FEEDBACK CONTROL OPTIMIZATION FOR SEISMICALLY EXCITED BUILDINGS
Institute of Scientific and Technical Information of China (English)
Xueping Li; Zuguang Ying
2007-01-01
A feedback control optimization method of partially observable linear structures via stationary response is proposed and analyzed with linear building structures equipped with control devices and sensors. First, the partially observable control problem of the structure under horizontal ground acceleration excitation is converted into a completely observable control problem. Then the It(o) stochastic differential equations of the system are derived based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution to the Fokker-Plank-Kolmogorov (FPK) equation associated with the It(o) equations is obtained.The performance index in terms of the mean system energy and mean square control force is established and the optimal control force is obtained by minimizing the performance index. Finally, the numerical results for a three-story building structure model under El Centro, Hachinohe,Northridge and Kobe earthquake excitations are given to illustrate the application and the effectiveness of the proposed method.
Optimal feedback scheduling of model predictive controllers
Institute of Scientific and Technical Information of China (English)
Pingfang ZHOU; Jianying XIE; Xiaolong DENG
2006-01-01
Model predictive control (MPC) could not be reliably applied to real-time control systems because its computation time is not well defined. Implemented as anytime algorithm, MPC task allows computation time to be traded for control performance, thus obtaining the predictability in time. Optimal feedback scheduling (FS-CBS) of a set of MPC tasks is presented to maximize the global control performance subject to limited processor time. Each MPC task is assigned with a constant bandwidth server (CBS), whose reserved processor time is adjusted dynamically. The constraints in the FSCBS guarantee scheduler of the total task set and stability of each component. The FS-CBS is shown robust against the variation of execution time of MPC tasks at runtime. Simulation results illustrate its effectiveness.
A Feedback Optimal Control Algorithm with Optimal Measurement Time Points
Directory of Open Access Journals (Sweden)
Felix Jost
2017-02-01
Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.
USING OPTIMAL FEEDBACK CONTROL FOR CHAOS TARGETING
Institute of Scientific and Technical Information of China (English)
PENG ZHAO-WANG; ZHONG TING-XIU
2000-01-01
Since the conventional open-loop optimal targeting of chaos is very sensitive to noise, a close-loop optimal targeting method is proposed to improve the targeting performance under noise. The present optimal targeting model takes into consideration both precision and speed of the targeting procedure. The parameters, rather than the output, of the targeting controller, are directly optimized to obtain optimal chaos targeting. Analysis regarding the mechanism is given from physics aspect and numerical experiment on the Hénon map is carried out to compare the targeting performance under noise between the close-loop and the open-loop methods.
On the Optimal Controller for LTV Measurement Feedback Control Problem
Institute of Scientific and Technical Information of China (English)
Ting GONG; Yu Feng LU
2011-01-01
In this paper, we consider the measurement feedback control problem for discrete linear time-varying systems within the framework of nest algebra consisting of causal and bounded linear operators. Based on the inner-outer factorization of operators, we reduce the control problem to a distance from a certain operator to a special subspace of a nest algebra and show the existence of the optimal LTV controller in two different ways: one via the characteristic of the subspace in question directly, the other via the duality theory. The latter also gives a new formula for computing the optimal cost.
Stability and optimal parameters for continuous feedback chaos control.
Kouomou, Y Chembo; Woafo, P
2002-09-01
We investigate the conditions under which an optimal continuous feedback control can be achieved. Chaotic oscillations in the single-well Duffing model, with either a positive or a negative nonlinear stiffness term, are tuned to their related Ritz approximation. The Floquet theory enables the stability analysis of the control. Critical values of the feedback control coefficient fulfilling the optimization criteria are derived. The influence of the chosen target orbit, of the feedback coefficient, and of the onset time of control on its duration is discussed. The analytic approach is confirmed by numerical simulations.
Lyapunov optimal feedback control of a nonlinear inverted pendulum
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Lyapunov optimal feedback control of a nonlinear inverted pendulum
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Asymptotically optimal feedback control for a system of linear oscillators
Ovseevich, Alexander; Fedorov, Aleksey
2013-12-01
We consider problem of damping of an arbitrary number of linear oscillators under common bounded control. We are looking for a feedback control steering the system to the equilibrium. The obtained control is asymptotically optimal: the ratio of motion time to zero with this control to the minimum one is close to 1, if the initial energy of the system is large.
Optimal and robust feedback controller estimation for a vibrating plate
Fraanje, P.R.; Verhaegen, M.; Doelman, N.J.; Berkhoff, A.
2004-01-01
This paper presents a method to estimate the H2 optimal and a robust feedback controller by means of Subspace Model Identification using the internal model control (IMC) approach. Using IMC an equivalent feed forward control problem is obtained, which is solved by the Causal Wiener filter for the H2
Optimization of Feedback Control of Flow over a Circular Cylinder
Son, Donggun; Kim, Euiyoung; Choi, Haecheon
2012-11-01
We perform a feedback gain optimization of the proportional-integral-differential (PID) control for flow over a circular cylinder at Re = 60 and 100. We measure the transverse velocity at a centerline location in the wake as a sensing variable and provide blowing and suction at the upper and lower slots on the cylinder surface as an actuation. The cost function to minimize is defined as the mean square of the sensing variable, and the PID control gains are optimized by iterative feedback tuning method which is a typical model free gain optimization method. In this method, the control gains are iteratively updated by the gradient of cost function until the control system satisfies a certain stopping criteria. The PID control with optimal control gains successfully reduces the velocity fluctuations at the sensing location and attenuates (or annihilates) vortex shedding in the wake, resulting in the reduction in the mean drag and lift fluctuations. Supported by the NRF Program (2011-0028032).
Optimal nonlinear feedback control of quasi-Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
朱位秋; 应祖光
1999-01-01
An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.
Optimal feedback control of a bioreactor with a remote sensor
Niranjan, S. C.; San, K. Y.
1988-01-01
Sensors used to monitor bioreactor conditions directly often perform poorly in the face of adverse nonphysiological conditions. One way to circumvent this is to use a remote sensor block. However, such a configuration usually causes a significant time lag between measurements and the actual state values. Here, the problem of implementing feedback control strategies for such systems, described by nonlinear equations, is addressed. The problem is posed as an optimal control problem with a linear quadratic performance index. The linear control law so obtained is used to implement feedback. A global linearization technique as well as an expansion using Taylor series is used to linearize the nonlinear system, and the feedback is subsequently implemented.
Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series
Institute of Scientific and Technical Information of China (English)
YIN Hua-Wei; LU Wei-Ping; WANG Peng-Ye
2004-01-01
@@ We study controlling chaos using time-delayed feedback control based on chaotic time series without prior knowl edge of dynamical systems, and determine the optimal control parameters for stabilizing unstable periodic orbits with maximal stability.
Adapting Predictive Feedback Chaos Control for Optimal Convergence Speed
Bick, Christian; Kolodziejski, Christoph
2012-01-01
Stabilizing unstable periodic orbits in a chaotic invariant set not only reveals information about its structure but also leads to various interesting applications. For the successful application of a chaos control scheme, convergence speed is of crucial importance. Here we present a predictive feedback chaos control method that adapts a control parameter online to yield optimal asymptotic convergence speed. We study the adaptive control map both analytically and numerically and prove that it converges at least linearly to a value determined by the spectral radius of the control map at the periodic orbit to be stabilized. The method is easy to implement algorithmically and may find applications for adaptive online control of biological and engineering systems.
Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics
Belavkin, V. P.
2009-02-01
A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.
DEFF Research Database (Denmark)
Mørkholt, Jakob
1997-01-01
Optimal feedback control of broadband sound radiation from a rectangular baffled panel has been investigated through computer simulations. Special emphasis has been put on the sensitivity of the optimal feedback control to uncertainties in the modelling of the system under control.A model of a re...
Optimality of feedback control strategies for qubit purification
Wiseman, Howard M.; Bouten, Luc
2007-01-01
Recently two papers [K. Jacobs, Phys. Rev. A {\\bf 67}, 030301(R) (2003); H. M. Wiseman and J. F. Ralph, New J. Physics {\\bf 8}, 90 (2006)] have derived control strategies for rapid purification of qubits, optimized with respect to various goals. In the former paper the proof of optimality was not mathematically rigorous, while the latter gave only heuristic arguments for optimality. In this paper we provide rigorous proofs of optimality in all cases, by applying simple concepts from optimal c...
Toward broadband electroacoustic resonators through optimized feedback control strategies
Boulandet, R.; Lissek, H.
2014-09-01
This paper presents a methodology for the design of broadband electroacoustic resonators for low-frequency room equalization. An electroacoustic resonator denotes a loudspeaker used as a membrane resonator, the acoustic impedance of which can be modified through proportional feedback control, to match a target impedance. However, such impedance matching only occurs over a limited bandwidth around resonance, which can limit its use for the low-frequency equalization of rooms, requiring an effective control at least up to the Schroeder frequency. Previous experiments have shown that impedance matching can be achieved over a range of a few octaves using a simple proportional control law. But there is still a limit to the feedback gain, beyond which the feedback-controlled loudspeaker becomes non-dissipative. This paper evaluates the benefits of using PID control and phase compensation techniques to improve the overall performance of the electroacoustic resonator. More specifically, it is shown that some adverse effects due to high-order dynamics in the moving-coil transducer can be mitigated. The corresponding control settings are also identified with equivalent electroacoustic resonator parameters, allowing a straightforward design of the controller. Experimental results using PID control and phase compensation are finally compared in terms of sound absorption performances. As a conclusion the overall performances of electroacoustic resonators for damping the modal resonances inside a duct are presented, along with general discussions on practical implementation and the extension to actual room modes damping.
Cao, YY; Lam, J.
2001-01-01
This paper is concerned with simultaneous linear-quadratic (LQ) optimal control design for a set of LTI systems via piecewise constant output feedback. First, the discrete-time simultaneous LQ optimal control design problem is reduced to solving a set of coupled matrix inequalities and an iterative LMI algorithm is presented to compute the feedback gain. Then, simultaneous stabilization and simultaneous LQ optimal control design of a set of LTI continuous-time systems are considered via perio...
TRACKING CONTROL OF AN UNDERACTUATED GANTRY CRANE USING AN OPTIMAL FEEDBACK CONTROLLER
Directory of Open Access Journals (Sweden)
Firooz Bakhtiari-Nejad
2013-06-01
Full Text Available Gantry cranes have attracted a great deal of interest in transportation and industrial applications. To increase the effectiveness of gantry cranes, the control of such systems is considered vital. This paper is concerned with tracking the control of an underactuated gantry crane using an optimal feedback controller. The optimal control strategy takes into account a performance index, including integrated time and absolute error criterion. To do this, nonlinear dynamic equations of the system are derived using Lagrange’s Principle. The minimum tracking error of the trolley and the minimum oscillation of the hoisting line are assumed as design parameters, and the best gains of the feedback controller are achieved. Finally, some tracking simulations are performed which demonstrate the capability of the simple proposed method in the optimal tracking control of a gantry crane.
Toward broadband electroacoustic resonators through optimized feedback control strategies
Boulandet, R.; Lissek, H.
2014-01-01
This paper presents a methodology for the design of broadband electroacoustic resonators for low-frequency room equalization. An electroacoustic resonator denotes a loudspeaker used as a membrane resonator, the acoustic impedance of which can be modified through proportional feedback control, to match a target impedance. However, such impedance matching only occurs over a limited bandwidth around resonance, which can limit its use for the low-frequency equalization of rooms, requiring an effe...
Toward broadband electroacoustic resonators through optimized feedback control strategies
Boulandet, R.; Lissek, H.
2014-01-01
This paper presents a methodology for the design of broadband electroacoustic resonators for low-frequency room equalization. An electroacoustic resonator denotes a loudspeaker used as a membrane resonator, the acoustic impedance of which can be modified through proportional feedback control, to match a target impedance. However, such impedance matching only occurs over a limited bandwidth around resonance, which can limit its use for the low-frequency equalization of rooms, requiring an effe...
Feedback and Feedforward Optimal Control for Offshore Jacket Platforms
Institute of Scientific and Technical Information of China (English)
王薇; 唐功友
2004-01-01
The optimal control is investigated for linear systems affected by external harmonic disturbance and applied to vibration control systems of offshore steel jacket platforms. The wave-induced force is the dominant load that offshore structures are subjected to, and it can be taken as harmonic excitation for the system. The linearized Morison equation is employed to estimate the wave loading. The main result concerns the existence and design of a realizable optimal regulator, which is proposed to damp the forced oscillation in an optimal fashion. For demonstration of the effectiveness of the control scheme, the platform performance is investigated for different wave states. The simulations are based on the tuned mass damper (TMD) and the active mass damper (AMD) control devices. It is demonstrated that the control scheme is useful in reducing the displacement response of jacket-type offshore platforms.
Feedback Control Method Using Haar Wavelet Operational Matrices for Solving Optimal Control Problems
Waleeda Swaidan; Amran Hussin
2013-01-01
Most of the direct methods solve optimal control problems with nonlinear programming solver. In this paper we propose a novel feedback control method for solving for solving affine control system, with quadratic cost functional, which makes use of only linear systems. This method is a numerical technique, which is based on the combination of Haar wavelet collocation method and successive Generalized Hamilton-Jacobi-Bellman equation. We formulate some new Haar wavelet oper...
Parametric optimal bounded feedback control for smart parameter-controllable composite structures
Ying, Z. G.; Ni, Y. Q.; Duan, Y. F.
2015-03-01
Deterministic and stochastic parametric optimal bounded control problems are presented for smart composite structures such as magneto-rheological visco-elastomer based sandwich beam with controllable bounded parameters subjected to initial disturbances and stochastic excitations. The parametric controls by actively adjusting system parameters differ from the conventional additive controls by systemic external inputs. The dynamical programming equations for the optimal parametric controls are derived based on the deterministic and stochastic dynamical programming principles. The optimal bounded functions of controls are firstly obtained from the equations with the bounded control constraints based on the bang-bang control strategy. Then the optimal bounded parametric control laws are obtained by the inversion of the nonlinear functions. The stability of the optimally controlled systems is proved according to the Lyapunov method. Finally, the proposed optimal bounded parametric feedback control strategy is applied to single-degree-of-freedom and two-degree-of-freedom dynamic systems with nonlinear parametric bounded control terms under initial disturbances and earthquake excitations and then to a magneto-rheological visco-elastomer based sandwich beam system with nonlinear parametric bounded control terms under stochastic excitations. The effective vibration suppression is illustrated with numerical results. The proposed optimal parametric control strategy is applicable to other smart composite structures with nonlinear controllable parameters.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The optimal control problem was studied for linear time-varying systems, which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of disturbances in an optimal fashion, we obtained a new feedforward and feedback optimal control law and gave the control algorithm by solving a Riccati differential equation and a matrix differential equation. Simulation results showed that the achieved optimal control law was realizable, efficient and robust to reject the external disturbances.
Olympio, Joris T
2011-01-01
The paper describes a continuous second-variation algorithm to solve optimal control problems where the control is defined on a closed set. A second order expansion of a Lagrangian provides linear updates of the control to construct a locally feedback optimal control of the problem. Since the process involves a backward and a forward stage, which require storing trajectories, a method has been devised to accurately store continuous solutions of ordinary differential equations. Thanks to the continuous approach, the method adapts implicitly the numerical time mesh. The novel method is demonstrated on bang-bang optimal control problems, showing the suitability of the method to identify automatically optimal switching points in the control.
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.
Feedback Control Method Using Haar Wavelet Operational Matrices for Solving Optimal Control Problems
Directory of Open Access Journals (Sweden)
Waleeda Swaidan
2013-01-01
Full Text Available Most of the direct methods solve optimal control problems with nonlinear programming solver. In this paper we propose a novel feedback control method for solving for solving affine control system, with quadratic cost functional, which makes use of only linear systems. This method is a numerical technique, which is based on the combination of Haar wavelet collocation method and successive Generalized Hamilton-Jacobi-Bellman equation. We formulate some new Haar wavelet operational matrices in order to manipulate Haar wavelet series. The proposed method has been applied to solve linear and nonlinear optimal control problems with infinite time horizon. The simulation results indicate that the accuracy of the control and cost can be improved by increasing the wavelet resolution.
Wang, Gang; Chen, Changzheng; Yu, Shenbo
2016-09-01
In this paper, the static output-feedback control problem of active suspension systems with information structure constraints is investigated. In order to simultaneously improve the ride comfort and stability, a half car model is used. Other constraints such as suspension deflection, actuator saturation, and controller constrained information are also considered. A novel static output-feedback design method based on the variable substitution is employed in the controller design. A single-step linear matrix inequality (LMI) optimization problem is solved to derive the initial feasible solution with a sparsity constraint. The initial infeasibility issue of the static output-feedback is resolved by using state-feedback information. Specifically, an optimization algorithm is proposed to search for less conservative results based on the feasible controller gain matrix. Finally, the validity of the designed controller for different road profiles is illustrated through numerical examples. The simulation results indicate that the optimized static output-feedback controller can achieve better suspension performances when compared with the feasible static output-feedback controller.
Design of an optimal output feedback control system with modal insensitivity
Raman, K. V.; Calise, A. J.
1984-01-01
This paper deals with the design of an output feedback controller which results in selected modal insensitivity, and at the same time optimizes a quadratic performance index representative of desired system performance for nominal plant parameter values. The approach taken here is to characterize the class of attainable eigenvectors for a given set of eigenvalues (distinct or non-distinct) which lie in a subspace called the 'Modal Insensitivity Subspace'. A constraint is established on the feedback matrix which results in modal insensitivity. Necessary conditions for optimality subject to the constraint on the feedback matrix are given. This forms the basis for a numerical algorithm to compute the optimal feedback gain which analyzed for convergence. To illustrate the procedure, a design is carried out using the lateral dynamics of an L-1011 aircraft.
Active vibration control for flexible rotor by optimal direct-output feedback control
Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.
1989-01-01
Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.
Neural network-based optimal adaptive output feedback control of a helicopter UAV.
Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani
2013-07-01
Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.
Directory of Open Access Journals (Sweden)
Gao Dexin
2012-10-01
Full Text Available This paper concentrates on the solution of state feedback exact linearization zero steady-state error optimal control problem for nonlinear systems affected by external disturbances. Firstly, the nonlinear system model with external disturbances is converted to quasi-linear system model by differential homeomorphism. Using Internal Model Optional Control (IMOC, the disturbances compensator is designed, which exactly offset the impact of external disturbances on the system. Taking the system and the disturbances compensator in series, a new augmented system is obtained. Then the zero steady-state error optimal control problem is transformed into the optimal regulator design problem of an augmented system, and the optimal static error feedback control law is designed according to the different quadratic performance index. At last, the simulation results show the effectiveness of the method.
Optimal feedback control of two-qubit entanglement in dissipative environments
Rafiee, Morteza; Nourmandipour, Alireza; Mancini, Stefano
2016-07-01
We study the correction of errors intervening in two qubits dissipating into their own environments. This is done by resorting to local feedback actions with the aim of preserving as much as possible the initial amount of entanglement. Optimal control is found first by gaining insights from the subsystem purity and then by numerical analysis on the concurrence. This is tantamount to a double optimization on the actuation and on the measurement processes. Repeated feedback action is also investigated, thus paving the way for a continuous-time formulation and a solution of the problem.
Optimal decentralized feedback control for a truss structure
Cagle, A.; Ozguner, U.
1989-01-01
One approach to the decentralized control of large flexible space structures involves the design of controllers for the substructures of large systems and their subsequent application to the entire coupled system. This approach is presently developed for the case of active vibration damping on an experimental large struss structure. The isolated boundary loading method is used to define component models by FEM; component controllers are designed using an interlocking control concept which minimizes the motion of the boundary nodes, thereby reducing the exchange of mechanical disturbances among components.
Performance optimization of force feedback control system in virtual vascular intervention surgery.
Hu, Zhi; Cai, Ping; Qin, Peng; Xie, Le
2014-01-01
In virtual surgery of minimally invasive vascular intervention, the force feedback is transmitted through the flexible guide wire. The disturbance caused by the flexible deformation would affect the fidelity of the VR (virtual reality) training. SMC (sliding mode control) strategy with delayed-output observer is adopted to suppress the effect of flexible deformation. In this study, the control performance of the strategy is assessed when the length of guide wire between actuator and the operating point changes. The performance assessment results demonstrate the effectiveness of the proposed method and find the optimal length of guide wire for the force feedback control.
Performance Optimization of Force Feedback Control System in Virtual Vascular Intervention Surgery
Cai, Ping; Qin, Peng; Xie, Le
2014-01-01
In virtual surgery of minimally invasive vascular intervention, the force feedback is transmitted through the flexible guide wire. The disturbance caused by the flexible deformation would affect the fidelity of the VR (virtual reality) training. SMC (sliding mode control) strategy with delayed-output observer is adopted to suppress the effect of flexible deformation. In this study, the control performance of the strategy is assessed when the length of guide wire between actuator and the operating point changes. The performance assessment results demonstrate the effectiveness of the proposed method and find the optimal length of guide wire for the force feedback control. PMID:25254063
Feedforward and Feedback Optimal Control for Linear Systems with Sinusoidal Disturbances
Institute of Scientific and Technical Information of China (English)
唐功友
2001-01-01
The linear systems affected by additive external sinusoidal disturbances is studied. he problem is to damp this forced oscillation in an optimal fashion. The main result of this paper is a new design approach is proposed of realizable feedforward and feedback optimal control law for a linear timeinvariant system with sinusoidal disturbances. The algorithm of solving the optimal control law is given. It is shown that the control law is easily realized and is robust with respect to errors produced by the external sinusoidal disturbances through simulation results.
Lotfi, Babak; Wang, Qiuwang
2013-07-01
The performance of thermal control systems has, in recent years, improved in numerous ways due to developments in control theory and information technology. The shell-and-tube heat exchanger (STHX) is a medium where heat transfer process occurred. The accuracy of the heat exchanger depends on the performance of both elements. Therefore, both components need to be controlled in order to achieve a substantial result in the process. For this purpose, the actual dynamics of both shell and tube of the heat exchanger is crucial. In this paper, optimal reliability-based multi-objective Pareto design of robust state feedback controllers for a STHX having parameters with probabilistic uncertainties. Accordingly, the probabilities of failure of those objective functions are also considered in the reliability-based design optimization (RBDO) approach. A new multi-objective uniform-diversity genetic algorithm (MUGA) is presented and used for Pareto optimum design of linear state feedback controllers for STHX problem. In this way, Pareto front of optimum controllers is first obtained for the nominal deterministic STHX using the conflicting objective functions in time domain. Such Pareto front is then obtained for STHX having probabilistic uncertainties in its parameters using the statistical moments of those objective functions through a Hammersley Sequence Sampling (HSS) approach. It is shown that multi-objective reliability-based Pareto optimization of the robust state feedback controllers using MUGA includes those that may be obtained by various crisp threshold values of probability of failures and, thus, remove the difficulty of selecting suitable crisp values. Besides, the multi-objective Pareto optimization of such robust feedback controllers using MUGA unveils some very important and informative trade-offs among those objective functions. Consequently, some optimum robust state feedback controllers can be compromisingly chosen from the Pareto frontiers.
An optimal feedback control framework for grasping objects with position uncertainty.
Christopoulos, Vassilios N; Schrater, Paul R
2011-10-01
As we move, the relative location between our hands and objects changes in uncertain ways due to noisy motor commands and imprecise and ambiguous sensory information. The impressive capabilities humans display for interacting and manipulating objects with position uncertainty suggest that our brain maintains representations of location uncertainty and builds compensation for uncertainty into its motor control strategies. Our previous work demonstrated that specific control strategies are used to compensate for location uncertainty. However, it is an open question whether compensation for position uncertainty in grasping is consistent with the stochastic optimal feedback control, mainly due to the difficulty of modeling natural tasks within this framework. In this study, we develop a stochastic optimal feedback control model to evaluate the optimality of human grasping strategies. We investigate the properties of the model through a series of simulation experiments and show that it explains key aspects of previously observed compensation strategies. It also provides a basis for individual differences in terms of differential control costs-the controller compensates only to the extent that performance benefits in terms of making stable grasps outweigh the additional control costs of compensation. These results suggest that stochastic optimal feedback control can be used to understand uncertainty compensation in complex natural tasks like grasping.
Feedback control of a Darrieus wind turbine and optimization of the produced energy
Maurin, T.; Henry, B.; Devos, F.; de Saint Louvent, B.; Gosselin, J.
1984-03-01
A microprocessor-driven control system, applied to the feedback control of a Darrieus wind turbine is presented. The use of a dc machine as a generator to recover the energy and as a motor to start the engine, allows simplified power electronics. The architecture of the control unit is built to ensure four different functions: starting, optimization of the recoverable energy, regulation of the speed, and braking. An experimental study of the system in a wind tunnel allowed optimization of the coefficients of the proportional and integral (pi) control algorithm. The electrical energy recovery was found to be much more efficient using the feedback system than without the control unit. This system allows a better characterization of the wind turbine and a regulation adapted to the wind statistics observed in one given geographical location.
Park, Chandeok
This dissertation presents a general methodology for solving the optimal feedback control problem in the context of Hamiltonian system theory. It is first formulated as a two point boundary value problem for a standard Hamiltonian system, and the associated phase flow is viewed as a canonical transformation. Then relying on the Hamilton-Jacobi theory, we employ generating functions to develop a unified methodology for solving a variety of optimal feedback control formulations with general types of boundary conditions. The major accomplishment is to establish a theoretical connection between the optimal cost function and a special kind of generating function. Guided by this recognition, we are ultimately led to a new flexible representation of the optimal feedback control law for a given system, which is adjustable to various types of boundary conditions by algebraic conversions and partial differentiations. This adaptive property provides a substantial advantage over the classical dynamic programming method in the sense that we do not need to solve the Hamilton-Jacobi-Bellman equation repetitively for varying types of boundary conditions. Furthermore for a special type of boundary condition, it also enables us to work around an inherent singularity of the Hamilton-Jacobi-Bellman equation by a special algebraic transformation. Taking full advantage of these theoretical insights, we develop a systematic algorithm for solving a class of optimal feedback control problems represented by smooth analytic Hamiltonians, and apply it to problems with different characteristics. Then, broadening the practical utility of generating functions for problems where the relevant Hamiltonian is non-smooth, we construct a pair of Cauchy problems from the associated Hamilton-Jacobi equations. This alternative formulation is justified by solving problems with control constraints which usually feature non-smoothness in the control logic. The main result of this research establishes that
Optimization of time-delayed feedback control of seismically excited building structures
Institute of Scientific and Technical Information of China (English)
Xue-ping LI; Wei-qiu ZHU; Zu-guang YING
2008-01-01
An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear building structure under horizontal ground acceleration excitation is formulated and converted into that of completely observable linear structure by using separation principle. The time-delayed control forces are approximately expressed in terms of control forces without time delay. The control system is then governed by Ito stochastic differential equations for the conditional means of system states and then transformed into those for the conditional means of modal energies by using the stochastic averaging method for quasi-Hamiltonian systems. The control law is assumed to be modal velocity feedback control with time delay and the unknown control gains are determined by the modal performance indices. A three-storey building structure is taken as example to illustrate the proposal method and the numerical results are confirmed by using Monte Carlo simulation.
Time-delayed feedback control optimization for quasi linear systems under random excitations
Institute of Scientific and Technical Information of China (English)
Xueping Li; Detain Wei; Weiqiu Zhu
2009-01-01
A strategy for time-delayed feedback control optimization of quasi linear systems with random excita-tion is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged It6 equation. Finally, numerical examples are used to illustrate the proposed con-trol method, and the numerical results are confirmed by Monte Carlo simulation.
H_2-Optimal Decentralized Control over Posets: A State-Space Solution for State-Feedback
Shah, Parikshit
2011-01-01
We develop a complete state-space solution to H_2-optimal decentralized control of poset-causal systems with state-feedback. Our solution is based on the exploitation of a key separability property of the problem, that enables an efficient computation of the optimal controller by solving a small number of uncoupled standard Riccati equations. Our approach gives important insight into the structure of optimal controllers, such as controller degree bounds that depend on the structure of the poset. A novel element in our state-space characterization of the controller is a remarkable pair of transfer functions, that belong to the incidence algebra of the poset, are inverses of each other, and are intimately related to prediction of the state along the different paths on the poset. The results are illustrated by a numerical example.
Feedback optimal control of dynamic stochastic two-machine flowshop with a finite buffer
Directory of Open Access Journals (Sweden)
Thang Diep
2010-06-01
Full Text Available This paper examines the optimization of production involving a tandem two-machine system producing a single part type, with each machine being subject to random breakdowns and repairs. An analytical model is formulated with a view to solving an optimal stochastic production problem of the system with machines having up-downtime non-exponential distributions. The model developed is obtained by using a dynamic programming approach and a semi-Markov process. The control problem aims to find the production rates needed by the machines to meet the demand rate, through a minimization of the inventory/shortage cost. Using the Bellman principle, the optimality conditions obtained satisfy the Hamilton-Jacobi-Bellman equation, which depends on time and system states, and ultimately, leads to a feedback control. Consequently, the new model enables us to improve the coefficient of variation (CVup/down to be less than one while it is equal to one in Markov model. Heuristics methods are used to involve the problem because of the difficulty of the analytical model using several states, and to show what control law should be used in each system state (i.e., including Kanban, feedback and CONWIP control. Numerical methods are used to solve the optimality conditions and to show how a machine should produce.
State Feedback H∞ Control of Power Units Based on an Improved Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Zhongqiang Wu
2015-01-01
Full Text Available A new state feedback H∞ control scheme is presented used in the boiler-turbine power units based on an improved particle swarm optimizing algorithm. Firstly, the nonlinear system is transformed into a linear time-varying system; then the H∞ control problem is transformed into the solution of a Riccati equation. The control effect of H∞ controller depends on the selection of matrix P, so an improved particle swarm optimizing (PSO algorithm by introducing differential evolution algorithm is used to solve the Riccati equation. The main purpose is that mutation and crossover are introduced for a new population, and the population diversity is improved. It is beneficial to eliminate stagnation caused by premature convergence, and the algorithm convergence rate is improved. Finally, the real-time optimizing of the controller parameters is realized. Theoretical analysis and simulation results show that a state feedback H∞ controller can be obtained, which can ensure asymptotic stability of the system, and the double objectives of stabilizing system and suppressing the disturbance are got. The system can work well over a large range working point.
The Optimal Control for the Output Feedback Stochastic System at the Risk-Sensitive Cost
Institute of Scientific and Technical Information of China (English)
戴立言; 潘子刚; 施颂椒
2003-01-01
The optimal control of the partially observable stochastic system at the risk-sensitive cost is considered in this paper. The system dynamics has a general correlation between system and measurement noise. And the risk-sensitive cost contains a general quadratic term (with cross terms and extra linear terms). The explicit solution of such a problem is presented here using the output feedback control method. This clean and direct derivation enables one to convert such partial observable problems into the equivalent complete observable control problems and use the routine ways to solve them.
Robust state feedback controller design of STATCOM using chaotic optimization algorithm
Directory of Open Access Journals (Sweden)
Safari Amin
2010-01-01
Full Text Available In this paper, a new design technique for the design of robust state feedback controller for static synchronous compensator (STATCOM using Chaotic Optimization Algorithm (COA is presented. The design is formulated as an optimization problem which is solved by the COA. Since chaotic planning enjoys reliability, ergodicity and stochastic feature, the proposed technique presents chaos mapping using Lozi map chaotic sequences which increases its convergence rate. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results reveal that the proposed controller has an excellent capability in damping power system low frequency oscillations and enhances greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions shows that the phase based controller is superior compare to the magnitude based controller.
Directory of Open Access Journals (Sweden)
S.Farook,
2011-05-01
Full Text Available In this paper an attempt is made to optimize the feedback controller to improve the dynamics of a restructured multiarea power system using Evolutionary Real coded Genetic Algorithm (RCGA.Optimization using state variables is a difficult task as the access to all variables is limited and also measuring all of them is impossible. To solve the problem Evolutionary Genetic algorithms wereproposed to optimize the feedback gains of the controller, having access to few of the AGC variables. The feasibility and robustness of the algorithm is investigated on a two area interconnected power system consisting of two identical thermal plants in each areas in restructured environment. The dynamics of frequency deviations and tie-line power deviations were investigated by considering a demand of 0.1pu MW contracted by GENCOs in each area of the restructured power system. The results obtained by the proposed method are found to be quite encouraging when compared with those achieved using optimal controllers derived using Linear Quadratic Regulator (LQR theory.
Directory of Open Access Journals (Sweden)
Miriam eZacksenhouse
2015-05-01
Full Text Available Recent experiments with brain-machine-interfaces (BMIs indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI ﬁlter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.
Benyamini, Miri; Zacksenhouse, Miriam
2015-01-01
Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Using a fixed point theorem in a cone, we obtain some optimal existence results for single and multiple positive periodic solutions to a functional difference system with feedback control. Moreover, we apply our results to a population model.
Feedback Optimal Control of Low-thrust Orbit Transfer in Central Gravity Field
Directory of Open Access Journals (Sweden)
Ashraf H. Owis
2013-05-01
Full Text Available Low-thrust trajectories with variable radial thrust is studied in this paper. The problem is tackled by solving the Hamilton- Jacobi-Bellman equation via State Dependent Riccati Equation( STDE technique devised for nonlinear systems. Instead of solving the two-point boundary value problem in which the classical optimal control is stated, this technique allows us to derive closed-loop solutions. The idea of the work consists in factorizing the original nonlinear dynamical system into a quasi-linear state dependent system of ordinary differential equations. The generating function technique is then applied to this new dynamical system, the feedback optimal control is solved. We circumvent in this way the problem of expanding the vector field and truncating higher-order terms because no remainders are lost in the undertaken approach. This technique can be applied to any planet-to-planet transfer; it has been applied here to the Earth-Mars low-thrust transfer
Directory of Open Access Journals (Sweden)
Marzieh Yazdanzad
2014-07-01
Full Text Available This paper presents an application of recently proposed robust integral of the sign of the error (RISE feedback control scheme for a three degrees-of-freedom (DOF robot manipulator tracking problem. This method compensates for nonlinear disturbances and uncertainties in the dynamic model, and results in asymptotic trajectory tracking. To avoid selecting parameters of the RISE controller by time-consuming trial and error method, particle swarm optimization (PSO algorithm is employed. The objective of the PSO algorithm is to find a set of parameters that minimizes the mean of root squared error as the fitness function. The proposed method attains tracking goal, without any chattering in control input. Indeed, the existence of a unique integral sign term in the RISE controller avoids the occurrence of chattering phenomenon that usually happens in sliding mode controllers. Numerical simulations demonstrate the effectiveness of the proposed control scheme.
Directory of Open Access Journals (Sweden)
Junqiang Lou
2015-01-01
Full Text Available Trajectory planning is an effective feed-forward control technology for vibration suppression of flexible manipulators. However, the inherent drawback makes this strategy inefficient when dealing with modeling errors and disturbances. An optimal trajectory planning approach is proposed and applied to a flexible piezoelectric manipulator system in this paper, which is a combination of feed-forward trajectory planning method and feedback control of piezoelectric actuators. Specifically, the joint controller is responsible for the trajectory tracking and gross vibration suppression of the link during motion, while the active controller of actuators is expected to deal with the link vibrations after joint motion. In the procedure of trajectory planning, the joint angle of the link is expressed as a quintic polynomial function. And the sum of the link vibration energy is chosen as the objective function. Then, genetic algorithm is used to determine the optimal trajectory. The effectiveness of the proposed method is validated by simulation and experiments. Both the settling time and peak value of the link vibrations along the optimal trajectory reduce significantly, with the active control of the piezoelectric actuators.
