    Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum and maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.

  14. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy.

    Hatfield, Paul; Merrick, Alison E; West, Emma; O'Donnell, Dearbhaile; Selby, Peter; Vile, Richard; Melcher, Alan A

    2008-09-01

    The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.

  15. Reliability-oriented multi-objective optimal decision-making approach for uncertainty-based watershed load reduction

    Dong, Feifei; Liu, Yong; Su, Han; Zou, Rui; Guo, Huaicheng

    2015-01-01

    Water quality management and load reduction are subject to inherent uncertainties in watershed systems and competing decision objectives. Therefore, optimal decision-making modeling in watershed load reduction is suffering due to the following challenges: (a) it is difficult to obtain absolutely “optimal” solutions, and (b) decision schemes may be vulnerable to failure. The probability that solutions are feasible under uncertainties is defined as reliability. A reliability-oriented multi-objective (ROMO) decision-making approach was proposed in this study for optimal decision making with stochastic parameters and multiple decision reliability objectives. Lake Dianchi, one of the three most eutrophic lakes in China, was examined as a case study for optimal watershed nutrient load reduction to restore lake water quality. This study aimed to maximize reliability levels from considerations of cost and load reductions. The Pareto solutions of the ROMO optimization model were generated with the multi-objective evolutionary algorithm, demonstrating schemes representing different biases towards reliability. The Pareto fronts of six maximum allowable emission (MAE) scenarios were obtained, which indicated that decisions may be unreliable under unpractical load reduction requirements. A decision scheme identification process was conducted using the back propagation neural network (BPNN) method to provide a shortcut for identifying schemes at specific reliability levels for decision makers. The model results indicated that the ROMO approach can offer decision makers great insights into reliability tradeoffs and can thus help them to avoid ineffective decisions. - Highlights: • Reliability-oriented multi-objective (ROMO) optimal decision approach was proposed. • The approach can avoid specifying reliability levels prior to optimization modeling. • Multiple reliability objectives can be systematically balanced using Pareto fronts. • Neural network model was used to

  16. Two-stage discrete-continuous multi-objective load optimization: An industrial consumer utility approach to demand response

    Abdulaal, Ahmed; Moghaddass, Ramin; Asfour, Shihab

    2017-01-01

    Highlights: •Two-stage model links discrete-optimization to real-time system dynamics operation. •The solutions obtained are non-dominated Pareto optimal solutions. •Computationally efficient GA solver through customized chromosome coding. •Modest to considerable savings are achieved depending on the consumer’s preference. -- Abstract: In the wake of today’s highly dynamic and competitive energy markets, optimal dispatching of energy sources requires effective demand responsiveness. Suppliers have adopted a dynamic pricing strategy in efforts to control the downstream demand. This method however requires consumer awareness, flexibility, and timely responsiveness. While residential activities are more flexible and schedulable, larger commercial consumers remain an obstacle due to the impacts on industrial performance. This paper combines methods from quadratic, stochastic, and evolutionary programming with multi-objective optimization and continuous simulation, to propose a two-stage discrete-continuous multi-objective load optimization (DiCoMoLoOp) autonomous approach for industrial consumer demand response (DR). Stage 1 defines discrete-event load shifting targets. Accordingly, controllable loads are continuously optimized in stage 2 while considering the consumer’s utility. Utility functions, which measure the loads’ time value to the consumer, are derived and weights are assigned through an analytical hierarchy process (AHP). The method is demonstrated for an industrial building model using real data. The proposed method integrates with building energy management system and solves in real-time with autonomous and instantaneous load shifting in the hour-ahead energy price (HAP) market. The simulation shows the occasional existence of multiple load management options on the Pareto frontier. Finally, the computed savings, based on the simulation analysis with real consumption, climate, and price data, ranged from modest to considerable amounts

  17. Reliability-oriented multi-objective optimal decision-making approach for uncertainty-based watershed load reduction

    Dong, Feifei [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Liu, Yong, E-mail: yongliu@pku.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Institute of Water Sciences, Peking University, Beijing 100871 (China); Su, Han [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China); Zou, Rui [Tetra Tech, Inc., 10306 Eaton Place, Ste 340, Fairfax, VA 22030 (United States); Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034 (China); Guo, Huaicheng [College of Environmental Science and Engineering, Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871 (China)

    2015-05-15

    Water quality management and load reduction are subject to inherent uncertainties in watershed systems and competing decision objectives. Therefore, optimal decision-making modeling in watershed load reduction is suffering due to the following challenges: (a) it is difficult to obtain absolutely “optimal” solutions, and (b) decision schemes may be vulnerable to failure. The probability that solutions are feasible under uncertainties is defined as reliability. A reliability-oriented multi-objective (ROMO) decision-making approach was proposed in this study for optimal decision making with stochastic parameters and multiple decision reliability objectives. Lake Dianchi, one of the three most eutrophic lakes in China, was examined as a case study for optimal watershed nutrient load reduction to restore lake water quality. This study aimed to maximize reliability levels from considerations of cost and load reductions. The Pareto solutions of the ROMO optimization model were generated with the multi-objective evolutionary algorithm, demonstrating schemes representing different biases towards reliability. The Pareto fronts of six maximum allowable emission (MAE) scenarios were obtained, which indicated that decisions may be unreliable under unpractical load reduction requirements. A decision scheme identification process was conducted using the back propagation neural network (BPNN) method to provide a shortcut for identifying schemes at specific reliability levels for decision makers. The model results indicated that the ROMO approach can offer decision makers great insights into reliability tradeoffs and can thus help them to avoid ineffective decisions. - Highlights: • Reliability-oriented multi-objective (ROMO) optimal decision approach was proposed. • The approach can avoid specifying reliability levels prior to optimization modeling. • Multiple reliability objectives can be systematically balanced using Pareto fronts. • Neural network model was used to

  18. Application of metaheuristics to Loading Pattern Optimization problems based on the IAEA-3D and BIBLIS-2D data

    Meneses, Anderson Alvarenga de Moura; Araujo, Lenilson Moreira; Nast, Fernando Nogueira; Da Silva, Patrick Vasconcelos; Schirru, Roberto

    2018-01-01

    Highlights: •Metaheuristics were applied to Loading Pattern Optimization problems and compared. •The problems are based on data of the benchmarks IAEA and BIBLIS. •The metaheuristics compared were PSO, Cross-Entropy, PBIL and Artificial Bee Colony. •Angra 1 NPP data were also used for further comparison of the algorithms. -- Abstract: The Loading Pattern Optimization (LPO) of a Nuclear Power Plant (NPP), or in-core fuel management optimization, is a real-world and prominent problem in Nuclear Engineering with the goal of finding an optimal (or near-optimal) Loading Pattern (LP), in terms of energy production, within adequate safety margins. Most of the reactor models used in the LPO problem are particular cases, such as research or power reactors with technical data that cannot be made available for several reasons, which makes the reproducibility of tests unattainable. In the present article we report the results of LPO of problems based upon reactor physics benchmarks. Since such data are well-known and widely available in the literature, it is possible to reproduce tests for comparison of techniques. We performed the LPO with the data of the benchmarks IAEA-3D and BIBLIS-2D. The Reactor Physics code RECNOD, which was used in previous works for the optimization of Angra 1 NPP in Brazil, was also used for further comparison. Four Optimization Metaheuristics (OMHs) were applied to those problems: Particle Swarm Optimization (PSO), Cross-Entropy algorithm (CE), Artificial Bee Colony (ABC) and Population-Based Incremental Learning (PBIL). For IAEA-3D, the best algorithm was the ABC. For BIBLIS-2D, PBIL was the best OMH. For Angra 1 / RECNOD optimization problem, PBIL, ABC and CE were the best OMHs.

  19. Basic principles of dental office logistics: organizing dental supplies and equipment for optimal accessibility.

    Mamoun, John

    2012-01-01

    To maximize office production, dentists should continuously perform treatment-related tasks throughout the workday. To this end, the office should logically organize and store dental instruments, disposables, materials, handpieces, and small equipment to optimize accessibility of these items at the moment when the dentist needs them. The office needs multiple copies of these items to prevent their inaccessibility during the workday due to breakdown, inventory depletion, or lack of a sterilized copy of the item when needed. Staff should know where all items are located in the office at all times to minimize the time needed to search for them. This article describes how to organize dental items in an office for optimal accessibility to the dentist during procedures.

  20. Finite element based design optimization of WENDELSTEIN 7-X divertor components under high heat flux loading

    Plankensteiner, A.; Leuprecht, A.; Schedler, B.; Scheiber, K.-H.; Greuner, H.

    2007-01-01

    In the divertor of the nuclear fusion experiment WENDELSTEIN 7-X (W7-X) plasma facing high heat flux target elements have to withstand severe loading conditions. The thermally induced mechanical stressing turns out to be most critical with respect to lifetime predictions of the target elements. Therefore, different design variants of those CFC flat tile armoured high heat flux components have been analysed via the finite element package ABAQUS aiming at derivation of an optimized component design under high heat flux conditions. The investigated design variants comprise also promising alterations in the cooling channel design and castellation of the CFC flat tiles which, however, from a system integration and manufacturing standpoint of view, respectively, are evaluated to be critical. Therefore, the numerical study as presented here mainly comprises a reference variant that is comparatively studied with a variant incorporating a bi-layer-type AMC-Cu/OF-Cu interlayer at the CFC/Cu-interface. The thermo-mechanical material characteristics are accounted for in the finite element models with elastic-plastic properties being assigned to the metallic sections CuCrZr, AMC-Cu and OF-Cu, respectively, and orthotropic nonlinear-elastic properties being used for the CFC sections. The calculated temporal and spatial evolution of temperatures, stresses, and strains for the individual design variants are evaluated with special attention being paid to stress measures, plastic strains, and damage parameters indicating the risk of failure of CFC and the CFC/Cu-interface, respectively. This way the finite element analysis allows to numerically derive an optimized design variant within the framework of expected operating conditions in W7-X

  1. Design Optimization of Microalloyed Steels Using Thermodynamics Principles and Neural-Network-Based Modeling

    Mohanty, Itishree; Chintha, Appa Rao; Kundu, Saurabh

    2018-06-01

    The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.

  2. Lean principles optimize on-time vascular surgery operating room starts and decrease resident work hours.

    Warner, Courtney J; Walsh, Daniel B; Horvath, Alexander J; Walsh, Teri R; Herrick, Daniel P; Prentiss, Steven J; Powell, Richard J

    2013-11-01

    Lean process improvement techniques are used in industry to improve efficiency and quality while controlling costs. These techniques are less commonly applied in health care. This study assessed the effectiveness of Lean principles on first case on-time operating room starts and quantified effects on resident work hours. Standard process improvement techniques (DMAIC methodology: define, measure, analyze, improve, control) were used to identify causes of delayed vascular surgery first case starts. Value stream maps and process flow diagrams were created. Process data were analyzed with Pareto and control charts. High-yield changes were identified and simulated in computer and live settings prior to implementation. The primary outcome measure was the proportion of on-time first case starts; secondary outcomes included hospital costs, resident rounding time, and work hours. Data were compared with existing benchmarks. Prior to implementation, 39% of first cases started on time. Process mapping identified late resident arrival in preoperative holding as a cause of delayed first case starts. Resident rounding process inefficiencies were identified and changed through the use of checklists, standardization, and elimination of nonvalue-added activity. Following implementation of process improvements, first case on-time starts improved to 71% at 6 weeks (P = .002). Improvement was sustained with an 86% on-time rate at 1 year (P < .001). Resident rounding time was reduced by 33% (from 70 to 47 minutes). At 9 weeks following implementation, these changes generated an opportunity cost potential of $12,582. Use of Lean principles allowed rapid identification and implementation of perioperative process changes that improved efficiency and resulted in significant cost savings. This improvement was sustained at 1 year. Downstream effects included improved resident efficiency with decreased work hours. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All

  3. Optimize knowledge uptake - employ a knowledge management system to drive principles to practice

    DeYoe, D.

    2009-01-01

    'Full text:' All too often the R&D community questions why good results based on sound science are not readily adopted by decision makers. We publish, hold conferences, even conduct workshops to engage policy developers and practitioners,who rarely show up. A closer look uncovers a common fault - although we may target decision makers we design information and tools to suit our interests, needs and/or standards then wonder why we end up always preaching to the converted. Are we missing the boat? In a word - yes! Employing the principles of knowledge transfer to infuse critical adaptive and/or mitigative strategies into policy and practice requires the right attitude, the right approach, the right tools and the right audience. The knowledge management cycle provides a framework that focuses on transfer of science principles or innovation into practice. It embodies the array of critical functions and activities inherent in a cycle that integrates knowledge generation, exchange and application. Knowledge exchange specialists play a pivotal role by helping translate technical knowledge into an appropriate suite of facts and figures well suited for consumption by decision makers. More importantly, they can facilitate adoption and the mainstream use of information and tools through collaborative efforts with knowledge application specialists in target organizations. This relationship can enable a knowledge management cycle that stimulates innovation and fosters informed decision making. Examples will be presented that describe what can happen when partners either fail to use, or succeed in using, a knowledge exchange system to manage projects in a manner that helps ensure inter-organizational collaboration. Examples include: a) a pilot study to demonstrate an emerging technology, b) striving for perfection in the face of ill-fated decisions, c) development of science-based policy and d) extension messaging at its best. (author)

  4. Accessibility of Enzymatically Delignified Bambusa bambos for Efficient Hydrolysis at Minimum Cellulase Loading: An Optimization Study.

    Kuila, Arindam; Mukhopadhyay, Mainak; Tuli, D K; Banerjee, Rintu

    2011-01-01

    In the present investigation, Bambusa bambos was used for optimization of enzymatic pretreatment and saccharification. Maximum enzymatic delignification achieved was 84%, after 8 h of incubation time. Highest reducing sugar yield from enzyme-pretreated Bambusa bambos was 818.01 mg/g dry substrate after 8 h of incubation time at a low cellulase loading (endoglucanase, β-glucosidase, exoglucanase, and xylanase were 1.63 IU/mL, 1.28 IU/mL, 0.08 IU/mL, and 47.93 IU/mL, respectively). Enzyme-treated substrate of Bambusa bambos was characterized by analytical techniques such as Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The FTIR spectrum showed that the absorption peaks of several functional groups were decreased after enzymatic pretreatment. XRD analysis indicated that cellulose crystallinity of enzyme-treated samples was increased due to the removal of amorphous lignin and hemicelluloses. SEM image showed that surface structure of Bambusa bambos was distorted after enzymatic pretreatment.

  5. Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles.

    Erdoğar, Nazlı; Esendağlı, Güneş; Nielsen, Thorbjorn T; Şen, Murat; Öner, Levent; Bilensoy, Erem

    2016-07-25

    As nanomedicines are gaining momentum in the therapy of cancer, new biomaterials emerge as alternative platforms for the delivery of anticancer drugs with bioavailability problems. In this study, two novel amphiphilic cyclodextrins (FCD-1 and FCD-2) conjugated with folate group to enable active targeting to folate positive breast tumors were introduced. The objective of this study was to develop and characterize new folated-CD nanoparticles via 3(2) factorial design for optimal final parameters. Full physicochemical characterization studies were performed. Blank and paclitaxel loaded FCD-1 and FCD-2 nanoparticles remained within the range of 70-275nm and 125-185nm, respectively. Zeta potential values were neutral and -20mV for FCD-1 and FCD-2 nanoparticles, respectively. Drug release studies showed initial burst release followed by a longer sustained release. Blank nanoparticles had no cytotoxicity against L929 cells. T-47D and ZR-75-1 human breast cancer cells with different levels of folate receptor expression were used to assess anti-cancer efficacy. Through targeting the folate receptor, these nanoparticles were efficiently engulfed by the breast cancer cells. Additionally, breast cancer cells became more sensitive to cytotoxic and/or cytostatic effects of PCX delivered by FCD-1 and FCD-2. In conclusion, these novel folate-conjugated cyclodextrin nanoparticles can therefore be considered as promising alternative systems for safe and effective delivery of paclitaxel with a folate-dependent mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Accessibility of Enzymatically Delignified Bambusa bambos for Efficient Hydrolysis at Minimum Cellulase Loading: An Optimization Study

    Arindam Kuila

    2011-01-01

    Full Text Available In the present investigation, Bambusa bambos was used for optimization of enzymatic pretreatment and saccharification. Maximum enzymatic delignification achieved was 84%, after 8 h of incubation time. Highest reducing sugar yield from enzyme-pretreated Bambusa bambos was 818.01 mg/g dry substrate after 8 h of incubation time at a low cellulase loading (endoglucanase, β-glucosidase, exoglucanase, and xylanase were 1.63 IU/mL, 1.28 IU/mL, 0.08 IU/mL, and 47.93 IU/mL, respectively. Enzyme-treated substrate of Bambusa bambos was characterized by analytical techniques such as Fourier transformed infrared spectroscopy (FTIR, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The FTIR spectrum showed that the absorption peaks of several functional groups were decreased after enzymatic pretreatment. XRD analysis indicated that cellulose crystallinity of enzyme-treated samples was increased due to the removal of amorphous lignin and hemicelluloses. SEM image showed that surface structure of Bambusa bambos was distorted after enzymatic pretreatment.

  7. Formulation optimization of gentamicin loaded Eudragit RS100 microspheres using factorial design study.

    Singh, Deependra; Saraf, Swarnlata; Dixit, Vinod Kumar; Saraf, Shailendra

    2008-04-01

    Gentamicin-Eudragit RS100 microspheres were prepared by modified double emulsion method. A 3(2) full factorial experiment was designed to study the effects of the composition of outer aqueous phase in terms of amount of glycerol (viscosity effect) and sodium chloride (osmotic pressure gradient effect) on the entrapment efficiency and % yield and microsphere size. The results of analysis of variance test for responses measured indicated that the test is significant (p>0.05). The contribution of sodium chloride concentration was found to be higher on entrapment efficiency and % yield, whereas glycerol produced significant effect on the mean diameter of microspheres. Microspheres demonstrated spherical particles in the size range of 33.24-60.43 microm. In vitro release profile of optimized formulation demonstrated sustained release for 24 h following Higuchi kinetics. Finally, drug bioactivity was found to remain intact after microencapsulation. Response surface graphs are presented to examine the effects of independent variables on the responses studied. Thus, by formulation design important parameters affecting formulation characteristics of gentamicin loaded Eudragit RS100 microspheres can be identified for controlled delivery with desirable characters in terms of maximum entrapment and yield.

  8. ALARA Principle Application for Loading Spent Nuclear Fuel Assemblies from Nuclear Research Reactor WR-S Mergal-Bucharest Romania into Transportation Casks

    Dragusin, M.

    2009-01-01

    Safety implementation of Spent Nuclear Fuels Assemblies (SNFA) handling procedures at the WR-S reactor site is ensured by technical perfection and reliability of equipment, monitoring of its condition, qualification and discipline of personnel as well as organization and execution of work complied with requirements of regulatory documents, process procedures, guidance and manuals. The personnel training for execution loading of SNF FAs is other important aspect for radiation protection and safely activities. Estimations carried out using Micro Shield software show that maximal dose rate upon working site when loading four FAs into basket of cask will not exceed 1.7 and 956;Sv/h, excluding natural radiation. Radiation Safety Analyses estimates for loading 70 SNFA in 18 transportation casks are: maximal individual dose: 4274.7 and 956;Sv, maximal expected collective dose persons: 17 031.2 man and 956;Sv. By application ALARA principle with technical and administrative measures the loading process developed in the following conditions: maximal individual dose: 68 and 956;Sv, the collective dose persons: 732 man and 956;Sv. The work will presented the technical measures and procedures applied in loading process.