Alessandri, Angelo; Gaggero, Mauro; Zoppoli, Riccardo
2012-06-01
Optimal control for systems described by partial differential equations is investigated by proposing a methodology to design feedback controllers in approximate form. The approximation stems from constraining the control law to take on a fixed structure, where a finite number of free parameters can be suitably chosen. The original infinite-dimensional optimization problem is then reduced to a mathematical programming one of finite dimension that consists in optimizing the parameters. The solution of such a problem is performed by using sequential quadratic programming. Linear combinations of fixed and parameterized basis functions are used as the structure for the control law, thus giving rise to two different finite-dimensional approximation schemes. The proposed paradigm is general since it allows one to treat problems with distributed and boundary controls within the same approximation framework. It can be applied to systems described by either linear or nonlinear elliptic, parabolic, and hyperbolic equations in arbitrary multidimensional domains. Simulation results obtained in two case studies show the potentials of the proposed approach as compared with dynamic programming.
Institute of Scientific and Technical Information of China (English)
周平; 向波; 柴天佑
2012-01-01
Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.
RF heating optimization on Tore Supra using feedback control of infrared measurements
Energy Technology Data Exchange (ETDEWEB)
Moreau, Ph. [Euratom-CEA Association, CEA/DSM/Departement de Recherches sur la Fusion Controlee, CEA-Cadarache, 13108 St. Paul lez Durance (France)], E-mail: philippe.jacques.moreau@cea.fr; Barana, O.; Bremond, S.; Colas, L.; Ekedahl, A.; Saint-Laurent, F.; Balorin, C.; Caulier, G.; Desgranges, C.; Guilhem, D.; Jouve, M.; Kazarian, F.; Lombard, G.; Millon, L.; Mitteau, R.; Mollard, P.; Roche, H.; Travere, J.M. [Euratom-CEA Association, CEA/DSM/Departement de Recherches sur la Fusion Controlee, CEA-Cadarache, 13108 St. Paul lez Durance (France)
2007-10-15
Using the Tore Supra infrared thermography diagnostics, a new real time feedback control has been successfully implemented to maximize additional RF power while preventing plasma facing components (PFCs) from overheating and damage. As a first step, a thermography feedback control has been used to detect and extinguish electric arcs on lower hybrid current drive (LHCD) launchers. Secondly, heating sources on PFCs have been identified highlighting the role of the power from each ion cyclotron resonance heating (ICRH) antenna and LHCD launcher and the interactions between them. A new feedback control algorithm was developed to control the additional power. The real time feedback control of PFC temperatures which makes part of an integrated feedback controller, is a reliable tool routinely used as a basic protection system. Furthermore, it has proven its capability to operate in parallel with other control schemes such as the current profile control.
Shanechi, Maryam M; Williams, Ziv M; Wornell, Gregory W; Hu, Rollin C; Powers, Marissa; Brown, Emery N
2013-01-01
Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.
Directory of Open Access Journals (Sweden)
Maryam M Shanechi
Full Text Available Real-time brain-machine interfaces (BMI have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.
Optimal feedback control of linear quantum systems in the presence of thermal noise
Genoni, Marco G.; Mancini, Stefano; Serafini, Alessio
2013-04-01
We study the possibility of taking bosonic systems subject to quadratic Hamiltonians and a noisy thermal environment to nonclassical stationary states by feedback loops based on weak measurements and conditioned linear driving. We derive general analytical upper bounds for the single-mode squeezing and multimode entanglement at steady state, depending only on the Hamiltonian parameters and on the number of thermal excitations of the bath. Our findings show that, rather surprisingly, larger number of thermal excitations in the bath allow for larger steady-state squeezing and entanglement if the efficiency of the optimal continuous measurements conditioning the feedback loop is high enough. We also consider the performance of feedback strategies based on homodyne detection and show that, at variance with the optimal measurements, it degrades with increasing temperature.
Fault Tolerant Feedback Control
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, H.
2001-01-01
An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....
Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression
Miller, Christopher
2017-01-01
These slide sets describe the OCLA formulation and associated algorithms as a set of new technologies in the first practical application of load limiting flight control utilizing load feedback as a primary control measurement. Slide set one describes Experiment Development and slide set two describes Flight-Test Performance.
Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U
Ilhan, Zeki Okan
Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator
Miller, Christopher J.; Goodrick, Dan
2017-01-01
The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads. The subject of this paper is the design of the optimal control architecture, and provides the reader with some techniques for tailoring the architecture, along with detailed simulation results.
Numerical static state feedback laws for closed-loop singular optimal control
Graaf, de S.C.; Stigter, J.D.; Straten, van G.
2005-01-01
Singular and non-singular control trajectories of agricultural and (bio) chemical processes may need to be recalculated from time to time for use in closed-loop optimal control, because of unforeseen changes in state values and noise. This is time consuming. As an alternative, in this paper,
Energy Technology Data Exchange (ETDEWEB)
Bienert, W. [Kraftwerk Pleinting der Bayernwerk AG Konventionelle Waermekraftwerke GmbH (Germany). Abt. Elektro- und Leittechnik; Mann, J. [Siemens AG, Karlsruhe (Germany). Bereich Energieerzeugung (KWU)
1998-12-31
During a boiler construction change at the power station Pleinting Unit 2 the heating surfaces of the superheater were enlarged. Due to these changes in the temperature control loop, the temperature deviations could no longer be regulated satisfactorily by the hitherto installed conventional controllers. Using state feedback controllers thereafter, these deviations were reduced considerably. The configuring and parameter setting of the used state feedback controllers was extremely easy because only one tuning factor was needed. So further optimizations with customer benefits could be worked out: The state feedback control was supplemented by an enthalpy calculation with subordinate mass flow control. Thus, it has become possible to inject water into saturated steam during start-ups in case of high temperature deviations. The achieved results are verified by time trends measured at the plant. (orig.) [Deutsch] Bei einem Kesselumbau im Kraftwerk Pleinting Block 2 wurden die Heizflaechen der Ueberhitzer und damit die Aufwaermspannen vergroessert. Aufgrund der dadurch veraenderten Temperaturregelstrecke konnten die Temperaturstoerungen mit der konventionellen Regelung nicht mehr zufriedenstellend ausgeregelt werden. Mit dem Einsatz von Zustandsreglern wurden diese Regelabweichungen wesentlich verringert. Die Projektierung und Parametrierung der verwendeten Zustandsregler gestaltete sich durch die Verwendung von nur einem Einstellfaktor aeusserst einfach. So konnte dann das Augenmerk auf weiteres Optimierungspotential mit Kundennutzen gelegt werden: Die Zustandsregelung wurde um eine Enthalpie-Rechnung mit unterlagerter Massenstromregelung ergaenzt, um waehrend des Anfahrens bei hohen Temperaturbweichungen in Sattdampf einspritzen zu koennen. Die erzielten Ergebnisse sind durch in der Anlage gemessene Kurven belegt. (orig.)
Patten, W. N.; Robertshaw, H. H.; Pierpont, D.; Wynn, R. H.
1989-01-01
A new, near-optimal feedback control technique is introduced that is shown to provide excellent vibration attenuation for those distributed parameter systems that are often encountered in the areas of aeroservoelasticity and large space systems. The technique relies on a novel solution methodology for the classical optimal control problem. Specifically, the quadratic regulator control problem for a flexible vibrating structure is first cast in a weak functional form that admits an approximate solution. The necessary conditions (first-order) are then solved via a time finite-element method. The procedure produces a low dimensional, algebraic parameterization of the optimal control problem that provides a rigorous basis for a discrete controller with a first-order like hold output. Simulation has shown that the algorithm can successfully control a wide variety of plant forms including multi-input/multi-output systems and systems exhibiting significant nonlinearities. In order to firmly establish the efficacy of the algorithm, a laboratory control experiment was implemented to provide planar (bending) vibration attenuation of a highly flexible beam (with a first clamped-free mode of approximately 0.5 Hz).
Optimal decay rate of vibrating beam equations controlled by combined boundary feedback forces
Institute of Scientific and Technical Information of China (English)
于景元; 李胜家; 王耀庭; 粱展东
1999-01-01
The optimal decay rate problem is considered for boundary control system modeling by a flexible structure consisting of a Eular-Bernoulli beam. Controls are a bending moment in proportion to angular velocity and a shear force in proportion to velocity. A sensitivity asymptotic analysis of the system’ s eigenvalues and eigenfunctions is set up. It is proved that, for every 0
Miller, Christopher J.; Goodrick, Dan
2017-01-01
The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads to specified values. This technique has been implemented and flown on the National Aeronautics and Space Administration Full-scale Advanced Systems Testbed aircraft. The flight tests illustrate that the approach achieves the desired performance and show promising potential benefits. The flights also uncovered some important issues that will need to be addressed for production application.
Multivariable Feedback Control of Nuclear Reactors
Directory of Open Access Journals (Sweden)
Rune Moen
1982-07-01
Full Text Available Multivariable feedback control has been adapted for optimal control of the spatial power distribution in nuclear reactor cores. Two design techniques, based on the theory of automatic control, were developed: the State Variable Feedback (SVF is an application of the linear optimal control theory, and the Multivariable Frequency Response (MFR is based on a generalization of the traditional frequency response approach to control system design.
Information, disturbance and Hamiltonian quantum feedback control
Doherty, A C; Jungman, G; Doherty, Andrew C.; Jacobs, Kurt; Jungman, Gerard
2001-01-01
We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a measurement (estimation) strategy and a feedback (control) strategy, and consider optimizing desirable properties of each under the minimal constraint that the available strength of both is limited. This motivates concepts of information extraction and disturbance which are distinct from those usually considered in quantum information theory. Using these concepts we identify an information trade-off in quantum feedback control.
Directory of Open Access Journals (Sweden)
A.R Alfi
2012-06-01
Full Text Available This paper presents an intelligent optimal design control strategy for current and voltage of boost DC-DC convertors in fuel cell power systems by considering detailed model for different operating points. The proposed control strategy is designed based on a state feedback whereas the controllability and the stability region are analyzed. Moreover, in order to determine of the optimal coefficients of state feedback and zero steady state error in voltage signal, in the core of the proposed control method a heuristic algorithm namely Particle Swarm Optimization (PSO is utilized. The results are presented in the different load conditions. In order to show the feasibility of the proposed control strategy, the controller is implemented both average model and detailed model of convertor and the results are compared.
Feedback control of quantum system
Institute of Scientific and Technical Information of China (English)
DONG Dao-yi; CHEN Zong-hai; ZHANG Chen-bin; CHEN Chun-lin
2006-01-01
Feedback is a significant strategy for the control of quantum system.Information acquisition is the greatest difficulty in quantum feedback applications.After discussing several basic methods for information acquisition,we review three kinds of quantum feedback control strategies:quantum feedback control with measurement,coherent quantum feedback,and quantum feedback control based on cloning and recognition.The first feedback strategy can effectively acquire information,but it destroys the coherence in feedback loop.On the contrary,coherent quantum feedback does not destroy the coherence,but the capability of information acquisition is limited.However,the third feedback scheme gives a compromise between information acquisition and measurement disturbance.
ROBUST STABILIZATION AND OPTIMIZATION OF FLIGHT CONTROL SYSTEM WITH STATE FEEDBACK AND FUZZY LOGICS
Directory of Open Access Journals (Sweden)
Marta M. Komnatska
2009-04-01
Full Text Available This paper deals with combination of two powerful and modern control tools as linear matrix inequality that is used for synthesis a ‘crisp’ controller and a fuzzy control approach for designing a soft controller. The control design consists of two stages. The first stage investigates the problem of a robust an controller design with parameters uncertainties of the handled plant in the presence of external disturbances. Stability conditions are obtained via a quadratic Lyapunov function and represented in the form of linear matrix inequalities. The second stage consists of the outer loop controller construction based on fuzzy inference system that utilizes for altitude hold mode. The parameters of the fuzzy controller are adjusted with a gradient descent method in order to improve the performance of the overall system. The case study illustrates the efficiency of the proposed approach to the flight control of small Unmanned Aerial Vehicle
An Optimal Transport Formulation of the Linear Feedback Particle Filter
Taghvaei, Amirhossein; Mehta, Prashant G.
2015-01-01
Feedback particle filter (FPF) is an algorithm to numerically approximate the solution of the nonlinear filtering problem in continuous time. The algorithm implements a feedback control law for a system of particles such that the empirical distribution of particles approximates the posterior distribution. However, it has been noted in the literature that the feedback control law is not unique. To find a unique control law, the filtering task is formulated here as an optimal transportation pro...
Rafaely, Boaz
This thesis is concerned with the development an application of feedback control techniques for active sound control. Both fixed and adaptive controllers are considered. The controller design problem for active sound control is formulated as a constrained optimisation problem with an H2 performance objective, of minimising the variance of the control error, and H2 and H∞ design constraints involving control power output, disturbance enhancement, and robust stability. An Internal Model Controller with an FIR control filter is assumed. Conventional H2 design methods for feedback controllers are studied first. Although such controllers can satisfy the design constraints by employing effort terms in the quadratic cost function, they do not achieve the best possible performance, and when adapted using LMS-based algorithms, they suffer from instabilities if the plant response varies significantly. Improved H2/H∞ design methods for fixed and adaptive controllers are then developed, which achieve the best H2 performance under the design constraints, offer an improved stability when made adaptive, and in general outperform the conventional H2 controllers. The H2/H∞ design problems employ convex programming to ensure a unique solution. The Sequential Quadratic Programming methods is used for the off-line design of fixed controllers, and penalty and barrier function methods, together with frequency domain LMS-based algorithms are employed in the H2/H∞ adaptive controllers. The controllers studied and developed here were applied to three active sound control systems: a noise-reducing headset, an active headrest, and a sound radiating panel. The emphasis was put on developing control strategies that improve system performance. First, a high performance controller for the noise-reducing headset was implemented in real-time, which combines analogue and adaptive digital controllers, and can thus reject disturbances which has both broad-band and periodic components. Then
2010-07-01
Henson, M. 1998. "Nonlinear model predictive control: current status and future directions." Computers and Chemical Engineering , 23: 187-202. Ikhouane...Eichhorn2, Ralph Smith3 1Florida Center for Advanced Aero Propulsion (FCAAP), Department of Mechanical Engineering , Florida State University...collected using (AE Techron 7780 linear amplifier, DS1003 dSpace processor board, Matlab V5.2/ Simulink V2.2.1, Schaevitz 025MHR LVDT). The experimental
Optimal Output Feedback Control of Linear Systems in Presence of Forcing and Measurement Noise.
1974-08-27
cal exm*le is give for the pArpose of 4dnestration. A a x a systm matriz I a x a tap" matrix C a a Otput matrix E epected vol%* Operator o ma t...ilthiough the seasureent noise-4epeadent portion of the control signal was not welot.d in th* perforuarxe f~ucioa, "the neaur.ment covariaaoe matriz V does...conditions are obtalnd by equating "t -a and a3 to zero: 0 a -(R + DTp3)’ 1Tp5 cT(CjCT + W)-1 (44) P a Q .CTO7R0C + (A * DC)Tp(A + BC ) (45) I a (A
Directory of Open Access Journals (Sweden)
L. I. Rozonoer
1999-01-01
Full Text Available Necessary and sufficient conditions for existence of optimal control for all initial data are proved for LQ-optimization problem. If these conditions are fulfilled, necessary and sufficient conditions of optimality are formulated. Basing on the results, some general hypotheses on optimal control in terms of Pontryagin's maximum condition and Bellman's equation are proposed.
Optimal Parametric Feedback Excitation of Nonlinear Oscillators
Braun, David J.
2016-01-01
An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications.
Intelligent Feedback Scheduling of Control Tasks
Directory of Open Access Journals (Sweden)
Fatin I. Telchy
2014-12-01
Full Text Available an efficient feedback scheduling scheme based on the proposed Feed Forward Neural Network (FFNN scheme is employed to improve the overall control performance while minimizing the overhead of feedback scheduling which exposed using the optimal solutions obtained offline by mathematical optimization methods. The previously described FFNN is employed to adapt online the sampling periods of concurrent control tasks with respect to changes in computing resource availability. The proposed intelligent scheduler will be examined with different optimization algorithms. An inverted pendulum cost function is used in these experiments. Then, simulation of three inverted pendulums as intelligent Real Time System (RTS is described in details. Numerical simulation results demonstrates that the proposed scheme can reduce the computational overhead significantly while delivering almost the same overall control performance as compared to optimal feedback scheduling
Optimal Selective Feedback Policies for Opportunistic Beamforming
Samarasinghe, Tharaka; Evans, Jamie S
2011-01-01
This paper studies the structure of downlink sum-rate maximizing selective decentralized feedback policies for opportunistic beamforming under finite feedback constraints on the average number of mobile users feeding back. Firstly, it is shown that any sum-rate maximizing selective decentralized feedback policy must be a threshold feedback policy. This result holds for all fading channel models with continuous distribution functions. Secondly, the resulting optimum threshold selection problem is analyzed in detail. This is a non-convex optimization problem over finite dimensional Euclidean spaces. By utilizing the theory of majorization, an underlying Schur-concave structure in the sum-rate function is identified, and the sufficient conditions for the optimality of homogenous threshold feedback policies are obtained. Applications of these results are illustrated for well known fading channel models such as Rayleigh, Nakagami and Rician fading channels, along with various engineering and design insights. Rathe...
Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.
2015-11-01
Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.
Balanced bridge feedback control system
Lurie, Boris J. (Inventor)
1990-01-01
In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.
Fraanje, P.R.; Verhaegen, M.; Doelman, N.J.; Berkhoff, A.P.
2002-01-01
Adaptive Active Control algorithms, such as the well known Filtered-X LMS and Filtered-U LMS algorithms, often do not yield optimal performance in practise, due to finite length impulse response of the controller (Filtered-X) or convergence to a local minimum (Filtered-U). In addition, especially fo
Optimization and Optimal Control
Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider
2010-01-01
During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou
Feedback Control of Rotor Overspeed
Churchill, G. B.
1984-01-01
Feedback system for automatically governing helicopter rotor speed promises to lessen pilot's workload, enhance maneuverability, and protect airframe. With suitable modifications, concept applied to control speed of electrical generators, automotive engines and other machinery.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper develops a unified methodology for a real-time speed control of brushless direct-current motor drive systems in the presence of measurement noise and load torque disturbance. First, the mathematical model and hardware structure of system is established. Next, an optimal state feed back controller using the Kalman filter state estimation technique is derived.This is followed by an adaptive control algorithm to compensate for the effects of noise and disturbance. Those two algorithms working together can provide a very-high-speed regulation and dynamic response over a wide range of operating conditions.Simulated responses are presented to highlight the effectiveness of the proposed control strategy.
Optimizing the dynamics of a two-cell DC-DC buck converter by time delayed feedback control
Feki, M.; El Aroudi, A.; Robert, B. G. M.; Martínez-Salamero, L.
2011-11-01
A study of the dynamical behavior of a two-cell DC-DC buck converter under a digital time delayed feedback control (TDFC) is presented. Various numerical simulations and dynamical aspects of this system are illustrated in the time domain and in the parameter space. Without TDFC, the system may present many undesirable behaviors such as sub-harmonics and chaotic oscillations. TDFC is able to widen the stability range of the system. Optimum values of parameters giving rise to fast response while maintaining stable periodic behavior are given in closed form. However, it is detected that in a certain region of the parameter space, the stabilized periodic orbit may coexist with a chaotic attractor. Boundary between basins of attraction are obtained by means of numerical simulations.
Linear feedback controls the essentials
Haidekker, Mark A
2013-01-01
The design of control systems is at the very core of engineering. Feedback controls are ubiquitous, ranging from simple room thermostats to airplane engine control. Helping to make sense of this wide-ranging field, this book provides a new approach by keeping a tight focus on the essentials with a limited, yet consistent set of examples. Analysis and design methods are explained in terms of theory and practice. The book covers classical, linear feedback controls, and linear approximations are used when needed. In parallel, the book covers time-discrete (digital) control systems and juxtapos
Optimal Feedback Communication via Posterior Matching
Shayevitz, Ofer
2009-01-01
In this paper we introduce a fundamental principle for optimal communication over general memoryless channels in the presence of noiseless feedback, termed \\textit{posterior matching}. Using this principle, we devise a (simple, sequential) generic feedback transmission scheme suitable for a large class of memoryless channels and input distributions, achieving any rate below the corresponding mutual information. This provides a unified framework for optimal feedback communication in which the Horstein scheme (BSC) and the Schalkwijk-Kailath scheme (AWGN channel) are special cases. Thus, as a corollary, we prove that the Horstein scheme indeed attains the BSC capacity, settling a longstanding conjecture. We further provide closed form expressions for the error probability of the scheme over a range of rates, and derive the achievable rates in a mismatch setting where the scheme is designed according to the wrong channel model. Finally, several illustrative examples of the posterior matching scheme for specific ...
Aschepkov, Leonid T; Kim, Taekyun; Agarwal, Ravi P
2016-01-01
This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level. The main themes of the theory of linear and nonlinear systems are considered, including the basic problem of establishing the necessary and sufficient conditions of optimal processes. In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for prob...
Extensions to PIFCGT: Multirate output feedback and optimal disturbance suppression
Broussard, J. R.
1986-01-01
New control synthesis procedures for digital flight control systems were developed. The theoretical developments are the solution to the problem of optimal disturbance suppression in the presence of windshear. Control synthesis is accomplished using a linear quadratic cost function, the command generator tracker for trajectory following and the proportional-integral-filter control structure for practical implementation. Extensions are made to the optimal output feedback algorithm for computing feedback gains so that the multirate and optimal disturbance control designs are computed and compared for the advanced transport operating system (ATOPS). The performance of the designs is demonstrated by closed-loop poles, frequency domain multiinput sigma and eigenvalue plots and detailed nonlinear 6-DOF aircraft simulations in the terminal area in the presence of windshear.
Stabilized Feedback Control of Unicycle Mobile Robots
Directory of Open Access Journals (Sweden)
Khoukhi Amar
2013-04-01
Full Text Available In this paper, a stabilized feedback control is designed for a class of unicycle non‐holonomic mobile robots. The approach is based on kinematic polar coordinate transformations. The suggested control scheme allows the robot to achieve stabilized near‐ optimal trajectories, while satisfying the hard constraints of specified initial and final postures (positions and orientations. Simulation experiments showing the effectiveness of the proposed technique are provided and discussed.
Entanglement-assisted quantum feedback control
Yamamoto, Naoki; Mikami, Tomoaki
2017-07-01
The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.
Expected optimal feedback with Time-Varying Parameters
Tucci, M.P.; Kendrick, D.A.; Amman, H.M.
2011-01-01
In this paper we derive the closed loop form of the Expected Optimal Feedback rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (1981,2002, Chapter 6) where parameters are assumed to vary randomly around a known
On interconnections, control, and feedback
Willems, JC
1997-01-01
The purpose of this paper is to study interconnections and control of dynamical systems in a behavioral context. We start with an extensive physical example which serves to illustrate that the familiar input-output feedback loop structure is not as universal as we have been taught to believe, This l
On interconnections, control, and feedback
Willems, JC
The purpose of this paper is to study interconnections and control of dynamical systems in a behavioral context. We start with an extensive physical example which serves to illustrate that the familiar input-output feedback loop structure is not as universal as we have been taught to believe, This
PID control with robust disturbance feedback control
DEFF Research Database (Denmark)
Kawai, Fukiko; Vinther, Kasper; Andersen, Palle
2015-01-01
Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....
Improving Convergence of Iterative Feedback Tuning using Optimal External Perturbations
DEFF Research Database (Denmark)
Huusom, Jakob Kjøbsted; Hjalmarsson, Håkon; Poulsen, Niels Kjølstad
2008-01-01
Iterative feedback tuning constitutes an attractive control loop tuning method for processes in the absence of sufficient process insight. It is a purely data driven approach to optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost...... function gradient, which is used in a search algorithm. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the information content in data...... by introducing an optimal perturbation signal in the tuning algorithm. For minimum variance control design the optimal design of an external perturbation signal is derived in terms of the asymptotic accuracy of the iterative feedback tuning method....
Achieving optimal growth through product feedback inhibition in metabolism.
Directory of Open Access Journals (Sweden)
Sidhartha Goyal
2010-06-01
Full Text Available Recent evidence suggests that the metabolism of some organisms, such as Escherichia coli, is remarkably efficient, producing close to the maximum amount of biomass per unit of nutrient consumed. This observation raises the question of what regulatory mechanisms enable such efficiency. Here, we propose that simple product-feedback inhibition by itself is capable of leading to such optimality. We analyze several representative metabolic modules--starting from a linear pathway and advancing to a bidirectional pathway and metabolic cycle, and finally to integration of two different nutrient inputs. In each case, our mathematical analysis shows that product-feedback inhibition is not only homeostatic but also, with appropriate feedback connections, can minimize futile cycling and optimize fluxes. However, the effectiveness of simple product-feedback inhibition comes at the cost of high levels of some metabolite pools, potentially associated with toxicity and osmotic imbalance. These large metabolite pool sizes can be restricted if feedback inhibition is ultrasensitive. Indeed, the multi-layer regulation of metabolism by control of enzyme expression, enzyme covalent modification, and allostery is expected to result in such ultrasensitive feedbacks. To experimentally test whether the qualitative predictions from our analysis of feedback inhibition apply to metabolic modules beyond linear pathways, we examine the case of nitrogen assimilation in E. coli, which involves both nutrient integration and a metabolic cycle. We find that the feedback regulation scheme suggested by our mathematical analysis closely aligns with the actual regulation of the network and is sufficient to explain much of the dynamical behavior of relevant metabolite pool sizes in nutrient-switching experiments.
Basic Feedback Controls in Biomedicine
Lessard, Charles
2009-01-01
This textbook is intended for undergraduate students (juniors or seniors) in Biomedical Engineering, with the main goal of helping these students learn about classical control theory and its application in physiological systems. In addition, students should be able to apply the Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) Controls and Simulation Modules to mammalian physiology. The first four chapters review previous work on differential equations for electrical and mechanical systems. Chapters 5 through 8 present the general types and characteristics of feedback control
1979-12-01
with Uncertain Components 44 13 Component Uncertainty Representation of Uncertain Pole-Zero Locations 46 12 A Feedback Control System 60 i 1 I vii €in...OF FEEDBACK SYSTEM ROBUSTNESS A feedback control system design is said to be robust if it is able to meet design specifications despite differences... feedback control system design problems, the design specifications usually demand that the system be "robust" against the effects of deviations within
Adaptive-feedback control algorithm.
Huang, Debin
2006-06-01
This paper is motivated by giving the detailed proofs and some interesting remarks on the results the author obtained in a series of papers [Phys. Rev. Lett. 93, 214101 (2004); Phys. Rev. E 71, 037203 (2005); 69, 067201 (2004)], where an adaptive-feedback algorithm was proposed to effectively stabilize and synchronize chaotic systems. This note proves in detail the strictness of this algorithm from the viewpoint of mathematics, and gives some interesting remarks for its potential applications to chaos control & synchronization. In addition, a significant comment on synchronization-based parameter estimation is given, which shows some techniques proposed in literature less strict and ineffective in some cases.
Feedback control and output feedback control for the stabilisation of switched Boolean networks
Li, Fangfei; Yu, Zhaoxu
2016-02-01
This paper presents the feedback control and output feedback control for the stabilisation of switched Boolean network. A necessary condition for the existence of a state feedback controller for the stabilisation of switched Boolean networks under arbitrary switching signal is derived first, and constructive procedures for feedback control and output feedback control design are provided. An example is introduced to show the effectiveness of this paper.
ON FEEDBACK CONTROL OF DELAYED CHAOTIC SYSTEM
Institute of Scientific and Technical Information of China (English)
李丽香; 彭海朋; 卢辉斌; 关新平
2001-01-01
In this paper two different types of feedback control technique are discussed: the standard feedback control and the time-delay feedback control which have been successfully used in many control systems. In order to understand to what extent the two different types of control technique are useful in delayed chaotic systems, some analytic stabilization conditions for chaos control from the two types of control technique are derived based on Lyapunov stabilization arguments. Similarly, we discuss the tracking problem by applying the time-delay feedback control. Finally, numerical examples are provided.
Smart building temperature control using occupant feedback
Gupta, Santosh K.
This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as
Feedback Control of Chaos in Delay Maps
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, we discuss feedback control of a class of delay chaotic maps. Our aim is to drive the chaoticmaps to its initially unstable fixed points by using linear and nonlinear state feedback control. The control is achievedby using small, bounded perturbations. Some numerical simulations are given to demonstrate the effectiveness of theproposed control method.
Optimal Control of Active Recoil Mechanisms
1977-02-01
pressures in different chambers, rod pull are available and can be plotted. A linear state feedback control system is proposed to adapt this...desirable. A linear state feedback control system with variable gains is proposed in the report. A separate control law is designed for each...optimization algorithm to choose a feasible solution. 27 3.3 Results for M-37 Recoil Mechanism The linear state feedback control system and
Dynamic Feedback Controlling Chaos in Current-Mode Boost Converter
Institute of Scientific and Technical Information of China (English)
LU Wei-Guo; ZHOU Luo-Wei; LUO Quan-Ming
2007-01-01
A method for the control of chaos in the current-mode boost converter is presented by using the first-order dynamic feedback control. The feedback part consists of a resistance and a capacitance in series. The system to be controlled is treated as a third-order model, and then the discrete mapping model is obtained by using the data-sampling method. By analysing the position of the maximum norm eigenvalue, the stable range of feedback gain is ascertained out and its optimization is also carried out. Finally, the results of simulation and experiment confirm the correctness of the theoretical analysis and the validity of the proposed means.
FORCED OSCILLATIONS IN NONLINEAR FEEDBACK CONTROL SYSTEM
Since a nonlinear feedback control system may possess more than one type of forced oscillations, it is highly desirable to investigate the type of...method for finding the existence of forced oscillations and response curve characteristics of a nonlinear feedback control system by means of finding the...second order feedback control system are investigated; the fundamental frequency forced oscillation for a higher order system and the jump resonance
Directory of Open Access Journals (Sweden)
MohammadReza Davoodi
2009-12-01
Full Text Available This paper offers a design procedure for robust stability, robust H-infinity control and robust H2 control via dynamic output feedback for a class of uncertain linear systems. The uncertainties are of norm bounded type. Then in order to support a high-speed energy storage flywheel, these procedures are applied to an active radial magnetic bearing system. The state space matrices of this controller are the solution of some linear matrix inequalities (LMIs.
Optimality principles in sensorimotor control.
Todorov, Emanuel
2004-09-01
The sensorimotor system is a product of evolution, development, learning and adaptation-which work on different time scales to improve behavioral performance. Consequently, many theories of motor function are based on 'optimal performance': they quantify task goals as cost functions, and apply the sophisticated tools of optimal control theory to obtain detailed behavioral predictions. The resulting models, although not without limitations, have explained more empirical phenomena than any other class. Traditional emphasis has been on optimizing desired movement trajectories while ignoring sensory feedback. Recent work has redefined optimality in terms of feedback control laws, and focused on the mechanisms that generate behavior online. This approach has allowed researchers to fit previously unrelated concepts and observations into what may become a unified theoretical framework for interpreting motor function. At the heart of the framework is the relationship between high-level goals, and the real-time sensorimotor control strategies most suitable for accomplishing those goals.
Throughput Optimal Scheduling with Feedback Cost Reduction
Karaca, Mehmet; Ercetin, Ozgur; Alpcan, Tansu; Boche, Holger
2012-01-01
It is well known that opportunistic scheduling algorithms are throughput optimal under full knowledge of channel and network conditions. However, these algorithms achieve a hypothetical achievable rate region which does not take into account the overhead associated with channel probing and feedback required to obtain the full channel state information at every slot. We adopt a channel probing model where $\\beta$ fraction of time slot is consumed for acquiring the channel state information (CSI) of a single channel. In this work, we design a joint scheduling and channel probing algorithm named SDF by considering the overhead of obtaining the channel state information. We analytically prove that when the number of users in the network is greater than 3, then SDF algorithm can achieve $1+\\epsilon$ of the full rate region achieved when all users are probed. We also demonstrate numerically in a realistic simulation setting that this rate region can be achieved by probing only less than 50% of all channels in a CDM...
Skilton, Ryan A; Parrott, Andrew J; George, Michael W; Poliakoff, Martyn; Bourne, Richard A
2013-10-01
The use of automated continuous flow reactors is described, with real-time online Fourier transform infrared spectroscopy (FT-IR) analysis to enable rapid optimization of reaction yield using a self-optimizing feedback algorithm. This technique has been applied to the solvent-free methylation of 1-pentanol with dimethyl carbonate using a γ-alumina catalyst. Calibration of the FT-IR signal was performed using gas chromatography to enable quantification of yield over a wide variety of flow rates and temperatures. The use of FT-IR as a real-time analytical technique resulted in an order of magnitude reduction in the time and materials required compared to previous studies. This permitted a wide exploration of the parameter space to provide process understanding and validation of the optimization algorithms.
The decision-feedback equalizer optimization for Gaussian noise
Directory of Open Access Journals (Sweden)
Arkadiusz Grzybowski
2014-04-01
Full Text Available The new method of decision-feedback parameters optimization for intersymbol interference equalizers is described in this paper. The error extension phenomena is well known and investigated in the decision feedback equalizers in data transmission. The existing coefficient in decision feedback depends on the receive decision risk qualification. There is proved the bit error probability can be decreased by this method for any channel with single interference sample and small Gaussian noise. The experimental results are presented for chosen type channels. The dependences of optimal feedback parameters on channel interference sample and on noise power are presented too.
Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation.
Yuan, Haidong; Fung, Chi-Hang Fred
2015-09-11
Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.
Integrated Control with Structural Feedback to Enable Lightweight Aircraft
Taylor, Brian R.
2011-01-01
This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.
Feedback control of coupled-bunch instabilities
Energy Technology Data Exchange (ETDEWEB)
Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Serio, M. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati
1993-05-01
The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques.
Nonlinear H-ininity state feedback controllers:
DEFF Research Database (Denmark)
Cromme, Marc; Møller-Pedersen, Jens; Pagh Petersen, Martin
1997-01-01
From a general point of view the state feedback H∞ suboptimal control problem is reasonably well understood. Important problems remain with regard to a priori information of the size of the neighbourhood where the local state feedback H∞ problem is solvable. This problem is solved regionally (sem...
Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers
Lin, Fu; Jovanović, Mihailo R
2011-01-01
We design sparse and block sparse feedback gains that minimize the $H_2$ norm of distributed systems. Our approach consists of two steps. First, we identify sparsity patterns of the feedback gains by incorporating sparsity-promoting penalty functions into the $H_2$ problem, where the added terms penalize the number of communication links in the distributed controller. Second, we optimize the state feedback gains subject to the structural constraints determined by the identified sparsity patterns. This polishing step improves the $H_2$ performance of the distributed controllers. In the first step, we identify sparsity structure of the feedback gains using the alternating direction method of multipliers, which is a powerful algorithm well-suited to large optimization problems. This method alternates between optimizing the sparsity and optimizing the closed-loop $H_2$ norm, which allows us to exploit the structure of the corresponding objective functions. In particular, we take advantage of the separability of t...
Artificial proprioceptive feedback for myoelectric control.
Pistohl, Tobias; Joshi, Deepak; Ganesh, Gowrishankar; Jackson, Andrew; Nazarpour, Kianoush
2015-05-01
The typical control of myoelectric interfaces, whether in laboratory settings or real-life prosthetic applications, largely relies on visual feedback because proprioceptive signals from the controlling muscles are either not available or very noisy. We conducted a set of experiments to test whether artificial proprioceptive feedback, delivered noninvasively to another limb, can improve control of a two-dimensional myoelectrically-controlled computer interface. In these experiments, participants were required to reach a target with a visual cursor that was controlled by electromyogram signals recorded from muscles of the left hand, while they were provided with an additional proprioceptive feedback on their right arm by moving it with a robotic manipulandum. Provision of additional artificial proprioceptive feedback improved the angular accuracy of their movements when compared to using visual feedback alone but did not increase the overall accuracy quantified with the average distance between the cursor and the target. The advantages conferred by proprioception were present only when the proprioceptive feedback had similar orientation to the visual feedback in the task space and not when it was mirrored, demonstrating the importance of congruency in feedback modalities for multi-sensory integration. Our results reveal the ability of the human motor system to learn new inter-limb sensory-motor associations; the motor system can utilize task-related sensory feedback, even when it is available on a limb distinct from the one being actuated. In addition, the proposed task structure provides a flexible test paradigm by which the effectiveness of various sensory feedback and multi-sensory integration for myoelectric prosthesis control can be evaluated.
Coherent feedback control of a single qubit in diamond
Hirose, Masashi; Cappellaro, Paola
2016-04-01
Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation
Nonlinear feedback control of Timoshenko beam
Institute of Scientific and Technical Information of China (English)
冯德兴; 张维弢
1995-01-01
This note is concerned with nonlinear boundary feedback control of a Timoshenko beam. Under some nonlinear boundary feedback control, first the nonlinear semigroup theory is used to show the existence and uniqueness of solution for the corresponding closed loop system. Then by using the Lyapunov method, it is proved that the vibration of the beam under the proposed control action decays in a negative power of time t as t→.
Feedback control and synchronization of Mandelbrot sets
Zhang, Yong-Ping
2013-01-01
The movement of a particle could be depicted by the Mandelbrot set from the fractal viewpoint. According to the requirement, the movement of the particle needs to show different behaviors. In this paper, the feedback control method is taken on the classical Mandelbrot set. By amending the feedback item in the controller, the control method is applied to the generalized Mandelbrot set and by taking the reference item to be the trajectory of another system, the synchronization of Mandelbrot sets is achieved.
Optimal feedback correction in string quartet synchronization.
Wing, Alan M; Endo, Satoshi; Bradbury, Adrian; Vorberg, Dirk
2014-04-06
Control of relative timing is critical in ensemble music performance. We hypothesize that players respond to and correct asynchronies in tone onsets that arise from fluctuations in their individual tempos. We propose a first-order linear phase correction model and demonstrate that optimal performance that minimizes asynchrony variance predicts a specific value for the correction gain. In two separate case studies, two internationally recognized string quartets repeatedly performed a short excerpt from the fourth movement of Haydn's quartet Op. 74 no. 1, with intentional, but unrehearsed, expressive variations in timing. Time series analysis of successive tone onset asynchronies was used to estimate correction gains for all pairs of players. On average, both quartets exhibited near-optimal gain. However, individual gains revealed contrasting patterns of adjustment between some pairs of players. In one quartet, the first violinist exhibited less adjustment to the others compared with their adjustment to her. In the second quartet, the levels of correction by the first violinist matched those exhibited by the others. These correction patterns may be seen as reflecting contrasting strategies of first-violin-led autocracy versus democracy. The time series approach we propose affords a sensitive method for investigating subtle contrasts in music ensemble synchronization.
Optimal dimensional synthesis of force feedback lower arm exoskeletons
Ünal, Ramazan; Unal, Ramazan; Patoğlu, Volkan; Patoglu, Volkan
2008-01-01
This paper presents multi-criteria design optimization of parallel mechanism based force feedback exoskeletons for human forearm and wrist. The optimized devices are aimed to be employed as a high fidelity haptic interfaces. Multiple design objectives are discussed and classified for the devices and the optimization problem to study the trade-offs between these criteria is formulated. Dimensional syntheses are performed for optimal global kinematic and dynamic performance, utilizing a Pareto ...
Adaptive Feedfoward Feedback Control Framework Project
National Aeronautics and Space Administration — An Adaptive Feedforward and Feedback Control (AFFC) Framework is proposed to suppress the aircraft's structural vibrations and to increase the resilience of the...
Multi-objective optimal design of active vibration absorber with delayed feedback
Huan, Rong-Hua; Chen, Long-Xiang; Sun, Jian-Qiao
2015-03-01
In this paper, a multi-objective optimal design of delayed feedback control of an actively tuned vibration absorber for a stochastically excited linear structure is investigated. The simple cell mapping (SCM) method is used to obtain solutions of the multi-objective optimization problem (MOP). The continuous time approximation (CTA) method is applied to analyze the delayed system. Stability is imposed as a constraint for MOP. Three conflicting objective functions including the peak frequency response, vibration energy of primary structure and control effort are considered. The Pareto set and Pareto front for the optimal feedback control design are presented for two examples. Numerical results have found that the Pareto optimal solutions provide effective delayed feedback control design.
On the minimax feedback control of uncertain dynamic systems.
Bertsekas, D. P.; Rhodes, I. B.
1971-01-01
In this paper the problem of optimal feedback control of uncertain discrete-time dynamic systems is considered where the uncertain quantities do not have a stochastic description but instead are known to belong to given sets. The problem is converted to a sequential minimax problem and dynamic programming is suggested as a general method for its solution. The notion of a sufficiently informative function, which parallels the notion of a sufficient statistic of stochastic optimal control, is introduced, and conditions under which the optimal controller decomposes into an estimator and an actuator are identified.
Backstepping feedback control of open channel flow
Huo, Mandy; Malek, Sami
2014-01-01
We derive a feedback control law for the control of the downstream flow in a 1-D open channel by manipulating the water flow at an upstream location. We use backstepping for controller design and Lyapunov techniques for stability analysis. Finally, the controller is verified with simulations.
Directory of Open Access Journals (Sweden)
Josep Rubió-Massegú
2013-01-01
Full Text Available In this paper, a new strategy to design static output-feedback controllers for a class of vehicle suspension systems is presented. A theoretical background on recent advances in output-feedback control is first provided, which makes possible an effective synthesis of static output-feedback controllers by solving a single linear matrix inequality optimization problem. Next, a simplified model of a quarter-car suspension system is proposed, taking the ride comfort, suspension stroke, road holding ability, and control effort as the main performance criteria in the vehicle suspension design. The new approach is then used to design a static output-feedback H∞ controller that only uses the suspension deflection and the sprung mass velocity as feedback information. Numerical simulations indicate that, despite the restricted feedback information, this static output-feedback H∞ controller exhibits an excellent behavior in terms of both frequency and time responses, when compared with the corresponding state-feedback H∞ controller.
Haptic Feedback Control of a Smart Wheelchair
Directory of Open Access Journals (Sweden)
Mohammed-Amine Hadj-Abdelkader
2012-01-01
Full Text Available The haptic feedback, which is natural in assistive devices intended for visually impaired persons, has been only recently explored for people with motor disability. The aim of this work is to study its potential, particularly for assistance in the driving of powered wheelchairs. After a review of the literature for the previous related work, we present the methodology and the implementation procedure of a haptic feedback control system on a prototype of a smart wheelchair. We will also describe the approaches utilized to determine the appropriate force feedback that will ensure a cooperative behaviour of the system, and we will detail the two haptic driving modes that were developed, namely the active and passive modes. Experiments on a real prototype were carried out to study the contribution of the method in powered wheelchair driving and to evaluate the interest of the force feedback on the control joystick of the wheelchair. They are discussed on the basis of performance measures.
Output feedback controller design for uncertain piecewise linear systems
Institute of Scientific and Technical Information of China (English)
Jianxiong ZHANG; Wansheng TANG
2007-01-01
This paper proposes output feedback controller design methods for uncertain piecewise linear systems based on piecewise quadratic Lyapunov function. The α-stability of closed-loop systems is also considered. It is shown that the output feedback controller design procedure of uncertain piecewise linear systems with α-stability constraint can be cast as solving a set of bilinear matrix inequalities (BMIs). The BMIs problem in this paper can be solved iteratively as a set of two convex optimization problems involving linear matrix inequalities (LMIs) which can be solved numerically efficiently. A numerical example shows the effectiveness of the proposed methods.
COA based robust output feedback UPFC controller design
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-12-15
In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.
Feedback control system for walking in man.
Petrofsky, J S; Phillips, C A; Heaton, H H
1984-01-01
A computer control stimulation system is described which has been successfully tested by allowing a paraplegic subject to stand and walk through closed loop control. This system is a Z80 microprocessor system with eight channels of analog to digital and 16 channels of digital to analog control. Programming is written in CPM and works quite successfully for maintaining lower body postural control in paraplegics. Further expansion of this system would enable a feedback control system for multidirectional walking in man.
Feedback and control for everyone
Albertos, Pedro
2010-01-01
This intriguing and motivating book presents the basic ideas and understanding of control, signals and systems for readers interested in engineering and science. Through a series of examples, the book explores both the theory and the practice of control.
Feedback linearization application for LLRF control system
Energy Technology Data Exchange (ETDEWEB)
Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.
1999-06-01
The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.
Feedback linearization application for LLRF control system
Energy Technology Data Exchange (ETDEWEB)
Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.
1998-12-31
The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.
Feedback control and synchronization of Mandelbrot sets
Institute of Scientific and Technical Information of China (English)
Zhang Yong-Ping
2013-01-01
The movement of a particle could be depicted by the Mandelbrot set from the fractal viewpoint.According to the requirement,the movement of the particle needs to show different behaviors.In this paper,the feedback control method is taken on the classical Mandelbrot set.By amending the feedback item in the controller,the control method is applied to the generalized Mandelbrot set and by taking the reference item to be the trajectory of another system,the synchronization of Mandelbrot sets is achieved.
Determining optimal parameters in magnetic spacecraft stabilization via attitude feedback
Bruni, Renato; Celani, Fabio
2016-10-01
The attitude control of a spacecraft using magnetorquers can be achieved by a feedback control law which has four design parameters. However, the practical determination of appropriate values for these parameters is a critical open issue. We propose here an innovative systematic approach for finding these values: they should be those that minimize the convergence time to the desired attitude. This a particularly diffcult optimization problem, for several reasons: 1) such time cannot be expressed in analytical form as a function of parameters and initial conditions; 2) design parameters may range over very wide intervals; 3) convergence time depends also on the initial conditions of the spacecraft, which are not known in advance. To overcome these diffculties, we present a solution approach based on derivative-free optimization. These algorithms do not need to write analytically the objective function: they only need to compute it in a number of points. We also propose a fast probing technique to identify which regions of the search space have to be explored densely. Finally, we formulate a min-max model to find robust parameters, namely design parameters that minimize convergence time under the worst initial conditions. Results are very promising.
Experimental study of delayed positive feedback control for a flexible beam
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing ...
Feedback Control of MEMS to Atoms
Shapiro, Benjamin
2012-01-01
Feedback Control of MEMS to Atoms illustrates the use of control and control systems as an essential part of functioning integrated miniaturized systems. The book is organized according to the dimensional scale of the problem, starting with microscale systems and ending with atomic-scale systems. Similar to macroscale machines and processes, control systems can play a major role in improving the performance of micro- and nanoscale systems and in enabling new capabilities that would otherwise not be possible. The majority of problems at these scales present many new challenges that go beyond the current state-of-the-art in control theory and engineering. This is a result of the multidisciplinary nature of micro/nanotechnology, which requires the merging of control engineering with physics, biology and chemistry. This book: Shows how the utilization of feedback control in nanotechnology instrumentation can yield results far better than passive systems can Discusses the application of control systems to problems...
Optimizing Dynamical Network Structure for Pinning Control
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-04-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.
Optimal obstacle control problem
Institute of Scientific and Technical Information of China (English)
ZHU Li; LI Xiu-hua; GUO Xing-ming
2008-01-01
In the paper we discuss some properties of the state operators of the optimal obstacle control problem for elliptic variational inequality. Existence, uniqueness and regularity of the optimal control problem are established. In addition, the approximation of the optimal obstacle problem is also studied.
Periodicity in Delta-modulated feedback control
Institute of Scientific and Technical Information of China (English)
Xiaohua XIA; Guanrong CHEN; Rudong GAI; Alan S. I. ZINOBER
2008-01-01
The Delta-modulated feedback control of a linear system introduces nonlinearity into the system through switchings between two input values. It has been found that Delta-modulation gives rise to periodic orbits. The existence of periodic points of all orders of Sigma-Delta modulation with "leaky" integration is completely characterized by some interesting groups of polynomials with "sign" coefficients. The results are naturally generalized to Sigma-Delta modulations with multiple delays, Delta-modulations in the "downlink", unbalanced Delta-modulations and systems with two-level quantized feedback. Further extensions relate to the existence of periodic points arising from Delta-modulated feedback control of a stable linear system in an arbitrary direction, for which some necessary and sufficient conditions are given.
Nanometer Vibration Control by Computer Feedback
McLeod, Kevin; Schramm, Steven; McKenna, Janis; Mattison, Thomas
2008-05-01
The International Linear Collider is a planned electron-positron accelerator at the 500 GeV scale. Colliding nanometer sized beams requires control of vibrations of the final focusing magnets at the nanometer level. We are investigating position measurement with laser interferometry and position control with piezoelectric actuators using state-vector feedback in a near-real-time Linux computing environment. A custom driver for a commercial ADC-DAC card has the interferometer reconstruction and feedback algorithms inside an interrupt handler running at 10 kHz. Linux user applications interact with the driver for interferometer alignment and calibration, measurement of excitation of internal modes by the piezo, and measurement of external vibration spectrum. Other applications analyze the internal and external vibration modes, and calculate state-vector feedback gains. Graphical interface is provided by tcl/tk. Code development is in C with standard GNU tools, using a recursive generic makefile.
Adaptive Multi-Objective Optimization Based on Feedback Design
Institute of Scientific and Technical Information of China (English)
窦立谦; 宗群; 吉月辉; 曾凡琳
2010-01-01
The problem of adaptive multi-objective optimization(AMOO) has received extensive attention due to its practical significance.An important issue in optimizing a multi-objective system is adjusting the weighting coefficients of multiple objectives so as to keep track of various conditions.In this paper,a feedback structure for AMOO is designed.Moreover,the reinforcement learning combined with hidden biasing information is applied to online tuning weighting coefficients of objective functions.Finally,the prop...
Rapid control and feedback rates enhance neuroprosthetic control
Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.
2017-01-01
Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms.
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Feedback control of superconducting quantum circuits
Ristè, D.
2014-01-01
Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback contr
Chaos control using notch filter feedback.
Ahlborn, Alexander; Parlitz, Ulrich
2006-01-27
A method for stabilizing periodic orbits and steady states of chaotic systems is presented using specifically filtered feedback signals. The efficiency of this control technique is illustrated with simulations (Rössler system, laser model) and a successful experimental application for stabilizing intensity fluctuations of an intracavity frequency-doubled Nd:YAG laser.
Microcontroller-based Feedback Control Laboratory Experiments
Directory of Open Access Journals (Sweden)
Chiu Choi
2014-06-01
Full Text Available this paper is a result of the implementation of the recommendations on enhancing hands-on experience of control engineering education using single chip, small scale computers such as microcontrollers. A set of microcontroller-based feedback control experiments was developed for the Electrical Engineering curriculum at the University of North Florida. These experiments provided hands-on techniques that students can utilize in the development of complete solutions for a number of servo control problems. Significant effort was devoted to software development of feedback controllers and the associated signal conditioning circuits interfacing between the microcontroller and the physical plant. These experiments have stimulated the interest of our students in control engineering.
Delayed feedback control in quantum transport.
Emary, Clive
2013-09-28
Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.
Nonholonomic feedback control among moving obstacles
Armstrong, Stephen Gregory
A feedback controller is developed for navigating a nonholonomic vehicle in an area with multiple stationary and possibly moving obstacles. Among other applications the developed algorithms can be used for automatic parking of a passenger car in a parking lot with complex configuration or a ground robot in cluttered environment. Several approaches are explored which combine nonholonomic systems control based on sliding modes and potential field methods.
Schaft, A.J. van der
1987-01-01
It is argued that the existence of symmetries may simplify, as in classical mechanics, the solution of optimal control problems. A procedure for obtaining symmetries for the optimal Hamiltonian resulting from the Maximum Principle is given; this avoids the actual calculation of the optimal
Low Order Empirical Galerkin Models for Feedback Flow Control
Tadmor, Gilead; Noack, Bernd
2005-11-01
Model-based feedback control restrictions on model order and complexity stem from several generic considerations: real time computation, the ability to either measure or reliably estimate the state in real time and avoiding sensitivity to noise, uncertainty and numerical ill-conditioning are high on that list. Empirical POD Galerkin models are attractive in the sense that they are simple and (optimally) efficient, but are notoriously fragile, and commonly fail to capture transients and control effects. In this talk we review recent efforts to enhance empirical Galerkin models and make them suitable for feedback design. Enablers include `subgrid' estimation of turbulence and pressure representations, tunable models using modes from multiple operating points, and actuation models. An invariant manifold defines the model's dynamic envelope. It must be respected and can be exploited in observer and control design. These ideas are benchmarked in the cylinder wake system and validated by a systematic DNS investigation of a 3-dimensional Galerkin model of the controlled wake.
Linear systems optimal and robust control
Sinha, Alok
2007-01-01
Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...
LHC beam stability and feedback control
Energy Technology Data Exchange (ETDEWEB)
Steinhagen, Ralph
2007-07-20
This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a
Different Auditory Feedback Control for Echolocation and Communication in Horseshoe Bats
Ying Liu; Jiang Feng; Walter Metzner
2013-01-01
Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echoloca...
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development
Electrostatic levitation under the single-axis feedback control condition
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of various types of materials such as metals, inorganic materials and polymers, we made both experimental and theoretical investigations to solve the four key problems of electric field optimization, sample position detecting, sample charging control and levitation voltage minimization. Under the capacitive induction charging condition, a sample with the size of 2.6–4.5 mm usually bears positive charges amounting to 10-9 Coulomb. Because the single-axis feedback control system responds quickly, it takes the levitated sample only 0.1 s from leaving the bottom electrode until attaining a stable levitation in the upright direction. The levitated sample displays satisfactory levitation stability in both the upright and the horizontal directions owing to the constraining force produced by spherical electrodes.
Instantaneous Current Feedback Control Strategy on Buck Mode Inverter
Institute of Scientific and Technical Information of China (English)
2011-01-01
Control strategies for Buck mode inverter have important effect on static and dynamic characteristics, reliability, load capacity, and short-circuit resistance. Instantaneous current feedback control strategies include instantaneous inductor current feedback control and instantaneous capacitor current feedback control, both of which have essential difference. When the Buck mode inverter respectively adopts instantaneous inductor current and capacitor current feedback control strategies, characteristics of stability, output voltage and power, short circuit, nonlinear load and dynamic are fully investigated in this paper.
Optimal control computer programs
Kuo, F.
1992-01-01
The solution of the optimal control problem, even with low order dynamical systems, can usually strain the analytical ability of most engineers. The understanding of this subject matter, therefore, would be greatly enhanced if a software package existed that could simulate simple generic problems. Surprisingly, despite a great abundance of commercially available control software, few, if any, address the part of optimal control in its most generic form. The purpose of this paper is, therefore, to present a simple computer program that will perform simulations of optimal control problems that arise from the first necessary condition and the Pontryagin's maximum principle.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
Controlling Flow Turbulence Using Local Pinning Feedback
Institute of Scientific and Technical Information of China (English)
TANG Guo-Ning; HU Gang
2006-01-01
Flow turbulence control in two-dimensional Navier-Stokes equation is considered．By applying local pinning control only to a sjngle component of flow velocity field,the flow turbulence can be controlled to desirable targets．It is found that with certain number of controllers there exist an optimal control strength at which control error takes minimum value,and larger and smaller control strengths give worse control efficiency．The phvsical mechanism underlying these strange control results is analysed based on the interactions between different types of modes.
Synchronization between two different chaotic systems with nonlinear feedback control
Institute of Scientific and Technical Information of China (English)
Lü Ling; Guo Zhi-An; Zhang Chao
2007-01-01
This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.
Controlling automobile thermal comfort using optimized fuzzy controller
Energy Technology Data Exchange (ETDEWEB)
Farzaneh, Yadollah; Tootoonchi, Ali A. [Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad (Iran)
2008-10-15
Providing thermal comfort and saving energy are two main goals of heating, ventilation and air conditioning (HVAC) systems. A controller with temperature feedback cannot best achieve the thermal comfort. This is because thermal comfort is influenced by many variables such as, temperature, relative humidity, air velocity, environment radiation, activity level and cloths insulation. In this study Fanger's predicted mean value (PMV) index is used as controller feedback. It is simplified without introducing significant error. Thermal models of the cabin and HVAC system are developed. Evaporator cooling capacity is selected as a criterion for energy consumption. Two fuzzy controllers one with temperature as its feedback and the other PMV index as its feedback are designed. Results show that the PMV feedback controller better controls the thermal comfort and energy consumption than the system with temperature feedback. Next, the parameters of the fuzzy controller are optimized by genetic algorithm. Results indicate that thermal comfort level is further increased while energy consumption is decreased. Finally, robustness analysis is performed which shows the robustness of optimized controller to variables variations. (author)
Colonius, Fritz
1988-01-01
This research monograph deals with optimal periodic control problems for systems governed by ordinary and functional differential equations of retarded type. Particular attention is given to the problem of local properness, i.e. whether system performance can be improved by introducing periodic motions. Using either Ekeland's Variational Principle or optimization theory in Banach spaces, necessary optimality conditions are proved. In particular, complete proofs of second-order conditions are included and the result is used for various versions of the optimal periodic control problem. Furthermore a scenario for local properness (related to Hopf bifurcation) is drawn up, giving hints as to where to look for optimal periodic solutions. The book provides mathematically rigorous proofs for results which are potentially of importance in chemical engineering and aerospace engineering.
Feedback Solution to Optimal Switching Problems With Switching Cost.
Heydari, Ali
2016-10-01
The problem of optimal switching between nonlinear autonomous subsystems is investigated in this paper where the objective is not only bringing the states to close to the desired point, but also adjusting the switching pattern, in the sense of penalizing switching occurrences and assigning different preferences to utilization of different modes. The mode sequence is unspecified and a switching cost term is used in the cost function for penalizing each switching. It is shown that once a switching cost is incorporated, the optimal cost-to-go function depends on the subsystem which was active at the previous time step. Afterward, an approximate dynamic programming-based method is developed, which provides an approximation of the optimal solution to the problem in a feedback form and for different initial conditions. Finally, the performance of the method is analyzed through numerical examples.
Robust Structured Control Design via LMI Optimization
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Stoustrup, Jakob
2011-01-01
This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, ﬁxed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...
Determination of optimal gains for constrained controllers
Energy Technology Data Exchange (ETDEWEB)
Kwan, C.M.; Mestha, L.K.
1993-08-01
In this report, we consider the determination of optimal gains, with respect to a certain performance index, for state feedback controllers where some elements in the gain matrix are constrained to be zero. Two iterative schemes for systematically finding the constrained gain matrix are presented. An example is included to demonstrate the procedures.
Discrete Variational Optimal Control
Jimenez, Fernando; de Diego, David Martin
2012-01-01
This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher-dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical and a practical examples, e.g. the control of an underwater vehicle, will illustrate the application of the proposed approach.
Discrete Variational Optimal Control
Jiménez, Fernando; Kobilarov, Marin; Martín de Diego, David
2013-06-01
This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, and underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical examples and a practical one, the control of an underwater vehicle, illustrate the application of the proposed approach.
Controlling Spatiotemporal Chaos with a Generalized Feedback Method
Institute of Scientific and Technical Information of China (English)
GAO Ji-Hua; ZHENG Zhi-Gang
2007-01-01
The usual linear variable feedback control method is extended to a generalized function feedback scheme. The scheme is applied to high-dimensional spatiotemporal systems. By a combination of local generalized feedback control and the spatial coupling effect among elements, turbulent motion can be successfully eliminated.
Reflectance feedback control of photocoagulation in vivo
Jerath, Maya R.; Chundru, Ravi K.; Barrett, Steven F.; Rylander, Henry G., III; Welch, Ashley J.
1993-06-01
Laser induced retinal lesions are used to treat a variety of eye diseases such as diabetic retinopathy and retinal detachment. In this treatment, an argon laser beam is directed into the eye through the pupil onto the fundus where the heat resulting from the absorbed laser light coagulates the retinal tissue. This thermally damaged region is highly scattering and appears as a white disk. The size of the retinal lesions is critical for effective treatment and minimal complications. A real time feedback control system is implemented that monitors lesion growth using two-dimensional reflectance images acquired by a CCD camera. The camera views the lesion formation on axis with the coagulating laser beam. The reflectance images are acquired and processed as the lesion forms. When parameters of the reflectance images that are correlated to lesion dimensions meet certain preset thresholds, the laser is shuttered. Results of feedback controlled lesions formed in vivo in pigmented rabbits are presented. An ability to produce uniform lesions despite variation in the tissue absorption or changes in laser power is demonstrated. This lesion control system forms part of a larger automated system for retinal photocoagulation.
Feedback controlled hybrid fast ferrite tuners
Energy Technology Data Exchange (ETDEWEB)
Remsen, D.B.; Phelps, D.A.; deGrassie, J.S.; Cary, W.P.; Pinsker, R.I.; Moeller, C.P. [General Atomics, San Diego, CA (United States); Arnold, W.; Martin, S.; Pivit, E. [ANT-Bosch, Backnang (Germany)
1993-09-01
A low power ANT-Bosch fast ferrite tuner (FFT) was successfully tested into (1) the lumped circuit equivalent of an antenna strap with dynamic plasma loading, and (2) a plasma loaded antenna strap in DIII-D. When the FFT accessible mismatch range was phase-shifted to encompass the plasma-induced variation in reflection coefficient, the 50 {Omega} source was matched (to within the desired 1.4 : 1 voltage standing wave ratio). The time required to achieve this match (i.e., the response time) was typically a few hundred milliseconds, mostly due to a relatively slow network analyzer-computer system. The response time for the active components of the FFT was 10 to 20 msec, or much faster than the present state-of-the-art for dynamic stub tuners. Future FFT tests are planned, that will utilize the DIII-D computer (capable of submillisecond feedback control), as well as several upgrades to the active control circuit, to produce a FFT feedback control system with a response time approaching 1 msec.
Speech production as state feedback control.
Houde, John F; Nagarajan, Srikantan S
2011-01-01
Spoken language exists because of a remarkable neural process. Inside a speaker's brain, an intended message gives rise to neural signals activating the muscles of the vocal tract. The process is remarkable because these muscles are activated in just the right way that the vocal tract produces sounds a listener understands as the intended message. What is the best approach to understanding the neural substrate of this crucial motor control process? One of the key recent modeling developments in neuroscience has been the use of state feedback control (SFC) theory to explain the role of the CNS in motor control. SFC postulates that the CNS controls motor output by (1) estimating the current dynamic state of the thing (e.g., arm) being controlled, and (2) generating controls based on this estimated state. SFC has successfully predicted a great range of non-speech motor phenomena, but as yet has not received attention in the speech motor control community. Here, we review some of the key characteristics of speech motor control and what they say about the role of the CNS in the process. We then discuss prior efforts to model the role of CNS in speech motor control, and argue that these models have inherent limitations - limitations that are overcome by an SFC model of speech motor control which we describe. We conclude by discussing a plausible neural substrate of our model.
Speech production as state feedback control
Directory of Open Access Journals (Sweden)
John F Houde
2011-10-01
Full Text Available Spoken language exists because of a remarkable neural process. Inside a speaker’s brain, an intended message gives rise to neural signals activating the muscles of the vocal tract. The process is remarkable because these muscles are activated in just the right way that the vocal tract produces sounds a listener understands as the intended message. What is the best approach to understanding the neural substrate of this crucial motor control process? One of the key recent modeling developments in neuroscience has been the use of state feedback control (SFC theory to explain the role of the CNS in motor control. SFC postulates that the CNS controls motor output by (1 estimating the current dynamic state of the thing (e.g., arm being controlled, and (2 generating controls based on this estimated state. SFC has successfully predicted a great range of non-speech motor phenomena, but as yet has not received attention in the speech motor control community. Here, we review some of the key characteristics of speech motor control and what they say about the role of the CNS in the process. We then discuss prior efforts to model the role of CNS in speech motor control, and argue that these models have inherent limitations – limitations that are overcome by an SFC model of speech motor control which we describe. We conclude by discussing a plausible neural substrate of our model.
Feedback Controller Design for the Synchronization of Boolean Control Networks.
Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling
2016-09-01
This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.
Feedback Control of Turbulent Shear Flows by Genetic Programming
Duriez, Thomas; von Krbek, Kai; Bonnet, Jean-Paul; Cordier, Laurent; Noack, Bernd R; Segond, Marc; Abel, Markus; Gautier, Nicolas; Aider, Jean-Luc; Raibaudo, Cedric; Cuvier, Christophe; Stanislas, Michel; Debien, Antoine; Mazellier, Nicolas; Kourta, Azeddine; Brunton, Steven L
2015-01-01
Turbulent shear flows have triggered fundamental research in nonlinear dynamics, like transition scenarios, pattern formation and dynamical modeling. In particular, the control of nonlinear dynamics is subject of research since decades. In this publication, actuated turbulent shear flows serve as test-bed for a nonlinear feedback control strategy which can optimize an arbitrary cost function in an automatic self-learning manner. This is facilitated by genetic programming providing an analytically treatable control law. Unlike control based on PID laws or neural networks, no structure of the control law needs to be specified in advance. The strategy is first applied to low-dimensional dynamical systems featuring aspects of turbulence and for which linear control methods fail. This includes stabilizing an unstable fixed point of a nonlinearly coupled oscillator model and maximizing mixing, i.e.\\ the Lyapunov exponent, for forced Lorenz equations. For the first time, we demonstrate the applicability of genetic p...
Theoretical model for ultracold molecule formation via adaptive feedback control
Poschinger, U; Wester, R; Weidemüller, M; Koch, C P; Kosloff, R; Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P.; Kosloff, Ronnie
2006-01-01
We investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose a perturbative model for the light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in a magneto-optical trap. We find for optimized pulse shapes an improvement for the formation of ground state molecules by more than a factor of 10 compared to unshaped pulses at the same pump-dump delay time, and by 40% compared to unshaped pulses at the respective optimal pump-dump delay time. Since our model yields directly the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments.
STABILIZATION OF VIBRATING BEAM BY VELOCITY FEEDBACK CONTROL
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered.The control is a shear force in proportion to velocity.It is known that uniform exponential stability can be achieved with velocity feedback.A sensitivity asymptotic analysis of the system's eigenvalues and eigenfunctions is set up.The authors prove that,for K1 ∈ [0,+∞),all of the generalized eigenvectors of A form a Riesz basis of H.It is also proved that the optimal exponential decay rate can be obtained from the spectrum of the system for 0 ＜ Kl ＜ +∞.
Tracking controller for robot manipulators via composite nonlinear feedback law
Institute of Scientific and Technical Information of China (English)
Peng Wendong; Su Jianbo
2009-01-01
A composite nonlinear feedback tracking controller for motion control of robot manipulators is de-scribed. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.
Velocity Feedback Control of a Mechatronics System
Directory of Open Access Journals (Sweden)
Ayman A. Aly
2013-07-01
Full Text Available Increasing demands in performance and quality make drive systems fundamental parts in the progressive automation of industrial process. The analysis and design of Mechatronics systems are often based on linear or linearized models which may not accurately represent the servo system characteristics when the system is subject to inputs of large amplitude. The impact of the nonlinearities of the dynamic system and its stability needs to be clarified.The objective of this paper is to present a nonlinear mathematical model which allows studying and analysis of the dynamic characteristic of an electro hydraulic position control servo. The angular displacement response of motor shaft due to large amplitude step input is obtained by applying velocity feedback control strategy. The simulation results are found to be in agreement with the experimental data that were generated under similar conditions.
Investigation on evolutionary optimization of chaos control
Energy Technology Data Exchange (ETDEWEB)
Zelinka, Ivan [Faculty of Applied Informatics, Tomas Bata University in Zli' n, Nad Stranemi 4511, 762 72 Zli' n (Czech Republic)], E-mail: zelinka@fai.utb.cz; Senkerik, Roman [Faculty of Applied Informatics, Tomas Bata University in Zli' n, Nad Stranemi 4511, 762 72 Zli' n (Czech Republic)], E-mail: senkerik@fai.utb.cz; Navratil, Eduard [Faculty of Applied Informatics, Tomas Bata University in Zli' n, Nad Stranemi 4511, 762 72 Zli' n (Czech Republic)], E-mail: enavratil@fai.utb.cz
2009-04-15
This work deals with an investigation on optimization of the feedback control of chaos based on the use of evolutionary algorithms. The main objective is to show that evolutionary algorithms are capable of optimization of chaos control. As models of deterministic chaotic systems, one-dimensional Logistic equation and two-dimensional Henon map were used. The optimizations were realized in several ways, each one for another set of parameters of evolution algorithms or separate cost functions. The evolutionary algorithm SOMA (self-organizing migrating algorithm) was used in four versions. For each version simulations were repeated several times to show and check for robustness of the applied method.
Phase Model with Feedback Control for Power Grids
Matsuo, Tatsuma
2013-01-01
A phase model with feedback control is studied as a dynamical model of power grids. As an example, we study a model network corresponding to the power grid in the Kyushu region. The standard frequency is maintained by the mutual synchronization and the feedback control. Electric failures are induced by an overload. We propose a local feedback method in which the strength of feedback control is proportional to the magnitude of generators. We find that the electric failures do not occur until the utilization ratio is close to 1 under this feedback control. We also find that the temporal response for the time-varying input power is suppressed under this feedback control. We explain the mechanisms using the corresponding global feedback method.
Phase Model with Feedback Control for Power Grids
Matsuo, Tatsuma; Sakaguchi, Hidetsugu
2013-09-01
A phase model with feedback control is studied as a dynamical model of power grids. As an example, we study a model network corresponding to the power grid in the Kyushu region. The standard frequency is maintained by the mutual synchronization and the feedback control. Electric failures are induced by an overload. We propose a local feedback method in which the strength of feedback control is proportional to the magnitude of generators. We find that the electric failures do not occur until the utilization ratio is close to 1 under this feedback control. We also find that the temporal response for the time-varying input power is suppressed under this feedback control. We explain the mechanisms using the corresponding global feedback method.
Feedback Reduction in Uplink MIMO OFDM Systems by Chunk Optimization
Directory of Open Access Journals (Sweden)
Arogyaswami Paulraj
2008-01-01
Full Text Available The performance of multiuser MIMO systems can be significantly increased by channel-aware scheduling and signal processing at the transmitters based on channel state information. In the multipleantenna uplink multicarrier scenario, the base station decides centrally on the optimal signal processing and spectral power allocation as well as scheduling. An interesting challenge is the reduction of the overhead in order to inform the mobiles about their transmit strategies. In this work, we propose to reduce the feedback by chunk processing and quantization. We maximize the weighted sum rate of a MIMO OFDM MAC under individual power constraints and chunk size constraints. An efficient iterative algorithm is developed and convergence is proved. The feedback overhead as a function of the chunk size is considered in the rate computation and the optimal chunk size is determined by numerical simulations for various channel models. Finally, the issues of finite modulation and coding schemes as well as quantization of the precoding matrices are addressed.
Sample-Clock Phase-Control Feedback
Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.
Nonlinear feedback control of highly manoeuvrable aircraft
Garrard, William L.; Enns, Dale F.; Snell, S. A.
1992-01-01
This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.