  9. Application of ELD and load forecast in optimal operation of industrial boiler plants equipped with thermal stores

    Cao Jiacong

    2007-01-01

    Optimal operation of industrial boiler plants with objects of high energy efficiency and low fuel cost is still well worth investigating when energy problem becomes a world's concern, for there are a great number of boiler plants serving industries. The optimization of operation is a measure that is less expensive and easier to carry out than many other measures. Economic load dispatch (ELD) is an effective approach to optimal operation of industrial boiler plants. In the paper a newly developed method referred to as the method of minimum-departure model (MDM) is used in the ELD for boiler plants. It is more convenient for carrying out ELD when boiler plants are equipped with thermal energy stores that usually adopt the working mode of optimal segmentation of a daily load curve. In the case of industrial boiler plants, ELD needs a prerequisite, viz., the accurate load forecast, which is performed using artificial neural networks in this paper. A computer program for the optimal operation was completed and applied to an example, which results the minimum daily fuel cost of the whole boiler plant

  10. A common optimization principle for motor execution in healthy subjects and parkinsonian patients.

    Baraduc, Pierre; Thobois, Stéphane; Gan, Jing; Broussolle, Emmanuel; Desmurget, Michel

    2013-01-09

    Recent research on Parkinson's disease (PD) has emphasized that parkinsonian movement, although bradykinetic, shares many attributes with healthy behavior. This observation led to the suggestion that bradykinesia in PD could be due to a reduction in motor motivation. This hypothesis can be tested in the framework of optimal control theory, which accounts for many characteristics of healthy human movement while providing a link between the motor behavior and a cost/benefit trade-off. This approach offers the opportunity to interpret movement deficits of PD patients in the light of a computational theory of normal motor control. We studied 14 PD patients with bilateral subthalamic nucleus (STN) stimulation and 16 age-matched healthy controls, and tested whether reaching movements were governed by similar rules in these two groups. A single optimal control model accounted for the reaching movements of healthy subjects and PD patients, whatever the condition of STN stimulation (on or off). The choice of movement speed was explained in all subjects by the existence of a preset dynamic range for the motor signals. This range was idiosyncratic and applied to all movements regardless of their amplitude. In PD patients this dynamic range was abnormally narrow and correlated with bradykinesia. STN stimulation reduced bradykinesia and widened this range in all patients, but did not restore it to a normal value. These results, consistent with the motor motivation hypothesis, suggest that constrained optimization of motor effort is the main determinant of movement planning (choice of speed) and movement production, in both healthy and PD subjects.

  11. Assessment of Masonry Buildings Subjected to Landslide-Induced Settlements: From Load Path Method to Evolutionary Optimization Method

    Palmisano, Fabrizio; Elia, Angelo

    2017-10-01

    One of the main difficulties, when dealing with landslide structural vulnerability, is the diagnosis of the causes of crack patterns. This is also due to the excessive complexity of models based on classical structural mechanics that makes them inappropriate especially when there is the necessity to perform a rapid vulnerability assessment at the territorial scale. This is why, a new approach, based on a ‘simple model’ (i.e. the Load Path Method, LPM), has been proposed by Palmisano and Elia for the interpretation of the behaviour of masonry buildings subjected to landslide-induced settlements. However, the LPM is very useful for rapidly finding the 'most plausible solution' instead of the exact solution. To find the solution, optimization algorithms are necessary. In this scenario, this article aims to show how the Bidirectional Evolutionary Structural Optimization method by Huang and Xie, can be very useful to optimize the strut-and-tie models obtained by using the Load Path Method.

  12. Optimization for steady-state and hybrid operations of ITER by using scaling models of divertor heat load

    Murakami, Yoshiki; Itami, Kiyoshi; Sugihara, Masayoshi; Fujieda, Hirobumi.

    1992-09-01

    Steady-state and hybrid mode operations of ITER are investigated by 0-D power balance calculations assuming no radiation and charge-exchange cooling in divertor region. Operation points are optimized with respect to divertor heat load which must be reduced to the level of ignition mode (∼5 MW/m 2 ). Dependence of the divertor heat load on the variety of the models, i.e., constant-χ model, Bohm-type-χ model and JT-60U empirical scaling model, is also discussed. The divertor heat load increases linearly with the fusion power (P FUS ) in all models. The possible highest fusion power much differs for each model with an allowable divertor heat load. The heat load evaluated by constant-χ model is, for example, about 1.8 times larger than that by Bohm-type-χ model at P FUS = 750 MW. Effect of reduction of the helium accumulation, improvements of the confinement capability and the current-drive efficiency are also investigated aiming at lowering the divertor heat load. It is found that NBI power should be larger than about 60 MW to obtain a burn time longer than 2000 s. The optimized operation point, where the minimum divertor heat load is achieved, does not depend on the model and is the point with the minimum-P FUS and the maximum-P NBI . When P FUS = 690 MW and P NBI = 110 MW, the divertor heat load can be reduced to the level of ignition mode without impurity seeding if H = 2.2 is achieved. Controllability of the current-profile is also discussed. (J.P.N.)

  13. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    Deffner, Sebastian; Campbell, Steve

    2017-11-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.

  14. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    Deffner, Sebastian; Campbell, Steve

    2017-01-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam–Tamm and the Margolus–Levitin bounds on the quantum speed limit , and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach , where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader. (topical review)

  15. Optimization and limit of a tilt manipulation stage based on the electrowetting-on-dielectric principle

    Tan, Xiao; Tao, Zhi; Suzuki, Kenji; Li, Haiwang

    2017-12-01

    This work designed a new tilt manipulation stage based on the electrowetting-on-dielectric (EWOD) principle as the actuating mechanism and investigated the performance of that stage. The stage was fabricated using a universal MEMS (Micro-Electro-Mechanical System) fabrication method. In the previously demonstrated form of this device, the tilt stage consisted of a top plate that functions as a mirror, a bottom plate that was designed for changing the shape of water droplets, and supporters that were fixed between the top and bottom plate. That device was actuated by a voltage applied to the bottom plate, resulting in a static electric force actuating the shape change in the droplets by moving the top plate in the vertical direction. Previous experimental results indicated that that device can tilt at up to ±1.8°, with a resolution of 7 μm in displacement and 0.05° in angle. By selecting the best combination of the dielectric layer, the tilt angle was maximized. The new device, fabricated using a common and straightforward fabrication method, avoids deflection of the top plate and grounding in the bottom plate. Because of the limit of Teflon and other MEMS materials, this device has a tilt angle in the range of 3.2-3.5° according to the experimental data for friction and the EWOD device limit, which is close to 1.8°. This paper also describe the investigation of the effects of various parameters, e.g., various dielectric materials, thicknesses, and droplet type and volume, on the performance of the stage. The results indicate that the apparent frictions coefficient of the solid-liquid interface may remain constant, i.e., the friction force is proportional to the normal support force and the apparent frictions coefficient.

  16. Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Fruit Fly Optimization Algorithm

    Wei Sun

    2015-01-01

    Full Text Available Electric power is a kind of unstorable energy concerning the national welfare and the people’s livelihood, the stability of which is attracting more and more attention. Because the short-term power load is always interfered by various external factors with the characteristics like high volatility and instability, a single model is not suitable for short-term load forecasting due to low accuracy. In order to solve this problem, this paper proposes a new model based on wavelet transform and the least squares support vector machine (LSSVM which is optimized by fruit fly algorithm (FOA for short-term load forecasting. Wavelet transform is used to remove error points and enhance the stability of the data. Fruit fly algorithm is applied to optimize the parameters of LSSVM, avoiding the randomness and inaccuracy to parameters setting. The result of implementation of short-term load forecasting demonstrates that the hybrid model can be used in the short-term forecasting of the power system.

  17. Studies of fuel loading pattern optimization for a typical pressurized water reactor (PWR) using improved pivot particle swarm method

    Liu, Shichang; Cai, Jiejin

    2012-01-01

    Highlights: ► The mathematical model of loading pattern problems for PWR has been established. ► IPPSO was integrated with ‘donjon’ and ‘dragon’ into fuel arrangement optimizing code. ► The novel method showed highly efficiency for the LP problems. ► The core effective multiplication factor increases by about 10% in simulation cases. ► The power peaking factor decreases by about 0.6% in simulation cases. -- Abstract: An in-core fuel reload design tool using the improved pivot particle swarm method was developed for the loading pattern optimization problems in a typical PWR, such as Daya Bay Nuclear Power Plant. The discrete, multi-objective improved pivot particle swarm optimization, was integrated with the in-core physics calculation code ‘donjon’ based on finite element method, and assemblies’ group constant calculation code ‘dragon’, composing the optimization code for fuel arrangement. The codes of both ‘donjon’ and ‘dragon’ were programmed by Institute of Nuclear Engineering of Polytechnique Montréal, Canada. This optimization code was aiming to maximize the core effective multiplication factor (Keff), while keeping the local power peaking factor (Ppf) lower than a predetermined value to maintain fuel integrity. At last, the code was applied to the first cycle loading of Daya Bay Nuclear Power Plant. The result showed that, compared with the reference loading pattern design, the core effective multiplication factor increased by 9.6%, while the power peaking factor decreased by 0.6%, meeting the safety requirement.

  18. System principles and evaluation criteria of reliability for optimization of technological parameters of coal deposits

    A.О. Khorolskiy

    2017-12-01

    Full Text Available The article deals with solving the scientific problem of select mining equipment for selection longwall faces of mining venture. The main goal of the paper is to study technology of coal extraction of mining venture. The paper proposes a new approach to solve a problem of mining equipment selection for longwall faces of mining venture. The article describes new method for selection of mining equipment based on theory graph. Special attention is given to technological aspects; they are lenght of longwall faces, depth of coal stratum. Predictions obtained for daily production of mining equipment are compared with design outputs. Conclusions regarding the main reason of instability of longwall faces workings are made. It is found that to be able to use standard algorithms find the shortest path between vertices, you must perform matrix description of the constructed graphs that illustrate the structure of the interaction of different types of control equipment. Using classical optimization of method of discrete mathematics and algorithms for finding the shortest path between two vertices of network models obtained from the formalization of graphs with maximum results of specific types of equipment production chains, solved the problem of rational choice cleaning equipment for the new site with the cost parameters of the mining equipment and cost of mining coal. The authors developed effective and appropriate variants for the mine development for different coal deposits of mining venture.

  19. Optimization principle of operating parameters of heat exchanger by using CFD simulation

    Mičieta Jozef

    2016-01-01

    Full Text Available Design of effective heat transfer devices and minimizing costs are desired sections in industry and they are important for both engineers and users due to the wide-scale use of heat exchangers. Traditional approach to design is based on iterative process in which is gradually changed design parameters, until a satisfactory solution is achieved. The design process of the heat exchanger is very dependent on the experience of the engineer, thereby the use of computational software is a major advantage in view of time. Determination of operating parameters of the heat exchanger and the subsequent estimation of operating costs have a major impact on the expected profitability of the device. There are on the one hand the material and production costs, which are immediately reflected in the cost of device. But on the other hand, there are somewhat hidden costs in view of economic operation of the heat exchanger. The economic balance of operation significantly affects the technical solution and accompanies the design of the heat exchanger since its inception. Therefore, there is important not underestimate the choice of operating parameters. The article describes an optimization procedure for choice of cost-effective operational parameters for a simple double pipe heat exchanger by using CFD software and the subsequent proposal to modify its design for more economical operation.

  20. Optimal Design and Real Time Implementation of Autonomous Microgrid Including Active Load

    Mohamed A. Hassan; Muhammed Y. Worku; Mohamed A. Abido

    2018-01-01

    Controller gains and power-sharing parameters are the main parameters affect the dynamic performance of the microgrid. Considering an active load to the autonomous microgrid, the stability problem will be more involved. In this paper, the active load effect on microgrid dynamic stability is explored. An autonomous microgrid including three inverter-based distributed generations (DGs) with an active load is modeled and the associated controllers are designed. Controller gains of the inverters ...

  1. Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design

    Das, Sanjoy Kumar, E-mail: sanjoydasju@gmail.com; Khanam, Jasmina; Nanda, Arunabha

    2016-12-01

    In the present investigation, simplex lattice mixture design was applied for formulation development and optimization of a controlled release dosage form of ketoprofen microspheres consisting polymers like ethylcellulose and Eudragit{sup ®}RL 100; when those were formed by oil-in-oil emulsion solvent evaporation method. The investigation was carried out to observe the effects of polymer amount, stirring speed and emulsifier concentration (% w/w) on percentage yield, average particle size, drug entrapment efficiency and in vitro drug release in 8 h from the microspheres. Analysis of variance (ANOVA) was used to estimate the significance of the models. Based on the desirability function approach numerical optimization was carried out. Optimized formulation (KTF-O) showed close match between actual and predicted responses with desirability factor 0.811. No adverse reaction between drug and polymers were observed on the basis of Fourier transform infrared (FTIR) spectroscopy and Differential scanning calorimetric (DSC) analysis. Scanning electron microscopy (SEM) was carried out to show discreteness of microspheres (149.2 ± 1.25 μm) and their surface conditions during pre and post dissolution operations. The drug release pattern from KTF-O was best explained by Korsmeyer-Peppas and Higuchi models. The batch of optimized microspheres were found with maximum entrapment (~ 90%), minimum loss (~ 10%) and prolonged drug release for 8 h (91.25%) which may be considered as favourable criteria of controlled release dosage form. - Graphical abstract: Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design. - Highlights: • Simplex lattice design was used to optimize ketoprofen-loaded microspheres. • Polymeric blend (Ethylcellulose and Eudragit® RL 100) was used. • Microspheres were prepared by oil-in-oil emulsion solvent evaporation method. • Optimized formulation depicted favourable

  2. Integrated resource planning-concepts and principles

    Atkinson, S.

    1994-12-31

    The concepts and principles of integrated resource planning (IRP) are outlined. The following topics are discussed: utility opportunities and methodologies, application considerations, ambitious energy-efficient programs, the future of IRP, three methods to study resource alternatives, the load adjustment method, simultaneous optimization, static analysis, utility profile data, load forecasts and shapes, load data, conversion, variable costs, external analysis, internal analysis, DSM objectives, supply-side prescreening, DSM screening analysis, DSM evaluation, the IRP process, risk analysis, collaborative planning process, and load shape objectives.

  3. Optimization of a permanent magnet synchronous machine with respect to variable loads; Optimierung einer permanenterregten Synchronmaschine unter Beruecksichtigung von Lastspielen

    Kreim, Alexander; Schaefer, Uwe [TU Berlin (Germany). Sek. EM4 Elektrische Antriebstechnik

    2010-10-15

    This article introduces a nonlinear optimization algorithm for mixed integer problems. The proposed algorithm is a trust region algorithm for an exact penalty function. The quadratic subproblem is used for the integration of discrete variables. This is done by a branch-and-bound approach. The application of the algorithm is shown by minimizing the losses of a permanent magnet synchronous machine. The machine is designed for use in hybrid and electric vehicles. It is shown how load cycles can be included into the optimization process. (orig.)

  4. Reduction of fatigue loads on jacket substructure through blade design optimization for multimegawatt wind turbines at 50 m water depths

    NJOMO WANDJI, Wilfried; Pavese, Christian; Natarajan, Anand

    2016-01-01

    This paper addresses the reduction of the fore-aft damage equivalent moment at the tower base for multi-megawatt offshore wind turbines mounted on jacket type substructures at 50 m water depths. The study investigates blade design optimization of a reference 10 MW wind turbine under standard wind...... conditions of onshore sites. The blade geometry and structure is optimized to yield a design that minimizes tower base fatigue loads without significant loss of power production compared to that of the reference setup. The resulting blade design is then mounted on a turbine supported by a jacket and placed...

  5. Economic Load Dispatch - A Comparative Study on Heuristic Optimization Techniques With an Improved Coordinated Aggregation-Based PSO

    Vlachogiannis, Ioannis (John); Lee, KY

    2009-01-01

    In this paper an improved coordinated aggregation-based particle swarm optimization (ICA-PSO) algorithm is introduced for solving the optimal economic load dispatch (ELD) problem in power systems. In the ICA-PSO algorithm each particle in the swarm retains a memory of its best position ever...... encountered, and is attracted only by other particles with better achievements than its own with the exception of the particle with the best achievement, which moves randomly. Moreover, the population size is increased adaptively, the number of search intervals for the particles is selected adaptively...

  6. Appointment reminder systems are effective but not optimal: results of a systematic review and evidence synthesis employing realist principles.

    McLean, Sionnadh Mairi; Booth, Andrew; Gee, Melanie; Salway, Sarah; Cobb, Mark; Bhanbhro, Sadiq; Nancarrow, Susan A

    2016-01-01

    Missed appointments are an avoidable cost and resource inefficiency which impact upon the health of the patient and treatment outcomes. Health care services are increasingly utilizing reminder systems to manage these negative effects. This study explores the effectiveness of reminder systems for promoting attendance, cancellations, and rescheduling of appointments across all health care settings and for particular patient groups and the contextual factors which indicate that reminders are being employed sub-optimally. We used three inter-related reviews of quantitative and qualitative evidence. Firstly, using pre-existing models and theories, we developed a conceptual framework to inform our understanding of the contexts and mechanisms which influence reminder effectiveness. Secondly, we performed a review following Centre for Reviews and Dissemination guidelines to investigate the effectiveness of different methods of reminding patients to attend health service appointments. Finally, to supplement the effectiveness information, we completed a review informed by realist principles to identify factors likely to influence non-attendance behaviors and the effectiveness of reminders. We found consistent evidence that all types of reminder systems are effective at improving appointment attendance across a range of health care settings and patient populations. Reminder systems may also increase cancellation and rescheduling of unwanted appointments. "Reminder plus", which provides additional information beyond the reminder function may be more effective than simple reminders (ie, date, time, place) at reducing non-attendance at appointments in particular circumstances. We identified six areas of inefficiency which indicate that reminder systems are being used sub-optimally. Unless otherwise indicated, all patients should receive a reminder to facilitate attendance at their health care appointment. The choice of reminder system should be tailored to the individual service

  7. Aero-structural optimization of wind turbine blades using a reduced set of design load cases including turbulence

    Sessarego, Matias; Shen, Wen Zhong

    2018-01-01

    Modern wind turbine aero-structural blade design codes generally use a smaller fraction of the full design load base (DLB) or neglect turbulent inflow as defined by the International Electrotechnical Commission standards. The current article describes an automated blade design optimization method...... based on surrogate modeling that includes a very large number of design load cases (DLCs) including turbulence. In the present work, 325 DLCs representative of the full DLB are selected based on the message-passing-interface (MPI) limitations in Matlab. Other methods are currently being investigated, e.......g. a Python MPI implementation, to overcome the limitations in Matlab MPI and ultimately achieve a full DLB optimization framework. The reduced DLB and the annual energy production are computed using the state-of-the-art aero-servo-elastic tool HAWC2. Furthermore, some of the interior dimensions of the blade...

  8. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network

    Yu, Feng; Xu, Xiaozhong

    2014-01-01

    Highlights: • A detailed data processing will make more accurate results prediction. • Taking a full account of more load factors to improve the prediction precision. • Improved BP network obtains higher learning convergence. • Genetic algorithm optimized by chaotic cat map enhances the global search ability. • The combined GA–BP model improved by modified additional momentum factor is superior to others. - Abstract: This paper proposes an appropriate combinational approach which is based on improved BP neural network for short-term gas load forecasting, and the network is optimized by the real-coded genetic algorithm. Firstly, several kinds of modifications are carried out on the standard neural network to accelerate the convergence speed of network, including improved additional momentum factor, improved self-adaptive learning rate and improved momentum and self-adaptive learning rate. Then, it is available to use the global search capability of optimized genetic algorithm to determine the initial weights and thresholds of BP neural network to avoid being trapped in local minima. The ability of GA is enhanced by cat chaotic mapping. In light of the characteristic of natural gas load for Shanghai, a series of data preprocessing methods are adopted and more comprehensive load factors are taken into account to improve the prediction accuracy. Such improvements facilitate forecasting efficiency and exert maximum performance of the model. As a result, the integration model improved by modified additional momentum factor gets more ideal solutions for short-term gas load forecasting, through analyses and comparisons of the above several different combinational algorithms

  9. Efficient Hybrid Genetic Based Multi Dimensional Host Load Aware Algorithm for Scheduling and Optimization of Virtual Machines

    Thiruvenkadam, T; Karthikeyani, V

    2014-01-01

    Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by...

  10. PSO-based optimization of PI regulator and VA loading of a SRF ...

    The optimal value PI components and optimal series injected angle of series active power filters are computed using particle swarm optimization (PSO) technique and the results are verified with genetic algorithm (GA). The simulation results show that the proposed PSO technique causes minimum error and minimum VA ...

  11. Application of Hybrid Meta-Heuristic Techniques for Optimal Load Shedding Planning and Operation in an Islanded Distribution Network Integrated with Distributed Generation

    Jafar Jallad

    2018-05-01

    Full Text Available In a radial distribution network integrated with distributed generation (DG, frequency and voltage instability could occur due to grid disconnection, which would result in an islanded network. This paper proposes an optimal load shedding scheme to balance the electricity demand and the generated power of DGs. The integration of the Firefly Algorithm and Particle Swarm Optimization (FAPSO is proposed for the application of the planned load shedding and under frequency load shedding (UFLS scheme. In planning mode, the hybrid optimization maximizes the amount of load remaining and improves the voltage profile of load buses within allowable limits. Moreover, the hybrid optimization can be used in UFLS scheme to identify the optimal combination of loads that need to be shed from a network in operation mode. In order to assess the capabilities of the hybrid optimization, the IEEE 33-bus radial distribution system and part of the Malaysian distribution network with different types of DGs were used. The response of the proposed optimization method in planning and operation were compared with other optimization techniques. The simulation results confirmed the effectiveness of the proposed hybrid optimization in planning mode and demonstrated that the proposed UFLS scheme is quick enough to restore the system frequency without overshooting in less execution time.