Towards minimax policies for online linear optimization with bandit feedback
Bubeck, Sébastien; Kakade, Sham M
2012-01-01
We address the online linear optimization problem with bandit feedback. Our contribution is twofold. First, we provide an algorithm (based on exponential weights) with a regret of order $\\sqrt{d n \\log N}$ for any finite action set with $N$ actions, under the assumption that the instantaneous loss is bounded by 1. This shaves off an extraneous $\\sqrt{d}$ factor compared to previous works, and gives a regret bound of order $d \\sqrt{n \\log n}$ for any compact set of actions. Without further assumptions on the action set, this last bound is minimax optimal up to a logarithmic factor. Interestingly, our result also shows that the minimax regret for bandit linear optimization with expert advice in $d$ dimension is the same as for the basic $d$-armed bandit with expert advice. Our second contribution is to show how to use the Mirror Descent algorithm to obtain computationally efficient strategies with minimax optimal regret bounds in specific examples. More precisely we study two canonical action sets: the hypercub...
Inline feedback control for deep drawing applications
Fischer, P.; Harsch, D.; Heingärtner, J.; Renkci, Y.; Hora, P.
2016-11-01
In series production of deep drawing products the quality of the parts is significantly influenced by material scatter. To guarantee a robust manufacturing the processes are designed to have a large process window. As the different material properties can lead to a drift in the process, the press settings have to be adjusted to keep the quality. In the scope of the work a feedback control system is proposed to keep the operation point inside the process window. The blank draw-in measured in predefined points is used as the primary indicator of the expected part quality. A simulation based meta model is then used to design the control algorithm with the blank holder forces as control variable. As the draw-in measurements are carried out punctually, their positioning within the tool becomes of critical importance. A simulation based study is therefore presented for the identification of sensor positions with the highest significance in relation to the process outcome. The baseline calibration of the controller is also based on the meta model. The validation of the proposed control system is illustrated based on experiments in a production line.
Dynamic Intelligent Feedback Scheduling in Networked Control Systems
Directory of Open Access Journals (Sweden)
Hui-ying Chen
2013-01-01
Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.
Combustion diagnostic for active engine feedback control
Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton
2007-10-02
This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.
On Symmetries in Optimal Control
van der Schaft, A. J.
1986-01-01
We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.
On Symmetries in Optimal Control
Schaft, A.J. van der
1986-01-01
We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.
Minimal-Inversion Feedforward-And-Feedback Control System
Seraji, Homayoun
1990-01-01
Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.
Experimental demonstration of coherent feedback control on optical field squeezing
Iida, Sanae; Yonezawa, Hidehiro; Yamamoto, Naoki; Furusawa, Akira
2011-01-01
Coherent feedback is a non-measurement based, hence a back-action free, method of control for quantum systems. A typical application of this control scheme is squeezing enhancement, a purely non-classical effect in quantum optics. In this paper we report its first experimental demonstration that well agrees with the theory taking into account time delays and losses in the coherent feedback loop. The results clarify both the benefit and the limitation of coherent feedback control in a practical situation.
Optimized joystick controller.
Ding, D; Cooper, R A; Spaeth, D
2004-01-01
The purpose of the study was to develop an optimized joystick control interface for electric powered wheelchairs and thus provide safe and effective control of electric powered wheelchairs to people with severe physical disabilities. The interface enables clinicians to tune joystick parameters for each individual subject through selecting templates, dead zones, and bias axes. In terms of hand tremor usually associated with people with traumatic brain injury, cerebral palsy, and multiple sclerosis, fuzzy logic rules were applied to suppress erratic hand movements and extract the intended motion from the joystick. Simulation results were presented to show the graphical tuning interface as well as the performance of the fuzzy logic controller.
LQG Control Approach to Gaussian Broadcast Channels with Feedback
Ardestanizadeh, Ehsan; Franceschetti, Massimo
2011-01-01
A code for communication over the k-receiver additive white Gaussian noise broadcast channel with feedback is presented and analyzed using tools from the theory of linear quadratic Gaussian optimal control. It is shown that the performance of this code depends on the noise correlation at the receivers and it is related to the solution of a discrete algebraic Riccati equation. For the case of independent noises, the sum rate achieved by the proposed code, satisfying average power constraint P, is characterized as 1/2 log (1+P*phi), where the coefficient "phi" in the interval [1,k] quantifies the power gain due to the presence of feedback. When specialized to the case of two receivers, this includes a previous result by Elia and strictly improves upon the code of Ozarow and Leung. When the noises are correlated, the pre-log of the sum-capacity of the broadcast channel with feedback can be strictly greater than one. It is established that for all noise covariance matrices of rank r the pre-log of the sum capacit...
Design of output feedback controller for a unified chaotic system
Institute of Scientific and Technical Information of China (English)
Li Wen-Lin; Chen Xiu-Qin; Shen Zhi-Ping
2008-01-01
In this paper,the synchronization of a unified chaotic system is investigated by the use of output feedback controllers;a two-input single-output feedback controller and single-input single-output feedback controller are presented to synchronize the unified chaotic system when the states are not all measurable.Compared with the existing results,the controllers designed in this paper have some advantages such as small feedback gain,simple structure and less conservation.Finally,numerical simulations results are provided to demonstrate the validity and effectiveness of the proposed method.
DEFF Research Database (Denmark)
Fossen, T.I.; Blanke, M.
2000-01-01
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...
PID feedback for mixed H2/H∞ tracking control of robotic manipulators
Institute of Scientific and Technical Information of China (English)
黄春庆; 施颂椒
2004-01-01
The design objective of a mixed H2/H∞ control is to find the H2 optimal control law under aprescribed disturbance attenuation level. This paper addresses a optimal PID control law on the basis of the newsolution to mixed H2/H∞optimal control problem that provide much more flexible design compared to the existing works. Then a closed-form PID controller to mixed H2/H∞ robotic tracking problem is simply constructed and hence the design procedure is presented.Finally, numerical simulations illustrate the effectiveness of the optimal PID feedback design proposed in this paper via a two-link robotic manipulator.
Self-Controlled Feedback in 10-Year-Old Children: Higher Feedback Frequencies Enhance Learning
Chiviacowsky, Suzete; Wulf, Gabriele; de Medeiros, Franklin Laroque; Kaefer, Angelica; Wally, Raquel
2008-01-01
The purpose of the present study was to examine whether learning in 10-year-old children--that is, the age group for which the Chiviacowsky et al. (2006) study found benefits of self-controlled knowledge of results (KR)--would differ depending on the frequency of feedback they chose. The authors surmised that a relatively high feedback frequency…
Sensory-Feedback Exoskeletal Arm Controller
An, Bin; Massie, Thomas H.; Vayner, Vladimir
2004-01-01
An electromechanical exoskeletal arm apparatus has been designed for use in controlling a remote robotic manipulator arm. The apparatus, called a force-feedback exoskeleton arm master (F-EAM) is comfortable to wear and easy to don and doff. It provides control signals from the wearer s arm to a robot arm or a computer simulator (e.g., a virtual-reality system); it also provides force and torque feedback from sensors on the robot arm or from the computer simulator to the wearer s arm. The F-EAM enables the wearer to make the robot arm gently touch objects and finely manipulate them without exerting excessive forces. The F-EAM features a lightweight design in which the motors and gear heads that generate force and torque feedback are made smaller than they ordinarily would be: this is achieved by driving the motors to power levels greater than would ordinarily be used in order to obtain higher torques, and by providing active liquid cooling of the motors to prevent overheating at the high drive levels. The F-EAM (see figure) includes an assembly that resembles a backpack and is worn like a backpack, plus an exoskeletal arm mechanism. The FEAM has five degrees of freedom (DOFs) that correspond to those of the human arm: 1. The first DOF is that of the side-to-side rotation of the upper arm about the shoulder (rotation about axis 1). The reflected torque for this DOF is provided by motor 1 via drum 1 and a planar four-bar linkage. 2. The second DOF is that of the up-and-down rotation of the arm about the shoulder. The reflected torque for this DOF is provided by motor 2 via drum 2. 3. The third DOF is that of twisting of the upper arm about its longitudinal axis. This DOF is implemented in a cable remote-center mechanism (CRCM). The reflected torque for this DOF is provided by motor 3, which drives the upper-arm cuff and the mechanism below it. A bladder inflatable by gas or liquid is placed between the cuff and the wearer s upper arm to compensate for misalignment
Feedback control design for discrete-time piecewise affine systems
Institute of Scientific and Technical Information of China (English)
XU Jun; XIE Li-hua
2007-01-01
This paper investigates the design of state feedback and dynamic output feedback stabilizing controllers for discrete-time piecewise affine (PWA) systems. The main objective is to derive design methods that will incorporate the partition information of the PWA systems so as to reduce the design conservatism embedded in existing design methods. We first introduce a transformation that converts the feedback control design problem into a bilinear matrix inequality (BMI) problem. Then, two iterative algorithms are proposed to compute the feedback controllers characterized by the BMI. Several simulation examples are given to demonstrate the advantages of the proposed design.
The output feedback control for uncertain nonholonomic systems
Institute of Scientific and Technical Information of China (English)
Qiangde WANG; Chunling WEI; Siying ZHANG
2006-01-01
This paper considers the problems of almost asymptotic stabilization and global asymptotic regulation (GAR) by output feedback for a class of uncertain nonholonomic systems. By combining the nonsmooth change of coordinates and output feedback domination design together, we construct a simple linear time-varying output feedback controller, which can universally stabilize a whole family of uncertain nonholonomic systems. The simulation demonstrates the effectiveness of the proposed controller.
Online feedback-controlled renal constant infusion clearances in rats.
Schock-Kusch, Daniel; Shulhevich, Yury; Xie, Qing; Hesser, Juergen; Stsepankou, Dzmitry; Neudecker, Sabine; Friedemann, Jochen; Koenig, Stefan; Heinrich, Ralf; Hoecklin, Friederike; Pill, Johannes; Gretz, Norbert
2012-08-01
Constant infusion clearance techniques using exogenous renal markers are considered the gold standard for assessing the glomerular filtration rate. Here we describe a constant infusion clearance method in rats allowing the real-time monitoring of steady-state conditions using an automated closed-loop approach based on the transcutaneous measurement of the renal marker FITC-sinistrin. In order to optimize parameters to reach steady-state conditions as fast as possible, a Matlab-based simulation tool was established. Based on this, a real-time feedback-regulated approach for constant infusion clearance monitoring was developed. This was validated by determining hourly FITC-sinistrin plasma concentrations and the glomerular filtration rate in healthy and unilaterally nephrectomized rats. The transcutaneously assessed FITC-sinistrin fluorescence signal was found to reflect the plasma concentration. Our method allows the precise determination of the onset of steady-state marker concentration. Moreover, the steady state can be monitored and controlled in real time for several hours. This procedure is simple to perform since no urine samples and only one blood sample are required. Thus, we developed a real-time feedback-based system for optimal regulation and monitoring of a constant infusion clearance technique.
Hansen, Steve; Pfeiffer, Jacob; Patterson, Jae Todd
2011-01-01
A traditional control group yoked to a group that self-controls their reception of feedback receives feedback in the same relative and absolute manner. This traditional control group typically does not learn the task as well as the self-control group. Although the groups are matched for the amount of feedback they receive, the information is provided on trials in which the individual may not request feedback if he or she were provided the opportunity. Similarly, individuals may not receive feedback on trials for which it would be a beneficial learning experience. Subsequently, the mismatch between the provision of feedback and the potential learning opportunity leads to a decrement in retention. The present study was designed to examine motor learning for a yoked group with the same absolute amount of feedback, but who could self-control when they received feedback. Increased mental processing of error detection and correction was expected for the participants in the yoked self-control group because of their choice to employ a limited resource in the form of a decreasing amount of feedback opportunities. Participants in the yoked with self-control group committed fewer errors than the self-control group in retention and the traditional yoked group in both the retention and time transfer blocks. The results suggest that the yoked with self-control group was able to produce efficient learning effects and can be a viable control group for further motor learning studies.
Multichannel electrotactile feedback for simultaneous and proportional myoelectric control
Patel, Gauravkumar K.; Dosen, Strahinja; Castellini, Claudio; Farina, Dario
2016-10-01
Objective. Closing the loop in myoelectric prostheses by providing artificial somatosensory feedback to the user is an important need for prosthetic users. Previous studies investigated feedback strategies in combination with the control of one degree of freedom of simple grippers. Modern hands, however, are sophisticated multifunction systems. In this study, we assessed multichannel electrotactile feedback integrated with an advanced method for the simultaneous and proportional control of individual fingers of a dexterous hand. Approach. The feedback used spatial and frequency coding to provide information on the finger positions (normalized flexion angles). A comprehensive set of conditions have been investigated in 28 able-bodied subjects, including feedback modalities (visual, electrotactile and no feedback), control tasks (fingers and grasps), systems (virtual and real hand), control methods (ideal and realistic) and range of motion (low and high). The task for the subjects was to operate the hand using closed-loop myoelectric control and generate the desired movement (e.g., selected finger or grasp at a specific level of closure). Main results. The subjects could perceive the multichannel and multivariable electrotactile feedback and effectively exploit it to improve the control performance with respect to open-loop grasping. The improvement however depended on the reliability of the feedforward control, with less consistent control exhibiting performance trends that were more complex across the conditions. Significance. The results are promising for the potential application of advanced feedback to close the control loop in sophisticated prosthetic systems.
Optimal control novel directions and applications
Aronna, Maria; Kalise, Dante
2017-01-01
Focusing on applications to science and engineering, this book presents the results of the ITN-FP7 SADCO network’s innovative research in optimization and control in the following interconnected topics: optimality conditions in optimal control, dynamic programming approaches to optimal feedback synthesis and reachability analysis, and computational developments in model predictive control. The novelty of the book resides in the fact that it has been developed by early career researchers, providing a good balance between clarity and scientific rigor. Each chapter features an introduction addressed to PhD students and some original contributions aimed at specialist researchers. Requiring only a graduate mathematical background, the book is self-contained. It will be of particular interest to graduate and advanced undergraduate students, industrial practitioners and to senior scientists wishing to update their knowledge.
OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION
Directory of Open Access Journals (Sweden)
MARIAN GAICEANU
2016-01-01
Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.
Role of feedback in voluntary control of heart rate.
Manuck, S B; Levenson, R W; Hinrichsen, J J; Gryll, S L
1975-06-01
The relative effectiveness of biofeedback techniques on the voluntary control of heart rate was examined by randomly assigning 32 Ss to one of four feedback conditions in a bi-directional heart-rate control task: (1) no feedback, (2) binary feedback--S was signaled when an interbeat interval had changed in the correct direction, (3) "real-time," proportional feedback--S was provided information about the relative duration of successive interbeat intervals, and (4) numerical, proportional feedback--each interbeat interval was represented as a numeral indicating its relationship to pre-trial mean by direction and magnitude. Significant over-all heart-rate changes were evidenced for both increase and decrease directions, but no differences were found between the feedback conditions. While these data suggest that feedback may be a relatively insignificant factor in voluntary heart-rate control, it was recommended that further investigation examine the role of feedback within the context of other training, mediating and motivational variables.
Optimal Control Development System for Electrical Drives
Directory of Open Access Journals (Sweden)
Marian GAICEANU
2008-08-01
Full Text Available In this paper the optimal electrical drive development system is presented. It consists of both electrical drive types: DC and AC. In order to implement the optimal control for AC drive system an Altivar 71 inverter, a Frato magnetic particle brake (as load, three-phase induction machine, and dSpace 1104 controller have been used. The on-line solution of the matrix Riccati differential equation (MRDE is computed by dSpace 1104 controller, based on the corresponding feedback signals, generating the optimal speed reference for the AC drive system. The optimal speed reference is tracked by Altivar 71 inverter, conducting to energy reduction in AC drive. The classical control (consisting of rotor field oriented control with PI controllers and the optimal one have been implemented by designing an adequate ControlDesk interface. The three-phase induction machine (IM is controlled at constant flux. Therefore, the linear dynamic mathematical model of the IM has been obtained. The optimal control law provides transient regimes with minimal energy consumption. The obtained solution by integration of the MRDE is orientated towards the numerical implementation-by using a zero order hold. The development system is very useful for researchers, doctoral students or experts training in electrical drive. The experimental results are shown.
Control of a Unified Chaotic System via Single Variable Feedback
Guo, Rong-Wei; Vincent E., U.
2009-09-01
Based on the LaSalle invariance principle, we propose a simple adaptive-feedback for controlling the unified chaotic system. We show explicitly with numerical proofs that our method can easily achieve the control of chaos in the unified chaotic system using only a single variable feedback. The present controller, to our knowledge, is the simplest control scheme for controlling a unified chaotic system.
Fuzzy-PID controlled lift feedback fin stabilizer
Institute of Scientific and Technical Information of China (English)
LIANG Yan-hua; JIN Hong-zhang; LIANG Li-hua
2008-01-01
Conventional PID controllers are widely used in fin stabilizer control systems,but they have time-variations,nonlinearity,and uncertainty influencing their control effects.A lift feedback fuzzy-PID control method was developed to better deal with these problems,and this lift feedback fin stabilizer system was simulated under different sea condition.Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.
Closed/Open-loop Sub-optimal Control of Structures Based on Output Feedbacks%基于输出反馈的建筑结构闭开环次优控制
Institute of Scientific and Technical Information of China (English)
宋刚; 谭川; 陈果
2015-01-01
,especially for some high-order systems,the proposed control strategy only requires the measurement of a partial state.In the calculation of a state tran-sition matrix,which is required to solve a differential equation,large rounding errors may occur when the time-step size is excessively small.To overcome this limitation,we introduce a precise integration algorithm to solve the differential equation.This algorithm is always numerically sta-ble and yields very high precision solutions for numerical integration problems.To demonstrate the effectiveness of the proposed control strategy,we investigated the undamped vibration of a three-story building subjected to horizontal seismic forces.We assumed that the columns of the building are massless and that the mass of the structure is concentrated at floor levels.We imple-mented control using actuators exerting forces on each story.We also assumed that floor veloci-ties can be measured in real time by sensors installed in every story unit.We used the NS compo-nent of the 1 940 El Centro earthquake ground acceleration record as the excitation source and per-formed calculations for its entire duration.We modeled the columns of the building as linear elas-tic springs and assumed the response mitigation effect of the actuators to be sufficient for the building to behave in a linear elastic manner during earthquake excitation.We did not consider the soil-structure interaction or the dynamic characteristics of the actuators.We investigated the con-trolled and uncontrolled behavior of the three-story undamped building and compared the relative displacement,velocity,acceleration,and inter-story displacement responses.Our numerical sim-ulation results show that the proposed closed/open-loop sub-optimal output feedback control strategy can significantly reduce structural earthquake responses.
Optimal control for chemical engineers
Upreti, Simant Ranjan
2013-01-01
Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de
Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback
DEFF Research Database (Denmark)
Fossen, T.I.; Blanke, M.
1999-01-01
More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...
Power, control and optimization
Vasant, Pandian; Barsoum, Nader
2013-01-01
The book consists of chapters based on selected papers of international conference „Power, Control and Optimization 2012”, held in Las Vegas, USA. Readers can find interesting chapters discussing various topics from the field of power control, its distribution and related fields. Book discusses topics like energy consumption impacted by climate, mathematical modeling of the influence of thermal power plant on the aquatic environment, investigation of cost reduction in residential electricity bill using electric vehicle at peak times or allocation and size evaluation of distributed generation using ANN model and others. Chapter authors are to the best of our knowledge the originators or closely related to the originators of presented ideas and its applications. Hence, this book certainly is one of the few books discussing the benefit from intersection of those modern and fruitful scientific fields of research with very tight and deep impact on real life and industry. This book is devoted to the studies o...
Design of a Helicopter Stability and Control Augmentation System Using Optimal Control Theory.
technique is described for the design of multivariable feedback controllers based upon results in optimal control theory . For a specified performance...helicopter flight envelope. The results show that optimal control theory can be used to design a helicopter stability and control augmentation system
Oil Reservoir Production Optimization using Optimal Control
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan
2011-01-01
Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...... the adjoint method. We use an Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) method for the integration and a quasi-Newton Sequential Quadratic Programming (SQP) algorithm for the constrained optimization. We use this algorithm in a numerical case study to optimize the production of oil from an oil...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%....
Active Noise Feedback Control Using a Neural Network
Zhang Qizhi; Jia Yongle
2001-01-01
The active noise control (ANC) is discussed. Many digital ANC systems often based on the filter-x algorithm for finite impulse response (FIR) filter use adaptive filtering techniques. But if the primary noise path is nonlinear, the control system based on adaptive filter technology will be invalid. In this paper, an adaptive active nonlinear noise feedback control approach using a neural network is derived. The feedback control system drives a secondary signal to destructively interfere with ...
Remote Robot Control With High Force-Feedback Gain
Kim, Won S.
1993-01-01
Improved scheme for force-reflecting hand control of remote robotic manipulator provides unprecedently high force-reflection gain, even when dissimilar master and slave arms used. Three feedback loops contained in remote robot control system exerting position-error-based force feedback and compliance control. Outputs of force and torque sensors on robot not used directly for force reflection, but for compliance control, while errors in position used to generate reflected forces.
Noise Control in Gene Regulatory Networks with Negative Feedback.
Hinczewski, Michael; Thirumalai, D
2016-07-01
Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results sh...
Unpower aerocraft augmented state feedback tracking guaranteed cost control
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Aimed at designing the unpower aerocraft attitude control system in a simple and practical way,the guaranteed cost control is adopted.To eliminate the steady-error,a novel tracking control approach-augmented state feedback tracking guaranteed cost control is proposed.Firstly,the unpower aerocraft is modeled as a linear system with norm bounded parameter uncertain,then the linear matrix inequality based state feedback gnaranteed cost control law is combined with the augmented state feedback tracking control from a new point of view.The sufficient condition of the existence of the augmented state feedback tracking guaranteed cost control is derived and converted to the feasible problem of the linear matrix inequality.Finally,the proposed approach is applied to a specified unpower aerocraft.The six dimensions of freedom simulation results show that the proposed approach is effective and feasible.
Thermodynamics of quantum-jump-conditioned feedback control.
Strasberg, Philipp; Schaller, Gernot; Brandes, Tobias; Esposito, Massimiliano
2013-12-01
We consider open quantum systems weakly coupled to thermal reservoirs and subjected to quantum feedback operations triggered with or without delay by monitored quantum jumps. We establish a thermodynamic description of such systems and analyze how the first and second law of thermodynamics are modified by the feedback. We apply our formalism to study the efficiency of a qubit subjected to a quantum feedback control and operating as a heat pump between two reservoirs. We also demonstrate that quantum feedbacks can be used to stabilize coherences in nonequilibrium stationary states which in some cases may even become pure quantum states.
Nonlinear feedback control of spatiotemporal chaos in coupled map lattices
Directory of Open Access Journals (Sweden)
Jin-Qing Fang
1998-01-01
Full Text Available We describe a nonlinear feedback functional method for study both of control and synchronization of spatiotemporal chaos. The method is illustrated by the coupled map lattices with five different connection forms. A key issue addressed is to find nonlinear feedback functions. Two large types of nonlinear feedback functions are introduced. The efficient and robustness of the method based on the flexibility of choices of nonlinear feedback functions are discussed. Various numerical results of nonlinear control are given. We have not found any difficulty for study both of control and synchronization using nonlinear feedback functional method. The method can also be extended to time continuous dynamical systems as well as to society problems.
An Industrial Model Based Disturbance Feedback Control Scheme
DEFF Research Database (Denmark)
Kawai, Fukiko; Nakazawa, Chikashi; Vinther, Kasper
2014-01-01
This paper presents a model based disturbance feedback control scheme. Industrial process systems have been traditionally controlled by using relay and PID controller. However these controllers are affected by disturbances and model errors and these effects degrade control performance. The authors...... propose a new control method that can decrease the negative impact of disturbance and model errors. The control method is motivated by industrial practice by Fuji Electric. Simulation tests are examined with a conventional PID controller and the disturbance feedback control. The simulation results...
Direct laser additive fabrication system with image feedback control
Energy Technology Data Exchange (ETDEWEB)
Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)
2002-01-01
A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.
Using Lyapunov function to design optimal controller for AQM routers
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; YE Cheng-qing; MA Xue-ying; CHEN Yan-hua; LI Xin
2007-01-01
It was shown that active queue management schemes implemented in the routers of communication networks supporting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper based on Lyapunov function we developed an optimal controller to improve active queue management (AQM) router's stability and response time,which are often in conflict with each other in system performance. Ns-2 simulations showed that optimal controller outperforms PI controller significantly.
Optimal Control of Mechanical Systems
Directory of Open Access Journals (Sweden)
Vadim Azhmyakov
2007-01-01
Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.
Semiglobal H-infinity State Feedback Control
DEFF Research Database (Denmark)
Cromme, Marc; Stoustrup, Jakob
1996-01-01
Semi-global set-stabilizing H-infinity controlis a local within some given compact set such that all statetrajectories are bounded inside the set, and are approaching an openloop invariant subset as time approaches infinity. Sufficientconditions for the existence of a continuous state feedback law...
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2007-09-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.
Numerical investigation on feedback control of flow around an oscillating hydrofoil by Lorentz force
Energy Technology Data Exchange (ETDEWEB)
Liu Zongkai; Zhou Benmou; Liu Huixing; Ji Yanliang; Huang Yadong, E-mail: kfliukai@126.com [Science and Technology on Transient Physics Laboratory, Nanjing University of Science and Technology, Nanjing 210094 (China)
2013-06-15
In order to improve the hydrodynamic characteristics of a hydrofoil (NACA0012), this paper investigates an oscillating hydrofoil immersed in seawater (an electrically poorly conducting fluid) with feedback control of electromagnetic force (Lorentz force). This method is used in the iterative process, by forecasting the location of boundary layer separation points and attack angle at the next time step and figuring out the optimal force distribution function based on these parameters, then returns to the current time step and applies the optimal force onto the leeside to control the flow separation. Based on the basic flow governing equations, the flow field structures, lift evolutions and energy consumptions (the input impulse of Lorentz force) have been numerically investigated. Numerical results show that with this control, the flow separation could be fully suppressed. Meanwhile, the lift increases dramatically and oscillation is suppressed successfully. Furthermore, under similar lift improvement and control effects, the feedback control optimal ratio is 72.58%. (paper)
Numerical investigation on feedback control of flow around an oscillating hydrofoil by Lorentz force
Liu, Zong-Kai; Zhou, Ben-Mou; Liu, Hui-Xing; Ji, Yan-Liang; Huang, Ya-Dong
2013-06-01
In order to improve the hydrodynamic characteristics of a hydrofoil (NACA0012), this paper investigates an oscillating hydrofoil immersed in seawater (an electrically poorly conducting fluid) with feedback control of electromagnetic force (Lorentz force). This method is used in the iterative process, by forecasting the location of boundary layer separation points and attack angle at the next time step and figuring out the optimal force distribution function based on these parameters, then returns to the current time step and applies the optimal force onto the leeside to control the flow separation. Based on the basic flow governing equations, the flow field structures, lift evolutions and energy consumptions (the input impulse of Lorentz force) have been numerically investigated. Numerical results show that with this control, the flow separation could be fully suppressed. Meanwhile, the lift increases dramatically and oscillation is suppressed successfully. Furthermore, under similar lift improvement and control effects, the feedback control optimal ratio is 72.58%.
Neural mechanisms underlying auditory feedback control of speech.
Tourville, Jason A; Reilly, Kevin J; Guenther, Frank H
2008-02-01
The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 136 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech.
Task-space sensory feedback control of robot manipulators
Cheah, Chien Chern
2015-01-01
This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity i...
Directory of Open Access Journals (Sweden)
V. Sharma
2011-08-01
Full Text Available This study demonstrates the use of a high-performance feedback neural network optimizer based on a new idea of successive approximation for finding the hourly optimal release schedules of interconnected multi-reservoir power system in such a way to minimize the overall cost of thermal generations spanned over the planning period. The main advantages of the proposed neural network optimizer over the existing neural network optimization models are that no dual variables, penalty parameters or lagrange multipliers are required. This network uses a simple structure with the least number of state variables and has better asymptotic stability. For an arbitrarily chosen initial point, the trajectory of the network converges to an optimal solution of the convex nonlinear programming problem. The proposed optimizer has been tested on a nonlinear practical system consisting of a multi-chain cascade of four linked reservoir type hydro-plants and a number of thermal units represented by a single equivalent thermal power plant and so obtained results have been validated using conventional conjugate gradient method and genetic algorithm based approach.
Optimal control of a CSTR process
Directory of Open Access Journals (Sweden)
A. Soukkou
2008-12-01
Full Text Available Designing an effective criterion and learning algorithm for find the best structure is a major problem in the control design process. In this paper, the fuzzy optimal control methodology is applied to the design of the feedback loops of an Exothermic Continuous Stirred Tank Reactor system. The objective of design process is to find an optimal structure/gains of the Robust and Optimal Takagi Sugeno Fuzzy Controller (ROFLC. The control signal thus obtained will minimize a performance index, which is a function of the tracking/regulating errors, the quantity of the energy of the control signal applied to the system, and the number of fuzzy rules. The genetic learning is proposed for constructing the ROFLC. The chromosome genes are arranged into two parts, the binary-coded part contains the control genes and the real-coded part contains the genes parameters representing the fuzzy knowledge base. The effectiveness of this chromosome formulation enables the fuzzy sets and rules to be optimally reduced. The performances of the ROFLC are compared to these found by the traditional PD controller with Genetic Optimization (PD_GO. Simulations demonstrate that the proposed ROFLC and PD_GO has successfully met the design specifications.
Directory of Open Access Journals (Sweden)
Francisco Palacios-Quiñonero
2014-07-01
Full Text Available In this paper, we present a novel two-step strategy for static output-feedback controller design. In the first step, an optimal state-feedback controller is obtained by means of a linear matrix inequality (LMI formulation. In the second step, a transformation of the LMI variables is used to derive a suitable LMI formulation for the static output-feedback controller. This design strategy can be applied to a wide range of practical problems, including vibration control of large structures, control of offshore wind turbines, control of automotive suspensions, vehicle driving assistance and disturbance rejection. Moreover, it allows designing decentralized and semi-decentralized static output-feedback controllers by setting a suitable zero-nonzero structure on the LMI variables. To illustrate the application of the proposed methodology, two centralized static velocity-feedback H-Infinity controllers and two fully decentralized static velocity-feedback H-Infinity controllers are designed for the seismic protection of a five-story building.
Design and Simulation of PMSM Feedback Linearization Control System
Directory of Open Access Journals (Sweden)
SONG Xiao-jing
2013-01-01
Full Text Available With the theory of AC adjustable speed as well as a new control theory research is unceasingly thorough, the permanent magnet synchronous motor control system requires high precision of control and high reliability of the occasion, access to a wide range of applications, in the modern AC motor has play a decisive role position. Based on the deep research on the feedback linearization technique based on, by choosing appropriate state transformation and control transform, PMSM model input output linearization, and the design of the feedback linearization controller, realized PMSM decoupling control based on Matlab, and PMSM feedback linearization control system simulation. The simulation results show that, the system in a certain range of speed than the traditional PI controller has better control performance, but to the parameter variation has strong sensitivity. It also determines the direction for future research.
Optimal Control of Evolutionary Dynamics
Chakrabarti, Raj; McLendon, George
2008-01-01
Elucidating the fitness measures optimized during the evolution of complex biological systems is a major challenge in evolutionary theory. We present experimental evidence and an analytical framework demonstrating how biochemical networks exploit optimal control strategies in their evolutionary dynamics. Optimal control theory explains a striking pattern of extremization in the redox potentials of electron transport proteins, assuming only that their fitness measure is a control objective functional with bounded controls.
Optimal Control of Mechanical Systems
Vadim Azhmyakov
2007-01-01
In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some ...
Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control
CSIR Research Space (South Africa)
Loveday, PW
1998-09-01
Full Text Available A method for analyzing the effect of feedback control on the dynamics of piezoelectric resonators used in vibratory gyroscopes has been developed. This method can be used to determine the feasibility of replacing the traditional mechanical balancing...
Feedback Scheduling of Priority-Driven Control Networks
Xia, Feng; Tian, Yu-Chu
2008-01-01
With traditional open-loop scheduling of network resources, the quality-of-control (QoC) of networked control systems (NCSs) may degrade significantly in the presence of limited bandwidth and variable workload. The goal of this work is to maximize the overall QoC of NCSs through dynamically allocating available network bandwidth. Based on codesign of control and scheduling, an integrated feedback scheduler is developed to enable flexible QoC management in dynamic environments. It encompasses a cascaded feedback scheduling module for sampling period adjustment and a direct feedback scheduling module for priority modification. The inherent characteristics of priority-driven control networks make it feasible to implement the proposed feedback scheduler in real-world systems. Extensive simulations show that the proposed approach leads to significant QoC improvement over the traditional open-loop scheduling scheme under both underloaded and overloaded network conditions.
Optimal Control Design with Limited Model Information
Farokhi, F; Johansson, K H
2011-01-01
We introduce the family of limited model information control design methods, which construct controllers by accessing the plant's model in a constrained way, according to a given design graph. We investigate the achievable closed-loop performance of discrete-time linear time-invariant plants under a separable quadratic cost performance measure with structured static state-feedback controllers. We find the optimal control design strategy (in terms of the competitive ratio and domination metrics) when the control designer has access to the local model information and the global interconnection structure of the plant-to-be-controlled. At last, we study the trade-off between the amount of model information exploited by a control design method and the best closed-loop performance (in terms of the competitive ratio) of controllers it can produce.
Directory of Open Access Journals (Sweden)
Muhammad Imran
2014-01-01
Full Text Available One of the major challenges for the CBIR is to bridge the gap between low level features and high level semantics according to the need of the user. To overcome this gap, relevance feedback (RF coupled with support vector machine (SVM has been applied successfully. However, when the feedback sample is small, the performance of the SVM based RF is often poor. To improve the performance of RF, this paper has proposed a new technique, namely, PSO-SVM-RF, which combines SVM based RF with particle swarm optimization (PSO. The aims of this proposed technique are to enhance the performance of SVM based RF and also to minimize the user interaction with the system by minimizing the RF number. The PSO-SVM-RF was tested on the coral photo gallery containing 10908 images. The results obtained from the experiments showed that the proposed PSO-SVM-RF achieved 100% accuracy in 8 feedback iterations for top 10 retrievals and 80% accuracy in 6 iterations for 100 top retrievals. This implies that with PSO-SVM-RF technique high accuracy rate is achieved at a small number of iterations.
Finite element modeling and feedback control of piezoelectric smart structures
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Presents the general formula derived with a smart beam structure bonded with piezoelectric material using the piezoelectricity theory, elastic mechanism and Hamilton principle for eleetromechanically coupled piezoelectric fi nite element and dynamic equations, the second order dynamic model built, and the expression of state space, and the analysis of conventional speed and position feedback and the design of optimum feedback controller for output, the fi nite element models built for a piezoelectric cantilever beam, and the feedback controller designed eventually, and concludes with simulation results that the vibration suppression obtained is very satisfactory and the algorithms proposed are very useful.
Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu
2017-01-01
Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.
Thermal stabilization of a microring modulator using feedback control.
Padmaraju, Kishore; Chan, Johnnie; Chen, Long; Lipson, Michal; Bergman, Keren
2012-12-17
We describe and demonstrate the use of a feedback control system to thermally stabilize a silicon microring modulator subjected to a thermally volatile environment. Furthermore, we establish power monitoring as an effective and appropriate mechanism to infer the temperature drift of a microring modulator. Our demonstration shows that a high-performance silicon microring-based device, normally inoperable in thermally volatile environments, can maintain error-free performance when a feedback control system is implemented.
Sufficiently informative functions and the minimax feedback control of uncertain dynamic systems.
Bertsekas, D. P.; Rhodes, I. B.
1973-01-01
The problem of optimal feedback control of uncertain discrete-time dynamic systems is considered where the uncertain quantities do not have a stochastic description but instead are known to belong to given sets. The problem is converted to a sequential minimax problem and dynamic programming is suggested as a general method for its solution. The notion of a sufficiently informative function, which parallels the notion of a sufficient statistic of stochastic optimal control, is introduced, and conditions under which the optimal controller decomposes into an estimator and an actuator are identified.
Investigation of optimal control system for arc spraying
Institute of Scientific and Technical Information of China (English)
Li Heqi; Li Chunxu
2005-01-01
Arc-voltage feedback PID ( Proportional plus Integral plus Differential) controller and arc-current feedback PID controller are designed with an algorithm of discrete PID. In order to realize parameters optimization and adaptation of the arc-spraying process and to reduce blindness in selecting process parameters, a serial communication interface between PC and MCU (Micro Control Unit) is designed so that on-line modification of the PID control parameters is implemented. A genetic algorithm is adopted to optimize PID control parameters. Meanwhile, the error between the actual value and the setting value of spraying current is selected as the judgment criterion to determine the adaptability for the algorithm. The best optimal population of PID control parameters can be obtained, so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc-spraying is obtained.
CONTROL CHAOS IN TRANSITION SYSTEM USING SAMPLED-DATA FEEDBACK
Institute of Scientific and Technical Information of China (English)
陆君安; 谢进; 吕金虎; 陈士华
2003-01-01
The method for controlling chaotic transition system was investigated using sampled-data. The output of chaotic transition system was sampled at a given sampling rate,then the sampled output was used by a feedbacks subsystem to construct a control signal for controlling chaotic transition system to the origin. Numerical simulations are presented to show the effectiveness and feasibility of the developed controller.
Optimal Control Of Nonlinear Wave Energy Point Converters
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten
2013-01-01
In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....
Control of the flow behind a backward-facing step by visual feedback
Gautier, N
2013-01-01
The separated flow downstream a backward-facing step is controlled using visual information for feedback. This is done when looking at the flow from two vantage points. Flow velocity fields are computed in real-time and used to yield inputs to a control loop. This approach to flow control is shown to be able to control the detached flow in the same way as has been done before by using the area of the recirculation region downstream the step as input for a gradient descent optimization scheme. Visual feedback using real-time computations of 2D velocity fields also allows for novel inputs to the feedback scheme. As a proof of concept, the spatially averaged value of the swirling strength is successfully used as input for an automatically tuned PID controller.
Global feedback control for pattern-forming systems.
Stanton, L G; Golovin, A A
2007-09-01
Global feedback control of pattern formation in a wide class of systems described by the Swift-Hohenberg (SH) equation is investigated theoretically, by means of stability analysis and numerical simulations. Two cases are considered: (i) feedback control of the competition between hexagon and roll patterns described by a supercritical SH equation, and (ii) the use of feedback control to suppress the blowup in a system described by a subcritical SH equation. In case (i), it is shown that feedback control can change the hexagon and roll stability regions in the parameter space as well as cause a transition from up to down hexagons and stabilize a skewed (mixed-mode) hexagonal pattern. In case (ii), it is demonstrated that feedback control can suppress blowup and lead to the formation of spatially localized patterns in the weakly nonlinear regime. The effects of a delayed feedback are also investigated for both cases, and it is shown that delay can induce temporal oscillations as well as blowup.
Virtual grasping: closed-loop force control using electrotactile feedback.
Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario
2014-01-01
Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.
A Design Method for a State Feedback Microcomputer Controller of a Wide Bandwidth Analog Plant.
1983-12-01
METHOD . . . .... 16 1. State Feedback Control System . . . . . . 16 2. Microcomputer Controller Design with Time Delay . . . . . . . . . . . . . . . . 18...90 C. DESIGN OF STATE FEEDBACK CONTROL SYSTEM WITH MICROCOMPUTER . . . . . . . . . . . . . . . . 91 1. Control Algorithm...FIGURES 2.1 Signal Flow Diagram of State Feedback System . . 17 2.2 Feedback Control System with PD Control . . . . 18 2.3 Bode Diagram of Eqn. 2.7
Active Noise Feedback Control Using a Neural Network
Directory of Open Access Journals (Sweden)
Zhang Qizhi
2001-01-01
Full Text Available The active noise control (ANC is discussed. Many digital ANC systems often based on the filter-x algorithm for finite impulse response (FIR filter use adaptive filtering techniques. But if the primary noise path is nonlinear, the control system based on adaptive filter technology will be invalid. In this paper, an adaptive active nonlinear noise feedback control approach using a neural network is derived. The feedback control system drives a secondary signal to destructively interfere with the original noise to cut down the noise power. An on-line learning algorithm based on the error gradient descent method was proposed, and the local stability of closed loop system is proved using the discrete Lyapunov function. A nonlinear simulation example shows that the adaptive active noise feedback control method based on a neural network is very effective to the nonlinear noise control.
Sampled-Data State Feedback Stabilization of Boolean Control Networks.
Liu, Yang; Cao, Jinde; Sun, Liangjie; Lu, Jianquan
2016-04-01
In this letter, we investigate the sampled-data state feedback control (SDSFC) problem of Boolean control networks (BCNs). Some necessary and sufficient conditions are obtained for the global stabilization of BCNs by SDSFC. Different from conventional state feedback controls, new phenomena observed the study of SDSFC. Based on the controllability matrix, we derive some necessary and sufficient conditions under which the trajectories of BCNs can be stabilized to a fixed point by piecewise constant control (PCC). It is proved that the global stabilization of BCNs under SDSFC is equivalent to that by PCC. Moreover, algorithms are given to construct the sampled-data state feedback controllers. Numerical examples are given to illustrate the efficiency of the obtained results.
Feedback Control Systems Loop Shaping Design with Practical Considerations
Kopsakis, George
2007-01-01
This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.
Developments in model-based optimization and control distributed control and industrial applications
Grancharova, Alexandra; Pereira, Fernando
2015-01-01
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and desi...
Active control of transient rotordynamic vibration by optimal control methods
Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.
1988-01-01
Although considerable effort has been put into the study of steady state vibration control, there are few methods applicable to transient vibration control of rotorbearing systems. In this paper optimal control theory has been adopted to minimize rotor vibration due to sudden imbalance, e.g., blade loss. The system gain matrix is obtained by choosing the weighting matrices and solving the Riccati equation. Control forces are applied to the system via a feedback loop. A seven mass rotor system is simulated for illustration. A relationship between the number of sensors and the number of modes used in the optimal control model is investigated. Comparisons of responses are made for various configurations of modes, sensors, and actuators. Furthermore, spillover effect is examined by comparing results from collocated and noncollocated sensor configurations. Results show that shaft vibration is significantly attenuated in the closed loop system.
Feedback control in a coupled Brownian ratchet
Institute of Scientific and Technical Information of China (English)
Gao Tian-Fu; Liu Feng-Shan; Chen Jin-Can
2012-01-01
On the basis of the double-well ratchet potential which can be calculated theoretically and implemented experimentally,the influences of the time delay,the coupling constant,and the asymmetric parameter of the potential on the performance of a delayed feedback ratchet consisting of two Brownian particles coupled mutually with a linear elastic force are investigated.The centre-of-mass velocity of two coupled Brownian particles.the average effective diffusion coefficient,and the Pe number are calculated.It is found that the parameters are affected by not only the time delay and coupling constant but also the asymmetric parameter of the double-well ratchet potential.It is also found that the enhancement of the current may be obtained by varying the coupling constant of the system for the weak coupling case.It is expected that the results obtained here may be observed in some physical and biological systems.
Buck-boost converter feedback controller design via evolutionary search
Sundareswaran, K.; Devi, V.; Nadeem, S. K.; Sreedevi, V. T.; Palani, S.
2010-11-01
Buck-boost converters are switched power converters. The model of the converter system varies from the ON state to the OFF state and hence traditional methods of controller design based on approximate transfer function models do not yield good dynamic response at different operating points of the converter system. This article attempts to design a feedback controller for a buck-boost type dc-dc converter using a genetic algorithm. The feedback controller design is perceived as an optimisation problem and a robust controller is estimated through an evolutionary search. Extensive simulation and experimental results provided in the article show the effectiveness of the new approach.
Stabilizing unstable steady states using multiple delay feedback control.
Ahlborn, Alexander; Parlitz, Ulrich
2004-12-31
Feedback control with different and independent delay times is introduced and shown to be an efficient method for stabilizing fixed points (equilibria) of dynamical systems. In comparison to other delay based chaos control methods multiple delay feedback control is superior for controlling steady states and works also for relatively large delay times (sometimes unavoidable in experiments due to system dead times). To demonstrate this approach for stabilizing unstable fixed points we present numerical simulations of Chua's circuit and a successful experimental application for stabilizing a chaotic frequency doubled Nd-doped yttrium aluminum garnet laser.
A feedback I2-controlled constant temperature solar radiation meter
Oliveira, Amauri; Deep, Gurdip Singh; Lima, Antonio Marcus Nogueira; Freire,Raimundo Carlos Silvério
1998-01-01
Texto completo: acesso restrito. p.1163-1167 The conventional thermoresistive sensor-based feedback constant temperature circuits have shown some performance limitations due to the input offset voltage of the amplifier. The dc analysis of this circuit has been presented to graphically demonstrate these limitations. Alternative feedback measurement scheme without employing the Wheatstone bridge is proposed. PI and predictive controller designs are described. Simulation results for the...
Control of breathing by interacting pontine and pulmonary feedback loops
Directory of Open Access Journals (Sweden)
Yaroslav I Molkov
2013-02-01
Full Text Available The medullary respiratory network generates respiratory rhythm via sequential phase switching, which in turn is controlled by multiple feedbacks including those from the pons and nucleus tractus solitarii; the latter mediates pulmonary afferent feedback to the medullary circuits. It is hypothesized that both pontine and pulmonary feedback pathways operate via activation of medullary respiratory neurons that are critically involved in phase switching. Moreover, the pontine and pulmonary control loops interact, so that pulmonary afferents control the gain of pontine influence of the respiratory pattern. We used an established computational model of the respiratory network (Smith et al. J. Neurophysiol. 2007 and extended it by incorporating pontine circuits and pulmonary feedback. In the extended model, the pontine neurons receive phasic excitatory activation from, and provide feedback to, medullary respiratory neurons responsible for the onset and termination of inspiration. The model was used to study the effects of: (1 vagotomy (removal of pulmonary feedback, (2 suppression of pontine activity attenuating pontine feedback, and (3 these perturbations applied together on the respiratory pattern and durations of inspiration (TI and expiration (TE. In our model: (a the simulated vagotomy resulted in increases of both TI and TE, (b the suppression of pontine-medullary interactions led to the prolongation of TI at relatively constant, but variable TE, and (c these perturbations applied together resulted in apneusis, characterized by a significantly prolonged TI. The results of modeling were compared with, and provided a reasonable explanation for, multiple experimental data. The characteristic changes in TI and TE demonstrated with the model may represent characteristic changes in the balance between the pontine and pulmonary feedback control mechanisms that may reflect specific cardio-respiratory disorders and diseases.
Discrete-Time Controllability for Feedback Quantum Dynamics
Albertini, Francesca
2010-01-01
Controllability properties for discrete-time, Markovian quantum dynamics are investigated. We find that, while in general the controlled system is not finite-time controllable, feedback control allows for arbitrary asymptotic state-to-state transitions. Under further assumption on the form of the measurement, we show that finite-time controllability can be achieved in a time that scales linearly with the dimension of the system, and we provide an iterative procedure to design the unitary control actions.
Operating wind turbines in strong wind conditions by using feedforward-feedback control
Feng, Ju; Sheng, Wen Zhong
2014-12-01
Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.
Operating wind turbines in strong wind conditions by using feedforward-feedback control
DEFF Research Database (Denmark)
Feng, Ju; Shen, Wen Zhong
2014-01-01
the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening......Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines...... in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using...
Tracking control of robot manipulators via output feedback linearization
Institute of Scientific and Technical Information of China (English)
FEI Yue-nong; Wu Qing-hua
2006-01-01
This paper presents a robot manipulator tracking controller based on output feedback linearization.A sliding mode perturbation observer (SPO) is designed to estimate unmeasurable states and system perturbations that involve system nonlinearities,disturbances and unmodelled dynamics.The use of SPO allows to input/output linearize and decouple the strongly coupled nonlinear robot manipulator system merely by the feedback of joint angles.The controller design does not need an accurate model of the robot manipulator.Simulation studies are undertaken based on a two-link robot manipulator to evaluate the proposed approach.The simulation results show that the proposed controller has more superior tracking control performance,with payload changing in a wide range,in comparison with a sliding mode controller (SMC) designed based on state feedback linearization with full states available.
Self-Controlled Feedback for a Complex Motor Task
Directory of Open Access Journals (Sweden)
Wolf Peter
2011-12-01
Full Text Available Self-controlled augmented feedback enhances learning of simple motor tasks. Thereby, learners tend to request feedback after trials that were rated as good by themselves. Feedback after good trials promotes positive reinforcement, which enhances motor learning. The goal of this study was to investigate when naïve learners request terminal visual feedback in a complex motor task, as conclusions drawn on simple tasks can hardly be transferred to complex tasks. Indeed, seven of nine learners stated to have intended to request feedback predominantly after good trials, but in contrast to their intention, kinematic analysis showed that feedback was rather requested randomly (23% after good, 44% after intermediate, 33% after bad trials. Moreover, requesting feedback after good trials did not correlate with learning success. It seems that self-estimation of performance in complex tasks is challenging. As a consequence, learners might have focused on certain movement aspects rather than on the overall movement. Further studies should assess the current focus of the learner in detail to gain more insight in self-estimation capabilities during complex motor task learning.
Feedback Control Design for Counterflow Thrust Vectoring
2005-09-01
in Figures 3 thru 6, but enabled the experimentation to much more closely mimic flight conditions. PID controllers were designed using robust -f1...compensation of both delayed and non-delayed processes. 8 PID controllers often display robustness to incorrect process model order assumptions and...valve saturation is also a significant obstacle. PID controllers are the most commonly used controllers in industrial practice.’ PID control was used
Feedback Power Control Strategies inWireless Sensor Networks with Joint Channel Decoding
Directory of Open Access Journals (Sweden)
Fabio Perna
2009-11-01
Full Text Available In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD. In particular, upon the derivation of the feasible signal-to-noise ratio (SNR region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP, and (ii an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO scenario, where the sensors observe noisy versions of a common binary information sequence and the AP’s goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.
Global feedforward and glocal feedback control of large deformable mirrors
Ruppel, Thomas; Sawodny, Oliver
2011-09-01
With an increasing demand for high spatial resolution and fast temporal response of AO components for ELTs, the need for actively controlled, electronically damped deformable mirrors is evident. With typically more than 1000 actuators and collocated sensors, the evolving multi-input multi-output control task for shaping the deformable mirror requires sophisticated control concepts. Although global position control of the mirror would be the most promising solution, the computational complexity for high order spatial control of the deformable element typically exceeds available computing power. Due to this reason, existing deformable membrane mirrors for large telescopes incorporate local feedback instead of global feedback control and neglect some of the global dynamics of the deformable mirror. As a side effect, coupling of the separately controlled actuators through the deformable membrane can lead to instability of the individually stable loops and draws the need for carefully designing the control parameters of the local feedback loops. In this presentation, the computational demands for global position control of deformable mirrors are revisited and a less demanding model-based modal control concept for large deformable membrane mirrors with distributed force actuators and collocated position sensors is presented. Both global feedforward and glocal feedback control is employed in a two-degree-of-freedom control structure allowing for separately designing tracking performance and disturbance rejection. In order to implement state feedback control, non-measureable state information is reconstructed by using model-based distributed state observers. By taking into account the circular symmetry of the deformable mirror geometry, the computational complexity of the algorithms is discussed and model reduction techniques with quasi-static state approximation are presented. As an example, the geometric layout of required sensor / actuator wiring and computational
Optimal Control for a Class of Chaotic Systems
Directory of Open Access Journals (Sweden)
Jianxiong Zhang
2012-01-01
Full Text Available This paper proposes the optimal control methods for a class of chaotic systems via state feedback. By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal control method of piecewise linear systems, which is cast as an optimization problem under constraints of bilinear matrix inequalities (BMIs. In addition, the lower bound on cost function can be achieved by solving a semidefinite programming (SDP. Finally, numerical examples are given to illustrate the results.
On the use of positive feedback for improved torque control
Institute of Scientific and Technical Information of China (English)
Houman DALLALI; Gustavo A MEDRANO-CERDA; Michele FOCCHI; Thiago BOAVENTURA; Marco FRIGERIO; Claudio SEMINI; Jonas BUCHLI; Darwin G CALDWELL
2015-01-01
This paper considers the torque control problem for robots with flexible joints driven by electrical actuators. It is shown that the achievable closed-loop tracking bandwidth using PI torque controllers may be limited due to transmission zeros introduced by the load dynamics. This limitation is overcome by using positive feedback from the load motion in unison with PI torque controllers. The positive feedback is given in terms of load velocity, acceleration and jerk. Stability conditions for designing decentralized PI torque controllers are derived in terms of Routh-Hurwitz criteria. Disturbance rejection properties of the closed system are characterized and an analysis is carried out investigating the use of approximate positive feedback by omitting acceleration and/or jerk signals. The results of this paper are illustrated for a two DoF (degrees of freedom) system. Experimental results for a one DoF system are also included.
Robust and optimal attitude control of spacecraft with disturbances
Park, Yonmook
2015-05-01
In this paper, a robust and optimal attitude control design that uses the Euler angles and angular velocities feedback is presented for regulation of spacecraft with disturbances. In the control design, it is assumed that the disturbance signal has the information of the system state. In addition, it is assumed that the disturbance signal tries to maximise the same performance index that the control input tries to minimise. After proposing a robust attitude control law that can stabilise the complete attitude motion of spacecraft with disturbances, the optimal attitude control problem of spacecraft is formulated as the optimal game-theoretic problem. Then it is shown that the proposed robust attitude control law is the optimal solution of the optimal game-theoretic problem. The stability of the closed-loop system for the proposed robust and optimal control law is proven by the LaSalle invariance principle. The theoretical results presented in this paper are illustrated by a numerical example.
Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik
2008-07-01
Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.
A lightweight feedback-controlled microdrive for chronic neural recordings
Jovalekic, A.; Cavé-Lopez, S.; Canopoli, A.; Ondracek, J. M.; Nager, A.; Vyssotski, A. L.; Hahnloser, R. H. R.
2017-04-01
Objective. Chronic neural recordings have provided many insights into the relationship between neural activity and behavior. We set out to develop a miniaturized motorized microdrive that allows precise electrode positioning despite possibly unreliable motors. Approach. We designed a feedback-based motor control mechanism. It contains an integrated position readout from an array of magnets and a Hall sensor. Main results. Our extremely lightweight (feedback-based microdrive control requires little extra size and weight, suggesting that such control can be incorporated into more complex multi-electrode designs.
On spatial spillover in feedforward and feedback noise control
Xie, Antai; Bernstein, Dennis
2017-03-01
Active feedback noise control for rejecting broadband disturbances must contend with the Bode integral constraint, which implies that suppression over some frequency range gives rise to amplification over another range at the performance microphone. This is called spectral spillover. The present paper deals with spatial spillover, which refers to the amplification of noise at locations where no microphone is located. A spatial spillover function is defined, which is valid for both feedforward and feedback control with scalar and vector control inputs. This function is numerically analyzed and measured experimentally. Obstructions are introduced in the acoustic space to investigate their effect on spatial spillover.
Event-triggered output feedback control for distributed networked systems.
Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa
2016-01-01
This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature.
Transfer Function Model of Multirate Feedback Control Systems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the suitably defined multivariable version of Krancoperators and the extended input and output vectors, the multirate sampling plant is transformed to a equivalent time invariant single rate one, then the transfer function model of the multivariable multirate sampling plant is obtained. By combining this plant model with the time invariant description of the multirate controller in terms of extended vectors, the closed-loop transfer function model of the multirate feedback control system can be determinated. This transfer function model has a very simple structure, and can be used as a basis for the analysis and synthesis of the multirate sampling feedback control systems in the frequency domain.
Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors
Bean, Jacob; Fuller, Chris; Schiller, Noah
2016-01-01
Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.
High-performance laser power feedback control system for cold atom physics
Institute of Scientific and Technical Information of China (English)
Bo Lu; Thibault Vogt; Xinxing Liu; Xiaoji Zhou; Xuzong Chen
2011-01-01
@@ A laser power feedback control system that features fast response,large-scale performance,low noise,and excellent stability is presented.Some essential points used for optimization are described.Primary optical lattice experiments are given as examples to show the performance of this system.With these performance characteristics,the power control system is useful for applications in cold atom physics and precision measurements.%A laser power feedback control system that features fast response, large-scale performance, low noise, and excellent stability is presented. Some essential points used for optimization are described. Primary optical lattice experiments are given as examples to show the performance of this system. With these performance characteristics, the power control system is useful for applications in cold atom physics and precision measurements.
Directory of Open Access Journals (Sweden)
T. Botmart
2013-01-01
Full Text Available The problem of guaranteed cost control for exponential synchronization of cellular neural networks with interval nondifferentiable and distributed time-varying delays via hybrid feedback control is considered. The interval time-varying delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals is combined with Leibniz-Newton's formula and the technique of dealing with some integral terms. New delay-dependent sufficient conditions for the exponential synchronization of the error systems with memoryless hybrid feedback control are first established in terms of LMIs without introducing any free-weighting matrices. The optimal guaranteed cost control with linear error hybrid feedback is turned into the solvable problem of a set of LMIs. A numerical example is also given to illustrate the effectiveness of the proposed method.
Feedback control of water supply in an NFT growing system
Gieling, Th.H.; Janssen, H.J.J.; Vries, de H.C.; Loef, P.
2001-01-01
The paper explores a concept of irrigation control, where the supply of nutrient solution is controlled without the use of predictive uptake models but rather by the use of a direct feedback of a drain flow measurement. This concept proves to be a viable approach. Results are presented, showing the
High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization
1992-05-01
and Spacecraft Body from Gyro Measurements ......... .................................. 119 D.2 An Approximation to Exact Linearization using IPSRU...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback...though basic techniques were adapted from recent references on the use of exact linearization (such as [8] and [27]), the specific control approach
A Result on Output Feedback Linear Quadratic Control
Engwerda, J.C.; Weeren, A.J.T.M.
2006-01-01
In this note we consider the static output feedback linear quadratic control problem.We present both necessary and sufficient conditions under which this problem has a solution in case the involved cost depend only on the output and control variables.This result is used to present both necessary and
Controlling Beam Halo-Chaos via Time-Delayed Feedback
Institute of Scientific and Technical Information of China (English)
FANG Jin-Qing; WENG Jia-Qiang; ZHU Lun-Wu; LUO Xiao-Shu
2004-01-01
The study of controlling high-current proton beam halo-chaos has become a key concerned issue for many important applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle in cell simulation results show that the method is very effective and has some advantages for high-current beam experiments and engineering.
Robust control of robots via linear estimated state feedback
Berghuis, Harry; Nijmeijer, Henk
1994-01-01
In this note we propose a robust tracking controller for robots that requires only position measurements. The controller consists of two parts: a linear observer part that generates an estimated error state from the error on the joint position and a linear feedback part that utilizes this estimated
A Direct Feedback Control Based on Fuzzy Recurrent Neural Network
Institute of Scientific and Technical Information of China (English)
李明; 马小平
2002-01-01
A direct feedback control system based on fuzzy-recurrent neural network is proposed, and a method of training weights of fuzzy-recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simul ation results indicate that fuzzy-recurrent neural network controller has perfect dynamic and static performances .
Quaternion Feedback Control for Rigid-body Spacecraft
DEFF Research Database (Denmark)
Jensen, Hans-Christian Becker; Wisniewski, Rafal
2001-01-01
This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental d...
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Directory of Open Access Journals (Sweden)
Jinxiang Dong
2008-07-01
Full Text Available There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting crosslayer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An eventdriven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.
Force control in the absence of visual and tactile feedback
Mugge, W.; Abbink, D.A.; Schouten, Alfred Christiaan; van der Helm, F.C.T.; Arendzen, J.H.; Meskers, C.G.M.
2013-01-01
Motor control tasks like stance or object handling require sensory feedback from proprioception, vision and touch. The distinction between tactile and proprioceptive sensors is not frequently made in dynamic motor control tasks, and if so, mostly based on signal latency. We previously found that
Optimal magnetic attitude control
DEFF Research Database (Denmark)
Wisniewski, Rafal; Markley, F.L.
1999-01-01
because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic...
Tractable problems in optimal decentralized control
Rotkowitz, Michael Charles
2005-07-01
This thesis considers the problem of constructing optimal decentralized controllers. The problem is formulated as one of minimizing the closed-loop norm of a feedback system subject to constraints on the controller structure. The notion of quadratic invariance of a constraint set with respect to a system is defined. It is shown that quadratic invariance is necessary and sufficient for the constraint set to be preserved under feedback. It is further shown that if the constraint set has this property, this allows the constrained minimum-norm problem to be solved via convex programming. These results are developed in a very general framework, and are shown to hold for continuous-time systems, discrete-time systems, or operators on Banach spaces, for stable or unstable plants, and for the minimization of any norm. The utility of these results is then demonstrated on some specific constraint classes. An explicit test is derived for sparsity constraints on a controller to be quadratically invariant, and thus amenable to convex synthesis. Symmetric synthesis is also shown to be quadratically invariant. The problem of control over networks with delays is then addressed as another constraint class. Multiple subsystems are considered, each with its own controller, such that the dynamics of each subsystem may affect those of other subsystems with some propagation delays, and the controllers may communicate with each other with some transmission delays. It is shown that if the communication delays are less than the propagation delays, then the associated constraints are quadratically invariant, and thus optimal controllers can be synthesized. We further show that this result still holds in the presence of computational delays. This thesis unifies the few previous results on specific tractable decentralized control problems, identifies broad and useful classes of new solvable problems, and delineates the largest known class of convex problems in decentralized control.
Chaos synchronization of two stochastic Duffing oscillators by feedback control
Energy Technology Data Exchange (ETDEWEB)
Wu Cunli [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China); Aircraft Strength Research Institute of China, 3 No. 2 Electron Road, Xi' an 710065 (China)]. E-mail: wucunli@yahoo.com; Fang Tong [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)]. E-mail: tfang@nwpu.edu.cn; Rong Haiwu [Department of Mathematics, Foshan University, Foshan, Guang Dong 528000 (China)
2007-05-15
This paper addresses chaos synchronization of two identical stochastic Duffing oscillators with bounded random parameters subject to harmonic excitations. In the analysis the stochastic Duffing oscillator is first transformed into an equivalent deterministic nonlinear system by Gegenbauer polynomial approximation, so that the chaos synchronization problem of stochastic Duffing oscillators can be reduced into that of the equivalent deterministic systems. Then a feedback control strategy is adopted to synchronize chaotic responses of two identical equivalent deterministic systems under different initial conditions. The feedback parameters are determined through analysis of the top Lyapunov exponent of the variational equation of the controlled responding system. Numerical analysis shows that the feedback control strategy is an effective way to synchronize two identical stochastic Duffing systems.
Second law of thermodynamics with discrete quantum feedback control.
Sagawa, Takahiro; Ueda, Masahito
2008-02-29
A new thermodynamic inequality is derived which leads to the maximum work that can be extracted from multi-heat-baths with the assistance of discrete quantum feedback control. The maximum work is determined by the free-energy difference and a generalized mutual information content between the thermodynamic system and the feedback controller. This maximum work can exceed that in conventional thermodynamics and, in the case of a heat cycle with two heat baths, the heat efficiency can be greater than that of the Carnot cycle. The consistency of our results with the second law of thermodynamics is ensured by the fact that work is needed for information processing of the feedback controller.
Optimal control studies for steamflooding
Energy Technology Data Exchange (ETDEWEB)
Liu, Wei.
1992-01-01
A system science approach using optimal control theory of distributed parameter systems has been developed to determine operating strategies that maximize the economic attractiveness of the steamflooding Enhanced Oil Recovery (EOR) process. Necessary conditions for optimization are established by using the calculus of variations and Pontryagin's Maximum Principle. The objective criterion is to maximize the difference between oil revenue and injected steam cost. A stable and efficient numerical algorithm, based on an iterative gradient method, is developed. The optimal control model is based on a three-dimensional, three-phase (oil, steam and water) steam injection numerical simulator. A discrete form of the model is formulated. The optimized operating variables are the optimal bottom-hole pressure, the optimal injection rate of steam and water, and the optimal steam quality policies. Another optimal control study is also conducted on a simplified one-dimensional model (the extended Neuman model) to provide quick and reliable preliminary information on the economic feasibility of steamflooding processes. The simplified control model only considers the injection rate of steam as the control variable. The performance of this system science approach is investigated through various one-, two- and three-dimensional steamflooding problems. The effects of reservoir properties and heterogeneity on optimal policies as well as the sensitivity of the control variables are also studied. Results show this approach yields significant insight into the steamflooding EOR process. Improvement of the economic objective is significant under optimal operation conditions. These optimization results are quite important in a successful application of the steamflooding EOR method.
Towards optimal indexing for relevance feedback in large image databases +.
Ramaswamy, Sharadh; Rose, Kenneth
2009-12-01
Motivated by the need to efficiently leverage user relevance feedback in content-based retrieval from image databases, we propose a fast, clustering-based indexing technique for exact nearest-neighbor search that adapts to the Mahalanobis distance with a varying weight matrix. We derive a basic property of point-to-hyperplane Mahalanobis distance, which enables efficient recalculation of such distances as the Mahalanobis weight matrix is varied. This property is exploited to recalculate bounds on query-cluster distances via projection on known separating hyperplanes (available from the underlying clustering procedure), to effectively eliminate noncompetitive clusters from the search and to retrieve clusters in increasing order of (the appropriate) distance from the query. We compare performance with an existing variant of VA-File indexing designed for relevance feedback, and observe considerable gains.
Semiglobal H-infty state feedback control
DEFF Research Database (Denmark)
Cromme, Marc
1997-01-01
semi-global set-stabilizing H-infty control is local H-infty control within some given compact set O such that all state trajectories are bounded inside O, and are approaching an open loop invariant set S subset O as t -> infinity. Sufficient conditions for the existance of a continuous statefeed...
Reducing feedback requirements of workload control
Henrich, Peter; Land, Martin; van der Zee, Durk; Gaalman, Gerard
2004-01-01
The workload control concept is known as a robust shop floor control concept. It is especially suited for the dynamic environment of small- and medium-sized enterprises (SMEs) within the make-to-order sector. Before orders are released to the shop floor, they are collected in an ‘order pool’. To mak
Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.
Wang, Wei; Tong, Shaocheng
2017-01-10
This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.
Adaptive output feedback control of aircraft flexible modes
Ponnusamy, Sangeeth Saagar; Bordeneuve-Guibé, Joël
2012-01-01
The application of adaptive output feedback augmentative control to the flexible aircraft problem is presented. Experimental validation of control scheme was carried out using a three disk torsional pendulum. In the reference model adaptive control scheme, the rigid aircraft reference model and neural network adaptation is used to control structural flexible modes and compensate for the effects unmodeled dynamics and parametric variations of a classical high order large passenger aircraft. Th...
PSO Based State Feedback Controller Design for SVC to Enhance the Stability of Power System
Directory of Open Access Journals (Sweden)
Saeid Jalilzadeh
2012-08-01
Full Text Available SVC is one of the most significant devices in FACTS technology, which is used in parallel compensation, enhancing the transient stability, limiting the low frequency oscillations and, etc. designing a proper controller is effective in operation of SVC. In this paper, a simplified analysis of the effect of a SVC on the stability of a Single Machine Infinite Bus (SMIB system is presented. The SVC which is located at the terminal of the generator has the state feedback controller in which the coefficients of state feedback are optimized by the Particle Swarm Optimization (PSO algorithm in order to damp the Low Frequency Oscillations (LFO. The equations that describe the proposed system have been linearized, and then the optimum state feedback controller has been designed for SVC which its optimal coefficients have been earned by PSO algorithm. The system with proposed controller has been simulated for a special disturbance in nominal loading condition. Thereafter, for three states viz light loading condition, normal loading condition and heavy loading condition, to show the robustness of the proposed controller, the previous disturbance has been applied again. Then the dynamic responses of the generator have been presented. The simulation results showed that the system composed with proposed controller has a suitable operation in fast damping of oscillations of the power system. to ensure stability and tracking. Simulations is carried out to verify the theoretical results.
A Biopsychosocial Model Based on Negative Feedback and Control
Directory of Open Access Journals (Sweden)
Timothy Andrew Carey
2014-02-01
Full Text Available Although the biopsychosocial model has been a popular topic of discussion for over four decades it has not had the traction in fields of research that might be expected of such an intuitively appealing idea. One reason for this might be the absence of an identified mechanism or a functional architecture that is authentically biopsychosocial. What is needed is a robust mechanism that is equally important to biochemical processes as it is to psychological and social processes. Negative feedback may be the mechanism that is required. Negative feedback has been implicated in the regulation of neurotransmitters as well as important psychological and social processes such as emotional regulation and the relationship between a psychotherapist and a client. Moreover, negative feedback is purported to also govern the activity of all other organisms as well as humans. Perceptual Control Theory (PCT describes the way in which negative feedback establishes control at increasing levels of perceptual complexity. Thus, PCT may be the first biopsychosocial model to be articulated in functional terms. In this paper we outline the working model of PCT and explain how PCT provides an embodied hierarchical neural architecture that utilises negative feedback to control physiological, psychological, and social variables. PCT has major implications for both research and practice and, importantly, provides a guide by which fields of research that are currently separated may be integrated to bring about substantial progress in understanding the way in which the brain alters, and is altered by, its behavioural and environmental context.
Feedback control of wave segments in an excitable medium
Institute of Scientific and Technical Information of China (English)
Wu Ning-Jie; Gao Hong-Jun; Ying He-Ping
2013-01-01
Depending on the excitability of the medium,a propagating wave segment will either contract or expand to fill the medium with spiral waves.This paper aims to introduce a simple mechanism of feedback control to stabilize such an expansion or contraction.To do this,we lay out a feedback control system in a block diagram and reduce it into a bare,universal formula.Analytical and experimental findings are compared through a series of numerical simulations of the Barkley model.
Decoherence control: A feedback mechanism based on hamiltonian tracking
Katz, G; Kosloff, R; Katz, Gil; Ratner, Mark; Kosloff, Ronnie
2006-01-01
Enviroment - caused dissipation disrupts the hamiltonian evolution of all quantum systems not fully isolated from any bath. We propose and examine a feedback-control scheme to eliminate such dissipation, by tracking the free hamiltonian evolution. We determine a driving-field that maximizes the projection of the actual molecular system onto the freely propagated one. The evolution of a model two level system in a dephasing bath is followed, and the driving field that overcomes the decoherence is calculated. An implementation of the scheme in the laboratory using feedback control is suggested.
Disturbance Attenuation State-Feedback Control for Uncertain Interconnected Systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems viastate feedback. This class of systems are described by a state space model, which contains unknown nonlinear interactionand time-varying norm-bounded parametric uncertainties in state equation. Using the Riccati-equation-based approach wedesign state feedback control laws, which guarantee the decentralized stability with disturbance attenuation for the inter-connected uncertain systems. A simple example of an interconnected uncertain linear system is presented to illustrate theresults.
Adaptive Feedfoward Feedback Control Framework Project
National Aeronautics and Space Administration — A novel approach is proposed for the suppression of the aircraft's structural vibration to increase the resilience of the flight control law in the presence of the...