  12. Numerical investigation of optimal yaw misalignment and collective pitch angle for load imbalance reduction of rigid and flexible HAWT blades under sheared inflow

    Jeong, Min-Soo; Cha, Myung-Chan; Kim, Sang-Woo; Lee, In

    2015-01-01

    Wind shear can strongly influence the cyclic loading on horizontal axis wind turbine blades. These load fluctuation causes a variation of power output and introduces fatigue load. Thus, individual pitch controllers have been developed that are focused on the load alleviations, however, comes at a price of actuator requirements for control. Moreover, these controllers are unable to apply to already existing wind turbines with active yaw and collective pitch control system. Therefore, the investigations for minimizing load imbalance through the adjustments of yaw misalignment and collective pitch angle are implemented for the rigid and flexible blades under the sheared inflow. By applying the optimization process based on a sequential quadratic programming approach, the optimal yaw and pitch angle can be estimated. Then, the numerical simulations for predicting the performance are performed. The results showed that the fluctuation range of the root flapwise bending moment for the rigid blades can be reduced by 84.5%, whereas the vibratory bending moment for the flexible blades can be reduced by up to approximately 82.4% in the best case. Therefore, the magnitudes of load imbalance can be minimized by the adjustment of the optimal yaw misalignment and collective pitch angle without any power loss. - Highlights: • We propose a novel method for the reduction of load imbalance under sheared inflow. • We estimate optimal yaw misalignment and collective pitch angle through optimization. • Numerical results of performance are predicted for rigid and flexible blades. • By applying optimal angles, load variations are reduced without any power loss

  13. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery.

    Tang, Wei-Lun; Tang, Wei-Hsin; Szeitz, Andras; Kulkarni, Jayesh; Cullis, Pieter; Li, Shyh-Dar

    2018-06-01

    The solvent-assisted active loading technology (SALT) was developed for encapsulating a water insoluble weak base into the liposomal core in the presence of 5% DMSO. In this study, we further examined the effect of various water miscible solvents in promoting active loading of other types of drugs into liposomes. To achieve complete drug loading, the amount of solvent required must result in complete drug solubilization and membrane permeability enhancement, but must be below the threshold that induces liposomal aggregation or causes bilayer disruption. We then used the SALT to load gambogic acid (GA, an insoluble model drug that shows promising anticancer effect) into liposomes, and optimized the loading gradient and lipid composition to prepare a stable formulation (Lipo-GA) that displayed >95% drug retention after incubation with serum for 3 days. Lipo-GA contained a high drug-to-lipid ratio of 1/5 (w/w) with a mean particle size of ∼75 nm. It also displayed a prolonged circulation half-life (1.5 h vs. 18.6 h) and enhanced antitumor activity in two syngeneic mice models compared to free GA. Particularly, complete tumor regression was observed in the EMT6 tumor model for 14 d with significant inhibition of multiple oncogenes including HIF-1α, VEGF-A, STAT3, BCL-2, and NF-κB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    Furbish, David; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan

    2016-01-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  15. Robust optimization for load scheduling of a smart home with photovoltaic system

    Wang, Chengshan; Zhou, Yue; Jiao, Bingqi; Wang, Yamin; Liu, Wenjian; Wang, Dan

    2015-01-01

    Highlights: • Robust household load scheduling is presented for smart homes with PV system. • A robust counterpart is formulated to deal with PV output uncertainty. • The robust counterpart is finally transformed to a quadratic programming problem. • Load schedules with different robustness can be made by the proposed method. • Feed-in tariff and PV output would affect the significance of the proposed method. - Abstract: In this paper, a robust approach is developed to tackle the uncertainty of PV power output for load scheduling of smart homes integrated with household PV system. Specifically, a robust formulation is proposed and further transformed to an equivalent quadratic programming problem. Day-ahead load schedules with different robustness can be generated by solving the proposed robust formulation with different predefined parameters. The validity and advantage of the proposed approach has been verified by simulation results. Also, the effects of feed-in tariff and PV output have been evaluated

  16. A Method for Optimal Load Dispatch of a Multi-zone Power System with Zonal Exchange Constraints

    Hazarika, Durlav; Das, Ranjay

    2018-04-01

    This paper presented a method for economic generation scheduling of a multi-zone power system having inter zonal operational constraints. For this purpose, the generator rescheduling for a multi area power system having inter zonal operational constraints has been represented as a two step optimal generation scheduling problem. At first, the optimal generation scheduling has been carried out for the zone having surplus or deficient generation with proper spinning reserve using co-ordination equation. The power exchange required for the deficit zones and zones having no generation are estimated based on load demand and generation for the zone. The incremental transmission loss formulas for the transmission lines participating in the power transfer process among the zones are formulated. Using these, incremental transmission loss expression in co-ordination equation, the optimal generation scheduling for the zonal exchange has been determined. Simulation is carried out on IEEE 118 bus test system to examine the applicability and validity of the method.

  17. Combining principles of Cognitive Load Theory and diagnostic error analysis for designing job aids: Effects on motivation and diagnostic performance in a process control task.

    Kluge, Annette; Grauel, Britta; Burkolter, Dina

    2013-03-01

    Two studies are presented in which the design of a procedural aid and the impact of an additional decision aid for process control were assessed. In Study 1, a procedural aid was developed that avoids imposing unnecessary extraneous cognitive load on novices when controlling a complex technical system. This newly designed procedural aid positively affected germane load, attention, satisfaction, motivation, knowledge acquisition and diagnostic speed for novel faults. In Study 2, the effect of a decision aid for use before the procedural aid was investigated, which was developed based on an analysis of diagnostic errors committed in Study 1. Results showed that novices were able to diagnose both novel faults and practised faults, and were even faster at diagnosing novel faults. This research contributes to the question of how to optimally support novices in dealing with technical faults in process control. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. The Effect of mechanical resistive loading on optimal respiratory signals and breathing patterns under added dead space and CO2 breathing

    Lin Shyan-Lung

    2016-01-01

    Full Text Available Current study aims to investigate how the respiratory resistive loading affects the behaviour of the optimal chemical-mechanical respiratory control model, the respiratory signals and breathing pattern are optimized under external dead space loading and CO2 breathing. The respiratory control was modelled to include a neuro-muscular drive as the control output to derive the waveshapes of instantaneous airflow, lung volume profiles, and breathing pattern, including total/alveolar ventilation, breathing frequency, tidal volume, inspiratory/expiratory duration, duty cycle, and arterial CO2 pressure. The simulations were performed under various respiratory resistive loads, including no load, inspiratory resistive load, expiratory resistive load, and continuous resistive load. The dead space measurement was described with Gray’s derivation, and simulation results were studied and compared with experimental findings.

  19. Preparation and Optimization OF Palm-Based Lipid Nanoparticles Loaded with Griseofulvin.

    Huei Lim, Wen; Jean Tan, Yann; Sin Lee, Choy; Meng Er, Hui; Fung Wong, Shew

    2017-01-01

    Palm-based lipid nanoparticle formulation loaded with griseofulvin was prepared by solvent-free hot homogenization method. The griseofulvin loaded lipid nanoparticles were prepared via stages of optimisation, by altering the high pressure homogenisation (HPH) parameters, screening on palm-based lipids and Tween series surfactants and selection of lipid to surfactant ratios. A HPLC method has been validated for the drug loading capacity study. The optimum HPH parameter was determined to be 1500 bar with 5 cycles and among the palm-based lipid materials; Lipid C (triglycerides) was selected for the preparation of lipid nanoparticles. Tween 80 was chosen from the Tween series surfactants for its highest saturated solubility of griseofulvin at 53.1 ± 2.16 µg/mL. The optimum formulation of the griseofulvin loaded lipid nanoparticles demonstrated nano-range of particle size (179.8 nm) with intermediate distribution index (PDI) of 0.306, zeta potential of -27.9 mV and drug loading of 0.77%. The formulation was stable upon storage for 1 month at room temperature (25 ° C) and 45 ° C with consistent drug loading capacity.

  20. Load Index Metrics for an Optimized Management of Web Services: A Systematic Evaluation

    Souza, Paulo S. L.; Santana, Regina H. C.; Santana, Marcos J.; Zaluska, Ed; Faical, Bruno S.; Estrella, Julio C.

    2013-01-01

    The lack of precision to predict service performance through load indices may lead to wrong decisions regarding the use of web services, compromising service performance and raising platform cost unnecessarily. This paper presents experimental studies to qualify the behaviour of load indices in the web service context. The experiments consider three services that generate controlled and significant server demands, four levels of workload for each service and six distinct execution scenarios. The evaluation considers three relevant perspectives: the capability for representing recent workloads, the capability for predicting near-future performance and finally stability. Eight different load indices were analysed, including the JMX Average Time index (proposed in this paper) specifically designed to address the limitations of the other indices. A systematic approach is applied to evaluate the different load indices, considering a multiple linear regression model based on the stepwise-AIC method. The results show that the load indices studied represent the workload to some extent; however, in contrast to expectations, most of them do not exhibit a coherent correlation with service performance and this can result in stability problems. The JMX Average Time index is an exception, showing a stable behaviour which is tightly-coupled to the service runtime for all executions. Load indices are used to predict the service runtime and therefore their inappropriate use can lead to decisions that will impact negatively on both service performance and execution cost. PMID:23874776

  1. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box–Behnken design

    S. Sukhbir

    2016-09-01

    Full Text Available Nefopam hydrochloride (NFH is a non-opioid centrally acting analgesic drug used to treat chronic condition such as neuropathic pain. In current research, sustained release nefopam hydrochloride loaded nanospheres (NFH-NS were auspiciously synthesized using binary mixture of eudragit RL 100 and RS 100 with sorbitan monooleate as surfactant by quasi solvent diffusion technique and optimized by 35 Box–Behnken designs to evaluate the effects of process and formulation variables. Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetric (DSC and X-ray diffraction (XRD affirmed absence of drug–polymer incompatibility and confirmed formation of nanospheres. Desirability function scrutinized by design-expert software for optimized formulation was 0.920. Optimized batch of NFH-NS had mean particle size 328.36 nm ± 2.23, % entrapment efficiency (% EE 84.97 ± 1.23, % process yield 83.60 ± 1.31 and % drug loading (% DL 21.41 ± 0.89. Dynamic light scattering (DLS, zeta potential analysis and scanning electron microscopy (SEM validated size, charge and shape of nanospheres, respectively. In-vitro drug release study revealed biphasic release pattern from optimized nanospheres. Korsmeyer Peppas found excellent kinetics model with release exponent less than 0.45. Chronic constricted injury (CCI model of optimized NFH-NS in Wistar rats produced significant difference in neuropathic pain behavior (p < 0.05 as compared to free NFH over 10 h indicating sustained action. Long term and accelerated stability testing of optimized NFH-NS revealed degradation rate constant 1.695 × 10−4 and shelf-life 621 days at 25 ± 2 °C/60% ± 5% RH.

  2. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box-Behnken design.

    Sukhbir, S; Yashpal, S; Sandeep, A

    2016-09-01

    Nefopam hydrochloride (NFH) is a non-opioid centrally acting analgesic drug used to treat chronic condition such as neuropathic pain. In current research, sustained release nefopam hydrochloride loaded nanospheres (NFH-NS) were auspiciously synthesized using binary mixture of eudragit RL 100 and RS 100 with sorbitan monooleate as surfactant by quasi solvent diffusion technique and optimized by 3 5 Box-Behnken designs to evaluate the effects of process and formulation variables. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetric (DSC) and X-ray diffraction (XRD) affirmed absence of drug-polymer incompatibility and confirmed formation of nanospheres. Desirability function scrutinized by design-expert software for optimized formulation was 0.920. Optimized batch of NFH-NS had mean particle size 328.36 nm ± 2.23, % entrapment efficiency (% EE) 84.97 ± 1.23, % process yield 83.60 ± 1.31 and % drug loading (% DL) 21.41 ± 0.89. Dynamic light scattering (DLS), zeta potential analysis and scanning electron microscopy (SEM) validated size, charge and shape of nanospheres, respectively. In-vitro drug release study revealed biphasic release pattern from optimized nanospheres. Korsmeyer Peppas found excellent kinetics model with release exponent less than 0.45. Chronic constricted injury (CCI) model of optimized NFH-NS in Wistar rats produced significant difference in neuropathic pain behavior ( p  accelerated stability testing of optimized NFH-NS revealed degradation rate constant 1.695 × 10 -4 and shelf-life 621 days at 25 ± 2 °C/60% ± 5% RH.

  3. Economic emission dispatching with variations of wind power and loads using multi-objective optimization by learning automata

    Liao, H.L.; Wu, Q.H.; Li, Y.Z.; Jiang, L.

    2014-01-01

    Highlights: • Apply multi-objective optimization by learning automata to power system. • Sequentially dimensional search and state memory are incorporated. • Track dispatch under significant variations of wind power and load demand. • Good performance in terms of accuracy, distribution and computation time. - Abstract: This paper is concerned with using multi-objective optimization by learning automata (MOLA) for economic emission dispatching in the environment where wind power and loads vary. With its capabilities of sequentially dimensional search and state memory, MOLA is able to find accurate solutions while satisfying two objectives: fuel cost coupled with environmental emission and voltage stability. Its searching quality and efficiency are measured using the hypervolume indicator for investigating the quality of Pareto front, and demonstrated by tracking the dispatch solutions under significant variations of wind power and load demand. The simulation studies are carried out on the modified midwestern American electric power system and the IEEE 118-bus test system, in which wind power penetration and load variations present. Evaluated on these two power systems, MOLA is fully compared with multi-objective evolutionary algorithm based on decomposition (MOEA/D) and non-dominated sorting genetic algorithm II (NSGA-II). The simulation results have shown the superiority of MOLA over NAGA-II and MOEA/D, as it is able to obtain more accurate and widely distributed Pareto fronts. In the dynamic environment where the operation condition of both wind speed and load demand varies, MOLA outperforms the other two algorithms, with respect to the tracking ability and accuracy of the solutions

  4. Mathematical Optimization Algorithm for Minimizing the Cost Function of GHG Emission in AS/RS Using Positive Selection Based Clonal Selection Principle

    Mahalakshmi; Murugesan, R.

    2018-04-01

    This paper regards with the minimization of total cost of Greenhouse Gas (GHG) efficiency in Automated Storage and Retrieval System (AS/RS). A mathematical model is constructed based on tax cost, penalty cost and discount cost of GHG emission of AS/RS. A two stage algorithm namely positive selection based clonal selection principle (PSBCSP) is used to find the optimal solution of the constructed model. In the first stage positive selection principle is used to reduce the search space of the optimal solution by fixing a threshold value. In the later stage clonal selection principle is used to generate best solutions. The obtained results are compared with other existing algorithms in the literature, which shows that the proposed algorithm yields a better result compared to others.

  5. Quality by design approach for formulation, evaluation and statistical optimization of diclofenac-loaded ethosomes via transdermal route.

    Jain, Shashank; Patel, Niketkumar; Madan, Parshotam; Lin, Senshang

    2015-06-01

    The objective of this study was to fabricate and understand ethosomal formulations of diclofenac (DF) for enhanced anti-inflammatory activity using quality by design approach. DF-loaded ethosomal formulations were prepared using 4 × 5 full-factorial design with phosphatidylcholine:cholesterol (PC:CH) ratios ranging between 50:50 and 90:10, and ethanol concentration ranging between 0% and 30% as formulation variables. These formulations were characterized in terms of physicochemical properties and skin permeation kinetics. The interaction of formulation variables had a significant effect on both physicochemical properties and permeation kinetics. The results of multivariate regression analysis illustrated that vesicle size and elasticity of ethosomes were the dominating physicochemical properties affecting skin permeation, and could be suitably controlled by manipulation of formulation variables to optimize the formulation and enhance the skin permeation of DF-loaded ethosomes. The optimized formulation had ethanol concentration of 22.9% and PC:CH ratio of 88.4:11.6, with vesicle size of 144 ± 5 nm, zeta potential of -23.0 ± 3.76 mV, elasticity of 2.48 ± 0.75 and entrapment efficiency of 71 ± 4%. Permeation flux for the optimized formulation was 12.9 ± 1.0 µg/h cm(2), which was significantly higher than the drug-loaded conventional liposome, ethanolic or aqueous solution. The in vivo study indicated that optimized ethosomal hydrogel exhibited enhanced anti-inflammatory activity compared with liposomal and plain drug hydrogel formulations.

  6. Preparation of Salicylic Acid Loaded Nanostructured Lipid Carriers Using Box-Behnken Design: Optimization, Characterization and Physicochemical Stability.

    Pantub, Ketrawee; Wongtrakul, Paveena; Janwitayanuchit, Wicharn

    2017-01-01

    Nanostructured lipid carriers loaded salicylic acid (NLCs-SA) were developed and optimized by using the design of experiment (DOE). Box-Behnken experimental design of 3-factor, 3-level was applied for optimization of nanostructured lipid carriers prepared by emulsification method. The independent variables were total lipid concentration (X 1 ), stearic acid to Lexol ® GT-865 ratio (X 2 ) and Tween ® 80 concentration (X 3 ) while the particle size was a dependent variable (Y). Box-Behnken design could create 15 runs by setting response optimizer as minimum particle size. The optimized formulation consists of 10% of total lipid, a mixture of stearic acid and capric/caprylic triglyceride at a 4:1 ratio, and 25% of Tween ® 80 which the formulation was applied in order to prepare in both loaded and unloaded salicylic acid. After preparation for 24 hours, the particle size of loaded and unloaded salicylic acid was 189.62±1.82 nm and 369.00±3.37 nm, respectively. Response surface analysis revealed that the amount of total lipid is a main factor which could affect the particle size of lipid carriers. In addition, the stability studies showed a significant change in particle size by time. Compared to unloaded nanoparticles, the addition of salicylic acid into the particles resulted in physically stable dispersion. After 30 days, sedimentation of unloaded lipid carriers was clearly observed. Absolute values of zeta potential of both systems were in the range of 3 to 18 mV since non-ionic surfactant, Tween ® 80, providing steric barrier was used. Differential thermograms indicated a shift of endothermic peak from 55°C for α-crystal form in freshly prepared samples to 60°C for β´-crystal form in storage samples. It was found that the presence of capric/caprylic triglyceride oil could enhance encapsulation efficiency up to 80% and facilitate stability of the particles.

  7. Appointment reminder systems are effective but not optimal: results of a systematic review and evidence synthesis employing realist principles

    McLean SM

    2016-04-01

    Full Text Available Sionnadh Mairi McLean,1 Andrew Booth,2 Melanie Gee,3 Sarah Salway,2 Mark Cobb,4 Sadiq Bhanbhro,3 Susan A Nancarrow5 1Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK; 2School of Health and Related Research, University of Sheffield, Sheffield, UK; 3Centre for Health and Social Care Research, Sheffield Hallam University, Sheffield, UK; 4Therapeutics & Palliative Care, Sheffield Teaching Hospitals, Sheffield, UK; 5School of Health and Human Science, Southern Cross University, East Lismore, NSW, Australia Abstract: Missed appointments are an avoidable cost and resource inefficiency which impact upon the health of the patient and treatment outcomes. Health care services are increasingly utilizing reminder systems to manage these negative effects. This study explores the effectiveness of reminder systems for promoting attendance, cancellations, and rescheduling of appointments across all health care settings and for particular patient groups and the contextual factors which indicate that reminders are being employed sub-optimally. We used three inter-related reviews of quantitative and qualitative evidence. Firstly, using pre-existing models and theories, we developed a conceptual framework to inform our understanding of the contexts and mechanisms which influence reminder effectiveness. Secondly, we performed a review following Centre for Reviews and Dissemination guidelines to investigate the effectiveness of different methods of reminding patients to attend health service appointments. Finally, to supplement the effectiveness information, we completed a review informed by realist principles to identify factors likely to influence non-attendance behaviors and the effectiveness of reminders. We found consistent evidence that all types of reminder systems are effective at improving appointment attendance across a range of health care settings and patient populations. Reminder systems may also increase cancellation and

  8. An automated optimization of core fuel loading pattern for pressurized water reactors

    Chen Renji

    1988-11-01

    An optimum method was adopted to search for an optimum fuel loading pattern in pressurized water reactors. A radial power peak factor was chosen as the objective function of the optimum loading. The direct search method with shuffling rules is used to find optimum solution. The search for an optimum loading pattern with the smallest radial power peak by exchanging fuel assemblies was made. The search process is divided into two steps. In the first step fresh fuels or high reactivity fuels are arranged which are placed in core interior to have a reasonable fuel loading pattern. To further reduce the radial power peak factor, the second step will be necessary to rearrange the exposed lower reactivity fuel around the assemblies which has the radial power peak. In optimum process 1.5 group coarse mesh diffusion theory or two group nodal Green function diffusion theory is utilized to calculate the two dimensional power distribution after each shuffle. Also, above two methods are combinatively utilized to calculate the state quantity. It is not only true to save CPU time, but also can obtian exact results. Besides above function, the code MSOFEL is used to search critical boron concentration and to predict burn-up. The code has been written with FORTRAN-4. The optimum loading pattern was chosen for OCONEE and QINSHAN nuclear power plants as reference examples. The validity and feasibility of MSOFEL was demonstrated

  9. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system.

    Endut, Azizah; Jusoh, A; Ali, N; Wan Nik, W B; Hassan, A

    2010-03-01

    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate. 2009 Elsevier Ltd. All rights reserved.

  10. Decoupling Weather Influence from User Habits for an Optimal Electric Load Forecast System

    Luca Massidda

    2017-12-01

    Full Text Available The balance between production and consumption in a smart grid with high penetration of renewable sources and in the presence of energy storage systems benefits from an accurate load prediction. A general approach to load forecasting is not possible because of the additional complication due to the increasing presence of distributed and usually unmeasured photovoltaic production. Various methods are proposed in the literature that can be classified into two classes: those that predict by separating the portion of load due to consumption habits from the part of production due to local weather conditions, and those that attempt to predict the load as a whole. The characteristic that should lead to a preference for one approach over another is obviously the percentage of penetration of distributed production. The study site discussed in this document is the grid of Borkum, an island located in the North Sea. The advantages in terms of reducing forecasting errors for the electrical load, which can be obtained by using weather information, are explained. In particular, when comparing the results of different approaches gradually introducing weather forecasts, it is clear that the correct functional dependency of production has to be taken into account in order to obtain maximum yield from the available information. Where possible, this approach can significantly improve the quality of the forecasts, which in turn can improve the balance of a network—especially if energy storage systems are in place.

  11. Failure Investigation & Design Optimization of a Photo-Multiplier Tube Assembly Under Thermal Loading

    Dahya, Kevin

    2004-01-01

    Analysis of GLAST ACD Photo-Multiplier Tube (PMT) assembly under thermal loading demonstrates that the glass tube experiences high stresses due to Coefficient of Thermal Expansion mismatch, as well as increased stress due to high stiffness and incompressibility of potting compound. Further investigation shows adverse loading effects due to the magnetic shield, a thin piece of steel wrapped around the PMT. This steel, Mu Metal, contained an overlap region that directly attributed to crack propagation in the outside surface of the tube. Sensitivities to different configurations were studied to reduce the stress and provide a more uniform loading throughout the PMT to ensure mission success. Studies indicate substituting a softer and more compressible potting compound and moving the Mu metal from the glass tube to the outside wall of the aluminum housing yields lower stress.

  12. Automatic optimization of core loading patterns to maximize cycle energy production within operational constraints

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine the core loading pattern which minimizes fuel cycle costs for a pressurized water reactor. Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern which maximizes core reactivity at end-of-cycle while satisfying the power peaking constraint throughout the cycle and region average discharge burnup limit. The method utilizes a two-dimensional, coarse mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern as a function of cycle burnup. First order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, and end-of-cycle burnup

  13. Optimization of enhanced biological phosphorus removal after periods of low loading.

    Miyake, Haruo; Morgenroth, Eberhard

    2005-01-01

    Enhanced biological phosphorus removal is a well-established technology for the treatment of municipal wastewater. However, increased effluent phosphorus concentrations have been reported after periods (days) of low organic loading. The purpose of this study was to evaluate different operating strategies to prevent discharge of effluent after such low-loading periods. Mechanisms leading to these operational problems have been related to the reduction of polyphosphate-accumulating organisms (PAOs) and their storage compounds (polyhydroxy alkanoates [PHA]). Increased effluent phosphorus concentrations can be the result of an imbalance between influent loading and PAOs in the system and an imbalance between phosphorus release and uptake rates. The following operating conditions were tested in their ability to prevent a reduction of PHA and of overall biomass during low organic loading conditions: (a) unchanged operation, (b) reduced aeration time, (c) reduced sludge wastage, and (d) combination of reduced aeration time and reduced sludge wastage. Experiments were performed in a laboratory-scale anaerobic-aerobic sequencing batch reactor, using acetate as the carbon source. Without operational adjustments, phosphorus-release rates decreased during low-loading periods but recovered rapidly. Phosphorus-uptake rates also decreased, and the recovery typically required several days to increase to normal levels. The combination of reduced aeration time and reduced sludge wastage allowed the maintenance of constant levels of both PHA and overall biomass. A mathematical model was used to explain the influence of the tested operating conditions on PAO and PHA concentrations. While experimental results were in general agreement with model predictions, the kinetic expression for phosphorus uptake deviated significantly for the first 24 hours after low-loading conditions. Mechanisms leading to these deviations need to be further investigated.

  14. Enhanced Ungual Permeation of Terbinafine HCl Delivered Through Liposome-Loaded Nail Lacquer Formulation Optimized by QbD Approach.

    Shah, Viral H; Jobanputra, Amee

    2018-01-01

    The present investigation focused on developing, optimizing, and evaluating a novel liposome-loaded nail lacquer formulation for increasing the transungual permeation flux of terbinafine HCl for efficient treatment of onychomycosis. A three-factor, three-level, Box-Behnken design was employed for optimizing process and formulation parameters of liposomal formulation. Liposomes were formulated by thin film hydration technique followed by sonication. Drug to lipid ratio, sonication amplitude, and sonication time were screened as independent variables while particle size, PDI, entrapment efficiency, and zeta potential were selected as quality attributes for liposomal formulation. Multiple regression analysis was employed to construct a second-order quadratic polynomial equation and contour plots. Design space (overlay plot) was generated to optimize a liposomal system, with software-suggested levels of independent variables that could be transformed to desired responses. The optimized liposome formulation was characterized and dispersed in nail lacquer which was further evaluated for different parameters. Results depicted that the optimized terbinafine HCl-loaded liposome formulation exhibited particle size of 182 nm, PDI of 0.175, zeta potential of -26.8 mV, and entrapment efficiency of 80%. Transungual permeability flux of terbinafine HCl through liposome-dispersed nail lacquer formulation was observed to be significantly higher in comparison to nail lacquer with a permeation enhancer. The developed formulation was also observed to be as efficient as pure drug dispersion in its antifungal activity. Thus, it was concluded that the developed formulation can serve as an efficient tool for enhancing the permeability of terbinafine HCl across human nail plate thereby improving its therapeutic efficiency.

  15. Tamoxifen-loaded lecithin organogel (LO) for topical application: Development, optimization and characterization.

    Bhatia, Amit; Singh, Bhupinder; Raza, Kaisar; Wadhwa, Sheetu; Katare, Om Prakash

    2013-02-28

    Lecithin organogels (LOs) are semi-solid systems with immobilized organic liquid phase in 3-D network of self-assembled gelators. This paper attempts to study the various attributes of LOs, starting from selection of materials, optimization of influential components to LO specific characterization. After screening of various components (type of gelators, organic and aqueous phase) and construction of phase diagrams, a D-optimal mixture design was employed for the systematic optimization of the LO composition. The response surface plots were constructed for various response variables, viz. viscosity, gel strength, spreadability and consistency index. The optimized LO composition was searched employing overlay plots. Subsequent validation of the optimization study employing check-point formulations, located using grid search, indicated high degree of prognostic ability of the experimental design. The optimized formulation was characterized for morphology, drug content, rheology, spreadability, pH, phase transition temperatures, and physical and chemical stability. The outcomes of the study were interesting showing high dependence of LO attributes on the type and amount of phospholipid, Poloxamer™, auxillary gelators and organic solvent. The optimized LO was found to be quite stable, easily applicable and biocompatible. The findings of the study can be utilized for the development of LO systems of other drugs for the safer and effective topical delivery. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  16. Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm

    Bao Wang

    2012-11-01

    Full Text Available The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm (FOA has the advantages of being easy to understand and fast convergence to the global optimal solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based annual electric load forecasting model that uses FOA to automatically determine the appropriate values of the two parameters for the LSSVM model. By taking the annual electricity consumption of China as an instance, the computational result shows that the LSSVM combined with FOA (LSSVM-FOA outperforms other alternative methods, namely single LSSVM, LSSVM combined with coupled simulated annealing algorithm (LSSVM-CSA, generalized regression neural network (GRNN and regression model.

  17. Maximized gust loads for a nonlinear airplane using matched filter theory and constrained optimization

    Scott, Robert C.; Perry, Boyd, III; Pototzky, Anthony S.

    1991-01-01

    This paper describes and illustrates two matched-filter-theory based schemes for obtaining maximized and time-correlated gust-loads for a nonlinear airplane. The first scheme is computationally fast because it uses a simple one-dimensional search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multidimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.

  18. Plastic collapse of tubes submitted to a ring load by optimization

    Zouain, N.

    1982-05-01

    The limit analysis of a tube with finite lenght, made of a rigid - plastic material, is considered for the case of an internal load uniformely distributed in a cross section of the tube. The exact creep law is calculated for several qualitatively differents cases, namely different tube lenghts. The corresponding stress and collapse mechanisms are given so that they can be compared to the approximations developed here. The static and kinematic theorems on plastic collapse are used for establishing two numerical methods of resolution, specifically mathematical programming and finite element method. These mathematical methods are applied to collapse load for the considered tube. (E.G.) [pt

  19. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis.

    Hemmati, Reza; Saboori, Hedayat

    2016-05-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics.

  20. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis

    Hemmati, Reza; Saboori, Hedayat

    2016-01-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics. PMID:27222741

  1. Design and Optimization of a Composite Canard Control Surface of an Advanced Fighter Aircraft under Static Loading

    Shrivastava Sachin

    2015-01-01

    Full Text Available The minimization of weight and maximization of payload is an ever challenging design procedure for air vehicles. The present study has been carried out with an objective to redesign control surface of an advanced all-metallic fighter aircraft. In this study, the structure made up of high strength aluminum, titanium and ferrous alloys has been attempted to replace by carbon fiber composite (CFC skin, ribs and stiffeners. This study presents an approach towards development of a methodology for optimization of first-ply failure index (FI in unidirectional fibrous laminates using Genetic-Algorithms (GA under quasi-static loading. The GAs, by the application of its operators like reproduction, cross-over, mutation and elitist strategy, optimize the ply-orientations in laminates so as to have minimum FI of Tsai-Wu first-ply failure criterion. The GA optimization procedure has been implemented in MATLAB and interfaced with commercial software ABAQUS using python scripting. FI calculations have been carried out in ABAQUS with user material subroutine (UMAT. The GA's application gave reasonably well-optimized ply-orientations combination at a faster convergence rate. However, the final optimized sequence of ply-orientations is obtained by tweaking the sequences given by GA's based on industrial practices and experience, whenever needed. The present study of conversion of an all metallic structure to partial CFC structure has led to 12% of weight reduction. Therefore, the approach proposed here motivates designer to use CFC with a confidence.

  2. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  3. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load

    Clausen, Anders; Aage, Niels; Sigmund, Ole

    2016-01-01

    Additive manufacturing (AM) permits the fabrication of functionally optimized components with high geometrical complexity. The opportunity of using porous infill as an integrated part of the manufacturing process is an example of a unique AM feature. Automated design methods are still incapable...... the standard and coating approaches to topology optimization for the MBB beam benchmark case. The optimized structures are additively manufactured using a filamentary technique. This experimental study validates the numerical model used in the coating approach. Depending on the properties of the infill...

  4. Element stacking method for topology optimization with material-dependent boundary and loading conditions

    Yoon, Gil Ho; Park, Y.K.; Kim, Y.Y.

    2007-01-01

    A new topology optimization scheme, called the element stacking method, is developed to better handle design optimization involving material-dependent boundary conditions and selection of elements of different types. If these problems are solved by existing standard approaches, complicated finite...... element models or topology optimization reformulation may be necessary. The key idea of the proposed method is to stack multiple elements on the same discretization pixel and select a single or no element. In this method, stacked elements on the same pixel have the same coordinates but may have...... independent degrees of freedom. Some test problems are considered to check the effectiveness of the proposed stacking method....

  5. Clinical application of 'Justification' and 'Optimization' principle of ALARA in pediatric CT imaging: "How many children can be protected from unnecessary radiation?".

    Sodhi, Kushaljit S; Krishna, Satheesh; Saxena, Akshay K; Sinha, Anindita; Khandelwal, Niranjan; Lee, Edward Y

    2015-09-01

    Practice of ALARA (as low as reasonably achievable) principle in the developed world is currently well established. However, there is striking lack of published data regarding such experience in the developing countries. Therefore, the goal of this study is to prospectively evaluate CT request forms to assess how many children could be protected from harmful radiation exposure if 'Justification' and 'Optimization' principles of ALARA are applied before obtaining CT imaging in a developing country. This can save children from potential radiation risks including development of brain cancer and leukemia. Consecutive CT request forms over a six month study period (May 16, 2013 to November 15, 2013) in a tertiary pediatric children's hospital in India were prospectively reviewed by two pediatric radiologists before obtaining CT imaging. First, 'Justification' of CT was evaluated and then 'Optimization' was applied for evaluation of appropriateness of the requested CT studies. The number (and percentage) of CT studies avoided by applying 'Justification' and 'Optimization' principle of ALARA were calculated. The difference in number of declined and optimized CT requests between CT requests from inpatient and outpatient departments was compared using Chi-Square test. A total of 1302 consecutive CT request forms were received during the study period. Some of the request forms (n=86; 6.61%) had requests for more than one (multiple) anatomical regions, hence, a total of 1392 different anatomical CT requests were received. Based on evaluation of the CT request forms for 'Justification' and 'Optimization' principle of ALARA by pediatric radiology reviewers, 111 individual anatomic part CT requests from 105 pediatric patients were avoided. Therefore, 8.06% (105 out of 1302 pediatric patients) were protected from unnecessary or additional radiation exposure.The rates of declined or optimized CT requests from inpatient department was significantly higher than that from outpatient

  6. Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units

    Pothiya, Saravuth; Ngamroo, Issarachai

    2008-01-01

    This paper proposes a new optimal fuzzy logic-based-proportional-integral-derivative (FLPID) controller for load frequency control (LFC) including superconducting magnetic energy storage (SMES) units. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the multiple tabu search (MTS) algorithm is applied to simultaneously tune PID gains, membership functions and control rules of FLPID controller to minimize frequency deviations of the system against load disturbances. The MTS algorithm introduces additional techniques for improvement of search process such as initialization, adaptive search, multiple searches, crossover and restarting process. Simulation results explicitly show that the performance of the optimum FLPID controller is superior to the conventional PID controller and the non-optimum FLPID controller in terms of the overshoot, settling time and robustness against variations of system parameters

  7. Exponential Nutrient Loading as a Means to Optimize Bareroot Nursery Fertility of Oak Species

    Zonda K. D. Birge; Douglass F. Jacobs; Francis K. Salifu

    2006-01-01

    Conventional fertilization in nursery culture of hardwoods may involve supply of equal fertilizer doses at regularly spaced intervals during the growing season, which may create a surplus of available nutrients in the beginning and a deficiency in nutrient availability by the end of the growing season. A method of fertilization termed “exponential nutrient loading” has...

  8. PSO-based optimization of PI regulator and VA loading of a SRF ...

    DR OKE

    switching loss of inverter and the copper losses of the connecting transformer are represented by resistance. 1 se. R and. 2 se. R . 1s. R and. 1s. L represent feeder1 resistance and inductance while. 2 s. R and 2 s. L represent feeder2 resistance and inductance. Nonlinear load. Series Active. Power Filter-1. Series Active.

  9. Optimizing the analysis of routing oversize/overweight loads to provide efficient freight corridors : technical summary.

    2012-07-01

    The subject of this report is limited specifically to Kansas highways. Current features of the State Highway System were looked at to determine corridors that do not limit Oversize/Overweight (OS/OW) vehicles, or that limit loads to varying degree...

  10. Wake-Effect Minimising Optimal Control of Wind Farms, with Load Reduction

    Borchersen, Anders Bech; Larsen, Jesper Abildgaard; Sivabalan, Senthuran

    2014-01-01

    A power generating wind turbine causes a speed reduction and an added turbulence to the wind. Wind turbines in wind farms are often caught in these wakes and are found to have a higher structural load than non affected wind turbines. This article investigates the possibility of designing a contro...

  11. A Sequential Convex Semidefinite Programming Algorithm for Multiple-Load Free Material Optimization

    Stingl, M.; Kočvara, Michal; Leugering, G.

    2009-01-01

    Roč. 20, č. 1 (2009), s. 130-155 ISSN 1052-6234 R&D Projects: GA AV ČR IAA1075402 Grant - others:commision EU(XE) EU-FP6-30717 Institutional research plan: CEZ:AV0Z10750506 Keywords : structural optimization * material optimization * semidefinite programming * sequential convex programming Subject RIV: BA - General Mathematics Impact factor: 1.429, year: 2009

  12. Transverse load optimization in Nb3Sn CICC design; influence of cabling, void fraction and strand stiffness

    Nijhuis, A; Ilyin, Y

    2006-01-01

    We have developed a model that describes the transverse load degradation in Nb 3 Sn CICCs, based on strand and cable properties, and that is capable of predicting how such degradation can be prevented. The Nb 3 Sn cable in conduit conductors (CICCs) for the International Thermonuclear Experimental Reactor (ITER) show a significant degradation in their performance with increasing electromagnetic load. Not only do the differences in the thermal contraction of the composite materials affect the critical current and temperature margin, but mostly electromagnetic forces cause significant transverse strand contact and bending strain in the Nb 3 Sn layers. Here, we present the model for transverse electro-magnetic load optimization (TEMLOP) and report the first results of computations for the ITER type of conductors, based on the measured properties of the internal tin strand used for the toroidal field model coil (TFMC). As input, the model uses data describing the behaviour of single strands under periodic bending and contact loads, measured with the TARSIS set-up, enabling a discrimination in performance reduction per specific load and strand type. The most important conclusion of the model computations is that the problem of the severe degradation of large CICCs can be drastically and straightforwardly improved by increasing the pitch length of subsequent cabling stages. It is the first time that an increase of the pitches has been proposed and no experimental data are available yet to confirm this beneficial outcome of the TEMLOP model. Larger pitch lengths will result in a more homogeneous distribution of the stresses and strains in the cable by significantly moderating the local peak stresses associated with the intermediate-length twist pitches. The twist pitch scheme of the present conductor layout turns out to be unfortunately close to a worst-case scenario. The model also makes clear that strand bending is the dominant mechanism causing degradation. The

  13. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy

    2012-01-01

    Background Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. Methods In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5 ± 9.8 nm and the drug loading was determined to be 10.32 ± 1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. Conclusions A successful effort towards

  14. Optimal Scheduling of Distributed Energy Resources and Responsive Loads in Islanded Microgrids Considering Voltage and Frequency Security Constraints

    Vahedipour-Dahraie, Mostafa; Najafi, Hamid Reza; Anvari-Moghaddam, Amjad

    2018-01-01

    in islanded MGs with regard to voltage and frequency security constraints. Based on the proposed model, scheduling of the controllable units in both supply and demand sides is done in a way not only to maximize the expected profit of MG operator (MGO), but also to minimize the energy payments of customers...... on the system’s performance in terms of voltage and frequency stability. Moreover, optimal coordination of DERs and responsive loads can increase the expected profit of MGO significantly. The effectiveness of the proposed scheduling approach is verified on an islanded MG test system over a 24-h period....

  15. Optimization Design of Structures Subjected to Transient Loads Using First and Second Derivatives of Dynamic Displacement and Stress

    Qimao Liu

    2012-01-01

    Full Text Available This paper developed an effective optimization method, i.e., gradient-Hessian matrix-based method or second order method, of frame structures subjected to the transient loads. An algorithm of first and second derivatives of dynamic displacement and stress with respect to design variables is formulated based on the Newmark method. The inequality time-dependent constraint problem is converted into a sequence of appropriately formed time-independent unconstrained problems using the integral interior point penalty function method. The gradient and Hessian matrixes of the integral interior point penalty functions are also computed. Then the Marquardt's method is employed to solve unconstrained problems. The numerical results show that the optimal design method proposed in this paper can obtain the local optimum design of frame structures and sometimes is more efficient than the augmented Lagrange multiplier method.

  16. A contribution to the solution of the problems raised by the application of the principle of protection optimization to nuclear plants

    Lacourly, G.; Demerle, P.