Optimal control in thermal engineering
Badescu, Viorel
2017-01-01
This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.
Feedback control of two-headed Brownian motors in flashing ratchet potential
Institute of Scientific and Technical Information of China (English)
Zhao A-Ke; Zhang Hong-Wei; Li Yu-Xiao
2010-01-01
We presented a detailed investigation on the movement of two-headed Brownian motors in an asymmetric potential under a feedback control. By numerical simulations the direct current is obtained. The current is periodic in the initial length of spring. There is an optimal value of the spring constant. And the dependence of the current on the opposing force is reversed. Then we found that when the change of the temperature and the opposing force have optimal values, the Brownian motors can also obtain the optimal efficiency.
Design of output feedback UPFC controller for damping of electromechanical oscillations using PSO
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)
2009-10-15
In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) is developed. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. Only local and available state variables are adopted as the input signals of each controller for the decentralized design. Thus, structure of the designed UPFC controller is simple and easy to implement. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the designed PSO-based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to both the m{sub B} based controller and conventional power system stablizer. (author)
Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram
Directory of Open Access Journals (Sweden)
YangBeibei Ji
2016-01-01
Full Text Available Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.
Multi-objective optimization framework for networked predictive controller design.
Das, Sourav; Das, Saptarshi; Pan, Indranil
2013-01-01
Networked Control Systems (NCSs) often suffer from random packet dropouts which deteriorate overall system's stability and performance. To handle the ill effects of random packet losses in feedback control systems, closed over communication network, a state feedback controller with predictive gains has been designed. To achieve improved performance, an optimization based controller design framework has been proposed in this paper with Linear Matrix Inequality (LMI) constraints, to ensure guaranteed stability. Different conflicting objective functions have been optimized with Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The methodology proposed in this paper not only gives guaranteed closed loop stability in the sense of Lyapunov, even in the presence of random packet losses, but also gives an optimization trade-off between two conflicting time domain control objectives.
Theory of feedback controlled brain stimulations for Parkinson's disease
Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.
2016-01-01
Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.
An Improved Force Feedback Control Algorithm for Active Tendons
Directory of Open Access Journals (Sweden)
Ligang Cai
2012-08-01
Full Text Available An active tendon, consisting of a displacement actuator and a co-located force sensor, has been adopted by many studies to suppress the vibration of large space flexible structures. The damping, provided by the force feedback control algorithm in these studies, is small and can increase, especially for tendons with low axial stiffness. This study introduces an improved force feedback algorithm, which is based on the idea of velocity feedback. The algorithm provides a large damping ratio for space flexible structures and does not require a structure model. The effectiveness of the algorithm is demonstrated on a structure similar to JPL-MPI. The results show that large damping can be achieved for the vibration control of large space structures.
Richardson, Barbara K
2004-12-01
The emergency department provides a rich environment for diverse patient encounters, rapid clinical decision making, and opportunities to hone procedural skills. Well-prepared faculty can utilize this environment to teach residents and medical students and gain institutional recognition for their incomparable role and teamwork. Giving effective feedback is an essential skill for all teaching faculty. Feedback is ongoing appraisal of performance based on direct observation aimed at changing or sustaining a behavior. Tips from the literature and the author's experience are reviewed to provide formats for feedback, review of objectives, and elements of professionalism and how to deal with poorly performing students. Although the following examples pertain to medical student education, these techniques are applicable to the education of all adult learners, including residents and colleagues. Specific examples of redirection and reflection are offered, and pitfalls are reviewed. Suggestions for streamlining verbal and written feedback and obtaining feedback from others in a fast-paced environment are given. Ideas for further individual and group faculty development are presented.
Direct Torque Control With Feedback Linearization for Induction Motor Drives
DEFF Research Database (Denmark)
Lascu, Cristian Vaslie; Jafarzadeh, Saeed; Fadali, Sami M.
2017-01-01
This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to conventional DTC and the proposed solution is flexible and highly tunable due to the P component. The controller design is presented, and its robust stability is analyzed...
Implementation of integral feedback control in biological systems.
Somvanshi, Pramod R; Patel, Anilkumar K; Bhartiya, Sharad; Venkatesh, K V
2015-01-01
Integral control design ensures that a key variable in a system is tightly maintained within acceptable levels. This approach has been widely used in engineering systems to ensure offset free operation in the presence of perturbations. Several biological systems employ such an integral control design to regulate cellular processes. An integral control design motif requires a negative feedback and an integrating process in the network loop. This review describes several biological systems, ranging from bacteria to higher organisms in which the presence of integral control principle has been hypothesized. The review highlights that in addition to the negative feedback, occurrence of zero-order kinetics in the process is a key element to realize the integral control strategy. Although the integral control motif is common to these systems, the mechanisms involved in achieving it are highly specific and can be incorporated at the level of signaling, metabolism, or at the phenotypic levels. © 2015 Wiley Periodicals, Inc.
Institute of Scientific and Technical Information of China (English)
ZHANG DE-TAO
2009-01-01
In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.
Symposium on Optimal Control Theory
1987-01-01
Control theory can be roughly classified as deterministic or stochastic. Each of these can further be subdivided into game theory and optimal control theory. The central problem of control theory is the so called constrained maximization (which- with slight modifications--is equivalent to minimization). One can then say, heuristically, that the major problem of control theory is to find the maximum of some performance criterion (or criteria), given a set of constraints. The starting point is, of course, a mathematical representation of the performance criterion (or criteria)- sometimes called the objective functional--along with the constraints. When the objective functional is single valued (Le. , when there is only one objective to be maximized), then one is dealing with optimal control theory. When more than one objective is involved, and the objectives are generally incompatible, then one is dealing with game theory. The first paper deals with stochastic optimal control, using the dynamic programming ...
Feedback control of optical beam spatial profiles using thermal lensing
Liu, Zhanwei; Arain, Muzammil A; Williams, Luke; Mueller, Guido; Tanner, David B; Reitze, David H
2013-01-01
A method for active control of the spatial profile of a laser beam using adaptive thermal lensing is described. A segmented electrical heater was used to generate thermal gradients across a transmissive optical element, resulting in a controllable thermal lens. The segmented heater also allows the generation of cylindrical lenses, and provides the capability to steer the beam in both horizontal and vertical planes. Using this device as an actuator, a feedback control loop was developed to stabilize the beam size and position.
Quaternion Feedback Control for Rigid-body Spacecraft
DEFF Research Database (Denmark)
Jensen, Hans-Christian Becker; Wisniewski, Rafal
2001-01-01
This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental d...... disturbances correspond to those expected for the Roemer mission. The pros and cons of the algorithm are discussed. The results of the study show that the controller is a > successful candidate for on-board implementation...
Franklin, Nicholas T; Frank, Michael J
2015-12-25
Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies. A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population, allowing the system to self-tune and optimize performance across stochastic environments.
An Integrated Control and Scheduling Optimization Method of Networked Control Systems
Institute of Scientific and Technical Information of China (English)
HE Jian-qiang; ZHANG Huan-chun; JING Ya-zhi
2004-01-01
Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCSs). The limitation of communication bandwidth results in transport delay, affects the property of real-time system, and degrades the performance of NCSs. An integrated control and scheduling optimization method using genetic algorithm is proposed in this paper.This method can synchronously optimize network scheduling and improve the performance of NCSs. To illustrate its effectiveness, an example is provided.
Optimal control theory an introduction
Kirk, Donald E
2004-01-01
Optimal control theory is the science of maximizing the returns from and minimizing the costs of the operation of physical, social, and economic processes. Geared toward upper-level undergraduates, this text introduces three aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization.Chapters 1 and 2 focus on describing systems and evaluating their performances. Chapter 3 deals with dynamic programming. The calculus of variations and Pontryagin's minimum principle are the subjects of chapters 4 and 5, and chapter
Institute of Scientific and Technical Information of China (English)
韩江义; 游有鹏; 虞启凯
2012-01-01
After the force transmission performance of mecha-nism was studied, the concept of force transmission capacity was proposed. A multi-objective optimization function consisted of work-space, kinematics performance and force transmission performance was established and applied in optimization design of a three DOF hand controller mechanism. The optimization results of workspace, Jacobian condition number and performance of force transmission of mechanism were analyzed, parameters of primary structure and drive was determined, the prototype was manufactured eventually. The progress of optimization and development has provided references for development of hand controller with outstanding performance.%对机构力传递性能进行研究,并提出力传递能力概念.建立一种综合机构工作空间、运动学性能和力传递性能的多目标优化函数,并应用于一种三平动自由度的手控器机构优化设计.对机构优化结果进行工作空间、机构雅可比条件数和力传递性能分析,确定基本结构参数和动力驱动参数,进一步完成样机制作.优化和研制过程为高性能手控器的研制提供了参考.
Analysis and control for a new chaotic system via piecewise linear feedback
Energy Technology Data Exchange (ETDEWEB)
Zhang Jianxiong [Institute of Systems Engineering, Tianjin University, Tianjin 300072 (China)], E-mail: jxzhang@tju.edu.cn; Tang Wansheng [Institute of Systems Engineering, Tianjin University, Tianjin 300072 (China)
2009-11-30
This paper presents a new three-dimensional chaotic system containing two system parameters and a nonlinear term in the form of arc-hyperbolic sine function. The complicated dynamics are studied by virtue of theoretical analysis, numerical simulation and Lyapunov exponents spectrum. The system proposed is converted to an uncertain piecewise linear system. Then, based on piecewise quadratic Lyapunov function technique, the global control of the new chaotic system with {alpha}-stability constraint via piecewise linear state feedback is studied, where the optimal controller maximizing the decay rate {alpha} can be obtained by solving an optimization problem under bilinear matrix inequalities (BMIs) constraints.
Fundamental Principles of Coherent-Feedback Quantum Control
2014-12-08
AFRL-OSR-VA-TR-2015-0009 FUNDAMENTAL PRINCIPLES OF COHERENT-FEEDBACK QUANTUM CONTROL Hideo Mabuchi LELAND STANFORD JUNIOR UNIV CA Final Report 12/08...robustness in autonomous quantum memories" we have continued our group’s long-term research program in the architectural principles of autonomous
Feedback Control for Plasma Position on HL-2A Tokamak
Institute of Scientific and Technical Information of China (English)
LIBo; SONGXianming; LILi; LIULi; WANGMinghong; FANMingjie; CHENLiaoyuan; YAOLieying; YANGQingwei
2003-01-01
HL-2A is a tokamak with closed divertor. It had been built at the end of 2002 and began to discharge from then on. To further study plasma discharges in HL-2A, a feedback control system (FBCS) for plasma position bad been developed in 2003.
State-feedback control of LPV sampled-data systems
Directory of Open Access Journals (Sweden)
K. Tan
2000-01-01
norm of such sampled-data LPV systems using parameter-dependent Lyapunov functions. Based on these analysis results, the sampled-data state-feedback control synthesis problems are examined. Both analysis and synthesis conditions are formulated in terms of linear matrix inequalities that can be solved via efficient interior-point algorithms.
Multiple nonlinear parameter estimation using PI feedback control
Lith, van P. F.; Witteveen, H.; Betlem, B.H.L.; Roffel, B.
2001-01-01
Nonlinear parameters often need to be estimated during the building of chemical process models. To accomplish this, many techniques are available. This paper discusses an alternative view to parameter estimation, where the concept of PI feedback control is used to estimate model parameters. The appr
Ultrashort pulse laser microsurgery system with plasma luminescence feedback control
Energy Technology Data Exchange (ETDEWEB)
Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.
1997-11-10
Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.
Coherent-feedback Quantum Control with Cold Atomic Spins
2012-08-27
Coherent Feedback Control," GRC on Physics Research and Education, Mt. Holyoke College, August 2011 H. Mabuchi, "Design and analysis of autonomous...technique for compensation of tensor coupling effects in polarization spectroscopy of dense Cesium clouds , based on dual-wavelength probing with
Direct torque control with feedback linearization for induction motor drives
DEFF Research Database (Denmark)
Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.
2015-01-01
This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude...... of the sliding surface. The VSC component assures robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to DTC and the proposed solution is flexible and highly tunable due to the proportional controller. The controller design and its...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....
Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.
Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G
2016-07-01
We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.
On Output Feedback Multiobjective Control for Singularly Perturbed Systems
Directory of Open Access Journals (Sweden)
Mehdi Ghasem Moghadam
2011-01-01
Full Text Available A new design procedure for a robust 2 and ∞ control of continuous-time singularly perturbed systems via dynamic output feedback is presented. By formulating all objectives in terms of a common Lyapunov function, the controller will be designed through solving a set of inequalities. Therefore, a dynamic output feedback controller is developed such that ∞ and 2 performance of the resulting closed-loop system is less than or equal to some prescribed value. Also, ∞ and 2 performance for a given upperbound of singular perturbation parameter ∈(0,∗] are guaranteed. It is shown that the -dependent controller is well defined for any ∈(0,∗] and can be reduced to an -independent one so long as is sufficiently small. Finally, numerical simulations are provided to validate the proposed controller. Numerical simulations coincide with the theoretical analysis.
Design of Telerobotic Drilling Control System with Haptic Feedback
Directory of Open Access Journals (Sweden)
Faraz Shah
2013-01-01
system with haptic feedback that allows for the remote control of the vertical drilling operation. The human operator controls the vertical penetration velocity using a haptic device while simultaneously receiving the haptic feedback from the locally implemented virtual environment. The virtual environment is rendered as a virtual spring with stiffness updated based on the estimate of the stiffness of the rock currently being cut. Based on the existing mathematical models of drill string/drive systems and rock cutting/penetration process, a robust servo controller is designed which guarantees the tracking of the reference vertical penetration velocity of the drill bit. A scheme for on-line estimation of the rock intrinsic specific energy is implemented. Simulations of the proposed control and parameter estimation algorithms have been conducted; consequently, the overall telerobotic drilling system with a human operator controlling the process using PHANTOM Omni haptic device is tested experimentally, where the drilling process is simulated in real time in virtual environment.
Investigation of Optimal Control System for Arc Spraying
Institute of Scientific and Technical Information of China (English)
LIHe-qi; LIChun-xu; CHENKe-xuan; LUGuang
2004-01-01
An arc voltage feedback PID controller and arc current feedback PID controller are designed with a controlal gorithm of discrete PID separately to realize optimal control in computer controlling arc-spraying system. In order to realize optimization and adaptation of the arc-spraying process parameters as well as to reduce blindness in selecting process parameters, a serial communication interface between a PC for spraying data acquisition and a MCU of the control system is designed so that on-line modification of the PID control parameters is implemented. At the same time, a genetic algorithm is adopted to optimize the control parameters of PID controller, where the difference between the actually sampled value and the setting value of spraying current is made as the judgment criterion to determine the adaptability. The given range of control parameters varies from 0 to 15 and is to be encoded by a coding of four-bit binary string. The optimal population of control parameters of the PID controller can be obtained through reproduction, crossing and mutation, so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc spraying is obtained.
Investigation of Optimal Control System for Arc Spraying
Institute of Scientific and Technical Information of China (English)
LI He-qi; LI Chun-xu; CHEN Ke-xuan; LU Guang
2004-01-01
An arc voltage feedback PID controller and arc current feedback PID controller are designed with a control algorithm of discrete PID separately to realize optimal control in computer controlling arc-spraying system. In order to realize optimization and adaptation of the arc-spraying process parameters as well as to reduce blindness in selecting process parameters, a serial communication interface between a PC for spraying data acquisition and a MCU of the control system is designed so that on-line modification of the PID control parameters is implemented. At the same time, a genetic algorithm is adopted to optimize the control parameters of PID controller, where the difference between the actually sampled value and the setting value of spraying current is made as the judgment criterion to determine the adaptability. The given range of control parameters varies from 0 to 15 and is to be encoded by a coding of four-bit binary string. The optimal population of control parameters of the PID controller can be obtained through reproduction, crossing and mutation,so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc spraying is obtained.
Tracking control of chaotic dynamical systems with feedback linearization
Institute of Scientific and Technical Information of China (English)
QI Dong-lian; MA Guo-jin
2005-01-01
A new method was proposed for tracking the desired output of chaotic dynamical system using the feedback linearization and nonlinear extended statement observer method. The feedback linearization was used to convert the nonlinear chaotic system into linear system. The extended Luenberger-like statements observer was designed to reconstructing and observing the unmeasured statements when the tracking controller was designed. By this way, the chaotic system could be forced to track variable desired output, which could be a time variant function or an equilibrium points.Taken the Lorenz chaotic system as example, the simulation results show the validity of the conclusion and effectiveness of the algorithm.
Feedback Linearization Controller Of The Delta WingRock Phenomena
Directory of Open Access Journals (Sweden)
Mohammed Alkandari
2015-05-01
Full Text Available This project deals with the control of the wing rock phenomena of a delta wing aircraft. a control schemeis proposed to stabilize the system. The controlleris a feedback linearization controller. It is shown that the proposed control scheme guarantee the asymptotic convergence to zero of all the states of the system. To illustrate the performance of the proposed controller, simulation results are presented and discussed. It is found that the proposed control scheme work well for the wing rock phenomena of a delta wing aircraft.
Non-Markovian quantum feedback networks II: Controlled flows
Gough, John E.
2017-06-01
The concept of a controlled flow of a dynamical system, especially when the controlling process feeds information back about the system, is of central importance in control engineering. In this paper, we build on the ideas presented by Bouten and van Handel [Quantum Stochastics and Information: Statistics, Filtering and Control (World Scientific, 2008)] and develop a general theory of quantum feedback. We elucidate the relationship between the controlling processes, Z, and the measured processes, Y, and to this end we make a distinction between what we call the input picture and the output picture. We should note that the input-output relations for the noise fields have additional terms not present in the standard theory but that the relationship between the control processes and measured processes themselves is internally consistent—we do this for the two main cases of quadrature measurement and photon-counting measurement. The theory is general enough to include a modulating filter which post-processes the measurement readout Y before returning to the system. This opens up the prospect of applying very general engineering feedback control techniques to open quantum systems in a systematic manner, and we consider a number of specific modulating filter problems. Finally, we give a brief argument as to why most of the rules for making instantaneous feedback connections [J. Gough and M. R. James, Commun. Math. Phys. 287, 1109 (2009)] ought to apply for controlled dynamical networks as well.
All-optical noninvasive delayed feedback control of semiconductor lasers
Schikora, Sylvia
2013-01-01
The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached. The work has been awarded the Carl-Ramsauer-Prize 2012. Contents · All-Optical Control Setup · Stable States with Resonant Fabry-Perot Feedback · Control of an Unstable Stationary State and of Unstable Selfpulsations · Controlling Chaos · Con...
Controlling Chaos for Fractional Order Loss Type of Coupled Dynamos Systems via Feedback
Hao, Jianhong; Xiong, Xueyan; Bin, Hong; Sun, Nayan
This paper studies the problem of chaos control for the fractional order modified coupled dynamos system that involves mechanical damping loss. Based on the Routh-Hurwitz criterion generalized to the fractional order stability theory, the stability conditions of the controlled system are discussed. We adopt a simple single-variable linear feedback method to suppress chaos to the unstable equilibrium point and limit cycle. Then, a modified feedback control method is developed in light of the sliding mode variable structure, namely exerting the controller only when the system trajectory is close to the target orbit. This method not only maintains the dynamics of the system, but provides the optimal control time and adjustable limit cycles radius. Numerical simulation proves the validity of this method.
Practical Stabilization Through Real-Time Optimal Control, ACC (2006; Minneapolis, Minnesota)
Ross, I. Michael; Gong, Qi; Fahroo, Fariba; Kang,Wei
2006-01-01
The article of record as published may be located at http://ieeexplore.ieee.org Approved for public display, distribution unlimited Proceedings of the 2006 American Control Conference ; Minneapolis, Minnesota, USA, June 14-16, 2006. Infinite-horizon, nonlinear, optimal, feedback control is one of the fundamental problems in control theory. In this paper we propose a solution for this problem based on recent progress in real-time optimal control. The basic idea is to perform feedback ...
Suboptimal RED Feedback Control for Buffered TCP Flow Dynamics in Computer Network
Directory of Open Access Journals (Sweden)
N. U. Ahmed
2007-01-01
Full Text Available We present an improved dynamic system that simulates the behavior of TCP flows and active queue management (AQM system. This system can be modeled by a set of stochastic differential equations driven by a doubly stochastic point process with intensities being the controls. The feedback laws proposed monitor the status of buffers and multiplexor of the router, detect incipient congestion by sending warning signals to the sources. The simulation results show that the optimal feedback control law from the class of linear as well as quadratic polynomials can improve the system performance significantly in terms of maximizing the link utilization, minimizing congestion, packet losses, as well as global synchronization. The optimization process used is based on random recursive search technique known as RRS.
An optimal consensus tracking control algorithm for autonomous underwater vehicles with disturbances
Zhang, Jian Yuan Wen-Xia
2012-01-01
The optimal disturbance rejection control problem is considered for consensus tracking systems affected by external persistent disturbances and noise. Optimal estimated values of system states are obtained by recursive filtering for the multiple autonomous underwater vehicles modeled to multi-agent systems with Kalman filter. Then the feedforward-feedback optimal control law is deduced by solving the Riccati equations and matrix equations. The existence and uniqueness condition of feedforward-feedback optimal control law is proposed and the optimal control law algorithm is carried out. Lastly, simulations show the result is effectiveness with respect to external persistent disturbances and noise.
Directory of Open Access Journals (Sweden)
Ahmed N. U.
2004-01-01
Full Text Available We consider optimum feedback control strategy for computer communication network, in particular, the access control mechanism. The dynamic model representing the source and the access control system is described by a system of stochastic differential equations developed in our previous works. Simulated annealing (SA was used to optimize the parameters of the control law based on neural network. This technique was found to be computationally intensive. In this paper, we have proposed to use a more powerful algorithm known as recursive random search (RRS. By using this technique, we have been able to reduce the computation time by a factor of five without compromising the optimality. This is very important for optimization of high-dimensional systems serving a large number of aggregate users. The results show that the proposed control law can improve the network performance by improving throughput, reducing multiplexor and TB losses, and relaxing, not avoiding, congestion.
Bayesian feedback control of a two-atom spin-state in an atom-cavity system
Brakhane, Stefan; Kampschulte, Tobias; Martinez-Dorantes, Miguel; Reimann, René; Yoon, Seokchan; Widera, Artur; Meschede, Dieter
2012-01-01
We experimentally demonstrate real-time feedback control of the joint spin-state of two neutral Caesium atoms inside a high finesse optical cavity. The quantum states are discriminated by their different cavity transmission levels. A Bayesian update formalism is used to estimate state occupation probabilities as well as transition rates. We stabilize the balanced two-atom mixed state, which is deterministically inaccessible, via feedback control and find very good agreement with Monte-Carlo simulations. On average, the feedback loops achieves near optimal conditions by steering the system to the target state marginally exceeding the time to retrieve information about its state.
Optimal Control of Vehicular Formations with Nearest Neighbor Interactions
Lin, Fu; Jovanović, Mihailo R
2011-01-01
We consider the design of optimal localized feedback gains for one-dimensional formations in which vehicles only use information from their immediate neighbors. The control objective is to enhance coherence of the formation by making it behave like a rigid lattice. For the single-integrator model with symmetric gains, we establish convexity, implying that the globally optimal controller can be computed efficiently. We also identify a class of convex problems for double-integrators by restricting the controller to symmetric position and uniform diagonal velocity gains. To obtain the optimal non-symmetric gains for both the single- and the double-integrator models, we solve a parameterized family of optimal control problems ranging from an easily solvable problem to the problem of interest as the underlying parameter increases. When this parameter is kept small, we employ perturbation analysis to decouple the matrix equations that result from the optimality conditions, thereby rendering the unique optimal feedb...
Feedback Control of a Class of Nonholonomic Hamiltonian Systems
DEFF Research Database (Denmark)
Sørensen, Mathias Jesper
Feedback control of nonholonomic systems has always been problematic due to the nonholonomic constraints that limit the space of possible system velocities. This property is very basic, and Brockett proved that a nonholonomic system cannot be asymptotically stabilized by a time-invariant smooth...... turns out to be useful when stabilizing the nonholonomic system. If the system is properly actuated it is possible to asymptotically stabilize the primary part of the configuration coordinates via a passive energy shaping and damping injecting feedback. The feedback is smooth and time...... of the closed loop system some extensions are provided: integral action for asymptotic stabilization under the influence of disturbances, and an adaptive damping scheme ensuring that the robot travels at a predefined speed when tracking a path. Both of these extensions are defined in the framework...
Feedback Control of Two-Component Regulatory Systems.
Groisman, Eduardo A
2016-09-08
Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.
Active member bridge feedback control for damping augmentation
Chen, Gun-Shing; Lurie, Boris J.
1992-01-01
An active damping augmentation approach using active members in a structural system is described. The problem of maximizing the vibration damping in a lightly damped structural system is considered using the analogy of impedance matching between the load and source impedances in an electrical network. The proposed active damping augmentation approach therefore consists of finding the desired active member impedances that maximize the vibration damping, and designing a feedback control in order to achieve desired active member impedances. This study uses a bridge feedback concept that feeds back a combination of signals from sensors of the axial force and relative velocity across the active member to realize the desired active member impedance. The proposed active damping augmentation approach and bridge feedback concept were demonstrated on a three-longeron softly suspended truss structure.
Output feedback control of a quadrotor UAV using neural networks.
Dierks, Travis; Jagannathan, Sarangapani
2010-01-01
In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online, including uncertain nonlinear terms like aerodynamic friction and blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control input scheme is proposed which allows all six degrees of freedom (DOF) of the UAV to be controlled using only four control inputs. Furthermore, an NN observer is introduced to estimate the translational and angular velocities of the UAV, and an output feedback control law is developed in which only the position and the attitude of the UAV are considered measurable. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semiglobally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle. The effectiveness of proposed output feedback control scheme is then demonstrated in the presence of unknown nonlinear dynamics and disturbances, and simulation results are included to demonstrate the theoretical conjecture.
Parameterized design of nonlinear feedback controllers for servo positioning systems
Institute of Scientific and Technical Information of China (English)
Cheng Guoyang; Jin Wenguang
2006-01-01
To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.
Force Feedback Control of Robotic Forceps for Minimally Invasive Surgery
Ishii, Chiharu; Kamei, Yusuke
2008-06-01
Recently, the robotic surgical support systems are in clinical use for minimally invasive surgery. For improvement in operativity and safety of minimally invasive surgery, the development of haptic forceps manipulator is in demand to help surgeon's immersion and dexterity. We have developed a multi-DOF robotic forceps manipulator using a novel omni-directional bending mechanism, so far. In this paper, in order to control the developed robotic forceps as a slave manipulator, joy-stick type master manipulator with force feedback mechanism for remote control is designed and built, and force feedback bilateral control system was constructed for grasping and bending motions of the robotic forceps. Experimental works were carried out and experimental results showed the effectiveness of the proposed control system.
Feedback control of Layerwise Laser Melting using optical sensors
Craeghs, Tom; Bechmann, Florian; Berumen, Sebastian; Kruth, Jean-Pierre
Layerwise Laser Melting (LLM) is a layerwise production technique enabling the production of complex metallic parts. Thin powder layers are molten according to a predefined scan pattern by means of a laser source. Nowadays constant process parameters are used throughout the build, leading for some geometries to an overly thick feature size or overheating at downfacing surfaces. In this paper a monitoring and control system is presented which enables monitoring the melt pool continously at high speed throughout the building process. The signals from the sensors can be incorporated in a real-time control loop, in this way enabling feedback control of the process parameters. In this paper the experimental set-up will be first shown. Next the dynamic relation between the melt pool and the process parameters is identified. Finally the proof of concept for feedback control is demonstrated with experimental results.
Rotational Stabilization of Cylinder Wakes Using Linear Feedback Control
Borggaard, Jeff; Gugercin, Serkan; Zietsman, Lizette
2015-11-01
We demonstrate the feasibility of linear feedback control to stabilize vortex shedding behind twin cylinders using the cylinder rotations. Our approach is to linearize the flow about a desired steady-state flow, use interpolation-based model reduction on the resulting linear model to generate a low-dimensional model of the input-output system with input-independent error bounds, then use this reduced model to design the feedback control law. We then consider the practical issue of limited state measurements by building a nonlinear compensator that is computed from the same linear reduced-order model an constructed through an extended Kalman filter with a proper orthogonal decomposition (POD) model. Closed-loop simulations of the Navier-Stokes equations coupled with controls generated through flow measurements demonstrate the effectiveness of this control strategy. Supported in part by the National Science Foundation.
Optimal actuation in vibration control
Guzzardo, C. A.; Pang, S. S.; Ram, Y. M.
2013-02-01
The paper addresses the problem of finding the optimal location of actuators and their relative gain so that the control effort in an actively controlled vibrating system is minimized. In technical terms the problem is finding the optimal input vector of unit norm that minimizes the norm of the control gain vector. This problem is addressed in the context of the active natural frequency modification problem associated with resonance avoidance in undamped systems, and in the context of the single-input-multi-output pole assignment problem for second order systems.
Optimal Control of Teaching Process
Institute of Scientific and Technical Information of China (English)
BAO Man; ZHANG Guo-zhi
2002-01-01
The authors first put forward quadratic form performance index as a criterion of measuringmerits and demerits of teaching process. On this base, we got a low of optimal control after the quantificationof the teacher's functions. It must play a leading role on how the teacher fully controls the whole teachingprocess.
Optimal control of quantum measurement
Energy Technology Data Exchange (ETDEWEB)
Egger, Daniel; Wilhelm, Frank [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany)
2015-07-01
Pulses to steer the time evolution of quantum systems can be designed with optimal control theory. In most cases it is the coherent processes that can be controlled and one optimizes the time evolution towards a target unitary process, sometimes also in the presence of non-controllable incoherent processes. Here we show how to extend the GRAPE algorithm in the case where the incoherent processes are controllable and the target time evolution is a non-unitary quantum channel. We perform a gradient search on a fidelity measure based on Choi matrices. We illustrate our algorithm by optimizing a measurement pulse for superconducting phase qubits. We show how this technique can lead to large measurement contrast close to 99%. We also show, within the validity of our model, that this algorithm can produce short 1.4 ns pulses with 98.2% contrast.
A survey on delayed feedback control of chaos
Institute of Scientific and Technical Information of China (English)
Yuping TIAN; Jiandong ZHU; Guanrong CHEN
2005-01-01
This paper introduces the basic idea and provides the mathematical formulation of the delayed feedback control (DFC) methodology, which has been widely used in chaos control. Stability analysis including the well-known odd number limitation of the DFC is reviewed. Some new developments in characterizing the limitation of the DFC are presented. Various modified DFC methods, which are developed in order to overcome the odd number limitation, are also described. Finally, some open problems in this research field are discussed.
Optimal Control of Finite Dimensional Quantum Systems
Mendonca, Paulo E M F
2009-01-01
This thesis addresses the problem of developing a quantum counter-part of the well established classical theory of control. We dwell on the fundamental fact that quantum states are generally not perfectly distinguishable, and quantum measurements typically introduce noise in the system being measured. Because of these, it is generally not clear whether the central concept of the classical control theory -- that of observing the system and then applying feedback -- is always useful in the quantum setting. We center our investigations around the problem of transforming the state of a quantum system into a given target state, when the system can be prepared in different ways, and the target state depends on the choice of preparation. We call this the "quantum tracking problem" and show how it can be formulated as an optimization problem that can be approached both numerically and analytically. This problem provides a simple route to the characterization of the quantum trade-off between information gain and distu...
Institute of Scientific and Technical Information of China (English)
Ruiquan LIN; Fuwen YANG; Renchong PENG
2009-01-01
Considering that the controller feedback gain and the observer gain are of additive norm-bounded variations, a design method of observer-based H-infinity output feedback controller for uncertain Delta operator systems is proposed in this paper. A sufficient condition of such controllers is presented in linear matrix inequality (LMI) forms. A numerical example is then given to illustrate the effectiveness of this method, that is, the obtained controller guarantees the closed-loop system asymptotically stable and the expected H-infinity performance even if the controller feedback gain and the observer gain are varied.
Optimal actuator location of minimum norm controls for heat equation with general controlled domain
Guo, Bao-Zhu; Xu, Yashan; Yang, Dong-Hui
2016-09-01
In this paper, we study optimal actuator location of the minimum norm controls for a multi-dimensional heat equation with control defined in the space L2 (Ω × (0 , T)). The actuator domain is time-varying in the sense that it is only required to have a prescribed Lebesgue measure for any moment. We select an optimal actuator location so that the optimal control takes its minimal norm over all possible actuator domains. We build a framework of finding the Nash equilibrium so that we can develop a sufficient and necessary condition to characterize the optimal relaxed solutions for both actuator location and corresponding optimal control of the open-loop system. The existence and uniqueness of the optimal classical solutions are therefore concluded. As a result, we synthesize both optimal actuator location and corresponding optimal control into a time-varying feedbacks.
DEFF Research Database (Denmark)
Endelt, Benny Ørtoft; Tommerup, Søren; Danckert, Joachim
2013-01-01
on a deep drawing operation where the objective was to control material flow throughout the part using only spatial information regarding flange draw-in. The control system controls both the magnitude and distribution of the blank-holder force. The methodology proved stable and flexible with respect......The performance of a feedback control system is often limited by the quality of the model on which it is based, and often the controller design is based on trial and error due to insufficient modeling capabilities. A framework is proposed where the controller design is based on classical state...... space control theory and time series. The system plant has been modeled using non-linear finite element and the gain factors for the control loop were identified by solving the optimal control problem using a non-linear least square optimization algorithm. The proposed design method has been applied...
Intrinsic Optimal Control for Mechanical Systems on Lie Group
Directory of Open Access Journals (Sweden)
Chao Liu
2017-01-01
Full Text Available The intrinsic infinite horizon optimal control problem of mechanical systems on Lie group is investigated. The geometric optimal control problem is built on the intrinsic coordinate-free model, which is provided with Levi-Civita connection. In order to obtain an analytical solution of the optimal problem in the geometric viewpoint, a simplified nominal system on Lie group with an extra feedback loop is presented. With geodesic distance and Riemann metric on Lie group integrated into the cost function, a dynamic programming approach is employed and an analytical solution of the optimal problem on Lie group is obtained via the Hamilton-Jacobi-Bellman equation. For a special case on SO(3, the intrinsic optimal control method is used for a quadrotor rotation control problem and simulation results are provided to show the control performance.
Electrotactile EMG feedback improves the control of prosthesis grasping force
Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario
2016-10-01
Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for
Feedback control for unsteady flow and its application to the stochastic Burgers equation
Choi, Haecheon; Temam, Roger; Moin, Parviz; Kim, John
1993-08-01
The study applies mathematical methods of control theory to the problem of control of fluid flow with the long-range objective of developing effective methods for the control of turbulent flows. Model problems are employed through the formalism and language of control theory to present the procedure of how to cast the problem of controlling turbulence into a problem in optimal control theory. Methods of calculus of variations through the adjoint state and gradient algorithms are used to present a suboptimal control and feedback procedure for stationary and time-dependent problems. Two types of controls are investigated: distributed and boundary controls. Several cases of both controls are numerically simulated to investigate the performances of the control algorithm. Most cases considered show significant reductions of the costs to be minimized. The dependence of the control algorithm on the time-descretization method is discussed.
Optimality Conditions for Inventory Control
Feinberg, Eugene A.
2016-01-01
This tutorial describes recently developed general optimality conditions for Markov Decision Processes that have significant applications to inventory control. In particular, these conditions imply the validity of optimality equations and inequalities. They also imply the convergence of value iteration algorithms. For total discounted-cost problems only two mild conditions on the continuity of transition probabilities and lower semi-continuity of one-step costs are needed. For average-cost pr...