    1975-01-01

    The radiological protection of populations and the environment rests on two main principles: the dose delivered to the individuals of the most exposed population group must remain below the dose limits set up by regulations; the doses must be kept as low as readly achievable social and economic considerations being taken into account. If the application of the former principle has now become routine work, the application of the latter one implying optimization calculus raises a number of difficult problems. In order to decide whether an exposure can be easily reduced, both the benefits of the reduction and its cost must be considered, which leads to undertake a differential analysis [fr

  17. Poly ɛ-caprolactone nanoparticles loaded with Uncaria tomentosa extract: preparation, characterization, and optimization using the Box–Behnken design

    Ribeiro, Ana Ferreira; de Oliveira Rezende, Ricardo Leite; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira

    2013-01-01

    Purpose The aim of this research was to develop and optimize a process for obtaining poly ɛ-caprolactone (PCL) nanoparticles loaded with Uncaria tomentosa (UT) extract. Methods Nanoparticles were produced by the oil-in-water emulsion solvent evaporation method. Preliminary experiments determined the initial conditions of the organic phase (OP) and of the aqueous phase (AP) that would be utilized for this study. Ultimately, a three-factor three-level Box–Behnken design (BBD) was employed during the optimization process. PCL and polyvinyl alcohol (PVA) concentrations (X1 and X2, respectively) and the AP/OP volume ratio (X3) were the independent variables studied, while entrapment efficiency (Y1), particle mean diameter (Y2), polydispersity (Y3), and zeta potential (Y4) served as the evaluated responses. Results Preliminary experiments revealed that the optimal initial conditions for the preparation of nanoparticles were as follows: OP composed of 5 mL ethyl acetate/acetone (3/2) mixture containing UT extract and PCL, and an AP of buffered PVA (pH 7.5) solution. Statistical analysis of the BBD results indicated that all of the studied factors had significant effects on the responses Y1, Y2, and Y4, and these effects are closely described or fitted by regression equations. Based on the obtained models and the selected desirability function, the nanoparticles were optimized to maximize Y1 and minimize Y2. These optimal conditions were achieved using 3% (w/v) PCL, 1% (w/v) PVA, and an AP/OP ratio of 1.7, with predicted values of 89.1% for Y1 and 280 nm for Y2. Another batch was produced under the same optimal conditions. The entrapment efficiency of this new batch was measured at 81.6% (Y1) and the particles had a mean size of 247 nm (Y2) and a polydispersity index of 0.062 (Y3). Conclusion This investigation obtained UT-loaded nanoparticle formulations with desired characteristics. The BBD approach was a useful tool for nanoparticle development and optimization, and

  18. Full load synthesis/design optimization of a hybrid SOFC-GT power plant

    Calise, F.; Dentice d' Accadia, M.; Vanoli, L.; Spakovsky, Michael R. von

    2007-01-01

    In this paper, the optimization of a hybrid solid oxide fuel cell-gas turbine (SOFC-GT) power plant is presented. The plant layout is based on an internal reforming SOFC stack; it also consists of a radial gas turbine, centrifugal compressors and plate-fin heat exchangers. In the first part of the paper, the bulk-flow model used to simulate the plant is presented. In the second part, a thermoeconomic model is developed by introducing capital cost functions. The whole plant is first simulated for a fixed configuration of the most important synthesis/design (S/D) parameters in order to establish a reference design configuration. Next a S/D optimization of the plant is carried out using a traditional single-level approach, based on a genetic algorithm. The optimization determined a set of S/D decision variable values with a capital cost significantly lower than that of the reference design, even though the net electrical efficiency for the optimal configuration was very close to that of the initial one. Furthermore, the optimization procedure dramatically reduced the SOFC active area and the compact heat exchanger areas

  19. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers.

    Hellard, Philippe; Scordia, Charlotte; Avalos, Marta; Mujika, Inigo; Pyne, David B

    2017-10-01

    Periodization of swim training in the final training phases prior to competition and its effect on performance have been poorly described. We modeled the relationships between the final 11 weeks of training and competition performance in 138 elite sprint, middle-distance, and long-distance swimmers over 20 competitive seasons. Total training load (TTL), strength training (ST), and low- to medium-intensity and high-intensity training variables were monitored. Training loads were scaled as a percentage of the maximal volume measured at each intensity level. Four training periods (meso-cycles) were defined: the taper (weeks 1 to 2 before competition), short-term (weeks 3 to 5), medium-term (weeks 6 to 8), and long-term (weeks 9 to 11). Mixed-effects models were used to analyze the association between training loads in each training meso-cycle and end-of-season major competition performance. For sprinters, a 10% increase between ∼20% and 70% of the TTL in medium- and long-term meso-cycles was associated with 0.07 s and 0.20 s faster performance in the 50 m and 100 m events, respectively (p training yielded faster competition performance (e.g., a 10% increase in TTL was associated with improvements of 0.1-1.0 s in 200 m events and 0.3-1.6 s in 400 m freestyle, p < 0.01). For sprinters, a 60%-70% maximal ST load 6-8 weeks before competition induced the largest positive effects on performance (p < 0.01). An increase in TTL during the medium- and long-term preparation (6-11 weeks to competition) was associated with improved performance. Periodization plans should be adapted to the specialty of swimmers.

  20. Preparation of Curcumin Loaded Egg Albumin Nanoparticles Using Acetone and Optimization of Desolvation Process.

    Aniesrani Delfiya, D S; Thangavel, K; Amirtham, D

    2016-04-01

    In this study, acetone was used as a desolvating agent to prepare the curcumin-loaded egg albumin nanoparticles. Response surface methodology was employed to analyze the influence of process parameters namely concentration (5-15%w/v) and pH (5-7) of egg albumin solution on solubility, curcumin loading and entrapment efficiency, nanoparticles yield and particle size. Optimum processing conditions obtained from response surface analysis were found to be the egg albumin solution concentration of 8.85%w/v and pH of 5. At this optimum condition, the solubility of 33.57%, curcumin loading of 4.125%, curcumin entrapment efficiency of 55.23%, yield of 72.85% and particles size of 232.6 nm were obtained and these values were related to the values which are predicted using polynomial model equations. Thus, the model equations generated for each response was validated and it can be used to predict the response values at any concentration and pH.

  1. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-01-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG

  2. Numerical study of the connection lengths for various magnetic configurations in Wendelstein 7-X to optimize the heat load on the divertor

    Sinha, Priyanjana; Hoelbe, Hauke; Sunn Pedersen, Thomas [Max Planck Institute of Plasma Physics, Greifswald (Germany)

    2016-07-01

    Fusion has the potential to play an important role as a future energy resource. It has the capacity to produce large-scale clean energy. The two main confinement concepts are the tokamak and the stellarator. The W7-X machine is based on stellarator principle and is using special form of coils to achieve steady-state plasma confinement. Divertors are used in tokamaks and stellarator to control the exhaust of waste gases and impurities from the machine. The divertor concept of W7-X is a so-called island divertor. The island chain isolates the confinement core from regions where the plasma-wall interaction takes place. The area of the divertor that receives the main part of the heat loads, the so-called wetted area, increases with the distance along the magnetic field from the outboard midplane to the divertor target. The connection length is relatively short in tokamaks with conventional divertors. In the stellarator island divertor, the connection length can be varied significantly, which should allow for optimization of the wetted area. We present here a numerical study of the achievable connection lengths in various W7-X configurations and discuss the possibilities for running dedicated experiments to understand the physics of what sets the wetted area.

  3. Optimal Adaptive Droop Control for Effective Load Sharing in AC Microgrids

    Anvari-Moghaddam, Amjad; Shafiee, Qobad; Quintero, Juan Carlos Vasquez

    2016-01-01

    During the past few years, microgrids (MGs) have been becoming more attractive as effective means to integrate different distributed energy resources (DERs). To coordinate active and reactive power sharing among DERs, conventional droop control method is widely used as a decentralized control...... control strategy is developed in two levels. The upper control level is a mixed-objective optimization algorithm that provides optimal set-points for power generations considering system’s constraints and goals, while the lower control level is responsible for tracking the reference signals coming from...

  4. Damage tolerance optimization of composite stringer run-out under tensile load

    Badalló, Pere; Trias, Daniel; Lindgaard, Esben

    2015-01-01

    . The influence of some geometric variables of the run-out in the interface of the set stringer-panel is crucial to avoid the onset and growth of delamination cracks. In this study, a damage tolerant design of a stringer run-out is achieved by a process of design optimization and surrogate modeling techniques....... A parametric finite element model created with python was used to generate a number of different geometrical designs of the stringer run-out. The relevant information of these models was adjusted using Radial Basis Functions (RBF). Finally, the optimization problem was solved using Quasi-Newton method...

  5. Agent based Particle Swarm Optimization for Load Frequency Control of Distribution Grid

    Cha, Seung-Tae; Saleem, Arshad; Wu, Qiuwei

    2012-01-01

    This paper presents a Particle Swarm Optimization (PSO) based on multi-agent controller. Real-time digital simulator (RTDS) is used for modelling the power system, while a PSO based multi-agent LFC algorithm is developed in JAVA for communicating with resource agents and determines the scenario...... to stabilize the frequency and voltage after the system enters into the islanding operation mode. The proposed algorithm is based on the formulation of an optimization problem using agent based PSO. The modified IEEE 9-bus system is employed to illustrate the performance of the proposed controller via RTDS...

  6. The Dutch premium principle

    van Heerwaarden, A.E.; Kaas, R.

    1992-01-01

    A premium principle is derived, in which the loading for a risk is the reinsurance loading for an excess-of-loss cover. It is shown that the principle is well-behaved in the sense that it results in larger premiums for risks that are larger in stop-loss order or in stochastic dominance.

  7. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity.

    Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J

    2012-09-01

    To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than

  8. Radiation protection principles

    Ismail Bahari

    2007-01-01

    The presentation outlines the aspects of radiation protection principles. It discussed the following subjects; radiation hazards and risk, the objectives of radiation protection, three principles of the system - justification of practice, optimization of protection and safety, dose limit

  9. Optimization of Ru{sub x}Se{sub y} electrocatalyst loading for oxygen reduction in a PEMFC

    Gonzalez-Huerta, R.G. [Instituto Politecnico Nacional, Laboratorio de Electroquimica y Corrosion ESIQIE, UPALP, 07738 Mexico, D.F., Mexico (Mexico); Guzman-Guzman, A.; Solorza-Feria, O. [Depto. Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, A. Postal 14-740, 07360 Mexico D.F., Mexico (Mexico)

    2010-11-15

    The synthesis, characterization and optimization of Ru{sub x}Se{sub y} catalyst loading as a cathode electrode for a single polymer electrolyte membrane fuel cell, PEMFC were investigated. Ru{sub x}Se{sub y} catalyst was synthesized via a decarbonylation of Ru{sub 3}(CO){sub 12} and elemental selenium in 1,6-hexanediol under refluxing conditions for 2 h. The powder electrocatalyst was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and examined for the oxygen reduction reaction (ORR) in 0.5M H{sub 2}SO{sub 4} by rotating disk electrode (RDE) and in membrane-electrode assemblies, MEAs for a single PEMFC. Results indicate the formation of agglomerates of crystalline particles with nanometric size embedded in an amorphous phase. The catalyst exhibited high current density and lower overpotential for the ORR compared to that of Ru{sub x} cluster catalyst. Dispersed Ru{sub x}Se{sub y} catalyst loading on Vulcan carbon was optimized as a cathode electrode by performance testing in a single H{sub 2}-O{sub 2} fuel cell. (author)

  10. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex.

    Elliott, Tim; Williams, Anthony

    2005-10-01

    Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non-polymorphic beta(2) microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide-loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido-reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I-specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off-rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen-DM for MHC class II complex optimization.

  11. Tadalafil inclusion in microporous silica as effective dissolution enhancer: optimization of loading procedure and molecular state characterization.

    Mehanna, Mohammed M; Motawaa, Adel M; Samaha, Magda W

    2011-05-01

    Tadalafil is an efficient drug used to treat erectile dysfunction characterized by poor water solubility, which has a negative influence on its bioavailability. Utilization of microporous silica represents an effective and facile technology to increase the dissolution rate of poorly soluble drugs. Our strategy involved directly introducing tadalafil as guest molecule into microporous silica as host material by incipient wetness impregnation method. To optimize tadalafil inclusion, response surface methodology (RSM) using 3(3) factorial design was utilized. Furthermore, to investigate the molecular state of tadalafil, Fourier-transform infrared spectroscopy, differential scanning calorimetery, thermal gravimetrical analysis, nitrogen adsorption, and powder X-ray diffraction (PXRD) were carried out. The results obtained pointed out that the quantity of microporous silica was the predominant factor that increased the loading efficiency. For the optimized formula, the loading efficiency was 42.50 wt %. Adsorption-desorption experiments indicated that tadalafil has been introduced into the micropores. Powder XRD and differential scanning calorimetry analyses revealed that tadalafil is arranged in amorphous form. In addition, the dissolution rate of tadalafil from the microporous silica was faster than that of free drug. Amorphous tadalafil occluded in microporous silica did not crystallize over 3 months. These findings contributed in opening a new strategy concerning the utilization of porous silica for the dissolution rate enhancement. Copyright © 2010 Wiley-Liss, Inc.

  12. PSO-based optimization of PI regulator and VA loading of a SRF ...

    DR OKE

    minimum real power injection (Yashomani et al, 2007) of the MC-DVR has also been ... distribution system are carried out and results are presented. .... operating point, the average dc-link voltage} will also get perturbed by a small amount .... For above optimal Kp and Ki values step response characteristics. Rise time.

  13. Innovation of genetic algorithm code GenA for WWER fuel loading optimization

    Sustek, J.

    2005-01-01

    One of the stochastic search techniques - genetic algorithms - was recently used for optimization of arrangement of fuel assemblies (FA) in core of reactors WWER-440 and WWER-1000. Basic algorithm was modified by incorporation of SPEA scheme. Both were enhanced and some results are presented (Authors)

  14. Optimal resource allocation and load scheduling for a multi-commodity smart energy system

    Blaauwbroek, N.; Nguyen, H.P.; Shi, H.; Kamphuis, I.G.; Kling, W.L.; Konsman, M.J.

    2015-01-01

    The increasing introduction of district heating systems together with hybrid energy appliances as heat pumps and micro-combined heat and power installations, results in new opportunities for optimizing the available resources in multi-commodity smart energy systems, including electricity, heat and

  15. OPTIMIZATION OF THE CRITERION FOR ESTIMATING THE TECHNOLOGY EFFICIENCY OF PACKING-CASE-PIECE LOADS DELIVERY

    O. Severyn; O. Shulika

    2017-01-01

    The results of optimization of gravimetric coefficients for indexes included in the integral criterion of estimation of the efficiency of transport-technological charts of cargo delivery are resulted. The values of gravimetric coefficients are determined on the basis of two methods of experimental researches: questioning of respondents among the specialists of motor transport production and imitation design.

  16. Optimal household appliances scheduling under day-ahead pricing and load-shaping demand response strategies

    Paterakis, N.G.; Erdinç, O.; Bakirtzis, A.G.; Catalao, J.P.S.

    2015-01-01

    In this paper, a detailed home energy management system structure is developed to determine the optimal dayahead appliance scheduling of a smart household under hourly pricing and peak power-limiting (hard and soft power limitation)-based demand response strategies. All types of controllable assets

  17. Design and statistical optimization of glipizide loaded lipospheres using response surface methodology.

    Shivakumar, Hagalavadi Nanjappa; Patel, Pragnesh Bharat; Desai, Bapusaheb Gangadhar; Ashok, Purnima; Arulmozhi, Sinnathambi

    2007-09-01

    A 32 factorial design was employed to produce glipizide lipospheres by the emulsification phase separation technique using paraffin wax and stearic acid as retardants. The effect of critical formulation variables, namely levels of paraffin wax (X1) and proportion of stearic acid in the wax (X2) on geometric mean diameter (dg), percent encapsulation efficiency (% EE), release at the end of 12 h (rel12) and time taken for 50% of drug release (t50), were evaluated using the F-test. Mathematical models containing only the significant terms were generated for each response parameter using the multiple linear regression analysis (MLRA) and analysis of variance (ANOVA). Both formulation variables studied exerted a significant influence (p optimization using the desirability approach was employed to develop an optimized formulation by setting constraints on the dependent and independent variables. The experimental values of dg, % EE, rel12 and t50 values for the optimized formulation were found to be 57.54 +/- 1.38 mum, 86.28 +/- 1.32%, 77.23 +/- 2.78% and 5.60 +/- 0.32 h, respectively, which were in close agreement with those predicted by the mathematical models. The drug release from lipospheres followed first-order kinetics and was characterized by the Higuchi diffusion model. The optimized liposphere formulation developed was found to produce sustained anti-diabetic activity following oral administration in rats.

  18. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery

    Gonzalez-Mira, E.; Egea, M. A.; Souto, E. B.; Calpena, A. C.; García, M. L.

    2011-01-01

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol® 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween® 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (~90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  19. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery

    Gonzalez-Mira, E; Egea, M A; Garcia, M L [Department of Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology, University of Barcelona, Avenida Joan XXIII s/n, E-08028 Barcelona (Spain); Souto, E B [Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, Nr. 296, Office S.1, P-4200-150 Porto (Portugal); Calpena, A C, E-mail: eligonzalezmi@ub.edu [Department of Biopharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avenida Joan XXIII s/n, E-08028 Barcelona (Spain)

    2011-01-28

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE ({approx}90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  20. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery

    Gonzalez-Mira, E; Egea, M A; Garcia, M L; Souto, E B; Calpena, A C

    2011-01-01

    The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (∼90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.

  1. Load sharing with a local thermal network fed by a microcogenerator: Thermo-economic optimization by means of dynamic simulations

    Angrisani, Giovanni; Canelli, Michele; Rosato, Antonio; Roselli, Carlo; Sasso, Maurizio; Sibilio, Sergio

    2014-01-01

    The cogeneration is the combined production of electric and/or mechanical and thermal energy starting by a single energy source; in particular in this paper the analysis will be focused on a cogeneration system with electric power lower than 15 kW (micro-cogeneration). The paper analyzes a system consisting of a natural gas-fired micro-cogeneration unit (MCHP), a heat storage and a peak boiler. The system provides thermal and electric energy to two end-users, the former is a tertiary building (office), where the generation system is located, and the latter is a residential building connected to the former through a district heating micro-grid. In order to analyze the influence of climatic conditions, two different geographical locations in Italy (Benevento and Milano) are considered, that are also characterized by different natural gas and electricity tariffs. Particular attention is paid to the choice of the users, in order to obtain more stable and continuous electric and thermal loads (load sharing approach) and to increase the operating hours per year of the MCHP unit. The operation of the MCHP is governed by a control system, aimed to optimize a thermo-economic objective function. The models representing the components, the thermo-economic objective function and the buildings have been implemented in a widely used commercial software for building simulations. The models are calibrated and validated through data obtained from experimental tests carried out in the laboratory of the University of Sannio (Benevento). The results of the simulations highlight the potential benefits of the thermal load sharing approach. In particular, this study shows that an MCHP unit connected by means of a thermal micro-grid to different users in “load sharing mode” can obtain a high number of operating hours as well as significant energy (Primary Energy Saving) and environmental (avoided CO 2 equivalent emissions) benefits with respect to an appropriate reference system

  2. Design of a model predictive load-following controller by discrete optimization of control rod speed for PWRs

    Kim, Jae Hwan; Park, Soon Ho; Na, Man Gyun

    2014-01-01

    Highlights: • A model predictive controller for load-following operation was developed. • Genetic algorithm optimizes the five nonlinear discrete control rod speeds. • The boron concentration is adjusted with automatic adjustment logic. • The proposed controller reflects the realistic control rod drive mechanism movement. • The performance was confirmed to be satisfactory by simulation from BOC to EOC. - Abstract: Currently, most existing nuclear power plants alter the reactor power by adjusting the boron concentration in the coolant because it has a smaller effect on the reactor power distribution. Frequent control rod movements for load-following operation induce xenon-oscillation. Therefore, a controller that can subdue this phenomenon effectively is needed. At an APR1400 nuclear power plant which is a pressurized water reactor (PWR), the reactor power is controlled automatically using a Reactor Regulating System (RRS) but the power distribution is controlled manually by operators. Therefore, for APR+ nuclear power plants which is an improved version of APR1400 nuclear reactor, a new concept of a reactor controller is needed to control both the reactor power and power distribution automatically. The model predictive control (MPC) method is applicable to multiple-input multiple-output control, and can be applied for complex and nonlinear systems, such as the nuclear power plants. In this study, an MPC controller was developed by applying a genetic algorithm to optimize the discrete control rod speeds and by reflecting the realistic movement of the control rod drive mechanism that moves at only five discrete speeds. The performance of the proposed controller was confirmed to be satisfactory by simulating the load-following operation of an APR+ nuclear power plant through interface with KISPAC-1D code

  3. Optimized Power Dispatch in Wind Farms for Power Maximizing Considering Fatigue Loads

    Zhang, Baohua; N. Soltani, Mohsen; Hu, Weihao

    2018-01-01

    Wake effects in a wind farm (WF) include the wind velocity deficit and added turbulence. The wind velocity deficit may bring significant loss of the wind power and the added turbulence may cause extra fatigue load on the wind turbines (WTs). Inclusion of the wake effects in the wind farm control...... at a series of turbulence intensity, mean wind speed and active power reference to form a lookup table, which is used for the WF control. The proposed strategy is compared with WT MPPT control strategy and WF MPPT control strategy. The simulation results show the effectiveness of the proposed strategy....