New Applications of Variational Analysis to Optimization and Control
Mordukhovich, Boris S.
We discuss new applications of advanced tools of variational analysis and generalized differentiation to a number of important problems in optimization theory, equilibria, optimal control, and feedback control design. The presented results are largely based on the recent work by the author and his collaborators. Among the main topics considered and briefly surveyed in this paper are new calculus rules for generalized differentiation of nonsmooth and set-valued mappings; necessary and sufficient conditions for new notions of linear subextremality and suboptimality in constrained problems; optimality conditions for mathematical problems with equilibrium constraints; necessary optimality conditions for optimistic bilevel programming with smooth and nonsmooth data; existence theorems and optimality conditions for various notions of Pareto-type optimality in problems of multiobjective optimization with vector-valued and set-valued cost mappings; Lipschitzian stability and metric regularity aspects for constrained and variational systems.
Directory of Open Access Journals (Sweden)
Ahmed N. U.
2005-01-01
Full Text Available We consider a dynamic model that simulates the interaction of TCP sources with active queue management system (AQM. We propose a modified version of an earlier dynamic model called RED. This is governed by a system of stochastic differential equations driven by a doubly stochastic point process with intensity as the control. The feedback control law proposed observes the router (queue status and controls the intensity by sending congestion signals (warnings to the sources for adjustment of their transmission rates. The (feedback control laws used are of polynomial type (including linear with adjustable coefficients. They are optimized by use of genetic algorithm (GA and random recursive search (RRS technique. The numerical results demonstrate that the proposed model and the method can improve the system performance significantly.
Improved State Feedback H∞ Control for Flexible Air-Breathing Hypersonic Vehicles on LMI Approach
Directory of Open Access Journals (Sweden)
Zhang Xue
2017-01-01
Full Text Available Focusing on a nonlinear longitudinal dynamical model for Air-breathing Hypersonic Flight Vehicles (AHFV, a linearized model on a nominal trim condition is proposed. To stabilize the flight of an AHFV in the presence of external disturbances and actuator uncertainties, a state feedback H∞ control is designed. With bounds on the uncertainties, a feedback stabilization problem is converted to an optimal control problem and the cost function is minimized by solving a set of linear matrix inequalities. Since uncertainties in the design of AHFV are inevitable, to make a comparison, a general H∞ robust controller is constructed by only considering the disturbances firstly. Then the results are extended by incorporating the actual existing uncertainties as well as the external disturbances in the AHFV system. Numerical simulation shows that the controller, which takes both disturbances and uncertainties into account, can effectively stabilize the AHFV system.
A Hamiltonian Algorithm for Singular Optimal LQ Control Systems
Delgado-Tellez, M
2012-01-01
A Hamiltonian algorithm, both theoretical and numerical, to obtain the reduced equations implementing Pontryagine's Maximum Principle for singular linear-quadratic optimal control problems is presented. This algorithm is inspired on the well-known Rabier-Rheinhboldt constraints algorithm used to solve differential-algebraic equations. Its geometrical content is exploited fully by implementing a Hamiltonian extension of it which is closer to Gotay-Nester presymplectic constraint algorithm used to solve singular Hamiltonian systems. Thus, given an optimal control problem whose optimal feedback is given in implicit form, a consistent set of equations is obtained describing the first order differential conditions of Pontryaguine's Maximum Principle. Such equations are shown to be Hamiltonian and the set of first class constraints corresponding to controls that are not determined, are obtained explicitly. The strength of the algorithm is shown by exhibiting a numerical implementation with partial feedback on the c...
Maddox, W Todd; Bohil, Corey J
2005-03-01
Unequal payoffs engender separate reward- and accuracy-maximizing decision criteria; unequal base rates do not. When payoffs are unequal, observers place greater emphasis on accuracy than is optimal. This study compares objective classifier (the objectively correct response) with optimal classifier feedback (the optimal classifier's response) when payoffs or base rates are unequal. It provides a critical test of Maddox and Bohil's (1998) competition between reward and accuracy maximization (COBRA) hypothesis, comparing it with a competition between reward and probability matching (COBRM) and a competition between reward and equal response frequencies (COBRE) hypothesis. The COBRA prediction that optimal classifier feedback leads to better decision criterion leaning relative to objective classifier feedback when payoffs are unequal, but not when base rates are unequal, was supported. Model-based analyses suggested that the weight placed on accuracy was reduced for optimal classifier feedback relative to objective classifier feedback. In addition, delayed feedback affected learning of the reward-maximizing decision criterion.
Humanoid robot simulation with a joint trajectory optimized controller
2008-01-01
This paper describes a joint trajectory optimized controller for a humanoid robot simulator following the real robot characteristics. As simulation is a powerful tool for speeding up the control software development, the proposed accurate simulator allows to fulfil this goal. The simulator, based on the Open Dynamics Engine and GLScene graphics library, provides instant visual feedback. The proposed simulator, with realistic dynamics, allows to design and test behaviours and control strat...
Active Feedback Control of Unstable Wells at the Brage Field
Directory of Open Access Journals (Sweden)
Morten Dalsmo
2005-04-01
Full Text Available In this paper we will present new results on stabilization of horizontal wells with gas lift. The stabilization is achieved by a novel dynamic feedback control solution using the production choke at the wellhead. The primary input to the dynamic feedback controller is a measurement of the downhole pressure. The field results to be presented are from the Brage field operated by Norsk Hydro in the North sea. Production at Brage began in 1993 and the field went off plateau in 1998. As the production has decreased, the problems related to unstable production from some of the wells have escalated steadily. The results from the extensive field tests on the Brage wells arc very promising. The tests have confirmed the stabilization feature of the control solution. The pressure and flow variations have been dramatically reduced, and it is possible to produce the wells at a lower downhole pressure leading to increased production.
Design of Magnetic Flux Feedback Controller in Hybrid Suspension System
Directory of Open Access Journals (Sweden)
Wenqing Zhang
2013-01-01
Full Text Available Hybrid suspension system with permanent magnet and electromagnet consumes little power consumption and can realize larger suspension gap. But realizing stable suspension of hybrid magnet is a tricky problem in the suspension control sphere. Considering from this point, we take magnetic flux signal as a state variable and put this signal back to suspension control system. So we can get the hybrid suspension mathematical model based on magnetic flux signal feedback. By application of MIMO feedback linearization theory, we can further realize linearization of the hybrid suspension system. And then proportion, integral, differentiation, magnetic flux density B (PIDB controller is designed. Some hybrid suspension experiments have been done on CMS04 magnetic suspension bogie of National University of Defense Technology (NUDT in China. The experiments denote that the new hybrid suspension control algorithm based on magnetic flux signal feedback designed in this paper has more advantages than traditional position-current double cascade control algorithm. Obviously, the robustness and stability of hybrid suspension system have been enhanced.
VFC - Variational Feedback Controller and its application to semi-active suspensions
Pepe, G.; Carcaterra, A.
2016-08-01
Active and semi-active control of oscillating devices and structures is a challenging field and this paper proposes an original investigation based on variational controls that can be successfully applied to mechanical systems. The method produces a general class of new controllers, named VFC - Variational Feedback Controllers, that is the main theoretical contribution of the paper. The value of the theory relies on using a reformulation of the Variational Optimal Control Theory, that has in general the limit of producing control program strategies and not directly feedback control methods. The difficulties are in fact related to the intrinsic nature of the variational optimal control, that must solve initial and final boundary conditions. A special definition of the class of the considered objective functions, permits to skip this difficulty, producing a pure feedback control. The presented theory goes beyond with respect to the most acknowledged LQR variational-based techniques, in that VFC can be applied to more general nonlinear dynamical systems, even with finite time horizon. To test the effectiveness of the novel approach in real engineering problems, a deep investigation on nonlinear suspension systems treated by VFC is proposed in this paper. To this aim, VFC is systematically compared with the most recent methods available in this field and suitable to deal with nonlinear system control of car suspensions. In particular, the comparative analysis is made in terms of both comfort and handling key performance indexes, that permits to easily and significantly compare different control logics, such as the Sky-hook and Ground-hook control families, the Acceleration and Power Driven Dampers. The results of this comparison are collected in a performance plane, having comfort and handling indexes as coordinate axes, showing that VFC controllers completely cover the regions reached by the other mentioned control logics in this plane, but reveal to have access to
Flexible, task-dependent use of sensory feedback to control hand movements.
Knill, David C; Bondada, Amulya; Chhabra, Manu
2011-01-26
We tested whether changing accuracy demands for simple pointing movements leads humans to adjust the feedback control laws that map sensory signals from the moving hand to motor commands. Subjects made repeated pointing movements in a virtual environment to touch a button whose shape varied randomly from trial to trial-between squares, rectangles oriented perpendicular to the movement path, and rectangles oriented parallel to the movement path. Subjects performed the task on a horizontal table but saw the target configuration and a virtual rendering of their pointing finger through a mirror mounted between a monitor and the table. On one-third of trials, the position of the virtual finger was perturbed by ±1 cm either in the movement direction or perpendicular to the movement direction when the finger passed behind an occluder. Subjects corrected quickly for the perturbations despite not consciously noticing them; however, they corrected almost twice as much for perturbations aligned with the narrow dimension of a target than for perturbations aligned with the long dimension. These changes in apparent feedback gain appeared in the kinematic trajectories soon after the time of the perturbations, indicating that they reflect differences in the feedback control law used throughout the duration of movements. The results indicate that the brain adjusts its feedback control law for individual movements "on demand" to fit task demands. Simulations of optimal control laws for a two-joint arm show that accuracy demands alone, coupled with signal-dependent noise, lead to qualitatively the same behavior.
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Collision avoidance ZEM/ZEV optimal feedback guidance for powered descent phase of landing on Mars
Zhang, Yao; Guo, Yanning; Ma, Guangfu; Zeng, Tianyi
2017-03-01
A novel zero-effort-miss (ZEM)/zero-effort-velocity (ZEV) optimal feedback guidance is proposed in order to rule out the possibility of Martian surface collision caused by the classical ZEM/ZEV optimal feedback guidance. The main approach is to add a collision avoidance term, which has self-adjustment capacity to ensure the near fuel optimality. Its main improvement is that it can not only successfully avoid collisions with the thruster constraint but also guarantee the near fuel optimality, and both of them are pivotal performances in Mars landing missions. Simulations are made to show the effectiveness of the proposed guidance and the parameters effects are simulated as well to analyze the properties of the proposed guidance.
Directory of Open Access Journals (Sweden)
Dezong Zhao
2014-01-01
of multiple induction motors through a shared communication network. An integrated feedback scheduling algorithm is designed to allocate the optimal sampling period and priority to each control loop to optimize the global performance of a networked control system (NCS, while satisfying the constraints of stability and schedulability. A speed synchronization method is incorporated into the scheduling algorithm to improve the speed synchronization performance of multiple induction motors. The rational gain of the network speed controllers is calculated using the Lyapunov theorem and tuned online by fuzzy logic to guarantee the robustness against complicated variations on the communication network. Furthermore, a state predictor is designed to compensate the time delay which occurred in data transmission from the sensor to the controller, as a part of the networked controller. Simulation results support the effectiveness of the proposed control-and-scheduling codesign approach.
Optimal control of motorsport differentials
Tremlett, A. J.; Massaro, M.; Purdy, D. J.; Velenis, E.; Assadian, F.; Moore, A. P.; Halley, M.
2015-12-01
Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm.
Velocity feedback control with a flywheel proof mass actuator
Kras, Aleksander; Gardonio, Paolo
2017-08-01
This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.
Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System
Directory of Open Access Journals (Sweden)
Wen-Qing Zhang
2013-01-01
Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.
Time Optimal Synchronization Procedure and Associated Feedback Loops
Angoletta, Maria Elena; CERN. Geneva. ATS Department
2016-01-01
A procedure to increase the speed of currently used synchronization loops in a synchrotron by an order of magnitude is presented. Beams dynamics constraint imposes an upper limit on excursions in stable phase angle, and the procedure presented exploits this limit to arrive in the synchronized state from an arbitrary initial state in the fastest possible way. Detailed corrector design for beam phase loop, differential frequency loop and final synchronization loop is also presented. Finally, an overview of the synchronization methods currently deployed in some other CERN’s machines is provided, together with a brief comparison with the newly proposed time-optimal algorithm.
Ultrasensitive Negative Feedback Control: A Natural Approach for the Design of Synthetic Controllers
Montefusco, Francesco; Akman, Ozgur E.; Soyer, Orkun S.; Bates, Declan G.
2016-01-01
Many of the most important potential applications of Synthetic Biology will require the ability to design and implement high performance feedback control systems that can accurately regulate the dynamics of multiple molecular species within the cell. Here, we argue that the use of design strategies based on combining ultrasensitive response dynamics with negative feedback represents a natural approach to this problem that fully exploits the strongly nonlinear nature of cellular information processing. We propose that such feedback mechanisms can explain the adaptive responses observed in one of the most widely studied biomolecular feedback systems—the yeast osmoregulatory response network. Based on our analysis of such system, we identify strong links with a well-known branch of mathematical systems theory from the field of Control Engineering, known as Sliding Mode Control. These insights allow us to develop design guidelines that can inform the construction of feedback controllers for synthetic biological systems. PMID:27537373
Combined Sliding Mode Control with a Feedback Linearization for Speed Control of Induction Motor
Directory of Open Access Journals (Sweden)
Aamir Hashim Obeid Ahmed
2011-06-01
Full Text Available Induction Motor (IM speed control is an area of research that has been in prominence for some time now. In this paper, a nonlinear controller is presented for IM drives. The nonlinear controller is designed based on input-output feedback linearization control technique, combined with sliding mode control (SMC to obtain a robust, fast and precise control of IM speed. The input-output feedback linearization control decouples the flux control from the speed control and makes the synthesis of linear controllers possible. To validate the performances of the proposed control scheme, we provided a series of simulation results and a comparative study between the performances of the proposed control strategy and those of the feedback linearization control (FLC schemes. Simulation results show that the proposed control strategy scheme shows better performance than the FLC strategy in the face of system parameters variation
Control design variable linking for optimization of structural/control systems
Jin, Ik Min; Schmit, Lucien A.
1993-01-01
A method is presented to integrate the design space of structural/control system optimization problems in the case of linear state feedback control. Conventional structural sizing variables and elements of the feedback gain matrix are both treated as strictly independent design variables in optimization by extending design variable linking concepts to the control gains. Several approximation concepts including new control design variable linking schemes are used to formulate the integrated structural/control optimization problem as a sequence of explicit nonlinear mathematical programming problems. Examples which involve a variety of behavior constraints, including constraints on dynamic stability, damped frequencies, control effort, peak transient displacement, acceleration, and control force limits, are effectively solved by using the method presented.
Effects of noise variance model on optimal feedback design and actuator placement
Ruan, Mifang; Choudhury, Ajit K.
1994-01-01
In optimal placement of actuators for stochastic systems, it is commonly assumed that the actuator noise variances are not related to the feedback matrix and the actuator locations. In this paper, we will discuss the limitation of that assumption and develop a more practical noise variance model. Various properties associated with optimal actuator placement under the assumption of this noise variance model are discovered through the analytical study of a second order system.
Improved Position Sensor for Feedback Control of Levitation
Hyers, Robert; Savage, Larry; Rogers, Jan
2004-01-01
An improved optoelectronic apparatus has been developed to provide the position feedback needed for controlling the levitation subsystem of a containerless-processing system. As explained, the advantage of this apparatus over prior optoelectronic apparatuses that have served this purpose stems from the use of an incandescent lamp, instead of a laser, to illuminate the levitated object. In containerless processing, a small object to be processed is levitated (e.g., by use of a microwave, low-frequency electromagnetic, electrostatic, or acoustic field) so that it is not in contact with the wall of the processing chamber or with any other solid object during processing. In the case of electrostatic or low-frequency electromagnetic levitation, real-time measurement of the displacement of the levitated object from its nominal levitation position along the vertical axis (and, in some cases, along one or two horizontal axes) is needed for feedback control of the levitating field.
Feedback control of subcritical Turing instability with zero mode.
Golovin, A A; Kanevsky, Y; Nepomnyashchy, A A
2009-04-01
A global feedback control of a system that exhibits a subcritical monotonic instability at a nonzero wave number (short-wave or Turing instability) in the presence of a zero mode is investigated using a Ginzburg-Landau equation coupled to an equation for the zero mode. This system is studied analytically and numerically. It is shown that feedback control, based on measuring the maximum of the pattern amplitude over the domain, can stabilize the system and lead to the formation of localized unipulse stationary states or traveling solitary waves. It is found that the unipulse traveling structures result from an instability of the stationary unipulse structures when one of the parameters characterizing the coupling between the periodic pattern and the zero mode exceeds a critical value that is determined by the zero mode damping coefficient.
State-feedback control of LPV sampled-data systems
Directory of Open Access Journals (Sweden)
Tan K.
2000-01-01
Full Text Available In this paper, we address the analysis and the state-feedback synthesis problems for linear parameter-varying (LPV sampled-data control systems. We assume that the state-space data of the plant and the sampling interval depend on parameters that are measurable in real-time and vary in a compact set with bounded variation rates. We explore criteria such as the stability, the energy-to-energy gain (induced L 2 norm and the energy-to-peak gain (induced L 2 -to- L ∞ norm of such sampled-data LPV systems using parameter-dependent Lyapunov functions. Based on these analysis results, the sampled-data state-feedback control synthesis problems are examined. Both analysis and synthesis conditions are formulated in terms of linear matrix inequalities that can be solved via efficient interior-point algorithms.
Automatic Thermal Control System with Temperature Difference or Derivation Feedback
Directory of Open Access Journals (Sweden)
Darina Matiskova
2016-02-01
Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.
Conformal grasping using feedback controlled bubble actuator array
Carrigan, Wei; Stein, Richard; Mittal, Manoj; Wijesundara, Muthu B. J.
2014-06-01
This paper presents an implementation of a bubble actuator array (BAA) based active robotic skin, a modular system, onto existing low cost robotic end-effectors or prosthetic hands for conformal grasping of objects. The active skin is comprised of pneumatically controlled polyurethane rubber bubbles with overlaid sensors for feedback control. Sensor feedback allows the BAA based robotic skin to conformally grasp an object with an explicit uniform force distribution. The bubble actuator array reported here is capable of applying up to 4N of force at each point of contact and tested for conformally grasping objects with a radius of curvature up to 57.15mm. Once integrated onto a two-finger gripper with one degree of freedom (DOF), the active skin was shown to reduce point of contact forces of up to 50% for grasped objects.
Optimized Distributed Feedback Dye Laser Sensor for Real-Time Monitoring of Small Molecule Diffusion
DEFF Research Database (Denmark)
Vannahme, Christoph; Smith, Cameron; Dufva, Martin
2014-01-01
Nanoimprinted distributed feedback dye laser sensors featuring multilayer slab waveguides are presented. A simple yet precise analytical model is used to optimize the lasers in order to give highest sensitivity and it is found that the thickness of a high index TiO2 top layer is the most importan...
Linear Riccati Dynamics, Constant Feedback, and Controllability in Linear Quadratic Control Problems
Ronald J. Balvers; Douglas W. Mitchell
2005-01-01
Conditions are derived for linear-quadratic control (LQC) problems to exhibit linear evolution of the Riccati matrix and constancy of the control feedback matrix. One of these conditions involves a matrix upon whose rank a necessary condition and a sufficient condition for controllability are based. Linearity of Riccati evolution allows for rapid iterative calculation, and constancy of the control feedback matrix allows for time-invariant comparative static analysis of policy reactions.
Output Feedback Control for a Class of Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
Keylan Alimhan; Hiroshi Inaba
2006-01-01
This paper studies the global stabilization problem by an output controller for a family of uncertain nonlinear systems satisfying some relaxed triangular-type conditions and with dynamics which may not be exactly known. Using a feedback domination design method, we explicitly construct a dynamic output compensator which globally stabilizes such an uncertain nonlinear system. The usefulness of our result is illustrated with an example.
Bifurcation Analysis of a Discrete Logistic System with Feedback Control
Institute of Scientific and Technical Information of China (English)
WU Dai-yong
2015-01-01
The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory. Numerical simulations not only illustrate our results, but also exhibit the complex dynamical behaviors of the system, such as the period-doubling bifurcation in periods 2, 4, 8 and 16, and quasi-periodic orbits and chaotic sets.
Control of spatially patterned synchrony with multisite delayed feedback
Hauptmann, C.; Omelchenko, O.; Popovych, O. V.; Maistrenko, Y.; Tass, P.A.
2007-01-01
We present an analytical study describing a method for the control of spatiotemporal patterns of synchrony in networks of coupled oscillators. Delayed feedback applied through a small number of electrodes effectively induces spatiotemporal dynamics at minimal stimulation intensities. Different arrangements of the delays cause different spatial patterns of synchrony, comparable to central pattern generators (CPGs), i.e., interacting clusters of oscillatory neurons producing patterned output, e...
Tracking control of a flexible beam by nonlinear boundary feedback
Directory of Open Access Journals (Sweden)
Bao-Zhu Guo
1995-01-01
Full Text Available This paper is concerned with tracking control of a dynamic model consisting of a flexible beam rotated by a motor in a horizontal plane at the one end and a tip body rigidly attached at the free end. The well-posedness of the closed loop systems considering the dissipative nonlinear boundary feedback is discussed and the asymptotic stability about difference energy of the hybrid system is also investigated.
Accelerator and feedback control simulation using neural networks
Energy Technology Data Exchange (ETDEWEB)
Nguyen, D.; Lee, M.; Sass, R.; Shoaee, H.
1991-05-01
Unlike present constant model feedback system, neural networks can adapt as the dynamics of the process changes with time. Using a process model, the Accelerator'' network is first trained to simulate the dynamics of the beam for a given beam line. This Accelerator'' network is then used to train a second Controller'' network which performs the control function. In simulation, the networks are used to adjust corrector magnetics to control the launch angle and position of the beam to keep it on the desired trajectory when the incoming beam is perturbed. 4 refs., 3 figs.
Iterative Feedback Tuning in Fuzzy Control Systems. Theory and Applications
Directory of Open Access Journals (Sweden)
Stefan Preitl
2006-07-01
Full Text Available The paper deals with both theoretical and application aspects concerningIterative Feedback Tuning (IFT algorithms in the design of a class of fuzzy controlsystems employing Mamdani-type PI-fuzzy controllers. The presentation is focused on twodegree-of-freedom fuzzy control system structures resulting in one design method. Thestability analysis approach based on Popov’s hyperstability theory solves the convergenceproblems associated to IFT algorithms. The suggested design method is validated by realtimeexperimental results for a fuzzy controlled nonlinear DC drive-type laboratoryequipment.
An, Fang; Chen, Wei-dong; Shao, Min-qiang
2014-09-01
This paper addresses the design problem of the controller with time-delayed acceleration feedback. On the basis of the reduction method and output state-derivative feedback, a time-delayed acceleration feedback controller is proposed. Stability boundaries of the closed-loop system are determined by using Hurwitz stability criteria. Due to the introduction of time delay into the controller with acceleration feedback, the proposed controller has the feature of not only changing the mass property but also altering the damping property of the controlled system in the sense of equivalent structural modification. With this feature, the closed-loop system has a greater logarithmic decrement than the uncontrolled one, and in turn, the control behavior can be improved. In this connection, the time delay in the acceleration feedback control is a positive factor when satisfying some given conditions and it could be actively utilized. On the ground of the analysis, the developed controller is implemented on a cantilever beam for different controller gain-delay combinations, and the control performance is evaluated with the comparison to that of pure acceleration feedback controller. Simulation and experimental results verify the ability of the controller to attenuate the vibration resulting from the dominant mode.
Optimal Multilevel Control for Large Scale Interconnected Systems
Directory of Open Access Journals (Sweden)
Ahmed M. A. Alomar,
2014-04-01
Full Text Available A mathematical model of the finishing mill as an example of a large scale interconnected dynamical system is represented. First the system response due to disturbance only is presented. Then,the control technique applied to the finishing hot rolling steel mill is the optimal multilevel control using state feedback. An optimal controller is developed based on the integrated system model, but due to the complexity of the controllers and tremendous computational efforts involved, a multilevel technique is used in designing and implementing the controllers .The basis of the multilevel technique is described and a computational algorithm is discussed for the control of the finishing mill system . To reduce the mass storage , memory requirements and the computational time of the processor, a sub-optimal multilevel technique is applied to design the controllers of the finishing mill . Comparison between these controllers and conclusion is presented.
Control and optimal control theories with applications
Burghes, D N
2004-01-01
This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer fun
Optimal control with aerospace applications
Longuski, James M; Prussing, John E
2014-01-01
Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a...
On the Permanence of a Nonautonomous Nicholson's Blowflies Model with Feedback Control and Delay
Institute of Scientific and Technical Information of China (English)
LAI Wei-ying
2011-01-01
A nonautonomous Nicholson's Blowflies model with feedback control and delay is investigated in this paper.We show that for this system,feedback control variable has no influence on the persistent property of the system.
Feedback Equivalence of 1-dimensional Control Systems of the 1-st Order
2008-01-01
The problem of local feedback equivalence for 1-dimensional control systems of the 1-st order is considered. The algebra of differential invariants and criteria for the feedback equivalence for regular control systems are found.
The Permanence in a Single Species Nonautonomous System with Delays and Feedback Control
2010-01-01
We consider a single species nonautonomous system with delays and feedback control. A general criterion on the permanence for all positive solutions is established. The results show that the feedback control does not influence the permanence of species.
Control Rod Driveline Reactivity Feedback Model for Liquid Metal Reactors
Energy Technology Data Exchange (ETDEWEB)
Kwon, Young-Min; Jeong, Hae-Yong; Chang, Won-Pyo; Cho, Chung-Ho; Lee, Yong-Bum
2008-01-15
The thermal expansion of the control rod drivelines (CRDL) is one important passive mitigator under all unprotected accident conditions in the metal and oxide cores. When the CRDL are washed by hot sodium in the coolant outlet plenum, the CRDL thermally expands and causes the control rods to be inserted further down into the active core region, providing a negative reactivity feedback. Since the control rods are attached to the top of the vessel head and the core attaches to the bottom of the reactor vessel (RV), the expansion of the vessel wall as it heats will either lower the core or raise the control rods supports. This contrary thermal expansion of the reactor vessel wall pulls the control rods out of the core somewhat, providing a positive reactivity feedback. However this is not a safety factor early in a transient because its time constant is relatively large. The total elongated length is calculated by subtracting the vessel expansion from the CRDL expansion to determine the net control rod expansion into the core. The system-wide safety analysis code SSC-K includes the CRDL/RV reactivity feedback model in which control rod and vessel expansions are calculated using single-nod temperatures for the vessel and CRDL masses. The KALIMER design has the upper internal structures (UIS) in which the CRDLs are positioned outside the structure where they are exposed to the mixed sodium temperature exiting the core. A new method to determine the CRDL expansion is suggested. Two dimensional hot pool thermal hydraulic model (HP2D) originally developed for the analysis of the stratification phenomena in the hot pool is utilized for a detailed heat transfer between the CRDL mass and the hot pool coolant. However, the reactor vessel wall temperature is still calculated by a simple lumped model.
Optimal control of hybrid vehicles
Jager, Bram; Kessels, John
2013-01-01
Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on Pontryagin’s maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Two case studies are included in the book: · a control strategy for a micro-hybrid power train; and · experimental results obtained with a real-time strategy implemented in...
Feedback Control of Vibrations in a Micromachined Cantilever Beam with Electrostatic Actuators
Wang, P. K. C.
1998-06-01
The problem of feedback control of vibrations in a micromachined cantilever beam with nonlinear electrostatic actuators is considered. Various forms of nonlinear feedback controls depending on localized spatial averages of the beam velocity and displacement near the beam tip are derived by considering the time rate-of-change of the total energy of the beam. The physical implementation of the derived feedback controls is discussed briefly. The dynamic behaviour of the beam with the derived feedback controls is determined by computer simulation.
Processes controlling Southern Ocean cloud-climate feedbacks (Invited)
Kay, J. E.; Medeiros, B.; Hwang, Y.; Gettelman, A.
2013-12-01
We use a fully coupled climate model (CESM) to identify processes controlling intriguingly diverse Southern Ocean cloud feedbacks in response to increased greenhouse gas forcing. Modeled Southern Ocean cloud-climate feedbacks range from the most positive (enhancing greenhouse warming at ~40 degrees South) to the most negative (damping greenhouse warming at ~60 degrees South) on the planet. As greenhouse gas concentrations increase, Antarctic sea ice loss, warming, and a poleward stormtrack shift/sub-tropical expansion all modify Southern Ocean clouds. Our analysis shows that Southern Ocean clouds are controlled both by thermodynamics (cloud changes for a given subsidence rate) and by dynamics (changes in subsidence rates). Hinting at the importance of thermodynamics, absorbed shortwave radiation over the Southern Ocean is substantially more affected by increased greenhouse gas forcing than by a poleward stormtrack shift in the absence of greenhouse forcing. While we find CESM a useful tool, CESM has substantial Southern Ocean biases (e.g., excessive Antarctic sea ice, excessive absorbed shortwave radiation). Thus, we also assess the impact that these biases have on the realism of CESM Southern Ocean cloud-climate greenhouse feedbacks.
Optimization and optimal control in automotive systems
Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi
2014-01-01
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier approaches, based on some degree of heuristics, to the use of more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...
Feedback Control Of Dynamical Instabilities In Classical Lasers And Fels
Bielawski, S; Szwaj, C
2005-01-01
Dynamical instabilities lead to unwanted full-scale power oscillations in many classical lasers and FEL oscillators. For a long time, applications requiring stable operation were typically performed by working outside the problematic parameter regions. A breakthrough occurred in the nineties [1], when emphasis was made on the practical importance of unstable states (stationary or periodic) that coexist with unwanted oscillatory states. Indeed, although not observable in usual experiments, unstable states can be stabilized, using a feedback control involving arbitrarily small perturbations of a parameter. This observation stimulated a set of works leading to successful suppression of dynamical instabilities (initially chaos) in lasers, sometimes with surprisingly simple feedback devices [2]. We will review a set of key results, including in particular the recent works on the stabilization of mode-locked lasers, and of the super-ACO, ELETTRA and UVSOR FELs [3].
East African weathering dynamics controlled by vegetation-climate feedbacks
Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Boehlke, Adam; Lézine, Anne-Marie; Vincens, Annie; Cohen, Andrew S.
2017-01-01
Tropical weathering has important linkages to global biogeochemistry and landscape evolution in the East African rift. We disentangle the influences of climate and terrestrial vegetation on chemical weathering intensity and erosion at Lake Malawi using a long sediment record. Fossil pollen, microcharcoal, particle size, and mineralogy data affirm that the detrital clays accumulating in deep water within the lake are controlled by feedbacks between climate and hinterland forest composition. Particle-size patterns are also best explained by vegetation, through feedbacks with lake levels, wildfires, and erosion. We develop a new source-to-sink framework that links lacustrine sedimentation to hinterland vegetation in tropical rifts. Our analysis suggests that climate-vegetation interactions and their coupling to weathering/erosion could threaten future food security and has implications for accurately predicting petroleum play elements in continental rift basins.
Pinning Lur’e Complex Networks via Output Feedback Control
Directory of Open Access Journals (Sweden)
Fang Liu
2014-01-01
Full Text Available Without requiring the full-state information of network nodes, this paper studies the pinning synchronization in a network of Lur’e dynamical systems based on the output feedback control strategy. Some simple pinning conditions are established for both undirected and directed Lur’e networks by using M-matrix theory and S-procedure technique. With the derived stability criteria, the pinning synchronization problem of large-scale Lur’e networks can be transformed to the test of a low-dimensional linear matrix inequality. Some remarks are further given to address the selection of pinned nodes and the design of pinning feedback gains. Numerical results are provided to demonstrate the effectiveness of the theoretical analysis.
Control of birhythmicity: A self-feedback approach
Biswas, Debabrata; Banerjee, Tanmoy; Kurths, Jürgen
2017-06-01
Birhythmicity occurs in many natural and artificial systems. In this paper, we propose a self-feedback scheme to control birhythmicity. To establish the efficacy and generality of the proposed control scheme, we apply it on three birhythmic oscillators from diverse fields of natural science, namely, an energy harvesting system, the p53-Mdm2 network for protein genesis (the OAK model), and a glycolysis model (modified Decroly-Goldbeter model). Using the harmonic decomposition technique and energy balance method, we derive the analytical conditions for the control of birhythmicity. A detailed numerical bifurcation analysis in the parameter space establishes that the control scheme is capable of eliminating birhythmicity and it can also induce transitions between different forms of bistability. As the proposed control scheme is quite general, it can be applied for control of several real systems, particularly in biochemical and engineering systems.
Design of feedback controller for TCP/AQM networks
Directory of Open Access Journals (Sweden)
Sukant Kishoro Bisoy
2017-02-01
Full Text Available In this paper, we propose a novel proportional-differential-type feedback controller called Novel-PD as new active queue management (AQM to regulate the queue length with small oscillation. It measures the current queue length and uses the current queue length and differential error signals to adjust packet drop probability dynamically. We provide control theoretic analysis of system stability and develop guidelines to select control gain parameters of Novel-PD. The design of Novel-PD for TCP/AQM system is given in details. NS2 is used for conducting extensive simulation. The proposed controller is compared with random early detection (RED, random exponential marking (REM, proportional integrator (PI and proportional derivative (PD controller. Result shows that, Novel-PD is stable and achieves faster response in dynamic environments where number of TCP connections, bottleneck capacity, round trip time (RTT keeps changing. The proposed controller outperforms other AQM schemes.
Optimal control of hydroelectric facilities
Zhao, Guangzhi
This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the
Institute of Scientific and Technical Information of China (English)
2001-01-01
It should be pointed out that there are two ways of applying nonlinear control using the wavelet-based feedback control: the single periodical (ΔP =1) control and multiple-periodical sporadic (interval)(ΔP≥2) control for controlling beam halo-chaos.Table 1 shows a comparison of results obtained before and after wavelet-based feedback controller at the 1 800th period. It is seen from table 1 that multiple-periodical sporadic (interval) control can also reach the same good results as the single periodical control, but it has much higher economic impact on practical application.
Different auditory feedback control for echolocation and communication in horseshoe bats.
Directory of Open Access Journals (Sweden)
Ying Liu
Full Text Available Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.
Biomimetic Hybrid Feedback Feedforward Neural-Network Learning Control.
Pan, Yongping; Yu, Haoyong
2017-06-01
This brief presents a biomimetic hybrid feedback feedforward neural-network learning control (NNLC) strategy inspired by the human motor learning control mechanism for a class of uncertain nonlinear systems. The control structure includes a proportional-derivative controller acting as a feedback servo machine and a radial-basis-function (RBF) NN acting as a feedforward predictive machine. Under the sufficient constraints on control parameters, the closed-loop system achieves semiglobal practical exponential stability, such that an accurate NN approximation is guaranteed in a local region along recurrent reference trajectories. Compared with the existing NNLC methods, the novelties of the proposed method include: 1) the implementation of an adaptive NN control to guarantee plant states being recurrent is not needed, since recurrent reference signals rather than plant states are utilized as NN inputs, which greatly simplifies the analysis and synthesis of the NNLC and 2) the domain of NN approximation can be determined a priori by the given reference signals, which leads to an easy construction of the RBF-NNs. Simulation results have verified the effectiveness of this approach.
Semantically Enhanced Online Configuration of Feedback Control Schemes.
Milis, Georgios M; Panayiotou, Christos G; Polycarpou, Marios M
2017-03-31
Recent progress toward the realization of the ``Internet of Things'' has improved the ability of physical and soft/cyber entities to operate effectively within large-scale, heterogeneous systems. It is important that such capacity be accompanied by feedback control capabilities sufficient to ensure that the overall systems behave according to their specifications and meet their functional objectives. To achieve this, such systems require new architectures that facilitate the online deployment, composition, interoperability, and scalability of control system components. Most current control systems lack scalability and interoperability because their design is based on a fixed configuration of specific components, with knowledge of their individual characteristics only implicitly passed through the design. This paper addresses the need for flexibility when replacing components or installing new components, which might occur when an existing component is upgraded or when a new application requires a new component, without the need to readjust or redesign the overall system. A semantically enhanced feedback control architecture is introduced for a class of systems, aimed at accommodating new components into a closed-loop control framework by exploiting the semantic inference capabilities of an ontology-based knowledge model. This architecture supports continuous operation of the control system, a crucial property for large-scale systems for which interruptions have negative impact on key performance metrics that may include human comfort and welfare or economy costs. A case-study example from the smart buildings domain is used to illustrate the proposed architecture and semantic inference mechanisms.
Discretization chaos - Feedback control and transition to chaos
Grantham, Walter J.; Athalye, Amit M.
1990-01-01
Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.
Coherent feedback control of multipartite quantum entanglement for optical fields
Energy Technology Data Exchange (ETDEWEB)
Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)
2011-12-15
Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.
A new nonlinear output tracking controller via output-feedback
Institute of Scientific and Technical Information of China (English)
Yun ZHANG; Yungang LIU; Yuqin DING
2006-01-01
In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first introduced. Then, the observer-based output tracking controller is constructively designed by using the integral backstepping approach together with completing square. It is shown that, under relatively mild conditions, all the closed-loop signals are uniformly bounded.Meanwhile the system output asymptotically tracks the desired output. A simulation example is given to illustrate the effectiveness of the theoretical results.
Li, Yongming; Tong, Shaocheng
2016-03-16
This paper proposes an fuzzy adaptive output-feedback stabilization control method for nonstrict feedback uncertain switched nonlinear systems. The controlled system contains unmeasured states and unknown nonlinearities. First, a switched state observer is constructed in order to estimate the unmeasured states. Second, a variable separation approach is introduced to solve the problem of nonstrict feedback. Third, fuzzy logic systems are utilized to identify the unknown uncertainties, and an adaptive fuzzy output feedback stabilization controller is set up by exploiting the backstepping design principle. At last, by applying the average dwell time method and Lyapunov stability theory, it is proven that all the signals in the closed-loop switched system are bounded, and the system output converges to a small neighborhood of the origin. Two examples are given to further show the effectiveness of the proposed switched control approach.
Wang, Huanqing; Liu, Kefu; Liu, Xiaoping; Chen, Bing; Lin, Chong
2015-09-01
In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by using the monotonically increasing property of system bounding functions. On the basis of the state observer, and by combining the adaptive backstepping technique with radial basis function neural networks' universal approximation capability, an adaptive neural output feedback control algorithm is presented. It is shown that the proposed controller can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in the sense of mean quartic value. Simulation results are provided to show the effectiveness of the proposed control scheme.
Directory of Open Access Journals (Sweden)
Carlos A. Jara
2014-01-01
Full Text Available Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.
State feedback control of switched linear systems: An LMI approach
Montagner, V. F.; Leite, V. J. S.; Oliveira, R. C. L. F.; Peres, P. L. D.
2006-10-01
This paper addresses the problem of state feedback control of continuous-time switched linear systems with arbitrary switching rules. A quadratic Lyapunov function with a common matrix is used to derive a stabilizing switching control strategy that guarantees: (i) the assignment of all the eigenvalues of each linear subsystem inside a chosen circle in the left-hand half of the complex plane; (ii) a minimum disturbance attenuation level for the closed-loop switched system. The proposed design conditions are given in terms of linear matrix inequalities that encompass previous results based on quadratic stability conditions with fixed control gains. Although the quadratic stability based on a fixed Lyapunov matrix has been widely used in robust control design, the use of this condition to provide a convex design method for switching feedback gains has not been fully investigated. Numerical examples show that the switching control strategy can cope with more stringent design specifications than the fixed gain strategy, being useful to improve the performance of this class of systems.
Investigation of a delayed feedback controller of MEMS resonators
Masri, Karim M.
2013-08-04
Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.
Laser Soldering of Rat Skin Using a Controlled Feedback System
Directory of Open Access Journals (Sweden)
Mohammad Sadegh Nourbakhsh
2009-03-01
Full Text Available Introduction: Laser tissue soldering using albumin and indocyanine green dye (ICG is an effective technique utilized in various surgical procedures. The purpose of this study was to perform laser soldering of rat skin under a feedback control system and compare the results with those obtained using standard sutures. Material and Methods: Skin incisions were made over eight rats’ dorsa, which were subsequently closed using different wound closure interventions in two groups: (a using a temperature controlled infrared detector or (b by suture. Tensile strengths were measured at 2, 5, 7 and 10 days post-incision. Histological examination was performed at the time of sacrifice. Results: Tensile strength results showed that during the initial days following the incisions, the tensile strengths of the sutured samples were greater than the laser samples. However, 10 days after the incisions, the tensile strengths of the laser soldered incisions were higher than the sutured cuts. Histopathological examination showed a preferred wound healing response in the soldered skin compared with the control samples. The healing indices of the laser soldered repairs (426 were significantly better than the control samples (340.5. Conclusion: Tissue feedback control of temperature and optical changes in laser soldering of skin leads to a higher tensile strength and better histological results and hence this method may be considered as an alternative to standard suturing.
Turbulent Drag Reduction: Studies of Feedback Control and Flow Over Riblets
Choi, Haecheon
The objective of this study is to explore concepts for control of turbulent boundary layers leading to skin -friction reduction using the direct numerical simulation technique. This report is divided into three parts where three different control methods are investigated; a passive control by longitudinal riblets, an active control by sensing and perturbing structures near the wall, and a feedback control procedure guided by control theory. In PART I significant drag reduction is achieved when the surface boundary condition is modified to suppress the dynamically significant coherent structures present in the wall region. The drag reduction is accompanied with significant reduction in the intensity of the wall -layer structures and reductions in the magnitude of Reynolds shear stress throughout the flow. Two essential drag reduction mechanisms are presented. In PART II mathematical methods of control theory are applied to the problem of control of fluid flow. The procedure of how to cast the problem of controlling turbulence into a problem in optimal control theory is presented through the formalism and language of control theory. Then a suboptimal control and feedback procedure are presented using methods of calculus of variations through the adjoint state and gradient algorithms. This suboptimal feedback control procedure is applied to the distributed and boundary controls of the stochastic Burgers equation. Most cases considered show significant reductions of the costs. In PART III direct numerical simulation is performed to analyze turbulent flow over longitudinal riblets, and to educe the mechanism of drag reduction by riblets. The computed drags on the riblet surfaces are in good agreement with the existing experimental data. Differences in the mean-velocity profile and turbulence quantities are found to be limited to the inner region of the boundary layer. Velocity and vorticity fluctuations as well as the Reynolds shear stresses above the riblets are
Feedback Linearization Controller for a Wind Energy Power System
Directory of Open Access Journals (Sweden)
Muthana Alrifai
2016-09-01
Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.
Controlling traffic jams on a two-lane road using delayed-feedback signals
Institute of Scientific and Technical Information of China (English)
Liang ZHENG; Shi-quan ZHONG; Shou-feng MA
2012-01-01
This paper focuses mainly on the stability analysis of two-lane traffic flow with lateral friction,which may be caused by irregular driving behavior or poorly visible road markings,and also attempts to reveal the formation mechanism of traffic jams.Firstly,a two-lane optimal velocity (OV) model without control signals is proposed and its stability condition is obtained from the viewpoint of control theory.Then delayed-feedback control signals composed of distance headway information from both lanes are added to each vehicle and a vehicular control system is designed to suppress the traffic jams.Lane change behaviors are also incorporated into the two-lane OV model and the corresponding information about distance headway and feedback signals is revised.Finally,the results of numerical experiments are shown to verify that when the stability condition is not met,the position disturbances and resulting lane change behaviors do indeed deteriorate traffic performance and cause serious traffic jams.However,once the proper delayed-feedback control signals are implemented,the traffic jams can be suppressed efficiently.
Serafini, Alessio
2012-01-01
We present a broad summary of research involving the application of quantum feedback control techniques to optical set-ups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum non-demolition memories, feedback cooling, quantum state control, adaptive quantum measurements and coherent feedback strategies will all be touched upon in our discussion.
Alessio Serafini
2012-01-01
We present a broad summary of research involving the application of quantum feedback control techniques to optical set-ups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum non-demolition memories, feedback cooling, quantum state control, adaptive quantum measurements and coherent feedback str...
Feedback control of flow alignment in sheared liquid crystals.
Strehober, David A; Schöll, Eckehard; Klapp, Sabine H L
2013-12-01
Based on a continuum theory, we investigate the manipulation of the nonequilibrium behavior of a sheared liquid crystal via closed-loop feedback control. Our goal is to stabilize a specific dynamical state, that is, the stationary "flow alignment," under conditions where the uncontrolled system displays oscillatory director dynamics with in-plane symmetry. To this end we employ time-delayed feedback control (TDFC), where the equation of motion for the ith component q(i)(t) of the order parameter tensor is supplemented by a control term involving the difference q(i)(t)-q(i)(t-τ). In this diagonal scheme, τ is the delay time. We demonstrate that the TDFC method successfully stabilizes flow alignment for suitable values of the control strength K and τ; these values are determined by solving an exact eigenvalue equation. Moreover, our results show that only small values of K are needed when the system is sheared from an isotropic equilibrium state, contrary to the case where the equilibrium state is nematic.
Optimal Control of Electrodynamic Tethers
2008-06-01
left with ( ) ( ) 1 2 1 2 23 3 3 32 1 2 1 2 3 3 ˆ ˆ 2 2 2 ˆ ˆ 6 6 t t t t t t m m m m m T m L m L M M m LM M M MLm M M... Contract RH4-394049, March 1985, p 31. 9 Pelaez, J. and Lorenzini, E. C., “Libration Control of Electrodynamic Tethers in Inclined Orbit,” Journal of...COVERED (From – To) Aug 2006 – Jul 2008 4. TITLE AND SUBTITLE Optimal Control of Electrodynamic Tethers 5a. CONTRACT NUMBER 5b
Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty
Nguyen, Nhan T.
2012-01-01
This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.
Ma, Shao-Qiang; Zhu, Han-Jie; Zhang, Guo-Feng
2017-04-01
The effects of different quantum feedback types on the estimation precision of the detection efficiency are studied. It is found that the precision can be more effective enhanced by a certain feedback type through comparing these feedbacks and the precision has a positive relation with detection efficiency for the optimal feedback when the system reach the state of dynamic balance. In addition, the bigger the proportion of |1> is the higher the precision is and we will not obtain any information about the parameter to be estimated if |0> is chosen as initial state for the feedback type λσz.
Decoupling Suspension Controller Based on Magnetic Flux Feedback
Directory of Open Access Journals (Sweden)
Wenqing Zhang
2013-01-01
Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.
Myoelectric hand prosthesis force control through servo motor current feedback.
Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini
2009-10-01
This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.
Output feedback control of a mechanical system using magnetic levitation.
Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A
2015-07-01
This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Fractional Order Nonlinear Feedback Controller Design for PMSM Drives
Directory of Open Access Journals (Sweden)
Jian-Ping Wen
2013-01-01
Full Text Available Fractional order integral is introduced into active disturbance rejection controller (ADRC to establish the structure of fractional order proportional integral controller (FPI. Fractional order ADRC (FADRC is designed by replacing the nonlinear state error feedback control law using nonlinear function combination in ADRC with FPI, which can combine the high performance of ADRC estimating disturbances with the characteristics of fractional order calculus more really describing the physical object and spreading the stable region of the system parameters. The proposed FADRC is applied to permanent magnet synchronous motor (PMSM speed servo system in order to improve robustness of system against the disturbances. Compared with ADRC, simulation results verify that the proposed control method has given very good robust results and fast speed tracking performance.
Controller Design for EMA in TVC Incorporating Force Feedback
Schinstock, Dale E.; Scott, Douglas A.
1998-01-01
The objective of this research was to develop control schemes and control design procedures for electromechanical actuators (EMA) in thrust vector control (TVC) applications. For a variety of reasons, there is a tendency within the aerospace community to use electromechanical actuators in applications where hydraulics have traditionally been employed. TVC of rocket engines is one such application. However, there is considerable research, development, and testing to be done before EMA will be accepted by the community at large for these types of applications. Besides the development of design procedures for the basic position controller, two major concerns are dealt with in this research by incorporating force feedback: 1) the effects of resonance on the performance of EMA-TVC-rocket-engine systems, and 2) the effects of engine start transients on EMA. This report only highlights the major contributions of this research.
Quantised output feedback control via limited capacity communication networks
Liu, Qing-Quan; Jin, Fang
2012-12-01
This article addresses the output feedback stability problem for single-input single-output (SISO) linear systems with quantised measurements of the plant output, where sensors and controllers are connected via errorless digital channels carrying a finite number of bits per unit time. The main idea here is to present a lower bound of data rates, above which there exists a quantisation, coding and control scheme to guarantee both stability and a prescribed control performance of the unstable plant. A quantisation and coding scheme, which is based on the distribution of measurements and the dynamics of the plant, is proposed. The proof techniques rely on both information-theoretic and control-theoretic tools. An illustrative example is given to demonstrate the effectiveness of the proposed scheme.
Institute of Scientific and Technical Information of China (English)
程东升; 张建武; 叶晓峰; 黄维纲
2003-01-01
A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch is established. By means of the exact feedback linearization procedure of differential geometry, an equivalent, fully controllable and linear model is derived via a homomorphic transformation for the AMT clutch system.Furthermore, a sliding mode control is introduced to improve robustness. The tracking tests are performed using the sliding mode control on a Santana LX passenger car, and the experimental results prove that this nonlinear controller is of fine robustness and high degree of tracking accuracy.
Binocular and Monocular Depth Cues in Online Feedback Control of 3-D Pointing Movement
Hu, Bo; Knill, David C.
2012-01-01
Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and thus were available in an observer’s retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account of the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions. PMID:21724567
Binocular and monocular depth cues in online feedback control of 3D pointing movement.
Hu, Bo; Knill, David C
2011-06-30
Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and, thus, were available in an observer's retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size, and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions.
A new hyperchaotic system and its linear feedback control
Institute of Scientific and Technical Information of China (English)
Cai Guo-Liang; Zheng-Song; TianLi-Xin
2008-01-01
This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system,studies some of its basic dynamical properties,such as the hyperchaotic attractor,Lyapunov exponents,bifurcation diagram and the hyperchaotic attractor evolving into periodic,quasi-periodic dynamical behaviours by varying parameter k.Furthermore,effective linear feedback control method is used to suppress hyperchaes to unstable equilibrium,periodic orbits and quasi-periodic orbits.Numerical simulations are presented to show these results.
Effect of vibrotactile feedback on an EMG-based proportional cursor control system.
Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang
2013-01-01
Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.
Kowalski, M E; Jin, J M
2003-03-07
A hybrid proportional-integral-in-time and cost-minimizing-in-space feedback control system for electromagnetic, deep regional hyperthermia is proposed. The unique features of this controller are that (1) it uses temperature, not specific absorption rate, as the criterion for selecting the relative phases and amplitudes with which to drive the electromagnetic phased-array used for hyperthermia and (2) it requires on-line computations that are all deterministic in duration. The former feature, in addition to optimizing the treatment directly on the basis of a clinically relevant quantity, also allows the controller to sense and react to time- and temperature-dependent changes in local blood perfusion rates and other factors that can significantly impact the temperature distribution quality of the delivered treatment. The latter feature makes it feasible to implement the scheme on-line in a real-time feedback control loop. This is in sharp contrast to other temperature optimization techniques proposed in the literature that generally involve an iterative approximation that cannot be guaranteed to terminate in a fixed amount of computational time. An example of its application is presented to illustrate the properties and demonstrate the capability of the controller to sense and compensate for local, time-dependent changes in blood perfusion rates.
Less Conservative Optimal Robust Control of a 3-DOF Helicopter
Directory of Open Access Journals (Sweden)
L. F. S. Buzachero
2015-01-01
Full Text Available This work proposes an improved technique for design and optimization of robust controllers norm for uncertain linear systems, with state feedback, including the possibility of time-varying the uncertainty. The synthesis techniques used are based on LMIs (linear matrix inequalities formulated on the basis of Lyapunov’s stability theory, using Finsler’s lemma. The design has used the addition of the decay rate restriction, including a parameter γ in the LMIs, responsible for decreasing the settling time of the feedback system. Qualitative and quantitative comparisons were made between methods of synthesis and optimization of the robust controllers norm, seeking alternatives with lower cost and better performance that meet the design restrictions. A practical application illustrates the efficiency of the proposed method with a failure purposely inserted in the system.
Total energy control system autopilot design with constrained parameter optimization
Ly, Uy-Loi; Voth, Christopher
1990-01-01
A description is given of the application of a multivariable control design method (SANDY) based on constrained parameter optimization to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the direct synthesis of a multiloop AFCS inner-loop feedback control system based on total energy control system (TECS) principles. The design procedure offers a structured approach for the determination of a set of stabilizing controller design gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The approach can be extended to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by proper formulation of the design objectives and constraints. Satisfactory designs are usually obtained in few iterations. Performance characteristics of the optimized TECS design have been improved, particularly in the areas of closed-loop damping and control activity in the presence of turbulence.
A Multimedia Visual Feedback in the Web-controlled Laboratory
Directory of Open Access Journals (Sweden)
J. Turan
2012-06-01
Full Text Available The paper presents development work related to create WWW based remote control laboratory for teaching Applied Photonics. In order to minimize the cost at the end-user domain, simple WWW browser with fundamental plug-in (Java applets, HTML Pages and LabWindows applets to support the remote control and video transmission functionality of the remote control is proposed. As for telepresence and monitoring of device actions, a simple type zooming web-camera is connected to the hosting multimedia PC via the USB port. The web-camera assists in visual feedback of the system and presents the feeling of telepresence for the end-user (student. USB web-cameras are normally efficient and the presence of another video server is not necessary in this case, thanks to LabWindows.
Haptic feedback and control of a flexible surgical endoscopic robot.
Wang, Zheng; Sun, Zhenglong; Phee, Soo Jay
2013-11-01
A flexible endoscope could reach the potential surgical site via a single small incision on the patient or even through natural orifices, making it a very promising platform for surgical procedures. However, endoscopic surgery has strict spatial constraints on both tool-channel size and surgical site volume. It is therefore very challenging to deploy and control dexterous robotic instruments to conduct surgical procedures endoscopically. Pioneering endoscopic surgical robots have already been introduced, but the performance is limited by the flexible neck of the robot that passes through the endoscope tool channel. In this article we present a series of new developments to improve the performance of the robot: a force transmission model to address flexibility, elongation study for precise position control, and tissue property modeling for haptic feedback. Validation experiment results are presented for each sector. An integrated control architecture of the robot system is given in the end. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
COMPUTATIONAL FLOW RATE FEEDBACK AND CONTROL METHOD IN HYDRAULIC ELEVATORS
Institute of Scientific and Technical Information of China (English)
Xu Bing; Ma Jien; Lin Jianjie
2005-01-01
The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments are carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.
Robust adaptive output feedback control of nonlinearly parameterized systems
Institute of Scientific and Technical Information of China (English)
LIU Yusheng; LI Xingyuan
2007-01-01
The ideas of adaptive nonlinear damping and changing supply functions were used to counteract the effects of parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The high-gain observer was used to estimate the state of the system.A robust adaptive output feedback control scheme was proposed for nonlinearly parameterized systems represented by inputoutput models.The scheme does not need to estimate the unknown parameters nor add a dynamical signal to dominate the effects of unmodeled dynamics.It is proven that the proposed control scheme guarantees that all the variables in the closed-loop system are bounded and the mean-square tracking error can be made arbitrarily small by choosing some design parameters appropriately.Simulation results have illustrated the effectiveness of the proposed robust adaptive control scheme.
Gorzelic, P.; Schiff, S. J.; Sinha, A.
2013-04-01
Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.
Kraft, Manuel; Hein, Sven M.; Lehnert, Judith; Schöll, Eckehard; Hughes, Stephen; Knorr, Andreas
2016-08-01
Quantum coherent feedback control is a measurement-free control method fully preserving quantum coherence. In this paper we show how time-delayed quantum coherent feedback can be used to control the degree of squeezing in the output field of a cavity containing a degenerate parametric oscillator. We focus on the specific situation of Pyragas-type feedback control where time-delayed signals are fed back directly into the quantum system. Our results show how time-delayed feedback can enhance or decrease the degree of squeezing as a function of time delay and feedback strength.
A feedback control system for high-fidelity digital microfluidics.
Shih, Steve C C; Fobel, Ryan; Kumar, Paresh; Wheeler, Aaron R
2011-02-07
Digital microfluidics (DMF) is a technique in which discrete droplets are manipulated by applying electrical fields to an array of electrodes. In an ideal DMF system, each application of driving potential would cause a targeted droplet to move onto an energized electrode (i.e., perfect fidelity between driving voltage and actuation); however, in real systems, droplets are sometimes observed to resist movement onto particular electrodes. Here, we implement a sensing and feedback control system in which all droplet movements are monitored, such that when a movement failure is observed, additional driving voltages can be applied until the droplet completes the desired operation. The new system was evaluated for a series of liquids including water, methanol, and cell culture medium containing fetal bovine serum, and feedback control was observed to result in dramatic improvements in droplet actuation fidelity and velocity. The utility of the new system was validated by implementing an enzyme kinetics assay with continuous mixing. The new platform for digital microfluidics is simple and inexpensive and thus should be useful for scientists and engineers who are developing automated analysis platforms.
ORBIT FEEDBACK CONTROL FOR THE LHC Prototyping at the SPS
Steinhagen, Ralph J
2004-01-01
The Large Hadron Collider (LHC) is the next generation proton collider that is presently built at CERN. The LHC will be installed in the former LEP (Large Electron Positron Collider) tunnel. The presence of a high intensity beam in an environment of cryogenic magnets requires an excellent control of particle losses from the beam. Eventually the performance of the LHC may be limited by the ability to control the beam losses. The performance of the LHC cleaning system depends critically on the beam position stability. Ground motion, field and alignment imperfections and beam manipulations may cause orbit movements. The role of the future LHC Orbit Feedback System is the minimisation of closed orbit perturbations by periodically measuring and steering the transverse beam position back to its reference position. This diploma thesis focuses on the design and prototyping of an orbit feedback system at the SPS. The design is based on a separation of the steering problem into space and time. While the correction in s...
Mirshams, M.; Khosrojerdi, M.
2017-03-01
Feasibility of achieving 3-axis stabilization of an asymmetric spacecraft for cases where there is no control available in one axis (underactuated spacecraft) is explored in this paper. A novel control design methodology is presented which can stabilize the underactuated spacecraft and steer it to the origin. A passive fault tolerant control (FTC) is defined which controls and maintains the attitude of the spacecraft near the desired point in presence of uncertainties, disturbances, control constraints and actuator faults. Considering the general conditions of the underactuated spacecraft, a hybrid controller combining a quaternion feedback regulator (QFR) with a tube-based model predictive controller (MPC) is developed based on the nonlinear kinematic and dynamic equations of the spacecraft motion. The hybrid controller is composed of two control stages. At the first stage, QFR decreases the angular velocities and brings the state vector to an acceptable region for the next stage. Then, tube-based MPC solves two optimal control problems, a standard problem for the nominal system to define a central guide path, and an ancillary problem to steer the state vector towards the central path with semi-optimal control effort. Numerical simulation results obtained for the underactuated spacecraft merely indicate effectiveness of the proposed attitude control method.
Lim, Wei Jer; Neoh, Siew Chin; Norizan, Mohd Natashah; Mohamad, Ili Salwani
2015-05-01
Optimization for complex circuit design often requires large amount of manpower and computational resources. In order to optimize circuit performance, it is critical not only for circuit designers to adjust the component value but also to fulfill objectives such as gain, cutoff frequency, ripple and etc. This paper proposes Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize a ninth order multiple feedback Chebyshev low pass filter. Multi-objective Pareto-Based optimization is involved whereby the research aims to obtain the best trade-off for minimizing the pass-band ripple, maximizing the output gain and achieving the targeted cut-off frequency. The developed NSGA-II algorithm is executed on the NGSPICE circuit simulator to assess the filter performance. Overall results show satisfactory in the achievements of the required design specifications.
DEFF Research Database (Denmark)
Feng, Ju; Shen, Wen Zhong
2012-01-01
Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines...... in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using...... the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening...
Mrňa, L.; Šarbort, M.; Řeřucha, Š.; Jedlička, P.
This paper presents a novel method for optimization and feedback control of laser welding process. It is based on frequency analysis of the light emitted during the process and adaptive shaping of the laser beam achieved by an active optical element. Experimentally observed correlations between the focal properties of the laser beam, the weld depth and the frequency characteristics of the light emissions, which form the basis of the method, are discussed in detail. The functionality and the high efficiency of the method are demonstrated for a variety of welding parameters settings usually used in industrial practice.
Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems
Zhang, Guofeng
2010-01-01
The purpose of this paper is to study and design direct and indirect couplings for use in coherent feedback control of a class of linear quantum stochastic systems. A general physical model for a nominal linear quantum system coupled directly and indirectly to external systems is presented. Fundamental properties of stability, dissipation, passivity, and gain for this class of linear quantum models are presented and characterized using complex Lyapunov equations and linear matrix inequalities (LMIs). Coherent $H^\\infty$ and LQG synthesis methods are extended to accommodate direct couplings using multistep optimization. Examples are given to illustrate the results.
Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim
2012-12-01
Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.
Stabilizing equilibrium by linear feedback control for controlling chaos in Chen system
Energy Technology Data Exchange (ETDEWEB)
Costa, V A [Departamento de Ciencias Basicas, Facultad de IngenierIa (UNLP), La Plata (Argentina); Gonzalez, G A, E-mail: vacosta@ing.unlp.edu.ar, E-mail: ggonzal@fi.ub.ar [Departamento de Matematica, Facultad de Ingenieria (UBA), Buenos Aires (Argentina)
2011-03-01
Stabilization of a chaotic system in one of its unstable equilibrium points by applying small perturbations is studied. A two-stage control strategy based on linear feedback control is applied. Improvement of system performance is addressed by exploiting the ergodicity of the original dynamics and using Lyapunov stability results for control design. Extension to the not complete observability case is also analyzed.
Study and application of crown feedback control in hot strip rolling
Institute of Scientific and Technical Information of China (English)
Xiaodong Wang; Anrui He; Quan Yang; Zhi Xie; Hongtao Yang
2007-01-01
Crown feedback control is one part of the automatic shape control (ASC) system. On the basis of large simulation researches conducted, a linear crown feedback control model was put forward and applied in actual strip rolling. According to its successful operation in the ASP 1700 hot strip mill of Angang Group for one year and also from the statistical results of several crown measurements, it can be definitely said that this control model is highly effective and shows stable performance. The control effectiveness of different gauges of strips with the feedback control is found to increase by 10%-30% compared with that without feedback control.
Controlling halo-chaos via wavelet-based feedback
Directory of Open Access Journals (Sweden)
Jin-Qing Fang
2002-01-01
Full Text Available Halo-chaos in high-current accelerator has become one of the key issues because it can cause excessive radioactivity from the accelerators and significantly limits the applications of the new accelerators in industrial and other fields. Some general engineering methods for chaos control have been developed, but they generally are unsuccessful for halo-chaos suppression due to many technical constraints. In this article, controllability condition for beam halo-chaos is analyzed qualitatively. Then Particles-in-Cell (PIC simulations explore the nature of beam halo-chaos formation. A nonlinear control method and wavelet function feedback controller are proposed for controlling beam halo-chaos. After control of beam halo-chaos for initial proton beam with water bag distributions, the beam halo strength factor H is reduced to zero, and other statistical physical quantities of beam halo-chaos are doubly reduced. The results show that the developed methods in this paper are very effective for proton beam halo-chaos suppression. Potential application of the halo-chaos control method is finally pointed out.
Multiobjective controller synthesis via eigenstructure assignment with state feedback
Li, Zhao; Lam, James
2016-10-01
A general parameter scheme for multiobjective controller synthesis via eigenstructure assignment with state feedback is proposed. The scheme provides total pole configurability, that is, pole assignment constraints, partial pole assignment constraints, generalised regional pole assignment constraints can be dealt with simultaneously without introducing essential conservatism. The scheme is derived from the pole assignment approach using Sylvester equations, and the parameter space is the Cartesian product of some subspaces characterising the free parameters. Under the scheme, the controller design problems are formulated as nonlinear optimisation problems with both objectives and constraints being differentiable and can be solved by derivative-based nonlinear programming technique. Numerical examples are given to illustrate the efficiency of the proposed method.
Stabilization of three-dimensional chaotic systems via single state feedback controller
Energy Technology Data Exchange (ETDEWEB)
Yu Wenguang, E-mail: smilewgyu@163.co [School of Statistics and Mathematics, Shandong Economic University, Jinan 250014 (China)
2010-03-29
This Letter investigates the stabilization of three-dimensional chaotic systems, and proposes a novel simple adaptive-feedback controller for chaos control. In comparison with previous methods, the present controller which only contains single state feedback, to our knowledge, is the simplest control scheme for controlling the three-dimensional chaotic system. The results are validated using numerical simulations.
Directory of Open Access Journals (Sweden)
Ting Zhang
2014-01-01
Full Text Available This paper presents various experimental verifications for the theoretical analysis results of vibration suppression to a smart flexible beam bonded with a piezoelectric actuator by a velocity feedback controller and an extended state observer (ESO. During the state feedback control (SFC design process for the smart flexible beam with the pole placement theory, in the state feedback gain matrix, the velocity feedback gain is much more than the displacement feedback gain. For the difference between the velocity feedback gain and the displacement feedback gain, a modified velocity feedback controller is applied based on a dynamical model with the Hamilton principle to the smart beam. In addition, the feedback velocity is attained with the extended state observer and the displacement is acquired by the foil gauge on the root of the smart flexible beam. The control voltage is calculated by the designed velocity feedback gain multiplied by the feedback velocity. Through some experiment verifications for simulation results, it is indicated that the suppressed amplitude of free vibration is up to 62.13% while the attenuated magnitude of its velocity is up to 61.31%. Therefore, it is demonstrated that the modified velocity feedback control with the extended state observer is feasible to reduce free vibration.
Wang, Lijie; Li, Hongyi; Zhou, Qi; Lu, Renquan
2017-09-01
This paper investigates the problem of observer-based adaptive fuzzy control for a category of nonstrict feedback systems subject to both unmodeled dynamics and fuzzy dead zone. Through constructing a fuzzy state observer and introducing a center of gravity method, unmeasurable states are estimated and the fuzzy dead zone is defuzzified, respectively. By employing fuzzy logic systems to identify the unknown functions. And combining small-gain approach with adaptive backstepping control technique, a novel adaptive fuzzy output feedback control strategy is developed, which ensures that all signals involved are semi-globally uniformly bounded. Simulation results are given to demonstrate the effectiveness of the presented method.
HCCI Engine Optimization and Control
Energy Technology Data Exchange (ETDEWEB)
Rolf D. Reitz
2005-09-30
The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.
Power optimized programmable embedded controller
Kamaraju, M; Tilak, A V N; 10.5121/ijcnc.2010.2409
2010-01-01
Now a days, power has become a primary consideration in hardware design, and is critical in computer systems especially for portable devices with high performance and more functionality. Clock-gating is the most common technique used for reducing processor's power. In this work clock gating technique is applied to optimize the power of fully programmable Embedded Controller (PEC) employing RISC architecture. The CPU designed supports i) smart instruction set, ii) I/O port, UART iii) on-chip clocking to provide a range of frequencies , iv) RISC as well as controller concepts. The whole design is captured using VHDL and is implemented on FPGA chip using Xilinx .The architecture and clock gating technique together is found to reduce the power consumption by 33.33% of total power consumed by this chip.
The Optimal Linear Quadratic Feedback State Regulator Problem for Index One Descriptor Systems
Engwerda, J.C.; Salmah, Y.; Wijayanti, I.E.
2008-01-01
In this note we present both necessary and sufficient conditions for the existence of a linear static state feedback controller if the system is described by an index one descriptor system. A priori no definiteness restrictions are made w.r.t. the quadratic performance criterium. It is shown that in
Analysis of modern optimal control theory applied to plasma position and current control in TFTR
Energy Technology Data Exchange (ETDEWEB)
Firestone, M.A.
1981-09-01
The strong compression TFTR discharge has been segmented into regions where linear dynamics can approximate the plasma's interaction with the OH and EF power supply systems. The dynamic equations for these regions are utilized within the linear optimal control theory framework to provide active feedback gains to control the plasma position and current. Methods are developed to analyze and quantitatively evaluate the quality of control in a nonlinear, more realistic simulation. Tests are made of optimal control theory's assumptions and requirements, and the feasibility of this method for TFTR is assessed.
Sensory feedback in prosthetics: a standardized test bench for closed-loop control.
Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario
2015-03-01
Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.
Feedback Control and Learning To Program with the CMU Lisp Tutor.
Corbett, Albert T.; Anderson, John R.
This study manipulated the timing and control of error feedback in problem solving and examined their effects on skill acquisition by 40 undergraduate students learning to program in the computer language Lisp under four error feedback conditions. These four conditions included two types of symbol-by-symbol feedback that vary in content, a…
Feedback Control and Learning To Program with the CMU Lisp Tutor.
Corbett, Albert T.; Anderson, John R.
This study manipulated the timing and control of error feedback in problem solving and examined their effects on skill acquisition by 40 undergraduate students learning to program in the computer language Lisp under four error feedback conditions. These four conditions included two types of symbol-by-symbol feedback that vary in content, a…
Optimal control of induction heating processes
Rapoport, Edgar
2006-01-01
This book introduces new approaches to solving optimal control problems in induction heating process applications. Optimal Control of Induction Heating Processes demonstrates how to apply and use new optimization techniques for different types of induction heating installations. Focusing on practical methods for solving real engineering optimization problems, the text features a variety of specific optimization examples for induction heater modes and designs, particularly those used in industrial applications. The book describes basic physical phenomena in induction heating and induction
Huet, Michaël; Jacobs, David M; Camachon, Cyril; Goulon, Cedric; Montagne, Gilles
2009-12-01
This study (a) compares the effectiveness of different types of feedback for novices who learn to land a virtual aircraft in a fixed-base flight simulator and (b) analyzes the informational variables that learners come to use after practice. An extensive body of research exists concerning the informational variables that allow successful landing. In contrast, few studies have examined how the attention of pilots can be directed toward these sources of information. In this study, 15 participants were asked to land a virtual Cessna 172 on 245 trials while trying to follow the glide-slope area as accurately as possible. Three groups of participants practiced under different feedback conditions: with self-controlled concurrent feedback (the self-controlled group), with imposed concurrent feedback (the yoked group), or without concurrent feedback (the control group). The self-controlled group outperformed the yoked group, which in turn outperformed the control group. Removing or manipulating specific sources of information during transfer tests had different effects for different individuals. However, removing the cockpit from the visual scene had a detrimental effect on the performance of the majority of the participants. Self-controlled concurrent feedback helps learners to more quickly attune to the informational variables that allow them to control the aircraft during the approach phase. Knowledge concerning feedback schedules can be used for the design of optimal practice methods for student pilots, and knowledge about the informational variables used by expert performers has implications for the design of cockpits and runways that facilitate the detection of these variables.