  4. Power performance optimization and loads alleviation with active flaps using individual flap control

    Pettas, Vasilis; Barlas, Athanasios; Gertz, Drew Patrick

    2016-01-01

    the sensor inputs. The AEP is increased due to the upscaling but also further due to the flap system while the fatigue loads in components of interest (blade, tower, nacelle and main bearing) are reduced close to the level of the original turbine. The aim of this study is to demonstrate a simple....... In an industrial-oriented manner the baseline rotor is upscaled by 5% and the ATEFs are implemented in the outer 30% of the blades. The flap system is kept simple and robust with a single flap section and control with wind speed, rotor azimuth, root bending moments and angle of attack in flap's mid-section being...

  5. Radiation Load Optimization in the Final Focus System of FCC-hh

    Martin, Roman; Cerutti, Francesco; Tomás, Rogelio

    2016-01-01

    With a center-of-mass energy of up to 100 TeV, FCC-hh will produce highly energetic collision debris at the Interaction Point (IP). Protecting the final focus quadrupoles from this radiation is challenging, since the required amount of shielding placed inside the magnets will reduce the free aperture, thereby limiting the β^{*} reach and luminosity. Hence, radiation mitigation strategies that make best use of the available aperture are required. In this paper, we study the possibility to split the first quadrupole Q1 into two quadrupoles with individual apertures, in order to distribute the radiation load more evenly and reduce the peak dose.

  6. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    Kemppainen, Erno; Halme, Janne; Hansen, Ole

    2016-01-01

    is the evolution and transport of gaseous H2, since HER leads to the continuous formation of H2 bubbles near the electrode. We present a numerical model that includes the transport of both gaseous and dissolved H2, as well as mass exchange between them, and combine it with a kinetic model of HER at platinum (Pt......) nanoparticle electrodes. We study the effect of the diffusion layer thickness and H2 dissolution rate constant on the importance of gaseous transport, and the effect of equilibrium hydrogen coverage and Pt loading on the kinetic and mass transport overpotentials. Gaseous transport becomes significant when...

  7. Multi-load Optimal Design of Burner-inner-liner Under Performance Index Constraint by Second-Order Polynomial Taylor Series Method

    Tu Gaoqiao

    2016-01-01

    Full Text Available Using maximum expansion pressure of n-decane, the aeroengine burner-inner-liner combustion pressure load is computed. Aerodynamic loads are obtained from internal gas pressure load and gas momentum. Multi-load second-order Taylor series equations are established using multi-variant polynomials and their sensitivities. Optimal designs are carried out using various performance index constraints. When 0.25 to 0.8 rectifications of different design variants are implemented, they converge under 5×10‒4 d-norm difference ratio.

  8. Dry Gel Containing Optimized Felodipine-Loaded Transferosomes: a Promising Transdermal Delivery System to Enhance Drug Bioavailability.

    Kassem, Mohammed Ali; Aboul-Einien, Mona Hassan; El Taweel, Mai Magdy

    2018-04-30

    Felodipine has a very low bioavailability due to first-pass metabolism. The aim of this study was to enhance its bioavailability by transdermal application. Felodipine-loaded transferosomes were prepared by thin-film hydration using different formulation variables. An optimized formula was designed using statistical experimental design. The independent variables were the used edge activator, its molar ratio to phosphatidylcholine, and presence or absence of cholesterol. The responses were entrapment efficiency of transferosomes, their size, polydispersity index, zeta potential, and percent drug released after 8 h. The optimized formula was subjected to differential scanning calorimetry studies and its stability on storage at 4°C for 6 months was estimated. This formula was improved by incorporation of different permeation enhancers where ex vivo drug flux through mice skin was estimated and the best improved formula was formulated in a gel and lyophilized. The prepared gel was subjected to in vivo study using Plendil® tablets as a reference. According to the calculated desirability, the optimized transferosome formula was that containing sodium deoxycholate as edge activator at 5:1 M ratio to phosphatidylcholine and no cholesterol. The thermograms of this formula indicated the incorporation of felodipine inside the prepared vesicles. None of the tested parameters differed significantly on storage. The lyophilized gel of labrasol-containing formula was chosen for in vivo study. The relative bioavailability of felodipine from the designed gel was 1.7. In conclusion, topically applied lyophilized gel containing felodipine-loaded transferosomes is a promising transdermal delivery system to enhance its bioavailability.

  9. An enhanced particle swarm optimization for dynamic economic dispatch problem considering valve-point loading

    Sriyanyong, P. [King Mongkut' s Univ. of Technology, Bangkok (Thailand). Dept. of Teacher Training in Electrical Engineering

    2008-07-01

    This paper described the use of an enhanced particle swarm optimization (PSO) model to address the problem of dynamic economic dispatch (DED). A modified heuristic search method was incorporated into the PSO model. Both smooth and non-smooth cost functions were considered. The enhanced PSO model not only utilized the basic PSO algorithm in order to seek the optimal solution for the DED problem, but it also used a modified heuristic method to deal with constraints and increase the possibility of finding a feasible solution. In order to validate the enhanced PSO model, it was used and tested on 10-unit systems considering both smooth and non-smooth cost functions characteristics. The experimental results were also compared to other methods. The proposed technique was found to be better than other approaches. The enhanced PSO model outperformed others with respect to quality, stability and reliability. 23 refs., 1 tab., 8 figs.

  10. Albumin/gentamicin microspheres produced by supercritical assisted atomization: optimization of size, drug loading and release.

    Della Porta, G; Adami, R; Del Gaudio, P; Prota, L; Aquino, R; Reverchon, E

    2010-11-01

    In this work, the supercritical assisted atomization (SAA) is proposed, for the first time, not only as a micronization technology but also as a thermal coagulation process for the production of bovine serum albumin (BSA) microspheres charged with Gentamicin sulfate (GS). Particularly, different water solutions of BSA/GS were processed by SAA to produce protein microspheres with different size and antibiotic content. SAA precipitation temperature was selected in the range 100-130 °C to generate protein coagulation and to recover micronized BSA in form of hydrophobic aggregates; GS loading was varied between 10% and 50% (w/w) with an encapsulation efficiency which often reached 100%. In all cases, spherical and noncoalescing particles were successfully produced with a mean particle size of 2 µm and with a standard deviation of about ±1 µm. The microspheres also showed a good stability and constant water content after 60 days of storage. The release profiles of the entrapped drug were monitored using Franz cells to evaluate the possible application of the produced microspheres in wound dressing formulations. Particularly, the microspheres with a BSA/GS ratio of 4:1 after the first burst effect (of 40% of GS loaded) were able to release the GS continuously over 10 days. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  11. Optimization of disk generator performance for base-load power plant systems applications

    Teare, J.D.; Loubsky, W.J.; Lytle, J.K.; Louis, J.F.

    1980-01-01

    Disk generators for use in base-load MHD power plants are examined for both open-cycle and closed-cycle operating modes. The OCD cases are compared with PSPEC results for a linear channel; enthalpy extractions up to 23% with 71% isentropic efficiency are achievable with generator inlet conditions similar to those used in PSPEC, thus confirming that the disk configuration is a viable alternative for base-load power generation. The evaluation of closed-cycle disks includes use of a simplified cycle model. High system efficiencies over a wide range of power levels are obtained for effective Hall coefficients in the range 2.3 to 4.9. Cases with higher turbulence (implying β/sub eff/ less than or equal to 2.4) yield high system efficiencies at power levels of 100 to 500 MW/sub e/. All these CCD cases compare favorably with linear channels reported in the GE ECAS study, yielding higher isentropic efficiences for a given enthalpy extraction. Power densities in the range 70 to 170 MW/m 3 appear feasible, leading to very compact generator configurations

  12. Design, optimization and characterization of coenzyme Q10- and D-panthenyl triacetate-loaded liposomes

    Çelik B

    2017-07-01

    Full Text Available Burak Çelik,1 Ali Asram Sağıroğlu,1 Samet Özdemir2 1Department of Pharmaceutical Technology, Faculty of Pharmacy, Bezmialem Vakif University, 2Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey Abstract: Coenzyme Q10 (CoQ10 is a lipid-soluble molecule found naturally in many eukaryotic cells and is essential for electron transport chain and energy generation in mitochondria. D-Panthenyl triacetate (PTA is an oil-soluble derivative of D-panthenol, which is essential for coenzyme A synthesis in the epithelium. Liposomal formulations that encapsulate both ingredients were prepared and optimized by applying response surface methodology for increased stability and skin penetration. The optimum formulation comprised 4.17 mg CoQ10, 4.22 mg PTA and 13.95 mg cholesterol per 100 mg of soy phosphatidylcholine. The encapsulation efficiency of the optimized formulation for CoQ10 and PTA was found to be 90.89%±3.61% and 87.84%±4.61%, respectively. Narrow size distribution was achieved with an average size of 161.6±3.6 nm, while a spherical and uniform shape was confirmed via scanning electron microscopy and transmission electron microscopy images. Cumulative release of 90.93% for PTA and 24.41% for CoQ10 was achieved after 24 hours of in vitro release study in sink conditions. Physical stability tests indicated that the optimized liposomes were suitable for storage at 4°C for at least 60 days. The results suggest that the optimized liposomal formulation would be a promising delivery system for both ingredients in various topical applications. Keywords: coenzyme Q10, D-panthenyl triacetate, liposomes, response surface methodology, stability

  13. Resource-Aware Load Balancing Scheme using Multi-objective Optimization in Cloud Computing

    Kavita Rana; Vikas Zandu

    2016-01-01

    Cloud computing is a service based, on-demand, pay per use model consisting of an interconnected and virtualizes resources delivered over internet. In cloud computing, usually there are number of jobs that need to be executed with the available resources to achieve optimal performance, least possible total time for completion, shortest response time, and efficient utilization of resources etc. Hence, job scheduling is the most important concern that aims to ensure that use’s requirement are ...

  14. Optimization and formulation design of carbopol loaded Piroxicam gel using novel penetration enhancers.

    Chaudhary, Hema; Rohilla, Ajay; Rathee, Permender; Kumar, Vikash

    2013-04-01

    The aim of the study was to develop and optimize Piroxicam transdermal gel formulation using three-factor, three-level Box-Behnken design by deriving a second-order polynomial equation to construct contour plots for prediction of responses as three selected independent variables with ratio of carbopol 974 (X1), ratio of propylene glycol (PG) (X2) and ratio of ethanol (X3). The dependent variables studied were the skin permeation rate of piroxicam (Y1), viscosity of the gel (Y2) and pH of the gel (Y3). Response surface plots were drawn, statistical validity of the polynomials was established to find the compositions of optimized formulation which was evaluated using the vertical Franz-type diffusion cell. The permeation rate of piroxicam increased proportionally with ethanol concentration but decreased with polymer concentration. The design demonstrated the role of the derived polynomial equation and contour plots in predicting the values of dependent variables for the preparation and optimization of gel formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Optimization of cask for transport of radioactive material under impact loading

    Sharma, Kuldeep, E-mail: kuldeep.brit@gmail.com [Indian Institute of Technology Bombay (India); Pawaskar, D.N.; Guha, Anirban [Indian Institute of Technology Bombay (India); Singh, R.K. [Bhabha Atomic Research Center (India)

    2014-07-01

    Highlights: • Cost and weight are important criteria for fabrication and transportation of cask used for transportation of radioactive material. • Reduction of cask cost by modifying few cask geometry parameters using complex search method. • Maximum von Mises stress generated and deformation after impact as design constraints. • Up to 6.9% reduction in cost and 4.6% reduction in weight observed in the examples used. - Abstract: Casks used for transporting radioactive material need to be certified fit by subjecting them to a specific set of tests (IAEA, 2012). The high cost of these casks gives rise to the need for optimizing them. Conducting actual experiments for the process of design iterations is very costly. This work outlines a procedure for optimizing Type B(U) casks through simulations of the 9 m drop test conducted in ABAQUS{sup ®}. Standard designs and material properties were chosen, thus making the process as realistic as reasonable even at the cost of reducing the options (design variables) available for optimization. The results, repeated for different source cavity sizes, show a scope for 6.9% reduction in cost and 4.6% reduction in weight over currently used casks.

  16. Optimization of gadolinium burnable poison loading by the conjugate gradients method

    Drumm, C.R.

    1984-01-01

    Improved use of burnable poison is suggested for pressurized water reactors (PWR's) to insure a sufficiently negative moderator temperature coefficient of reactivity for extended burnup cycles and low leakage refueling patterns. The use of gadolinium as a burnable poison can lead to large axial fluctuations in the power distribution through the cycle. The goal of this work is to determine the optimal axial distribution of gadolinium burnable poison in a PWR to overcome the axial fluctuations, yielding an improved power distribution. The conjugate gradients optimization method is used in this work because of the high degree of nonlinearity of the problem. The neutron diffusion and depletion equations are solved for a one-dimensional one-group core model. The state variables are the flux, the critical soluble boron concentration, and the burnup. The control variables are the number of gadolinium pins per assembly and the beginning-of-cycle gadolinium concentration, which determine the gadolinium cross section. Two separate objectives are considered: 1) to minimize the power peaking factor, which will minimize the capital cost of the plant; and 2) to maximize the cycle length, which will minimize the fuel cost for the plant. It is shown in this work that optimizing the gadolinium distribution can yield an improved power distribution

  17. Combination of Markov chain and optimal control solved by Pontryagin’s Minimum Principle for a fuel cell/supercapacitor vehicle

    Hemi, Hanane; Ghouili, Jamel; Cheriti, Ahmed

    2015-01-01

    Highlights: • A combination of Markov chain and an optimal control solved by Pontryagin’s Minimum Principle is presented. • This strategy is applied to hybrid electric vehicle dynamic model. • The hydrogen consumption is analyzed for two different vehicle mass and drive cycle. • The supercapacitor and fuel cell behavior is analyzed at high or sudden required power. - Abstract: In this article, a real time optimal control strategy based on Pontryagin’s Minimum Principle (PMP) combined with the Markov chain approach is used for a fuel cell/supercapacitor electrical vehicle. In real time, at high power and at high speed, two phenomena are observed. The first is obtained at higher required power, and the second is observed at sudden power demand. To avoid these situations, the Markov chain model is proposed to predict the future power demand during a driving cycle. The optimal control problem is formulated as an equivalent consumption minimization strategy (ECMS), that has to be solved by using the Pontryagin’s Minimum Principle. A Markov chain model is added as a separate block for a prediction of required power. This approach and the whole system are modeled and implemented using the MATLAB/Simulink. The model without Markov chain block and the model is with it are compared. The results presented demonstrate the importance of a Markov chain block added to a model

  18. Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization.

    Hashad, Rania A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar

    2016-10-01

    The aim of this study was to assess the feasibility of employing a novel but critical formulation pH (6.2) to encapsulate an anionic model drug (methotrexate, MTX) into chitosan(Cs)-tripolyphosphate nanoparticles(NPs). A response surface methodology using a three-level full factorial design was applied studying the effects of two independent variables namely; Cs concentration and MTX concentration. The responses investigated were the entrapment efficiency (EE%), mean hydrodynamic particle size (PS), polydispersity index (PDI) and zeta potential (ZP). In order to simultaneously optimize the series of models obtained, the desirability function approach was applied with a goal to produce high percent of MTX encapsulated into highly charged Cs-TPP NPs of homogenous optimum PS. MTX-loaded CsNPs were successfully prepared at the novel pH applied. The suggested significant models were found quadratic for EE, PS and ZP responses, while 2-factor interaction model for PDI. The optimization overlay graph showed that the maximum global desirability, D=0.856, was reached when the conditions were set at high Cs and MTX concentration. Thus, the use of such optimized conditions, at this novel pH, achieved a maximum drug EE% (73.38%) into NPs characterized by optimum PS (232.6nm), small PDI value (0.195) and highly surface charged (+18.4mV). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Formulation Development, Optimization, and In vitro - In vivo Characterization of Natamycin Loaded PEGylated Nano-lipid Carriers for Ocular Applications.

    Patil, Akash; Lakhani, Prit; Taskar, Pranjal; Wu, Kai-Wei; Sweeney, Corinne; Avula, Bharathi; Wang, Yan-Hong; Khan, Ikhlas A; Majumdar, Soumyajit

    2018-04-23

    Current study aimed at formulating and optimizing natamycin (NT) loaded PEGylated NLCs (NT-PEG-NLCs) using Box-Behnken Design and investigating their potential in ocular applications. Response surface methodology (RSM) computations and plots for optimization were performed using Design Expert ® software, to obtain optimum values for response variables based on the criteria of desirability. Optimized NT-PEG-NLCs had predicted values for the dependent variables not significantly different from the experimental values. NT-PEG-NLCs were characterized for their physicochemical parameters; NT's rate of permeation and flux across rabbit cornea was evaluated, in vitro; ocular tissue distribution was assessed in rabbits, in vivo. NT-PEG-NLCs were found to have optimum particle size (< 300 nm) narrow PDI, high NT entrapment and NT content. In vitro transcorneal permeability and flux of NT from NT-PEG-NLCs was significantly higher than Natacyn ® . NT-PEG-NLC (0.3%) showed improved delivery of NT across the intact cornea and provided concentrations statistically similar to the marketed suspension (5%) in inner ocular tissues, in vivo, indicating that it could be a potential alternative to the conventional suspension during the course of fungal keratitis therapy. Copyright © 2018. Published by Elsevier Inc.

  20. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles

    Omwoyo WN

    2014-08-01

    Full Text Available Wesley Nyaigoti Omwoyo,1,2 Bernhards Ogutu,3,4 Florence Oloo,3,5 Hulda Swai,6 Lonji Kalombo,6 Paula Melariri,6 Geoffrey Maroa Mahanga,2 Jeremiah Waweru Gathirwa3,4 1Department of Chemistry, Maasai Mara University, Narok, Kenya; 2Department of Chemistry, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya; 3Center for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya; 4Kenya Medical Research Institute, Nairobi, Kenya; 5Department of Chemical Sciences and Technology, Technical University of Kenya, Nairobi, Kenya; 6Department of Polymers and Composites, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract: Primaquine (PQ is one of the most widely used antimalarial drugs and is the only available drug that combats the relapsing form of malaria. PQ use in higher doses is limited by severe tissue toxicity including hematological- and gastrointestinal-related side effects. Nanoformulation of drugs in an appropriate drug carrier system has been extensively studied and shown to have the potential to improve bioavailability, thereby enhancing activity, reducing dose frequency, and subsequently reducing toxicity. The aim of this work was to design, synthesize, and characterize PQ-loaded solid lipid nanoparticles (SLNs (PQ-SLNs as a potential drug-delivery system. SLNs were prepared by a modified solvent emulsification evaporation method based on a water-in-oil-in-water (w/o/w double emulsion. The mean particle size, zeta potential, drug loading, and encapsulation efficiency of the PQ-SLNs were 236 nm, +23 mV, 14%, and 75%, respectively. The zeta potential of the SLNs changed dramatically, from -6.54 mV to +23.0 mV, by binding positively charged chitosan as surface modifier. A spherical morphology of PQ-SLNs was seen by scanning electron microscope. In vitro, release profile depicted a steady drug release over 72 hours. Differential scanning calorimeter thermograms demonstrated presence

  1. Optimization of laser-plasma injector via beam loading effects using ionization-induced injection

    Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.

    2018-05-01

    Simulations of ionization-induced injection in a laser driven plasma wakefield show that high-quality electron injectors in the 50-200 MeV range can be achieved in a gas cell with a tailored density profile. Using the PIC code Warp with parameters close to existing experimental conditions, we show that the concentration of N2 in a hydrogen plasma with a tailored density profile is an efficient parameter to tune electron beam properties through the control of the interplay between beam loading effects and varying accelerating field in the density profile. For a given laser plasma configuration, with moderate normalized laser amplitude, a0=1.6 and maximum electron plasma density, ne 0=4 ×1018 cm-3 , the optimum concentration results in a robust configuration to generate electrons at 150 MeV with a rms energy spread of 4% and a spectral charge density of 1.8 pC /MeV .

  2. Demand Response of Thermostatic Loads by Optimized Switching-Fraction Broadcast

    Totu, Luminita Cristiana; Wisniewski, Rafal

    2014-01-01

    Demand response is an important Smart Grid concept that aims at facilitating the integration of volatile energy resources into the electricity grid. This paper considers the problem of managing large populations of thermostat-based devices with on/off operation. The objective is to enable demand...... Method is used to spatially discretize these equations. Next, a broadcast strategy with two switching-fraction signals is proposed for actuating the population. This is applied in an open-loop scenario for tracking a power reference by running an optimization with a multilinear objective....

  3. System and method for optimal load and source scheduling in context aware homes

    Shetty, Pradeep; Foslien Graber, Wendy; Mangsuli, Purnaprajna R.; Kolavennu, Soumitri N.; Curtner, Keith L.

    2018-01-23

    A controller for controlling energy consumption in a home includes a constraints engine to define variables for multiple appliances in the home corresponding to various home modes and persona of an occupant of the home. A modeling engine models multiple paths of energy utilization of the multiple appliances to place the home into a desired state from a current context. An optimal scheduler receives the multiple paths of energy utilization and generates a schedule as a function of the multiple paths and a selected persona to place the home in a desired state.

  4. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications.

    Araújo, J; Gonzalez-Mira, E; Egea, M A; Garcia, M L; Souto, E B

    2010-06-30

    The purpose of this study was to develop a novel nanostructured lipid carrier (NLC) for the intravitreal-targeting delivery of triamcinolone acetonide (TA) by direct ocular instillation. A five-level central composite rotable design was used to study the influence of four different variables on the physicochemical characteristics of NLCs. The analysis of variance (ANOVA) statistical test was used to assess the optimization of NLC production parameters. The systems were produced by high pressure homogenization using Precirol ATO5 and squalene as solid and liquid lipids respectively, and Lutrol F68 as surfactant. Homogenization at 600 bar for 3 cycles of the optimized formulation resulted in the production of small NLC (mean diameter < 200 nm) with a homogeneous particle size distribution (polydispersity index (PI) approximately 0.1), of negatively charged surface (approximately |45| mV) and high entrapment efficiency (approximately 95%). Surface morphology was assessed by SEM which revealed fairly spherical shape. DSC, WAXS and FT-IR analyses confirmed that TA was mostly entrapped into the NLC, characterized by an amorphous matrix. In vivo Draize test showed no signs of ocular toxicity. 2010 Elsevier B.V. All rights reserved.

  5. Experimental validation of a magnetorheological energy absorber design optimized for shock and impact loads

    Singh, Harinder J; Hu, Wei; Wereley, Norman M; Glass, William

    2014-01-01

    A linear stroke adaptive magnetorheological energy absorber (MREA) was designed, fabricated and tested for intense impact conditions with piston velocities up to 8 m s −1 . The performance of the MREA was characterized using dynamic range, which is defined as the ratio of maximum on-state MREA force to the off-state MREA force. Design optimization techniques were employed in order to maximize the dynamic range at high impact velocities such that MREA maintained good control authority. Geometrical parameters of the MREA were optimized by evaluating MREA performance on the basis of a Bingham-plastic analysis incorporating minor losses (BPM analysis). Computational fluid dynamics and magnetic FE analysis were conducted to verify the performance of passive and controllable MREA force, respectively. Subsequently, high-speed drop testing (0–4.5 m s −1 at 0 A) was conducted for quantitative comparison with the numerical simulations. Refinements to the nonlinear BPM analysis were carried out to improve prediction of MREA performance. (paper)

  6. Experimental validation of a magnetorheological energy absorber design optimized for shock and impact loads

    Singh, Harinder J.; Hu, Wei; Wereley, Norman M.; Glass, William

    2014-12-01

    A linear stroke adaptive magnetorheological energy absorber (MREA) was designed, fabricated and tested for intense impact conditions with piston velocities up to 8 m s-1. The performance of the MREA was characterized using dynamic range, which is defined as the ratio of maximum on-state MREA force to the off-state MREA force. Design optimization techniques were employed in order to maximize the dynamic range at high impact velocities such that MREA maintained good control authority. Geometrical parameters of the MREA were optimized by evaluating MREA performance on the basis of a Bingham-plastic analysis incorporating minor losses (BPM analysis). Computational fluid dynamics and magnetic FE analysis were conducted to verify the performance of passive and controllable MREA force, respectively. Subsequently, high-speed drop testing (0-4.5 m s-1 at 0 A) was conducted for quantitative comparison with the numerical simulations. Refinements to the nonlinear BPM analysis were carried out to improve prediction of MREA performance.

  7. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design.

    Abul Kalam, Mohd; Khan, Abdul Arif; Khan, Shahanavaj; Almalik, Abdulaziz; Alshamsan, Aws

    2016-06-01

    Indomethacin chitosan nanoparticles (NPs) were developed by ionotropic gelation and optimized by concentrations of chitosan and tripolyphosphate (TPP) and stirring time by 3-factor 3-level Box-Behnken experimental design. Optimal concentration of chitosan (A) and TPP (B) were found 0.6mg/mL and 0.4mg/mL with 120min stirring time (C), with applied constraints of minimizing particle size (R1) and maximizing encapsulation efficiency (R2) and drug release (R3). Based on obtained 3D response surface plots, factors A, B and C were found to give synergistic effect on R1, while factor A has a negative impact on R2 and R3. Interaction of AB was negative on R1 and R2 but positive on R3. The factor AC was having synergistic effect on R1 and on R3, while the same combination had a negative effect on R2. The interaction BC was positive on the all responses. NPs were found in the size range of 321-675nm with zeta potentials (+25 to +32mV) after 6 months storage. Encapsulation, drug release, and content were in the range of 56-79%, 48-73% and 98-99%, respectively. In vitro drug release data were fitted in different kinetic models and pattern of drug release followed Higuchi-matrix type. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System

    Yan Bao

    2018-01-01

    Full Text Available Fast charging stations enable the high-powered rapid recharging of electric vehicles. However, these stations also face challenges due to power fluctuations, high peak loads, and low load factors, affecting the reliable and economic operation of charging stations and distribution networks. This paper introduces a battery energy storage system (BESS for charging load control, which is a more user-friendly approach and is more robust to perturbations. With the goals of peak-shaving, total electricity cost reduction, and minimization of variation in the state-of-charge (SOC range, a BESS-based bi-level optimization strategy for the charging load regulation of fast charging stations is proposed in this paper. At the first level, a day-ahead optimization strategy generates the optimal planned load curve and the deviation band to be used as a reference for ensuring multiple control objectives through linear programming, and even for avoiding control failure caused by insufficient BESS energy. Based on this day-ahead optimal plan, at a second level, real-time rolling optimization converts the control process to a multistage decision-making problem. The predictive control-based real-time rolling optimization strategy in the proposed model was used to achieve the above control objectives and maintain battery life. Finally, through a horizontal comparison of two control approaches in each case study, and a longitudinal comparison of the control robustness against different degrees of load disturbances in three cases, the results indicated that the proposed control strategy was able to significantly improve the charging load characteristics, even with large disturbances. Meanwhile, the proposed approach ensures the least amount of variation in the range of battery SOC and reduces the total electricity cost, which will be of a considerable benefit to station operators.

  9. Collaborative Optimal Pricing and Day-Ahead and Intra-Day Integrative Dispatch of the Active Distribution Network with Multi-Type Active Loads

    Chong Chen

    2018-04-01

    Full Text Available In order to better handle the new features that emerge at both ends of supply and demand, new measures are constantly being introduced, such as demand-side management (DSM and prediction of uncertain output and load. However, the existing DSM strategies, like real-time price (RTP, and dispatch methods are optimized separately, and response models of active loads, such as the interruptible load (IL, are still imperfect, which make it difficult for the active distribution network (ADN to achieve global optimal operation. Therefore, to better manage active loads, the response characteristics including both the response time and the responsibility and compensation model of IL for cluster users, and the real-time demand response model for price based load, were analyzed and established. Then, a collaborative optimization strategy of RTP and optimal dispatch of ADN was proposed, which can realize an economical operation based on mutual benefit and win-win mode of supply and demand sides. Finally, the day-ahead and intra-day integrative dispatch model using different time-scale prediction data was established, which can achieve longer-term optimization while reducing the impact of prediction errors on the dispatch results. With numerical simulations, the effectiveness and superiority of the proposed strategy were verified.

  10. Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles

    Ajinath Eknath Shirsat

    2015-01-01

    Full Text Available The purpose of present study was to optimize rizatriptan (RZT chitosan (CS nanoparticles using ionic gelation method by application of quality by design (QbD approach. Based on risk assessment, effect of three variables, that is CS %, tripolyphosphate % and stirring speed were studied on critical quality attributes (CQAs; particle size and entrapment efficiency. Central composite design (CCD was implemented for design of experimentation with 20 runs. RZT CS nanoparticles were characterized for particle size, polydispersity index, entrapment efficiency, in-vitro release study, differential scanning calorimetric, X-ray diffraction, scanning electron microscopy (SEM. Based on QbD approach, design space (DS was optimized with a combination of selected variables with entrapment efficiency > 50% w/w and a particle size between 400 and 600 nm. Validation of model was performed with 3 representative formulations from DS for which standard error of − 0.70-3.29 was observed between experimental and predicted values. In-vitro drug release followed initial burst release 20.26 ± 2.34% in 3-4 h with sustained drug release of 98.43 ± 2.45% in 60 h. Lower magnitude of standard error for CQAs confirms the validation of selected CCD model for optimization of RZT CS nanoparticles. In-vitro drug release followed dual mechanism via, diffusion and polymer erosion. RZT CS nanoparticles were prepared successfully using QbD approach with the understanding of the high risk process and formulation parameters involved and optimized DS with a multifactorial combination of critical parameters to obtain predetermined RZT loaded CS nanoparticle specifications.

  11. Algorithmic Principles of Mathematical Programming

    Faigle, Ulrich; Kern, Walter; Still, Georg

    2002-01-01

    Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear

  12. Distributed Optimization of Sustainable Power Dispatch and Flexible Consumer Loads for Resilient Power Grid Operations

    Srikantha, Pirathayini

    Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these

  13. A novel chaotic particle swarm optimization approach using Henon map and implicit filtering local search for economic load dispatch

    Coelho, Leandro dos Santos; Mariani, Viviana Cocco

    2009-01-01

    Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm driven by the simulation of a social psychological metaphor instead of the survival of the fittest individual. Based on the chaotic systems theory, this paper proposed a novel chaotic PSO combined with an implicit filtering (IF) local search method to solve economic dispatch problems. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed PSO introduces chaos mapping using Henon map sequences which increases its convergence rate and resulting precision. The chaotic PSO approach is used to produce good potential solutions, and the IF is used to fine-tune of final solution of PSO. The hybrid methodology is validated for a test system consisting of 13 thermal units whose incremental fuel cost function takes into account the valve-point loading effects. Simulation results are promising and show the effectiveness of the proposed approach.

  14. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using Box-Behnken design and response surface methodology.

    Gidwani, Bina; Vyas, Amber

    2016-01-01

    The objective of the present study was to prepare solid lipid nanoparticles (SLNs) of altretamine (ALT) by the hot homogenization and ultrasonication method. The study was conducted using the Box-Behnken design (BBD), with a 3(3) design and a total of 17 experimental runs, performed in combination with response surface methodology (RSM). The SLNs were evaluated for mean particle size, entrapment efficiency, and drug-loading. The optimized formulation, with a desirability factor of 0.92, was selected and characterized. In vitro release studies showed a biphasic release pattern from the SLNs for up to 24 h. The results of % EE (93.21 ± 1.5), %DL (1.15 ± 0.6), and mean diameter of (100.6 ± 2.1) nm, were very close to the predicted values.

  15. Optimization of Tungsten Carbide Opposite Anvils Used in the In Situ High-Pressure Loading Apparatus

    Zhang Ying

    2014-01-01

    Full Text Available In order to optimize the structure of anvils, finite element method is used to simulate two kinds of structures, one of which has a support ring but the other one does not. According to the simulated results, it is found that the maximum value of pressure appears at the center of culet when the bevelled angle is about 20°. Comparing the results of these two kinds of structures, we find that the efficiency of pressure transformation for the structure without support ring is larger than that for the structure with support ring. Considering the effect of von Mises stress, two kinds of tungsten carbide opposite anvils have been manufactured with bevelled angle of 10°. The experimental results for these two anvils are in good agreement with the simulation.

  16. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. C-188 Co-60 sources installation and source rack loading optimization processes in a gamma irradiation facility

    Santos, Paulo de S.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Since 2004, the Multipurpose Gamma Facility at the Nuclear and Energy Research Institute has been providing services on radiation processing for disinfection and sterilization of health care and disposable medical products as well to support research studies on modification of physical, chemical and biological properties of several materials. Recently, there was an increment in irradiation of the Cultural Heritages. This facility uses C-188 double-encapsulated radioactive Cobalt-60 sources known as pencils from manufactures outside of country. The activity of the cobalt sources decays into a stable nickel isotope with a half-life around 5.27 years, which means a loss of 12.3% annually. Then, additional pencils of Cobalt-60 are added periodically to the source rack to maintain the required capacity or installed activity of the facility. The manufacturer makes shipping of the radioactive sources inside a high density container type B(U) , by sea. This one involves many administrative, transport and radiation safety procedures. Once in the facility, the container is opened inside a deep pool water to remove the pencils. The required source geometry of the facility is obtained by loading these source pencils into predetermined diagram or positions in source modules and distributing these modules over the source rack of the facility. The dose variation can be reduced placing the higher activity source pencils near the periphery of the source rack. In this work are presented the procedures for perform the boiling leaching tests applied to the container, the Cobalt-60 sources installation, the loading processes and the source rack loading optimization. (author)

  18. QbD based approach for optimization of Tenofovir disoproxil fumarate loaded liquid crystal precursor with improved permeability

    Sharvil Patil

    2017-11-01

    Full Text Available BCS class III drugs suffer from a drawback of low permeability even though they have high aqueous solubility. The objective of current work was to screen the suitability of glyceryl monooleate (GMO/Pluronic F127 cubic phase liquid crystals precursors for permeation enhancement and in turn the bioavailability of tenofovir disoproxil fumarate (TDF, a BCS class III drug. Spray-drying method was used for preparation of TDF loaded liquid crystal precursors (LCP consisting of GMO/Pluronic F127 and lactose monohydrate with an ability to in situ transform into stable cubic phases upon hydration. The quality by design (QbD approach (Factorial design was used for batch optimization. Spherical TDF loaded LCP as revealed by scanning electron microscopy photographs when hydrated and analyzed by small angle X-ray scattering confirmed formation of cubic phase. Differential scanning calorimetry and X-ray diffraction studies confirmed the molecular dispersion of TDF in polymer matrix and also suggested the conversion of TDF from crystalline to amorphous form. In vitro TDF release from prepared LCP showed controlled drug release over a period of 10 h. Further ex vivo studies revealed permeation enhancing activity of prepared LCP, which was highest when tested in presence of digestive enzyme extract. Thus, formulation of stable liquid crystal powder precursor can serve as an alternative for designing oral delivery system for drugs with low permeability.

  19. IVABRADINE LOADED SOLID LIPID MICROPARTICLES: FORMULATION, CHARACTERIZATION AND OPTIMIZATION BY CENTRAL COMPOSITE ROTATABLE DESIGN.

    Hanif, Muhammad; Khan, Hafeez Ullah; Afzal, Samina; Sher, Muhammad

    2017-01-01

    The current research focused on improvement of oral bioavailability and decrease in dosing frequency of ivabradine (Iva) in order to enhance patient compliance by formulating novel sustained release Iva loaded solid lipid microparticles (SLMs) with the help of melt emulsification technique. SLMs formulations were designed with the help of three level central composite rotatable design (CCRD) to study the impact of independent variables like lipid concentration, surfactant concentration and stirring speed on responses - percentage yield (Y,) and entrapment efficiency (Y2). Compatibility between the drug and bees wax (BW) was checked by conducting Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). SLMs were further evaluated for rheological behavior, zeta potential, particle size and for morphology by scanning'electron microscope (SEM). The release of drug from SLMs was conducted by USP type-Il apparatus at pH 1.2, pH 6.8 and data were analyzed by different kinetic models like zero order, first order, Higuchi model, Korsmeyer-Peppas and Hixon-Crowell models. The rheo- logical studies approved the good flow behavior of SLMs and spherical smooth surface of SLMs was observed from SEM. DSC, FTIR and XRD studies concluded the lack of any possible interaction between formulation components. The size-of SLMs ranged from 300 to 500 pm and zeta potential study showed the presence of higher negative charge (-30 to -52 mV). Response Y, varied from 53 to 90% and response Y2 ranged from 29 to 78% indicating the effect of formulation variables. The obtained outcomes were analyzed by second order polynomial equation and suggested quadratic model was also validated. SLMs released Iva from 54 to 90% at pH 6.8 and was significantly (p 0.05) affected by BW concentration. The release mechanism followed the zero order and Korsmeyer-Peppas (n 0.85) kinetic models suggesting slow erosion along with diffusion

  20. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading

    M. A. García-Sánchez

    2016-07-01

    Full Text Available Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most

  1. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical

  2. Adaptive Beam Loading Compensation in Room Temperature Bunching Cavities

    Edelen, J. P. [Fermilab; Chase, B. E. [Fermilab; Cullerton, E. [Fermilab; Varghese, P. [Fermilab

    2017-10-01

    In this paper we present the design, simulation, and proof of principle results of an optimization based adaptive feedforward algorithm for beam-loading compensation in a high impedance room temperature cavity. We begin with an overview of prior developments in beam loading compensation. Then we discuss different techniques for adaptive beam loading compensation and why the use of Newton?s Method is of interest for this application. This is followed by simulation and initial experimental results of this method.

  3. Formulation and statistical optimization of gastric floating alginate/oil/chitosan capsules loading procyanidins: in vitro and in vivo evaluations.

    Chen, Rencai; Guo, Xiaomin; Liu, Xuecong; Cui, Haiming; Wang, Rui; Han, Jing

    2018-03-01

    The aim of the present work was to develop gastric floating capsules containing oil-entrapped beads loading procyanidins. The floating beads were prepared by ionotropic gelation method using sodium alginate, CaCl 2 and chitosan. The effect of three independent parameters (concentration of sodium alginate, CaCl 2 and chitosan) on entrapment efficiency were analyzed by Box-Behnken design. The floating beads were evaluated for surface morphology, particle size, density, entrapment efficiency, buoyancy, release behavior in vitro and floating ability in vivo. The prepared beads were grossly spherical in shape and the mean size was approximately 1.54±0.17mm. The density was 0.97g/cm 3 . And the optimal conditions were as follows: concentration of sodium alginate, CaCl 2 and chitosan were 33.75mg/mL, 9.84mg/mL and 9.05mg/mL, respectively. The optimized formulation showed entrapment efficiency of 88.84±1.04% within small error-value (0.65). The release mechanism of floating capsules followed Korsmeyer-Peppas model (r 2 =0.9902) with non-Fickian release. The gastric floating capsules exhibited 100% floating percentage in vitro and they could float on the top of gastric juice for 5h in vivo. Therefore, the floating capsules are able to prolong the gastroretentive delivery of procyanidins. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A Precision-Positioning Method for a High-Acceleration Low-Load Mechanism Based on Optimal Spatial and Temporal Distribution of Inertial Energy

    Xin Chen

    2015-09-01

    Full Text Available High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM, and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.

  5. Optimizing Half Squat Postactivation Potential Load in Squat Jump Training for Eliciting Relative Maximal Power in Ski Jumpers.

    Gołaś, Artur; Wilk, Michal; Stastny, Petr; Maszczyk, Adam; Pajerska, Katarzyna; Zając, Adam

    2017-11-01

    Gołaś, A, Wilk, M, Stastny, P, Maszczyk, A, Pajerska, K, and Zając, A. Optimizing half squat postactivation potential load in squat jump training for eliciting relative maximal power in ski jumpers. J Strength Cond Res 31(11): 3010-3017, 2017-Training load manipulation in a single workout session can increase or decrease training effectiveness in terms of athletes' strength or power gains. In ski jumping, the complex training that elicits maximal power gains may take advantage of the postactivation potentiation (PAP) mechanism. The aim of this research was to evaluate the changes in rate of force development (RFD), rate of power development (RPD), and jump height during a complex training session consisted of the barbell half squat (Sq) as a conditioning exercise with loads ranged between 60 and 100% of 1 repetition maximum (1RM), followed by a body weight squat jump (SqJ) as a performance task. The study was conducted with 16 elite athletes from the Polish National Ski Jumping Team, age 23 ± 8 years, body mass 56 ± 9 kg, and height 172 ± 12 cm. Complex training session started with the Sq at 60% of 1RM as the conditioning exercise, followed by 3 minutes of rest and the SqJ. The conditioning barbell half Sq was performed with 70, 80, 90, and 100% of 1RM with 5 minutes of rest. The differences in RFD occurred between an SqJ following the application of 80% of 1RM and all other SqJs (p = 0.01), and in RPD between SqJ without conditioning, SqJ after 60% of 1RM and 80% of 1RM (p = 0.02). On average, the most effective load in inducing PAP during ski jumpers' SqJ training is 80% of 1RM. The intensity of the conditioning exercise that elicits the greatest PAP effect should be individualized (60-100% 1RM), as it is dependent on the level of maximal strength.

  6. A targeted liposome delivery system for combretastatin A4: formulation optimization through drug loading and in vitro release studies.

    Nallamothu, Ramakrishna; Wood, George C; Kiani, Mohammad F; Moore, Bob M; Horton, Frank P; Thoma, Laura A

    2006-01-01

    Efficient liposomal therapeutics require high drug loading and low leakage. The objective of this study is to develop a targeted liposome delivery system for combretastatin A4 (CA4), a novel antivascular agent, with high loading and stable drug encapsulation. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, and distearoyl phosphoethanolamine-PEG-2000 conjugate (DSPE-PEG) were prepared by the lipid film hydration and extrusion process. Cyclic arginine-glycine-aspartic acid (RGD) peptides with affinity for alphav beta3-integrins overexpressed on tumor vascular endothelial cells were coupled to the distal end of polyethylene glycol (PEG) on the liposomes sterically stabilized with PEG (non-targeted liposomes; LCLs). Effect of lipid concentration, drug-to-lipid ratio, cholesterol, and DSPE-PEG content in the formulation on CA4 loading and its release from the liposomes was studied. Total liposomal CA4 levels obtained increased with increasing lipid concentration in the formulation. As the drug-to-lipid ratio increased from 10:100 to 20:100, total drug in the liposome formulation increased from 1.05+/-0.11 mg/mL to 1.55+/-0.13 mg/mL, respectively. When the drug-to-lipid ratio was further raised to 40:100, the total drug in liposome formulation did not increase, but the amount of free drug increased significantly, thereby decreasing the percent of entrapped drug. Increasing cholesterol content in the formulation decreased drug loading. In vitro drug leakage from the liposomes increased with increase in drug-to-lipid ratio or DSPE-PEG content in the formulation; whereas increasing cholesterol content of the formulation up to 30 mol-percent, decreased CA4 leakage from the liposomes. Ligand coupling to the liposome surface increased drug leakage as a function of ligand density. Optimized liposome formulation with 100 mM lipid concentration, 20:100 drug-to-lipid ratio, 30 mol-percent cholesterol, 4 mol-percent DSPE-PEG, and 1 mol

  7. Development, optimization and evaluation of curcumin loaded biodegradable crosslinked gelatin film for the effective treatment of periodontitis.

    Chauhan, Sheetal; Bansal, Monika; Khan, Gayasuddin; Yadav, Sarita K; Singh, Ashish K; Prakash, Pradyot; Mishra, Brahmeshwar

    2018-07-01

    Aim of the present study was to prepare curcumin (CUR) loaded biodegradable crosslinked gelatin (GE) film to alleviate the existing shortcomings in the treatment of periodontitis. Gelatin film was optimized to provide anticipated mucoadhesive strength, mechanical properties, folding endurance, and prolonged drug release over treatment duration, for successful application in the periodontitis. The film was developed by using solvent casting technique and "Design of Experiments" approach was employed for evaluating the influence of independent variables on dependent response variables. Solid-state characterization of the film was performed by FTIR, XRD, and SEM. Further, prepared formulations were evaluated for drug content uniformity, surface pH, folding endurance, swelling index, mechanical strength, mucoadhesive strength, in vitro biodegradation, and in vitro drug release behavior. Solid state characterization of the formulation showed that CUR is physico-chemically compatible with other excipients and CUR was entrapped in an amorphous form inside the smooth and uniform film. The optimized film showed degree of crosslinking 51.04 ± 2.4, swelling index 138.10 ± 1.25, and folding endurance 270 ± 3 with surface pH around 7.0. Crosslinker concentrations positively affected swelling index and biodegradation of film due to altered matrix density of the polymer. Results of in vitro drug release demonstrated the capability of the developed film for efficiently delivering CUR in a sustained manner up to 7 days. The developed optimized film could be considered as a promising delivery strategy to administer medicament locally into the periodontal pockets for the safe and efficient management of periodontitis.

  8. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.

    Tahir, Nayab; Madni, Asadullah; Balasubramanian, Vimalkumar; Rehman, Mubashar; Correia, Alexandra; Kashif, Prince Muhammad; Mäkilä, Ermei; Salonen, Jarno; Santos, Hélder A

    2017-11-25

    Lipid-polymer hybrid nanoparticles (LPHNPs) are emerging platforms for drug delivery applications. In the present study, methotrexate loaded LPHNPs consisted of PLGA and Lipoid S100 were fabricated by employing a single-step modified nanoprecipitation method combined with self-assembly. A three factor, three level Box Behnken design using Design-Expert ® software was employed to access the influence of three independent variables on the particle size, drug entrapment and percent drug release. The optimized formulation was selected through numeric optimization approach. The results were supported with the ANOVA analysis, regression equations and response surface plots. Transmission electron microscope images indicated the nanosized and spherical shape of the LPHNPs with fair size distribution. The nanoparticles ranged from 176 to 308nm, which increased with increased polymer concentration. The increase in polymer and lipid concentration also increased the drug entrapment efficiency. The in vitro drug release was in range 70.34-91.95% and the release mechanism follow the Higuchi model (R 2 =0.9888) and Fickian diffusion (n<0.5). The in vitro cytotoxicity assay and confocal microscopy of the optimized formulation demonstrate the good safety and better internalization of the LPHNPs. The cell antiproliferation showed the spatial and controlled action of the nanoformulation as compared to the plain drug solution. The results suggest that LPHNPs can be a promising delivery system envisioned to safe, stable and potentially controlled delivery of methotrexate to the cancer cells to achieve better therapeutic outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    Nijhuis, A; Van Lanen, E P A; Rolando, G

    2012-01-01

    by the distinct difference in mechanical response of the cable during axial contraction for short and long pitches. For short pitches periodic bending in different directions with relatively short wavelength is imposed because of a lack of sufficient lateral restraint of radial pressure. This can lead to high bending strain and eventually buckling. Whereas for cables with long twist pitches, the strands are only able to react as coherent bundles, being tightly supported by the surrounding strands, providing sufficient lateral restraint of radial pressure in combination with enough slippage to avoid single strand bending along detrimental short wavelengths. Experimental evidence of good performance was already provided with the test of the long pitch TFPRO2-OST2, which is still until today, the best ITER-type cable to strand performance ever without any cyclic load (electromagnetic and thermal contraction) degradation. For reduction of the coupling loss, specific choices of the cabling twist sequence are needed to minimize the area of linked strands and bundles that are coupled and form loops with the applied changing magnetic field, instead of simply avoiding longer pitches. In addition we recommend increasing the wrap coverage of the CS conductor from 50% to at least 70%. A larger wrap coverage fraction enhances the overall strand bundle lateral restraint. The long pitch design seems the best solution to optimize the ITER CS conductor within the given restrictions of the present coil design envelope, only allowing marginal changes. The models predict significant improvement against strain sensitivity and substantial decrease of the AC coupling loss in Nb 3 Sn CICCs, but also for NbTi CICCs minimization of the coupling loss can obviously be achieved. Although the success of long pitches to transverse load degradation was already demonstrated, the prediction of the elegant innovative combination with low coupling loss needs to be validated by a short sample test.

  10. High Velocity Jet Noise Source Location and Reduction. Task 3 - Experimental Investigation of Suppression Principles. Volume I. Suppressor Concepts Optimization

    1978-12-01

    25. Predicted Vs. Measured PNL Directivity for an 8-Lobe Daisy Suppressor ( Aerotrain ); Va = 0. 168 4-26. Predicted Vs. Measured PNL Directivity for...of Configurations for Verification of Suppression Principles. 137 4-2. PNL Data/Theory Comparison for Bertin Aerotrain Test Series; 400-ft Sideline...obtained from the scale-model tests con- ducted in Task 3 and from the Aerotrain tests conducted in Task 4 of the present program. Comparisons were

  11. Unequal-thickness billet optimization in transitional region during isothermal local loading forming of Ti-alloy rib-web component using response surface method

    Ke WEI

    2018-04-01

    Full Text Available Avoiding the folding defect and improving the die filling capability in the transitional region are desired in isothermal local loading forming of a large-scale Ti-alloy rib-web component (LTRC. To achieve a high-precision LTRC, the folding evolution and die filling process in the transitional region were investigated by 3D finite element simulation and experiment using an equal-thickness billet (ETB. It is found that the initial volume distribution in the second-loading region can greatly affect the amount of material transferred into the first-loading region during the second-loading step, and thus lead to the folding defect. Besides, an improper initial volume distribution results in non-concurrent die filling in the cavities of ribs after the second-loading step, and then causes die underfilling. To this end, an unequal-thickness billet (UTB was employed with the initial volume distribution optimized by the response surface method (RSM. For a certain eigenstructure, the critical value of the percentage of transferred material determined by the ETB was taken as a constraint condition for avoiding the folding defect in the UTB optimization process, and the die underfilling rate was considered as the optimization objective. Then, based on the RSM models of the percentage of transferred material and the die underfilling rate, non-folding parameter combinations and optimum die filling were achieved. Lastly, an optimized UTB was obtained and verified by the simulation and experiment. Keywords: Die filling, Folding defect, Isothermal local loading forming, Transitional region, Unequal-thickness billet optimization

  12. Nanoparticle-neural stem cells for targeted ovarian cancer treatment: optimization of silica nanoparticles for efficient drug loading

    Patel, Z.; Berlin, J.; Abidi, W.

    2018-02-01

    One of the drugs used to treat ovarian cancer is cisplatin. However, cisplatin kills normal surrounding tissue in addition to cancer cells. To improve tumor targeting efficiency, our lab uses neural stem cells (NSCs), which migrate directly to ovarian tumors. If free cisplatin is loaded into NSCs for targeted drug delivery, it will kill the NSCs. To prevent the drug cisplatin from killing both the NSCs and normal surrounding tissue, our lab synthesizes silica nanoparticles (SiNPs) that act as a protective carrier. The big picture here is to maximize efficiency of tumor targeting using NSCs and minimize toxicity to these NSCs using SiNPs. The goal of this project is to optimize the stability of SiNPs, which is important for efficient drug loading. To do this, the concentration of tetraethyl orthosilicate (TEOS), one of the main components of SiNPs, was varied. We hypothesized that more TEOS equates to more stable SiNPs because TEOS contributes carbon to SiNPs, and thus a tightly-packed chemical structure results in a stable particle. Then, the stability of the SiNPs were checked in cell media and phosphate buffered saline (PBS). Lastly, the SiNPs were analyzed for their porosity using the transmission electron microscope (TEM). TEM imaging showed white spots in the 200-800 μL TEOS batches and no white spots in the 1000-1800 μL TEOS batches. The white spots were pores, which indicate instability. We concluded that the ultimate factor that determines the stability of SiNPs (100 nm) is the concentration of organic substance.

  13. Optimization of methotrexate loaded niosomes by Box-Behnken design: an understanding of solvent effect and formulation variability.

    Zidan, Ahmed S; Mokhtar Ibrahim, Mahmoud; Megrab, Nagia A El

    2017-09-01

    Dermal drug delivery system which localizes methotrexate (MTX) in the skin is advantageous in topical treatment of psoriasis. The aim of the current study was to understand dilution effects and formulation variability for the potential formation of niosomes from proniosome gels of MTX. Box-Behnken's design was employed to prepare a series of MTX proniosome gels of Span 40, cholesterol (Chol-X 1 ) and Tween 20 (T20-X 2 ). Short chain alcohols (X 3 ), namely ethanol (Et), propylene glycol (Pg) and glycerol (G) were evaluated for their dilution effects on proniosomes. The responses investigated were niosomal vesicles size (Y 1 ), MTX entrapment efficiency percent (EE%-Y 2 ) and zeta potential (Y 3 ). MTX loaded niosomes were formed immediately upon hydration of the proniosome gels with the employed solvents. Addition of Pg resulted in a decrease of vesicular size from 534 nm to 420 nm as Chol percentage increased from 10% to 30%, respectively. In addition, increasing the hydrophilicity of the employed solvents was enhancing the resultant zeta potential. On the other hand, using Et in proniosomal gels would abolish Chol action to increase the zeta potential value and hence less stable niosomal dispersion was formed. The optimized formula of MTX loaded niosomes showed vesicle size of 480 nm, high EE% (55%) and zeta potential of -25.5 mV, at Chol and T20 concentrations of 30% and 23.6%, respectively, when G was employed as the solvent. Hence, G was the solvent of choice to prepare MTX proniosomal gels with a maintained stability and highest entrapment.

  14. A theoretical investigation on optimal structures of ethane clusters (C2H6)n with n ≤ 25 and their building-up principle.

    Takeuchi, Hiroshi

    2011-05-01

    Geometry optimization of ethane clusters (C(2)H(6))(n) in the range of n ≤ 25 is carried out with a Morse potential. A heuristic method based on perturbations of geometries is used to locate global minima of the clusters. The following perturbations are carried out: (1) the molecule or group with the highest energy is moved to the interior of a cluster, (2) it is moved to stable positions on the surface of a cluster, and (3) orientations of one and two molecules are randomly modified. The geometry obtained after each perturbation is optimized by a quasi-Newton method. The global minimum of the dimer is consistent with that previously reported. The putative global minima of the clusters with 3 ≤ n ≤ 25 are first proposed and their building-up principle is discussed. Copyright © 2010 Wiley Periodicals, Inc.

  15. On the Reliability of Optimization Results for Trigeneration Systems in Buildings, in the Presence of Price Uncertainties and Erroneous Load Estimation

    Antonio Piacentino

    2016-12-01

    Full Text Available Cogeneration and trigeneration plants are widely recognized as promising technologies for increasing energy efficiency in buildings. However, their overall potential is scarcely exploited, due to the difficulties in achieving economic viability and the risk of investment related to uncertainties in future energy loads and prices. Several stochastic optimization models have been proposed in the literature to account for uncertainties, but these instruments share in a common reliance on user-defined probability functions for each stochastic parameter. Being such functions hard to predict, in this paper an analysis of the influence of erroneous estimation of the uncertain energy loads and prices on the optimal plant design and operation is proposed. With reference to a hotel building, a number of realistic scenarios is developed, exploring all the most frequent errors occurring in the estimation of energy loads and prices. Then, profit-oriented optimizations are performed for the examined scenarios, by means of a deterministic mixed integer linear programming algorithm. From a comparison between the achieved results, it emerges that: (i the plant profitability is prevalently influenced by the average “spark-spread” (i.e., ratio between electricity and fuel price and, secondarily, from the shape of the daily price profiles; (ii the “optimal sizes” of the main components are scarcely influenced by the daily load profiles, while they are more strictly related with the average “power to heat” and “power to cooling” ratios of the building.

  16. Music Training Program: A Method Based on Language Development and Principles of Neuroscience to Optimize Speech and Language Skills in Hearing-Impaired Children

    Samaneh Sadat Dastgheib

    2013-03-01

    Full Text Available Introduction: In recent years, music has been employed in many intervention and rehabilitation program to enhance cognitive abilities in patients. Numerous researches show that music therapy can help improving language skills in patients including hearing impaired. In this study, a new method of music training is introduced based on principles of neuroscience and capabilities of Persian language to optimize language development in deaf children after implantation.    Materials and Methods: The candidate children are classified in three groups according to their hearing age and language development. The music training program is established and centered on four principles, as follows: hearing and listening to music (with special attention to boost hearing, singing, rhythmic movements with music and playing musical instruments.   Results: Recently much research has demonstrated that even after cochlear implant operation, a child cannot acquire language to the same level of detail as a normal child. As a result of this study music could compensate this developmental delay .It is known that the greater the area of the brain that is activated, the more synaptic learning and plasticity changes occur in that specific area. According to the principles of neural plasticity, music could improve language skills by activating the same areas for language processing in the brain.   Conclusion:  In conclusion, the effects of music on the human brain seem to be very promising and therapeutic in various types of disorders and conditions, including cochlear implantation.

  17. Optimization of the formulation for preparing Lactobacillus casei loaded whey protein-Ca-alginate microparticles using full-factorial design.

    Smilkov, Katarina; Petreska Ivanovska, Tanja; Petrushevska Tozi, Lidija; Petkovska, Rumenka; Hadjieva, Jasmina; Popovski, Emil; Stafilov, Trajce; Grozdanov, Anita; Mladenovska, Kristina

    2014-01-01

    This article presents specific approach for microencapsulation of Lactobacillus casei using emulsion method followed by additional coating with whey protein. Experimental design was employed using polynomial regression model at 2nd level with three independent variables, concentrations of alginate, whey protein and CaCl2. Physicochemical, biopharmaceutical and biological properties were investigated. In 11 series generated, negatively charged microparticles were obtained, with size 6.99-9.88 µm, Ca-content 0.29-0.47 mg per 10 mg microparticles, and viability of the probiotic 9.30-10.87 log10CFU/g. The viability after 24 hours in simulated gastrointestinal conditions was between 3.60 and 8.32 log10CFU/g. Optimal formulation of the microparticles that ensures survival of the probiotic and achieves controlled delivery was determined: 2.5% (w/w) alginate, 3% (w/w) CaCl2 and 3% (w/w) whey protein. The advantageous properties of the L. casei-loaded microparticles make them suitable for incorporation in functional food and/or pharmaceutical products.

  18. Optimizing the Operation of Windfarms, Energy Storage and Flexible Loads in Modern Power Systems and Deregulated Electricity Markets

    Dar, Zamiyad

    most turbines is quite close to 1/3 and yaw angle acts as the dominant optimization variable. In the next part of this dissertation, a system comprising of a windfarm and energy storage operating in real-time electricity markets is studied. An Energy-balancing Threshold Price (ETP) policy is proposed to maximize the revenue of a windfarm with on-site storage. We propose and analyze a scheme for a windfarm to store or sell energy based on a threshold price. The threshold price is calculated based on long-term distributions of the electricity price and wind power generation processes, and is chosen so as to balance the energy flows in and out of the storage-equipped windfarm. It is also shown mathematically that the proposed policy is optimal in terms of the long-term revenue generated. Comparing it with the optimal policy that has knowledge of the future, we observe that the revenue obtained by the proposed ETP policy is approximately 90% of the maximum attainable revenue at a storage capacity of 10-15 times the power rating of the windfarm. The intermittent nature of wind power is a hindrance to the efficient participation of windfarms in the day-ahead and forward electricity markets. In this regard, a flexible forward contract is proposed in this dissertation which allows the windfarms to enter into a forward contract with flexible load with an option to deviate from the contracted amount of power. Using such a flexible contract would allow the windfarms to supply more or less than the contracted amount of power in case of unexpected wind conditions or real-time prices. We also propose models for forecasting wind power and real-time electricity prices. The comparison between the proposed contracting framework and a simple fixed contract (currently existing in the market) for different levels of flexibility and load shows that there is a net gain in windfarm revenues, if the transaction price of the two contracts are set equal. Lastly, we present and analyze

  19. Optimal Load-Tracking Operation of Grid-Connected Solid Oxide Fuel Cells through Set Point Scheduling and Combined L1-MPC Control

    Siwei Han

    2018-03-01

    Full Text Available An optimal load-tracking operation strategy for a grid-connected tubular solid oxide fuel cell (SOFC is studied based on the steady-state analysis of the system thermodynamics and electrochemistry. Control of the SOFC is achieved by a two-level hierarchical control system. In the upper level, optimal setpoints of output voltage and the current corresponding to unit load demand is obtained through a nonlinear optimization by minimizing the SOFC’s internal power waste. In the lower level, a combined L1-MPC control strategy is designed to achieve fast set point tracking under system nonlinearities, while maintaining a constant fuel utilization factor. To prevent fuel starvation during the transient state resulting from the output power surging, a fuel flow constraint is imposed on the MPC with direct electron balance calculation. The proposed control schemes are testified on the grid-connected SOFC model.

  20. Optimization of filter loading

    Turney, J.H.; Gardiner, D.E.; Sacramento Municipal Utility District, Herald, CA)

    1985-01-01

    The introduction of 10 CFR Part 61 has created potential difficulties in the disposal of spent cartridge filters. When this report was prepared, Rancho Seco had no method of packaging and disposing of class B or C filters. This work examined methods to minimize the total operating cost of cartridge filters while maintaining them below the class A limit. It was found that by encapsulating filters in cement the filter operating costs could be minimized